TWI338954B - Light-emitting diode and method for manufacturing the same - Google Patents

Light-emitting diode and method for manufacturing the same Download PDF

Info

Publication number
TWI338954B
TWI338954B TW95145530A TW95145530A TWI338954B TW I338954 B TWI338954 B TW I338954B TW 95145530 A TW95145530 A TW 95145530A TW 95145530 A TW95145530 A TW 95145530A TW I338954 B TWI338954 B TW I338954B
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting diode
diode according
transparent conductive
Prior art date
Application number
TW95145530A
Other languages
Chinese (zh)
Other versions
TW200826313A (en
Inventor
Shihchen Wei
Schang Jing Hon
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW95145530A priority Critical patent/TWI338954B/en
Publication of TW200826313A publication Critical patent/TW200826313A/en
Application granted granted Critical
Publication of TWI338954B publication Critical patent/TWI338954B/en

Links

Landscapes

  • Led Devices (AREA)

Description

13389541338954

【發明所屬之技術領域】 本發明是有關於一種發光元件及其製造方法,且特別是 有關於一種發光二極體(LED)及其製造方法。 【先前技術】 在發光二極體之製作上,m - v族半導體化合物,例如 填化鎵(GaP)、峨化鎵砷(GaAsP)、填化鎵銦(GalnP)、坤化 鋁鎵(AlGaAs)或填化鋁鎵(AlGaP)以及破化鎵_ (AlGalnP) ® 等材料’係相當常見之材料。一般傳統之發光二極體結構採 N型坤化鎵(GaAs)作為成長基板(Growth Substrate)材料。由 於N型砷化鎵所構成之成長基板會吸收光,因此在發光二 . 極體之主動層所產生之光子中,朝向成長基板方向之光子大 部分將為成長基板所吸收,而嚴重影響發光二極體元件之發 光效率。 為避免發光二極體之基板吸光問題,比利時Gent大學 I. Pollentirer 等人於 1990 年在 Electronics Letters 期刊發表 籲 將砷化鎵發光二極體晶片自坤化鎵基板上剝離後直接接合 到石夕(Si)基板之技術。此外,美國Hewlett-Packard公司在 其美國專利編说第5376580说(申請曰1993年3月19日) • 中揭露將砷化鋁鎵(AlGaAs)發光二極體晶片自坤化鎵基板 剝離後直接接合到其他基板的技術。然而,由於此美國專利 編號第5376580號係以半導體為貼合介質的晶片直接貼合 技術,因此必須要考慮貼合二半導體晶片間的晶格方向對 齊,製程困難度高,因而導致良率降低。 1338954 此外,傳統貼合製程中,均需先進行貼合,再進行發光 磊晶結構及永久基板上之製程,因而必須侷限貼合溫度大於 發光磊晶結構之製程溫度,而在較高之貼合溫度下,亦使得 黏著層之材質須為融點較高且硬度較高之材料,如此一來, 發光二極體元件相當容易發生操作劣化之問題。 此外,為改善電流分散,一般之設計係採增加電極之面 積的方式。然而,由於電極不透光,因此電極面積的增加會 導致不透光面積增加,而造成發光二極體元件之發光亮度下 降。 【發明内容】 因此,本發明之目的就是在提供一種發光二極體,具有 金屬基板’因此可提升發光二極體之散熱效能。 本發明之另一目的是在提供一種發光二極體,其金屬基 板無須透過黏著層即可與發光磊晶結構接合,因此具有相當 優異之散熱能力,進而可提高發光二極體之操作性能,並可 增進元件之穩定度,更可延伸發光二極體之使用壽命。 本發明之又一目的是在提供一種發光二極體之製造方 法,其係在成長基板上成長較厚之透明導電層,而可在發光 二極體之後續製程期間作為暫時支撐結構,因此成長基板之 移除以及發光磊晶結構之後續製程,均可在金屬基板製作前 完成,如此一來可擴大製程窗,進而可提高製程良率。 本發明之再一目的是在提供一種發光二極體之製造方 法,可製作出P型朝上(P-Side Up)之發光磊晶結構,而有利 於磊晶成長較厚且導電性較高之透明導電層。因此可增加 6 …的54 光取出效率,改善電流分散,進而減少不透光之電極面積, 達到免度提升之功效。 根據本發明之上述目的,提出一種發光二極體,至少包 括.—金屬基板;一反射層位於金屬基板上,其中反射層之 一表面與金屬基板之一表面直接接合;一發光磊晶結構位於 在反射層上;一第一透明導電層設於發光磊晶結構上,其 中第一透明導電層之厚度實質為50/im以上;以及一第二 電性電極設於部分之第一透明導電層上。 依照本發明一較佳實施例,上述金屬基板之厚度大於 50 以 m。 根據本發明之目的,提出一種發光二極體之製造方法, 至少包括:形成一蝕刻終止層於成長基板上;形成一歐姆接 觸層於姓刻.终止層上;形成一發光蟲晶結構於歐姆接觸層 上;形成一第一透明導電層於發光磊晶結構上,其中第一^ 明導電層之厚度實質為50/im以上:以第一透明導電層為 支樓移除成長基板:移除㈣終止層;圖案化歐姆接觸層, 並暴露部分之發光羞晶結構;形成—歐姆金屬接觸層於歐姆 接觸層上;形成-第二透明導電層覆蓋於歐姆接觸層、歐姆 金屬接觸層以及發光蟲晶結構之暴露部分上,其中歐姆接觸 層以及歐姆金屬接觸層嵌置於第二透明導電層之一表面形 成-第二電性電極於部分之第—透明電極層上;形成一反射 層於發光蟲晶結構上,其中反射a愈筮 久耵層與第一透明導電層位於發 光蟲晶結構之相對二側;以及形成—仝厲 久〜攻金屬基板直接位於反射 «上,其中金>1基板與發光^結構位於反射層之相對二 侧0 1338954 依…、本發明一較佳實施例,上述形成金屬基板之步驟係 利用化學方式或物理方式。其t,化學方式可例如為電鍵 法、無電極電鍍法或化學氣相沉積法,而物理方式可例如為 蒸鍍法或濺鍍法。 【實施方式】 本發明揭露一種發光二極體及其製造方法。為了使本發 明之敘述更加詳盡與完備,可參照下列描述並配合第1圖至 第6圖之圖式。 请參照第1圖至第6圖,其係繪示依照本發明一較佳實 施例的-種發光二極體之製程剖面圖。首先,提供成長基板 100以供後續形成之磊晶材料層成長於其上。成長基板1 〇〇 之材料較佳可採用m ·ν族半導體化合物基板,例如砷化 鎵。接下來,直接於成長基板丨⑼之表面上成長㈣終止層 1〇卜再利用例如有機金屬化學氣相沉積法(m〇cvd)、液才9目 磊晶法(LPE)或分子束磊晶法(MBE)於蝕刻終止層ι〇ι上成 長歐姆接觸層103與發光蠢晶結構〗〇2。其中,歐姆接觸層 1〇3之材料可為砷化鎵。在本示範實施例中,發光磊晶結‘ 102包括依序堆疊在歐姆接觸層1〇3之表面上的第一電性侷 限層104、主動層1G6以及第二電性侷限層1()8。在本發明 中,第-電性與第二電性為不同電性。其中,當第—電性為 N型時’第二電性為";而當第一電性為p型時,第二 電性則為N型。第一電性偈限層1〇4之材料可例如選用: 化鋁鎵銦[(AlxGai-x)yIni_yP,x>〇.4]或砷化鋁鎵⑷▲, 。主動層106之材料可例如選用磷化鋁鎵銦 1338954BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light-emitting element and a method of fabricating the same, and more particularly to a light-emitting diode (LED) and a method of fabricating the same. [Prior Art] In the fabrication of light-emitting diodes, m-v semiconductor compounds such as gallium-filled gallium (GaP), gallium arsenide (GaAsP), gallium indium (GalnP), and unalloyed aluminum gallium (AlGaAs) ) or filled with aluminum gallium (AlGaP) and materials such as gallium arsenide (AlGalnP) ® are quite common materials. Generally, the conventional light-emitting diode structure adopts N-type gallium arsenide (GaAs) as a growth substrate (Growth Substrate) material. Since the grown substrate composed of N-type gallium arsenide absorbs light, in the photons generated by the active layer of the light-emitting diode, most of the photons in the direction of the growth substrate are absorbed by the growth substrate, which seriously affects the light emission. Luminous efficiency of a diode element. In order to avoid the problem of light absorption of the substrate of the light-emitting diode, I. Pollentirer of the Gent University of Belgium and others published in the Electronics Letters journal in 1990, arranging that the gallium arsenide LED wafer was peeled off from the gallium-arsenide substrate and directly bonded to Shi Xi. (Si) substrate technology. In addition, Hewlett-Packard Company of the United States, in its U.S. Patent No. 5,376,580, filed on March 19, 1993, discloses that the aluminum gallium arsenide (AlGaAs) light-emitting diode wafer is directly stripped from the gallium-arsenide substrate. A technique of bonding to other substrates. However, since this U.S. Patent No. 5,376,580 is a wafer direct bonding technique using a semiconductor as a bonding medium, it is necessary to consider the lattice alignment between the two semiconductor wafers, and the process difficulty is high, resulting in a decrease in yield. . 1338954 In addition, in the traditional bonding process, it is necessary to perform the bonding first, and then the process of the luminescent epitaxial structure and the permanent substrate, so the bonding temperature must be limited to the process temperature of the luminescent epitaxial structure, and the higher temperature At the same temperature, the material of the adhesive layer is required to be a material having a high melting point and a high hardness. As a result, the light-emitting diode element is relatively prone to operational deterioration. In addition, in order to improve current dispersion, the general design is to increase the area of the electrodes. However, since the electrode is opaque, an increase in the electrode area leads to an increase in the opaque area, which causes the luminance of the light-emitting diode element to decrease. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light-emitting diode having a metal substrate, thereby improving the heat dissipation performance of the light-emitting diode. Another object of the present invention is to provide a light-emitting diode which can be bonded to a light-emitting epitaxial structure without passing through an adhesive layer, thereby having a relatively excellent heat dissipation capability, thereby improving the operational performance of the light-emitting diode. It can improve the stability of the components and extend the service life of the LED. Still another object of the present invention is to provide a method for fabricating a light-emitting diode which is formed by growing a thick transparent conductive layer on a growth substrate, and can be used as a temporary support structure during subsequent processes of the light-emitting diode, thereby growing The removal of the substrate and the subsequent process of the luminescent epitaxial structure can be completed before the metal substrate is fabricated, so that the process window can be enlarged, thereby improving the process yield. A further object of the present invention is to provide a method for fabricating a light-emitting diode, which can produce a P-type up-up light-emitting epitaxial structure, which is advantageous for thicker epitaxial growth and higher conductivity. Transparent conductive layer. Therefore, the efficiency of 54-light extraction of 6 ... can be increased, the current dispersion can be improved, and the area of the opaque electrode can be reduced, thereby achieving the effect of improving the degree of exemption. According to the above object of the present invention, a light emitting diode is provided, comprising at least a metal substrate; a reflective layer is disposed on the metal substrate, wherein a surface of the reflective layer is directly bonded to a surface of the metal substrate; and a light emitting epitaxial structure is located On the reflective layer; a first transparent conductive layer is disposed on the luminescent epitaxial structure, wherein the first transparent conductive layer has a thickness substantially greater than 50/im; and a second electrical electrode is disposed on the portion of the first transparent conductive layer on. According to a preferred embodiment of the invention, the thickness of the metal substrate is greater than 50 m. According to an object of the present invention, a method for fabricating a light-emitting diode includes at least: forming an etch stop layer on a growth substrate; forming an ohmic contact layer on the termination layer; forming a luminescent crystal structure in ohms Forming a first transparent conductive layer on the luminescent epitaxial structure, wherein the thickness of the first conductive layer is substantially 50/im or more: removing the growth substrate by using the first transparent conductive layer as a branch: removing (4) terminating layer; patterning the ohmic contact layer, and exposing part of the luminescent crystal structure; forming an ohmic metal contact layer on the ohmic contact layer; forming a second transparent conductive layer covering the ohmic contact layer, the ohmic metal contact layer, and illuminating An exposed portion of the crystal structure, wherein the ohmic contact layer and the ohmic metal contact layer are embedded on one surface of the second transparent conductive layer to form a second electrical electrode on the portion of the first transparent electrode layer; forming a reflective layer In the luminescent crystal structure, wherein the reflection a is longer, the first transparent conductive layer is located on the opposite side of the luminescent crystal structure; and the formation is the same as the long time The substrate is directly on the reflection «wherein the gold > 1 substrate and the light-emitting structure are located on opposite sides of the reflective layer 0 1338954. According to a preferred embodiment of the present invention, the step of forming the metal substrate is performed by chemical means or physics. the way. The chemical mode may be, for example, an electric bond method, an electroless plating method or a chemical vapor deposition method, and the physical means may be, for example, an evaporation method or a sputtering method. Embodiments The present invention discloses a light emitting diode and a method of manufacturing the same. In order to make the description of the present invention more detailed and complete, reference is made to the following description in conjunction with the drawings of Figures 1 through 6. Referring to Figures 1 through 6, there is shown a process cross-sectional view of a light-emitting diode in accordance with a preferred embodiment of the present invention. First, a growth substrate 100 is provided for the subsequent formation of an epitaxial material layer to be grown thereon. The material of the growth substrate 1 较佳 is preferably a m·ν group semiconductor compound substrate such as gallium arsenide. Next, it grows directly on the surface of the growth substrate 丨(9). (4) The termination layer 1 is reused, for example, by organometallic chemical vapor deposition (m〇cvd), liquid 9-dimensional epitaxy (LPE) or molecular beam epitaxy. The method (MBE) grows the ohmic contact layer 103 and the light-emitting crystal structure 〇2 on the etch stop layer ι〇ι. The material of the ohmic contact layer 1〇3 may be gallium arsenide. In the exemplary embodiment, the illuminating epitaxial junction '102 includes a first electrically limited layer 104, an active layer 1G6, and a second electrically confined layer 1 (8) stacked on the surface of the ohmic contact layer 1〇3 in sequence. . In the present invention, the first electrical property and the second electrical property are different electrical properties. Wherein, when the first electrical property is N-type, the second electrical property is "; and when the first electrical property is p-type, the second electrical property is N-type. The material of the first electrical barrier layer 1〇4 can be selected, for example, from aluminum gallium indium [(AlxGai-x)yIni_yP, x>〇.4] or aluminum gallium arsenide (4)▲. The material of the active layer 106 can be selected, for example, aluminum gallium phosphide indium 1338954

[(AlxGai.x)yIni_yP,χ<0·5]。第二電性侷限層l〇8之材料可例 如選用磷化鋁鎵銦[(AUGai-dyln^yP,χ>〇.4]或石申化銘錄 (AlxGa〗-xAs,χ>0.4)。接下來’形成透明導電層11 〇於發光 磊晶結構102上,其中透明導電層11 0係位於第二電性侷限 層108上,如第1圖所示。透明導電層110之材料可例如為 磷化鎵(GaP) '磷化鎵砷(GaAsP)、磷化鎵銦(GaInP)、神化 鋁鎵(AlGaAs)或磷化鋁鎵(AlGaP)。在本發明中,形成透明 導電層110時較佳可利用兩段式磊晶沉積方式。在本發明之 一較佳實施例中,利用有機金屬化學氣相沉積方式形成具有 透明導電層110之部分厚度的第一薄膜,再利用氣相蟲晶 (VPE)方式而於第一薄膜上形成具有透明導電層11()之其餘 厚度的第二薄膜。在本發明中,透明導電層n〇之厚度較 大,較佳係實質為50 // m以上,以提供發光磊晶結構1〇2 足夠的結構支撐來進行後續之製程。 在本發明中,由於透明導電層11〇之厚度較大,可製作 成P型朝上的結構,因此不僅有助於電流[(AlxGai.x)yIni_yP, χ<0·5]. The material of the second electrical confinement layer 〇8 may be, for example, aluminum gallium phosphide indium [(AUGai-dyln^yP, χ> ]. 4] or Shi Shenhua's quotation (AlxGa-xAs, χ > 0.4). The transparent conductive layer 11 is formed on the light emitting epitaxial structure 102, wherein the transparent conductive layer 110 is located on the second electrically limited layer 108, as shown in Fig. 1. The material of the transparent conductive layer 110 may be, for example, phosphating. Gallium (GaP) 'GaAsP, GaAs indium, GaInP, AlGaAs or AlGaP. In the present invention, it is preferred to form the transparent conductive layer 110. By using a two-stage epitaxial deposition method, in a preferred embodiment of the present invention, a first film having a partial thickness of the transparent conductive layer 110 is formed by an organometallic chemical vapor deposition method, and then a gas phase worm (VPE) method is used. And forming a second film having the remaining thickness of the transparent conductive layer 11() on the first film. In the present invention, the thickness of the transparent conductive layer n〇 is larger, preferably substantially 50 // m or more, to provide The luminescent epitaxial structure 1 〇 2 is sufficiently structurally supported for subsequent processing. In the present invention, Since the thickness of the transparent conductive layer 11 is large, a P-type upward structure can be formed, thereby contributing not only to current

取出效率。此外,更由於較厚之透明導電層no之位= 方,而有利於元件表面之粗糙化處理的進行,可進一步提高Take out the efficiency. In addition, the position of the thicker transparent conductive layer no = square, which is beneficial to the roughening treatment of the surface of the component, can be further improved

光取出率,達到提升發光:極體元件之亮度的效果。W 待完成透明導電I 110之製作後,以透明導電層】10 2結構支撐,利用例如乾式敍刻法、濕式敍刻法或研磨法 移除成長基板1 00。再利用你丨知外與h Μ, 丹W用例如化學餘刻法或研磨法移除蝕 刻終止層101。接著’圖荦 光編“冓之表面112::接觸層1〇3’而暴露出發 ™ ± 面U2的一部分116,亦即第一第性侷 限層104表面’如第2圖所示。 朽 9 1338954 由於大厚度之透明導 处3导電層11 〇所提供之結構強度足以 支撐發光磊晶結構】0? '隹〜#这 ^ ^ 進仃後續之製程,因此可在透明導電The light extraction rate achieves the effect of improving the brightness of the polar body components. After the transparent conductive I 110 is completed, it is supported by a transparent conductive layer 102, and the growth substrate 100 is removed by, for example, dry lithography, wet lithography or polishing. Reusing your knowledge and h Μ, Dan W removes the etch stop layer 101 by, for example, chemical engraving or grinding. Then, the surface 112:: contact layer 1〇3' is exposed to expose a portion 116 of the starting surface TM2, that is, the surface of the first first limiting layer 104, as shown in Fig. 2. 1338954 Due to the large thickness of the transparent guide 3 conductive layer 11 〇 provides the structural strength enough to support the luminescent epitaxial structure] 0? '隹~# this ^ ^ into the subsequent process, so it can be transparent conductive

層110的支撐下,順利從紅 丨負刿從蝕刻終止層101上移除成長基 100。 接著’如第3圖所示’在圖案化之歐姆接觸層103上形 成歐姆金屬接觸層丨14。1 層4如此一來,可在發光磊晶結構102 之表面112的局部區域上形成網狀或分佈點狀歐姆接觸結 構朴且發光站aa結構i 〇2之表φ i 1 2的暴露部> 116與後續 覆蓋於此暴露部分116之材料層(例如第4圖所示之透明導 電層11 8)之間會形成蕭基接觸,而可兼顧歐姆接觸品質盥 光取出率。歐姆金屬接觸層114之材料可例如為鍺/金合金 接著,可選擇性地形成透明導電層⑴覆蓋在發光磊晶 結構102之表面112的暴露部分1〇6與歐姆金屬接觸層ιΐ4 與歐姆接觸層ιοί上’如此一來歐姆金屬接觸層ιΐ4即嵌設 在透明導電層118與發光磊晶結構1〇2之表面112接觸的表 面中’如第4圖所示。透明導電| 118之材料可例如為氧化 銦錫(ITO)、氧化銦(In2〇3)、氧化錫(Sn〇2)、氧化鋅(Zn〇)或 氧化鎂(MgO)。 接下來,形成反射層120覆蓋在透明導電層118之表面 上,其中反射層120與透明導電層11〇位於發光磊晶結構 102之相對二側。在一實施例中,反射層12〇至少包括互相 堆#之擴散阻隔層124以及金屬反射層122,其中金屬反射 層122介於透明導電層118與擴散阻隔層ι24之間,如第5 圖所示。在其他實施例中,若未設置透明導電層118時,金 屬反射層122則介於發光磊晶結構1〇2與擴散阻隔層124 10 1338954 之間擴片政阻隔層124之材料可例如為翻(M〇)、麵(pt)、 鶴(Π乳化鋼錫、氧化辞或氧化猛(Mn〇)。金屬反射層122Under the support of layer 110, the growth substrate 100 is smoothly removed from the etch stop layer 101 from the red yttrium. Next, 'as shown in FIG. 3', an ohmic metal contact layer 丨14 is formed on the patterned ohmic contact layer 103. The first layer 4 can form a mesh on a partial region of the surface 112 of the luminescent epitaxial structure 102. Or a point-like ohmic contact structure and a light-emitting station aa structure i 〇 2 of the surface φ i 1 2 exposed portion > 116 and a material layer subsequently covering the exposed portion 116 (for example, the transparent conductive layer shown in FIG. 4 11 8) The Xiaoji contact will be formed, and the ohmic contact quality can be taken into consideration. The material of the ohmic metal contact layer 114 may be, for example, a tantalum/gold alloy. Next, the transparent conductive layer (1) may be selectively formed to cover the exposed portion 1〇6 of the surface 112 of the light emitting epitaxial structure 102 and the ohmic metal contact layer ι4 with ohmic contact. The layer ιοί is such that the ohmic metal contact layer ι 4 is embedded in the surface of the transparent conductive layer 118 in contact with the surface 112 of the luminescent epitaxial structure 1 ' 2 as shown in FIG. 4 . The material of the transparent conductive material 118 may be, for example, indium tin oxide (ITO), indium oxide (In2〇3), tin oxide (Sn〇2), zinc oxide (Zn〇) or magnesium oxide (MgO). Next, the reflective layer 120 is formed on the surface of the transparent conductive layer 118, wherein the reflective layer 120 and the transparent conductive layer 11 are located on opposite sides of the light-emitting epitaxial structure 102. In one embodiment, the reflective layer 12A includes at least a diffusion barrier layer 124 and a metal reflective layer 122, wherein the metal reflective layer 122 is interposed between the transparent conductive layer 118 and the diffusion barrier layer ι24, as shown in FIG. Show. In other embodiments, if the transparent conductive layer 118 is not disposed, the material of the metal reflective layer 122 between the light-emitting epitaxial structure 1〇2 and the diffusion barrier layer 124 10 1338954 may be, for example, turned over. (M〇), face (pt), crane (Π emulsified steel tin, oxidized or oxidized (Mn〇). Metal reflective layer 122

之4 ;·、’可例如為金(Au)、鈀(A丨卜銀⑷卜鎳⑼)或鉻(⑺。 另外’利用例如装贫沉接 …、鍍儿積方式,形成第二電性電極126於部 分之透明導電層U0上,如第5圖所示。其中,第二電性電 極126之材料可例如為金鈹合金(AuBe)、金鋅合金(AuZn) 或鉻金合金(CrAu彡。 …、後利用例如化學方式或物理方式,形成金屬基板 m直接覆蓋在反射層12G之暴露表面上,如此—來金屬 基板1 28與發光為晶結構J 〇2位於反射層! 2〇之相對二側, 而完成發光二極體134的製作,如第6圖所示之結構。在發 光二極體134中’由於金屬基板128係直接製作在反射層 120之表面上,因此反射層丨2〇中之擴散阻隔層124之表面 130—與金屬基128之…32直接接合,而無需透過其他 黏著介質。上述形成金屬基板128所採用之化學方式可例如 為電鍍法、無電極電鍍法或化學氣相沉積法。而上述形成金 屬基板128所採用之物理方式可例如為蒸鍍法或濺鍍法。金 屬基板12 8之材料可例如選用銅、鋁、鉬、鉑、鶴、金、銀 或鎳。在本發明中,金屬基板128之厚度較佳係大於5〇“ m。 由上述本發明較佳實施例可知,本發明之一優點就是因 為本發明之發光二極體具有金屬基板,因此可提升發光二極 體之散熱效能。 由上述本發明較佳實施例可知,本發明之另一優點就是 因為本發明之發光二極體的金屬基板無需透過黏著介質即 可與發光磊晶結構接合’因此具有相當優異之散熱能力,進 1338954 一步可提高發光二極體之操作性能,並可增進元件之穩定 度’更可延伸發光二極體之使用壽命。 " 、 由上述本發明較佳實施例可知,本發明之又—優點就曰 • 目為本發明之發光二極體之製造方法係在成長基板上成: . 較厚之透明導電層,而可在發光二極體之後續製程中作為暫 • 時支I结構,因此成長基板之移除以及發Μ晶結構之後續 • 5程、’均可在金屬基板製作前完成,如此-來可擴大製程 窗’進而可提高製程良率。 •因本發明較佳實施例可知’本發明之再-優點就是 因為運用本發明之發光二極體之製造方法可製作出Ρ型朝 上之發光蟲晶結構’因而有利於蟲晶成長較厚且導電性 之透明導電層。因此’可增加發光二極體之光取出效率,: • 2流分散’進而減少不透光之電極面積,達到亮度提升之 雖然本發明已以-較佳實施例揭露如上,然其並非_ 限疋本發明,任何在此技術領域中具有通常4;·, ' can be, for example, gold (Au), palladium (A 丨 银 silver (4) 卜 nickel (9)) or chrome ((7). In addition, using, for example, loading and sinking, plating, forming a second electrical property The electrode 126 is on a portion of the transparent conductive layer U0, as shown in Fig. 5. The material of the second electrical electrode 126 may be, for example, a gold-bismuth alloy (AuBe), a gold-zinc alloy (AuZn) or a chrome-gold alloy (CrAu). 、.. Afterwards, for example, by chemical or physical means, the metal substrate m is formed to directly cover the exposed surface of the reflective layer 12G, such that the metal substrate 182 and the luminescent layer are located on the reflective layer J 〇 2 is located in the reflective layer! On the opposite sides, the fabrication of the light-emitting diode 134 is completed, as shown in Fig. 6. In the light-emitting diode 134, 'the metal substrate 128 is directly formed on the surface of the reflective layer 120, so the reflective layer 丨The surface 130 of the diffusion barrier layer 124 in the second layer is directly bonded to the ... 32 of the metal substrate 128 without passing through other adhesive medium. The chemical method for forming the metal substrate 128 may be, for example, electroplating, electroless plating or Chemical vapor deposition The physical mode of the substrate 128 can be, for example, an evaporation method or a sputtering method. The material of the metal substrate 128 can be, for example, copper, aluminum, molybdenum, platinum, crane, gold, silver or nickel. In the present invention, the metal substrate The thickness of 128 is preferably greater than 5 〇 "m. According to the preferred embodiment of the present invention, one of the advantages of the present invention is that the light-emitting diode of the present invention has a metal substrate, thereby improving the heat dissipation performance of the light-emitting diode. According to the preferred embodiment of the present invention, another advantage of the present invention is that the metal substrate of the light-emitting diode of the present invention can be bonded to the light-emitting epitaxial structure without passing through the adhesive medium, thus having a relatively excellent heat dissipation capability. Step 1338954 can improve the operational performance of the light-emitting diode, and can improve the stability of the component, and can extend the service life of the light-emitting diode. " According to the preferred embodiment of the present invention, the present invention is further Advantages are as follows: The manufacturing method of the light-emitting diode of the present invention is formed on a growth substrate: a thick transparent conductive layer, which can be processed in a subsequent process of the light-emitting diode In the medium-time I structure, the removal of the growth substrate and the subsequent follow-up of the twinning structure • 5 steps, 'can be completed before the metal substrate is produced, so that the process window can be enlarged' and the process yield can be improved. According to a preferred embodiment of the present invention, it can be seen that the re-exposure of the present invention is that the use of the method for manufacturing a light-emitting diode of the present invention can produce a light-emitting crystal structure of a Ρ-shaped upward shape, thereby facilitating the growth of the crystallites. A thick and conductive transparent conductive layer. Therefore, 'the light extraction efficiency of the light-emitting diode can be increased, and: 2 flow dispersion', thereby reducing the opaque electrode area, and achieving brightness enhancement, although the present invention has been preferably implemented The example discloses the above, but it is not limited to the present invention, and any of the technical fields have the usual

離本發明之精神和範圍内,當可作各 在不脫 田J邗合禋之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 一較佳實施例的一種 第1圖至第6圖係繪示依照本發明 發光二極體之製程剖面圖。 1 〇 1 :钱刻終止層 【主要元件符號說明】 1〇〇 :成長基板 12 1338954 102 : 發光蠢晶結構 103 : 104 : 第一電性侷限層 106 : 108 : 第二電性偈限層 110: 112: 表面 114: 116 : 部分 118: 120 : 反射層 122 : 124 : 擴散阻隔層 126 : 128 : 金屬基板 130 : 132 : 表面 134 : 歐姆接觸層 主動層 透明導電層 歐姆金屬接觸層 透明導電層 金屬反射層 第二電性電極 表面 發光二極體 13Within the spirit and scope of the present invention, the scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS A first embodiment of the present invention is a cross-sectional view showing a process of a light-emitting diode according to the present invention. 1 〇1 : Money engraving layer [Major component symbol description] 1〇〇: Growth substrate 12 1338954 102 : Luminous crystal structure 103 : 104 : First electrical confinement layer 106 : 108 : Second electrical confinement layer 110 : 112: surface 114: 116 : portion 118: 120 : reflective layer 122 : 124 : diffusion barrier layer 126 : 128 : metal substrate 130 : 132 : surface 134 : ohmic contact layer active layer transparent conductive layer ohmic metal contact layer transparent conductive layer Metal reflective layer second electrical electrode surface light emitting diode 13

Claims (1)

1338954 1. 一種發光二極體,至少包括: 一金屬基板; 一反射層,位於該金屬基板上,其中該反射層之一表 面與該金屬基板之一表面直接接合; 一發光磊晶結構,位於在該反射層上; 一第一透明導電層,設於該發光磊晶結構上,其中該 第一透明導電層之厚度實質為50/zm以上;以及 一第二電性電極,設於部分之該第一透明導電層上。 2.如申請專利範圍第1項所述之發光二極體’其中 5玄金屬基板之厚度大於50/zm。 3·如申請專利範圍第1項所述之發光二極體,其中 該金屬基板之材料係選自於由銅(Cu)、銘(A1)、钥(Mo)、 钻(Pt)、鎢(W)、金(Au)、銀(Ag)以及鎳(Ni)所組成之一 族群。 4.如申請專利範圍第1項所述之發光二極體,其中 該反射層至少包括: 一擴散阻隔層,其中該擴散阻隔層之一表面與該金屬 基板之該表面直接接合;以及 一金屬反射層,疊設於該擴散阻隔層上,且介於該發 光蟲晶結構與該擴散阻隔層之間。 1338954 U.如申請專利範圍第9項所述之發光二極體,其中 該歐姆金屬捿觸層之材料為鍺/金(Ge/Au)合金。 12.如申請專利範圍第9項所述之發光二極體,其中 *玄發先蠢晶結構至少包括依序堆疊在該第二透明導電層 之忒表面上之一第—電性侷限層一主動層以及一第二電 性侷限層,a + β 且邊第一電性侷限層與該第二電性侷限層具不 同電性。 中,3’如申請專利範圍第12項所述之發光二極體,其 Λ第電性侷限層之材料係選自於由磷化鋁鎵銦 l(AlxGa \ τ Uylni-yp,x&gt;0·4]以及砷化鋁鎵(AlxGai.xAs, χ&gt;0.4) 所組成之一族群。 中气.如申清專利範圍第12項所述之發光二極體,其 Uai&quot; —電性偏限層之材料係選自於由峨化紹錄钢 ai.X)yIn|-yP,X&gt;〇.4]以及石申化链鎵(AlxGa,.xAs,x&gt;0.4) 所組成之一族群。 15, 中該主 x&lt;0.5] 〇 如申請專利範圍第 動層之材料為碟 12項所述之發光二極體,其 化鋁鎵銦[(AlxGai_x)yIn|_yP, 12項所述之發光二極體,其 1 6.如申請專利範圍第 16 1338954 中該第一電性侷限層為N型,且該第二電性侷限層為P 型0 17·如申請專利範圍第1項所述之發光二極體,其中 該第一透明導電層之材料為磷化鎵(GaP)、磷化鎵砷 (GaAsP)、磷化鎵銦(GaInp)、砷化鋁鎵(A1GaAs)或磷化鋁 鎵(AlGaP)。 18. 如申請專利範圍第1項所述之發光二極體,其中 該第一透明導電層包括互相堆疊之一有機金屬氣相沉積 層以及一氣相蠢晶層。 19. 如申請專利範圍第1項所述之發光二極體,其中 該第二電性電極之材料係選自於由金鈹合金(AuBe)、金鋅 合金(AuZn)以及鉻金合金(CrAu)所組成之一族群。 2〇·如申請專利範圍第1項所述之發光二極體,其中 該金屬基板係一電錢金屬基板。 21. 如巾請專利範圍帛i項所述之發光二極體,其中 該金屬基板係一無電極電鍍金屬基板。 22. 如申請專利範圍第1項所述之發光二極體,其中 該金屬基板係一化學氣相沉積基板。 17 1338954 23. 如申请專利範圍第丨項所述之發光二極體,其中 έ亥金屬基板係一蒸鍍基板。 24. 如申請專利範圍第〗項所述之發光二極體,其中 該金屬基板係一濺鍍基板。 25‘ 一種發光二極體之製造方法,至少包括: 提供一成長基板; 形成一钱刻终止層於該成長基板上; 形成一歐姆接觸層於該蝕刻終止層上; 形成一發光磊晶結構於該歐姆接觸層上; 形成一第一透明導電層於該發光磊晶結構上,其中該 第一透明導電層之厚度實質為5〇 以上; 以該第一透明導電層為支撐移除該成長基板; 移除該触刻終止層; 圖案化該歐姆接觸層,並暴露部分之該發光磊晶結 構, 形成一歐姆金屬接觸層於該歐姆接觸層上; 形成一第二透明導電層覆蓋於該歐姆接觸層、該歐姆 金屬接觸層以及該發光磊晶結構之該暴露部分上,其中該 歐姆接觸層以及該歐姆金屬接觸層嵌置於該第二透明導 電層之一表面; 形成一第二電性電極於部分之該第一透明電極層上. 形成一反射層於該發光磊晶結構上’其中該反射層與 該第一透明導電層位於該發光磊晶結構之相對二側;二^ 18 1338954 形成一金屬基板直接位於該反射層上,其中該金屬基 板與該發光磊晶結構位於該反射層之相對二側。 26. 如申請專利範圍第25項所述之發光二極體之製 造方法,其中該成長基板係一 m-v族半導體化合物基板。 27. 如申請專利範圍第25項所述之發光二極體之製 &amp;方法’其中該成長基板之材料為神化鎵。 28·如申請專利範圍第25項所述之發光二極體之製 造方法’其中形成該發光磊晶結構之步驟係利用有機金屬 化學氣相沉積法、液相磊晶法或分子束磊晶法。 29. 如申請專利範圍第25項所述之發光二極體之製 造方法’其中該歐姆金屬接觸層之材料為鍺/金合金。 30. 如申請專利範圍第25項所述之發光二極體之製 化方法’其中該第二透明導電層之材料係選自於由氧化銦 錫、氧化銦、氧化錫、氧化鋅以及氧化鎂所組成之一族群。 31. 如申請專利範圍第25項所述之發光二極體之製 &amp;方法,其中該發光磊晶結構至少包括依序堆疊在該第二 透月導電層之該表面上之一第一電性侷限層、一主動層以 及第一電性侷限層’且該第一電性侷限層與該第二電性 侷限層具不同電性。 1338954 止32.如申請專利範圍第31項所述之發光二極體之製 &amp;方法,其中該第—電性侷限層之材料係選自於由磷化鋁 鎵銦丨xGai-x)yIn丨-yp,x&gt;〇.4]以及珅化鋁鎵(AlxGaNxAs, x&gt;〇.4)所組成之—族群。 33. 如申凊專利範圍第31項所述之發光二極體之製 &amp;方法’其中該第二電性侷限層之材料係選自於由磷化鋁 錄钢[(AlxGa丨.x)yini yP,χ&gt;〇 4]以及珅化鋁鎵(A\Gai xAs, x&gt;〇.4)所組成之—族群。 34. 如申請專利範圍第31項所述之發光二極體之製 造方法’其十該主動層之材料為磷化鋁鎵銦 [(AlxGauJylm.yp,χ&lt;〇 5]。 35. 如申請專利範圍第31項所述之發光二極體之製 造方法’其中該第一電性侷限層為Ν型,且該第二電性 侷限層為Ρ型。 36. 如申請專利範圍第25項所述之發光二極體之製 ia方法’其中該反射層至少包括: 一擴散阻隔層,其中該擴散阻隔層之一表面與該金屬 基板之一表面直接接合;以及 一金屬反射層’疊設於該擴散阻隔層上,且介於該第 二透明導電層與該擴散阻隔層之間。 20 I3389M 37.如申請專利範圍第36項 士、X ^ 3所述之發光二極體之製1338954 1. A light emitting diode comprising: at least: a metal substrate; a reflective layer on the metal substrate, wherein a surface of the reflective layer is directly bonded to a surface of the metal substrate; a luminescent epitaxial structure is located On the reflective layer, a first transparent conductive layer is disposed on the luminescent epitaxial structure, wherein the first transparent conductive layer has a thickness of substantially 50/zm or more; and a second electrical electrode is disposed on the portion On the first transparent conductive layer. 2. The light-emitting diode according to claim 1, wherein the thickness of the 5th metal substrate is greater than 50/zm. 3. The light-emitting diode according to claim 1, wherein the material of the metal substrate is selected from the group consisting of copper (Cu), Ming (A1), molybdenum (Mo), drill (Pt), and tungsten ( A group consisting of W), gold (Au), silver (Ag), and nickel (Ni). 4. The light emitting diode according to claim 1, wherein the reflective layer comprises at least: a diffusion barrier layer, wherein a surface of the diffusion barrier layer is directly bonded to the surface of the metal substrate; and a metal A reflective layer is stacked on the diffusion barrier layer and interposed between the luminescent crystal structure and the diffusion barrier layer. The illuminating diode according to claim 9, wherein the ohmic metal ruthenium layer is made of a lanthanum/gold (Ge/Au) alloy. 12. The light-emitting diode according to claim 9, wherein the x-ray first stray structure comprises at least one of the first electrical-conducting layers stacked on the surface of the second transparent conductive layer. The active layer and a second electrical confinement layer, a + β and the first electrically limited layer and the second electrically confined layer have different electrical properties. The light-emitting diode according to claim 12, wherein the material of the first electrical limiting layer is selected from the group consisting of aluminum gallium indium phosphide (AlxGa τ Uylni-yp, x &gt; · 4] and a group of aluminum gallium arsenide (AlxGai.xAs, χ > 0.4). Zhongqi. Such as the light-emitting diode of the 12th patent scope of Shenqing, its Uai&quot; The material of the layer is selected from the group consisting of 峨化绍录钢 ai.X)yIn|-yP, X&gt;〇.4] and Shishenhua Chain Gallium (AlxGa,.xAs, x&gt;0.4). 15, the main x &lt; 0.5] For example, the material of the movable layer of the patent application is the light-emitting diode of the dish 12, and the luminescence of the aluminum gallium indium [(AlxGai_x) yIn|_yP, item 12] a diode, wherein the first electrical limiting layer is N-type, and the second electrical limiting layer is a P-type 0 17 as described in claim 1 of the patent application. The light emitting diode, wherein the material of the first transparent conductive layer is gallium phosphide (GaP), gallium arsenide (GaAsP), gallium indium arsenide (GaInp), aluminum gallium arsenide (A1GaAs) or aluminum phosphide Gallium (AlGaP). 18. The light emitting diode of claim 1, wherein the first transparent conductive layer comprises one of an organometallic vapor deposited layer and a vapor phase staggered layer stacked on each other. 19. The light-emitting diode according to claim 1, wherein the material of the second electrical electrode is selected from the group consisting of a gold-based alloy (AuBe), a gold-zinc alloy (AuZn), and a chrome-gold alloy (CrAu). ) is a group of people. 2. The light-emitting diode according to claim 1, wherein the metal substrate is a battery metal substrate. 21. A light-emitting diode according to the scope of the invention, wherein the metal substrate is an electrodeless plated metal substrate. 22. The light-emitting diode of claim 1, wherein the metal substrate is a chemical vapor deposited substrate. The light-emitting diode of claim 1, wherein the metal substrate is a vapor-deposited substrate. 24. The light emitting diode according to claim </RTI> wherein the metal substrate is a sputtered substrate. The method for manufacturing a light-emitting diode includes at least: providing a growth substrate; forming a etch stop layer on the growth substrate; forming an ohmic contact layer on the etch stop layer; forming a luminescent epitaxial structure Forming a first transparent conductive layer on the luminescent epitaxial layer, wherein the first transparent conductive layer has a thickness of substantially 5 Å or more; removing the growth substrate by using the first transparent conductive layer as a support Removing the etch stop layer; patterning the ohmic contact layer and exposing a portion of the luminescent epitaxial structure to form an ohmic metal contact layer on the ohmic contact layer; forming a second transparent conductive layer overlying the ohmic layer a contact layer, the ohmic metal contact layer, and the exposed portion of the luminescent epitaxial structure, wherein the ohmic contact layer and the ohmic metal contact layer are embedded on a surface of the second transparent conductive layer; forming a second electrical property An electrode is disposed on a portion of the first transparent electrode layer to form a reflective layer on the luminescent epitaxial structure, wherein the reflective layer and the first transparent conductive layer Located at the opposite sides of the light emitting epitaxial structure; ^ 181338954 two metallic substrate is formed directly on a reflective layer, wherein the metal substrate and the epitaxial light emitting structure located on opposite sides of the reflective layer. 26. The method of producing a light-emitting diode according to claim 25, wherein the growth substrate is a m-v semiconductor compound substrate. 27. The method of manufacturing a light-emitting diode according to claim 25, wherein the material of the growth substrate is demagnetized gallium. 28. The method of manufacturing a light-emitting diode according to claim 25, wherein the step of forming the light-emitting epitaxial structure is performed by an organometallic chemical vapor deposition method, a liquid phase epitaxy method or a molecular beam epitaxy method. . 29. The method of producing a light-emitting diode according to claim 25, wherein the material of the ohmic metal contact layer is a tantalum/gold alloy. 30. The method for producing a light-emitting diode according to claim 25, wherein the material of the second transparent conductive layer is selected from the group consisting of indium tin oxide, indium oxide, tin oxide, zinc oxide, and magnesium oxide. One of the groups that make up. The method of claim 2, wherein the luminescent epitaxial structure comprises at least one of a first electric layer stacked on the surface of the second permeable layer of the second permeable layer. The first limited layer and the first electrically limited layer have different electrical properties from the second electrically limited layer. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;丨-yp,x&gt;〇.4] and the group consisting of bismuth aluminum gallium (AlxGaNxAs, x&gt;〇.4). 33. The method of manufacturing a light-emitting diode according to claim 31, wherein the material of the second electrically limited layer is selected from the group consisting of aluminum phosphide ([AlxGa丨.x) Yini yP, χ &gt; 〇 4] and the group consisting of strontium aluminum gallium (A\Gai xAs, x&gt; 〇.4). 34. The method for manufacturing a light-emitting diode according to claim 31, wherein the material of the active layer is aluminum gallium indium phosphide [(AlxGauJylm.yp, χ &lt; 〇 5]. 35. The method for manufacturing a light-emitting diode according to Item 31, wherein the first electrical localization layer is a Ν-type, and the second electrical localization layer is a Ρ-type. 36. As described in claim 25 The IA method of the light-emitting diodes, wherein the reflective layer comprises at least: a diffusion barrier layer, wherein a surface of the diffusion barrier layer is directly bonded to a surface of the metal substrate; and a metal reflective layer is stacked on the On the diffusion barrier layer, between the second transparent conductive layer and the diffusion barrier layer. 20 I3389M 37. The system of the light-emitting diode described in the 36th item of the patent application, X ^ 3 k方法,其中該擴散阻隔層材 我 錫、氧化辞或氧化猛。材抖為銷、始、嫣、氧化姻 38.如申請專利範圍第36 貝所述之發光二極體之製 过方法’其令該金屬反射層之枒 ^ &lt;衬枓係選自於由金、鋁 '銀、 鎳以及鉻所組成之一族群。 39.如申請專利範圍第25項所述之發光二極體之製 造方法’其巾移除該成長基板之步驟係制乾絲刻法、 濕式蝕刻法或研磨法》 40.如申清專利範圍第25項所述之發光二極體之製 造方法,其中移除該蝕刻終止層之步驟係利用化學蝕刻法 或研磨法。 41·如申請專利範圍第25項所述之發光二極體之製 造方法,其中該第二電性電極之材料係選自於由金皱合 金、金鋅合金以及鉻金合金所組成之一族群。 42. 如申請專利範圍第25項所述之發光二極體之製 造方法,其中該金屬基板之厚度大s5〇&quot;m。 43. 如申請專利範圍第25項所述之發光二極體之製 21 丄 338954 造方法’其中該金屬基板之材料係選自於由銅、鋁、鉬、 «鉑、鎢、金、銀以及鎳所組成之一族群。 , 生44.如申請專利範圍第25項所述之發光二極體之製 &amp;方法,其中形成該金屬基板之步驟係利用一化學方式。 生45.如申清專利範圍第44項所述之發光二極體之製 造方法,其中該化學方式係利用電鍍法。 ^ 46·如申清專利fe圍第44項所述之發光二極體之製 。法,其中該化學方式係利用無電極電鍵法。 ^ 7 ·如申明專利範圍第44項所述之發光二極體之製 造方法,其中該化學方式係利用化學氣相沉積法。 、土 8.如申明專利範圍第25項所述之發光二極體之製 • 把方法,其中形成該金屬基板之步驟係利用一物理方式。 从#申請專利範圍第48項所述之發光二極體之製 法,其中該物理方式係利用蒸鍍法。 專利範圍第48項所述之發光:極體 &amp;方法,其中該物理方式係利用賤鑛法。 1 ·如申靖專利範圍第25項所述之發光二極體之製 22 ^38954 造方法,其中該第一透明導電層之材料為磷化鎵、磷化鎵 砷、磷化鎵銦 '砷化鋁鎵或磷化鋁鎵。The k method, in which the diffusion barrier layer is tin, oxidized or oxidized. The material shake is a pin, a start, a sputum, and an oxidized marriage. 38. The method for producing a light-emitting diode according to claim 36, which makes the metal reflective layer & ^ &lt; A group of gold, aluminum 'silver, nickel and chromium. 39. The method for manufacturing a light-emitting diode according to claim 25, wherein the step of removing the grown substrate by the towel is a dry wire etching method, a wet etching method or a grinding method. 40. The method for manufacturing a light-emitting diode according to the item 25, wherein the step of removing the etch stop layer is performed by a chemical etching method or a grinding method. The method for manufacturing a light-emitting diode according to claim 25, wherein the material of the second electrical electrode is selected from the group consisting of a gold-wrapped alloy, a gold-zinc alloy, and a chrome-gold alloy. . 42. The method for producing a light-emitting diode according to claim 25, wherein the thickness of the metal substrate is s5 〇 &quot; m. 43. The method of manufacturing a light-emitting diode according to claim 25, wherein the material of the metal substrate is selected from the group consisting of copper, aluminum, molybdenum, platinum, tungsten, gold, silver, and A group of people consisting of nickel. The method of manufacturing a light-emitting diode according to claim 25, wherein the step of forming the metal substrate utilizes a chemical method. 45. A method of producing a light-emitting diode according to claim 44, wherein the chemical method utilizes an electroplating method. ^ 46· The system of the light-emitting diode described in the 44th article of the patent. The method wherein the chemical method utilizes an electrodeless electric bond method. The method of manufacturing a light-emitting diode according to claim 44, wherein the chemical method is a chemical vapor deposition method. 8. Soil 8. The method of producing a light-emitting diode according to claim 25, wherein the step of forming the metal substrate utilizes a physical method. The method of applying the light-emitting diode described in claim 48 of the patent application, wherein the physical method utilizes an evaporation method. Illumination: The polar body &amp; method, wherein the physical mode utilizes the antimony ore method. 1 . The method of manufacturing a light-emitting diode according to claim 25, wherein the material of the first transparent conductive layer is gallium phosphide, gallium phosphide arsenide, gallium phosphide indium arsenic Aluminum gallium or aluminum gallium phosphide. 52.如申請專利範圍第25項所述之發光二極體之製 造方法,其中形成該第一透明導電層時,至少包括: 利用一有機金屬化學氣相沉積方式形成該第一透明 導電層之-第-薄膜’且該第_薄膜具有該第一透明導電 層之一部分厚度;以及The method for manufacturing a light-emitting diode according to claim 25, wherein the forming the first transparent conductive layer comprises: forming the first transparent conductive layer by an organometallic chemical vapor deposition method; a first film - and the first film has a partial thickness of the first transparent conductive layer; 乳相為晶方式形志q &amp; 也 Μ 飞办成該第一透明導電層之一第 一 4膜位於該第一薄 ^ ^ 亥第二溥臈具有該第一透明 等電增之另—部分厚度。The first phase of the first transparent conductive layer is located in the first thin film, and the first film is located in the first thin film. Partial thickness.
TW95145530A 2006-12-06 2006-12-06 Light-emitting diode and method for manufacturing the same TWI338954B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95145530A TWI338954B (en) 2006-12-06 2006-12-06 Light-emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95145530A TWI338954B (en) 2006-12-06 2006-12-06 Light-emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200826313A TW200826313A (en) 2008-06-16
TWI338954B true TWI338954B (en) 2011-03-11

Family

ID=44772351

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95145530A TWI338954B (en) 2006-12-06 2006-12-06 Light-emitting diode and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI338954B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411130B (en) * 2010-01-21 2013-10-01 Epistar Corp Light emitting diode and the manufacture method thereof
TWI405358B (en) * 2010-03-16 2013-08-11 Just Innovation Corp Light emitting diode chip and fabricating method thereof

Also Published As

Publication number Publication date
TW200826313A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
US7675077B2 (en) Light-emitting diode and method for manufacturing the same
EP1885001A1 (en) InGaAlN LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
JP3896044B2 (en) Nitride-based semiconductor light-emitting device manufacturing method and product
TW200532936A (en) Light-emitting diode and method for manufacturing the same
JPH11274562A (en) Gallium nitride compound semiconductor light emitting element and manufacture thereof
EP2220695A2 (en) Contact for a semiconductor light emitting device
WO2019210732A1 (en) Light-emitting diode and manufacturing method therefor
EP1941556A1 (en) Semiconductor light-emitting device with metal support substrate
US6946372B2 (en) Method of manufacturing gallium nitride based semiconductor light emitting device
WO2014026528A1 (en) Light-emitting diode with ultra-high brightness and manufacturing method therefor
TWI260099B (en) Positive electrode structure and gallium nitride-based compound semiconductor light-emitting device
JP2002353506A (en) Semiconductor light-emitting element and manufacturing method therefor
WO2004051758A1 (en) Semiconductor light-emitting device and method for manufacturing same
CN100573937C (en) Light-emitting diode and manufacture method thereof
JPH1187772A (en) Electrode for semiconductor light emitting element
TWI338954B (en) Light-emitting diode and method for manufacturing the same
KR20060035424A (en) Gan compound semiconductor light emitting element and method of manufacturing the same
TWI281758B (en) Transparent positive electrode
TW201145588A (en) Nitride semiconductor light emitting element and method for manufacturing same
KR101032987B1 (en) Semiconductor light emitting device
JP2004319672A (en) Light emitting diode
JP2002016286A (en) Semiconductor light-emitting element
JP3344296B2 (en) Electrodes for semiconductor light emitting devices
JPH10308533A (en) Galium-nitride-based compound semiconductor light emitting element, its manufacture and light emitting element
JP2004221112A (en) Oxide semiconductor light emitting element