TWI338767B - Solar tracking apparatus and solar electric power generation system thereof - Google Patents

Solar tracking apparatus and solar electric power generation system thereof Download PDF

Info

Publication number
TWI338767B
TWI338767B TW097114033A TW97114033A TWI338767B TW I338767 B TWI338767 B TW I338767B TW 097114033 A TW097114033 A TW 097114033A TW 97114033 A TW97114033 A TW 97114033A TW I338767 B TWI338767 B TW I338767B
Authority
TW
Taiwan
Prior art keywords
solar
sun
image
power generation
generation system
Prior art date
Application number
TW097114033A
Other languages
Chinese (zh)
Other versions
TW200944731A (en
Inventor
Tarrence Liu
Original Assignee
Solapoint Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solapoint Corp filed Critical Solapoint Corp
Priority to TW097114033A priority Critical patent/TWI338767B/en
Priority to US12/425,072 priority patent/US20090260618A1/en
Publication of TW200944731A publication Critical patent/TW200944731A/en
Application granted granted Critical
Publication of TWI338767B publication Critical patent/TWI338767B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photovoltaic Devices (AREA)

Description

1338767 九、發明說明: 【發明所屬之技術領域】 置’特別是一種以影像比 ’以及利用此追縱裝置之 本發明關於一種太陽追縱穿 對方式追縱太陽之太陽追縱裳置 太陽能發電系統。 【先前技術】 =追縱太陽的裝置係利用光感知器來達成。由一個1338767 IX. Description of the invention: [Technical field to which the invention pertains] In particular, the invention relates to an image-to-image ratio and a solar tracking device that utilizes the tracking device to trace the sun. system. [Prior Art] = The device that tracks the sun is achieved by using a light sensor. By one

或夕個光感知&所得到的訊號來驅動動力系統追 蹤裝置調整至朝向太陽之位置。如圖1及圖2所示,習知 太陽追蹤器1包含-*透光之殼體12,殼體12上裝 -聚光管Μ ’於殼體12底端有一_區16,聚光管14 垂直投影至偵舰16。仙m 16之四職設有四個光感 知器18。 —當太陽位於聚光管14正上方時,太陽光線〜穿過聚 光官14而投射至B區域時,此時太陽追蹤器1並不會移 動。待經一段時間後,太陽朝右偏移至聚光管14右方一 定角度時’照射之光線a2穿過聚光管14而投射至B區域 周圍之光感知器18上’光感知器18感知光線後,即驅動 動力系統(圖未顯示)微調太陽追蹤器1的位置,如此太陽 照射之光線又回至B區域中。系統不斷重複運作,使追蹤 器能永遠面向太陽,達到追蹤太陽之目的。 然而利用光感知器18感測太陽光以調整太陽追蹤器 1之方式,皆需在光感知器18感知後,才調整太陽追蹤器 1338767 1位置’故太陽追蹤器1實際對準太陽之準確度,會由剛 調整完時最準確(誤差最小)而隨時間經過而逐漸降低,直 至下一刻光感知器18又再度感知時(誤差最大),再度調整 太陽追蹤器1之位置,準確度才會又變的準確,如圖3所 示。 而若用在太陽能發電上,太陽能電池之發電效率會隨 著太陽能電池朝向太陽之準確度愈高,發電量愈多,而準 確度愈低時,發電量亦愈少。故對照於圖3,習知太陽追 蹤器1運用於太陽能發電上時,其如圖4所示。在時間t=0 時,太陽能追蹤器1與太陽之準確度誤差最小,故太陽能 么電里表大(Emax),而隨時間經過,至t=ti時,準確度誤 差達到最大,此時發電量最小(Emin)。而此時光感知器18 亦偵測到太陽光,故調整太陽追蹤器丨,太陽追蹤器又再 度對準太陽,從而發電量又達到最大。由圖4觀之,在t=〇 至t=ti的這段期間,太陽能發電量係由最大變至最小。明 顯得知,實際發電效率並不高。故以此方式作動之太陽追 蹤器1用於太陽能發電上,效果並不佳。 再者,當太陽朝聚光管14兩側偏移時,且其投射光 線超過B區域而至a區域時,太陽追蹤器丨會因為A區 域已無光感知器18存在,故無法再調整追縱太陽。此常 t生於天空有雲層出現時,遮住太陽一段時間,而此段時 間光感知器18無法感應太陽投射光線,而待雲層散去後, 追縱器丨容易迷失太陽位置而無法再追蹤太陽。 1338767 此外’以光感知器18感知太陽光,而作動太陽追縱 β 1調整其位置面向太1¾之方式,因為B區域面積仍大, 故太追縱器1面向太陽容易不甚準確,此亦造成太陽追 蹤器1面向太陽準確度有限之問題。 故如何使太陽追蹤器實際面向太陽之準確度提升,且 於雲層散去後,仍可繼續追蹤到太陽;且使用此追縱器於 太1¼ at»電池上時,可南發電量,為本發明所欲解決之課 題。 【發明内容】 由於習知太陽追蹤器追蹤太陽之準確度不佳,故相對 使太陽能電池發電量不高,且追蹤器於雲層遮住一段時間 後,不易繼續追蹤太陽。故本發明之目的在於提供一種以 影像比對方式以追蹤太陽之太陽追蹤裝置。其可利用影像 比對,使太陽追蹤裝置準確地對準太陽,且 = -刻之位置,達到與太陽實質同步之功效。== 池上時,亦可大符提高太陽能電池發電量。有效解決先前 技術所存在的問題或缺點。 為達上述目的,本發明提供一種太陽追蹤裝置,係搭 配一動力裝置而動作,太陽追蹤裝置包含:一記憶單元, 儲存有H陽影像;—影像擷取單元,係於特定時間 間隔擷取太陽之1二太陽影像;以及1像處理單元, 根據第-太陽影像與第二太陽影像比較而得到—差異資 料’並儲存於記憶單元;其中,太陽追縱裝置係根據差異 1338767 資料以致動動力裝置。 此外,本發明亦提供一種太陽能發電系統,包含:一 太陽能面板;一動力裝置,用以調整太陽能面板;以及一 太陽追縱裝置’包括:一記憶單元’儲存有一第一太陽影 像;一影像擷取單元,係於一特定時間間隔擷取太陽之一 第二太陽影像;以及一影像處理單元,根據第一太陽影像 與第二太陽f彡像比㈣得f,卜差異資料,並儲存於記憶單 元;其中,太陽追蹤裝置係根據差異資料以致動動力裝 置,俾能使得太陽能面板朝向太陽以收集太陽能量。 利用上述本發明之技術特徵,可達到下列功效: 1. 提高太陽追職置與太陽之鮮度,且亦提高太陽能 電池之發電效率。 2. 可大角度搜尋天空中任—處之太陽,於雲層遮住一段 時間後’也不會迷失太陽位置。Or the signal obtained by the light perception & to drive the powertrain tracking device to adjust to the position of the sun. As shown in FIG. 1 and FIG. 2, the conventional solar tracker 1 includes a -* light-transmissive housing 12, and the housing 12 has a concentrating tube Μ' at the bottom end of the housing 12 having a _ area 16, a concentrating tube. 14 Project vertically to the ship. There are four light sensors 18 in the fourth position of Xian M 16 . - When the sun is located directly above the concentrating tube 14, the sun ray ~ is projected through the concentrating light 14 to the B area, at which time the sun tracker 1 does not move. After a period of time, when the sun is shifted to the right to a certain angle to the right of the concentrating tube 14, the illuminating light a2 passes through the concentrating tube 14 and is projected onto the light sensor 18 around the B area. After the light, the driving power system (not shown) fine-tunes the position of the sun tracker 1 so that the light from the sun returns to the B area. The system is constantly repetitive, allowing the tracker to face the sun forever, to track the sun. However, by using the light sensor 18 to sense the sunlight to adjust the sun tracker 1, it is necessary to adjust the position of the sun tracker 1338767 after the light sensor 18 senses, so the accuracy of the sun tracker 1 actually aligning with the sun. , will be the most accurate (minimum error) just after the adjustment, and gradually decrease with time, until the next moment the light sensor 18 is again perceived (the error is the largest), and then adjust the position of the sun tracker 1 again, the accuracy will be It has become more accurate, as shown in Figure 3. If it is used in solar power generation, the power generation efficiency of solar cells will increase with the accuracy of solar cells facing the sun, and the more power generation, the lower the accuracy, the less power generation. Therefore, referring to Fig. 3, when the conventional solar tracker 1 is applied to solar power generation, it is as shown in Fig. 4. At time t=0, the accuracy error between solar tracker 1 and the sun is the smallest, so the solar energy meter has a large (Emax), and over time, when t=ti, the accuracy error reaches the maximum. The minimum amount (Emin). At this time, the light sensor 18 also detects the sunlight, so after adjusting the sun tracker, the sun tracker is again aligned with the sun, and the power generation is maximized. As seen from Fig. 4, during the period from t = 〇 to t = ti, the amount of solar power generation is changed from maximum to minimum. It seems that the actual power generation efficiency is not high. Therefore, the solar tracker 1 activated in this manner is used for solar power generation, and the effect is not good. Furthermore, when the sun is deflected toward both sides of the concentrating tube 14, and the projected light exceeds the B area to the a area, the sun tracker 无法 will have no light sensor 18 in the A area, so the tracking cannot be adjusted. Longitudinal sun. This constant t is born in the sky when there are clouds, covering the sun for a while, and this time the light sensor 18 can not sense the sun to project light, and after the clouds are scattered, the tracker is easy to lose the sun position and can no longer track sun. 1338767 In addition, the light sensor 18 senses the sunlight, and the sun chases the β 1 to adjust the position of the surface to be too 13⁄4. Because the area of the B area is still large, it is not easy to accurately track the sun to the sun. Causes the Sun Tracker 1 to face the limited accuracy of the sun. Therefore, how to improve the accuracy of the sun tracker to the sun, and continue to track the sun after the clouds are scattered; and when using this tracker on the battery, it can generate electricity. The subject to be solved by the invention. SUMMARY OF THE INVENTION Since the accuracy of tracking the sun by the conventional solar tracker is not good, the solar cell is relatively low in power generation, and the tracker is difficult to continue tracking the sun after being covered by the cloud for a period of time. It is therefore an object of the present invention to provide a solar tracking device for tracking the sun in an image alignment manner. It can use the image comparison to make the sun tracking device accurately align with the sun, and = - engraved position to achieve the effect of synchronizing with the sun. == When the pool is on, it can also increase the amount of solar cell power generation. Effectively solve problems or shortcomings in previous technologies. To achieve the above objective, the present invention provides a solar tracking device that operates in conjunction with a power device. The sun tracking device includes: a memory unit that stores an H-positive image; and an image capturing unit that captures the sun at specific time intervals. And the image processing unit obtains the difference data according to the comparison between the first sun image and the second sun image and stores the data in the memory unit; wherein the sun tracking device is based on the difference 1338767 data to actuate the power device . In addition, the present invention also provides a solar power generation system comprising: a solar panel; a power device for adjusting the solar panel; and a solar tracking device comprising: a memory unit storing a first solar image; Taking a unit, taking a second solar image of the sun at a specific time interval; and an image processing unit, according to the first solar image and the second solar image ratio (4), obtaining the difference data, and storing the data in the memory The unit; wherein the solar tracking device actuates the power device based on the difference data, and the solar panel can face the sun to collect the amount of solar energy. By utilizing the above technical features of the present invention, the following effects can be achieved: 1. Increasing the freshness of the sun chasing and the sun, and also improving the power generation efficiency of the solar cell. 2. You can search the sun in the sky at a large angle, and cover the clouds for a period of time.

3. 2由運算太陽影像之圓心,而比對前一刻太陽影像之 圓心位置,而使太陽追蹤裝置能精準對準太陽。 《以軟體運算可預知太陽下—刻位置,達到與太陽實質” 同步”的境界。 5·透過太陽過去移動轨跡之資料,可預測太陽下一刻位 置。 6.以軟體運算可以作系統設置之校正。 以下詳細敘述本發明之特徵以及優點,复内容足以使 任何熟習相關技藝者了解本發明之技術内容並據以實 且根▲據本說明書所揭露之内容、申請專利範圍及圖 1優=何㈣相關技藝者可婦地理解本發明相關之目的 U上關於本發明内容之說明及以下實施方式之說明 =以示範與解釋本發明之原理,並_以限定本發明之 【實施方式】 為使對本發明的目的、構造、特徵、及其功能有進一 步的瞭解,茲配合實施例詳鈿說明如下。 士請參閱圖5 ’為本發明太陽能發電系統2第—實施例 之結構示意圖。本發明太陽能發電系統2包含-支撐柱 22、一太陽能面板24、一太陽追蹤裝置%及一動力裝置 28。 支樓柱22為-直立柱狀物,用以支撐整個系統。太 陽能面板24’可吸收太陽光,進而將光能轉換為電能之裝 置,其具有一向光平面24a,此與習知太陽能面板相雷同。 其設立於讀柱22上,可於支揮柱22上朝各方向轉動。 請一併參閱圖6’圖ό為本發明太陽追蹤裝置26之方 塊圖。太陽追蹤裝置26設置於支撐柱22上,且與太陽能 面板24之向光平面24a朝同一方向設置,其包含一光學 元件261、一衫像擷取單元262及一影像處理單元263及 13.38767 調整系統及追蹤太陽之用。 - 圮憶單元264,用以儲存各種資料,並提供复儲存之 貢料於影像處理單元加。於本發明之實施例中,、纪憶單 元264係儲存由影像處理單元加比較後之資料及太^ 史移動軌跡之資料,亦提供其原先儲存之資料於影像$ 單元263。 • 一動力裝置28,設置於支撐柱22上,例如馬達(圖未顯 示)’係提供動力帶動太陽能面板24於支樓柱22上轉動, 使太1%能面板24正向太陽,此動力裝置28之配置係與習 知太陽能發電系統相雷同。 〆、白 本發明太陽能發電系統2之操作係利用影像比對之方 式’控制太陽能面板24使其能準確正向太陽發電。 首先利用光學元件261,例如聚焦透鏡,使太陽影像 瞻 藉由光學元件261聚焦後,使其焦點正好落於影像擷取單 元262上。而影像擷取單元262以光學方式進行太陽影像 擷取’其於一特定時間間隔擷取太陽影像,此處所擷取的 太陽影像稱為第二太陽影像,其為實際太陽影像。而特定 時間間隔可設為1秒、2秒或30秒…等等。故影像擷取單 元262於一段時間中,可擷取許多第二太陽影像。舉例來 說’若特定時間間隔設定為1秒鐘,則影像擷取單元262 於一分鐘内,可擷取60個第二太陽影像。 12 1338767 記憶單元264,預先儲存有一第一太陽影像,此第一 太陽影像為一預設太陽影像,具有一第一太陽圓心。請參 閱圖7’為太陽追縱裝置26之影像處理單元263影像比對 之示意圖。第一太陽影像2642於影像處理單元263中, 景々像2642於畫面2632中之位置係固定不變。當影像擷取 單元262將其所擷取之第二太陽影像2622之訊號傳至影 像處理單元263呈像後,則在晝面2632某位置處,會呈 一太陽形狀之第二太陽影像2622,且具有一第二太陽圓心 2624。而影像處理單元263則將記憶單元264記憶之第一 太陽景》像2642之第一太陽圓心2644 ,與第二太陽影像 2622之第二太陽圓心2624做一比較,由於第二太陽圓心 2624於晝面2632上之位置與第一太陽圓心2644會有差 異,故可得一差異資料。如圖7所示,此差異資料係由微 誤差χ(Δχ)及微小誤差y (△”所組成。此即表示此刻太 陽能面板24朝天空之方位與天空中實際太陽位置具有Δχ 及勿之誤差距離。此時影像處理單元263會將此差異資 料儲存於記憶單元264中,以提供日後用於預先致動動力 裝置28。同時亦根據此差異資料立即致動動力裝置28, 調整太陽能面板24,如此,下一秒鐘所擷取之第二太陽影 像2622之第二太陽圓心2624係匹配於第一太陽影像%“ 之第一太陽圓心2644,故此時太陽能發電系統2之太陽能 面f 24係精準地對準太陽。而當天空中有雲層遮住部分 太陽時,影像處理單元263亦可以軟體運算出第二太陽影 像2622之第二太陽圓心2624 ’供比較之用。 值得注意的是,第一太陽影像2642係為預先設置, -13- (S ; 1338767 以做為第二太陽影像2622比對的一個基準,故其於者面 2632中呈像之位置為固定不變,而所擷取之第二太陽影像 2622之第二太陽圓心2624若匹配於第一太陽影像2642 之第一太陽圓心2644時,亦代表著太陽能面板24係正對 太%。而影像掘取單元262於每一特定時間間隔,則會操 取一第二太陽影像2622,並於影像處理單元263處呈像。 故每產生一第二太陽影像2622 ’則影像處理單元263即會 將其與第一太陽影像2642做一比較,而得一差異資料, 進而致動動力裝置28調整太陽能面板24正向太陽❶故太 陽能面板24能時時正向太陽。且第一太陽影像2642與第 一太%景;^像2622之比較,係利用二太陽圓心2624、2644 比較,而得到太陽圓心位置之位移量之差異資料,以調整 第一太陽影像2622之第二太陽圓心2624與第一太陽圓心 2644匹配。故太陽能面板24能精準地正向太陽,有效提 高準確度。 =圖8及圖9所示,由於本發明太陽能發電系統影像 擷取單元擷取第二太陽影像之特定時間間隔,可以設定的 很短(如一秒)’且利用二太陽圓心對位故太陽能面板 24(參閱圖5)正對於太陽之準確度會十分準確,如圖8所 不,準確度之誤差值皆相當低。亦因如此,太陽能發電系 統2之發電能f可達到相#高的程度,有效提高發電量。 立士外,於本發明另—實施例中,太陽追蹤裝置26之 L單元264,亦可儲存記錄有太陽過去之移動軌跡資 料’此兄錄資料可包含前一日、去年、或四年前(因為每 -14· 13,38767 • 四年潤年一次,故太陽運行轨跡會四年一個週期)之任一 • 種資料。記憶單元264可提供影像處理單元263這些資 料,預先致動動力裝置28。舉例來說,記憶單元264 &提 供太陽四年前之移動轨跡資料於影像處理單元263,而影 像處理單元263以軟體運算後,動力裝置28可依此資料二 於太陽移動的下一秒鐘前(假設特定時間間隔設為一秒), 預先調整太陽能面板24至太陽下一秒鐘之位置,達到與 太IW貫質”同步”的境界。且利用此記錄資料,當太陽能發 • 電系統2使用時,縱使有雲層遮住太陽一段時間後,太陽 能發電系統2亦可利用儲存於記憶單元264之太陽過去之 移動轨跡資料’提供給影像處理單元263以致動動力裝置 28,如此太陽能發電系統2於雲層遮住太陽一段時間後, 亦能於太陽再度出現時’準確尋找到太陽,且準確對位。 於本發明太陽能發電系統2之再另一實施例中,光學 元件261亦可使用廣角鏡頭,廣角鏡頭為一約呈180度之 鏡頭,可聚焦天空中任一處之太陽影像於影像擷取裝置 • 262。如此’太陽能發電系統2不論太陽處於天空中任一 處’影像擷取單元262皆可擷取到第二太陽影像,而不致 於尋找不到太陽。此外,亦可透鏡與廣角鏡頭同時使用, 先利用廣角鏡頭聚焦天空中任一處之太陽影像於影像擷 取單元262’大略調整太陽能面板24,使影像擷取單元262 擷取之第二太陽影像於接近第一太陽影像後,而再利用透 鏡擷取太陽影像,精確匹配第二太陽影像之第二太陽圓心 於第一太陽影像之第一太陽圓心,如此太陽能發電系統2 可更準確地對準太陽。 此外,於本發明另-實施例中,第一太陽影像 衫像操取單元262操取而得,並不限於預先設定。為 習知太陽追蹤器追縱太陽之準確度不佳,故亦 能電池發電4以,且追㈣於#層遮住-段時間後,^ 不易繼續追蹤太陽。本發明利用影像比對方式,使太、 蹤裝置準確地對準太陽,且可預測太陽下一刻之位置,3. 2 Calculate the center of the sun image and compare the center position of the sun image at the previous moment, so that the sun tracking device can accurately aim at the sun. "Software can predict the position of the sun under the sun, and achieve the realm of synchronization with the sun." 5. Through the data of the past movement trajectory of the sun, the next moment of the sun can be predicted. 6. The software operation can be used to correct the system settings. The features and advantages of the present invention are described in detail below, and the content of the present invention is sufficient for any skilled person to understand the technical contents of the present invention and according to the contents disclosed in the specification, the scope of the patent application, and FIG. The subject matter of the present invention is to be understood by the following description of the present invention and the following description of the embodiments of the present invention in order to demonstrate and explain the principles of the present invention, and to limit the present invention. Further understanding of the objects, structures, features, and functions of the invention will be described in the following detailed description. Referring to Figure 5, there is shown a schematic view of the structure of the solar power generation system 2 of the present invention. The solar power generation system 2 of the present invention comprises a support column 22, a solar panel 24, a solar tracking device % and a power unit 28. The pillars 22 are - upright pillars to support the entire system. The solar panel 24' absorbs sunlight and converts the light energy into electrical energy, which has a direct light plane 24a which is identical to conventional solar panels. It is set on the reading column 22 and is rotatable in all directions on the support column 22. Please refer to FIG. 6' for a block diagram of the solar tracking device 26 of the present invention. The sun tracking device 26 is disposed on the support column 22 and disposed in the same direction as the light plane 24a of the solar panel 24, and includes an optical component 261, a shirt image capturing unit 262, and an image processing unit 263 and 13.38767 adjustment system. And tracking the sun. - A memory unit 264 for storing various materials and providing a tribute of the complex storage to the image processing unit. In the embodiment of the present invention, the memory unit 264 stores the data of the compared data and the mobile track of the data processed by the image processing unit, and also provides the originally stored data to the image $ unit 263. • A power unit 28 is disposed on the support column 22, such as a motor (not shown) to provide power to drive the solar panel 24 to rotate on the column 22 so that the 1% energy panel 24 is facing the sun. The configuration of 28 is similar to the conventional solar power generation system. 〆, 白 The operation of the solar power generation system 2 of the present invention controls the solar panel 24 to accurately generate electricity into the solar power by means of image matching. First, the optical element 261, such as a focusing lens, is used to focus the solar image onto the image capturing unit 262 after focusing by the optical element 261. The image capturing unit 262 optically captures the sun image, which captures the sun image at a specific time interval. The sun image captured here is called the second sun image, which is the actual sun image. The specific time interval can be set to 1 second, 2 seconds or 30 seconds... and so on. Therefore, the image capturing unit 262 can capture a plurality of second solar images for a period of time. For example, if the specific time interval is set to 1 second, the image capturing unit 262 can capture 60 second solar images in one minute. 12 1338767 The memory unit 264 is pre-stored with a first sun image, and the first sun image is a preset sun image having a first sun center. Please refer to FIG. 7' for an image comparison of the image processing unit 263 of the sun tracking device 26. The first solar image 2642 is in the image processing unit 263, and the position of the scene image 2642 in the screen 2632 is fixed. When the image capturing unit 262 transmits the signal of the second solar image 2622 captured by the image capturing unit 263 to the image processing unit 263, a second solar image 2622 of a sun shape is formed at a position of the surface 2632. And has a second solar center 2624. The image processing unit 263 compares the first solar center 2644 of the first solar scene image 2642 remembered by the memory unit 264 with the second solar center 2624 of the second solar image 2622, since the second solar center 2624 is 昼The position on the face 2632 is different from the first sun center 2644, so a difference data can be obtained. As shown in Fig. 7, this difference data is composed of micro error χ(Δχ) and small error y (△). This means that the solar panel 24 is facing the sky at the moment and the actual sun position in the sky has Δχ and no error. At this time, the image processing unit 263 stores the difference data in the memory unit 264 to provide a function for pre-actuating the power unit 28 in the future. At the same time, the power unit 28 is immediately actuated according to the difference data, and the solar panel 24 is adjusted. In this way, the second solar center 2624 of the second solar image 2622 captured in the next second is matched with the first solar center 2644 of the first solar image %", so the solar surface f 24 of the solar power generation system 2 is accurate at this time. The ground is aligned with the sun. When there are clouds in the sky to cover part of the sun, the image processing unit 263 can also calculate the second sun center 2624' of the second sun image 2622 for comparison. It is worth noting that the first sun The image 2642 is preset, -13- (S; 1338767 is used as a reference for the second solar image 2622 alignment, so the position of the image in the surface 2632 is fixed. If the second solar center 2624 of the captured second solar image 2622 matches the first solar center 2644 of the first solar image 2642, it also represents that the solar panel 24 is directly facing too much. At each specific time interval, the unit 262 will take a second solar image 2622 and image it at the image processing unit 263. Therefore, each time a second solar image 2622' is generated, the image processing unit 263 will The first solar image 2642 is compared to obtain a difference data, and then the power device 28 is actuated to adjust the solar panel 24 to the solar field. The solar panel 24 can be positively directed to the sun. And the first solar image 2642 and the first %景;^Compared with 2622, the difference between the displacements of the sun's center position is obtained by comparing the two solar centers 2624 and 2644 to adjust the second solar center 2624 of the first solar image 2622 and the first solar center 2644. Matching, so the solar panel 24 can accurately positively improve the accuracy of the sun. = As shown in Fig. 8 and Fig. 9, the image capturing unit of the solar power generation system of the present invention captures the second sun shadow. For a specific time interval, it can be set very short (such as one second) and the solar panel 24 (see Figure 5) is accurate to the accuracy of the sun, as shown in Figure 8. The error value is quite low. Because of this, the power generation energy f of the solar power generation system 2 can reach the level of the phase #, and the power generation amount is effectively increased. In addition, in the other embodiment of the invention, the solar tracking device 26 L unit 264 can also store the recorded data of the past trajectory of the sun. 'This sorcerer data can include the previous day, last year, or four years ago (because every -14·13,387,767 • four years of running, the sun The running track will be any one of four years and one cycle. The memory unit 264 can provide the image processing unit 263 with the information to pre-activate the power unit 28. For example, the memory unit 264 & provides the mobile trajectory data of the sun four years ago in the image processing unit 263, and after the image processing unit 263 is operated by the software, the power device 28 can follow the data second to the next second of the sun movement. Before the clock (assuming a specific time interval is set to one second), the position of the solar panel 24 to the next second of the sun is adjusted in advance to achieve the "synchronization" with the too IW. And using this recorded data, when the solar power generation system 2 is used, the solar power generation system 2 can also provide the image to the image by using the moving track data of the sun stored in the memory unit 264 even after the cloud layer covers the sun for a period of time. The processing unit 263 activates the power unit 28, so that the solar power generation system 2 can accurately find the sun and accurately align the sun when the sun is reappeared after the sun is covered by the cloud. In still another embodiment of the solar power generation system 2 of the present invention, the optical element 261 can also use a wide-angle lens, and the wide-angle lens is a lens of about 180 degrees, which can focus on any image of the sun in the sky in the image capturing device. . Thus, the solar power generation system 2 can capture the second solar image regardless of whether the sun is in the sky or not. In addition, the lens can be used simultaneously with the wide-angle lens. First, the wide-angle lens is used to focus the solar image in any part of the sky. The image capturing unit 262' is used to roughly adjust the solar panel 24 so that the second solar image captured by the image capturing unit 262 is close to After the first sun image, the lens is used to capture the sun image to precisely match the second sun center of the second sun image to the first sun center of the first sun image, so that the solar power generation system 2 can more accurately align with the sun. Further, in the other embodiment of the present invention, the first sun image shirt operation unit 262 is operated, and is not limited to being set in advance. In order to keep track of the sun, the accuracy of the sun tracking device is not good. Therefore, it is also possible to generate electricity for 4 years, and chasing (4) after covering the # layer for a period of time, ^ is not easy to continue tracking the sun. The invention utilizes an image comparison method to accurately align the sun and trace device with the sun, and predict the position of the sun in the next moment.

到與太陽實質同步之功效。用於太陽能電池上時,亦可 符提高太陽能電池發電量。 雖然本發明以前述之實施例揭露如上,然其並非用以 限定本發明。在不脫離本發明之精神和範圍内,所為之更 動與潤飾’均屬本發明之專利保護範圍。關於本發日月所界 定之保護範圍請參考所附之申請專利範圍。 【圖式簡單說明】To the effect of synchronizing with the sun. When used on a solar cell, it can also increase the amount of solar cell power generation. Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. Modifications and modifications are intended to be within the scope of the invention. Please refer to the attached patent application scope for the scope of protection defined by this issue. [Simple description of the map]

圖1為習知技術太陽追蹤器之結構示意圖。 圖2為習知技術太陽追蹤器偵測區之結構示意圖。 圖3為習知技術太陽追蹤器實際對準太陽之準確度誤 差與時間之關係圖。 ^ 圖4為習知技術太陽追蹤器用於太陽能發電上發電能 量與時間之關係圖。 b 圖5為本發明太陽能發電系統結構示意圖。 圖6為本發明太陽能發電系統之系統方塊圖。 圖7為本發明請太陽追蹤裝置之影像處理單元影像比 -16- 1338767 對之示意圖。 圖8為本發明太陽能發電系統之太陽能面板對準太陽 之準確度誤差與時間之關係圖。 圖9為本發明太陽能發電系統發電能量與時間之關係 圖。 【主要元件符號說明】 ai、及2 太陽光線 t、ti、t2、t3、t4 時間 Δχ ' Ay 差異資料 Z、Az 準確度之誤差 A A區域 B B區域 Emax 最大發電能量 Emin 最小發電能量 1 太陽追蹤器 12 殼體 14 聚光管 16 /[貞測區 18 光感知器 2 太陽能發電系統 22 支撐柱 24 太陽能面板 24a 向光平面 26 太陽追縱裝置 261 光學元件 〆 c* ·'. 1338767 262 影像擷取單元 2622 第二太陽影像 2624 第二太陽圓心 263 影像處理單元 2632 晝面 264 記憶單元 2642 第一太陽影像 2644 第一太陽圓心 28 動力裝置 -18 -FIG. 1 is a schematic structural view of a conventional technology sun tracker. 2 is a schematic structural view of a conventional sun tracker detection area. Fig. 3 is a graph showing the accuracy error of the conventional solar tracker aligned with the sun and time. ^ Figure 4 is a graph showing the relationship between energy generation and time for solar power generation using a conventional technology solar tracker. b is a schematic structural view of a solar power generation system according to the present invention. Figure 6 is a block diagram of a system of a solar power generation system of the present invention. FIG. 7 is a schematic diagram of an image processing unit image ratio of the solar tracking device of the present invention. Fig. 8 is a graph showing the accuracy error of solar panel alignment with the sun of the solar power generation system of the present invention and time. Figure 9 is a graph showing the relationship between power generation and time of a solar power generation system according to the present invention. [Main component symbol description] ai, and 2 solar rays t, ti, t2, t3, t4 time Δχ ' Ay difference data Z, Az accuracy error AA region BB region Emax maximum power generation Emin minimum power generation 1 solar tracker 12 Housing 14 Condenser 16 / [Measurement area 18 Light sensor 2 Solar power system 22 Support column 24 Solar panel 24a To the light plane 26 Solar tracking device 261 Optical components 〆c* ·'. 1338767 262 Image capture Unit 2622 Second Sun Image 2624 Second Sun Center 263 Image Processing Unit 2632 Face 264 Memory Unit 2642 First Sun Image 2644 First Sun Center 28 Power Unit-18 -

Claims (1)

、申請專利範圍: L 一種太陽追蹤裝置,係 陽追蹤裝置包含:、俗配一動力裝置而動作,該太 一記憶單元,儲存 -影像掏取單—太陽影像; 之-第二太陽影像;^於—特定時間間隔擷取太陽 一影像處理單元, 太陽影像比較而得到乂據遠第一太陽影像與該第二 元; 晏異資料,並儲存於該記憶單 該動力裴置Y太陽追蹤裝置係根據該差異資料以致動 n:利範圍第〗項所 第-太陽影像為預設太陽号ί亥 實際太陽影像。、像’而㈣二太陽影像為 3. 如申請專利範圍第1項所述之 IK理J元依據該第一太陽影像及該第二太陽影;象 第—太陽圓心及—第二太陽圓心,並比較該 陽圓心及該第二太陽圓心之相對位置以獲得該 差異資料。 如申明專利範圍第1項所述之太陽追縱裝置,盆中該 ^異資料顧存於航鮮元巾,哺供該影像處= 早几預先致動該動力裝置。 -19- 如申請專利範圍帛1項所述之太陽追縱裝置,更包含 一光學元件,係用以聚焦太陽於該影像擷取單元,二 呈現該第二太陽影像。 早70以 如申請專利範圍帛5項所述之太陽追縱裝置,其中該 光學元件為一透鏡。 ’、 如申凊專利範圍第5項所述之太陽追縱裝置,其中該 光學元件為一廣角鏡頭。 ^ 如申請專利範圍第1項所述之太陽追蹤裝置,其中該 影像擷取單元為一光電耦合元件(CCD)或互補式金氧 半導體(CMOS)。 如申請專利範圍第1項所述之太陽追蹤裝置,其中該 特定時間間隔係為1秒。 / 一種太陽能發電系統,包含: 一太陽能面板; 一動力裝置,用以調整該太陽能面板;以及 一太陽追踉裝置’包括: 一記憶單元’儲存有一第一太陽影像; 一影像擷取單元’係於一特定時間間隔擷取 太陽之一第二太陽影像;以及 一影像處理單元’根據該第一太陽影像與該 第二太陽影像比較而得到一差異資料,並儲存於 1338767 該記憶單元; 其中,該太陽追縱裝置係根據該差異資料以 致動該動力裝置,俾能使得該太陽能面板朝向太 陽以收集太陽能量。 11. 如申請專利範圍第10項所述之太陽能發電系統’其中 該第一太陽影像為預設太陽影像’而該第二太陽影像 為實際太陽影像。 12. 如申請專利範圍第1〇項所述之太陽能發電系統,其中 .該影像處理單元依據該第一太陽影像及該第二太陽影 像運算出一第一太陽圓心及一第二太陽圓心,並比較 該第一太陽圓心及該第二太陽圓心之相對位置以獲得 該差異資料。 Ϊ3.如申請專利範圍第1〇頊所述之太陽能發電系統,其中 該差異資料係儲存於該記憶單兀中,以提供該影像處 理單元預先致動該動力裝ί 14. 如申請專利範圍第⑴頊戶斤述之太陽此發電系統,更包 含一光學元件,係用以聚焦太陽於該影像擷取單元, 以呈現該第二太陽影像。 15. 如申請專利範圍第Μ頊所述之太陽能發電系統,其中 該光學元件為一透鏡。 -21一 1338767 16. 如申請專利範圍第14項所述之太陽能發電系統,其中 該光學元件為一廣角鏡頭。 17. 如申請專利範圍第10項所述之太陽能發電系統,其中 該影像擷取單元為一光電耦合元件(CCD)或互補式金 氧半導體(CMOS)。 18. 如申請專利範圍第10項所述之太陽能發電系統,其中 該特定時間間隔係為1秒。Patent application scope: L A solar tracking device, the sun tracking device comprises: a custom-made power device, the memory device, the storage-image capture unit-sun image; the second solar image; - capturing a solar image processing unit at a specific time interval, comparing the sun image with the far first sun image and the second element; dissipating the data, and storing the data in the memory list, the power device Y is based on the solar tracking device The difference data is used to activate the n: the range of the first item - the sun image is the actual sun image of the actual sun image. , such as 'and (four) two solar images are 3. As described in the scope of claim 1, the IK J element according to the first solar image and the second sun shadow; like the first - the sun center and - the second sun center, And comparing the relative positions of the center of the sun and the center of the second sun to obtain the difference data. For example, in the solar tracking device according to item 1 of the patent scope, the data in the basin is stored in the fresh-keeping towel, and the image is fed to the device to activate the power device in advance. -19- The solar tracking device of claim 1, further comprising an optical component for focusing the sun on the image capturing unit and second representing the second solar image. The solar tracking device of claim 5, wherein the optical component is a lens. The solar tracking device of claim 5, wherein the optical component is a wide-angle lens. The solar tracking device of claim 1, wherein the image capturing unit is a photoelectric coupling element (CCD) or a complementary metal oxide semiconductor (CMOS). The solar tracking device of claim 1, wherein the specific time interval is 1 second. / A solar power generation system comprising: a solar panel; a power unit for adjusting the solar panel; and a solar tracking device comprising: a memory unit storing a first solar image; an image capturing unit Extracting a second solar image of the sun at a specific time interval; and an image processing unit 'obtaining a difference data according to the first solar image and the second solar image, and storing the difference data in 1338767; The solar tracking device actuates the power device based on the difference data, and the solar panel can be oriented toward the sun to collect solar energy. 11. The solar power generation system of claim 10, wherein the first solar image is a preset solar image and the second solar image is an actual solar image. 12. The solar power generation system of claim 1, wherein the image processing unit calculates a first sun center and a second sun center according to the first sun image and the second sun image, and Comparing the relative positions of the first sun center and the second sun center to obtain the difference data. 3. The solar power generation system of claim 1, wherein the difference data is stored in the memory unit to provide the image processing unit to actuate the power device in advance. (1) Seto said the solar system. The power generation system further includes an optical component for focusing the sun on the image capturing unit to present the second solar image. 15. The solar power generation system of claim </RTI> wherein the optical component is a lens. The solar power generation system of claim 14, wherein the optical component is a wide-angle lens. 17. The solar power generation system of claim 10, wherein the image capturing unit is a photocoupler element (CCD) or a complementary metal oxide semiconductor (CMOS). 18. The solar power generation system of claim 10, wherein the specific time interval is 1 second.
TW097114033A 2008-04-17 2008-04-17 Solar tracking apparatus and solar electric power generation system thereof TWI338767B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW097114033A TWI338767B (en) 2008-04-17 2008-04-17 Solar tracking apparatus and solar electric power generation system thereof
US12/425,072 US20090260618A1 (en) 2008-04-17 2009-04-16 Solar tracking apparatus and solar electric power generation system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097114033A TWI338767B (en) 2008-04-17 2008-04-17 Solar tracking apparatus and solar electric power generation system thereof

Publications (2)

Publication Number Publication Date
TW200944731A TW200944731A (en) 2009-11-01
TWI338767B true TWI338767B (en) 2011-03-11

Family

ID=41200064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097114033A TWI338767B (en) 2008-04-17 2008-04-17 Solar tracking apparatus and solar electric power generation system thereof

Country Status (2)

Country Link
US (1) US20090260618A1 (en)
TW (1) TWI338767B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510749B (en) * 2012-09-03 2015-12-01 Atomic Energy Council Solar tracking apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384192B (en) * 2010-05-13 2013-02-01 Univ Nat Central Light sensing system and control method thereof
TWI408322B (en) * 2010-09-30 2013-09-11 New Mauye Technology Corp Chase day sensor controller structure
US20120192857A1 (en) * 2011-01-31 2012-08-02 Google Inc. Heliostat Assignment in a Multi-Tower Field
CN102331795B (en) * 2011-08-26 2013-08-14 浙江中控太阳能技术有限公司 Method for controlling sunlight reflecting device to automatically track sun based on facula identification
CN102980313A (en) * 2012-12-26 2013-03-20 首航节能光热技术股份有限公司 Heliostat error correction system and method for solar tower optical-thermal power station
TWI554859B (en) * 2013-04-25 2016-10-21 鴻海精密工業股份有限公司 Sun tracking device and solar cell system
CN104699116A (en) * 2013-12-08 2015-06-10 首航节能光热技术股份有限公司 Heliostat tracking error correction method
CN105207588A (en) * 2015-09-08 2015-12-30 陶骏丽 Solar power generation system and solar power generation heating system
CN105223971A (en) * 2015-11-09 2016-01-06 南京信息工程大学 A kind of automatic sun tracker based on optical image security
WO2018025277A1 (en) * 2016-08-01 2018-02-08 Nimbalkar Shrikant Low cost single and dual-axis solar tracker apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129984A1 (en) * 2006-12-01 2008-06-05 Sol Focus, Inc. Inspection of optical elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510749B (en) * 2012-09-03 2015-12-01 Atomic Energy Council Solar tracking apparatus

Also Published As

Publication number Publication date
TW200944731A (en) 2009-11-01
US20090260618A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
TWI338767B (en) Solar tracking apparatus and solar electric power generation system thereof
JP5184473B2 (en) High-efficiency concentrating solar tracking device and method
US8290207B2 (en) Solar power device
CN101859150B (en) Sun tracking and aligning device and method for Stirling solar electric generating system
CN103345263B (en) A kind of position of sun tracing sensor
WO2014029254A1 (en) Solar tracking method and tracking system for dish solar thermal power generation system
CN103277922A (en) Sunlight tracking sensor
WO2008117297A3 (en) Solar energy collecting system
WO2014015773A1 (en) Solar tracking method and system for use in dish-type solar thermal electricity generation system
CN103728983A (en) Method for calibrating tracking precision of heliostats
CN202255353U (en) Sensor for detecting variation of incident angle of light in single direction
TW201139955A (en) Light sensing system and control method thereof
KR101412783B1 (en) Device and method for heliostat control using hybrid type solar tracking device
KR20110123954A (en) Sun detector
US9086540B2 (en) Imaging apparatus and control method of imaging apparatus
JPS5911830B2 (en) solar tracking device
KR101562348B1 (en) Sensing device for sensing position of sun, and apparatus and method for collecting sun-light using it
CN101969277A (en) Sun position sensing device
CN101571722A (en) Sun tracing device and solar power system thereof
JP2000196125A (en) Sun position sensor
KR20130059215A (en) Solar tracking device and method, and solar energy collecting device and management method thereof incorporating the solar tracking device and method
TW201020486A (en) Sun detector
JP2014098505A (en) Solar thermal power generation system
JP2019518930A (en) Sun tracking device
JPS5949508B2 (en) solar tracking device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees