TWI336143B - Light-emitting diode and method for manufacturing the same - Google Patents

Light-emitting diode and method for manufacturing the same Download PDF

Info

Publication number
TWI336143B
TWI336143B TW96103410A TW96103410A TWI336143B TW I336143 B TWI336143 B TW I336143B TW 96103410 A TW96103410 A TW 96103410A TW 96103410 A TW96103410 A TW 96103410A TW I336143 B TWI336143 B TW I336143B
Authority
TW
Taiwan
Prior art keywords
transparent conductive
layer
light
conductive film
emitting diode
Prior art date
Application number
TW96103410A
Other languages
Chinese (zh)
Other versions
TW200832750A (en
Inventor
Jinn Kong Sheu
Original Assignee
Chimei Innolux Corp
Ncku Res & Dev Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp, Ncku Res & Dev Foundation filed Critical Chimei Innolux Corp
Priority to TW96103410A priority Critical patent/TWI336143B/en
Publication of TW200832750A publication Critical patent/TW200832750A/en
Application granted granted Critical
Publication of TWI336143B publication Critical patent/TWI336143B/en

Links

Landscapes

  • Led Devices (AREA)

Description

1336143 九、.聲廢讓》取产/;齊、貪'广‘'…f ';:;‘广1336143 IX. Sound waste let's take production /; Qi, greed 'wide' '...f ';:; ‘wide

【發明所屬之技術領域I 本發明是有關於一種發光元件,且特別是有關於一種發 光二極體(led)及其製造方法。 ' 【先前技術】 ·- 在傳統之氮化鎵系列發光二極體中,大都以厚度很薄之 金屬薄膜,例如鎳/金(Ni/Au),來做為發光磊晶結構與電極 •之間的透明導電層,以促進電流散佈’進而提升發光二極體 • 疋件之發光效率。然而,金屬薄膜之厚度雖然夠薄而可讓光 — 透過,但是對於可見光而言,穿透率仍在70〇/〇以下,而造 成發光元件之發光亮度降低。 此外,鎳/金薄膜形成後必須在含氧環境下進行回火處 理,才能獲得高透明度且低接觸電阻之鎳/金導電薄膜。然 而,鎳/金薄膜於含氧環境下進行回火處理後,會發生氧化 見象而氧化過之鎳/金薄膜容易遭受水氧侵蝕而劣化,進 鲁而使得元件特性明顯變差。為解決水氧侵敍的問題,通常在 鎳/金薄膜上額外覆蓋二氧化矽保護層’以阻隔外界溼氣而 防止水氧铋入鎳/金薄膜,進而達到提高元件可靠度與延長 元件壽命的目的。 然二氧化石夕㈣層之導熱效果差,因此待發光二極 、體70件&成封裝後’保護層會成為熱傳導的阻隔結構,不利 ;動層所產生之熱的傳導排除’進而導致發光二極體元件 之散熱效能下降。 方面為解決利用金屬薄膜做為透明導電層所造成 5 1336143 之低光穿透率,目前發展出以氧化銦錫薄膜取代金屬薄膜來 做為發光二極體之透明導電層。然而,氧化銦錫薄膜之電阻 率明顯較金屬薄膜尚,因此可能會產生電流壅塞(Current Crowding)現象,進而造成電極之局部區域快速退化,導致 發光二極體元件之可靠度下降且壽命縮短。 Μ ·. 【發明内容】 ' 因此,本發明之目的就是在提供一種發光二極體,其透 ^ 明導電層至少包括二透明導電臈,其中上方之透明導電膜的 • 晶粒尺寸小於下方之透明導電膜,故透明導電層具有相當優 _ 異之抗水氣侵蝕能力,而可提高發光二極體元件之操作可靠 - 度’並可延長發光二極體元件之壽命。 • 本發明之另一目的是在提供一種發光二極體,其透明導 電層具有緻密的上層結構,如此一來無需額外設置二氧化矽 保護層。因此,可降低製程複雜度而可提高良率,並可縮減 製作成本,更可提升發光二極體元件之散熱效能。 • 本發明之又一目的是在提供一種發光二極體之製造方 法,其係先利用非電漿方式成長一低電阻率透明導電膜,再 於低電阻率透明導電膜上成長結構緻密之另一透明導電 膜。如此一來,不僅可提升透明導電層與下方磊晶結構的歐 姆接觸品質,更可有效隔絕溼氣,進而可提高發光二極體元 件之操作性能,並可大幅增加發光二極體元件之壽命。 、.根據本發明之上述目的,提出一種發光二極體’至少包 括·一發光磊晶結構設於一基板上,其中發光磊晶結構至少 包括:一第一電性半導體層位於基板上;一主動層堆疊在第 6 1336143 -電性半㈣層之第―部分上,並暴 之第二部分;以及-第二電性半導體層,堆疊ΓΓ動Γ上 其中=電性半導體層與第二電性半導體層具=上’ 明導電膜以及第Λ 叠在發光為晶結構上之第-透 尺寸大於第二透明導電 €瞑之Β曰粒 電性半導體層之第二尺寸;-第-電極設於第- 。刀及第一電極設於透明導電 依照本發明一較佳實施例,上述第-透明導電膜之材料 與第二透明導電m之材料㈣。 Μ膜之材科 依照本發明之另—較佳實施例,上述第 束蒸鍍膜,且第二導電膜係賤鍍膜。 、係電子 根據本發明之曰M »g . 目的,k出一種發光二極體之製造方法, 至少包括:形成—發光磊晶結構於-基板上,其中發光磊曰 結構至少包括依序堆疊在基板上之第—電性半導體層光= 層^及第—電性半導體層’其中第-電性半導體層與第二電 丨生半V體層具不同電性;移除部分之第二電性半導體層與主 動層’直至暴露出部分之第—電性半導體層;形成—透明導 電層’其中透明導電層至少包括依序堆疊在發光磊晶結構上 之第一透明導電膜以及第二透明導電膜,且第一透明導電膜 之晶粒尺寸大於第1透明導電膜之晶粒尺寸;形第一電 極於第一電性半導體層之暴露部分上;以及形成-第二電極 於透明導電層上。 ,依肱本發明一較佳實施例,上述形成第一透明導電膜之 步驟係利用電子束蒸鍍法,且形成第二透明導電膜之步驟係 1336143 利用濺鍍法。 【實施方式】 本發明揭露一種發光二極體及其製造方法,其係利用至 少:二,製程來製作透明導電層’因此透明導電層具有低電阻 率、尚穿透率,而可提供良好的電性接觸特性,並可有效防 -者外界水氧入侵,進一步達到延長發光二極體元件之使用壽 命,以及提高發光二極體元件之可靠度之目的。為了使本發 鲁明之敘述更加詳盡與完備,可參照下列描述並配合第丄圖至 第4B圖之圖式。 • 目刖,為了改善金屬薄膜所構成之透明導電層之穿透率 •不佳的問題’大都以氧化銦錫層來當做透明導電層。麸而, :·:發現以氧化銦錫層做為透明導電層時,發光二極體元件之 壽:與可靠度並未獲得有&改善。除了 一般所認為之電流蜜 土效應外’申凊人亦發現利用電子束蒸鍍技術所製備之氧化 銦錫層的結構緻密度低’因此外界水氧容易入侵,而導致發 _光H件的退化速度增快。為避免渔氣人侵’在氧化鋼 錫層上額外覆蓋二氧化碎保護層,亦可提升發光二極體元件 之可靠度’並可有效延長元件之使用壽命。 _然而,在氧化_錫層上覆蓋二氧化石夕保護層,同樣有會 隔而如響主動層所產生之熱的傳導,而不利於發光二極體 •之散熱效能。此外’在這樣的發光二極體架構中,需要 η質之—氧化⑦層來做為保護層而此高品質的二氧化石夕 層I以電聚增益化學氣相;冗積⑺则d ; PECVD)製程來加以製作。因此,氧化銦錫層與二氧化矽層 8 1336143 之製作需分別在不同之儀器設備中進行,如此一來,不僅會 導致製程成本增加,更會造成良率下降。 有鑑於此’本發明提出一種發光二極體及其製造方法, 係以至少二種不同製程來製作至少二層透明導電氧化屠來 做為透明導電層,藉以提高透明導電層與蟲晶結構之歐姆接 觸特性,並提高透明導電層之上層結構的緻密度,因而可有 效防止外界水氧人侵’達到提升發光二極體元件之操作可靠 度以及延長件之使用壽命的功效,更無需額外設置保護層。 請參照第1圖至第3圖,其繪示依照本發明-較佳實施 例的一種發光二極體之製程剖面圖。本發明之發光二極體可 為氮化鎵系列(GaN-based)發光二極體或磷化鋁鎵銦 (AmamP)發光二極體。在—示範實施例中,首先提供基板 其中基板100之材料可例如選用藍寶石、碳化石夕、氮 化鎵或氮化鋁等。接下來,可依實際製程需求,選擇性地先 於基板100之表面上沉積成核層102。在本發明之另一實施 例中,亦可無需先成長成核層,而直接進行後續磊晶材料層 之製作。接著,利用例如有機金屬化學氣相沉積(m〇cvd) 方式磊晶成長發光磊晶結構110於基板1〇〇上方之成核層 102上。發光磊晶結構110至少包括第一電性半導體層1〇4、 主動層106以及第二電性半導體層1〇8,其中第一電性半導 體層104位於基板1〇〇上方之成核層1〇2上主動層1〇6 則疊設在第一電性半導體層104上,而第二電性半導體層 108則疊設在主動層106上。第一電性半導體層1〇4與第二 電性半導體層108具有不同電性。舉例而言,當第一電性為 N型時,第二電性為p型:而當第一電性為p型時,第二 1336143 電性為N型。在本示範實施例中,第一電性為N型,且第 二電性為P型。此外,第一電性半導體層1〇4之材料可例 如為矽摻雜之氮化鎵系列材料或矽摻雜之磷化鋁鎵銦材 料;而第二電性半導體層108之材料可例如為鎂摻雜之氮化 • 鎵系列材料或鎂摻雜之磷化鋁鎵銦材料。主動層106較佳可 . 為多重量子井(Multiquantum Well, MQW)結構,例如氮化銦 _ 鎵/氮化鎵(In〇.3Ga〇.7N/GaN)多重量子井結構。 待發光磊晶結構110完成後,利用例如微影與蝕刻方式 參 來進行發光蠢晶結構11 〇之圖案定義,而移除部分之第二電 性半導體層108與部分之主動層1〇6,直至暴露出第一電性 半導體層104的一部分112,以利後續形成之電極能與第一 \電性半導體層1〇4形成接觸。在發光磊晶結構U0之圖案定 …義過程中,為了確保第一電性半導體層104在圖案定義後有 •暴露出,通常採取過蝕刻(〇ver-etching)之手段。如此一來, 於此一圖案定義步驟中,亦移除了部分之第一電性半導體層 104 ’如第1圖所示。 • 接著,可直接於發光磊晶結構110之第二電性半導體層 108上形成透明導電層12〇 :或者可選擇性地先於第二電性 半導體層108上形成接觸層114,再於接觸層114上形成透 明導電層120’當然亦可於第二電性半導體層1〇8上形成接 觸層114後再進行微影與#刻方式來定義發Μ晶結構之 圖案。在本示範實施例中,先利用例如有機金屬化學氣相沉 積方式,於第二電性半導體層108上形成接觸層114t)其中, 接觸層114較佳可為換雜之超晶格應力層結構 yer Superlattices ’ SLS)。由於超晶格應力層結構與後續 1336143 形成之透明導電I 120之間具有較佳的接觸特性,因此可提 高導電率。 ·TECHNICAL FIELD OF THE INVENTION The present invention relates to a light-emitting element, and more particularly to a light-emitting diode (LED) and a method of manufacturing the same. '[Prior Art] ·- In the traditional gallium nitride series of light-emitting diodes, most of them are thin metal films, such as nickel/gold (Ni/Au), as the light-emitting epitaxial structure and electrodes. A transparent conductive layer to promote current spreading' to improve the luminous efficiency of the LEDs. However, although the thickness of the metal thin film is thin enough to allow light to pass through, the transmittance is still less than 70 Å/〇 for visible light, and the luminance of the light-emitting element is lowered. In addition, after the nickel/gold film is formed, it must be tempered in an oxygen-containing atmosphere to obtain a nickel/gold conductive film having high transparency and low contact resistance. However, after the nickel/gold film is tempered in an oxygen-containing atmosphere, oxidation occurs, and the oxidized nickel/gold film is easily deteriorated by water and oxygen attack, and the element characteristics are significantly deteriorated. In order to solve the problem of water oxygen intrusion, the nickel/gold film is usually covered with a protective layer of cerium oxide to block external moisture and prevent water from entering the nickel/gold film, thereby improving component reliability and extending component life. the goal of. However, the thermal conductivity of the dioxide layer (four) layer is poor, so the light-emitting diodes, the body 70 pieces & after packaging, the 'protective layer will become a heat-conducting barrier structure, which is unfavorable; the heat conduction generated by the moving layer is excluded' and thus The heat dissipation performance of the LED component is reduced. In order to solve the low light transmittance of 5 1336143 caused by using a metal thin film as a transparent conductive layer, a transparent conductive layer which is replaced by a thin film of indium tin oxide as a light emitting diode has been developed. However, the indium tin oxide film has a significantly higher electrical resistivity than the metal film, and thus may cause a current crowding phenomenon, which causes a rapid degradation of a local region of the electrode, resulting in a decrease in reliability and a shortened life of the light-emitting diode element. SUMMARY OF THE INVENTION [The present invention] Accordingly, it is an object of the present invention to provide a light emitting diode having a transparent conductive layer comprising at least two transparent conductive conductive layers, wherein the upper transparent conductive film has a smaller grain size than the lower surface The transparent conductive film, so the transparent conductive layer has a relatively superior water vapor erosion resistance, and can improve the operational reliability of the LED component and can extend the life of the LED component. Another object of the present invention is to provide a light-emitting diode having a transparent conductive layer having a dense upper layer structure, so that no additional ruthenium dioxide protective layer is required. Therefore, the process complexity can be reduced, the yield can be improved, the manufacturing cost can be reduced, and the heat dissipation performance of the LED component can be improved. A further object of the present invention is to provide a method for fabricating a light-emitting diode, which first grows a low-resistivity transparent conductive film by a non-plasma method, and then grows a dense structure on a low-resistivity transparent conductive film. A transparent conductive film. In this way, not only the ohmic contact quality of the transparent conductive layer and the lower epitaxial structure can be improved, but also the moisture can be effectively isolated, thereby improving the operational performance of the LED component and greatly increasing the lifetime of the LED component. . According to the above object of the present invention, a light-emitting diode "at least includes a light-emitting epitaxial structure is disposed on a substrate, wherein the light-emitting epitaxial structure comprises at least: a first electrical semiconductor layer is disposed on the substrate; The active layer is stacked on the first portion of the sixth 1336143-electrical half (four) layer, and the second portion of the storm; and - the second electrical semiconductor layer, stacked on the stack, wherein the electrical semiconductor layer and the second electrical The semiconductor layer has a second conductive film and a second dimension of the first transparent dielectric layer which is larger than the second transparent conductive material; the first electrode is provided In the first -. The blade and the first electrode are disposed on the transparent conductive material. According to a preferred embodiment of the present invention, the material of the first transparent conductive film and the material of the second transparent conductive material (4). According to another preferred embodiment of the present invention, the first vapor deposited film is formed, and the second conductive film is plated. According to the present invention, a method for fabricating a light-emitting diode includes at least: forming a light-emitting epitaxial structure on a substrate, wherein the light-emitting stretch structure comprises at least sequentially stacked on The first electrical semiconductor layer light on the substrate = the layer and the first electrical semiconductor layer 'where the first electrical semiconductor layer and the second electrical half V body layer have different electrical properties; the second electrical portion of the removed portion a semiconductor layer and an active layer 'until a portion of the first electrical semiconductor layer is exposed; forming a transparent conductive layer' wherein the transparent conductive layer comprises at least a first transparent conductive film and a second transparent conductive layer sequentially stacked on the light emitting epitaxial structure a film, wherein a grain size of the first transparent conductive film is larger than a grain size of the first transparent conductive film; a first electrode is formed on the exposed portion of the first electrical semiconductor layer; and a second electrode is formed on the transparent conductive layer . According to a preferred embodiment of the present invention, the step of forming the first transparent conductive film is by electron beam evaporation, and the step of forming the second transparent conductive film is 1336143 by sputtering. [Embodiment] The present invention discloses a light-emitting diode and a method for fabricating the same, which utilizes at least two processes to fabricate a transparent conductive layer. Therefore, the transparent conductive layer has low resistivity and good transmittance, and can provide good performance. The electrical contact characteristics can effectively prevent the external water and oxygen from invading, further extending the service life of the LED component and improving the reliability of the LED component. In order to make the description of Luming more detailed and complete, refer to the following description and cooperate with the drawings from Figure 4 to Figure 4B. • Seek to improve the transmittance of the transparent conductive layer formed by the metal film. • The problem of poorness is that the indium tin oxide layer is mostly used as a transparent conductive layer. Bran, :·: When the indium tin oxide layer was used as the transparent conductive layer, the life of the light-emitting diode element was not improved with reliability. In addition to the general sense of the current honey-soil effect, the applicant also found that the structure of the indium tin oxide layer prepared by electron beam evaporation technology has a low density of structure, so that the external water oxygen is easily invaded, resulting in the emission of light-emitting H-pieces. The rate of degradation increases. In order to prevent the fisherman from invading the tin oxide layer on the oxidized steel tin layer, the reliability of the light-emitting diode element can be improved and the service life of the component can be effectively extended. _ However, the oxidized _ tin layer is covered with a protective layer of sulphur dioxide, which also has the heat conduction caused by the active layer, which is not conducive to the heat dissipation performance of the illuminating diode. In addition, in such a light-emitting diode structure, it is required to oxidize 7 layers of η-type as a protective layer and the high-quality SiO2 layer I is electrically concentrated to obtain a chemical vapor phase; redundancy (7) is d; PECVD) process to make. Therefore, the production of the indium tin oxide layer and the ceria layer 8 1336143 need to be performed separately in different instruments and equipment, so that not only the process cost is increased, but also the yield is lowered. In view of the above, the present invention provides a light-emitting diode and a method for fabricating the same, wherein at least two transparent conductive oxides are formed as a transparent conductive layer in at least two different processes, thereby improving the transparent conductive layer and the insect crystal structure. The ohmic contact characteristic and the density of the layer structure above the transparent conductive layer can effectively prevent the external water and oxygen from invading to improve the operational reliability of the LED component and the service life of the extension, and no additional setting is required. The protective layer. Referring to Figures 1 through 3, there is shown a process cross-sectional view of a light emitting diode in accordance with a preferred embodiment of the present invention. The light-emitting diode of the present invention may be a gallium nitride-based (GaN-based) light-emitting diode or an aluminum gallium indium phosphide (AmamP) light-emitting diode. In the exemplary embodiment, the substrate is first provided. The material of the substrate 100 may be, for example, sapphire, carbon carbide, gallium nitride or aluminum nitride. Next, the nucleation layer 102 can be selectively deposited on the surface of the substrate 100 in accordance with actual process requirements. In another embodiment of the present invention, the subsequent epitaxial material layer can be directly fabricated without first growing into a core layer. Next, the luminescent epitaxial structure 110 is epitaxially grown on the nucleation layer 102 above the substrate 1 by, for example, organometallic chemical vapor deposition (m〇cvd). The luminescent epitaxial structure 110 includes at least a first electrical semiconductor layer 〇4, an active layer 106, and a second electrical semiconductor layer 〇8, wherein the first electrical semiconductor layer 104 is located on the nucleation layer 1 above the substrate 1〇〇 The active layer 1〇6 on the 〇2 is stacked on the first electrical semiconductor layer 104, and the second electrical semiconductor layer 108 is stacked on the active layer 106. The first electrical semiconductor layer 1〇4 and the second electrical semiconductor layer 108 have different electrical properties. For example, when the first electrical property is N-type, the second electrical property is p-type: and when the first electrical property is p-type, the second electrical property 1336143 is N-type. In the exemplary embodiment, the first electrical property is an N-type and the second electrical property is a P-type. In addition, the material of the first electrical semiconductor layer 〇4 may be, for example, an ytterbium-doped gallium nitride series material or a ytterbium-doped phosphide aluminum gallium indium material; and the material of the second electrical semiconductor layer 108 may be, for example, Magnesium doped nitriding • Gallium series materials or magnesium doped phosphide aluminum gallium indium materials. The active layer 106 is preferably a multiquantum Well ( MQW) structure, such as an indium gallium nitride/gallium nitride (In〇.3Ga〇.7N/GaN) multiple quantum well structure. After the light-emitting epitaxial structure 110 is completed, the pattern definition of the light-emitting abbreviated structure 11 利用 is performed by using, for example, lithography and etching, and a portion of the second electrical semiconductor layer 108 and a portion of the active layer 1 〇 6 are removed. Until a portion 112 of the first electrically conductive semiconductor layer 104 is exposed, the subsequently formed electrode can be brought into contact with the first electrical semiconductor layer 1〇4. In the pattern definition process of the luminescent epitaxial structure U0, in order to ensure that the first electrical semiconductor layer 104 is exposed after the pattern definition, etch-etching is usually employed. As a result, in the pattern defining step, a portion of the first electrical semiconductor layer 104' is also removed as shown in FIG. The transparent conductive layer 12 can be formed directly on the second electrical semiconductor layer 108 of the light emitting epitaxial structure 110: or the contact layer 114 can be selectively formed on the second electrical semiconductor layer 108, and then contacted. The transparent conductive layer 120' is formed on the layer 114. Of course, the contact layer 114 may be formed on the second electrical semiconductor layer 1A8, and then the lithography and #etching modes may be used to define the pattern of the twinned structure. In the present exemplary embodiment, the contact layer 114t is formed on the second electrical semiconductor layer 108 by, for example, organometallic chemical vapor deposition. The contact layer 114 is preferably a modified superlattice stress layer structure. Yer Superlattices ' SLS). Since the superlattice stress layer structure has better contact characteristics with the transparent conductive I 120 formed in the subsequent 1336143, the conductivity can be improved. ·

接下來以微影與蝕刻方式來定義發光磊晶結構之圖案 後,於接觸層114上形成透明導電層12〇<3製作透明導電層 120時’可利用至少二種製程方式來形成至少二透明導電膜 來做為透明導電層12〇。首先,㈣非電漿沉積技術於接觸 層U4上形成透明導電薄膜116,以避免電漿損害接觸層η# 之表面,而影響透明導電層12〇與接觸層ιΐ4之電性接觸品 質。其中,透明導電膜116具有透明導電層12〇之預定厚I 的一部分。透明導電膜116之材料可例如為氧化銦= (Indium Tin Oxide,ΙΤΟ)、氧化鑛錫(Cadmium Tin ; CTO)、氧化鋅錫(IZ0)、掺雜鋁之氧化鋅(Zn〇:Ai)'摻雜鎵 之氧化鋅(Zn〇:Ga)、摻雜銦之氧化鋅(Zn〇:In)、摻雜硼之氧 化辞(ZnO.B)、氧化鋅鎵(ZnGa2〇4)、摻雜銻之氧化錫 (SnOySb)、摻雜錫之氧化鎵(Ga2〇3:Sn)、摻雜錫之氧化銀銦 (AgIn〇2:Sn)、摻雜辞之氧化銦(In2〇3:Zn)、氧化銅鋁 (CuAl〇2)、鑭銅氧硫化物(LaCu〇s)、氧化鎳(Ni〇)、氧化鋼 鎵(CuGa02)或氧化锶鋼(SrCu2〇2)。 接著,於透明導電膜116上接續形成另一透明導電膜 118,其中透明導電膜118具有透明導電層12〇之另一部分 的厚度,且透明導電膜116與透明導電膜118組合之總厚度 即為透明導電層U0之預定厚度,如第2圖所示。由於已^ 形成透明導電膜116,因此在透明導電膜116的結構緩衝 下,設置透明導電膜118時可選擇之製程技術較為廣泛。透 明導電膜11 8之材料可例如為氧化銦錫、氧化鎘錫氧化鋅 11 ⑴ 6143 錫、摻雜鋁之氧化鋅、氧化鋅鎵、摻 之氧化鎵、摻雜錫之氧化,銀銦、摻雜辞之 =、錫;摻雜錫 鑭銅氧硫化物、氧化錄、氧化銅鎵或氧化錯銅/化銅銘、 生電ί—於而Ή子束蒸鑛製程來製備透明導電薄膜,不會產 成之透明導二t電更預備沉積之結構層表面,且所形 束蒸鑛製電阻率的特性。但是,利用電子 導電薄膜之:透明導電薄膜的緻密度較-低,亦即透明 寸較大。另-方面,製程所製備之透. 尺3⑽Μ㈣性’亦即透明導電薄膜之晶粒 t因此:V 4 糸、..°構因此可防止外界水氧侵 忑層二上:Λ佳實施例中,可利用電子束蒸鍵製程先於 導電膜miit透明導電膜叫,再利用賤鑛製程於透明 係明導電膜U8。亦即,透明導電膜116 社-〇鍍臈,而透明導電膜118係一濺鍍膜。 巧同時參照第4Α圖與第4Β圖,其中第々a 方式所製借出之透明導電圖係以減鍵 片,而第化圖_ 知摇式電子顯微鏡(刪)照 膜的掃m 電子束蒸鍍方式所製備出之透明導電 明導電i^ 行觀測時,㈣方搞製備出之透After the pattern of the light-emitting epitaxial structure is defined by lithography and etching, the transparent conductive layer 12 is formed on the contact layer 114. When the transparent conductive layer 120 is formed, at least two processes can be used to form at least two. The transparent conductive film is used as the transparent conductive layer 12A. First, the (iv) non-plasma deposition technique forms a transparent conductive film 116 on the contact layer U4 to prevent the plasma from damaging the surface of the contact layer η#, thereby affecting the electrical contact quality of the transparent conductive layer 12A and the contact layer ι4. The transparent conductive film 116 has a portion of the predetermined thickness I of the transparent conductive layer 12A. The material of the transparent conductive film 116 can be, for example, indium tin oxide (Indium Tin Oxide), oxidized mineral tin (Cadmium Tin; CTO), zinc tin oxide (IZ0), and aluminum-doped zinc oxide (Zn〇: Ai). Gallium-doped zinc oxide (Zn〇:Ga), indium-doped zinc oxide (Zn〇:In), boron-doped oxidation (ZnO.B), zinc gallium oxide (ZnGa2〇4), doped germanium Tin oxide (SnOySb), tin-doped gallium oxide (Ga2〇3:Sn), tin-doped silver indium oxide (AgIn〇2:Sn), doped indium oxide (In2〇3:Zn), Copper aluminum oxide (CuAl〇2), lanthanum oxysulfide (LaCu〇s), nickel oxide (Ni〇), oxidized steel gallium (CuGaO) or yttria steel (SrCu2〇2). Then, another transparent conductive film 118 is formed on the transparent conductive film 116, wherein the transparent conductive film 118 has a thickness of another portion of the transparent conductive layer 12, and the total thickness of the transparent conductive film 116 combined with the transparent conductive film 118 is The predetermined thickness of the transparent conductive layer U0 is as shown in FIG. Since the transparent conductive film 116 has been formed, the process technology that can be selected when the transparent conductive film 118 is provided under the structural buffer of the transparent conductive film 116 is wider. The material of the transparent conductive film 118 can be, for example, indium tin oxide, cadmium tin oxide zinc oxide 11 (1) 6143 tin, aluminum-doped zinc oxide, zinc gallium oxide, gallium oxide doped, tin-doped oxidation, silver indium, doped杂 之 =, tin; doped tin bismuth copper oxysulfide, oxidation record, copper oxide gallium or oxidized copper / copper, Ming ί - Ή Ή 束 beam steaming process to prepare transparent conductive film, will not The transparent conductive material produced by the second conductive layer is prepared for the surface of the deposited structural layer, and the characteristics of the shaped vaporized mineral resistivity. However, the use of an electronically conductive film: the density of the transparent conductive film is relatively low, that is, the transparency is large. On the other hand, the process is prepared by the ruler 3(10)Μ(four)', which is the crystal grain of the transparent conductive film. Therefore, the V 4 糸, ..° structure can prevent the external water from eroding the layer 2: in the preferred embodiment The electron beam steaming key process can be used to precede the conductive film miit transparent conductive film, and then the tantalum process is used to transparently expose the conductive film U8. That is, the transparent conductive film 116 is rhodium-plated, and the transparent conductive film 118 is a sputter film. At the same time, referring to the fourth and fourth figures, the transparent conductive pattern produced by the third method is used to reduce the key, and the second image of the scanning electron microscope (deletion) is scanned. When the transparent conductive conductive conductive prepared by the vapor deposition method is observed, (4)

Boundary) 〇 ^ ^ ^丨/面看不到明顯的晶界 ^ , ,利用掃描式電子顯微鏡以30000倍 製備出:透1 =觀測時,便已經可看出電子束蒸鑛方式所 展稱出之透明導電臈具 ,^ ^ ^ 方式所製備h a R, 可知,利用濺鍍 子η * 彡明導電膜的結構敏密度確實遠比利用電 子束洛鑛方式所製備出之透明導電膜高。 12 1336143 在本示範實施例中,透明導電膜u 可採用相同材料,亦可採用木/、透月導電臈118 料,以減少光經過不同材用;;同界材係採用相同材 (Fresnel Loss),進而提高光取 爾知失 >广 取出率。此外,透明遙雷胺 之厚度較佳係小於透明導電帛" 、 U6之厚度亦可算於-¾去| 仁疋透明導電膜 uHi等於或者大於透明導電膜u 明並不在此限。 之每度’本發 由於,在製備透明導電層12〇時 鑛等非電衆方式製作低電阻率”㈣係大先::如電子束蒸 午彳—日日拉較大而結構緻宗声彻 之透明導電膜m,再以例如濺鍍 、:- 小而t構緻⑧度高之透明導電膜118。因此,透過特性 不同之透明導電膜m及透明導電膜118’所構成之透明導 電層120不僅可提供與接觸層m之間良好以㈣心 質,更可有效防止外界水氧人侵,且透明導電層12〇本身可 具有優異之電性品質。#者’由於透明導電们18結構之高 緻密度,已可有效防堵外界水氧入冑,因Λ可無需於透 電層12〇上額外設置保護層,如此—來,可降低整體製程之 複雜度,大幅提高製程良率,更可避免保護層之設置而影響 主動層106運轉時所產生之熱的傳導與散逸。 完成透明導電層120之製作後,利用例如蒸鍍等技術形 成電極122於部分之透明導電層120上。同時,並利用例如 蒸鍍等技術形成電極124於第一電性半導體層1〇4之暴露部 分112的一部分上,而完成發光二極體ι26之製作,如第3 圖所示。 由上述本發明較佳實施例可知,本發明之一優點就是因 13 1336143 為本發明之發光二極體的透料電層包括至少二透明導電 膜,其中上方之透明導電獏的敏密度高於下方之透明導 膜’因此透明導電層具有相當優異之抗水氣侵姓能力,可提 兩發光二極體s件之操作可靠度,並可延長發光二極體元件 之壽命。 由上述本發明較佳實施例可知,本發明之另一優點就是 因為本發明之發光二極體的透明導電層具有緻密的上層处 構’故無需額外設置二氧切保護層。因此,可降低製程複 雜度而可提高良率,並可縮減製作成本.,更可提升發光二極 體元件之散熱效能。 由上述本發明較佳實施例可知,本發明之又一優點就是 因為本發明之發光二㈣之製造方法係先利用㈣裝方式 成長一低電阻率透明導電膜,再於低電阻率透明導電膜上成 長結構緻密之另一透明導電膜。因此,不僅透明導電層本身 具有良好之電性品質,並可提升透明導電層與下方磊晶結構 的歐姆接觸品質,且更可有效隔絕溼氣入侵,進而可提高發 光二極體元件之操作性能與可靠度,並可大幅增加發光二極 體元件之壽命。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖至第3圖係繪示依照本發明一較佳實施例的一種 1336143 發光二極體之製程剖面圖。 第4A圖係繪示以濺·鍍方式所製備出之透明導電膜的掃 描式電子顯微鏡照片。 第4B圖係緣示以雪早圭笔雜士 ^ & 電千釆療鑛方式所製備出之透明導電 膜的掃描式電子顯微鏡照片。 【主要元件符號說明】 100 :基板 102 104 :第一電性半導體層 106 108:第二電性半導體層 110 11 2 :部分 114 116 :透明導電膜 118 120.透明導電層 122 124 :電極 126Boundary) 〇^^^丨/face can not see the obvious grain boundary ^, and is prepared by scanning electron microscopy at 30,000 times: through 1 = observation, it can be seen that the electron beam evaporation method is exhibited The transparent conductive cookware, ha R prepared by the ^ ^ ^ method, shows that the structural density of the conductive film by the sputtering η * 确实 is indeed much higher than that of the transparent conductive film prepared by the electron beam ore method. 12 1336143 In the exemplary embodiment, the transparent conductive film u can be made of the same material, or wood/transparent conductive material 118 can be used to reduce the light passing through different materials; the same material is the same material (Fresnel Loss) ), and further improve the light extraction rate > wide take-out rate. In addition, the thickness of the transparent teleretin is preferably smaller than that of the transparent conductive 帛, and the thickness of the U6 can be regarded as -3⁄4. The transparent conductive film uHi is equal to or larger than the transparent conductive film. Every degree of 'this hair', because in the preparation of the transparent conductive layer 12〇, the mine and other non-electrical methods to produce low resistivity" (four) is the first:: such as electron beam steaming in the afternoon - the day is large and the structure is so The transparent conductive film m is further transparent, for example, by sputtering, and is formed to have a transparent conductive film 118 having a height of 8 degrees. Therefore, the transparent conductive film m and the transparent conductive film 118' having different transmission characteristics are transparently conductive. The layer 120 not only provides good (4) core quality with the contact layer m, but also effectively prevents external water and oxygen from invading, and the transparent conductive layer 12 itself can have excellent electrical quality. #者' Due to transparent conductive 18 The high density of the structure can effectively prevent the outside water from entering the enthalpy, because it is not necessary to additionally provide a protective layer on the permeable layer 12, so that the complexity of the overall process can be reduced, and the process yield can be greatly improved. Moreover, the arrangement of the protective layer can be avoided to affect the conduction and dissipation of heat generated during the operation of the active layer 106. After the fabrication of the transparent conductive layer 120 is completed, the electrode 122 is formed on the portion of the transparent conductive layer 120 by a technique such as evaporation. At the same time, and The electrode 124 is formed on a portion of the exposed portion 112 of the first electrical semiconductor layer 1 4 by a technique such as vapor deposition to complete the fabrication of the light-emitting diode ι 26 as shown in Fig. 3. It is preferred by the above invention. The embodiment shows that one of the advantages of the present invention is that the dielectric layer of the light-emitting diode of the present invention includes at least two transparent conductive films, wherein the upper transparent conductive germanium has a higher density than the lower transparent conductive film. Therefore, the transparent conductive layer has a relatively excellent resistance to water vapor intrusion, can improve the operational reliability of the two light-emitting diodes, and can extend the life of the light-emitting diode element. From the above preferred embodiment of the present invention, Another advantage of the present invention is that since the transparent conductive layer of the light-emitting diode of the present invention has a dense upper layer structure, there is no need to additionally provide a dioxy-cut protective layer. Therefore, the process complexity can be reduced and the yield can be improved. The manufacturing cost can be reduced, and the heat dissipation performance of the light emitting diode element can be improved. According to the preferred embodiment of the present invention described above, another advantage of the present invention is that the light of the present invention is The manufacturing method of the second (four) is to first grow a low-resistivity transparent conductive film by using the (four) mounting method, and then grow another transparent conductive film having a dense structure on the low-resistivity transparent conductive film. Therefore, not only the transparent conductive layer itself has good electric power. Sexual quality, and can improve the ohmic contact quality of the transparent conductive layer and the underlying epitaxial structure, and can effectively isolate moisture intrusion, thereby improving the operational performance and reliability of the light-emitting diode component, and greatly increasing the light-emitting diode The present invention has been described above in terms of a preferred embodiment, and is not intended to limit the invention, and any one of ordinary skill in the art, without departing from the spirit and scope of the invention, Various modifications and refinements may be made, and the scope of the present invention is defined by the scope of the appended claims. [FIG. 1 to FIG. 3 is a preferred embodiment of the present invention. A process cross-sectional view of a 1336143 light-emitting diode of an embodiment. Fig. 4A is a scanning electron micrograph showing a transparent conductive film prepared by sputtering and plating. Fig. 4B is a scanning electron micrograph of a transparent conductive film prepared by Xue Xiangui pen yoghurt & [Main component symbol description] 100: substrate 102 104 : first electrical semiconductor layer 106 108 : second electrical semiconductor layer 110 11 2 : portion 114 116 : transparent conductive film 118 120. transparent conductive layer 122 124 : electrode 126

成核層 主動層 發光蟲晶結構 接觸層 透明導電獏 電極 發光二極體Nucleation layer active layer luminescent crystal structure contact layer transparent conductive iridium electrode light-emitting diode

1515

Claims (1)

13361431336143 十、申讓蓴利藏® 1. 一種發光二極體,至少包括: 一發光磊晶結構設於一基板上’其中該發光磊晶結構至 少包括: 一第一電性半導體層’位於該基板上: 一主動層,堆疊在該第一電性半導體層之一第一部 分上,並暴露出該第一電性半導體層之一第二部分;以 及 一第二電性半導體層,堆疊在該主動層上,其中該 第一電性半導體層與該第二電性半導體層具不同電性; 一透明導電層,至少包括依序堆疊在該發光磊晶結構上 之一第一透明導電膜以及一第二透明導電膜,其中該第一透 明導電膜之晶粒尺寸大於該第二透明導電膜之晶粒尺寸; 一第一電極,設於該第一電性半導體層之該第二部分 上;以及 一第二電極,設於該透明導電層上。 2.如申请專利範圍第1項所述之發光二極體,其中該 發光一極體係一氮化鎵系列發光二極體。 3·如申請專利範圍第1項所述之發光二極體,其中該 發光—極體係—磷化鋁鎵銦發光二極體。 4.如申请專利範圍第1項所述之發光二極體,其中該 1610. A luminescent diode® 1. A light-emitting diode comprising at least: a luminescent epitaxial structure disposed on a substrate, wherein the luminescent epitaxial structure comprises at least: a first electrical semiconductor layer is located on the substrate Upper: an active layer stacked on a first portion of the first electrical semiconductor layer and exposing a second portion of the first electrical semiconductor layer; and a second electrical semiconductor layer stacked on the active a layer of the first electrically conductive layer and the second electrically conductive layer having different electrical properties; a transparent conductive layer comprising at least one of the first transparent conductive film and the first transparent conductive film sequentially stacked on the luminescent epitaxial structure a second transparent conductive film, wherein a grain size of the first transparent conductive film is larger than a grain size of the second transparent conductive film; a first electrode is disposed on the second portion of the first electrical semiconductor layer; And a second electrode disposed on the transparent conductive layer. 2. The light-emitting diode according to claim 1, wherein the light-emitting one-pole system is a gallium nitride-based light-emitting diode. 3. The light-emitting diode according to claim 1, wherein the light-emitting system-phosphorus aluminum gallium indium light-emitting diode. 4. The light-emitting diode according to claim 1, wherein the 16
TW96103410A 2007-01-30 2007-01-30 Light-emitting diode and method for manufacturing the same TWI336143B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96103410A TWI336143B (en) 2007-01-30 2007-01-30 Light-emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96103410A TWI336143B (en) 2007-01-30 2007-01-30 Light-emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200832750A TW200832750A (en) 2008-08-01
TWI336143B true TWI336143B (en) 2011-01-11

Family

ID=44818969

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96103410A TWI336143B (en) 2007-01-30 2007-01-30 Light-emitting diode and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI336143B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201505209A (en) * 2013-07-26 2015-02-01 Lextar Electronics Corp Light emitting diode and manufacturing method thereof

Also Published As

Publication number Publication date
TW200832750A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
US7989828B2 (en) Highly efficient III-nitride-based top emission type light emitting device having large area and high capacity
JP5220984B2 (en) Top-emitting nitride-based light emitting device and method for manufacturing the same
US7687820B2 (en) Nitride-based white light emitting device and manufacturing method thereof
US7485479B2 (en) Nitride-based light emitting device and method of manufacturing the same
EP2280426B1 (en) Light-emitting device
JP5244614B2 (en) Group III nitride light emitting device
US8471239B2 (en) Light-emitting element and a production method therefor
US20130309794A1 (en) Light emitting device and method of manufacturing the same
KR101257572B1 (en) Semiconductor light emission element
TWM274645U (en) III-nitride based semiconductor device with low-resistance ohmic contacts
JP2005167237A (en) Flip chip type nitride light emitting device and manufacturing method therefor
JPWO2020067235A1 (en) Oxide laminate and its manufacturing method
JP5373230B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
KR20090115322A (en) Group 3 nitride-based semiconductor devices
JP6340016B2 (en) Control of p-contact resistance in semiconductor light-emitting devices
TWI336143B (en) Light-emitting diode and method for manufacturing the same
TWI746596B (en) Light-emitting device
KR102000271B1 (en) PREPARING METHOD OF GaN TYPE LIGHT EMITTING DIODE AND GaN TYPE LIGHT EMITTING DIODE PREPARED THEREFROM
KR20060007948A (en) Top emitting light emitting device and method of manufacturing thereof
KR101824322B1 (en) HIGH-EFFICIENCY GaN-BASED LIGHT-EMITTING DIODES AND METHOD OF MANUFACTURING THE SAME
TWI455355B (en) Light emitting diode structure
TWI297222B (en)
KR101239848B1 (en) A Manufacturing Method of Light emission Diode
JP2023088275A (en) Light-emitting element and manufacturing method thereof
KR20150045075A (en) light-emitting diodes including enhanced thermal conductivity layer and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees