TWI335776B - Air assist for ac ionizers - Google Patents

Air assist for ac ionizers Download PDF

Info

Publication number
TWI335776B
TWI335776B TW95137481A TW95137481A TWI335776B TW I335776 B TWI335776 B TW I335776B TW 95137481 A TW95137481 A TW 95137481A TW 95137481 A TW95137481 A TW 95137481A TW I335776 B TWI335776 B TW I335776B
Authority
TW
Taiwan
Prior art keywords
static eliminator
ionizing
electrodes
electrode
nozzles
Prior art date
Application number
TW95137481A
Other languages
Chinese (zh)
Other versions
TW200721916A (en
Inventor
Grigoriy N Vernitskiy
Peter Gefter
Lawrence Levit
Original Assignee
Mks Instr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mks Instr Inc filed Critical Mks Instr Inc
Publication of TW200721916A publication Critical patent/TW200721916A/en
Application granted granted Critical
Publication of TWI335776B publication Critical patent/TWI335776B/en

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Description

rI335776 九、發明說明: (相關申請案之相互參考) ’ 本申請案主張2005年10月13曰申請之美國臨時專利 " 申請案第60/726,874號之優先權,該案名稱為’’Orifice Assist for Ionizers with Airflow Nozzles”,以及 2006 年 3 : 月3曰申請之美國臨時專利申請案第60/778,755號之優先 權,該案名稱為 ’’Fringe Field Ion Extraction for Ionization Systems” ° •【發明所屬之技術領域】 本發明係關於一種交流(AC)靜電消除器,其可從被選 定用於移除靜電荷之帶電荷物體中移除或減少靜電荷。更 具體而言,本發明係關於一種交流靜電消除器,其使用至 少一個流動氣體來加強該帶電荷物體之靜電中和(static neutralization)。 【先前技術】 ® 眾所週知的,交流靜電消除器(有時亦稱為”交流靜電 中和器”)係藉由電離(ionizing)氣體分子來移除靜電荷,並 1將這些被稱為氣體離子之被電離的氣體分子傳遞至帶電 何物體。這些氣體離子通常藉由施加高電壓至電離電極、 轉由釋放核心次原子粒子(nuclear sub-atomic particles)或 11由電離光子輻射而產生。產生這些氣體離子之位置被稱 之為電離源(ionizing source)。帶正電的氣體離子會中和帶 負電的靜電荷,而帶負電的氣體離子則中和帶正電的靜電 荷。 5 93757 1335776 ♦傳遞氧體離子至帶電荷物體係為交流靜電消除器之靜 -電荷移除效率的一個因素,這是因為僅有抵達該帶電荷物 體,氣體離子才會產生有用的電荷移除(以下稱之為,,有用 •的,氣體離子,,)之故。靜電荷移除有時亦被稱之為,,靜電荷中 ,丨和。軋體離子損失可歸因於至少兩種機制:重新組合及接 .地。當藉由強大的靜電力將氣體離子帶至該靜電消除器 夺更可旎發生重新組合及接地兩者的損失。 • λ 一種降低該重新組合及接地影響之方法包括配合交流 靜電消除器使用至少一個具有流動空氣或氣體的嘴嘴,如 $美國專利第6,8G7,G44號巾所揭示者。因為離開嗔嘴之 $動氣體會在正電離子及負電離子昆合在—起之前先稀釋 =氣體離子,故重新組合會減少。在混合之後,較低的氣 體離子密度會造成較低的重新組合率。此外,從該喷嘴流 出=流動氣體會將該氣體離子推進朝向作為中和目標的帶 電荷物體,這會降低傳遞時間且節省該等離子。此外,脅 籲^可被定向成將所產生的氣體離子直接導向該帶電荷物 體,這可降低由接地所造成之氣體離子數量的損失。最後, 某些空氣喷嘴的幾何形狀可保護該等電離電極免於受到環 •境中之雜質的污染。 例如,一種類型的交流靜電消除器係將一電離電極設 =在喷嘴内。同純度的空氣、氮氣或其他非反應性氣體會 :經每一個喷嘴且沿著該電離電極流動。該喷嘴及流動氣 脰之此-組合可部分地㈣該電離f極免於受到環境中之 雜質的〉可染’這可以減少電離電極之清潔頻率,降低維護 93757 6 1335776 :::成本。再者’由於較少的聚 電離電極末梢,因此可使離子中和最大化。P)生於4 交产:與交流靜電消除器結合在-起可以加強該 失中和效率’然而僅單就噴嘴而言係會喪 靜電消除器性能更佳的機會。因Α,需要強化— 種至少—個喷嘴之交流靜電中和器的性能。 【發明内容】 鲁 彳鐘於上述題點’本發明之—目的在於提升採用至 少一個喷嘴之交流靜電消除器的性能。 、一 f達上述目的,本發明之一態樣係提供一種交流靜電 4 =益,其用以從帶電荷物體移除靜電荷,該交流靜電消 除器包括:至少兩個電極,其用以接受不$電位且包含電 離電極及非電離電極;至少一個連接至該等電極之高電壓 電源供應器;至少一個孔口;以及設置範圍;其中該孔口 係定位在該設置範圍中。 •本务明之另—態樣係提供一種交流靜電消除器,其利 用電暈放電而從帶電荷物體移除靜電荷,該中和器包含: 複數個電離電極;被設置成圍繞該等電離電極之每—者的 噴嘴;及連接至該等噴嘴的空間;被設置在設置範圍内的 孔口’該設置範圍係位在相鄰電離電極之間且位在該靜電 ’肖除器之設置有該等電離電極之側;以及用以作為 電極的導電性表面。 電離 本發明之另一態樣係提供一種產生交流靜電消除器的 方法’包含下列步驟:設置交流高電壓電源;將箄一及— 7 93757 1335776 一电離電極電性地耦接至該電源;分別以第一及第二噴 嘴來圍繞該第_及第二電極;使用導電性表面作為非電離 .·電極;將加壓空氣或氣體源耦接至該第一及第二噴嘴;及 、又至少個孔口於位在該第一及第二電離電極之間的設 - 置範圍中。 本發月之另一悲樣係提供一種交流靜電消除器,其用 以從帶電荷物體移除靜電荷,該靜電消除器包括:至^兩 鲁個噴嘴,至少兩個電離電極,用以接受足以藉由電晕放電 來產生電離之電壓,其中該等電離電極之各別部分被設置 成歸該等噴嘴之内部部分;非電離電極,其用以接受參 考電£,至少-個用以提供該電塵之交流高電壓電源供應 器·,至少-個孔口;以及位在該等電離電極之間的設置範 圍;其中,該孔口位在該設置範圍中。 精由設置孔口於具有噴嘴及電離電極之交流靜電消除 器的設置範圍中,係可降低氣體離子放電時間且增加氣體 |離子獲取或者兩者皆有,從而提升交流靜電消除器 率。 【實施方式】 雖然本發明已結合特定最佳模式來予以說明,然而庠 瞭解,在閱讀完以下說明後’對熟習此項技術者而言,; 多的替代、修改及變更將變得明顯。在本發明以下將說明 之ί個實施射使料㈣代、修^變更料需要過度 的貫驗或進一步的發明。 在此所述之本發明之各個實施例整體而言係針對採用 93757 8 1335776 喷嘴之交流靜電消除器之改良,其係藉由增添至卜個孔 .口於介於相鄰的電離電極之間的設置範圍(細崩虜) .·而達成。雖然採用喷嘴之交流靜電消除器係習知的,諸如 •在美國專利第6,807,044號(以下稱之為,,專利文獻”,且其 .全部内容在此併入援引為本案之參考)中所揭示的交流靜 ·-電消除器,然而這並不表示本發明之各個實施例意欲被偈 限於既有的交流靜電消除器設計。 雖然氣體經由噴嘴及孔口兩者來傳遞,但噴嘴及孔口 係不相同的。該用語”喷嘴”係包括具有中空内部部分的結 構。-個實例為具有内徑及外徑的圓筒體。電離電極被= 置在該中空内部部分内。氣體係流經該中空内部部分且通 過該電離電極。該用語,,孔口”係包括可使空氣或氣體經由 其而離開之開口。空氣孔口不會具有或包含電離電極。 該用語’’設置範圍(placement zone)”係定義為用以將 至少一個孔口設置在介於相鄰喷嘴之間之最佳位置或區 •域,其中該等相鄰喷嘴係設置在交流靜電消除器上且各具 有大體上被包含在其内部部分内之電離電極。此設置範圍 之區域並非額外的硬體結構。其係在交流靜電消除器之包 •含喷嘴之部分的面或表面上的幾何投影。依照本發明之一 -個實施例,該設置範圍具有截面形狀,該形狀係普遍所知 的鑽石形狀。 ,乂流靜電消除器係與直流靜電消除器不同。就交流靜 電消除器而言,所有的電離電極係典型連接至相同的電壓 源不同於直流靜電消除器,發現用於交流靜電消除器之 93757 9 1335776 =強:靜電場吸引力係介於該等電離電極與接地之間 靜〜^流靜電消除器不同的是,在相鄰電離電極之間的 離;:由糸互斥的。藉由一個電離電極所產生的氣體 極電離電極所推斥,這是因為其具有相同的 =故。因此,就孔口之最佳設置位置而言,交 =除益與直流靜電消除器係不相同的, 淹 除器之氣體離子傳遞效率可藉由在相鄰的喷嘴之間:= 卜個孔口來予以改善,其中該㈣噴嘴各包含電離電極。 :交流靜電消除器而言,在相鄰喷嘴之間的設置範圍 垃:;以下兩個理由而特別地有用。第一,正常而言 =而㈣__子係以f通高的濃度而存在於設置範 。4些1體離子的回復在功能上係等同 m二,在該設置範圍中的氣體離子並未= 、電場緊岔地帶至該交流靜電消除器。 -般藉由單獨使用喷嘴所達成之交流靜電消除 =電㈣可藉由將至少一個孔口設置在設置範圍内之相 :電離電極之間來予以降低。已有進-步觀察到,即使當 ::等喷嘴及該(等)孔口所消耗之全部氣體消耗量並未超 VI由該等喷嘴所消耗的消耗量時,亦可更進一步達成放 電時間的減少。 現請參考m !及2圖係分職明使用喷嘴4a 4b以及電離電極6a及6b之交流靜電消除器部分h及 之實例。當高電壓施加至電離電極以及讣時,氣體離 子會藉由電暈放電(e_a diseharge)而產生m圖中, 93757 10 1335776 氣體從加壓供麻^ …進入至;=圖示)經由位在:離電極6&旁邊的嘴 10而進入至喷嘴:’:在第2圖中’氣體經由同, 主噴嗝4b。在離開喷口 8或同心開口 1() 氣體會分別圍繞且通過電離電極6a或讣。 該用語,,氣體,,意欲包括氣體或氣體的★且a 氣。該氣體係經由管路或經由共同空間而#。诸如工 及讣,該乒同土, 丄 供應至噴嘴4a 過度複雜在圖式避免使第1及2圖 因為可強迫較為純淨或乾淨的氣體流動通過 極且大致上沿著該電離電極而流動,故 :-_質5染。來自該靜電消除器之操作 衣兄、、二虱之雜質可因此大部分地避免接觸該等電離 極,減少在該等電離電極上之粒子聚集物。再者, 玫電時間在長時間期間可保持固定,並可減少清潔的頻率。 ^諸如喷嘴乜及4b之喷嘴亦將氣體離子導引朝向帶帝 荷物體(未圖示),因此降低用以中和該帶電荷物體所需: 的氣體離子密度。再者,該離子移動至該物體的遞送時間 可藉由該氣體喷嘴流而減少,這會減少離子重新組合。 第3圖顯示來自交流靜電消除器16之喷嘴14内的電 離電極12的配置。噴嘴14接收來自於空間15之氣體且經 成在底部表面20上之切口 18而設置。空間15提供加 I軋體或許多氣體(諸如空氣)的供應至喷嘴14。底部表面 包括導電性表自22,其可接收參考電位,諸如接地電 位。當以此方式使用時,導電性表面22可被稱之為非電離 93757 11 電極或參考電極。 當導電性表面22被 壓電源供應器(未圖_ ) 為多考電極且當來自於高 時,源自於電離電=之足夠的電麼施加至電離電極12 緣處接地。由於詩靜電場線24會在該切口 18之邊 口 27離開且流出:::,:24在區域26中較強,因此從喷 之乱體離子(未圖示) :生 該等氣體料將會太有心大部分的 而將可用於靜電二'電=24而到達導電性表面L 電消除器之:Γ之離子接地,而降低該交流靜 第4圖包括圖表28,其中顯示在靜電場作周力之強度 ”距離該靜電場源的距離之間的關係。圖表28顯示在氣: 離子上的靜電場作用力會隨著距離電離電極之距離減 增加。 依照本發明之一個實施例,第5圖顯示使用至少一個 孔諸如孔口 30 ’以結合交流靜電消除器來加強在獲取 用於帶電荷物體(未圖示)之靜電中和之氣體離子時之靜電 消除器效率。圖示之該實施例包括設置在設置範圍34内的 孔口 30,該設置範圍位在交流靜電消除器部32之相鄰的 嘴嘴36a及36b之間。喷嘴36a及36b分別包括設置在其 各別的内部中空部分39a及39b中的電離電極383及38b。 噴嘴36a及36b利甩從噴口 37a及37b離開之壓迫或壓縮 氣體來獲取接近或位在電離電極3 8a及38b之末梢的氣體 離子。 12 93757 1335776rI335776 IX. Description of the invention: (Reciprocal reference to the relevant application) ' This application claims priority to US Provisional Patent Application No. 60/726,874, filed on October 13, 2005, the name of which is ''Orifice Assist for Ionizers with Airflow Nozzles", and the priority of U.S. Provisional Patent Application Serial No. 60/778,755, filed on Jan. 3, 2003, entitled "Fringe Field Ion Extraction for Ionization Systems" ° TECHNICAL FIELD The present invention relates to an alternating current (AC) static eliminator that removes or reduces static charge from a charged object selected to remove static charge. More specifically, the present invention relates to an alternating current static eliminator that uses at least one flowing gas to enhance the static neutralization of the charged object. [Prior Art] ® As is well known, an AC static eliminator (sometimes referred to as an "AC electrostatic neutralizer") removes static charges by ionizing gas molecules, and 1 refers to these as gas ions. The ionized gas molecules are transferred to what is charged. These gas ions are typically produced by applying a high voltage to the ionizing electrode, by releasing nuclear sub-atomic particles or by ionizing photon radiation. The position at which these gas ions are generated is referred to as an ionizing source. Positively charged gas ions neutralize negatively charged static charges, while negatively charged gas ions neutralize positively charged electrostatic charges. 5 93757 1335776 ♦ The transfer of oxygen ions to the charged system is a factor in the static-charge removal efficiency of the AC static eliminator, since gas ions produce useful charge removal only upon arrival of the charged object ( Hereinafter, it is called, useful, gas ion, and). Static charge removal is sometimes referred to as, in the static charge, helium. The rolling body ion loss can be attributed to at least two mechanisms: recombination and grounding. When the gas ions are brought to the static eliminator by a strong electrostatic force, the loss of both recombination and grounding can occur. • λ A method of reducing the effects of recombination and grounding involves the use of at least one nozzle with flowing air or gas in conjunction with an AC static eliminator, such as disclosed in U.S. Patent No. 6,8G7, G44. Because the gas that leaves the mouth will dilute = gas ions before the positive and negative ions are combined, the recombination will decrease. Lower gas ion densities result in lower recombination rates after mixing. In addition, flowing out of the nozzle = flowing gas will propel the gas ions towards a charged object that is a neutral target, which reduces the transfer time and saves the plasma. In addition, the threat can be directed to direct the generated gas ions directly to the charged object, which can reduce the loss of the amount of gas ions caused by grounding. Finally, the geometry of certain air nozzles protects the ionized electrodes from contamination by impurities in the environment. For example, one type of AC static eliminator places an ionizing electrode = within the nozzle. Air, nitrogen or other non-reactive gas of the same purity will flow through each nozzle and along the ionizing electrode. This combination of the nozzle and the flowing gas can partially (d) the ionizing f-pole from being contaminated by impurities in the environment, which can reduce the cleaning frequency of the ionizing electrode and reduce the cost of maintenance 93757 6 1335776 :::. Furthermore, ion neutralization can be maximized due to fewer polyionization electrode tips. P) Born in 4 production: combined with the AC static eliminator to enhance the loss and efficiency 'however, only the nozzle will be lost. The static eliminator has better performance. Because of this, it is necessary to strengthen the performance of an AC static neutralizer that is at least one nozzle. SUMMARY OF THE INVENTION The present invention is directed to the above-mentioned object of the present invention in order to improve the performance of an AC static eliminator employing at least one nozzle. In one aspect of the present invention, an aspect of the present invention provides an alternating current electrostatic source for removing static charge from a charged object, the alternating current static eliminator comprising: at least two electrodes for receiving Not at the potential and comprising an ionizing electrode and a non-ionizing electrode; at least one high voltage power supply connected to the electrodes; at least one aperture; and a setting range; wherein the aperture is positioned in the setting range. • The present invention provides an AC static eliminator that uses a corona discharge to remove static charge from a charged object, the neutralizer comprising: a plurality of ionizing electrodes; disposed to surround the ionizing electrodes Each of the nozzles; and the space connected to the nozzles; the apertures disposed within the set range 'the setting range is between the adjacent ionization electrodes and is located in the electrostatic 'distributor' The sides of the ionizing electrodes; and a conductive surface for use as an electrode. Ionization according to another aspect of the present invention provides a method of generating an alternating current static eliminator comprising the steps of: arranging an alternating high voltage power supply; electrically coupling a first ionizing electrode to a power source; Separating the first and second electrodes with first and second nozzles respectively; using a conductive surface as a non-ionizing electrode; coupling a pressurized air or gas source to the first and second nozzles; and At least one aperture is in the range between the first and second ionizing electrodes. Another sadness of this month is to provide an AC static eliminator for removing static charge from a charged object, the static eliminator comprising: two nozzles, at least two ionizing electrodes, for accepting Sufficient to generate a voltage of ionization by corona discharge, wherein respective portions of the ionizing electrodes are disposed to be internal portions of the nozzles; non-ionizing electrodes for receiving reference voltages, at least one for providing The alternating current high voltage power supply of the electric dust, at least one orifice; and a setting range between the ionizing electrodes; wherein the orifice is located in the setting range. By setting the orifice to the range of the AC static eliminator with the nozzle and the ionizing electrode, it is possible to reduce the gas ion discharge time and increase the gas | ion acquisition or both, thereby increasing the AC static eliminator rate. [Embodiment] While the present invention has been described in connection with the preferred embodiments thereof, it will be understood that many alternatives, modifications and changes will be apparent to those skilled in the art. In the following description of the invention, it is necessary to carry out excessive inspection or further invention for the implementation of the injection material (4). The various embodiments of the invention described herein are generally directed to improvements in an AC static eliminator employing a 93757 8 1335776 nozzle that is added between adjacent ionizing electrodes by adding a hole to the orifice. The scope of the setting (fine collapse). The use of an AC static eliminator is known in the art, such as that disclosed in U.S. Patent No. 6,807,044 (hereinafter referred to as the "Patent Document", the entire disclosure of which is hereby incorporated by reference). AC static-electric eliminator, however, this does not mean that the various embodiments of the present invention are intended to be limited to existing AC static eliminator designs. Although gas is delivered through both the nozzle and the orifice, the nozzle and orifice The term "nozzle" is a structure having a hollow inner portion. An example is a cylindrical body having an inner diameter and an outer diameter. The ionizing electrode is placed in the hollow inner portion. The hollow interior portion passes through the ionizing electrode. The term "aperture" includes an opening through which air or gas can exit. The air orifice does not have or contain ionizing electrodes. The term ''placement zone'' is defined to mean that at least one orifice is disposed at an optimal position or zone between adjacent nozzles, wherein the adjacent nozzles are disposed in an alternating current electrostatic system. The eliminator and each having an ionizing electrode substantially contained within an inner portion thereof. The region of the setting range is not an additional hard structure. It is on the surface or surface of the packet containing the nozzle of the alternating current static eliminator Geometric projection. According to one embodiment of the invention, the setting range has a cross-sectional shape which is generally known as a diamond shape. The turbulent static eliminator is different from the direct current static eliminator. In all cases, all ionizing electrodes are typically connected to the same voltage source differently than DC static eliminators, found to be used in AC static eliminators 93757 9 1335776 = Strong: electrostatic field attractiveness is between the ionizing electrodes and grounding The static static ~ ^ flow static eliminator is different from the separation between adjacent ionized electrodes;: mutually exclusive by gas. The gas generated by an ionized electrode is extremely The repulsion of the electrode is because it has the same =. Therefore, in terms of the optimal position of the orifice, the gas ionization of the flooder is different from that of the DC static eliminator. The efficiency can be improved by the adjacent nozzles: = one aperture, wherein the (four) nozzles each comprise an ionizing electrode. For the alternating current static eliminator, the setting range between adjacent nozzles is: It is particularly useful for the following two reasons. First, the normal = and (4) __ sub-system exists in the setting range with the concentration of f-pass high. The recovery of the four 1-body ions is functionally equivalent to m two, in the The gas ions in the setting range are not =, the electric field is tightly connected to the AC static eliminator. - AC static elimination by the nozzle alone = electric (4) can be set in the setting range by at least one orifice The phases are: reduced between the ionizing electrodes. It has been observed that even when::: all nozzles and the (etc.) orifices consume the entire gas consumption is not exceeded by the VI consumed by the nozzles When the consumption is reduced, the discharge can be further achieved. Please refer to the m ! and 2 diagrams for the use of the nozzles 4a 4b and the AC static eliminator part h of the ionizing electrodes 6a and 6b and the examples. When a high voltage is applied to the ionizing electrode and the krypton, the gas ions will In the m diagram generated by corona discharge (e_a diseharge), 93757 10 1335776 gas enters from the pressurization supply to the nozzle; = icon) passes through the nozzle 10 located at the side of the electrode 6 & ': In Figure 2, the gas passes through the same main squirt 4b. At the exit nozzle 8 or the concentric opening 1 () the gas will surround and pass through the ionizing electrode 6a or 分别 respectively. The term, gas, is intended to include gas or The gas is ★ and a gas. The gas system is via a pipeline or via a common space. For example, the work and the raft, the ping-pong, the 丄 supply to the nozzle 4a is too complicated in the schema to avoid making the first and second figures because of the forcible A relatively pure or clean gas flows through the pole and flows substantially along the ionizing electrode, so: -5 is dyed. The impurities from the operation of the static eliminator can thus largely avoid contact with the ionizers, reducing particle agglomerates on the ionizing electrodes. Furthermore, the rose time can be kept fixed for a long period of time and the frequency of cleaning can be reduced. ^ Nozzles such as nozzles 4 and 4b also direct gas ions toward the object with a charge (not shown), thus reducing the gas ion density required to neutralize the charged object. Moreover, the delivery time for the ions to move to the object can be reduced by the flow of the gas nozzle, which reduces ion recombination. Figure 3 shows the arrangement of the ionizing electrodes 12 from the nozzles 14 of the AC static eliminator 16. Nozzle 14 receives gas from space 15 and is disposed through slits 18 formed in bottom surface 20. The space 15 provides a supply of I or a plurality of gases, such as air, to the nozzle 14. The bottom surface includes a conductivity meter 22 that can receive a reference potential, such as a ground potential. When used in this manner, the electrically conductive surface 22 can be referred to as a non-ionizing 93757 11 electrode or reference electrode. When the conductive surface 22 is pressurized by a power supply (not shown) as a multi-test electrode and when it is from a high level, sufficient electricity derived from ionization = is applied to the ground at the edge of the ionizing electrode 12. Since the poetic electrostatic field line 24 will leave at the edge 27 of the slit 18 and flow out:::,:24 is stronger in the area 26, so the sprayed ions (not shown): the gas will be generated Will be too much of the mind and will be available for electrostatic two 'Electric = 24 and reach the conductive surface L electric eliminator: 离子 ion grounding, and reducing the ac static Figure 4 includes chart 28, which is shown in the electrostatic field The relationship between the strength of the force and the distance from the source of the electrostatic field. Figure 28 shows that the electrostatic field force on the gas: ions decreases with distance from the ionizing electrode. According to one embodiment of the invention, Figure 5 It is shown that at least one aperture such as aperture 30' is used in conjunction with an alternating current static eliminator to enhance the static eliminator efficiency in obtaining electrostatic ions for electrostatic charging of charged objects (not shown). This embodiment is illustrated. An aperture 30 is provided that is disposed within the set range 34 between the adjacent nozzles 36a and 36b of the AC static eliminator portion 32. The nozzles 36a and 36b respectively include respective internal hollow portions disposed therein. In 39a and 39b From the electrodes 383 and 38b. Lee nozzles 36a and 36b thrown away from nozzle 37a and 37b of pressure or compressed gas to get close to or in position 3 8a and ionizing electrode tip 38b of the gas ions. 12937571335776

在第5圖之實施例中,;Q I㈣T孔口 30在名義上係設置在電離 -、極38a及38b之間的中點處,當高電屋施加至電離電極 =8a及38b Βτ,其可使離開孔口 3〇之愿縮氣體獲取被陷留 在所產生的靜電場下的氣體離子。再者,由於孔口 %及喷 嘴36a及36b各設有可使氣體經由其而流動的出口,因此 得最佳化的氣體分配,進而造成較少的氣體離子放 電時間。孔口 接或形成在空間41之表面^上且位在 5又置乾圍34内。切口 40係形成在導電性表面42上,允許 加壓氣體流動通過導電性表面42。 ^ 36a及36b亦麵接至空間41之表面&形成在 H : 上之切Π偽及他會使得喷嘴36a及36b ^通過導電性表面42。導電性表面42係用以作為非電 接至參考電壓(諸如接地㈣時,其功用 3^1,置=導電性表面42可以位在交流靜電消除器 及地的相同面上。在第5圖所示之 成面42係由薄且較為堅硬的材料所組 料具有導電屬性,諸如薄金屬。本發明並非舰 、使用4金屬。例如,導電性表面42可由非金屬性且電性 %緣的材料所形成,而該材料在面向與由喷嘴…及 所提供之氣體流動纽向上具有導電性塗層。 :用語”切口”係用以廣義解釋且包括形 面42)上任何的開孔或細孔,且依照參考第5 於本控#r/㈣中’其將允許使用喷嘴、孔口或兩者。對 於本技_域有普通瞭解之人士在閱讀完本說明書之後將于 93757 13 Z幸二易瞭解到,本發明並未意欲侷限於使用獨立的空間及 電性表面,諸如分別為空間及導電性表面45及42。例 如導電性電鍍材料(未圖示)可形成在空間41之表面45 t °此導電性電鍍材料可具有孔隙(VGid),該孔隙在直徑 位置上係與切口 40及48相同。 、*移&用X接收相同極性之電極之間形成的氣體離子並未 持至交峨消除器部32。孔口30允許氣體 附:μ:,而提供向速流動的氣體’該氣體係使孔口3〇 a的乳體離子產生位移而離開交流靜電消除器部%且 二:被,用於靜電中和之帶電荷物體(未圖示)。此來白 嫉曰U之氣體放電流會在輸氣範圍50内產生低壓力區 以 用額外的空氣流。輸氣範圍5〇覆蓋切口術及彻 所產的部分’在該處’由電離電極38在操作期間 所產生的靜電場係較弱的。 在〇 〇可^二慮的是:孔口 3。及喷口 37a與37b具有大約落 在.1〇與0.016英叶之誌同命士 提供大約介於5及60 的直峻’且當在空間41令 ;丨於5及60psi之間的壓力的氣 . 係可分別提供落在大約。,5及卿分鐘之範圍 才=體排放體積。這些範圍並非意欲限定本發明 以取決於部分32之物锣胪从了 喷嘴及孔口設計而有所變化,包括針對 等。 L疋的直徑'所使用之噴嘴及孔口的數量等 冷靜52顯示具有喷嘴及電離電極之交 ^電㈣’該货嘴及電離電極以相同於第5圖所示: 93757 1335776 弋配置成具有孔口,其能夠提供具有大約兩倍的喷嘴及 電離電極數量但不具有孔口的交流靜電祕器之相同性能 水準。在圖表52上的數值包括用以將板體上的電荷在電荷 ,監視器上從1()卿減少至⑽V所需要的時間測量值。 這二^•間測里值係針對每一種極性來取得且然後予以平均 之。假設所有其他的因素為常數,則所達成的離子放電時In the embodiment of Fig. 5, the Q I (four) T orifice 30 is nominally disposed at the midpoint between the ionization-poles 38a and 38b, and when the high-voltage house is applied to the ionizing electrodes = 8a and 38b Βτ, The trapping gas exiting the orifice 3 can be used to obtain gas ions trapped under the generated electrostatic field. Further, since the orifice % and the nozzles 36a and 36b are each provided with an outlet through which the gas can flow, the optimized gas distribution, thereby causing less gas ion discharge time. The apertures are either formed or formed on the surface of the space 41 and located within the dry perimeter 34. A slit 40 is formed on the conductive surface 42 to allow pressurized gas to flow through the conductive surface 42. ^ 36a and 36b are also joined to the surface of the space 41 & forming a cut on H: and he will cause the nozzles 36a and 36b to pass through the conductive surface 42. The conductive surface 42 is used to be non-electrically connected to a reference voltage (such as ground (4), its function is 3^1, and the conductive surface 42 can be placed on the same surface of the alternating current static eliminator and the ground. The facet 42 is shown to have a conductive property, such as a thin metal, from a thin and relatively rigid material. The present invention is not a ship, using a metal of 4. For example, the conductive surface 42 may be non-metallic and electrically The material is formed, and the material has a conductive coating in the direction of the gas flow from the nozzle and the gas supply. The term "cut" is used to describe broadly and includes any opening or thinning on the shape 42). Holes, and in accordance with Reference 5 in this control #r/(4), 'will allow the use of nozzles, orifices or both. Those who have a general understanding of the subject area will be able to understand after reading this specification, which is not intended to be limited to the use of separate spatial and electrical surfaces, such as space and conductive surfaces, respectively. 45 and 42. For example, a conductive plating material (not shown) may be formed on the surface of the space 41 by 45 t. The conductive plating material may have pores (VGid) which are the same in diameter as the slits 40 and 48. The gas ions formed between the electrodes receiving the same polarity by X are not held to the crosstalk canceler portion 32. The orifice 30 allows the gas to be attached: μ: to provide a velocity-flowing gas. The gas system displaces the milk ions of the orifice 3〇a away from the AC static eliminator portion and is used for static electricity. And charged objects (not shown). The gas discharge current of the white 嫉曰U will generate a low pressure zone within the gas transmission range 50 to use additional air flow. The gas delivery range of 5 〇 covers the incision and the portion of the resulting portion where the electrostatic field generated by the ionizing electrode 38 during operation is weak. In 〇 〇 ^ ^ ^ 2 is considered: orifice 3. And the spouts 37a and 37b have a gas that is approximately .5 inches and 0.016 inches, providing a straightness of between about 5 and 60 and a pressure of between 41 and 60 psi. The system can be provided separately and falls. , 5 and Qing minutes range = body discharge volume. These ranges are not intended to limit the invention to the extent that the portion 32 depends on the design of the nozzle and orifice, including the aiming and the like. The number of nozzles and orifices used for the diameter of L疋 is so cool 52 shows the intersection of the nozzle and the ionizing electrode (4) 'The nozzle and ionizing electrode are the same as shown in Fig. 5: 93757 1335776 弋 configured to have The orifice, which is capable of providing the same level of performance of an AC statics device having approximately twice the number of nozzles and ionizing electrodes but no orifices. The values on chart 52 include the time measurements required to reduce the charge on the plate from charge on the monitor from 1 (1) to (10) V. These two values are obtained for each polarity and then averaged. Assuming all other factors are constant, then the ion discharge achieved

1將比未知用第5圖所不之實施例所教示的改良方法的交 流靜電消除器還要短。 依照本發明之另-實施例,揭示於第5时的實施例 可藉由採用具有參考第7圖所描述之特徵的至少-個非電 離電極來予以進一步改良。第 ^ 艮弟7圖顯不父流靜電消除器部 %其包括至少兩個具有電離電極58a及58b以及嘴口別 與柳的喷嘴他及地、位在設置範圍62内的至少一個 孔口 60以及用以作為參考電極的非電離電極%。铁而, L同= 圖的實施例,在第7圖中的實例並不需要、導電 性表面上的切口,因為用v从& 马用以作為非電離電極(諸如非電離電 極66)的導電性表面係定仂 、疋位成大約平行於假想線68,該假 二卷係目父於電離電極56a &抓,因此並不會阻礙到喷 空6°在空間表面61上的形成或設置: 二空:63的部分’且空間63的功能係作為通 2過道’加HU供射經由料道朗 喷嘴56a及56b與孔口 6〇。 俽等k至 非電離電極66係用 考電壓,諸如接地電愿 以作為參考電極, 可以考慮的是, 且因此耦接至參 非電離電極66 J5 93757 1335776 約條帶的形狀。對於本技術領域有普通瞭解的 寬比並非用以作為限制。非電離雷狀的長 口 W… 之形狀可以改變, 非电離電極66不會與線段68相交即可。喷嘴 =面電離電心一、嘴口 5一 敎致置乾圍62及㈣63在結構及功能上係可分 目5於在第5圖中所示之嘴嘴36a及36b、電離電 極38a及38b、噴口 尾雖電 a依照本發明之又另一實施例且如第8圖所揭示者,在 :7圖中所揭示的實施例可藉由使用至少兩個非電離電極 ^予以更進一步改良。第8圖顯示交流靜電消除器部7〇, 八已括至夕、兩個具有電離電極a及Mb以及喷口 a及 別的噴嘴7〇a及70b、位在設置範® 76内之至少一個孔 二4 κ固用以作為參考電極之非電離電極,及咖、 一空間表面77及一空間78。喷嘴70a及70b、電離電極 72a及72b、噴π 73a及73b、孔D 74、設置範圍76、空 間表面77及空間78,其在功能及結構上可分別大致相同 =揭不在第7圖中之喷嘴56a及56b、電離電極58&及58b、 賀口 59a及59b、孔口 6〇、設置範圍62、空間表面6ι及 空間63。 ^電離電極80a及8〇b在功能及形狀上係各自相同於 ”離,考电極66。非電離電極80a及§〇b被定向成使得 '、4 假線82相父,而該假想線係與電離電極72a 93757 i335776 及72b相交。此外,非雷雛雷 7Π“孤 非电離電極咖及_被設置在喷嘴 7〇a及70b之相反側上,如圖所示。 所搞當=於第5圖所揭示的實施例時,在第7及8圖中 的貫施例係達成甚至更少的放電時間。在第8圖中 之貝施例係利用氣體離子之弱#效抽離(W _ =_) ’這是因為在電離電極%及咖之間並未存 電極80 J^電離電極^及72之間的距離以及由非電離 提供之諸如接地的可用參考電位平均而 二二故。因此,比例上較多的氣體離子會利用依照 ㈣…-所揭不之實施例而修改的交流靜電消除器而以 :(等電(I來予以鍵結。這些氣體離子亦藉由所使用的 ^等)孔口(諸如孔^ 74)的動作來傳輸。此外,亦可降低 80以;Γ為參Ϊ電極之非電離電極的尺寸’諸如非電離電極 壓a電力Γ失:可以降低總電容量及電容損失。較低的高電 逢^ 實際上的結果係可將該交流靜電消除器 冓成:有更多電離電極而毋需使用較大的電力供應。 現—月 > 考第9圖,該用語”設置範圍,,,諸如設置範圍 :’可定義為在交流靜電消除器部83上之一個位置,盆中 該位置係由兩個第一相對角82a及似所界定,該等第一 相對角係分別位在兩個相鄰的電離電極,及Mb之間。 84b具有内部中空部分—及⑽,其分別包 3有的或部分的電離電極88a及88b。内部中空部分86a ^柳亦分別封圍喷口 87a及87b。喷嘴84a及84b以及 離電極’ & 88b在功能及結構上可分別相同於在第5 93757 17 Γ335776 圖中所揭示之噴嘴36a及36b以及電離電極38a及38b ; 在第7圖中所揭示之噴嘴56a及56b以及電離電極58a及 58b;或者在第9圖中所揭示之喷嘴7〇a及7的以及電離電 極72a及72b。第一相對角82a及82b分別具有第一角角 度90a及90b,其係小於或等於3〇度。描繪在包含於相鄰 喷嘴内的電離電極(諸如電離電極88a及88b)之間的假想 直線92係對分第一角角度90a及90b。 此外’設置範圍85亦可定義成包括兩個分別位在兩相 鄰電離電極(諸如電極88a及88b)之間的第二相對角9乜 及9朴。第二相對角9钝及9仆係分別藉由線段96a及96b 以及97a及97b的相交而形成。線段96a及97a係源自於 第一相對~角82a,而線段96b及97b則係源自於第一相對 角82b。第二相對角9乜及9仆亦分別包括第二角角度%& 及99b’其各等於或大於15〇度。藉由參考第9圖使用這 些說明,設置範圍85亦可以說成係在具有,,類似鑽石,,之形 _狀的交流靜電消除器83上之幾何投影。 現請參考第H)圖,其中顯示交流靜電消除器之一部分 98以及依照本發明又另—實施例之以範圍⑽。部分μ 係電離棒(ionizing bar)(有時亦稱之為模組)的一部分,其具 有包含電離電極之複數個喷嘴(諸如噴嘴黯及職^ 電離電極1〇4a及祕),且經修改而具有凸部ιΐ4,該凸 部具有設置在該設置範® _内的孔口 1()6。其㈣^口 可:置在其他的設置範圍内’然而在第⑺圖中僅顯示孔口 應’以避免使圖式過度複雜。部分98亦包括兩個參考電 93757 ^35776 極110a及110b,其各具有長條帶形狀,且被定向成大致 平行於假想線。喷嘴l〇2a及l〇2b,以及凸部114係被 …耦接至空間表面116。將喷嘴102a及102b以及凸部114 耗接至空間表面1丨6的方式並未意欲侷限於任何方式。空 :間表面116係空間117的部分。喷嘴102&及1〇2b、電離 -電極104a及10扑、孔口 106、參考電極110a及11〇b、假 想線112、空間表面116及空間117在功能上可大致相同 於在上述相對於第7及8圖所描述的相同名稱之元件的功1 It will be shorter than the AC static eliminator of the improved method which is not taught by the embodiment shown in Fig. 5. In accordance with another embodiment of the present invention, the embodiment disclosed at time 5 can be further improved by employing at least one non-ionizing electrode having the features described with reference to Figure 7. The second embodiment shows that at least two nozzles 60 having ionizing electrodes 58a and 58b and a mouthpiece and a nozzle are located at at least one opening 60 in the setting range 62. And a % of the non-ionizing electrode used as a reference electrode. Iron, L, = embodiment of the figure, the example in Figure 7 does not require a slit on the conductive surface, since v is used from & horse as a non-ionizing electrode (such as non-ionizing electrode 66) The conductive surface is defined and clamped approximately parallel to the imaginary line 68, which is grasped by the ionizing electrode 56a & and thus does not hinder the formation of the space 6 on the space surface 61 or Setting: Two spaces: part of 63' and the function of space 63 is used as a pass 2 aisle 'plus HU' to pass through the channel ridge nozzles 56a and 56b and the orifice 6 〇. The k-to-non-ionizing electrode 66 is a reference voltage, such as a grounding electrode, which is contemplated as a reference electrode, and is therefore coupled to the non-ionizing electrode 66 J5 93757 1335776 in the shape of a strip. A broad ratio that is generally known in the art is not intended to be limiting. The shape of the non-ionized lightning-like long opening W... can be changed, and the non-ionizing electrode 66 does not intersect the line segment 68. Nozzle=face ionization core 1. mouth 5 敎 干 干 62 and (4) 63 structurally and functionally subdivided 5 in the nozzles 36a and 36b shown in Fig. 5, ionizing electrodes 38a and 38b Although the nozzle tail is electrically a in accordance with yet another embodiment of the present invention and as disclosed in FIG. 8, the embodiment disclosed in FIG. 7 can be further improved by using at least two non-ionizing electrodes. Figure 8 shows an AC static eliminator unit 7A, eight included, two ionized electrodes a and Mb, and a nozzle a and other nozzles 7a and 70b, at least one hole in the setting range The 2-4 κ is used as a non-ionizing electrode for the reference electrode, and a coffee surface, a space surface 77 and a space 78. The nozzles 70a and 70b, the ionizing electrodes 72a and 72b, the sprays π 73a and 73b, the holes D 74 , the installation range 76 , the space surface 77 and the space 78 can be substantially the same in function and structure respectively = not shown in FIG. 7 Nozzles 56a and 56b, ionizing electrodes 58 & and 58b, congratulations 59a and 59b, orifices 6〇, setting range 62, space surface 6ι, and space 63. ^Ionization electrodes 80a and 8〇b are identical in function and shape to "off, test electrode 66. Non-ionizing electrodes 80a and § 〇b are oriented such that ', 4 false lines 82 are the father, and the imaginary line It is intersected with the ionizing electrodes 72a, 93757, i335776 and 72b. In addition, the non-ionizing electrodes 7 are placed on the opposite sides of the nozzles 7a and 70b as shown. When the embodiment disclosed in Fig. 5 is used, the embodiment in Figs. 7 and 8 achieves even less discharge time. In the figure 8 in the Bay example, the weak effect of the gas ion is used (W _ = _) ' This is because there is no electrode between the ionizing electrode % and the coffee 80 J ^ ionizing electrode ^ and 72 The distance between them and the available reference potentials such as ground provided by non-ionization are averaged. Therefore, a larger proportion of gas ions will be replaced by an AC static eliminator modified according to the embodiment disclosed in (4)...- (Isoelectric (I will be bonded. These gas ions are also used by ^, etc.) The action of the orifice (such as the hole ^ 74) is transmitted. In addition, the size of the non-ionizing electrode can be reduced by 80; the size of the non-ionizing electrode of the electrode is such as non-ionizing electrode pressure a power loss: the total electricity can be reduced Capacity and capacitance loss. Lower high power ^ Actual results can be made into the AC static eliminator: there are more ionizing electrodes and no need to use a larger power supply. Now - month > 考第9 The term "setting range," such as setting range: ' can be defined as a position on the alternating current static eliminator portion 83, which is defined by two first opposing angles 82a and like, The first relative angles are respectively located between two adjacent ionizing electrodes, and Mb. 84b has an inner hollow portion - and (10), which respectively have 3 or partial ionizing electrodes 88a and 88b. The inner hollow portion 86a ^ Liu also seals the nozzles 87a and 87b respectively. The nozzle 84a and 84b and the off-electrode ' & 88b can be identical in function and structure to the nozzles 36a and 36b and the ionizing electrodes 38a and 38b disclosed in the drawings of 5,973,757, the disclosure of which are incorporated herein by reference. 56b and ionizing electrodes 58a and 58b; or nozzles 7a and 7 and ionizing electrodes 72a and 72b disclosed in Fig. 9. First opposing angles 82a and 82b have first angular angles 90a and 90b, respectively. Less than or equal to 3 degrees. The imaginary line 92 depicted between the ionizing electrodes (such as ionizing electrodes 88a and 88b) contained within adjacent nozzles bisects the first angular angles 90a and 90b. It is defined to include two second relative angles 9乜 and 9 respectively located between two adjacent ionizing electrodes (such as electrodes 88a and 88b). The second relative angle 9 is blunt and 9 servants are respectively connected by line segments 96a and 96b. And the intersection of 97a and 97b is formed. The line segments 96a and 97a are derived from the first relative angle 82a, and the line segments 96b and 97b are derived from the first relative angle 82b. The second relative angles 9 and 9 are also The second angle angles %& and 99b' are respectively included to be equal to or greater than 15 degrees. By using these descriptions with reference to Figure 9, the setting range 85 can also be said to be a geometric projection on an AC static eliminator 83 having a diamond-like shape. Please refer to Figure H) for a display. One portion 98 of the alternating current eliminator and a range (10) according to still another embodiment of the present invention. A portion of a portion of an ionizing bar (sometimes referred to as a module) having a plurality of ionizing electrodes The nozzles (such as the nozzle 黯 and the ^ ionization electrode 1 〇 4a and secret), and modified to have a convex portion ι 4 having an orifice 1 () 6 disposed in the setting range _. The (4) mouth can be placed within other setting ranges. However, only the orifice should be shown in the figure (7) to avoid overcomplicating the pattern. Portion 98 also includes two reference electrodes 93757^35776 poles 110a and 110b, each having a long strip shape and oriented substantially parallel to the imaginary line. The nozzles 10a and 2b, and the projections 114 are coupled to the space surface 116. The manner in which the nozzles 102a and 102b and the projections 114 are consumed to the space surface 1丨6 is not intended to be limited in any way. Empty: The inter-surface 116 is part of the space 117. The nozzles 102 & 1 and 2b, the ionizing electrodes 104a and 10, the orifices 106, the reference electrodes 110a and 11b, the imaginary line 112, the space surface 116 and the space 117 may be substantially identical in function to the above The work of the components of the same name as described in Figures 7 and 8

Ah 月B 。 依照本發明之另一實施例,在第5圖及第7至1〇圖所 描述的設置範圍可藉由排除該設置範圍與由每一喷嘴及電 離電極所佔據之區域相重疊之部分來予以進一步修改。排 除該等部分作為該設置範圍之部分係可避免將孔口設置成 罪近噴嘴,且因此避免靠近電離電極。例如,這些排除部 分可包括分別在第5圖及第7至第1〇圖中之區域118&及 » 118b、120a 及 120b、122a 及 122b、124a 及 124b 以及 126a 及 126b 。 如在本發明之各個實施例中所揭示者,設置孔口(諸如 孔口 98)於具有噴嘴及電離電極(諸如喷嘴84a及84b以及 電離電極88a及88b)之交流靜電消除器的設置範圍85内, 係可減少氣體離子放電時間,增加氣體離子獲取,或者兩 者皆有。然而,將孔口設置在設置範圍85内或使用具有類 似,石的形狀之位置並非意欲限制在此揭示之各個實施例 、範圍對於本技術領域有普通瞭解之人士可以輕易理解 93757 19 1335776 不啜乃可以您w M卜機制之任何一者 :位置或位置形狀來減少放電時間及/或增進氣體木= 第=係突破在採用喷嘴之交流靜電消除 .擾流。被㈣在擾流中的離子會傾向於重新組合及接地 •孔口可以防止在靜電消除器部分下方形成穩定的擾流璇 渦’且將位在該旋渦内的氣體離子推進朝向被選擇進行 電荷移除之帶電荷物體。 • f二機制係藉由高速空氣所致之空氣傳輸(空氣擴择) 來產生補充空氣流,.其中該高速空氣係經由孔口來予以^ 遞。此補充空氣流有助於移除被陷留在該等噴嘴之間 體離子。 第二機制係弱靜電場氣體離子抽離。交流靜電消除器 之該等電離電極係連接至共用電性匯流排,其具有在任何 給定時間中接受相同極性及電壓的相鄰的電離電極,盆可 鲁在相鄰的電離電極之間產生排斥性靜電場,且若此等電離 電極設置在相鄰的喷嘴内時,最弱的靜電場係位在相鄰的 電離電極之間或介於相鄰的噴嘴之間。位在相鄰電離電極 .之間的孔口係被最佳化地定位,以從該交流靜電消除器來 移除氣體離子。 來自於位在設置範圍内之孔口的氣體會以垂直於最弱 靜電%約束的區域中的電場線的方式吹送,且此氣體具有 报高的機率來移除由靜電場所約束的氣體離子。被移除的 氣體離子便因此可用以從該帶電荷物體上移除靜電荷。 93757 20 Γ335776 第四機制係重新定位高擾流以遠離電離電極的末梢, .其中,該末梢處,重新組合率的可能性係最高的。 . 第五機制係重新分配壓迫或壓縮的氣體以達成最大的 離子輸出。如在上文中本發明之各個實施例所揭示,喷嘴 ^用或壓縮空氣以獲取在電離電極末梢附近或其上的 -氣體離子’而孔口利用壓縮氣體來獲取被陷留在由該離子 產生過程所產生的靜電場下方的氣體離子。壓縮氣體之最 鲁佳化的分配會造成較少的放電時間。 雖然本發明已針對特定實施例來予以說明,然而應瞭 解,本發明並非被建構成由此等實施例所限制。相反地, 本發明應依照以下的申請專利範圍來建構。 【圖式簡單說明】 第1圖係採用喷嘴之交流靜電消除器之一部分的仰視 圖; 第2圖係採用噴嘴之交流靜電消除器之另一部分的仰 _ 視圖; 第3圖係介於電離電極及附近的非電離電極之間的靜 電場線的仰視圖,該非電離電極具有圓形邊緣及諸如接地 ' 之參考電位; •第4圖係圖表,其中顯示在氣體離子上之靜電場與距 離該靜電場之源之距離之間的關係; 第5圖係仰視圖,其中顯示依照本發明之實施例之採 用喷嘴及設置在設置範圍内之孔口之交流靜電消除器之部 分; ° 93757 1335776 第6圖係圖表’其中顯示將孔口定位在弱靜電場中之 功效’包括減少所需要之電離電極之數量的功效; 第7圖係仰視圖,其中顯示依照本發明之另_實施例 之採用噴嘴、在設置範圍之孔口以及單一非電離電極之交 流·靜電消除器之部分; 第8圖係仰視圖,其中顯示依照本發明之另一實施例 之採用噴嘴、在設置範圍之孔口以及兩個非電離電極之交 流靜電消除器; 第9圖係顯示依照本發明又另一實施例界定設置範圍 的線段及角度;以及 第1 〇圖係依照本發明之另一實施例之交流靜電消除 器之一部分的等角仰視圖。 【主要元件符號說明】 2a ' 2b ' 32、54、70、83交流靜電消除器部 4a、4b、14、36a、36b、56a、56b、70a、70b、84a、84b、 φ l〇2a ' l〇2b 喷嘴 6a 、6b 、12、 38a、 38b、 58a ^ 58b 、72a ' 72b、 88a 88b 104a、 104b 電離 電極 8 > 27 、37a ' 37b、 59a、 73a、 73b 、87a 、87b 喷 π 10 同心開 Ό 15 、41 、63、 1%、 117 空間 16 交流靜 電消除器 18 '40 、48a 、48b 切 σ 20 底部表 面 22 '42 、45 導電 性表 面 24 靜電場線 26 區域 28 、52 圖表 30 > 60 、74、 106、 108 孔口 22 93757 39a 、39b 内 部中空部分 61、 77、 116 空間表面 66 > 80a、 80b 非電離電極 82a ' 82b 第 一相對角 90a 、90b 第 一角角度 94a 、94b 第 一相對角 99a 、99b 第 二角角度 114 凸部 122b、124a、124b 區域 1.335776 34、100 設置範圍 50 空氣陷留區域 62、76 ' 85 設置範圍 68、82、112假想線 86a、86b 内部中空部分 92 假想直線 96a、96b、97a、97b 線段 98 部分 110a、110b 參考電極 118a、118b、120a、120b、122aAh month B. According to another embodiment of the present invention, the setting range described in FIG. 5 and FIGS. 7 to 1 can be omitted by excluding the portion of the setting that overlaps the area occupied by each nozzle and the ionizing electrode. Further revision. The exclusion of these portions as part of this setting avoids the need to locate the orifice as a near-nozzle and thus avoids access to the ionizing electrode. For example, these exclusions may include areas 118 & and » 118b, 120a and 120b, 122a and 122b, 124a and 124b, and 126a and 126b in Figures 5 and 7 to 1 respectively. As disclosed in various embodiments of the present invention, an aperture (such as aperture 98) is provided for the setting range 85 of the AC static eliminator having nozzles and ionizing electrodes (such as nozzles 84a and 84b and ionizing electrodes 88a and 88b). Inside, it can reduce the gas ion discharge time, increase the gas ion acquisition, or both. However, the placement of the apertures within the setting range 85 or the use of a similar, stone-like shape is not intended to limit the various embodiments disclosed herein. The scope is readily understood by those of ordinary skill in the art. 93757 19 1335776 It is possible to reduce the discharge time and/or improve the gas wood by using any position or position shape: position or position shape = the first system breaks the AC static elimination using the nozzle. The ions in the turbulent flow tend to recombine and ground. • The orifice prevents the formation of a stable turbulent vortex below the static eliminator portion and pushes the gas ions in the vortex toward the selected charge. Remove the charged object. • The f-second mechanism produces a supplemental air flow by air transfer (air expansion) caused by high-speed air, which is delivered via an orifice. This supplemental air flow helps to remove body ions trapped between the nozzles. The second mechanism is the weak electrostatic field gas ion extraction. The ionizing electrodes of the AC static eliminator are connected to a common electrical busbar having adjacent ionizing electrodes that accept the same polarity and voltage at any given time, and the pots are produced between adjacent ionizing electrodes. A repulsive electrostatic field, and if such ionizing electrodes are disposed within adjacent nozzles, the weakest electrostatic field is between adjacent ionizing electrodes or between adjacent nozzles. An orifice positioned between adjacent ionizing electrodes is optimally positioned to remove gas ions from the alternating current static eliminator. Gas from the orifice located within the set range will be blown in the manner of electric field lines in the region perpendicular to the weakest static %, and this gas has a high probability of scavenging to remove gas ions constrained by the electrostatic site. The removed gas ions can thus be used to remove static charge from the charged object. 93757 20 Γ335776 The fourth mechanism repositions the high turbulence away from the tip of the ionizing electrode, where the possibility of recombination rate is highest at the tip. The fifth mechanism is to redistribute the pressurized or compressed gas to achieve maximum ion output. As disclosed in various embodiments of the invention herein above, the nozzle uses or compresses air to obtain -gas ions near or at the tip of the ionizing electrode and the orifice is captured by the compressed gas to be trapped in the ion generated The gas ions under the electrostatic field generated by the process. The most favorable distribution of compressed gas results in less discharge time. While the invention has been described with respect to the specific embodiments, it should be understood that the invention is not construed On the contrary, the invention should be constructed in accordance with the following claims. [Simple diagram of the diagram] Figure 1 is a bottom view of one part of the AC static eliminator using a nozzle; Figure 2 is a bottom view of another part of the AC static eliminator using a nozzle; Figure 3 is an ionized electrode a bottom view of an electrostatic field line between a nearby non-ionizing electrode having a rounded edge and a reference potential such as ground '; • Figure 4 is a graph showing the electrostatic field and distance on the gas ion The relationship between the distances of the sources of the electrostatic field; FIG. 5 is a bottom view showing the portion of the AC static eliminator using the nozzle and the orifice disposed within the set range in accordance with an embodiment of the present invention; ° 93757 1335776 Figure 6 is a diagram showing the effect of positioning an orifice in a weak electrostatic field to include the effect of reducing the number of ionizing electrodes required; Figure 7 is a bottom view showing the use of another embodiment in accordance with the present invention. a portion of the nozzle, the aperture in the set range, and the alternating current static eliminator of the single non-ionizing electrode; FIG. 8 is a bottom view showing another embodiment in accordance with the present invention Embodiments use an AC static eliminator with a nozzle, an aperture in a set range, and two non-ionizing electrodes; FIG. 9 shows a line segment and an angle defining a setting range according to still another embodiment of the present invention; and a first diagram An isometric bottom view of a portion of an alternating current static eliminator in accordance with another embodiment of the present invention. [Description of main component symbols] 2a ' 2b ' 32, 54, 70, 83 AC static eliminator sections 4a, 4b, 14, 36a, 36b, 56a, 56b, 70a, 70b, 84a, 84b, φ l〇2a ' l 〇2b nozzles 6a, 6b, 12, 38a, 38b, 58a^58b, 72a' 72b, 88a 88b 104a, 104b ionizing electrodes 8 > 27 , 37a ' 37b, 59a, 73a, 73b, 87a, 87b π 10 concentric Opening 15 , 41 , 63 , 1% , 117 Space 16 AC static eliminator 18 '40 , 48a , 48b Cutting σ 20 Bottom surface 22 '42 , 45 Conductive surface 24 Electrostatic field line 26 Area 28 , 52 Figure 30 &gt 60, 74, 106, 108 orifice 22 93757 39a, 39b inner hollow portion 61, 77, 116 space surface 66 > 80a, 80b non-ionizing electrode 82a ' 82b first opposite angle 90a, 90b first angular angle 94a, 94b first relative angles 99a, 99b second angle angles 114 convex portions 122b, 124a, 124b region 1.335776 34, 100 setting range 50 air trapping regions 62, 76' 85 setting ranges 68, 82, 112 imaginary lines 86a, 86b interior Hollow part 92 imaginary Lines 96a, 96b, 97a, 97b segment 98 portion 110a, 110b reference electrodes 118a, 118b, 120a, 120b, 122a

23 9375723 93757

Claims (1)

修正替換頁 第95137481號專利申請案十、申請專利範圍: 1. 一種交流靜電消除器 荷’該交流靜電消除器包括: __ (99年8月26日) 其用以從帶電荷物體移除靜電 至&gt;、兩個電極,其用以接受不同電位且包含電離電 極及非電離電極; 至^個連接至該等電極之高電壓電源供應器; -組喷嘴’包含第一噴嘴及第二喷嘴,該第一及第 二喷嘴用於提供個別的氣體流; 至 &gt;、個孔口,用於提供另一氣體流.;以及 設置範圍’被定位在該第一及第二喷嘴之間和該第 一及第二噴嘴外部; 其中該孔口位在該設置範圍内。 2.如申請專利範圍第丨項之交流靜電消除器,其中該非電 離電極位在該靜電消除器之與該等電離電極相同之側。 3·如申請專利範圍第i項之交流靜電消除器,其中該非電 離電極具有切口,該第一及第二嗔嘴係經由該等切口而 外露出來。 4.如申請專利範圍帛i項之交流靜電消除器,其中該非電 離電極具有切口,該孔口係經由該等切口而外露出來。 ..如申請專利範圍第1項之交流靜電消除器,進—步包括 另—個電離電極,其中該非電離電極包括至少—個導電 性長條帶,該導電性長條帶係與該等電離電極 行。 4 ' 6·如申請專利範圍第 項之交流靜電消除 器’其中該電離 (修正本)93757 24 Ψ ^ 2htmm ^ { i fd1;專,請案 電極電性地連接至該^電i電源供應1器之高電^輸26出曰。} 7.如申請專利範圍第1項之交流靜電消除器,其中該非 離電極連接至電性接地。 ” 8·=申請專利範圍第丨項之交流靜電消除器,其中該 離電極連接至電流控制電路。 9.如申請專利範圍第丨項之交流靜電消除器,其中該非 離電極連接至電壓控制電路。 Λ電 遣如申請專利範圍第!項之交流靜電消除器,其中 電極係容納在該第一噴嘴内。 μ电離 U.如申請專利範圍帛i項之交流靜電消除器,其中 電極被容納在該第一噴嘴内且進一步包括用以提供: 縮氣體通過該第一喷嘴之加壓供應源。 /、之 12.如申請專利範圍g u項之交流靜電消除器, 體亦流經該孔口。 氣 13,如申請專利範圍f u項之交流靜電消除器,法_ 該第-噴嘴之該氣體係與流經該孔口之氣體不相 二 U.如申請專利範圍第3項之交流靜電消除器,其中 噴嘴及該孔口具有各別的體積流量;且 孔口之體積流量 其中該噴嘴之體積流量係落在該 的±10%内。 ,其中該第一 口之體積流量 15.如申明專利範圍第3項之交流靜電消除器 噴嘴及該孔口具有各別的體積流量;且 其中該第一噴嘴之體積流量與該孔 相差超過±10%。 (修正本)93757 25 頁 1335776 第95137481號專利申請案 ----- (99 年 8 月 26 日) 16. 如申請專利範圍第3項之交流靜電消除器,其中該第一 喷觜具有垂直於當氣鏢流經該第一噴嘴時所形成之空 : 氣流線的截面形狀’該截面形狀係具有包括多邊形、圓 - 形及橢圓形中的任何一者的形狀。 17. 如申請專利範圍帛14項之交流靜電消除$,其中當通 過該電離電極時,該氣體在該第一喷嘴内的流動係擾 流。 18. 如申請專利範圍帛14項之交流靜電消除器,其中當通 過該電離電極時’該氣體在該第一喷嘴内的流動係層 流。 19. 如申請專利範圍第i項之交流靜電消除器,其中該設置 範圍包含: ⑷兩個位在兩相鄰電離電極處之第—相對角,在該處 ⑴各該第-相對角之第—角角度係小於或等於% 度,且 (2)在該兩相鄰電離電極之間的直線係對分該 一角角度;且 ⑻兩個位在兩相鄰電離電極之間的第二相對角,在該處 (1)該等第二相對角係藉由源自於該等第一相角. 之線段的相交而形成,且 15〇Γ。各該第二相對角之第二角角度係等於或大於 20·如申請專利範圍第19項之交流靜電消除器’談算 第二相對角係位在該交流靜電消除器之實體;寸的、 (修正本)93757 26 侧 8月2 6曰修正替換頁 第95137481號專利申請案 (99年8月26日) -以.如申請專利範圍第1項之交流靜電消除器,進一步包括 /另-電離電極’且其中該設置範圍具有類似鑽石的形 - 狀。 22.—種交流靜電消除器,其利用電暈放電而從帶電荷物體 移除靜電荷,該交流靜電消除器包含: 複數個電離電極; 個別設置成圍繞該等電離電極之每一者的噴嘴; 連接至該等喷嘴的空間; —土設置於設置範圍内的孔口,該設置範圍係位在彼此 ^之該等㈣之間且位在該靜㈣除H之設有該等 離電極之側’該孔口用於提供個別的氣體流;. 用R作為非電離電極的導電性表面,並設置成從高 電壓電源供應器接收參考電位;以及 該等電離電極設置成從該電源供應器接收高電壓 %位。 專利範園第22項之交流靜電消除器,其中該設 '圍具有類似鑽石的形狀,並且設置在彼此相鄰之至 夕兩個該等噴嘴之間。 24.如申請專利範 置範圍包括:交流靜電消除器,其中該設 兩個第一相斜&amp; &gt; 各該 、角,其位在兩相鄰電離電極處,其中 該二目具有至少為3°度的第-角角度,且在 β電離電極&gt; pq Μ 之間的直線係對分該等第一角角 (修正本)93757 27 度;以及 年月日修膂挾Μ 兩個第二相科 ,.中哕笪楚 對角,其位在兩相鄰電離電極之間,其 段= 由源自於該等第-相對角之線 ‘少為15。度。 該第二相對角之第二角角度係至 圍第項之交流靜電消除器,其中該非 相同側,又纟該靜電消除器之設有該等電離電極之 26.如申請專利筋 電離電極且交流靜電消除器’其中該非 露出來/、有切該㈣嘴係個別經由該等切口而外 27t=r第22項之交流靜電消除器,其中該非 遞該氣H 健敎由該#開孔來傳 請專利範圍第22項之交流靜電消除器,1中. 電性表面具有長條帶的形狀。 以導 29.如申請專利範圍第22項之 電離雷;fes今人 ,、 肩除斋,其中該非 :離電極包含一個或更多個導電性長條帶,性 T係與該複數個電離電極之列平行。 長 30.-種產生交流靜電消除器的方法,包含下列步驟·. 設置交流高電壓電源; 將第-及第二電離電極電性地純至該電源· 分別以第-及第二喷嘴來圍繞該第一及第二、雪 使用導電性表面作為非電離電極; 夺 (修正本)93757 28 1335776 _ * wwi^| f/rrmrn 將加壓空氣或氣體源耦接至該第一及第二喷嘴;以 及 — 增5又至少一個孔口於位在該第一及第二電離電極 -'之間的設置範圍内’該至少一個孔口用於提供氣體流, 該设置範圍不包含由該第一及第二噴嘴與該第一及第 ’二電離電極所佔用之區域。 31. 如申請專利範圍第30項之方法,其中該設置範圍具有 類似鑽石的形狀。 32. 如申請專利範圍第30項之方法,纟中該第一及第二喷 嘴設置在該交流靜電消&amp;器之設有該至少-個孔口的 相同側。 其中該設置範圍包括 組角包括第一角及第 33.如申凊專利範圍第30項之方法, 具有相同角度之第一組角,該第一 二角。 34.==圍第33項之方法,進-步包括將該第 角设置成相鄰於該第一喷嘴。 35·如申請專利範圍第34項之方法 .角設置成相鄰於該第二喷嘴。 步⑽將該第 36. 如申請專利範圍第33項之方法,, 角設置成相鄰於該第一電極。. 括將該第 37. 如申請專利範圍第.36項之方法,進一牛勺 角設置成相鄰於該第二電極。 ^ ^將該第 38. 如申請專利範圍第3〇項之 離電極設置在該靜電消除器 將該非 有该第—電離.電極 (修正本)93757 29 1335776 W8. ϋΰ&quot;-- 年月曰修疋替換頁 第95137481號專利申請案 (99年8月26日) 嘗 側。 39.如申請專利範圍? 30項之方法,進一步包括在該非電 離電極上形成複數個切口,該第一喷嘴經由該等切口而 外露出來,且該至少一個空氣孔口係經由該等切口來傳 遞氣體流。 4〇.-種交流靜電消除器,其用以從帶電荷物體 荷,該靜電消除器包括: 至少兩個喷嘴,包含第一及第二噴嘴; 至少兩個電離電極’用以接受足以藉由電暈放電來 產生電離之電昼,其中該等電離電極之各別部分係設置 成具有該等喷嘴之内部部分;, 非電離電極,其用以接受參考電壓; 至少一個用以提供該電壓之交汸古 〈又机回電壓電源供應 至少一個孔口;以及 位在該第一及第二喷嘴之間的設置範圍; 其中該孔口位在該設置範圍内。 礼如申請專利範圍第40項之交流靜電消除器,進 括耦接至該孔口及該等喷嘴之空間。 =申請專利範圍第40項之交流靜電消除器,㈠节非 電離電極係形成導電性長條帶‘ 電極之列平行。 /、係興該兩電離 範圍第40項之交流靜電消除器,其令” 置爾括兩個位在該兩電離電極處之第一相對中角該: (修JL本)93757 30 * m. 8. 26 ’ 半月日修正替換頁第95137481號專利申請案 . ---^ (99 年 8 月 26 曰) 甲各該第一相對角之第一角角度係小於或等於30度, .. 且;|於該兩電離電極之直線係對分該等第一角角度,且 該°又置範圍係設置成排除由該第一及第二噴嘴與該至 - 少兩個電離電極所佔用之區域。 、 4·如申切專利範圍第43項之交流靜電消除器,其中該設 置範圍進一步包括兩個位在該兩電離電極之間的第二 相對角其中該專第二相對角係藉由源自於該等第一相 對角之線段的相交而形成,且各該第二相對角目 角度係等於或大於150度。 45.如申請專利範圍第4〇項之交流靜電消除器,其中當該 設置範圍投影在該兩電離電極由其延伸之表面上時,該 設置範圍具有類似鑽;5的形狀。 (修正本)93757 31PCT Patent Application No. 95137481, the scope of the patent application: 1. An AC static eliminator load. The AC static eliminator includes: __ (August 26, 1999). It is used to remove static electricity from charged objects. To &gt;, two electrodes for accepting different potentials and including ionizing electrodes and non-ionizing electrodes; to a high voltage power supply connected to the electrodes; - the group of nozzles 'including the first nozzle and the second nozzle The first and second nozzles are for providing individual gas flows; to &gt;, one orifice for providing another gas stream; and the setting range 'positioned between the first and second nozzles and The first and second nozzles are external; wherein the aperture is located within the set range. 2. The alternating current static eliminator of claim </ RTI> wherein the non-ionizing electrode is located on the same side of the static eliminator as the ionizing electrodes. 3. The alternating current static eliminator of claim i, wherein the non-ionizing electrode has a slit through which the first and second nozzles are exposed. 4. The alternating current static eliminator of claim 1, wherein the non-ionizing electrode has a slit through which the opening is exposed. The alternating static eliminator of claim 1, wherein the step further comprises another ionizing electrode, wherein the non-ionizing electrode comprises at least one conductive strip, the conductive strip strip and the ionizing Electrode row. 4 '6·According to the scope of the patent scope of the AC static eliminator' where the ionization (revision) 93757 24 Ψ ^ 2htmm ^ { i fd1; special, the case electrode is electrically connected to the ^ i power supply 1 The high voltage of the device is 26. } 7. The alternating current static eliminator of claim 1, wherein the non-separating electrode is connected to an electrical ground. 8·= The AC static eliminator of the scope of the patent application, wherein the off-electrode is connected to the current control circuit. 9. The AC static eliminator of claim 2, wherein the non-off-electrode is connected to the voltage control circuit交流 Λ 如 如 申请 如 如 如 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 交流 μ μ μ μ In the first nozzle, and further comprising: a pressurized supply source for reducing gas passing through the first nozzle. /, 12. The alternating current static eliminator of claim gu, wherein the body also flows through the orifice Gas 13, such as the AC static eliminator of the patent scope fu, the gas system of the first nozzle is not the same as the gas flowing through the orifice U. AC static elimination according to item 3 of the patent application scope Wherein the nozzle and the orifice have respective volumetric flow rates; and the volumetric flow rate of the orifice wherein the volumetric flow rate of the nozzle falls within ±10% of the volume, wherein the volumetric flow of the first orifice 15. The AC static eliminator nozzle of claim 3 and the orifice having respective volumetric flow rates; and wherein the volume flow of the first nozzle differs from the orifice by more than ±10%. (Revised) 93757 25 Page 1335776 Patent Application No. 95137481----- (August 26, 1999) 16. The AC static eliminator of claim 3, wherein the first sneeze has a vertical flow through the air dart The space formed by the first nozzle: the cross-sectional shape of the air flow line 'the cross-sectional shape has a shape including any one of a polygon, a circle-shape, and an ellipse. 17. AC static electricity as in the patent application 帛14 item Eliminating $, wherein the flow of the gas in the first nozzle is disturbed when passing through the ionizing electrode. 18. The alternating current static eliminator of claim 14 wherein the gas is passed through the ionizing electrode The flow in the first nozzle is laminar. 19. The alternating current static eliminator of claim i, wherein the setting range comprises: (4) the first position of two positions at two adjacent ionizing electrodes Wherein (1) the first-angle angle of each of the first-relative angles is less than or equal to % degrees, and (2) the straight line between the two adjacent ionizing electrodes bisects the corner angle; and (8) two bits a second relative angle between two adjacent ionizing electrodes, where the second relative angles are formed by the intersection of the line segments originating from the first phase angles, and 15〇Γ The second angular angle of each of the second relative angles is equal to or greater than 20. The alternating static eliminator of claim 19 of the patent scope refers to the second relative angular position of the entity in the alternating current static eliminator; , (Amendment) 93757 26 Side August 2 6 曰 Amendment Replacement Page No. 95137481 (August 26, 1999) - as in the AC static eliminator of claim 1 of the patent scope, further including / - ionizing electrode 'and wherein the setting range has a diamond-like shape. 22. An alternating current static eliminator that utilizes corona discharge to remove static charge from a charged object, the alternating current static eliminator comprising: a plurality of ionizing electrodes; nozzles individually disposed to surround each of the ionizing electrodes a space connected to the nozzles; - an aperture disposed in the set range, the setting range being between the four (four) of each other and being located at the static (four) except H Side 'the orifice is used to provide an individual gas flow; R is used as the conductive surface of the non-ionizing electrode and is arranged to receive a reference potential from the high voltage power supply; and the ionizing electrodes are arranged from the power supply Receive high voltage % bit. The AC static eliminator of claim 22, wherein the design has a diamond-like shape and is disposed between two of the nozzles adjacent to each other. 24. The scope of the patent application includes: an alternating current static eliminator, wherein the two first phase slopes &amp;&gt; each of the angles are located at two adjacent ionizing electrodes, wherein the two eyes have at least a third-angle angle of 3° degrees, and a straight line between the beta ionization electrodes &gt; pq 对 bisects the first angular angle (amendment) 93757 27 degrees; The two-phase family, which is diagonally located between two adjacent ionizing electrodes, has a segment = less than 15 from the line originating from the first-relative angles. degree. The second angle of the second opposite angle is the AC static eliminator of the second item, wherein the non-identical side is further provided with the ionizing electrode of the static eliminator. 26. The patented rib ionizing electrode and the alternating current The static eliminator of the static eliminator of the static electricity eliminator, wherein the non-receiving gas is traversed by the slits, and the non-delivery gas is transmitted from the #孔孔Please contact the AC static eliminator in item 22 of the patent scope. The electrical surface has the shape of a long strip. Guided by 29. The ionizing thunder of claim 22; fes, today, shoulder stripping, wherein the non-offset electrode comprises one or more conductive strips, the T-system and the plurality of ionizing electrodes The columns are parallel. 30.- A method for generating an AC static eliminator, comprising the steps of: setting an AC high voltage power supply; electrically purifying the first and second ionizing electrodes to the power source; respectively surrounding the first and second nozzles The first and second, snow use conductive surfaces as non-ionizing electrodes; (revision) 93657 28 1335776 _ * wwi^| f/rrmrn coupling a pressurized air or gas source to the first and second nozzles And - adding 5 and at least one orifice in the set range between the first and second ionizing electrodes - 'the at least one orifice for providing a gas flow, the setting range not including the first And a region occupied by the second nozzle and the first and second 'second ionizing electrodes. 31. The method of claim 30, wherein the setting range has a diamond-like shape. 32. The method of claim 30, wherein the first and second nozzles are disposed on the same side of the alternating current static dissipator provided with the at least one orifice. Wherein the setting range includes the group angle including the first angle and the method of claim 33. The method of claim 30, the first group of angles having the same angle, the first two corners. 34. == The method of item 33, the step comprising setting the first angle adjacent to the first nozzle. 35. The method of claim 34, wherein the corner is disposed adjacent to the second nozzle. Step (10). The method of claim 36, wherein the angle is set to be adjacent to the first electrode. The method of claim 37, wherein the angle of the bolus is set to be adjacent to the second electrode. ^ ^ The 38th. If the off-electrode of the third paragraph of the patent application is set in the static eliminator, the non-ionized ionization electrode (revision) 93757 29 1335776 W8. ϋΰ&quot;--疋Replacement page No. 95137481 (August 26, 1999) Tasting side. 39. If you apply for a patent? The method of claim 30, further comprising forming a plurality of slits in the non-ionizing electrode, the first nozzle being exposed through the slits, and the at least one air orifice passing the gas flow through the slits. An AC static eliminator for charging from a charged object, the static eliminator comprising: at least two nozzles including first and second nozzles; at least two ionizing electrodes 'for receiving sufficient Corona discharge to generate an ionization, wherein each of the ionization electrodes is disposed to have an internal portion of the nozzles; a non-ionizing electrode for receiving a reference voltage; and at least one for providing the voltage The switchback power supply is provided with at least one aperture; and a setting range between the first and second nozzles; wherein the aperture is within the set range. An AC static eliminator as claimed in claim 40, which is coupled to the aperture and the space of the nozzles. = AC static eliminator of application No. 40 of the patent scope, (1) Non-ionizing electrode system forms a conductive long strip ‘ The columns of electrodes are parallel. /, is the AC static eliminator of the 40th ionization range, which makes "the two relative positions in the first relative middle angle of the two ionization electrodes: (Repair JL) 93757 30 * m. 8. 26 'Half-Month Day Amendment Replacement No. 95137481 Patent Application. ---^ (August 26, 1999) The first angle of the first relative angle of each of the first angles is less than or equal to 30 degrees, .. and The line of the two ionizing electrodes bisects the first angular angles, and the range is set to exclude the area occupied by the first and second nozzles and the two ionized electrodes 4. The alternating current static eliminator of claim 43, wherein the setting range further comprises two second relative angles between the two ionized electrodes, wherein the second specific relative angle is by the source Formed from the intersection of the line segments of the first relative angles, and each of the second relative angular angles is equal to or greater than 150 degrees. 45. The AC static eliminator of claim 4, wherein The setting range is projected on the surface from which the two ionizing electrodes extend A drill having a similar setting range; shape 5 (Revised) 9,375,731.
TW95137481A 2005-10-13 2006-10-12 Air assist for ac ionizers TWI335776B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72687405P 2005-10-13 2005-10-13
US77875506P 2006-03-03 2006-03-03

Publications (2)

Publication Number Publication Date
TW200721916A TW200721916A (en) 2007-06-01
TWI335776B true TWI335776B (en) 2011-01-01

Family

ID=45075040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95137481A TWI335776B (en) 2005-10-13 2006-10-12 Air assist for ac ionizers

Country Status (1)

Country Link
TW (1) TWI335776B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097514B2 (en) * 2007-11-22 2012-12-12 国立大学法人東京工業大学 Wire electrode ionizer

Also Published As

Publication number Publication date
TW200721916A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
EP3399343B1 (en) Clean corona gas ionization for static charge neutralization
US7697258B2 (en) Air assist for AC ionizers
CN101180131B (en) Wet electrostatic ionizing step in electrostatic separator
US8454734B2 (en) Charging device, air handling device, method for charging, and method for handling air
ATE284680T1 (en) INHALATION PARTICLES CONSISTING OF AT LEAST TWO ACTIVE INGREDIENTS
CN101815452A (en) Hair care device
US11541343B2 (en) Electrical appliance with electrostatic dust collecting device using carbon fiber
KR101957095B1 (en) Small-sized air purifier with electrostatic precipitation function
TWI335776B (en) Air assist for ac ionizers
Dau et al. Electrospray propelled by ionic wind in a bipolar system for direct delivery of charge reduced nanoparticles
TWI248837B (en) Electrostatic atomizer
JP5016505B2 (en) Electrostatic atomizer
TWI244112B (en) Plasma processing apparatus and method for manufacturing the same
CN111542396B (en) Charging equipment and dust remover
TWI798467B (en) (無)
TWI740011B (en) Air purifier
JP2012081423A (en) Electrostatic precipitation structure, electrostatic precipitation unit, and air cleaner
US11368000B2 (en) Ion generator device
WO2013121669A1 (en) Ion-generating element and ion generator provided with same
WO2007094804A2 (en) Ionizing electrode structure and apparatus
JP2014007031A (en) Charged particle generator
EP0019464A1 (en) Apparatus for charging particles in a gas stream and collecting the particles therefrom
TW415916B (en) Ozon generating apparatus
SE0302691D0 (en) hybrid Particle
WO2022088049A1 (en) Electric-card cooling condensation electrode and discharge device having such electrode