TWI331000B - Plasma doping method - Google Patents

Plasma doping method Download PDF

Info

Publication number
TWI331000B
TWI331000B TW092125349A TW92125349A TWI331000B TW I331000 B TWI331000 B TW I331000B TW 092125349 A TW092125349 A TW 092125349A TW 92125349 A TW92125349 A TW 92125349A TW I331000 B TWI331000 B TW I331000B
Authority
TW
Taiwan
Prior art keywords
vacuum vessel
dielectric material
plasma
boron
vacuum
Prior art date
Application number
TW092125349A
Other languages
Chinese (zh)
Other versions
TW200503588A (en
Inventor
Tomohiro Okumura
Ichiro Nakayama
Bunji Mizuno
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002202483A external-priority patent/JP4013674B2/en
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of TW200503588A publication Critical patent/TW200503588A/en
Application granted granted Critical
Publication of TWI331000B publication Critical patent/TWI331000B/en

Links

Landscapes

  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

玖、發明說明: 相關文件 本案要請求2002年7月11日申請之N〇. 2002-202483曰 本專利申請案的權益,其完整内容份此附送。玖, invention description: Related documents The case is required to request the application of N〇. 2002-202483曰 on July 11, 2002. The full content of this patent application is hereby attached.

【明所屬 J 發明領域 本發明係有關可供使用一電漿摻雜或電漿植入技術, 來將一雜質離子摻入一基材例如半導體基材内的裝置。 發明背景 第11圖示出一傳統的電漿摻雜裝置,整體以標號200來 表示。該裝置200具有一容器202,其中形成一真空腔室 204 ’並有一電極或檯座206設在該腔室204内而可撐持一基 材208。該容器202會連結於一可供應摻雜氣體例如b2H6的 氣體供應源210,及一可在該腔室204内產生真空的真空泵 212。又有一微波導214連設於該容器202,可透過一窗216 將微波射入腔室204内,並有一電磁裝置218能將該微波導 向該基材208。該窗216係由介電材料例如石英玻璃所製 成。又’該檯座206會經由一電容器220來連接於一高頻電 源222以控制該棱座206的電壓,而得控制要被捧入該基材 内的雜質量。在操作時,摻雜氣體會被供入該腔室204中, 而在其内被該微波與一DC磁場間的交互作用所離子化,來 形成一微波電漿,即迴旋共振電漿224 ^嗣,已離子化的硼 可借助該電源222來被植入該基材208的表面中。舉例而 έ ’該基材208嗣會在掺雜表面上形成一金屬佈線層。此 外,一薄氧化層會被製設在該金屬佈線層上。最後,閉電 極等會被以一習知的沉積技術例如CVD來設在該表面上, 而製成MOS電晶體。 但’已得知含硼的摻雜氣體諸如Β2Ηό在被加入該基材 例如矽基材時,將會展現一種電激活性而形成有毒材料。 又,依據此電漿摻雜方式,所有在該摻雜氣體内的材料皆 會全部被摻入該基材内。例如,若為Β2Ηό則雖僅有蝴係為 作用材料,但非僅蝴離子且氫離子亦會被捧入基材中。而 被摻入的氫離子會在後續的熱處理譬如磊晶成長製程中, 導致該基材内之晶格瑕疵的產生。 為克服此問題,曾在JP 9-115851 (Α)日本專利案中提供 另一種摻雜裝置,其係示於第12圖。該摻雜裝置概示為枳 號230,具有一塊體232含有雜質而設在該腔室204内。該掩 體232係被一固定支座234所撐持,該支座234係經由〜電容 器236來電連接於一高頻電源238 ^以此裝置,由氣體供應 源210饋入的氣體例如Ar會離子化來形成電漿離子,其又會 衝擊s玄塊體,使其釋出雜質離子來植入該基材中。此裝置 固可消除第11圖之裝置的缺點,但因包含支座234等添加的 結構物故會令其較為粗大。且,由於該塊體232與基材2〇8 的不對稱佈設,故該塊體232釋出的雜質會不均勻地植入該 基材208内。 t發明内容3 本發明之概要說明 1331000 緣是,本發明之目的係在提供一種供電漿摻雜用之改 良裝置,其能均勻地將雜質摻入一基材内。 依據本發明的電漿摻雜裝置,其具有一真空容器内部 形成一腔室。該容器有一部份蘊含一雜質可被摻入一設在 5 該腔室内的基材中。又該裝置設有一電漿產生器,可藉形 成一電場通過該腔室之所述部份,而在該腔室内產生電 漿,此會使該電漿中的離子衝擊該容器的該部份,而使該 部份的雜質釋出於該腔室内。 圖式簡單說明 10 第1A圖為本發明第一實施例之摻雜裝置的截面示意 圖。 第1B圖為第1A圖之頂壁的放大截面圖。 第1C圖為本發明另一實施例之頂壁的放大截面圖。 第2圖為本發明另一實施例之摻雜裝置的截面示意圖。 15 第3圖為本發明又另一摻雜裝置的截面示意圖。 第4圖為本發明又另一摻雜裝置的截面示意圖。 第5圖為本發明又另一摻雜裝置的截面示意圖。 第6A圖為本發明又另一掺雜裝置的截面示意圖。 第6B圖為第6A圖中之摻雜裝置所使用的電極之平面圖。 20 第7圖為本發明又另一摻雜裝置的截面示意圖。 第8A圖為本發明又另一摻雜裝置的截面示意圖。 第8B圖為第6A圖中之摻雜裝置所使用的電極之立體 截面圖。 第9圖為本發明又另一摻雜裝置的截面示意圖。 7 1331000 第ίο圖為本發明又另一摻雜裝置的截面示意圖。 第11圖為一習知摻雜裝置的截面示意圖。 第12圖為另一習知摻雜裝置的截面示意圖。 I:實施方式3 5 較佳實施例之詳細說明 請參閱各圖式,本發明之供用於電漿摻雜的方法及裝 置之各種實施例將說明於後。 請參閱第1A圖,乃示出本發明之一電漿摻雜裝置,整 體以標號10來表示。該摻雜裝置10具有一容器12其内形成 10 一腔室14。該容器12具有一第一部份16會形成該容器12的 側壁18和底壁20,並有一第二部份22會形成該容器12的頂 壁24且可卸除地固接於該第一部份16 ^該容器的第一部份 16係由導電材料例如鋁或不銹鋼製成,且接地於地表。該 容器12的第二部份22,即頂壁24,係由介電材料例如矽、 15 石英玻璃及氮化矽等所製成,可透過它們而在該腔室14内 造成一高頻電場。該底壁20設有一開孔26,乃導接於一真 空泵28譬如一渦輪分子泵。在該腔室14内鄰近於該開孔26 則設有一閥件30,其係被一未示出的升降裝置所撐持,因 此該開孔26的開放率及該腔室12的真空度,將可藉升降該 20 閥件30而得控制在某一定值譬如0.04Pa。 尤其是,如第2A圖所示,該頂壁24的下表面部份,其 係構成該腔室14的一部份,會含有一料層25A乃由植入雜質 例如硼所製成。較好是,該硼層具有約10〜100# m的厚度。 又,其下限是考量更換頻率來決定,而上限是考量該層的 8 1331000 剝落來決定。或者,如第2B圖所示,該硼25B亦可被含帶 · 於該頂壁24的内部。於此情況下,該硼係在該壁24的製程 - 中被混合。例如,若該頂壁是由石英玻璃所製成,則粉狀 的蝴會被均勻地加入熔融的二氧化矽中。或若該頂壁係由 5陶瓷材料所製成,則該硼會在其燒結之前來混合加入。 在該腔室14中亦設有一檯座32。該檯座32係由多數支 架34撐持在腔室14的中央’並與介電的上壁24隔開一定距 離,而使一定容積的空間36能被形成來供生成電漿。又, 該檯座32具有一頂部平面可撐持一基材38,例如一矽板, 0 10其上將被植入一預定的離子。 一電漿氣體供應源40會導通連接該腔室14’而可將某 種含Ar的氣體供入該腔室14内。例如,該Ar的含量係被控 制為10 SCCM(標準立方公分/每分鐘)。 為在該電漿形成空間36中生成電漿42 ’尤其是電感耦 15合電漿(ICP),有一嫘旋線圈44會與該筒狀容器12同軸地設 在該介電壁24的上方而在腔室14外部。如圖所示,該線圈 φ 44的中心端部46會比相對的外緣端部48設在較高處,而使 該線圈44呈一錐狀造贺。又,該線圈44的中心端部46係連 接於一第一高頻電源,其係例如能夠施加一 13 56 MHz 20的高頻電源。另一方面,該線圈44的外緣端部48會接地於 地表。 又,為相對於該電漿42提供一負極性於該檯座32和基 材38,有一第二高頻電源52或電源供應器會電連接於該檯 — 座32。 9 68+12=5.7 2.5+320=0.0078 ⑸ ⑹ 此結果意味著當由fl視之,則包含該線圈與電容器的串聯 電路將會形如一電感元件;相反地,當由f2視之則其會形 5 如一電容元件。因此,電感耦合電漿會被該高頻率Π所產 生,而在該線圈44與該電漿之間的電容耦合將可使離子借 助於f2的高頻率來衝擊該頂壁24。因此,該電漿密度可藉 控制該Π的高頻電源而來控制,而離子的衝擊可獨立地以 該f2的高頻電源來控制,其係僅在當π頻率約等於或小於Π 10 的十分之一時才來為之。 此外’當該線圈44對fl的阻抗係大於該電容器84的兩 倍’或當該線圈對f2的阻抗小於該電容器的五分之一時, 則該fl與f2的差異會有效地反應在施於該線圈44與電容器 84的電壓比中。應請瞭解,當使用多個排列在一平面中的 15螺旋線圈時,將會針對每一個線圈與電容器的組合來測試。 例如’據瞭解當該電容器對fl的阻抗小於25Ω,而電容 器對f2的阻抗等於或大於250Q時,則一效率差會產生在被 施於該線圈44與電容器84的電壓中。若該線圈對fl的阻抗 小於5Ω ’且該線圈對β的阻抗等於或大於5〇Ω時’則亦會 2〇 產生相同的結果。 第6Α圖示出本發明之摻雜裝置的另一實施例β於本例 中,特別地有一盤狀電極9〇被設在該頂壁24上或稍上方而 低於s玄線圈44。如第6Β圖所示,該電極9〇係被設計成具有 多數支瓣,而由對應於該腔室14軸心的中央對稱地徑向往 13FIELD OF THE INVENTION The present invention relates to a device for incorporating an impurity ion into a substrate, such as a semiconductor substrate, using a plasma doping or plasma implantation technique. BACKGROUND OF THE INVENTION Figure 11 shows a conventional plasma doping apparatus, generally designated by the numeral 200. The apparatus 200 has a container 202 in which a vacuum chamber 204' is formed and an electrode or pedestal 206 is disposed within the chamber 204 to support a substrate 208. The vessel 202 is coupled to a gas supply 210 that supplies a dopant gas, such as b2H6, and a vacuum pump 212 that creates a vacuum within the chamber 204. A microwave guide 214 is coupled to the container 202 to inject microwaves into the chamber 204 through a window 216, and an electromagnetic device 218 can direct the microwave to the substrate 208. The window 216 is made of a dielectric material such as quartz glass. Further, the pedestal 206 is connected to a high frequency power source 222 via a capacitor 220 to control the voltage of the prism 206 to control the amount of impurities to be held in the substrate. In operation, a dopant gas is supplied into the chamber 204 and ionized therein by interaction between the microwave and a DC magnetic field to form a microwave plasma, ie, a cyclotron resonance plasma 224 ^ The ionized boron can be implanted into the surface of the substrate 208 by means of the power source 222. For example, the substrate 208 形成 forms a metal wiring layer on the doped surface. Further, a thin oxide layer is formed on the metal wiring layer. Finally, a closed electrode or the like is formed on the surface by a conventional deposition technique such as CVD to form a MOS transistor. However, it has been known that a boron-containing doping gas such as ruthenium 2 ruthenium exhibits an electrical activation to form a toxic material when it is added to the substrate such as a ruthenium substrate. Further, according to the plasma doping method, all of the materials in the doping gas are all incorporated into the substrate. For example, if Β2Ηό, only the butterfly system is the active material, but not only the butterfly ions but also the hydrogen ions are held in the substrate. The hydrogen ions to be incorporated may cause lattice enthalpy in the substrate in a subsequent heat treatment such as an epitaxial growth process. In order to overcome this problem, another doping device has been provided in JP-A No. 9-115851 (Α), which is shown in Fig. 12. The doping device is schematically shown as an nickname 230 having a body 232 containing impurities and disposed within the chamber 204. The bunker 232 is supported by a fixed support 234. The support 234 is electrically connected to a high-frequency power source 238 via a capacitor 236. As a device, a gas fed by the gas supply source 210, such as Ar, is ionized. A plasma ion is formed which in turn impacts the smectic block to release impurity ions for implantation into the substrate. This device can eliminate the disadvantages of the device of Fig. 11, but it will be coarser due to the inclusion of the structure such as the support 234. Moreover, due to the asymmetric arrangement of the block 232 and the substrate 2〇8, the impurities released by the block 232 are unevenly implanted into the substrate 208. SUMMARY OF THE INVENTION 3 SUMMARY OF THE INVENTION 1331000 The object of the present invention is to provide a modified apparatus for doping a power supply slurry which uniformly incorporates impurities into a substrate. A plasma doping apparatus according to the present invention has a chamber formed inside a vacuum vessel. A portion of the container contains an impurity that can be incorporated into a substrate disposed within the chamber. Further, the apparatus is provided with a plasma generator for generating an electric field in the chamber by forming an electric field through the portion of the chamber, which causes ions in the plasma to impact the portion of the container And the impurities in the part are released into the chamber. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic cross-sectional view showing a doping apparatus of a first embodiment of the present invention. Fig. 1B is an enlarged cross-sectional view of the top wall of Fig. 1A. Fig. 1C is an enlarged cross-sectional view showing a top wall of another embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing a doping apparatus according to another embodiment of the present invention. 15 Fig. 3 is a schematic cross-sectional view showing still another doping device of the present invention. Figure 4 is a schematic cross-sectional view showing still another doping device of the present invention. Figure 5 is a schematic cross-sectional view showing still another doping device of the present invention. Figure 6A is a schematic cross-sectional view showing still another doping device of the present invention. Figure 6B is a plan view of the electrode used in the doping device of Figure 6A. 20 is a schematic cross-sectional view of still another doping device of the present invention. Figure 8A is a schematic cross-sectional view showing still another doping device of the present invention. Fig. 8B is a perspective sectional view showing an electrode used in the doping apparatus of Fig. 6A. Figure 9 is a schematic cross-sectional view showing still another doping device of the present invention. 7 1331000 The figure is a schematic cross-sectional view of still another doping device of the present invention. Figure 11 is a schematic cross-sectional view of a conventional doping device. Figure 12 is a schematic cross-sectional view of another conventional doping device. I: Embodiment 3 5 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawings, various embodiments of the method and apparatus for plasma doping of the present invention will be described hereinafter. Referring to Figure 1A, there is shown a plasma doping apparatus of the present invention, generally designated by the numeral 10. The doping device 10 has a container 12 formed therein with a chamber 14. The container 12 has a first portion 16 that defines the side wall 18 and the bottom wall 20 of the container 12, and a second portion 22 defines the top wall 24 of the container 12 and is removably secured to the first portion Portion 16 ^ The first portion 16 of the container is made of a conductive material such as aluminum or stainless steel and is grounded to the surface. The second portion 22 of the container 12, i.e., the top wall 24, is made of a dielectric material such as ruthenium, 15 quartz glass, tantalum nitride, etc., through which a high frequency electric field is created in the chamber 14. . The bottom wall 20 is provided with an opening 26 which is connected to a vacuum pump 28 such as a turbo molecular pump. A valve member 30 is disposed adjacent to the opening 26 in the chamber 14 and is supported by a lifting device not shown, so that the opening ratio of the opening 26 and the vacuum of the chamber 12 will be It can be controlled at a certain value, such as 0.04 Pa, by lifting the 20 valve member 30. In particular, as shown in Fig. 2A, the lower surface portion of the top wall 24, which forms part of the chamber 14, will contain a layer 25A of implanted impurities such as boron. Preferably, the boron layer has a thickness of about 10 to 100 #m. Also, the lower limit is determined by considering the replacement frequency, and the upper limit is determined by considering the peeling of 8 1331,000 of the layer. Alternatively, as shown in Fig. 2B, the boron 25B may be contained inside the top wall 24. In this case, the boron is mixed in the process of the wall 24. For example, if the top wall is made of quartz glass, the powdery butterfly will be uniformly added to the molten cerium oxide. Or if the top wall is made of 5 ceramic material, the boron will be mixed before it is sintered. A seat 32 is also provided in the chamber 14. The pedestal 32 is supported by a plurality of brackets 34 at the center of the chamber 14 and spaced apart from the dielectric upper wall 24 such that a volume 36 of space can be formed for plasma generation. Further, the pedestal 32 has a top plane for supporting a substrate 38, such as a raft, on which a predetermined ion will be implanted. A plasma gas supply source 40 is connected to the chamber 14' to supply a certain Ar-containing gas into the chamber 14. For example, the content of Ar is controlled to 10 SCCM (standard cubic centimeters per minute). In order to generate a plasma 42 in the plasma forming space 36, in particular an inductive coupling 15 plasma (ICP), a cyclotron coil 44 is disposed coaxially with the cylindrical container 12 above the dielectric wall 24. Outside the chamber 14. As shown, the center end portion 46 of the coil φ 44 is placed higher than the opposite outer edge end portion 48 to cause the coil 44 to be tapered. Further, the center end portion 46 of the coil 44 is connected to a first high frequency power source, for example, capable of applying a high frequency power source of 13 56 MHz 20. On the other hand, the outer edge end portion 48 of the coil 44 is grounded to the surface. Further, in order to provide a negative polarity to the pedestal 32 and the substrate 38 relative to the plasma 42, a second high frequency power source 52 or a power supply is electrically connected to the stage 32. 9 68+12=5.7 2.5+320=0.0078 (5) (6) This result means that when viewed by fl, the series circuit containing the coil and capacitor will be shaped like an inductive component; conversely, when viewed by f2, it will Shape 5 is like a capacitive element. Thus, the inductively coupled plasma is generated by the high frequency enthalpy, and the capacitive coupling between the coil 44 and the plasma will cause the ions to impact the top wall 24 by the high frequency of f2. Therefore, the plasma density can be controlled by controlling the high frequency power source of the crucible, and the impact of the ions can be independently controlled by the high frequency power source of the f2, which is only when the frequency of π is approximately equal to or less than Π10. Only one tenth is only for it. In addition, when the impedance of the coil 44 to fl is greater than twice that of the capacitor 84 or when the impedance of the coil pair f2 is less than one fifth of the capacitor, the difference between fl and f2 is effectively reflected in the application. In the voltage ratio of the coil 44 to the capacitor 84. It should be understood that when using a plurality of 15 spiral coils arranged in a plane, it will be tested for each combination of coil and capacitor. For example, it is understood that when the impedance of the capacitor to fl is less than 25 Ω and the impedance of the capacitor to f2 is equal to or greater than 250 Q, an efficiency difference is generated in the voltage applied to the coil 44 and the capacitor 84. If the impedance of the coil to fl is less than 5 Ω ' and the impedance of the coil to β is equal to or greater than 5 〇 Ω, then the same result will be produced. Fig. 6 shows another embodiment of the doping apparatus of the present invention. In this embodiment, in particular, a disk electrode 9 is provided on the top wall 24 or slightly above the sinoidal coil 44. As shown in Fig. 6, the electrode 9 is designed to have a plurality of lobes, and is symmetrically radially to the center corresponding to the axis of the chamber 14.

Claims (1)

修正曰期:99年4月7曰 092125349號專利夕請案申請專利範圍修正本 拾、申請專利範圍: 1. 一種電漿摻雜的方法,包含如下步驟: 供應一氣體至一真空容器内,同時排出該真空容器的 一内部氣體,該真空容器具有一部分係由一介電材料製成 5 且固定地含有硼及/或磷;及 控制該真空容器的一内部壓力在一定壓力之下,同時 供應一具有一第一頻率之高頻電源至一鄰接該真空容器之 該介電材料部份配置的線圈或天線,在該真空容器内部產 生一電漿,使電漿中的離子衝擊於該介電材料部份之上, 10 以從該介電材料部份射出該硼及/或磷,及植入該射出的硼 及/或磷至一放置在一配置在該真空容器内之電極上的基 材中。 2. —種電漿摻雜的方法,包含如下步驟: 供應一氣體至一真空容器内,同時排出該真空容器的 15 一内部氣體,該真空容器具有設置於其内表面上的一部 分,該部分係由一介電材料製成且固定地含有硼及/或磷; 及 控制該真空容器的一内部壓力在一定壓力之下,同時 供應一具有一第一頻率之高頻電源至一鄰接該真空容器之 20 該介電材料部份配置的線圈或天線,在該真空容器内部產 生一電漿,使電漿中的離子衝擊於該介電材料部份之上, 以從該介電材料部份射出該硼及/或磷,及植入該射出的硼 及/或磷至一放置在一配置在該真空容器内之電極上的基 材中。 17 3. —種電漿摻雜的方法,包含如下步驟: 供應一氣體至一真空容器内,同時排出該真空容器的 内部軋體,該真空容器具有一部分係由一介電材料製成 且固定地含有硼及/或磷;及 控制該真空容器的一内部壓力在—定壓力之下,同時 供應一具有一第一頻率之高頻電源至一鄰接該真空容器之 該介電材料部份配置的線圈或天線以在該真空容器内部產 生一電漿,並且亦供應一具有一第二頻率之高頻電源至一 配置在該線圈或該天線與該介電材料部份之間的電極,藉 此使電漿中的離子衝擊於該介電材料部份之上,以從該介 電材料部份射出該硼及/或碟,及植入該射出的棚及/或鱗至 一放置在一配置在該真空容器内之電極上的基材中。 4. 一種電漿摻雜的方法,包含如下步驟: 供應一氣體至一真空容器内,同時排出該真空容器的 一内部氣體’該真空容器具有設置於其内表面上的一部 分’該部分係由一介電材料製成且固定地含有硼及/或填; 及 控制該真空容器的一内部壓力在一定壓力之下,同時 供應一具有一第一頻率之高頻電源至一鄰接該真空容器之 該介電材料部份配置的線圈或天線以在該真空容器内部產 生一電漿,並且亦供應一具有一第二頻率之高頻電源至一 配置在該線圈或該天線與該介電材料部份之間的電極,藉 此使電漿中的離子衝擊於該介電材料部份之上,以從該介 電材料部份射出該硼及/或磷’及植入該射出的硼及/或磷至 18 丄 WlOOOr '▼ 4 : J :.:. —放置在一配置在該真空 5.如申請專利範圍第1項 率約為13.56 MHz。 容器内之電極上的基材中。 之電漿摻雜方法,其中該第一頻 5 6.如申請專利範圍第2項之電漿摻雜方法 率約為13.56 MHz。 7·如申請專利範圍第3項之電漿摻雜方法 率約為13.56 MHz。 8.如申請專利範圍第7項之電漿摻雜方法 率約為900 kHz。 其中該第一頻 其中該第一頻 其中該第二頻 10 9·如申請專利範圍第4項之電漿摻雜方法 率約為13.56 MHz。 10’如申請專利範圍第9項之電漿摻雜方法 率約為900 kHz。 其中該第一頻 其中該第二頻The revised period: April, 1994, 曰 092, 125, 349, patent application, patent application scope, patent application scope: 1. A method of plasma doping, comprising the steps of: supplying a gas into a vacuum container, Simultaneously discharging an internal gas of the vacuum vessel, the vacuum vessel having a portion made of a dielectric material 5 and fixedly containing boron and/or phosphorus; and controlling an internal pressure of the vacuum vessel under a certain pressure while simultaneously Supplying a high frequency power source having a first frequency to a coil or antenna partially disposed adjacent to the dielectric material of the vacuum container, generating a plasma inside the vacuum container to cause ions in the plasma to impinge on the dielectric a portion of the electrical material, 10 to emit the boron and/or phosphorus from the dielectric material portion, and implant the boron and/or phosphorus to be placed on an electrode disposed in the vacuum vessel In the substrate. 2. A method of plasma doping comprising the steps of: supplying a gas into a vacuum vessel while discharging a 15 internal gas of the vacuum vessel, the vacuum vessel having a portion disposed on an inner surface thereof, the portion Is made of a dielectric material and fixedly containing boron and/or phosphorus; and controlling an internal pressure of the vacuum vessel under a certain pressure while supplying a high frequency power source having a first frequency to a vacuum a coil or antenna partially disposed in the dielectric material, and a plasma is generated inside the vacuum container to cause ions in the plasma to impinge on the dielectric material portion to be from the dielectric material portion The boron and/or phosphorus is injected, and the emitted boron and/or phosphorus is implanted into a substrate placed on an electrode disposed in the vacuum vessel. 17 3. A method of plasma doping comprising the steps of: supplying a gas into a vacuum vessel while discharging an internal rolling body of the vacuum vessel, the vacuum vessel having a portion made of a dielectric material and fixed Containing boron and/or phosphorus; and controlling an internal pressure of the vacuum vessel under a constant pressure while supplying a high frequency power source having a first frequency to a portion of the dielectric material adjacent to the vacuum vessel a coil or antenna for generating a plasma inside the vacuum vessel, and also supplying a high frequency power source having a second frequency to an electrode disposed between the coil or the antenna and the dielectric material portion, This causes ions in the plasma to impinge on the portion of the dielectric material to partially eject the boron and/or dish from the dielectric material, and implant the shed and/or scale into the shot. Disposed in the substrate on the electrode in the vacuum vessel. 4. A method of plasma doping comprising the steps of: supplying a gas into a vacuum vessel while discharging an internal gas of the vacuum vessel - the vacuum vessel having a portion disposed on an inner surface thereof a dielectric material is formed and fixedly containing boron and/or filled; and an internal pressure of the vacuum vessel is controlled under a certain pressure, and a high frequency power source having a first frequency is supplied to a vacuum vessel adjacent to the vacuum vessel The dielectric material is partially configured with a coil or an antenna to generate a plasma inside the vacuum container, and a high frequency power source having a second frequency is also supplied to the coil or the antenna and the dielectric material portion. Electrodes between the portions, whereby ions in the plasma impinge on the portion of the dielectric material to partially emit the boron and/or phosphorous from the dielectric material and implant the boron and/or the implanted Or phosphorus to 18 丄WlOOOr '▼ 4 : J :.:. — Placed in a configuration in the vacuum 5. As in the patent application, the first item has a rate of approximately 13.56 MHz. In the substrate on the electrode inside the container. The plasma doping method, wherein the first frequency is 6. The plasma doping method rate of the second item of the patent application is about 13.56 MHz. 7. The plasma doping method rate of item 3 of the patent application is about 13.56 MHz. 8. The plasma doping method rate of item 7 of the patent application is about 900 kHz. Wherein the first frequency is the first frequency, wherein the second frequency is a plasma doping method rate of about 13.56 MHz. 10' The plasma doping method rate of item 9 of the patent application is about 900 kHz. Where the first frequency is the second frequency 1919
TW092125349A 2002-07-11 2003-09-15 Plasma doping method TWI331000B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002202483A JP4013674B2 (en) 2002-07-11 2002-07-11 Plasma doping method and apparatus
US10/615,851 US20040045507A1 (en) 2002-07-11 2003-07-10 Apparatus for plasma doping

Publications (2)

Publication Number Publication Date
TW200503588A TW200503588A (en) 2005-01-16
TWI331000B true TWI331000B (en) 2010-09-21

Family

ID=34590540

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092125349A TWI331000B (en) 2002-07-11 2003-09-15 Plasma doping method

Country Status (2)

Country Link
CN (1) CN100373549C (en)
TW (1) TWI331000B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021002A (en) * 1959-09-10 1962-02-13 Guyer Reynolds Tissue packages
US4912065A (en) * 1987-05-28 1990-03-27 Matsushita Electric Industrial Co., Ltd. Plasma doping method
JP3862305B2 (en) * 1995-10-23 2006-12-27 松下電器産業株式会社 Impurity introduction method and apparatus, and semiconductor device manufacturing method
JP3387488B2 (en) * 2000-12-01 2003-03-17 日新電機株式会社 Ion beam irradiation equipment
JP2002170782A (en) * 2000-12-04 2002-06-14 Matsushita Electric Ind Co Ltd Plasma doping method and device thereof
TWI241868B (en) * 2002-02-06 2005-10-11 Matsushita Electric Ind Co Ltd Plasma processing method and apparatus

Also Published As

Publication number Publication date
CN100373549C (en) 2008-03-05
TW200503588A (en) 2005-01-16
CN1577747A (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3653524B2 (en) Plasma generation method and plasma generation apparatus including inductively coupled plasma generation source
US6300227B1 (en) Enhanced plasma mode and system for plasma immersion ion implantation
US5556521A (en) Sputter etching apparatus with plasma source having a dielectric pocket and contoured plasma source
US7041341B2 (en) Process for the fabrication of oxide films
US7575987B2 (en) Method of plasma doping
TW386237B (en) Apparatus and method for generation of a plasma torch
CN103347360B (en) Plasma treatment appts
KR100265617B1 (en) Plasma reactor using electromagnetic rf coupling and processes
TWI290809B (en) Procedure and device for the production of a plasma
US8662010B2 (en) Plasma processing apparatus, plasma processing method, plasma film deposition apparatus, and plasma film deposition method
CN106663609A (en) A high power impulse magnetron sputtering process to achieve a high density high SP3 containing layer
TW200947590A (en) Gas modulation to control edge exclusion in a bevel edge etching plasma chamber
TW200908139A (en) Hybrid etch chamber with decoupled plasma controls
JP2003533022A (en) Neutral beam processing equipment
TW483062B (en) IMP technology with heavy gas sputtering
JP2002510858A5 (en)
TW454431B (en) Film deposition method for forming copper film
TWI331000B (en) Plasma doping method
US6710524B2 (en) Plasma source
KR100641956B1 (en) Sputter target for physical vapor deposition
US20030006130A1 (en) Method and apparatus for inductively coupled plasma treatment
EP1144717A1 (en) Enhanced plasma mode, method, and system for plasma immersion ion implantation
Beckman et al. Capacitively coupled rf plasma sources: a viable approach for CVD diamond growth?
TWI553138B (en) Sputtering film forming device
TWI301731B (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees