TWI326500B - Light-emitting diode and method for manufacturing the same - Google Patents

Light-emitting diode and method for manufacturing the same Download PDF

Info

Publication number
TWI326500B
TWI326500B TW96104324A TW96104324A TWI326500B TW I326500 B TWI326500 B TW I326500B TW 96104324 A TW96104324 A TW 96104324A TW 96104324 A TW96104324 A TW 96104324A TW I326500 B TWI326500 B TW I326500B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
layer
semiconductor layer
electrical semiconductor
Prior art date
Application number
TW96104324A
Other languages
Chinese (zh)
Other versions
TW200834959A (en
Inventor
Jinn Kong Sheu
Original Assignee
Chi Mei Optoelectronics Corp
Ncku Res & Dev Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Optoelectronics Corp, Ncku Res & Dev Foundation filed Critical Chi Mei Optoelectronics Corp
Priority to TW96104324A priority Critical patent/TWI326500B/en
Publication of TW200834959A publication Critical patent/TW200834959A/en
Application granted granted Critical
Publication of TWI326500B publication Critical patent/TWI326500B/en

Links

Description

1326500 九、發随說_ 'λ· · ' 【發明所屬之技術領域】 - 本發明是有關於一種光電元件及其製作,且特別是有關 於一種發光二極體(LED)及其製造方法。 . 【先前技術】 . 目前,覆晶(FliP_chiP)封裝技術已廣泛地應用在發光二 極體元件之製作上,以提高發光二極體元件之發光效率。除 φ 了可提升發光效率外,覆晶式發光二極體亦具有免打線 (Wire Bonding)製程,以及發光磊晶結構可直接與子基座 (Sub-mount)結合的優勢。此外,更可藉由選用高導熱係數 及導電之子基座’可使發光二極體元件進一步具有高功率操 作特性。 . 對於氤化鎵系列(GaN-based)發光二極體而言,由於目 前大都以藍寶石作為磊晶基板,而藍寶石基板在可見光範圍 内具有絕佳的透明度,因此覆晶式氮化鎵發光二極體元件的 _ 製作過程中,無需將磊晶基板移除。 另一方面’對於神化鎵系列(Ga As-based)發光二極體而 言,由於大都係以砷化鎵基板來作為磊晶基板,而砷化鎵基 板係一吸光基板,因此要製作覆晶式發光二極體元件時,則 需將此吸光基板予以全部移除或部分移除。而由於發光磊晶 結構之厚度相當薄,因此需再搭配晶圓鍵結(Wafer Bonding) 技術’來將發光蠢晶結構與一子基板結合,藉以支樓磊晶基 板移除後所留下之發光磊晶結構。 目前,發光二極體的晶圓鍵結技術通常是利用黏著介質 1326500 來進订發光磊晶結構與子基板之接合,或者利用加壓加熱的 方式使二晶片互相鍵結而接合。然而,利用黏著介質接合發 -光磊晶結構與子基板時,在貼合過程中相當容易在貼合介面 .中產生氣泡,而氣泡的存在會導致接合強度下降,嚴重影響 接合製程的可靠度與良率β此外,利用加壓加熱的晶圓鍵結 .方式,需考慮二鍵結表面之晶格排列,因此不僅會增加接合 •製程的複雜度與困難度,且接合強度常無法滿足元件需求 進而嚴重影響接合製程之可靠度與良率。 【發明内容】 因此本發明之目的就是在提供一種發光二極體,其透 明永久基板係直接成長在窗戶層之表面上,因此可大大地增 進透明永久基板與發光磊晶結構之結合力。 . 本發明之另一目的是在提供一種發光二極體之製造方 法,其係直接在窗戶層之表面上成長透明基板,而非利用晶 圓鍵結方式’因此可簡化製程’更可提高製程良率。 • 根據本發明之上述目的,提出一種發光二極體,至少包 括:一窗戶層,具有相對之第一表面與第二表面;一發光磊 晶結構,設於窗戶層之第一表面之第一部分,並暴露出窗戶 層之第一表面之第二部分,其中發光磊晶結構至少包括依序 堆疊在®戶層之第二電性半導體層、主動層以及第一電性半 導體層,且第一電性半導體層與第二電性半導體層具有不同 電性;一透明基板,直接成長在窗戶層之第二表面;一第二 電極’設於窗戶層之第一表面之第二部分;一第一電極,設 於部分之第一電性半導體層上;以及一子基座,其中子基座 1326500 透過一導電介質而分別與第一電極和第二電極電性接合。 依照本發明一較佳實施例,上述透明基板係旋塗透明美 - 板。 土 根據本發明之目的,提出一種發光二極體之製造方法, 至少包括:提供—原生基板(Growth Substrate);形成一反射 •層於原生基板上;形成一發光磊晶結構於反射層上,其中發 .光磊晶結構至少包括依序堆疊在反射層上之第一電性半導 體層、主動層以及第二電性丨導體層;$成一窗戶4於第二 _ 韓半導體層L成長一透明基板於窗戶層移除原生基 板之部分厚度;#除部分之原生基板、部分之反射層與部: 之發光磊晶結構,直至暴露出部分之窗戶層;形成一第一電 極以及一第二電極分別位於部分之原生基板與窗戶層之暴 露部分上;以及接合一子基座與發光磊晶結構。 . 依照本發明一較佳實施例,上述之原生基板可完全移 除。 依照本發明之另-較佳實施例,上4成長透明基板之步 •驟包括進行複數個旋塗玻璃(Spin-on-glass; S0G)製程。 【實施方式】 本發明揭露一種發光二極體及其製造方法,可簡化接合 製程,並大幅提高接合製程的良率與可靠度。為了使本發: 之敘述更加詳盡與完備’可參照下列描述並配合第Μ圖至 第2G圖之圖式。 請參照第1A圖至第1G圖,其騎示依照本發明一較 佳實施例的-種發光二極體之製程剖面圖。在本示範實施例 1326500 中’主要係提供砷化鎵系列之發光二極體及其製作。首先, 提供原生基板100’其中原生基板10〇之材料可例如為砷化 ' 鎵。再利用例如有機金屬化學氣相沉積法(MOCVD),於原 生基板100之表面上磊晶成長發光磊晶結構102,其中發光 蟲晶結構102可為雙異質接面(Double Heterostructure)結 * 構。發光磊晶結構1 〇2至少包括第一電性半導體層i 〇4、主 動層106以及第二電性半導體層108,其中第一電性半導體 層104覆蓋在原生基板丨00之表面上,主動層1〇6覆蓋堆疊 # 在第一電性半導體層1〇4上,而第二電性半導體層1〇8覆蓋 堆疊在主動層106上。第一電性半導體層1〇4與第二電性半 導體層108具有不同電性。舉例而言,當第一電性為 時,第二電性為P型;而當第一電性為p型時,第二電性 為N型。在本示範實施例中,第一電性為\型,且第二電 • 性為P型。此外,第一電性半導體層1 04之材料可例如為N 型摻雜之填化鋁鎵銦(AlGaInp);而第二電性半導體層 之材料可例如為P型摻雜之磷化鋁鎵銦。主動層1〇6較佳 φ 可為碟化铭鎵銦多重量子井(Multiquantum Well, MQW)結 構。接下來,利用例如有機金屬化學氣相沉積法於發光蟲 晶結構102之第二電性半導體層1〇8上形成窗戶層11〇,如 第1A圖所示。其中,窗戶層11〇之材料可例如為磷化鎵 (GaP)。窗戶層11〇之設置有助於分散電流。 接著,直接在®戶層110之表面Π2上成長透明基板 14來作為永久基板,如此一來透明基板114與發光蟲晶結 構102位於窗戶層11〇之相對兩側,如第圖所示。在本 不範實施例中,可利用旋塗玻璃法來成長透明基板114,因 1326500 此透明基板m可為旋塗透明基板。成長透明基板ιΐ4時, 可進行多次的旋塗玻璃製程形成多層透明薄膜,而由這些透 明薄膜層疊出具有所需厚度之透明基板114。在本示範實施 例中,透明基板114之材料可例如為二氧化邦i⑹、氮化 矽(SiN,)、氧化鎂(Mg0)、氮化鋁(A1N)'環氧樹酯、二氧化 鈦(Τι〇2)、氧化鋅(ZnO)或五氧化二鈕(Ta2〇5)等能隙大於主 動層106所發出之光的能量的材料。 由於’透明基板H4係直接製作成長在窗戶層ιι〇之表 面112’而非直接提供另—基板再利用晶㈣結方式來進行 晶板與發光€晶層的結合。因此,透明基& ιΐ4與窗戶層 110及發光磊晶結構102的結合無需再透過黏著介質,亦: 需考慮基板材料與欲接合表面之晶袼匹配問題,不僅^ 製程,有效降低製程難度,而可A幅提升製程的良率, 明基板114對窗戶層110具有較強之結合力,而 二極體元件的可靠度。 尤 完成透明基板m之製作後,利用例如濕式姓刻的方 式’移除會吸光之原生基板100’如第lc圖所示。在 =㈣中’完全㈣原生基板⑽’直至暴露出原本成: 在原生基板100表面上之發光遙晶結構1〇2的第 體層104,如第1D圖所示。 牛導 接下來,如第1E圖所示暴露出窗戶層ιι〇之 面116’方法例如可利用微影與蝕刻方式 刀 構1〇2之圖案定義,而移除部分 m曰曰結 暴露出窗戶層η。之一部分表==晶結構⑽,直至 ’刀衣卸i 1 6 ’以利後螗彻 能與窗戶層110形成接觸,推而 、/成之電極 Μ接冑4而可與第二電性半導體層⑽ 產生電性連接。 元成發光蠢晶結構102之圖宏々筅/么 積算β 圖案疋義後,利用例如蒸鍍沉 :等:=成第二電極118於窗戶層u〇之暴露表面ιΐ6 極m二,並利用例如蒸鍍沉積等技術形成第-電 =…第一電性半導體層104上,如第1F圖所示。 可進行發光二_之覆晶封裝製程。先提供子 =:其中子基座126之材料較佳可選用高導熱且導電 材枓’例如石夕。接著’透過導電介質,例如銲们22與辉球 =,將透明基板U4連同窗戶層11〇與發光蟲晶結構1〇2 f盘並接合在子基们26i,其中子基座m透過銲球122 與銲球m而分別與第二電極118及第一電極12〇電性接 合。至此’已大致完成發光二極體128之製作,而形成如第 1 G圖所示之結構。 請參照第2A圖至第2G圖,其係繪示依照本發明另一 較佳實施例的-種發光二極體之製程剖面圖。在本示範實施 例中’相同地,主要係提供坤化鎵系列之發光二極體及其製 作。首先’提供原生基板200,其中原生基板2〇〇之材料可 例如為坤化鎵。再於原生基板2〇〇上形成反射& 2〇2,其中 反射層202可例如為分散式布拉格反射(以…比…以1326500 九、发发说_ 'λ·· ' [Technical Field of the Invention] - The present invention relates to a photovoltaic element and its fabrication, and more particularly to a light-emitting diode (LED) and a method of manufacturing the same. [Prior Art] At present, flip chip (FliP_chiP) packaging technology has been widely used in the fabrication of light-emitting diode elements to improve the luminous efficiency of light-emitting diode elements. In addition to φ to improve luminous efficiency, flip-chip LEDs also have a wire bonding process, and the advantages of luminescent epitaxial structure can be directly combined with sub-mount. In addition, the light-emitting diode element can be further provided with high power operation characteristics by using a high thermal conductivity and a conductive sub-mount. For GaN-based luminescent diodes, sapphire is currently used as an epitaxial substrate, and sapphire substrates have excellent transparency in the visible range, so flip-chip GaN luminescence During the fabrication of the polar body component, it is not necessary to remove the epitaxial substrate. On the other hand, for the Ga As-based light-emitting diodes, since the gallium arsenide substrate is mostly used as an epitaxial substrate, and the gallium arsenide substrate is a light-absorbing substrate, a flip chip is required. In the case of a light-emitting diode component, all of the light-absorbing substrate needs to be removed or partially removed. Since the thickness of the luminescent epitaxial structure is relatively thin, it is necessary to use the Wafer Bonding technology to combine the luminescent structure with a sub-substrate, thereby leaving the epitaxial substrate removed. Luminous epitaxial structure. At present, the wafer bonding technology of the light-emitting diode usually uses the adhesive medium 1326500 to bond the light-emitting epitaxial structure to the sub-substrate, or the two wafers are bonded to each other by pressure heating. However, when the hair-light epitaxial structure and the sub-substrate are bonded by the adhesive medium, bubbles are easily generated in the bonding interface during the bonding process, and the presence of the bubbles may cause the bonding strength to decrease, which seriously affects the reliability of the bonding process. In addition to the yield β, in addition to the use of pressure-heated wafer bonding, the lattice arrangement of the two-bonded surface needs to be considered, so that the complexity and difficulty of bonding and process are not only increased, and the bonding strength often fails to satisfy the component. Demand, in turn, severely affects the reliability and yield of the bonding process. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light-emitting diode in which a transparent permanent substrate is directly grown on the surface of a window layer, thereby greatly enhancing the bonding force between the transparent permanent substrate and the luminescent epitaxial structure. Another object of the present invention is to provide a method for manufacturing a light-emitting diode which directly grows a transparent substrate on the surface of a window layer instead of using a wafer bonding method, thereby simplifying the process and improving the process. Yield. According to the above object of the present invention, a light emitting diode is provided, comprising at least: a window layer having opposite first and second surfaces; and an illuminating epitaxial structure disposed on the first portion of the first surface of the window layer And exposing a second portion of the first surface of the window layer, wherein the luminescent epitaxial structure comprises at least a second electrical semiconductor layer, an active layer, and a first electrical semiconductor layer sequentially stacked on the ® layer, and first The electrically conductive semiconductor layer and the second electrically conductive semiconductor layer have different electrical properties; a transparent substrate directly grows on the second surface of the window layer; and a second electrode is disposed on the second portion of the first surface of the window layer; An electrode is disposed on a portion of the first electrical semiconductor layer; and a submount, wherein the submount 1326500 is electrically coupled to the first electrode and the second electrode through a conductive medium. In accordance with a preferred embodiment of the present invention, the transparent substrate is a spin-on transparent plate. According to the purpose of the present invention, a method for manufacturing a light-emitting diode includes at least: providing a primary substrate (Growth Substrate); forming a reflective layer on the primary substrate; forming a light-emitting epitaxial structure on the reflective layer, The optical epitaxial structure includes at least a first electrical semiconductor layer, an active layer, and a second electrical germanium conductor layer sequentially stacked on the reflective layer; and a window 4 is grown transparently in the second semiconductor layer L The substrate removes a portion of the thickness of the native substrate in the window layer; #excluding a portion of the native substrate, a portion of the reflective layer and the portion: the luminescent epitaxial structure until a portion of the window layer is exposed; forming a first electrode and a second electrode And respectively on a portion of the exposed portion of the native substrate and the window layer; and bonding a submount to the luminescent epitaxial structure. According to a preferred embodiment of the present invention, the above-mentioned native substrate can be completely removed. In accordance with another preferred embodiment of the present invention, the step of growing the transparent substrate by the upper 4 includes performing a plurality of spin-on-glass (S0G) processes. [Embodiment] The present invention discloses a light-emitting diode and a method of manufacturing the same, which can simplify the bonding process and greatly improve the yield and reliability of the bonding process. In order to make the description of the present invention more detailed and complete, the following description can be referred to and the drawings of Figures 2 to 2G can be used. Referring to Figures 1A through 1G, a process cross-sectional view of a light-emitting diode in accordance with a preferred embodiment of the present invention is shown. In the present exemplary embodiment 1326500, a light-emitting diode of a gallium arsenide series is mainly provided and its fabrication. First, the material of the native substrate 100' in which the native substrate 10 is provided may be, for example, arsenic 'gallium. The luminescent epitaxial structure 102 is epitaxially grown on the surface of the native substrate 100 by, for example, organometallic chemical vapor deposition (MOCVD), wherein the luminescent german crystal structure 102 can be a double Heterostructure. The luminescent epitaxial structure 1 〇 2 includes at least a first electrical semiconductor layer i 〇 4 , an active layer 106 , and a second electrical semiconductor layer 108 , wherein the first electrical semiconductor layer 104 covers the surface of the native substrate 丨 00, actively The layer 1〇6 covers the stack # on the first electrical semiconductor layer 1〇4, and the second electrical semiconductor layer 1〇8 is overlaid on the active layer 106. The first electrical semiconductor layer 1〇4 and the second electrical semiconductor layer 108 have different electrical properties. For example, when the first electrical property is , the second electrical property is a P-type; and when the first electrical property is a p-type, the second electrical property is an N-type. In the exemplary embodiment, the first electrical property is a type and the second electrical property is a P type. In addition, the material of the first electrical semiconductor layer 104 may be, for example, an N-type doped aluminum gallium indium (AlGaInp); and the material of the second electrical semiconductor layer may be, for example, a P-type doped aluminum gallium phosphide. indium. The active layer 1 〇 6 is preferably φ. It can be a multi-quantum well (MQ) structure. Next, a window layer 11 is formed on the second electrical semiconductor layer 1 8 of the luminescent insect crystal structure 102 by, for example, an organometallic chemical vapor deposition method, as shown in Fig. 1A. The material of the window layer 11 can be, for example, gallium phosphide (GaP). The setting of the window layer 11 有助于 helps to disperse the current. Next, the transparent substrate 14 is grown directly on the surface Π 2 of the ® layer 110 as a permanent substrate, such that the transparent substrate 114 and the luminescent crystal structure 102 are located on opposite sides of the window layer 11 , as shown in the figure. In the present embodiment, the transparent substrate 114 can be grown by a spin-on glass method, since the 1326500 transparent substrate m can be a spin-on transparent substrate. When the transparent substrate ι 4 is grown, a plurality of spin-on-glass processes can be performed to form a plurality of transparent films, and the transparent films 114 having a desired thickness are laminated from the transparent films. In the exemplary embodiment, the material of the transparent substrate 114 may be, for example, a dioxide (i), a tantalum nitride (SiN), a magnesium oxide (Mg0), an aluminum nitride (A1N) epoxy resin, or a titanium dioxide (Τι〇). 2) A material such as zinc oxide (ZnO) or pentoxide oxide (Ta2〇5) having an energy gap larger than that of the light emitted by the active layer 106. Since the 'transparent substrate H4 is directly formed on the surface 112' of the window layer, instead of directly providing another substrate-reversing crystal (four) junction, the combination of the crystal plate and the luminescent layer is performed. Therefore, the combination of the transparent substrate & ι 4 with the window layer 110 and the luminescent epitaxial structure 102 does not need to pass through the adhesive medium, and the problem of matching the substrate material with the surface to be bonded is considered, which not only reduces the process, but also effectively reduces the difficulty of the process. The A-layer can improve the yield of the process, and the substrate 114 has a strong bonding force to the window layer 110, and the reliability of the diode element. In particular, after the fabrication of the transparent substrate m is completed, the native substrate 100' which absorbs light is removed by, for example, a wet pattern, as shown in Fig. 1c. In the (four) 'complete (four) primary substrate (10)' until the original layer 104 of the luminescent crystal structure 1 〇 2 on the surface of the primordial substrate 100 is exposed, as shown in Fig. 1D. Next, as shown in FIG. 1E, the method of exposing the surface of the window layer 116' can be defined by the pattern of the lithography and etching method, and the portion of the m曰曰 junction is exposed to expose the window. Layer η. A part of the table == crystal structure (10), until the 'knife unloading i 1 6 ' to facilitate the formation of contact with the window layer 110, and the electrode is connected to the 胄 4 and the second electrical semiconductor Layer (10) produces an electrical connection. Yuan Cheng luminous stupid crystal structure 102 map Acer / ah count β pattern after the meaning, using, for example, vapor deposition sink: etc.: = into the second electrode 118 on the window layer u〇 exposed surface ιΐ6 pole m two, and use For example, a technique such as vapor deposition is formed on the first electric semiconductor layer 104 as shown in FIG. 1F. The lithography process can be performed. First supply sub- =: wherein the material of the sub-mount 126 is preferably a high thermal conductivity and conductive material 枓' such as Shi Xi. Then, through the conductive medium, such as the solder 22 and the glow ball =, the transparent substrate U4 together with the window layer 11 and the luminescent crystal structure 1 〇 2 f disk and bonded to the sub-base 26i, wherein the sub-mount m passes the solder ball 122 and the solder ball m are electrically connected to the second electrode 118 and the first electrode 12, respectively. Up to this point, the fabrication of the light-emitting diode 128 has been substantially completed, and the structure as shown in Fig. 1G has been formed. Referring to Figures 2A through 2G, there are shown process cross-sectional views of a light-emitting diode in accordance with another preferred embodiment of the present invention. In the present exemplary embodiment, the light-emitting diode of the Kunming gallium series and its production are mainly provided. First, the native substrate 200 is provided, wherein the material of the primary substrate 2 can be, for example, a gallium hydride. Forming a reflection & 2〇2 on the native substrate 2〇〇, wherein the reflective layer 202 can be, for example, a decentralized Bragg reflection (in order to...

RefleCt〇r; DBR)層。接下來’利用例如有機金屬化學氣相 沉積法’於原生純200之表面上蟲晶成長發光磊晶結構 204 ’其中發光蟲晶結構2G4可為雙異質接面結構。發光兹 晶結構204至少包括第一電性半導體層2〇6、主動層2〇8以 及第二電性半導體層21〇,其中第一電性半導體層2〇6覆蓋 在反射層202上,主動層2〇8覆蓋堆疊在第一電性半導體層 1326500 206上,而第二電性半導體層 上。第-電性半導趙層與第_電=堆叠在主動層綱 同電性,其中當第一電性為二7時電性第”:層210具有不 杳第一雷. 里矸第二電性為Ρ型,·而 田弟 ¥性為Ρ型時,第二雷 Ψ ^ M-WHjl Ν 丨為Ν型。在本示範實施例 Τ乐電性為Ν型,且第二電 W:主逡雜a。 电Γ^Ρ型。此外,第一電 性丰導體層206之材料可例如為 而第二電性半導體層21里摻雜之鱗化銘鎵銦; 42 〇 ± φ, Β. '可例如為P型摻雜之磷化 鋁鎵銦主動層208較佳可為磷化钮RefleCt〇r; DBR) layer. Next, the luminescent crystal epitaxial structure 204' is grown on the surface of the virgin pure 200 by, for example, an organometallic chemical vapor deposition method, wherein the luminescent crystal structure 2G4 may be a double heterojunction structure. The illuminating crystal structure 204 includes at least a first electrical semiconductor layer 2〇6, an active layer 2〇8, and a second electrical semiconductor layer 21〇, wherein the first electrical semiconductor layer 2〇6 is overlaid on the reflective layer 202, and is active. The layer 2 〇 8 is overlaid on the first electrical semiconductor layer 1326500 206 and on the second electrical semiconductor layer. The first-electric semi-conductive layer and the first-electron=stack are in the active layer, wherein when the first electrical property is two, the electrical first: the layer 210 has the first thunder. The electric property is a Ρ type, and when the Tiandi 性 is a Ρ type, the second Ψ Ψ M M W W j 丨 丨 丨 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In addition, the material of the first electrically conductive conductor layer 206 may be, for example, a scalloped indium gallium doped in the second electrical semiconductor layer 21; 42 〇± φ, Β The phosphorous aluminum gallium indium active layer 208, which may be, for example, a P-type doped, is preferably a phosphorylation button.

, 嶙化鋁鎵銦多重量子井結構。 接者利用例如有機金屬化學氣相·ν接、土 9Π4 ^ , 軋相,儿積法,於發光磊晶結構 204之第一電性半導體層21〇 灸士 工办成窗戶層212,以利分散 電流,而形成如第2A圖所示之任糂甘士 口 π不之結構。其中,窗戶層 材料可例如為磷化鎵。 巧以之 接者,直接在窗戶層212之表面214上成長透明基板 21 ’以作為發光二極體元件之永久基板,如此—來透明基 板川與發光蠢晶結構綱位於窗戶層212之相對兩側,如 第2Β圖所示。在本示範實施例中,可利用旋塗玻璃法來成 長透明基板216,因此透明基板216可為旋塗透明基板。成 長透明基板216時’可進行多次的旋塗玻璃製程形成多層透 明薄膜,而由這些透明薄膜層疊出具有所需厚度之透明基板 216。在本示範實施例中,透明基板216之材料可例如為二 氧化矽、氮化矽(SiNx)、氧化鎂(Mg0)、氮化鋁(Α丨Ν)、環氧 樹酯、二氧化鈦、氧化鋅或五氧化二鈕等能隙大於主動層 208所發出之光的能量的材料。 由於透明基板216係直接製作成長在窗戶層212之表面 214 ,因此透明基板216與窗戶層212及發光磊晶結構1〇2 1326500 的結合無需再透過黏著介質,亦無需考慮基板材料與欲接合 表面之曰曰格匹配問題,不僅可簡化製程、降低製程難度,因 可大1知:升製程的良率。此外’透明基板216對窗戶層 . 之、° σ力亦可獲得顯著提升,進一步可提高發光二極體 元件的可靠度。 . 元成透明基板216之成長後,由於原生基板200與發光 磊晶結構204之間設有反射層202,因此原生基板200無須 70全移除,而利用例如濕式蝕刻的方式移除吸光之原生基板 • 200之部分厚度即可。但是,值得注意的一點是,原生基板 200仍可疋全移除。在本示範實施例中,僅移除具有部分厚 度之原生基板20〇a,而留下具有另一部分厚度之原生基板 2〇〇b,如第2C圖所示。留下之原生基板2〇〇b可提供發光 磊晶結構204結構支撐。如第2D圖所示,有了殘留原生基 板200b所提供之結構強度,可不需太大厚度之透明基板 216,如此一來可縮減透明基板216之成長製程的時間。 接著,如第2E圖所示暴露出窗戶層212之一部分表面 φ 218,方法例如可利用微影與蝕刻方式來進行發光磊晶結構 204之圖案定義,而移除部分之原生基板2〇〇b、反射層 以及發光磊晶結構204,直至暴露出窗戶層212之一部分表 面218,以利後續形成之電極能與窗戶層212形成接觸,進 一步可與第二電性半導體層21〇產生電性連接。 完成發光磊晶結構204之圖案定義後,利用例如蒸鍍沉 積等技術’形成第二電極220於窗戶層212之暴露表面218 的一部分上,並形成第一電極222於部分之原生基板2〇仆 上,如第2F圖所示。 12 1326500, bismuth aluminum gallium indium multiple quantum well structure. The first electrical semiconductor layer 21 of the luminescent epitaxial structure 204 is used to form the window layer 212 by using, for example, an organometallic chemical vapor phase, a ν connection, a soil 9 Π 4 ^ , a rolling phase, and a chiral method. The current is dispersed to form a structure as shown in FIG. 2A. Among them, the window layer material may be, for example, gallium phosphide. By the way, the transparent substrate 21' is grown directly on the surface 214 of the window layer 212 as a permanent substrate of the light-emitting diode element, so that the transparent substrate and the light-emitting crystal structure are located opposite to the window layer 212. Side, as shown in Figure 2. In the present exemplary embodiment, the transparent substrate 216 can be grown by a spin-on glass method, and thus the transparent substrate 216 can be a spin-on transparent substrate. When the transparent substrate 216 is grown, a plurality of spin-on-glass processes can be performed to form a plurality of transparent films, and a transparent substrate 216 having a desired thickness is laminated from the transparent films. In the exemplary embodiment, the material of the transparent substrate 216 may be, for example, hafnium oxide, tantalum nitride (SiNx), magnesium oxide (Mg0), aluminum nitride (yttrium), epoxy resin, titanium dioxide, zinc oxide. Or a material such as a pentoxide button that has an energy gap greater than that of the light emitted by the active layer 208. Since the transparent substrate 216 is directly formed on the surface 214 of the window layer 212, the combination of the transparent substrate 216 and the window layer 212 and the luminescent epitaxial structure 1 〇 2 1326500 does not need to pass through the adhesive medium, and the substrate material and the surface to be bonded need not be considered. The grid matching problem not only simplifies the process and reduces the difficulty of the process, but also makes it possible to know the yield of the process. In addition, the ' σ force of the transparent substrate 216 to the window layer can be significantly improved, and the reliability of the light-emitting diode element can be further improved. After the growth of the transparent substrate 216, since the reflective layer 202 is disposed between the native substrate 200 and the luminescent epitaxial structure 204, the native substrate 200 does not need to be completely removed, and the light absorbing is removed by, for example, wet etching. The original substrate • 200 parts of the thickness can be. However, it is worth noting that the native substrate 200 can still be completely removed. In the present exemplary embodiment, only the native substrate 20A having a partial thickness is removed, leaving the native substrate 2?b having another thickness, as shown in Fig. 2C. The remaining native substrate 2〇〇b provides structural support for the luminescent epitaxial structure 204. As shown in Fig. 2D, with the structural strength provided by the residual native substrate 200b, the transparent substrate 216 of too large a thickness is not required, so that the growth process of the transparent substrate 216 can be reduced. Then, as shown in FIG. 2E, a portion of the surface φ 218 of the window layer 212 is exposed. For example, the pattern definition of the luminescent epitaxial structure 204 can be performed by using lithography and etching, and the partial substrate 2 〇〇b is removed. The reflective layer and the luminescent epitaxial structure 204 are exposed until a portion of the surface 218 of the window layer 212 is exposed, so that the subsequently formed electrode can be in contact with the window layer 212, and further electrically connected to the second electrical semiconductor layer 21 . After the pattern definition of the luminescent epitaxial structure 204 is completed, the second electrode 220 is formed on a portion of the exposed surface 218 of the window layer 212 by a technique such as vapor deposition, and the first electrode 222 is formed on a portion of the native substrate 2 Above, as shown in Figure 2F. 12 1326500

然後,可選擇性地先㈣例如沉積方式形成保❹ 224,以覆蓋在原生基板200b上,以及先前經圖案定義後所 暴露出之反射層202側面與發光為晶結構2〇4之側面上。並 :’保護層224之材料可例如為二氧化石夕、氮化矽⑽二 氧化鎂(MgO)、氮化叙(A1N)、環氧樹酿、:氧化欽、氧化 鋅或五氧化二卜接著,即可進行發光二極體之覆晶封裝製 程。先提供子基座230,其中子基座⑽之材㈣佳可選用 高導熱且導電材料’例如矽。再透過導電介質,例如銲球 226與銲球228,將透明基板216連同窗戶層212、發光磊 晶結構204、反射層202與留下之原生基板2〇〇b覆蓋並接 合在子基座230上’其中子基座no透過銲球226與詳球 228而分別與第二電極22〇及第一電極222電性接合,而大 致完成發光二極體232之製作,如第20圖所示。 由上述本發明較佳實施例可知,本發明之一優點就是因 為本發明之發光二極體的透明永久基板係直接成長在窗戶 層之表面上,因此可增強透明永久基板與發光磊晶結構之結 合力。 由上述本發明較佳實施例可知,本發明之另一優點就是 因為本發明之發光二極體之製造方法係直接在窗戶層之表 面上成長透明基板,而非利用晶圓鍵結方式,因此可簡化製 程’更可提高製程良率。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明’任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内’當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為準。 13 1326500Then, a protective layer 224 may be selectively formed first (e.g., by deposition) to cover the native substrate 200b, and the side of the reflective layer 202 exposed by the pattern definition and the side illuminated by the crystal structure 2〇4. And: 'the material of the protective layer 224 can be, for example, a dioxide dioxide, a tantalum nitride (10) magnesium dioxide (MgO), a nitride (A1N), an epoxy tree, an oxidized chin, a zinc oxide or a pentoxide. Then, the flip chip packaging process of the light emitting diode can be performed. Sub-base 230 is provided first, wherein the material (4) of sub-base (10) is preferably made of a highly thermally conductive and electrically conductive material such as germanium. The transparent substrate 216 is further covered and bonded to the sub-base 230 along with the window layer 212, the luminescent epitaxial structure 204, the reflective layer 202 and the remaining native substrate 2〇〇b through a conductive medium, such as solder balls 226 and solder balls 228. The upper sub-base 00 is electrically coupled to the second electrode 22A and the first electrode 222 through the solder ball 226 and the detailed ball 228, respectively, to substantially complete the fabrication of the light-emitting diode 232, as shown in FIG. According to the preferred embodiment of the present invention, one of the advantages of the present invention is that the transparent permanent substrate of the light-emitting diode of the present invention directly grows on the surface of the window layer, thereby enhancing the transparent permanent substrate and the luminescent epitaxial structure. Binding force. According to the preferred embodiment of the present invention, another advantage of the present invention is that the manufacturing method of the light-emitting diode of the present invention directly grows the transparent substrate on the surface of the window layer instead of using the wafer bonding method. Simplify the process' to improve process yield. The present invention has been described above in terms of a preferred embodiment, and it is not intended to limit the invention. Any of the ordinary skill in the art can be made without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. 13 1326500

【圖式簡單說明】 第1A圖至第lG 圓係繪示依照本發明一較佳實施例的 一種發先一極體之製程剖面圖。 第2Α圖至第2G圖係繪示依照本發明另一較佳實施例 的一種發光二極體之製程剖面圖。 【主要元件符號說明】BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A to Fig. 1G are schematic cross-sectional views showing a process of a first embodiment according to a preferred embodiment of the present invention. 2D through 2G are cross-sectional views showing a process of a light emitting diode according to another preferred embodiment of the present invention. [Main component symbol description]

102 :發光為晶結構 106 :主動層 110 :窗戶層 114 :透明基板 118 :第二電極 122 :銲球 126 :子基座 200 :原生基板 2〇〇b :原生基板 204 :發光磊晶結構 208 :主動層 212 :窗戶層 216 :透明基板 220 :第二電極 224 :保護層 228 :銲球 232:發光二極體 10 0 .原生基板 104.第一電性半導體層 108.第二電性半導體層 112 :表面 116 :表面 120 :第一電極 124 :銲球 128 :發光二極體 200a :原生基板 202 :反射層 206 :第一電性半導體層 210 :第二電性半導體層 214 :表面 218 :表面 222 :第一電極 226 :銲球 230 :子基座102: Illumination is a crystal structure 106: Active layer 110: Window layer 114: Transparent substrate 118: Second electrode 122: Solder ball 126: Sub-base 200: Native substrate 2〇〇b: Native substrate 204: Light-emitting epitaxial structure 208 Active layer 212: window layer 216: transparent substrate 220: second electrode 224: protective layer 228: solder ball 232: light emitting diode 10 0. native substrate 104. first electrical semiconductor layer 108. second electrical semiconductor Layer 112: surface 116: surface 120: first electrode 124: solder ball 128: light emitting diode 200a: native substrate 202: reflective layer 206: first electrical semiconductor layer 210: second electrical semiconductor layer 214: surface 218 : surface 222: first electrode 226: solder ball 230: sub-base

Claims (1)

1326500 十、申蠢專利範顧 1. 一種發光二極體’至少包括: 一窗戶層,具有相對之一第一表面與一第二表面; 一發光磊晶結構,設於該窗戶層之該第一表面之一第 一部分,其中該發光磊晶結構至少包括依序堆疊在該窗戶 層之一第二電性半導體層、一主動層以及一第一電性半導 體層,且該第一電性半導體層與該第二電性半導體層具有 不同電性; 一透明基板,直接成長在該窗戶層之該第二表面; 一第二電極,設於該窗戶層之該第一表面之一第二部 分; ° 一第一電極,設於部分之該第一電性半導體層上;以 及 一子基座,其中該子基座透過二導電介質而分別與該 第—電極和該第二電極電性接合。 2. 如申凊專利範圍第1項所述之發光二極體,其中 5發光_極體係一珅化鎵系列(GaAs-based)發光二極體。 3. 如申請專利範圍第1項所述之發光二極體,其中 該第一電性半導體層為N型,且該第二電性半導體層為p 型。 4.如申請專利範圍第1項所述之發光二極體,其中 15 1326500 該窗戶層之材料為磷化鎵(GaP) β 5. 如申請專利範圍第4項所述之發光二極體,其中 該第一電性半導體層之材料為磷化鋁鎵銦(AlGaInP)。 6. 如申請專利範圍第5項所述之發光二極體,其中 該第二電性半導體層之材料為磷化鋁鎵銦。 7. 如申請專利範圍第1項所述之發光二極體,其中 該透明基板之材料係選自於由二氧化矽(si〇2)、氮化石夕 (SiNx)、氧化鎂(Mg〇)、氮化鋁(A1N)、環氧樹酯、二氧化 鈦(Ti〇2)、氧化鋅(Zn0)以及五氧化二钽(τ&2〇5)所組成之 一族群。 8. 如申請專利範圍第1項所述之發光二極體,其中 該透明基板係一旋塗透明基板。 9. 如申請專利範圍第丨項所述之發光二極體,其中 該子基座之材料為石夕。 10. 如申請專利範圍第i項所述之發光二極體,更至 少包括一反射層設於該第一電性半導體層上,且介於該第 一電性半導體層與該第一電極之間。1326500 X. Supreme Patent Fan Gu 1. A light-emitting diode 'at least includes: a window layer having a first surface and a second surface; a luminescent epitaxial structure disposed on the window layer a first portion of a surface, wherein the luminescent epitaxial structure comprises at least one of a second electrical semiconductor layer, an active layer, and a first electrical semiconductor layer stacked in sequence on the window layer, and the first electrical semiconductor The layer and the second electrical semiconductor layer have different electrical properties; a transparent substrate directly growing on the second surface of the window layer; a second electrode disposed on the second portion of the first surface of the window layer a first electrode disposed on a portion of the first electrical semiconductor layer; and a submount, wherein the submount is electrically coupled to the first electrode and the second electrode through the second conductive medium . 2. The light-emitting diode according to claim 1, wherein the light-emitting diode system is a GaAs-based light-emitting diode. 3. The light-emitting diode of claim 1, wherein the first electrical semiconductor layer is N-type and the second electrical semiconductor layer is p-type. 4. The light-emitting diode according to claim 1, wherein the material of the window layer is gallium phosphide (GaP) β. 5. The light-emitting diode according to claim 4, The material of the first electrical semiconductor layer is aluminum gallium indium phosphide (AlGaInP). 6. The light-emitting diode according to claim 5, wherein the material of the second electrical semiconductor layer is aluminum gallium indium phosphide. 7. The light-emitting diode according to claim 1, wherein the material of the transparent substrate is selected from the group consisting of cerium oxide (si〇2), cerium nitride (SiNx), and magnesium oxide (Mg 〇). A group consisting of aluminum nitride (A1N), epoxy resin, titanium dioxide (Ti〇2), zinc oxide (Zn0), and antimony pentoxide (τ&2〇5). 8. The light-emitting diode according to claim 1, wherein the transparent substrate is a spin-on transparent substrate. 9. The light-emitting diode according to claim 2, wherein the material of the sub-base is Shi Xi. 10. The light-emitting diode according to claim i, further comprising a reflective layer disposed on the first electrical semiconductor layer and interposed between the first electrical semiconductor layer and the first electrode between. 11·如申請專利範圍第10項所述之發光二極11. The luminous diode as described in claim 10
TW96104324A 2007-02-06 2007-02-06 Light-emitting diode and method for manufacturing the same TWI326500B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96104324A TWI326500B (en) 2007-02-06 2007-02-06 Light-emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96104324A TWI326500B (en) 2007-02-06 2007-02-06 Light-emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200834959A TW200834959A (en) 2008-08-16
TWI326500B true TWI326500B (en) 2010-06-21

Family

ID=44819580

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96104324A TWI326500B (en) 2007-02-06 2007-02-06 Light-emitting diode and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI326500B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759865B2 (en) 2010-08-03 2014-06-24 Industrial Technology Research Institute Light emitting diode chip, light emitting diode package structure, and method for forming the same
US9178107B2 (en) 2010-08-03 2015-11-03 Industrial Technology Research Institute Wafer-level light emitting diode structure, light emitting diode chip, and method for forming the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458126B (en) * 2009-12-10 2014-10-21 Nat Inst Chung Shan Science & Technology Method for forming thin-film structure of light-emitting device by nanoimprint
TWI466327B (en) * 2011-12-29 2014-12-21 Ind Tech Res Inst Method for fabricating wafer-level light emitting diode structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759865B2 (en) 2010-08-03 2014-06-24 Industrial Technology Research Institute Light emitting diode chip, light emitting diode package structure, and method for forming the same
US9178107B2 (en) 2010-08-03 2015-11-03 Industrial Technology Research Institute Wafer-level light emitting diode structure, light emitting diode chip, and method for forming the same

Also Published As

Publication number Publication date
TW200834959A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
US7129527B2 (en) Light emitting diode and method of making the same
US9224910B2 (en) Supporting substrate for preparing semiconductor light-emitting device and semiconductor light-emitting device using supporting substrates
US7544525B2 (en) AllnGaP LED having reduced temperature dependence
KR101503558B1 (en) Wire bond free wafer level led
EP1905103B1 (en) Method of fabricating a light emitting diode having a thermal conductive substrate
KR102276207B1 (en) Semiconductor light-emitting element and semiconductor light-emitting device
US20020068373A1 (en) Method for fabricating light emitting diodes
US20120248481A1 (en) Wafer level light emitting diode package and method of fabricating the same
US20110018013A1 (en) Thin-film flip-chip series connected leds
TW200952223A (en) Luminous devices, packages and systems containing the same, and fabricating methods thereof
TW201427105A (en) Wavelength converted light emitting device
KR100916366B1 (en) Supporting substrates for semiconductor light emitting device and method of manufacturing vertical structured semiconductor light emitting device using the supporting substrates
CN109994586A (en) The light emitting semiconductor device of sealing
WO2007111432A1 (en) Light emitting device having zener diode therein and method of fabricating the same
JP4393306B2 (en) Semiconductor light emitting element, method for manufacturing the same, and semiconductor device
TWI326500B (en) Light-emitting diode and method for manufacturing the same
US9362718B2 (en) Semiconductor light emitting device
JP6832282B2 (en) A device with multiple stacked light emitting devices
JP2007059623A (en) Manufacturing method of high-intensity light-emitting diode having reflection layer
JP2020141051A (en) Light-emitting device and method of manufacturing the same
KR101171855B1 (en) Supporting substrates for semiconductor light emitting device and high-performance vertical structured semiconductor light emitting devices using supporting substrates
KR20120073396A (en) Light emitting diode and method of fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees