TWI322463B - Method of irradiating laser, laser irradiation system, and manufacturing method of semiconductor device - Google Patents

Method of irradiating laser, laser irradiation system, and manufacturing method of semiconductor device Download PDF

Info

Publication number
TWI322463B
TWI322463B TW092127701A TW92127701A TWI322463B TW I322463 B TWI322463 B TW I322463B TW 092127701 A TW092127701 A TW 092127701A TW 92127701 A TW92127701 A TW 92127701A TW I322463 B TWI322463 B TW I322463B
Authority
TW
Taiwan
Prior art keywords
laser
film
long
semiconductor film
laser beam
Prior art date
Application number
TW092127701A
Other languages
Chinese (zh)
Other versions
TW200503083A (en
Inventor
Shunpei Yamazaki
Koichiro Tanaka
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW200503083A publication Critical patent/TW200503083A/en
Application granted granted Critical
Publication of TWI322463B publication Critical patent/TWI322463B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Lasers (AREA)
  • Liquid Crystal (AREA)

Description

1322463 (1) 玖、發明說明 【發明所屬之技術領域】 本發明涉及照射雷射的方法、用來照射雷射的雷射照 射系統(包括雷射器和用來使雷射從雷射器輸出到被照物 件(要經受照射的物件)的光學系統)以及用其製造半導 體器件的方法。 【先前技術】 近來’已經廣泛地硏究了使形成在諸如玻璃這樣的絕 緣基板上的非晶半導體膜結晶的技術,以便形成具有結晶 結構的半導體膜(下文中,稱作結晶半導體膜)。爲了結 晶’已經試驗了退火,諸如用爐內退火的加溫退火、快速 加溫退火(RTA )或者雷射退火。在結晶中,有可能利用 上述一種退火或者組合多種類型的退火。 與非晶半導體膜相比,結晶半導體膜具有很高的遷移 率。因此,結晶半導體膜被用於形成薄膜電晶體(TFT ) ,薄膜電晶體例如用於有源矩陣液晶顯示器件,有源矩陣 液晶顯示器件具有:圖元部分,包括形成在玻璃基板上的 TFT ;或者圖元部分和驅動電路,二者均包括形成在玻璃 基板上的TFT。 通常,需要在60(TC或600°C以上進行10小時或1〇 小時以上的熱處理,目的是用爐內退火來使非晶半導體膜 結晶。雖然石英作爲基板的材料可以用於結晶’但是,石 英基板很昂貴,尤其是,很難加工成大尺寸的基板。給出 -5 - (2) (2)1322463 了一種提高生産效率的方式用來使基板具有大的尺寸,這 就是爲什麽硏究在玻璃基板上形成半導體膜的技術,玻璃 基板廉價且易於加工成大尺寸基板。近年來,已經考慮到 用邊在lm以上的玻璃基板。 作爲硏究的實例,用金屬元素的熱結晶已經得到了開 發’從而有可能降低結晶溫度,這曾經是一個問題。在熱 結晶中,將諸如鎳、鈀或鋅的小量元素添加到非晶半導體 膜之後在5 5 0°C進行4小時的熱處理,從而能形成結晶半 導體膜。由於550 °C的溫度不高於玻璃基板的變形溫度, 所以不必擔心變形等(例如,日本專利特許公開7-183540) 〇 另一方面,在雷射退火中,有可能只對半導體膜給予 高能量,而不將基板的溫度升得太高。因此,不僅在使用 具有低變形溫度的玻璃基板時注意到了雷射退火,而且對 塑膠基板等也注意到了雷射退火。 在雷射退火的實例中,受激準分子雷射器的脈衝雷射 在光學系統中成形,變爲邊長幾釐米的正方形斑點或者在 被照射表面上長度爲100mm (毫米)或100mm以上的線 性形狀’雷射相對於被照物件相對移動,以便執行退火。 注意,這裏的線性形狀不意味著嚴格的線,而是有大縱橫 比的矩形(或者橢圓形)。例如,線形性狀指的是縱橫比 爲2或2以上(最好是1〇到iooo)的矩形,它被包括在 被照表面上矩形的雷射(矩形光束)中。線性形狀是必要 的’以便確保能量密度足以使被照物件退火,並且只要可 -6- (3) (3)1322463 以對被照物件執行足夠的退火,雷射可以是矩形或平面形 〇 這樣製造的結晶半導體膜具有多個聚集的晶粒,晶粒 具有隨機位置和尺寸。爲了在玻璃基板上製造隔離的TFT ,結晶半導體膜被分爲島狀圖案。這種情況下,在形成 TFT時,極難指定包括在島狀圖案中的晶粒的位置和尺寸 。與晶粒內部相比,由於晶體缺陷,晶粒之間的邊界(晶 粒介面)具有非晶結構以及極多的複合中心和俘獲中心。 已知在俘獲中心裏俘獲載流子時,晶粒介面的電位升高, 變成對載流子的阻擋,因而,降低了載流子的電流傳送特 性。而溝道形成區的半導體膜的結晶度對TFT的特性有 影響,幾乎不可能通過去除晶粒介面的影響來形成單晶半 導體膜的區域。 近來,已經注意到了對半導體膜照射連續波的(CW )雷射同時用CW雷射器在一個方向上掃描的技術,以便 形成沿該方向延伸的單晶粒。考慮到有可能用該技術形成 至少在其溝道方向上幾乎沒有晶粒介面的TFT。 然而在該技術中,使用將波長帶充分吸收到半導體膜 中的CW雷射器。例如在使用釔鋁石榴石(YAG )雷射器 的情況下,必需轉換爲更高次的諧波。因此,只可利用具 有約10W的相當小的輸出的雷射器,並且與使用受激準 分子雷射器器的情況相比生産率要低些。注意,用於該技 術的適當的CW雷射器具有高輸出、可見光的波長或者短 於可見光的波長以及特別高的輸出穩定性,可以使用的雷 (4) (4)1322463 射器諸如YV〇4雷射器的二次諧波、yag雷射器的二次諧 波、YLF雷射器的二次諧波、YAl〇3雷射器的二次諧波以 及Ar (氬)雷射器。雖然可以將其他諧波用於退火是沒 有問題的’但是,小輸出是一個缺點。然而,當將上述雷 射器用於退火時,可能發生照射中的不規則性。另外,輸 出很小,生産量不足。 【發明內容】 在上述問題上,本發明有所成就。本發明的一個目的 是提供照射雷射的方法、雷射照射系統以及與之相關的用 來校正照射中的不規則性的技術,該技術用於能進行均一 的雷射處理,並且獲得高生産量。 在用CW雷射§§的半導體膜結晶過程中,爲了盡可能 提高生産率’在被照表面上將雷射光束處理成橢圓形,執 行用橢圓形雷射光束(下文中指橢圓光束)在其短軸方向 上的掃描來使半導體膜結晶。由於初始的雷射光束是圓形 或形狀大致爲圓形,所以處理後的雷射光束是橢圓形。當 雷射光束的初始形狀是矩形時,可以用柱面透鏡在一個方 向上放大雷射光束,並將其處理成長矩形,用來使半導體 膜類似地結晶。在本說明書中,橢圓光束和長矩形光束總 稱爲長光束。此外,可以將多個雷射光束分別處理爲長光 束,可以將長光束連接,以便製成更長的光束。本發明在 諸如結晶過程的過程中,提供了在這種過程中使長光束的 照射不規則性較小的照射方法以及在這種過程中的照射系 -8- 13224631322463 (1) Field of the Invention The present invention relates to a method of irradiating a laser, a laser irradiation system for irradiating a laser (including a laser and for outputting a laser from a laser) An optical system to an object to be illuminated (object to be subjected to irradiation) and a method of manufacturing the same using the same. [Prior Art] A technique of crystallizing an amorphous semiconductor film formed on an insulating substrate such as glass has been widely studied in order to form a semiconductor film having a crystalline structure (hereinafter, referred to as a crystalline semiconductor film). Annealing has been tested for crystallization, such as warm annealing, furnace annealing (RTA) or laser annealing. In crystallization, it is possible to utilize one of the above annealings or to combine multiple types of annealing. The crystalline semiconductor film has a high mobility as compared with the amorphous semiconductor film. Therefore, the crystalline semiconductor film is used to form a thin film transistor (TFT), for example, for an active matrix liquid crystal display device having an element portion including a TFT formed on a glass substrate; Or a picture element portion and a driver circuit, both of which include a TFT formed on a glass substrate. Usually, it is necessary to perform heat treatment at 60 (TC or above 600 ° C for 10 hours or more for the purpose of crystallizing the amorphous semiconductor film by furnace annealing. Although quartz is used as a material of the substrate for crystallization], Quartz substrates are expensive, especially, they are difficult to process into large-sized substrates. Give-5 - (2) (2) 1322463 a way to increase production efficiency to make the substrate have a large size, which is why A technique of forming a semiconductor film on a glass substrate, the glass substrate is inexpensive and easy to process into a large-sized substrate. In recent years, a glass substrate having a side of lm or more has been considered. As an example of the study, thermal crystallization using a metal element has been obtained. Developed 'and thus has the potential to lower the crystallization temperature, which used to be a problem. In thermal crystallization, a small amount of an element such as nickel, palladium or zinc was added to the amorphous semiconductor film and then heat treated at 550 ° C for 4 hours. Thus, a crystalline semiconductor film can be formed. Since the temperature at 550 ° C is not higher than the deformation temperature of the glass substrate, there is no need to worry about deformation or the like (for example, Japanese Patent License)开7-183540) On the other hand, in laser annealing, it is possible to impart high energy only to the semiconductor film without raising the temperature of the substrate too high. Therefore, not only when a glass substrate having a low deformation temperature is used Laser annealing has been noted, and laser annealing has also been noted for plastic substrates, etc. In the case of laser annealing, the pulsed laser of an excimer laser is shaped in an optical system to become a few centimeters on the side. A square spot or a linear shape of a length of 100 mm (mm) or more than 100 mm on the illuminated surface is relatively moved relative to the object to be illuminated in order to perform annealing. Note that the linear shape here does not mean a strict line, but A rectangle (or ellipse) having a large aspect ratio. For example, a linear shape refers to a rectangle having an aspect ratio of 2 or more (preferably 1 to iooo), which is included in a rectangular laser on the illuminated surface. (Rectangular beam). A linear shape is necessary 'to ensure that the energy density is sufficient to anneal the object being illuminated, and as long as it can be -6-(3) (3) 1322463 to perform sufficient annealing on the object being illuminated The laser may be a rectangular or planar shape. The crystalline semiconductor film thus produced has a plurality of aggregated crystal grains having random positions and sizes. In order to fabricate the isolated TFT on the glass substrate, the crystalline semiconductor film is divided into island shapes. In this case, it is extremely difficult to specify the position and size of the crystal grains included in the island pattern when forming the TFT. The boundary between the crystal grains (grain interface) due to crystal defects as compared with the inside of the crystal grain It has an amorphous structure and a large number of recombination centers and trapping centers. It is known that when carriers are trapped in the trapping center, the potential of the grain interface rises and becomes a blockage of carriers, thereby reducing carriers. The current transfer characteristic. The crystallinity of the semiconductor film in the channel formation region has an influence on the characteristics of the TFT, and it is almost impossible to form a region of the single crystal semiconductor film by removing the influence of the grain interface. Recently, a technique of irradiating a continuous wave (CW) laser to a semiconductor film while scanning in one direction with a CW laser has been noted to form a single crystal grain extending in the direction. It is considered that it is possible to form a TFT having at least a grain interface at least in the channel direction thereof by this technique. In this technique, however, a CW laser that sufficiently absorbs the wavelength band into the semiconductor film is used. For example, in the case of a yttrium aluminum garnet (YAG) laser, it is necessary to convert to a higher order harmonic. Therefore, only lasers having a relatively small output of about 10 W can be utilized, and productivity is lower than in the case of using an excimer laser. Note that a suitable CW laser for this technology has a high output, a wavelength of visible light or a wavelength shorter than visible light, and a particularly high output stability. Ray (4) (4) 1322463 can be used such as YV〇 4 second harmonic of the laser, second harmonic of the yag laser, second harmonic of the YLF laser, second harmonic of the YAl〇3 laser, and Ar (argon) laser. Although other harmonics can be used for annealing, there is no problem. However, small output is a disadvantage. However, when the above-described laser is used for annealing, irregularities in irradiation may occur. In addition, the output is small and the production is insufficient. SUMMARY OF THE INVENTION The present invention has been made in the above problems. It is an object of the present invention to provide a method of irradiating a laser, a laser irradiation system, and a technique therefor for correcting irregularities in irradiation, which are capable of performing uniform laser processing and achieving high production the amount. In the crystallization process of a semiconductor film using CW laser §§, in order to maximize productivity, the laser beam is processed into an elliptical shape on the illuminated surface, and an elliptical laser beam (hereinafter referred to as an elliptical beam) is performed in it. Scanning in the short axis direction causes the semiconductor film to crystallize. Since the initial laser beam is circular or substantially circular in shape, the processed laser beam is elliptical. When the initial shape of the laser beam is a rectangle, the cylindrical beam can be enlarged in one direction by a cylindrical lens and processed into a rectangular shape for crystallizing the semiconductor film similarly. In this specification, an elliptical beam and a long rectangular beam are collectively referred to as a long beam. In addition, multiple laser beams can be processed separately into long beams, and long beams can be connected to make longer beams. The present invention provides an irradiation method which makes the irradiation irregularity of a long beam small in this process, such as a crystallization process, and an irradiation system in the process -8-133223

統。 本發明提供了雷射照射系統,包括:第一雷射振盪器 ,輸出具有可見光的波長或者具有短於可見光的波長的第 一雷射光束;用來在被照表面上或它的附近將從第一雷射 振盪器發射的第一雷射光束處理成長光束的裝置;第二雷 射振盪器,用於輸出基波的第二雷射光束;用來將從第二 雷射振盪器發射的第二雷射光束射到所述被照表面的區域 上的裝置,向被照表面照射長光束;用來將被照表面在第 一方向上向第一和第二雷射光束相對移動的裝置;和用來 將被照表面在第二方向上向第一和第二雷射光束相對移動 的裝置。注意,第一方向與第二方向相互垂直。 在雷射照射系統中,第一和第二雷射振盪器均具有連 續波的氣體雷射器、固定雷射器或金屬雷射器。氣體雷射 器包括Ar雷射器、Kr雷射器和C02雷射器,固體雷射器 包括YAG雷射器、YV04雷射器、YLF雷射器、YAl〇3雷 射器、紅寶石雷射器、翠綠寶石雷射器和 Ti :藍寶石雷 射器,並且金屬雷射器包括氦-鎘雷射器以及諸如銅蒸汽 雷射器和金蒸汽雷射器的金屬蒸汽雷射器。 而且,用非線性光學元件將第一雷射器轉換爲更高次 的諧波。作爲用於非線性光學元件的晶體,在轉換效率上 ,諸如 LBO、BBO、KDP、ΚΤΡ' KB5 和 CLBO 的晶體很 好。將非線性光學元件放在諧振器中,能獲得顯著的高轉 換效率。 另外,由於有可能改善所獲得的長光束的能量均一性 -9- (22) (22)1322463 5〇4將橢圓形的雷射光束會聚到該平面上。以這種方式, 在該平面上形成例如短軸爲20/zm、長軸爲400"m的長 光束。 當改變掃描鏡503的角度時,在該平面上用長光束 505執行掃描。由掃描鏡503的角度引起長光束505形狀 的改變受到f 0透鏡5 04的抑制。雷射光束相對於半導體 膜506的入射角是20°,這防止在半導體膜506上産生干 擾。這裏的干擾是來自半導體膜5 06的表面的雷射的反射 光對來自形成有半導體膜5 06的基板的後表面的雷射的反 射光的干擾。在本實施例模式中,使用由一個鏡子組成的 掃描鏡5 0 3,只執行一個掃描軸,這樣就不能夠掃描該二 維平面的整個區域。因而,將基板被放在單軸台507上, 並且按照圖5的紙左右地移動,以便能夠退火該基板的整 個區域。將長光束 505的掃描速度設定爲 1〇〇到 2000mm/s,最好約爲 500mm/s。 爲了將基波與由二次諧波形成的長光束505同時照射 到半導體膜5〇6上,使用以LD激發輸出2000W的YAG 雷射器508。由於長光束505以相對高的速度移動,所以 需要一種精確的控制系統,以便根據長光束505的移動來 移動由基波形成的光束。當然,雖然用這種控制系統是沒 有問題的,但是,在本實施例模式中,卻用基波的長光束 511覆蓋由掃描鏡503掃描的整個區域,從而不必移動長 光束。以這種方式,有可能在缺乏同步的情況下幾乎不在 雷射退火中産生不均一性。正是因爲與二次諧波相比較而 -26- (23) (23)1322463 言,基波的輸出是百倍的或更高的,如此大的光束才能夠 得以形成。 例如,當假設半導體膜506是邊長125mm的正方形 時,例如可以在掃描鏡5 03的掃描方向上形成長125mm '寬0.5mm的長光束511,以便整個覆蓋該正方形的區域 。爲了形成長光束511,例如可以在用凹透鏡5 09均一放 大之後,用平凸透鏡510在一個方向上進行會聚。或者, 可以用另一光學系統形成長光束511。當用均化器使能量 分佈均一化時,設計均化器考慮YAG雷射的相干性則是 必要的。例如,均化器經常使用如下的的方法,在該方法 中,將雷射光束加以分割和組合以便使能量分佈均一化。 當使用該方法時,有必要例如通過將不小於雷射相干長度 的光路差添加到每個被分割的雷射光束來防止産生干擾, 〇 爲了雷射退火半導體膜5 06的整個區域,可以重復地 使掃描鏡5 03移動半圈,使單軸台507移動長晶粒區域的 寬度,再使掃描鏡5 03移動半圈。在本實施例模式中,長 晶粒區域的寬度約爲150 μ m,單軸台5 07以該寬度按順 序移位元元。 [實施例模式5] 本實施例模式中,描述半導體器件的製造工藝,該製 造工藝包括對具有半導體膜、柵絕緣膜和導電膜的疊層結 構的部分雷射退火處理的階段。 -27- (24) (24)1322463 首先,根據實施例模式1到4中的任何一種,將形成 在基板上的半導體膜腐蝕成預期的形狀,以便將該半導體 膜分割成島狀。以這種方式,半導體膜7 03就形成爲TFT 的主要部分,用於溝道區、源和漏區。可以使用諸如商業 性産生的非域玻璃基板這樣的基板作爲基板70 1,並且包 括氮化矽、氧化矽或氧氮化矽的基絕緣膜702形成在基板 701和半導體膜703之間,厚度爲50到200nm。而且, 對半導體膜70 3摻雜給予p-型的雜質元素,目的是將閾 値電壓移位元元到正側,或者摻雜給予η -型的雜質元素 ,目的是將閾値電壓移位元元到負側。 下面,在半導體膜703上澱積用於柵絕緣膜的多層絕 緣膜。作爲最佳實例,給出用高頻濺射形成的氧化矽膜 704和氮化矽膜705。作爲濺射澱積之前的預處理,除了 通過用包括臭氧的水溶液進行的氧化處理和用包括氫氟酸 的水溶液去除氧化膜的處理來對半導體膜703的表面腐蝕 之外,不飽和鍵與氫端接而失活。而後,用矽靶(摻雜1 到10 Ω cm的Β)執行高頻濺射,以便形成厚度爲10到 6 0nm的氧化矽膜704。澱積的典型條件包括用〇2和Ar 作濺射氣體和將混合比(流率比)設爲1 : 3。而且,濺 射時,將壓力設爲〇.4Pa,將放電功率設爲4.1W/cm2 ( 1 3.56MHz ),將基板熱處理溫度設爲200°C。在這樣的條 件下,有可能形成緻密的氧化矽膜704,它在半導體膜 703和氧化矽膜704之間的介面狀態密度上是低的。而且 ,在澱積氧化矽膜之前,可以在空的加熱室中執行低壓下 -28- (25) (25)1322463 的熱處理或諸如氧等離子體處理這樣的表面處理。當執行 氧等離子體處理以便氧化該半導體膜的表面時,可以減小 介面狀態密度。然後,高頻濺射將形成厚度1 〇到3 Onm 的氮化矽膜705。澱積的典型條件包括用>}2和Ar作爲濺 射氣體’將混合比(流率比)設爲1 : 1。而且,濺射時 ,將壓力設爲〇.8Pa,將放電功率設爲4.1W/cm2 ( 13.56MHz),將基板加熱溫度設爲200 °C。 由於在具有疊層結構的絕緣膜中,氮化矽相對於氮化 矽的相對介電常數3.8具有相對介電常數約爲7.5,所以 有可能獲得基本等同于薄絕緣膜的情況下效果。當就該半 導體膜的表面光滑度而言,凹凸形狀的最大値是l〇nm或 10nm以下’最好是5nm或5nm以下,且柵絕緣膜具有氧 化矽膜和氮化矽膜的兩層結構時,有可能減小柵極泄漏電 流並以2.5到10V驅動TFT,通常以3.0到5.5V驅動 TFT ’即使柵絕緣膜的總厚度爲3〇到8〇nm。 在形成氧化矽膜704和氮化矽膜705的疊層之後,形 成第一導電膜706。從高熔點金屬、金屬氮化物和矽化物 中選擇第一導電膜706的材料’其中高熔點金屬諸如是鉬 (Mo )、鎢(W )和鈦(Ti ) ’金屬氮化物諸如是氮化鈦 、氮化鉅和氮化鎢’矽化物諸如是矽化鎢(w S i 2 )、矽化 鉬(MoSi2)、矽化鈦(TiSi2)、矽化鉅(TaSi2)、矽化 鉻(CrSi2 )、矽化鈷(CoSi2 )和矽化鉛(PtSi2 )、摻雜 了磷或硼的多晶矽。第一導電膜7〇6的厚度爲1〇到 lOOnm,最好是 20 到 50nm。 -29- (26) 1322463 然後,如圖7B所示,對第一導電膜706 射雷射70 7和雷射70 8以便加熱其部分。雷射 對於基板表面的且與雷射70 7不同的入射角。 實施例模式應用例如實施例模式1所示的照射 和雷射照射系統。換言之,用來自以LD激發辜 雷射振盪器的光源的二次諧波(Nd: YVOz CW5 32nm )作爲雷射 707,用來自輸出30W 器的光源的基波(Nd : YAG雷射器、CW、 TEMqq)作爲雷射708。第一導電膜706吸收1 雷射70 8的能量以便産生熱,第一導電膜706 矽膜705 '氧化矽膜704和半導體膜703由於 得以加熱。用适一局部處理’有可能將包括在 小矽簇氧化或氮化,並鬆弛內部的扭曲,以便 的缺陷密度和介面狀態密度。 而後,如圖7C所示,選自鉬(Ta )、鎢 (Ti )、鉬(Mo )、鋁(A1 )和銅(Cu )的: 含上述金屬元素作爲其主要成分的合金或化合 第二導電膜7 09。通過處理第一和第二導電膜 來形成柵電極,最好將氮化鉅(TaN )膜形成 膜706與鎢(W )膜形成的第二導電膜709相 將氮化鉅(TaN)膜形成的第一導電膜706與 形成的第二導電膜'7 09相結合。 下面,如圖8A所示,提供抗蝕光罩71〇 柵電極的圖案,並且用乾腐蝕來執行第一腐蝕 的一部分照 7 0 8具有相 有可能對本 雷射的方法 箭出1 0W的 >雷射器、 的雷射振盪 1 . 0 6 4 /z m ' 雪射707和 下面的氮化 傳導加熱而 該膜中的微 減小該膜中 (W)、鈦 元素或者包 物被澱積爲 7 〇 6 和 7 0 9 的第一導電 結合,或者 鈦(Ti )膜 ’用來形成 。例如可以 -30- (27) (27)1322463 把ICP (感應耦合等離子體)腐蝕應用於第一腐蝕。雖然 對腐蝕氣體沒有限制,但是,用於本實施例模式中柵電極 的鎢(W )和氮化鉬(TaN )的腐蝕氣體有CF4、Cl2和02 。在第一腐蝕中,將預定的偏置電壓施加到基板上,以便 使用於柵電極的圖1案(711和712)的側面的傾斜角爲 1 5到5 0度。用第一腐蝕,根據腐蝕條件,將作爲柵絕緣 膜所形成的氮化矽膜70 5留在用於柵電極的圖1案下面, 以便暴露氧化矽膜704。 而後,執行第二腐蝕,具體地說,使用腐蝕氣體sf6 、Cl2和02,並且將施加到基板側的偏置電壓設爲預定的 値,以便執行鎢(W)膜的各向異性腐蝕。以這種方式, 形成由第一和第二導電層711和713的兩層結構組成的柵 電極(圖8B )。 本實施例中的柵電極具有第一和第二導電層711和 713的疊層結構,並且具有以下結構(頂帽型(top-hap type)),在該結構中,在顯不柵電極的截面時第一導電 層如峰狀突起。然後,執行摻雜,如圖8C所示。在用電 場加速用於控制價電子的雜質離子以便注入的摻雜中,也 可能在適當調節離子加速電壓時改變半導體膜703中形成 的雜質區域的濃度,即,用高加速電壓來注入具有一種導 電類型的雜質離子,目的是通過第一導電層711的峰,以 便形成與柵電極重疊的第一雜質區域715 ’然後’用低加 速電壓注入具有該導電類型的雜質離子’目的是不通過第 —導電層711的峰,以便形成如圖8D所示的第二雜質區 -31 - (28) (28)1322463 域716’ 。用這種摻雜,有可能形成具有所謂的柵重疊 LDD結構的TFT。 作爲具有該導電類型的雜質,在n_型雜質(供體) 的情況下’使用屬於周期表】5族的元素,諸如磷或砷, 在P-型雜質(受體)的情況下,使用屬於周期表13族的 元素’諸如硼。當該雜質被合適地選擇時,有可能製造 η-溝道TFT或p-溝道TFT。而且,有可能只通過添加用 於摻雜的光罩圖案,就在相同的基板上形成n_溝道TFT 和P-溝道TFT。 爲了啓動爲源和漏形成的第二雜質區域716以及爲 LDD形成的第一雜質區域715,對半導體層703照射雷射 717和雷射718,在板半導體層703中,形成第一和第二 雜質區域715和716 (圖8E)。雷射718具有相對於基板 的表面的且與雷射717不同的入射角。有可能將例如實施 例模式1所示的照射雷射的方法和雷射照射系統應用於本 實施例模式。換言之,用來自以LD激發輸出10W的雷射 振盪器的光源的二次諧波(Nd: YV04雷射器、CW、 532 nm)作爲雷射717,並且用來自輸出30W的雷射振盪 器的光源的基波(Nd: YAG雷射器、CW、1.064#m、 ΤΕΜβ〇)作爲雷射718。在啓動中,雷射加熱形成柵電極 的第一導電層711,由於來自那裏的熱的傳導,所以,使 非結晶區域重結晶和/或修復因注入所致的缺陷。從而, 有可能啓動不對其直接照射雷射的第一雜質區域715中的 雜質。 -32 - (29) (29)1322463 然後,如圖9A所示,用SiH4' N20' NH3和H2的混 合氣體’通過等離子體CVD’在325 °C的基板加熱溫度下 ’形成包括氫的氮氧化矽膜,作爲第一絕緣層719,膜厚 度爲50到200nm。而後’執行在氮氣氣氛中41〇 t的熱 處理,以便進行半導體層的氫化。 而後,在第一絕緣層7 1 9中形成接觸孔,用諸如A1 、Ti、Mo或W這樣的金屬適當地形成佈線720,該佈線 例如具有疊層膜的佈線結構,疊層膜有膜厚5 〇到2 5 〇nm 的Ti膜和膜厚300到500nm的合金膜(A1和Ti )(圖 9 B ) 〇 以這種方式,完成具有柵重疊LDD結構的TFT。當 執行以矽爲靶的高頻濺射以便製造氧化矽膜和氮化矽膜的 疊層,且將所述疊層施加到圖案形成後用導電層的局部加 熱的熱處理之後的TFT的柵絕緣膜上時,有可能獲得閾 値電壓和亞閾特性波動較小的TFT。 根據本發明,有可能提供一種用來校正照射中的不規 則性,能均勻地雷射處理並獲得高生産量的照射雷射的方 法和雷射照射系統,該照射雷射的方法和雷射照射系統被 應用於半導體膜的結晶、柵絕緣膜的熱處理和雜質區域的 啓動,如本實施例模式所示,從而有可能提供具有使用 TFT來集成的多種功能電路的半導體器件,而不産生玻璃 基板的收縮或扭曲。尤其是,由於不産生玻璃基板的收縮 ,所有就保持了柵電極周圍的尺寸精度,並且有可能在玻 璃基板上形成溝道長度0.3到1.5/zm的TFT。 -33- (30) (30)1322463 注意’雖然本實施例模式顯示了應用在實施例模式1 中所例舉的照射雷射的方法和雷射照射系統的情況,但是 根據本發明的半導體器件的製造工藝不限於該情況,並且 也可能應用在實施例模式2到4中任何一個所例舉的照射 雷射的方法和雷射照射系統。 [實施例模式6] 與實施例模式5類似,執行一直到氫化的過程,以便 獲得圖9 A所示的狀態。而後,以矽爲靶執行高頻濺射, 以便在如圖10A所示的第一絕緣層719上形成氮化矽膜 ,作爲第二絕緣層721。氮化矽膜具有作爲屏障的優越性 質,並且有可能獲得用於防止諸如鈉以及空氣中的氧和濕 氣的離子雜質穿透的阻擋功能。 而且,用包含諸如丙烯酸或聚 亞胺的材料作爲其主 要成分的光敏或非光敏有機樹脂材料形成第三絕緣層722 。提供由諸如Al、Ti、Mo或W的導電材料形成的佈線 723,以便吻合在第一到第三絕緣層中形成的接觸孔。當 用有機樹脂材料形成第三絕緣層722時,佈線之間的電容 減小,並且表面具有光滑度。因而’有可能實現以高密度 在第三絕緣層上提供佈線。 [實施例模式7] 在本實施例模式中,按照與實施例模式5不同的工藝 給出對製造具有柵重疊LDD結構的TFT的方法的解釋。 -34- (31) 1322463 注意,在下述本模式中,用相同的參考數位表示與 模式5中相同部分的參考數位,不再解釋相同參考 表示的部分。 首先,與實施例模式5類似,依次在基板7 01 基絕緣膜702、半導體膜703、氧化矽膜704、氮 705、第一導電膜7 06和第二導電膜709,即,執 形成第二導電膜709的過程以便獲得圖7C所示的;t 下面,如圖11A所示,通過按照柵電極的圖 腐蝕來形成第一導電膜706上的第二導電層73 0。 用第二導電層73 0作爲光罩,並且執行具有一種導 的雜質的摻雜。使具有該導電類型的雜質通過第一 706,並將其注入到半導體膜7〇3中,以便形成第 區域7 32 (圖1 1 B )。 下面,在第一導電膜706和第二導電層730上 如氧化矽膜的絕緣膜,並且執行各向異性腐蝕以便 側隔板73 3 (圖1 1C )。用旁側隔板73 3和第二 73 0作爲光罩以便進行摻雜,並且自對準地形成第 區域734,經第一導電膜706對第二雜質區域734 有該導電類型的雜質摻雜。 作爲具有該導電類型的雜質,在η-型雜質( 的情況下,使用屬於周期表15族的元素,諸如磷 在Ρ-型雜質(受體)的情況下,使用屬於周期表】 元素,諸如硼。當該雜質被合適地選擇時,有可 η-溝道TFT或Ρ-溝道TFT。而且,有可能只通過 實施例 數位所 上形成 化矽膜 行直到 R態。 案進行 然後, 電類型 導電膜 一雜質 形成諸 形成旁 導電層 二雜質 執行具 供體) 或砷, 3族的 能製造 添加用 -35- (32) 1322463 於摻雜的光罩圖案,就在相同的基板上形成 和P-溝道TFT。 爲了啓動爲源和漏形成的第二雜質區域 LDD形成的第一雜質區域732,如圖11E所示 層703照射雷射717和雷射718,在半導體層 成第一和第二雜質區域732和734。雷射718 基板的表面的且與雷射717不同的入射角。有 實施例模式1所示的照射雷射的方法和雷射照 於本實施例模式。換言之,用來自LD激發輸! 射振盪器的光源的二次諧波(Nd: YV04雷| 532nm)作爲雷射717,並且用來自輸出30W 器的光源的基波(Nd:YAG雷射器、CW、 TEMqq)作爲雷射718。 而後,用第二導電層73 0和旁側隔板733 並且執行第一導電膜706的腐蝕。然後,用S NH3和H2的混合氣體,通過等離子體CVD, °C的基板加熱溫度下,形成包括氫的氮氧化矽 —絕緣層7 3 5,膜厚度爲50到200nm。而後 —絕緣層73 5之後,執行在氮氣氣氛中41 〇°C 以便進行半導體層的氫化(圖12A )。 而且,用包含諸如丙烯酸或聚 亞胺的材 要成分的光敏或非光敏有機樹脂材料形成第三 。提供由諸如 Al、Ti、Mo或W的導電材料 737’以便吻合在第一和第二絕緣層中形成的 η-溝道TFT 734以及爲 ,對半導體 703中,形 具有相對於 可能將例如 射系統應用 出1 0W的雷 喷器、CW、 的雷射振盪 1.064 // m > 作爲光罩, i Η4 ' Ν2 Ο ' 在 250-350 膜,作爲第 ’在形成第 的熱處理, 料作爲其主 絕緣層736 形成的佈線 接觸孔。當 -36- (33) 1322463 用有機樹脂材料形成第三絕緣層736時,佈線之 減小,並且表面具有光滑度。因而,有可能實現 在第二絕緣層上提供佈線(圖12B)。 以這種方式,完成具有柵重疊LDD結構的 據本發明,有可能提供用於校正照射中的不規則 勻地雷射處理並獲得高生産量的照射雷射的方法 射系統,該照射雷射的方法和雷射照射系統被應 體膜的結晶、柵絕緣膜的熱處理和雜質區域的啓 實施例模式所示,從而有可能提供具有用TFT 多種功能電路的半導體器件,而不産生玻璃基板 扭曲。尤其是,由於不産生玻璃基板的收縮,所 了珊電極周圍的尺寸精度,並且有可能在玻璃基 溝道長度0.3到1.5 y m的TFT。 注意,雖然本實施例模式顯示了應用在實施 中所例舉的照射雷射的方法和雷射照射系統的情 根據本發明的半導體器件的製造工藝卻並不限於 ,並且也可能應用在實施例模式2到4中任何一 的照射雷射的方法和雷射照射系統。 [實施例模式8] 在本實施例模式中,按照與實施例模式5到 過程來解釋製造具有柵重疊LDD結構的TFT的 意,在下面的描述中,用相同的參考數位表示與 式5中表示相同部分,爲了方便起見,不再解釋 間的電容 以高密度 TFT。根 性,能均 和雷射照 用於半導 動,如本 來集成的 的收縮或 以就保持 板上形成 例模式1 況,但是 這一情況 個所例舉 7不同的 方法。注 實施例模 公共參考 -37- (34) 1322463 數位所表示的部分。 圖13A中,在基板701中形成基絕緣膜 體膜703。在上面形成光罩740之後,執行摻 第一雜質區域741。 在剝離了光罩740並且通過用臭氧水和氫 圈淸潔(cycle cleaning)或用 UV (紫外線) 去除有機污染物,形成淸潔的表面之後,氧化 氮化矽膜705和第一導電膜706就被形成的(| 而後,形成第二導電膜709(圖13C)。 腐蝕,以便形成被處理成具有柵電極圖案的: 742。將柵電極形成爲吻合形成光罩740的位 電極與第一雜質區域741相重疊,以便在這一 重疊結構(圖1 3 D )。 下面,在第二導電層742上形成光罩743 所示。對於不與柵電極重疊的LDD區域,用 導體膜703上的光罩743覆蓋第二導電層742 ,用光罩74 3執行摻雜,以便形成第二雜質區: 而後,以與實施例模式5類似的方式執行 的是啓動第一和第二雜質區域741和744,並 膜(圖14B ),即,對半導體層703執行雷射 718的照射,在半導體層703中形成有第一和 域741和744。雷射718具有相對於基板的表 射7 1 7不同的入射角。有可能將例如實施例模 照射雷射的方法和雷射照射系統應用於本實施 7〇2和半導 雜以便形成 氟酸交替迴 臭氧處理來 矽膜 704 、 圖 1 3B )。 然後,執行 第二導電層 置,且該柵 階段形成柵 ,如圖1 4 A 也形成在半 。以該狀態 或 744 ° 熱處理,目 修改柵絕緣 7 1 7和雷射 第二雜質區 面的且與雷 式1所示的 例模式。換 -38- (35) (35)1322463 言之,用來自LD激發輸出10W的雷射振盪器的光源的二 次諧波(Nd: YV〇4雷射器、CW、532nm)作爲雷射 717 ,並且用來自輸出3 OW的雷射振盪器的光源的基波(Nd :YAG 雷射器、CW、1.064//m,TEMq。)作爲雷射 718。 本實施例模式中,有可能同時啓動第一和第二雜質區 域並修改柵絕緣膜。然後,當對第一導電膜706執行腐蝕 時,有可能完成如下的TFT,在該TFT中,LDD區域的 —部分(Lov)與柵電極重疊,並且其餘部分(Loff)不 重疊。 注意,雖然本實施例模式顯示了應用在實施例模式1 中所例舉的照射雷射的方法和雷射照射系統的情況,但是 根據本發明的半導體器件的製造工藝並不限於該情況,並 且也可能應用在實施例模式2到4中任何一個所例舉的照 射雷射的方法和雷射照射系統。 [實施例模式9] 在本實施例模式中,舉例描述製造包括具有底柵型( 反向交錯)結構的TFT的半導體器件的製造方法。 圖15A中,在基板7〇1上形成基絕緣膜7〇2。爲了形 成柵電極76 1,可以使用諸如鈦、鉬、鉻和鎢這樣的金屬 元素或者包括上述金屬的合金。例如,使用鉬和鋁的合金 。或者,柵電極761可以由鋁形成,其表面可以作陽極化 處理以便穩定。 用高頻濺射在上面順次形成氮化矽膜705和氧化矽膜 -39- (36) (36)1322463 7 04作爲柵絕緣膜。以與實施例模式1到4中任何一個類 似的方式形成半導體膜703。 然後,以該狀態’可以執行雷射762和雷射763的照 射,以便進行對柵絕緣膜的熱處理,如圖1 5 B所示。雷射 762具有相對於基板的表面的且與雷射763不同的入射角 。有可能將例如實施例模式1所示的照射雷射的方法和雷 射照射系統應用於本實施例模式。換言之,用來自LD激 發輸出10W的雷射振邊器的光源的二次諧波(Nd: YV〇4 雷射器、CW、5 3 2nm )作爲雷射762,並且用來自輸出 30W的雷射振盪器的光源的基波(Nd: YAG雷射器、CW 、1.064 # m,TEMGG )作爲雷射763。柵電極761吸收雷 射7 62和雷射763的能量而産生熱,並且由於傳導加熱而 對柵電極761上的氮化矽膜705、氧化矽膜704和半導體 膜7 03進行加熱。使用這一局部處理,有可能將包括在該 膜中的微小矽簇氧化或氮化,並且還鬆驰內部的扭曲,以 便減小該膜中的缺陷密度和介面狀態密度。 下面,在半導體膜703上形成諸如氧化矽膜的溝道保 護膜764,將其用作光罩,以便形成具有一種導電類型的 雜質區域。圖15C顯示了形成用於源和漏的雜質區域765 的情況。此外,在圖中未示出的是,可以執行兩次摻雜, 以便爲LDD添加另一雜質區域。作爲具有該導電類型的 雜質,在η-型雜質(供體)的情況下,使用屬於周期表 b族的元素,諸如磷或砷,在ρ-型雜質(受體)的情況 下,使用屬於周期表13族的元素,諸如硼。當該雜質被 -40- (37) (37)1322463 合適地選擇時,有可能製造η-溝道TFT或p-溝道TFT。 而且,有可能只通過添加用於摻雜的光罩圖案,就在相同 的基板上形成η-溝道TFT和p-溝道TFT。 爲了啓動爲源和漏形成的雜質區域765,對半導體膜 7 0 3執行雷射762和雷射763的照射,在半導體膜703中 ,形成雜質區域765。雷射762具有相對於基板的表面的 且與雷射763不同的入射角。有可能將例如實施例模式1 所示的照射雷射的方法和雷射照射系統應用於本實施例模 式。換言之,用來自LD激發輸出10W的雷射振盪器的光 源的二次諧波(Nd: YV04雷射器、CW、532nm)作爲雷 射7 62 ’並且用來自輸出30W的雷射振盪器的光源的基波 (Nd:YAG 雷射器、CW、1.064//m,TEMoo)作爲雷射 Ί63。 然後’如圖15E所示,用SiH4、N20、NH3和H2的 混合氣體’通過等離子體CVD,在325 t的基板加熱溫度 下’形成包括氫的氮氧化矽膜,作爲第一絕緣層766,膜 厚度爲50到200nm。而後,執行在氮氣氣氛中4101的 熱處理,以便進行半導體層的氫化。 而且’用包含諸如丙烯酸或聚 亞胺的材料作爲其主 要成分的光敏或非光敏有機樹脂材料形成第二絕緣層767 。提供由諸如Al、Ti、Mo或W的導電材料形成的佈線 768’以便吻合在第一和第二絕緣層中形成的接觸孔。當 用有機樹脂材料形成第二絕緣層767時,佈線之間的電容 減小’並且表面具有光滑度。因而’有可能實現以高密度 -41 - (38) (38)1322463 在第二絕緣層上提供佈線。 以這種方式,可以完成底柵型(反向交錯)TFT。當 以矽爲靶執行高頻濺射以便製造氧化矽膜和氮化矽膜的疊 層’並將該疊層應用于用圖案形成後的導電層局部加熱的 熱處理之後的TFT的柵絕緣膜時,有可能獲得閾値電壓 和亞閾特性波動較小的T F T。 [實施例模式10] 在實施例模式1到9中,例舉了爲了結晶而照射雷射 S i膜。然而,本發明不限於這種應用,並且例如本發明 也可利用根據本發明的照射雷射的方法和雷射照射系統進 行用於改善和修改結晶半導體膜的結晶度的處理。 首先,如圖16A所示,在基板701上形成基絕緣膜 702,基絕緣膜702由諸如氧化矽膜、氮化矽膜或氮氧化 矽膜的絕緣膜組成。具體地說,在400°C的基板加熱溫度 下,通過等離子CVD,用反應氣體SiH4、NH3或N20來 形成含氮高於或幾乎等於氧的第一氮氧化矽膜,並且在 400°C的基板加熱溫度下,通過等離子CVD,用反應氣體 Si H4和N20來形成含氧高於氮的第二氮氧化矽膜,以便 形成第一和第二氮氧化矽膜的疊層結構的基絕緣膜7 02。 在該疊層結構中,可以用以高頻濺射形成的氮化矽膜 代替第一氮氧膜。氮化矽膜可以防止諸如包括在玻璃基板 中的鈉(Na)等的小量驗金屬的擴散。 通過使在基絕緣膜7〇2上形成的非晶矽膜751結晶來 -42- (39) (39)1322463 獲得用來形成TFT的溝道、源和漏部分的半導體層。在 3〇〇°C的基板加熱溫度下通過等離子CVD形成的非晶矽膜 751厚度爲20到60nm。對於該半導體層,可以用非晶鍺 化矽(Si,_xGex;x = 0.00 1到〇.〇5 )膜來代替非晶矽膜。 爲了執行結晶’添加諸如鎳(Ni )這樣的金屬元素, 該金屬元素對半導體的結晶有催化作用。圖16A中,在 將含鎳(Ni)層752保持在非晶矽膜751上之後,執行由 輻射加熱或傳導加熱所引起的熱處理,以便進行結晶。例 如,在當前的加熱溫度740°C下執行180秒的如下RTA, 該RAT是通過燈作爲熱源進行的(快速加溫退火)或者 是通過加熱氣體進行的(氣體RTA )。當前加熱溫度是用 高溫計測量的基板的溫度,並且該溫度被視爲在熱處理時 的當前溫度。或者,可以用退火爐執行5 5 0°C、4個小時 的熱處理。由於具有催化作用的金屬元素的作用,該結晶 溫度被降低了,並且用於結晶的時間也被縮短了。 爲了進一步改善這樣形成的結晶矽膜7 55的結晶度, 執行雷射處理(圖16B)。用來自LD激發輸出10W的雷 射振盪器的光源的二次諧波(Nd:YV04雷射、CW、 532nm)作爲雷射753,並且用來自輸出30W的雷射振褒 器的光源的基波(Nd:YAG雷射、CW、1.064#m,TEMQq )作爲雷射7 5 4。當二次諧波以這種方式在被照表面上與 基波重疊時,有可能執行結晶,以便校正照射中的不規貝U 性,能使雷射處理均一化,並且獲得高的生産量。這樣, 就能夠獲得結晶的半導體膜7 5 6 (圖10C )。 -43- (40)1322463 行圖 催化 1 0丨7 是對 作爲 者之 諸如 如氧 便形 以便 度, RTA 的( 時的 的分 後’ 矽膜 用城 液。 導體 爲了去除包括在結晶矽膜中的像金屬這樣的雜質,執 1 7所示的吸氣’這對將結晶過程中有意添加的具有 t作用的金屬的濃度降低到;! x i〇H/cm3或1 χ /cm3以下尤其有效。有必要新形成一個吸氣點,目的 以薄膜形狀所形成的結晶矽膜執行吸氣。圖1 7中, 吸氣點,在半導體膜7 5 6上形成非晶矽膜7 5 8,在二 間具有阻擋層7 5 7 »非晶矽膜7 5 8具有:雜質元素, 磷或硼;稀有氣體元素,諸如Ar,Kr或Xe;或者諸 或氮這樣的元素,這些元素被以1 xl〇2G/cm3包括以 成扭曲。最好用Ar作爲濺射氣體來執行高頻濺射, 形成非晶矽膜。有可能在澱積時採用任何基板加熱溫 並且例如,1 5 0 °C的溫度就足夠了。 對於而後的熱處理,在7 5 0 °C下執行1 8 0秒的如下 ,該RTA是通過燈進行的或者是通過加熱氣體進行 氣體RTA)。或者,用退火爐來執行550°C、4個小 熱處理。通過熱處理,出現金屬元素與非晶矽膜758 離,並且因此有可能純化半導體膜75 6。在熱處理之 通過利用NF3或CF4的幹腐蝕或者濕腐蝕來去除非晶 75 8,其中幹腐蝕不利用C1F3的等離子體,濕腐蝕利 溶液,諸如包括 或四甲基羥銨((CH3)4NOH )的溶 用氫氟酸腐蝕去除阻擋層756。 在實施例模式5到8的任何一個中’將這樣獲得的半 膜756用作半導體膜。 -44- (41) (41)1322463 [實施例模式η] 參考圖1 8,解釋根據實施例模式5到1 0中的任何一 個用微型電腦作爲典型半導體器件的實例。如圖1 8所示 ’有可能實現在厚度爲0.3mm到1.1mm的玻璃基板上集 成了多種功能電路部分的微型電腦800。多種功能電路部 分可主要由根據實施例模式5到1 0中任何一個所製造的 TFT或電容器形成。 微型電腦 8 00包括如下元件,諸如 CPU 801、ROM 802、中斷控制器803、快取記憶體器 804、RAM 8 05、 D MAC 806、時鐘發生電路807、串列介面808、電源發生 電路 809、ADC/DAC 810' 定時計數器 811' WDT 812 和 I/O 埠 8 1 3。 在本實施例模式中,該微型電腦作爲實例加以顯示。 當改變多種功能電路的構成或其組合時,也有可能完成多 種功能半導體器件,諸如媒體處理器、用於圖形的LSI、 密碼LSI、記憶體、用於蜂窩電話的LSI。 另外,有可能用形成在玻璃基板上的TFT製造液晶 顯示器件或EL (電致發光)顯示器。作爲使用這種顯示 器的電子器件,可以給出攝像機、數碼相機、護目鏡型顯 示器(頭戴顯示器)、導航系統、聲音再現裝置(諸如汽 車音頻系統和音頻裝置)、膝上型電腦、遊戲機、攜帶型 資訊終端(諸如移動電腦、蜂窩電話、攜帶型遊戲機和電 子書)、包括記錄介質的圖像再現裝置(更具體地說,是 能夠再現諸如數位多用途盤(DVD )的記錄介質並顯示所 -45- (42) (42)1322463 再現的圖像的裝置)等。而且,也有可能應用液晶顯示器 件或EL顯示器作爲並入家用電器中的顯示器件,所述家 用電器諸如電冰箱、洗衣機、微波爐、電話或傳真機。如 上所述’本發明可以很廣泛地應用於多個領域的産品。 當利用本發明時,可以獲得下述顯著優點。 (a) 波長約爲1/zm的基波在效率不足的常規半導 體薄膜中不怎麽被吸收。然而,當同時使用諧波時,該基 波在由該諧波所融化的半導體薄膜中被更多地吸收,並且 該半導體膜的退火效率更佳。 (b) 當同時照射約Ιμηι波長的基波與諧波時,存 在如下優點:諸如抑制了半導體膜溫度的快速變化,並且 通過小的輸出來輔助諧波的能量。不象更高次的諧波,對 於基波而言不必使用非線性光學元件來轉換波長,並且有 可能獲得具有相當大的輸出的雷射光束,例如,該雷射光 束具有大於更高次諧波百倍的能量。由於非線性光學元件 對雷射的彈限強度相當弱,所以就造成了這樣能量差。另 外’用來産生更高次諧波的非線性光學元件在質量可能會 有改變,並且存在如下的缺點:諸如難以長期保持作爲固 體雷射器優點的免維護的狀態。因此,根據本發明,通過 基波來輔助更高次的諧波是很有用的。 (C )有可能對要經受照射的物件執行均一退火,這 特別適合於半導體膜的結晶,改善結晶度和啓動雜質元素 (d)有可能提高生産量。 -46 - 0 (43) (43)1322463 (e)如果滿足了上述的優點’則在有源矩陣液晶顯 示器件爲代表的半導體器件中,就有可能實現改進該半導 體器件的操作特性和可靠性。另外,有可能實現降低該半 導體器件的生産成本。 【圖式簡單說明】 第一圖是解釋實施例模式1的圖; 第二A和二B圖是解釋實施例模式2的圖; 第三A和三B圖是解釋實施例模式2的圖; 第四A和四B圖是解釋實施例模式3的圖; 第五圖是解釋實施例模式4的® ; 第六圖是顯示如何執行雷射退火的圖; 弟七A到七C圖是顯示根據本發明的實施例模式的 半導體器件的製造方法的圖; 第八A到八E圖是顯示根據本發明的實施例模式的 半導體器件的製造方法的圖; 弟九A和九B圖是顯示根據本發明的實施例模式的 半導體器件的製造方法的圖; 弟十A和十B圖是顯示根據本發明的實施例方法的 半導體器件的製造方法的圖; 第十一A到十一 e圖是顯示根據本發明的實施例模 式的半導體器件的製造方法的圖; 第十一 A和十二b圖是顯示根據本發明的實施例模 式的半導體器件的製造方法的圖; -47- (46) 基板 基絕緣膜 半導體膜 氧化矽膜 氮化矽膜 第一導電膜 雷射光 雷射光 第二導電膜 抗蝕光罩 第一導電層 第一圖案 第二導電層 第一雜質區域 第二雜質區域 雷射光 雷射光 第一絕緣層 佈線 第二絕緣層 第三絕緣層 佈線 第二導電層 第一雜質區域 -50- (47) 旁側隔板 第二雜質區域 第一絕緣層 第三絕緣層 佈線 光罩 第一雜質區域 第二導電層 光罩 第二雜質區域 非晶矽膜 含鎳層 雷射光 雷射光 結晶矽膜 半導體膜 阻擋層 非晶矽膜 柵電極 雷射光 雷射光 溝道保護膜 雜質區域 第一絕緣層 -51 - (48) 第二絕緣層 佈線 微型計算機 中央處理單元 唯讀記憶體 中斷控制器 高速緩存器 隨機存取記憶體 時鐘發生電路 串行接口 電源發生電路 類比數位轉換器 定時計數器 輸入/輸出端口System. The present invention provides a laser illumination system comprising: a first laser oscillator that outputs a wavelength having visible light or a first laser beam having a wavelength shorter than visible light; used to be on or near the illuminated surface a first laser beam emitted by the first laser oscillator to process the growing beam; a second laser oscillator for outputting a second laser beam of the fundamental wave; for transmitting from the second laser oscillator a means for the second laser beam to strike the area of the illuminated surface, to illuminate the illuminated surface with a long beam; means for relatively moving the illuminated surface in the first direction toward the first and second laser beams And means for relatively moving the illuminated surface in the second direction toward the first and second laser beams. Note that the first direction and the second direction are perpendicular to each other. In a laser illumination system, both the first and second laser oscillators have continuous wave gas lasers, fixed lasers or metal lasers. Gas lasers include Ar lasers, Kr lasers, and C02 lasers, and solid lasers include YAG lasers, YV04 lasers, YLF lasers, YAl〇3 lasers, and ruby lasers. , emerald lasers and Ti: sapphire lasers, and metal lasers include helium-cadmium lasers and metal vapor lasers such as copper vapor lasers and gold vapor lasers. Moreover, the first laser is converted to a higher order harmonic by a nonlinear optical element. As a crystal for a nonlinear optical element, crystals such as LBO, BBO, KDP, ΚΤΡ' KB5, and CLBO are excellent in conversion efficiency. By placing a nonlinear optical element in the resonator, significant high conversion efficiency can be achieved. In addition, since it is possible to improve the energy uniformity of the obtained long beam -9-(22) (22) 1322463 5〇4 converge the elliptical laser beam onto the plane. In this way, a long beam of, for example, a short axis of 20/zm and a long axis of 400 " m is formed on the plane. When the angle of the scanning mirror 503 is changed, scanning is performed with the long beam 505 on the plane. The change in the shape of the long beam 505 caused by the angle of the scanning mirror 503 is suppressed by the f 0 lens 504. The incident angle of the laser beam with respect to the semiconductor film 506 is 20°, which prevents interference on the semiconductor film 506. The interference here is that the reflected light from the laser light from the surface of the semiconductor film 506 interferes with the reflected light from the laser on the rear surface of the substrate on which the semiconductor film 506 is formed. In the present embodiment mode, only one scanning axis is executed using the scanning mirror 503 composed of one mirror, so that the entire area of the two-dimensional plane cannot be scanned. Thus, the substrate is placed on the single-axis stage 507, and the paper according to Fig. 5 is moved left and right so that the entire area of the substrate can be annealed. The scanning speed of the long beam 505 is set to 1 〇〇 to 2000 mm/s, preferably about 500 mm/s. In order to simultaneously irradiate the fundamental wave with the long beam 505 formed by the second harmonic onto the semiconductor film 5?6, a YAG laser 508 which outputs 2000 W with LD excitation is used. Since the long beam 505 is moving at a relatively high speed, an accurate control system is required to move the beam formed by the fundamental wave in accordance with the movement of the long beam 505. Of course, although such a control system is not problematic, in the present embodiment mode, the entire area scanned by the scanning mirror 503 is covered with the long beam 511 of the fundamental wave, so that it is not necessary to move the long beam. In this way, it is possible to generate almost no heterogeneity in laser annealing in the absence of synchronization. It is precisely because of the comparison with the second harmonic -26- (23) (23) 1322463 that the output of the fundamental wave is a hundred times or higher, so that such a large beam can be formed. For example, when the semiconductor film 506 is assumed to be a square having a side length of 125 mm, for example, a length of 125 mm 'width 0 may be formed in the scanning direction of the scanning mirror 503. A long beam 511 of 5 mm is used to cover the entire area of the square. In order to form the long beam 511, for example, after the lens lens 509 is uniformly enlarged, the plano-convex lens 510 is used to converge in one direction. Alternatively, a long beam 511 can be formed with another optical system. When homogenizers are used to homogenize the energy distribution, it is necessary to design the homogenizer to consider the coherence of the YAG laser. For example, homogenizers often use a method in which laser beams are split and combined to homogenize the energy distribution. When this method is used, it is necessary to prevent interference, for example, by adding an optical path difference of not less than the laser coherence length to each of the divided laser beams, which can be repeated for the entire area of the laser-annealed semiconductor film 506. The scanning mirror 503 is moved half a turn, the single-axis table 507 is moved by the width of the long-grain area, and the scanning mirror 503 is moved by half a turn. In the present embodiment mode, the width of the long grain region is about 150 μm, and the single-axis stage 507 shifts the cells in this order in this width. [Embodiment Mode 5] In this embodiment mode, a manufacturing process of a semiconductor device including a stage of partial laser annealing treatment of a laminated structure having a semiconductor film, a gate insulating film, and a conductive film is described. -27-(24) (24) 1322463 First, according to any one of Embodiment Modes 1 to 4, the semiconductor film formed on the substrate is etched into a desired shape to divide the semiconductor film into island shapes. In this manner, the semiconductor film 703 is formed as a main portion of the TFT for the channel region, the source and drain regions. A substrate such as a commercially produced non-domain glass substrate may be used as the substrate 70 1, and a base insulating film 702 including tantalum nitride, hafnium oxide or hafnium oxynitride is formed between the substrate 701 and the semiconductor film 703 with a thickness of 50 to 200 nm. Further, the semiconductor film 70 3 is doped with a p-type impurity element for the purpose of shifting the threshold 値 voltage to the positive side, or doping the η-type impurity element for the purpose of shifting the threshold 値 voltage by the element To the negative side. Next, a multilayer insulating film for a gate insulating film is deposited on the semiconductor film 703. As a preferred example, a hafnium oxide film 704 and a hafnium nitride film 705 formed by high frequency sputtering are given. As a pretreatment before sputter deposition, in addition to corrosion of the surface of the semiconductor film 703 by oxidation treatment with an aqueous solution including ozone and treatment for removing an oxide film with an aqueous solution containing hydrofluoric acid, unsaturated bonds and hydrogen Terminated and inactivated. Then, high-frequency sputtering is performed with a tantalum target (doped with 1 to 10 Ω cm) to form a tantalum oxide film 704 having a thickness of 10 to 60 nm. Typical conditions for deposition include using 〇2 and Ar as sputtering gases and setting the mixing ratio (flow ratio) to 1:3. Moreover, when splashing, set the pressure to 〇. 4Pa, set the discharge power to 4. 1W/cm2 (1 3. 56 MHz), the substrate heat treatment temperature was set to 200 °C. Under such conditions, it is possible to form a dense hafnium oxide film 704 which is low in interface state density between the semiconductor film 703 and the hafnium oxide film 704. Further, a heat treatment at a low pressure of -28 - (25) (25) 1322463 or a surface treatment such as an oxygen plasma treatment may be performed in an empty heating chamber before depositing the ruthenium oxide film. When the oxygen plasma treatment is performed to oxidize the surface of the semiconductor film, the interface state density can be reduced. Then, high frequency sputtering will form a tantalum nitride film 705 having a thickness of 1 〇 to 3 Onm. Typical conditions for deposition include setting the mixing ratio (flow rate ratio) to 1:1 with >}2 and Ar as the sputtering gas. Moreover, when sputtering, the pressure is set to 〇. 8Pa, set the discharge power to 4. 1W/cm2 (13 56 MHz), the substrate heating temperature was set to 200 °C. Due to the relative dielectric constant of tantalum nitride relative to tantalum nitride in an insulating film having a laminated structure. 8 has a relative dielectric constant of about 7. 5, so it is possible to obtain the effect in the case of substantially equivalent to a thin insulating film. In terms of the surface smoothness of the semiconductor film, the maximum 値 of the uneven shape is 1 〇 nm or less, preferably 5 nm or less, and the gate insulating film has a two-layer structure of a ruthenium oxide film and a tantalum nitride film. At the time, it is possible to reduce the gate leakage current and to 2. 5 to 10V drive TFT, usually at 3. 0 to 5. The 5V driving TFT' has a total thickness of the gate insulating film of 3 Å to 8 Å. After the lamination of the hafnium oxide film 704 and the tantalum nitride film 705 is formed, the first conductive film 706 is formed. The material of the first conductive film 706 is selected from a high melting point metal, a metal nitride, and a telluride. The high melting point metal such as molybdenum (Mo), tungsten (W), and titanium (Ti) 'metal nitride such as titanium nitride. , nitrided tungsten and tungsten nitride's telluride such as tungsten telluride (w S i 2 ), molybdenum telluride (MoSi2), titanium telluride (TiSi2), tantalum (TaSi2), chromium (CrSi2), cobalt (CoSi2) And lead germanium (PtSi2), polycrystalline germanium doped with phosphorus or boron. The first conductive film 7〇6 has a thickness of from 1 Å to 100 nm, preferably from 20 to 50 nm. -29-(26) 1322463 Then, as shown in Fig. 7B, the first conductive film 706 is irradiated with the laser 70 7 and the laser 70 8 to heat the portion thereof. The angle of incidence of the laser on the surface of the substrate and different from the laser 70 7 . The embodiment mode applies an illumination and laser illumination system such as that shown in embodiment mode 1. In other words, the second harmonic (Nd: YVOz CW5 32nm) from the light source that excites the 辜 laser oscillator with LD is used as the laser 707, and the fundamental wave from the source of the output 30W is used (Nd: YAG laser, CW , TEMqq) as the laser 708. The first conductive film 706 absorbs energy of 1 laser 70 8 to generate heat, and the first conductive film 706 矽 film 705 'the yttrium oxide film 704 and the semiconductor film 703 are heated. With a suitable partial treatment, it is possible to include oxidation or nitridation in the small ruthenium cluster, and to relax the internal distortion so as to have a defect density and an interface state density. Then, as shown in FIG. 7C, selected from the group consisting of molybdenum (Ta), tungsten (Ti), molybdenum (Mo), aluminum (A1), and copper (Cu): an alloy containing the above metal element as its main component or a combined second conductive Membrane 7 09. The gate electrode is formed by processing the first and second conductive films, and the TaN film formation film 706 and the second conductive film 709 formed of the tungsten (W) film are preferably formed into a tantalum (TaN) film. The first conductive film 706 is combined with the formed second conductive film '07. Next, as shown in FIG. 8A, a pattern of the gate electrode of the resist mask 71 is provided, and a part of the first etching performed by dry etching is performed, and there is a possibility that the method of the laser is set to 10 W. Laser, laser oscillation 1 .  0 6 4 /zm ' Snow shot 707 and underlying nitriding conduction heating and micro-reduction in the film (W), titanium element or inclusion in the film is deposited as 7 〇 6 and 7 0 9 of the first conductivity Bonding, or titanium (Ti) film 'is used to form. For example, -30-(27)(27)1322463 can be applied to the first corrosion by ICP (Inductively Coupled Plasma) corrosion. Although there is no limitation on the etching gas, the etching gases of tungsten (W) and molybdenum nitride (TaN) used for the gate electrode in the present embodiment mode are CF4, Cl2 and 02. In the first etching, a predetermined bias voltage is applied to the substrate so that the sides of the case (711 and 712) used for the gate electrode have an inclination angle of 15 to 50 degrees. With the first etching, a tantalum nitride film 70 5 formed as a gate insulating film is left under the case of Fig. 1 for the gate electrode in accordance with the etching conditions to expose the hafnium oxide film 704. Then, the second etching is performed, specifically, the etching gases sf6, Cl2, and 02 are used, and the bias voltage applied to the substrate side is set to a predetermined 値 to perform anisotropic etching of the tungsten (W) film. In this manner, a gate electrode composed of a two-layer structure of the first and second conductive layers 711 and 713 is formed (Fig. 8B). The gate electrode in this embodiment has a stacked structure of the first and second conductive layers 711 and 713, and has the following structure (top-hap type) in which the gate electrode is exposed The first conductive layer such as a peak-like protrusion in the cross section. Then, doping is performed as shown in FIG. 8C. In the doping in which the impurity ions for controlling the valence electrons are accelerated by the electric field for injection, it is also possible to change the concentration of the impurity region formed in the semiconductor film 703 when the ion acceleration voltage is appropriately adjusted, that is, to inject with a high acceleration voltage Conductive type impurity ions, the purpose is to pass the peak of the first conductive layer 711 so as to form a first impurity region 715 ' overlapping with the gate electrode and then 'implant the impurity ion having the conductivity type with a low acceleration voltage' a peak of the conductive layer 711 to form a second impurity region -31 - (28) (28) 1322463 region 716' as shown in Fig. 8D. With this doping, it is possible to form a TFT having a so-called gate overlap LDD structure. As an impurity having this conductivity type, in the case of an n-type impurity (donor), 'use elements belonging to Group 5 of the periodic table, such as phosphorus or arsenic, in the case of P-type impurities (receptors), use An element belonging to Group 13 of the periodic table, such as boron. When the impurity is appropriately selected, it is possible to manufacture an n-channel TFT or a p-channel TFT. Moreover, it is possible to form n-channel TFTs and P-channel TFTs on the same substrate only by adding a mask pattern for doping. In order to activate the second impurity region 716 formed as a source and a drain and the first impurity region 715 formed as an LDD, the semiconductor layer 703 is irradiated with a laser 717 and a laser 718, and in the plate semiconductor layer 703, first and second are formed Impurity regions 715 and 716 (Fig. 8E). Laser 718 has an angle of incidence that is different from the surface of the substrate and that is different from laser 717. It is possible to apply, for example, the method of irradiating laser light and the laser irradiation system shown in Embodiment Mode 1 to the present embodiment mode. In other words, the second harmonic (Nd: YV04 laser, CW, 532 nm) from the light source of the laser oscillator outputting 10 W with LD is used as the laser 717, and the laser oscillator from the output 30 W is used. The fundamental wave of the light source (Nd: YAG laser, CW, 1. 064#m, ΤΕΜβ〇) as the laser 718. During startup, the laser heats up the first conductive layer 711 forming the gate electrode, recrystallizing the amorphous region and/or repairing defects due to implantation due to heat conduction therefrom. Thereby, it is possible to start the impurity in the first impurity region 715 to which the laser is not directly irradiated. -32 - (29) (29) 1322463 Then, as shown in Fig. 9A, a nitrogen-containing nitrogen gas was formed by plasma CVD at a substrate heating temperature of 325 °C using a mixed gas of SiH4'N20' NH3 and H2. The ruthenium oxide film, as the first insulating layer 719, has a film thickness of 50 to 200 nm. Then, a heat treatment of 41 Torr in a nitrogen atmosphere was performed to carry out hydrogenation of the semiconductor layer. Then, a contact hole is formed in the first insulating layer 719, and the wiring 720 is appropriately formed with a metal such as A1, Ti, Mo or W, the wiring having, for example, a wiring structure of a laminated film having a film thickness 5 Ti film of 2 5 〇 nm and alloy film (A1 and Ti) having a film thickness of 300 to 500 nm (Fig. 9B) 〇 In this way, a TFT having a gate-overlapping LDD structure is completed. When performing high frequency sputtering with ytterbium as a target to fabricate a laminate of a ruthenium oxide film and a tantalum nitride film, and applying the laminate to the gate insulation of the TFT after heat treatment by local heating of the conductive layer after pattern formation On the film, it is possible to obtain a TFT having a small threshold voltage and sub-threshold characteristic fluctuation. According to the present invention, it is possible to provide a method and a laser irradiation system for correcting irregularities in irradiation, capable of uniform laser processing and obtaining a high throughput of irradiation laser, and a laser irradiation method and laser irradiation The system is applied to crystallization of a semiconductor film, heat treatment of a gate insulating film, and activation of an impurity region as shown in this embodiment mode, thereby making it possible to provide a semiconductor device having various functional circuits integrated using TFT without generating a glass substrate Shrink or twist. In particular, since the shrinkage of the glass substrate is not generated, all the dimensional accuracy around the gate electrode is maintained, and it is possible to form a channel length of 0 on the glass substrate. 3 to 1. 5/zm TFT. -33- (30) (30) 1322463 Note that although the present embodiment mode shows the case of applying the laser irradiation method and the laser irradiation system exemplified in Embodiment Mode 1, the semiconductor device according to the present invention The manufacturing process is not limited to this case, and it is also possible to apply the method of irradiating laser and the laser irradiation system exemplified in any of Embodiment Modes 2 to 4. [Embodiment Mode 6] Similarly to Embodiment Mode 5, the process up to the hydrogenation was performed to obtain the state shown in Fig. 9A. Then, high frequency sputtering is performed with ytterbium as a target to form a tantalum nitride film as the second insulating layer 721 on the first insulating layer 719 as shown in FIG. 10A. The tantalum nitride film has superior properties as a barrier, and it is possible to obtain a barrier function for preventing penetration of ionic impurities such as sodium and oxygen in the air and moisture. Further, the third insulating layer 722 is formed of a photosensitive or non-photosensitive organic resin material containing a material such as acrylic acid or polyimide as its main component. A wiring 723 formed of a conductive material such as Al, Ti, Mo or W is provided to match the contact holes formed in the first to third insulating layers. When the third insulating layer 722 is formed of an organic resin material, the capacitance between the wirings is reduced, and the surface has smoothness. Thus, it is possible to provide wiring on the third insulating layer at a high density. [Embodiment Mode 7] In the present embodiment mode, an explanation of a method of manufacturing a TFT having a gate-overlapping LDD structure is given in accordance with a process different from Embodiment Mode 5. -34- (31) 1322463 Note that in this mode, the same reference numerals are used to denote the same reference numerals as in the mode 5, and the parts of the same reference are not explained. First, similarly to the embodiment mode 5, the substrate 7 01 insulating film 702, the semiconductor film 703, the hafnium oxide film 704, the nitrogen oxide 705, the first conductive film 76 and the second conductive film 709 are sequentially formed, that is, the second is formed. The process of the conductive film 709 is performed to obtain the one shown in FIG. 7C; t Next, as shown in FIG. 11A, the second conductive layer 73 0 on the first conductive film 706 is formed by etching in accordance with the pattern of the gate electrode. The second conductive layer 73 0 is used as a mask, and doping with a conductive impurity is performed. The impurity having this conductivity type is passed through the first 706 and injected into the semiconductor film 7〇3 to form the first region 7 32 (Fig. 1 1 B ). Next, an insulating film of a ruthenium oxide film is formed on the first conductive film 706 and the second conductive layer 730, and anisotropic etching is performed to the side spacer 73 3 (Fig. 1 1C). The side spacer 73 3 and the second 73 0 are used as a mask for doping, and the first region 734 is formed by self-alignment, and the second impurity region 734 is doped with impurities of the conductivity type via the first conductive film 706. . As an impurity having this conductivity type, in the case of an η-type impurity (using an element belonging to Group 15 of the periodic table, such as phosphorus in the case of a Ρ-type impurity (acceptor), an element belonging to the periodic table is used, such as Boron. When the impurity is suitably selected, there is an η-channel TFT or a Ρ-channel TFT. Moreover, it is possible to form the ruthenium film row only by the number of the embodiment until the R state. Type of conductive film - an impurity is formed to form a side conductive layer, two impurities are performed with a donor) or arsenic, and a group of 3 can be fabricated by adding -35- (32) 1322463 to a doped reticle pattern, which is formed on the same substrate. And P-channel TFTs. In order to activate the first impurity region 732 formed for the second impurity region LDD formed by the source and the drain, the layer 703 irradiates the laser 717 and the laser 718 as shown in FIG. 11E, and the first and second impurity regions 732 in the semiconductor layer and 734. The angle of incidence of the surface of the laser 718 substrate that is different from the laser 717. The method of irradiating laser light and the laser shown in Embodiment Mode 1 are in the mode of this embodiment. In other words, the second harmonic (Nd: YV04 Ray | 532 nm) of the light source from the LD excitation source oscillator is used as the laser 717, and the fundamental wave (Nd:YAG laser, from the source of the output 30W is used, CW, TEMqq) as the laser 718. Then, the second conductive layer 73 0 and the side spacer 733 are used and the etching of the first conductive film 706 is performed. Then, using a mixed gas of S NH3 and H2, a ruthenium oxynitride- insulating layer 735 including hydrogen is formed by plasma CVD at a substrate heating temperature of ° C, and the film thickness is 50 to 200 nm. Thereafter, after the insulating layer 73 5, 41 〇 ° C in a nitrogen atmosphere was performed to carry out hydrogenation of the semiconductor layer (Fig. 12A). Moreover, the third is formed with a photosensitive or non-photosensitive organic resin material containing a constituent component such as acrylic acid or polyimide. A conductive material 737' such as Al, Ti, Mo or W is provided to match the n-channel TFT 734 formed in the first and second insulating layers and, for the semiconductor 703, the shape has a relative shot The system applies a 10W lightning pulsator, CW, and laser oscillation. 064 // m > As a mask, i Η 4 ' Ν 2 Ο ' is in the 250-350 film, as the first heat treatment in the formation, as the wiring contact hole formed by the main insulating layer 736. When -36-(33) 1322463 is formed of the third insulating layer 736 with an organic resin material, the wiring is reduced and the surface has smoothness. Thus, it is possible to provide wiring on the second insulating layer (Fig. 12B). In this manner, according to the present invention having a gate-overlapping LDD structure, it is possible to provide a method of projecting for correcting irregularly uniform laser processing in illumination and obtaining a high throughput of illumination lasers. The method and the laser irradiation system are shown by the crystallization of the body film, the heat treatment of the gate insulating film, and the embodiment of the impurity region, thereby making it possible to provide a semiconductor device having a plurality of functional circuits using TFT without causing distortion of the glass substrate. In particular, since the shrinkage of the glass substrate is not produced, the dimensional accuracy around the electrode is good, and it is possible that the length of the glass-based channel is 0. 3 to 1. 5 y m TFT. Note that although the present embodiment mode shows a method of applying laser irradiation and a laser irradiation system exemplified in the implementation, the manufacturing process of the semiconductor device according to the present invention is not limited, and may also be applied to the embodiment. A method of irradiating a laser of any one of modes 2 to 4 and a laser irradiation system. [Embodiment Mode 8] In the present embodiment mode, the intention of manufacturing a TFT having a gate-overlapping LDD structure is explained in accordance with Embodiment Mode 5 to Procedure, and in the following description, the same reference numeral is used to represent Representing the same portion, for the sake of convenience, the capacitance between the two is no longer explained with a high-density TFT. Roots, energy and lasers are used for semi-conducting, such as the inherently integrated contraction or to maintain the on-board pattern mode, but this case illustrates 7 different methods. Note Example Mode Common Reference -37- (34) 1322463 The part indicated by the digit. In Fig. 13A, a base insulating film body film 703 is formed in a substrate 701. After the photomask 740 is formed thereon, the doped first impurity region 741 is performed. After the mask 740 is peeled off and the organic contaminant is removed by ozone water and hydrogen ring cleaning or UV (ultraviolet light) to form a clean surface, the tantalum oxide film 705 and the first conductive film 706 are formed. Immediately formed (|, then, a second conductive film 709 (FIG. 13C) is formed. Corrosion is formed to form: 742 which is processed to have a gate electrode pattern. The gate electrode is formed to be anastomosed to form a bit electrode of the photomask 740 and the first The impurity regions 741 are overlapped so as to be in this overlapping structure (Fig. 13 D). Next, a photomask 743 is formed on the second conductive layer 742. For the LDD region not overlapping the gate electrode, the conductor film 703 is used. The photomask 743 covers the second conductive layer 742, and doping is performed with the photomask 74 3 to form a second impurity region: Then, in a manner similar to the embodiment mode 5, the first and second impurity regions 741 are activated. And 744, and a film (Fig. 14B), i.e., performing irradiation of a laser 718 on the semiconductor layer 703, in which a first sum field 741 and 744 are formed. The laser 718 has an emission relative to the substrate 7 1 7 different angles of incidence. It is possible to The method of irradiating laser light and the laser irradiation system are applied to the present embodiment 7 〇 2 and semi-conductive impurities to form an alternating oxyfluoric acid back to ozone treatment to form the ruthenium film 704, Fig. 13B). Then, a second conductive layer is performed, and the gate phase forms a gate, which is also formed in a half as shown in Fig. 14. In this state or 744 ° heat treatment, the gate insulation 7 1 7 and the laser second impurity region and the example pattern shown by the lightning mode 1 are modified. Change -38- (35) (35)1322463 In other words, use the second harmonic of the light source from the LD excitation output 10W laser oscillator (Nd: YV〇4 laser, CW, 532nm) as the laser 717 And use the fundamental wave of the light source from the laser oscillator outputting 3 OW (Nd: YAG laser, CW, 1. 064//m, TEMq. ) as a laser 718. In the present embodiment mode, it is possible to simultaneously activate the first and second impurity regions and modify the gate insulating film. Then, when etching is performed on the first conductive film 706, it is possible to complete a TFT in which a portion (Lov) of the LDD region overlaps with the gate electrode, and the remaining portions (Loff) do not overlap. Note that although the present embodiment mode shows the case of applying the laser irradiation method and the laser irradiation system exemplified in Embodiment Mode 1, the manufacturing process of the semiconductor device according to the present invention is not limited to this case, and It is also possible to apply the method of irradiating laser and the laser irradiation system exemplified in any of Embodiment Modes 2 to 4. [Embodiment Mode 9] In the present embodiment mode, a method of manufacturing a semiconductor device including a TFT having a bottom gate type (inverted staggered) structure is described as an example. In Fig. 15A, a base insulating film 7〇2 is formed on the substrate 7〇1. In order to form the gate electrode 76 1, a metal element such as titanium, molybdenum, chromium, and tungsten or an alloy including the above metal may be used. For example, an alloy of molybdenum and aluminum is used. Alternatively, the gate electrode 761 may be formed of aluminum, and its surface may be anodized for stabilization. A tantalum nitride film 705 and a hafnium oxide film -39-(36) (36) 1322463 07 04 are sequentially formed thereon by high-frequency sputtering as a gate insulating film. The semiconductor film 703 is formed in a manner similar to any of Embodiment Modes 1 to 4. Then, irradiation of the laser 762 and the laser 763 can be performed in this state to perform heat treatment of the gate insulating film as shown in Fig. 15B. The laser 762 has an incident angle with respect to the surface of the substrate and different from the laser 763. It is possible to apply the method of irradiating lasers and the laser irradiation system as shown in Embodiment Mode 1 to the present embodiment mode. In other words, the second harmonic (Nd: YV〇4 laser, CW, 5 3 2 nm) of the light source from the laser edger of the LD excitation output 10W is used as the laser 762, and the laser from the output 30W is used. The fundamental wave of the source of the oscillator (Nd: YAG laser, CW, 1. 064 # m, TEMGG ) as the laser 763. The gate electrode 761 absorbs the energy of the laser 7 62 and the laser 763 to generate heat, and heats the tantalum nitride film 705, the hafnium oxide film 704, and the semiconductor film 307 on the gate electrode 761 due to conduction heating. Using this partial treatment, it is possible to oxidize or nitride the minute ruthenium clusters included in the film, and also relax the internal distortion to reduce the defect density and the interface state density in the film. Next, a channel protective film 764 such as a hafnium oxide film is formed on the semiconductor film 703, which is used as a photomask to form an impurity region having one conductivity type. Fig. 15C shows the case where the impurity regions 765 for the source and drain are formed. Further, not shown in the drawing, doping may be performed twice to add another impurity region to the LDD. As an impurity having this conductivity type, in the case of an η-type impurity (donor), an element belonging to Group b of the periodic table such as phosphorus or arsenic is used, and in the case of a ρ-type impurity (receptor), it is used. An element of Group 13 of the Periodic Table, such as boron. When the impurity is suitably selected by -40-(37) (37) 1322463, it is possible to fabricate an ?-channel TFT or a p-channel TFT. Moreover, it is possible to form an n-channel TFT and a p-channel TFT on the same substrate only by adding a mask pattern for doping. In order to activate the impurity region 765 formed as a source and a drain, irradiation of the laser 762 and the laser 763 is performed on the semiconductor film 703, and in the semiconductor film 703, the impurity region 765 is formed. The laser 762 has an angle of incidence that is different from the surface of the substrate and that is different from the laser 763. It is possible to apply, for example, the method of irradiating laser and the laser irradiation system shown in Embodiment Mode 1 to the present embodiment mode. In other words, the second harmonic (Nd: YV04 laser, CW, 532 nm) of the light source from the laser oscillator outputting 10 W from the LD is used as the laser 7 62 'and the light source from the laser oscillator outputting 30 W is used. Fundamental wave (Nd:YAG laser, CW, 1. 064 / / m, TEMoo) as a laser Ί 63. Then, as shown in FIG. 15E, a yttrium oxynitride film including hydrogen is formed as a first insulating layer 766 by plasma CVD using a mixed gas of SiH4, N20, NH3, and H2 at a substrate heating temperature of 325 t. The film thickness is 50 to 200 nm. Then, heat treatment of 4101 in a nitrogen atmosphere was performed to carry out hydrogenation of the semiconductor layer. Further, the second insulating layer 767 is formed of a photosensitive or non-photosensitive organic resin material containing a material such as acrylic acid or polyimide as its main component. A wiring 768' formed of a conductive material such as Al, Ti, Mo or W is provided to match the contact holes formed in the first and second insulating layers. When the second insulating layer 767 is formed of an organic resin material, the capacitance between the wirings is reduced 'and the surface has smoothness. Thus, it is possible to provide wiring on the second insulating layer at a high density of -41 - (38) (38) 1322463. In this way, a bottom gate type (inverted staggered) TFT can be completed. When high-frequency sputtering is performed with ruthenium as a target to fabricate a laminate of a tantalum oxide film and a tantalum nitride film, and the laminate is applied to a gate insulating film of a TFT after heat treatment by local heating of the patterned conductive layer It is possible to obtain a TFT having a small threshold voltage and sub-threshold characteristic fluctuation. [Embodiment Mode 10] In the embodiment modes 1 to 9, the irradiation of the laser Si film for crystallization is exemplified. However, the present invention is not limited to such an application, and for example, the present invention can also carry out a process for improving and modifying the crystallinity of a crystalline semiconductor film by the method of irradiating a laser according to the present invention and the laser irradiation system. First, as shown in Fig. 16A, a base insulating film 702 is formed on a substrate 701 composed of an insulating film such as a hafnium oxide film, a tantalum nitride film or a hafnium oxynitride film. Specifically, a first nitrogen oxynitride film containing nitrogen higher or nearly equal to oxygen is formed by a reactive gas SiH4, NH3 or N20 by plasma CVD at a substrate heating temperature of 400 ° C, and at 400 ° C Forming a second yttrium oxynitride film containing oxygen higher than nitrogen by a reactive gas Si H4 and N20 at a substrate heating temperature to form a base insulating film of a laminated structure of the first and second yttrium oxynitride films 7 02. In the laminated structure, a tantalum nitride film formed by high-frequency sputtering can be used instead of the first oxynitride film. The tantalum nitride film can prevent diffusion of a small amount of metal such as sodium (Na) included in the glass substrate. A semiconductor layer for forming channel, source and drain portions of the TFT is obtained by crystallizing the amorphous germanium film 751 formed on the base insulating film 7〇2 to -42-(39)(39)1322463. The amorphous tantalum film 751 formed by plasma CVD at a substrate heating temperature of 3 ° C has a thickness of 20 to 60 nm. For the semiconductor layer, amorphous germanium germanium (Si, _xGex; x = 0. 00 1 to 〇. 〇 5) The film replaces the amorphous ruthenium film. In order to perform crystallization 'addition of a metal element such as nickel (Ni), the metal element catalyzes the crystallization of the semiconductor. In Fig. 16A, after the nickel-containing (Ni) layer 752 is held on the amorphous tantalum film 751, heat treatment by radiant heating or conduction heating is performed to carry out crystallization. For example, the following RTA is performed for 180 seconds at a current heating temperature of 740 ° C, which is performed by a lamp as a heat source (rapid heating annealing) or by heating a gas (gas RTA ). The current heating temperature is the temperature of the substrate measured with a pyrometer, and this temperature is regarded as the current temperature at the time of heat treatment. Alternatively, heat treatment at 550 ° C for 4 hours may be performed using an annealing furnace. Due to the action of the catalytic metal element, the crystallization temperature is lowered, and the time for crystallization is also shortened. In order to further improve the crystallinity of the thus formed crystalline ruthenium film 7 55, a laser treatment is performed (Fig. 16B). The second harmonic (Nd: YV04 laser, CW, 532 nm) of the light source from the LD excitation output laser oscillator of 10 W is used as the laser 753, and the fundamental wave from the light source of the laser oscillator outputting 30 W is used. (Nd: YAG laser, CW, 1. 064#m, TEMQq) as a laser 7 5 4. When the second harmonic overlaps with the fundamental wave on the illuminated surface in this way, it is possible to perform crystallization in order to correct the irregularity in the irradiation, to uniformize the laser processing, and to obtain a high throughput. . Thus, the crystallized semiconductor film 7 5 6 can be obtained (Fig. 10C). -43- (40) 1322463 Line diagram catalysis 1 0 丨 7 is for the like, such as oxygen-like shape for the degree of RTA (the time after the division of the 矽 film for the city liquid. Conductor in order to remove the crystallization film included In the case of impurities such as metal, the inhalation shown in Figure 7 is reduced to the concentration of the metal having the effect of t intentionally added during the crystallization process; xi〇H/cm3 or less than 1 χ /cm3 is particularly effective. It is necessary to newly form a gettering point for the purpose of performing the gettering by the crystalline ruthenium film formed by the film shape. In Fig. 17, the gettering point forms an amorphous ruthenium film on the semiconductor film 759. The two have a barrier layer 7 5 7 » amorphous germanium film 7 5 8 has: an impurity element, phosphorus or boron; a rare gas element such as Ar, Kr or Xe; or an element such as nitrogen or nitrogen, these elements are taken as 1 xl 〇2G/cm3 includes distortion. High-frequency sputtering is preferably performed using Ar as a sputtering gas to form an amorphous germanium film. It is possible to use any substrate heating temperature at the time of deposition and, for example, 150 °C The temperature is sufficient. For the subsequent heat treatment, perform 1800 seconds at 750 °C as follows The RTA is carried out by a lamp or by heating the gas (RTA). Alternatively, an annealing furnace is used to perform 550 ° C and 4 small heat treatments. By the heat treatment, the metal element appears to be separated from the amorphous germanium film 758, and thus it is possible to purify the semiconductor film 75 6 . In the heat treatment, the amorphous 75 8 is removed by dry etching or wet etching using NF3 or CF4, wherein dry etching does not utilize the plasma of C1F3, wet etching the solution, such as including or tetramethylammonium hydroxide ((CH3)4NOH) The barrier layer 756 is removed by etching with hydrofluoric acid. The half film 756 thus obtained is used as a semiconductor film in any of Embodiment Modes 5 to 8. - 44 - (41) (41) 1322463 [Embodiment Mode η] Referring to Fig. 1 8 , an example in which a microcomputer is used as a typical semiconductor device according to the embodiment mode 5 to 10 is explained. As shown in Figure 18, it is possible to achieve a thickness of 0. 3mm to 1. A microcomputer 800 in which a plurality of functional circuit sections are integrated on a 1 mm glass substrate. The plurality of functional circuit portions may be formed mainly of TFTs or capacitors manufactured according to any of Embodiment Modes 5 to 10. The microcomputer 8 00 includes components such as a CPU 801, a ROM 802, an interrupt controller 803, a cache memory 804, a RAM 805, a D MAC 806, a clock generation circuit 807, a serial interface 808, a power generation circuit 809, ADC/DAC 810' Timer Counter 811' WDT 812 and I/O 埠 8 1 3. In the present embodiment mode, the microcomputer is displayed as an example. When the composition of a plurality of functional circuits or a combination thereof is changed, it is also possible to complete a plurality of functional semiconductor devices such as a media processor, an LSI for graphics, a cryptographic LSI, a memory, an LSI for a cellular phone. In addition, it is possible to manufacture a liquid crystal display device or an EL (electroluminescence) display using a TFT formed on a glass substrate. As an electronic device using such a display, a camera, a digital camera, a goggle type display (head mounted display), a navigation system, a sound reproducing device (such as a car audio system and an audio device), a laptop, and a game machine can be given. Portable information terminal (such as mobile computer, cellular phone, portable game machine, and electronic book), image reproducing apparatus including a recording medium (more specifically, capable of reproducing a recording medium such as a digital multi-purpose disk (DVD) And display the -45-(42) (42) 1322463 reproduced image device) and the like. Moreover, it is also possible to apply a liquid crystal display device or an EL display as a display device incorporated in a home appliance such as a refrigerator, a washing machine, a microwave oven, a telephone or a facsimile machine. As described above, the present invention can be widely applied to products in various fields. When the present invention is utilized, the following significant advantages can be obtained. (a) A fundamental wave having a wavelength of about 1/zm is not absorbed much in a conventional semiconducting film having insufficient efficiency. However, when harmonics are used at the same time, the fundamental wave is more absorbed in the semiconductor film melted by the harmonics, and the annealing efficiency of the semiconductor film is better. (b) When the fundamental wave and harmonics of about Ιμηι wavelength are simultaneously irradiated, there are advantages such as suppressing a rapid change in the temperature of the semiconductor film, and assisting the energy of the harmonic by a small output. Unlike higher harmonics, it is not necessary for a fundamental wave to use a nonlinear optical element to convert the wavelength, and it is possible to obtain a laser beam with a fairly large output, for example, the laser beam has a greater than higher harmonic Waves of energy. This energy difference is caused by the fact that the nonlinear optical element has a relatively weak elastic limit to the laser. In addition, nonlinear optical elements used to generate higher harmonics may vary in quality, and have disadvantages such as difficulty in maintaining a maintenance-free state as a solid laser advantage for a long period of time. Therefore, according to the present invention, it is useful to assist higher order harmonics by the fundamental wave. (C) It is possible to perform uniform annealing on the article to be subjected to irradiation, which is particularly suitable for crystallization of a semiconductor film, improvement of crystallinity and initiation of an impurity element (d), which may increase throughput. -46 - 0 (43) (43) 1322463 (e) If the above advantages are satisfied, then in a semiconductor device typified by an active matrix liquid crystal display device, it is possible to improve the operational characteristics and reliability of the semiconductor device. . In addition, it is possible to achieve a reduction in the production cost of the semiconductor device. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a diagram for explaining Embodiment Mode 1; the second A and BB diagrams are diagrams for explaining Embodiment Mode 2; The third A and BB diagrams are diagrams for explaining Embodiment Mode 2; The fourth and fourth B diagrams are diagrams for explaining the embodiment mode 3; the fifth diagram is a diagram explaining the mode of the embodiment mode 4; the sixth diagram is a diagram showing how to perform the laser annealing; the brothers seven to seven c are diagrams A diagram of a method of fabricating a semiconductor device according to an embodiment mode of the present invention; FIGS. 8A to 8E are diagrams showing a method of fabricating a semiconductor device according to an embodiment mode of the present invention; FIGS. 9A and 9B are displays A diagram of a method of fabricating a semiconductor device according to an embodiment mode of the present invention; FIGS. 10A and 10B are diagrams showing a method of fabricating a semiconductor device in accordance with an embodiment of the present invention; 11A to 11E Is a diagram showing a method of manufacturing a semiconductor device according to an embodiment mode of the present invention; FIGS. 11A and 12B are diagrams showing a method of manufacturing a semiconductor device according to an embodiment mode of the present invention; -47- (46) Substrate-based insulating film semiconductor film oxidation Bismuth film tantalum nitride film first conductive film laser light laser second conductive film resist mask first conductive layer first pattern second conductive layer first impurity region second impurity region laser light laser light first insulating layer wiring Second insulating layer third insulating layer wiring second conductive layer first impurity region - 50 - (47) side spacer second impurity region first insulating layer third insulating layer wiring mask first impurity region second conductive layer Photomask second impurity region amorphous germanium film nickel-containing layer laser light laser crystal germanium film semiconductor film barrier layer amorphous germanium film gate electrode laser light laser light channel protective film impurity region first insulating layer -51 - (48) Second Insulation Layer Wiring Microcomputer Central Processing Unit Read Only Memory Interrupt Controller Cache Random Access Memory Clock Generation Circuit Serial Interface Power Generation Circuit Analog Digital Converter Timing Counter Input/Output Port

-52 --52 -

Claims (1)

1322463 ~ 奴柳月?。日修正本 (1) ---1 1 拾、申請專利範圍 第92 127701號專利申請案 中文申請專利範圍修正本 民國98年12月30日修正 1 . 一種雷射照射系統,包含: 第一雷射振盪器,其輸出具有可見光的波長或者具有 比可見光更短波長的第一雷射光束; 用來在被照表面或它的附近將從該第一雷射振盪器發 射的該第一雷射光束處理爲長光束之裝置; 第二雷射振盪器,其輸出基波的第二雷射光束; 用來將從該第二雷射振盪器發射的該第二雷射光束照 射到該被照表面的一個區域之裝置; 用來使該被照表面在第一方向中向該第一和第二雷射 光束相對移動之裝置;和 用來使該被照表面在第二方向中向該第一和第二雷射 光束相對移動之裝置, 其中,將該長光束照射到該被照表面之該區域,和 其中,該第一雷射光束爲諧波。 2.如申請專利範圍第丨項所述的雷射照射系統,其中 ’該第一和第二雷射振盪器之每一者具有連續波的氣體雷 射器'固體雷射器或金屬雷射器。 3 ·如申請專利範圍第1項所述的雷射照射系統,其中 ’該第~和第二雷射振盪器之每一者具有Ar雷射器、Kr 雷射器、C02雷射器、YAG (釔鋁石榴石)雷射器、 (2) 1322463 YV〇4雷射器' YLF雷射器、YAl〇3雷射器 '紅寶石雷射 器、翠綠寶石雷射器、Ti :藍寶石雷射器、氦·鎘雷射器 '銅蒸汽雷射器或金蒸汽雷射器。 4 .如申請專利範圍第1項所述的雷射照射系統,其中 ,該第一方向與該第二方向相互垂直。 5 ·如申請專利範圍第1項所述的雷射照射系統,其中 ,該被照表面包含在對第一雷射光束半透明的厚度爲“d1322463 ~ Slave month? Japanese Amendment (1) ---1 1 Pickup, Patent Application No. 92 127701 Patent Application Revision of Chinese Patent Application Revision of the Republic of China on December 30, 1998 1. A laser irradiation system comprising: An oscillator having a wavelength of visible light or a first laser beam having a shorter wavelength than visible light; the first laser for emitting from the first laser oscillator at or near the illuminated surface a beam processed as a long beam; a second laser oscillator that outputs a second laser beam of the fundamental wave; and the second laser beam emitted from the second laser oscillator is illuminated to the illuminated Means for a region of the surface; means for causing the illuminated surface to move relative to the first and second laser beams in a first direction; and for causing the illuminated surface to face the second in the second direction And a means for relatively moving the second laser beam, wherein the long beam is incident on the area of the illuminated surface, and wherein the first laser beam is a harmonic. 2. The laser illumination system of claim 2, wherein 'the first and second laser oscillators each have a continuous wave of gas lasers' solid laser or metal laser Device. 3. The laser illumination system of claim 1, wherein each of the first and second laser oscillators has an Ar laser, a Kr laser, a C02 laser, a YAG (钇-aluminum garnet) laser, (2) 1322463 YV〇4 laser 'YLF laser, YAl〇3 laser' ruby laser, emerald laser, Ti: sapphire laser , 氦 · cadmium laser 'copper steam laser or gold steam laser. 4. The laser illumination system of claim 1, wherein the first direction and the second direction are perpendicular to each other. 5. The laser illumination system of claim 1, wherein the illuminated surface is contained in a thickness translucent to the first laser beam of "d" ”的基板上形成的膜,且當該長光束之長軸或短軸的長度 用“ W”表示時,該第一雷射光束相對於該被照表面的入 射角“Φ”滿足不等式arctan(W/2d)。 6 _ —種照射雷射的方法,包含如下步驟: 在被照表面或它的附近,將具有可見光的波長或者具 有比可見光更短波長的第一雷射光束處理爲長光束;和 將基波的第二雷射光束和該長光束同時照射到該被照 表面的一個區域,同時使該被照表面相對於該長光束在一 個方向中相對地移動, 其中,該第一雷射光束爲諧波。 7. 如申請專利範圍第6項所述的照射雷射的方法,其 中,該被照表面包含在對該第一雷射光束半透明的厚度爲 “d”的基板上形成的膜,且當該長光束之長軸或短軸的 長度用“W”表示時,該第一雷射光束相對於該被照表面 的入射角“Φ”滿足不等式arctan(W/2d)。 8. —種用來製造半導體器件的方法,包含如下步驟: 在半導體膜的表面或它的附近,將具有可見光的波長 -2 - (3) 1322463 或者具有比可見光更短波長的第一雷射光束處理爲長光束 ;和 藉由將基波的第二雷射光束和該長光束同時照射到該 半導體膜之該表面的一個區域,同時使該半導體膜之該表 面相對於長光束在一個方向中相對地移動,以使該半導體 膜結晶’ 其中,該第一雷射光束爲諧波。a film formed on the substrate, and when the length of the long axis or the minor axis of the long beam is represented by "W", the incident angle "Φ" of the first laser beam with respect to the illuminated surface satisfies the inequality arctan ( W/2d) 6 _ - A method of irradiating a laser, comprising the steps of: processing a wavelength having visible light or a first laser beam having a shorter wavelength than visible light into a long beam at or near the illuminated surface And irradiating the second laser beam of the fundamental wave and the long beam simultaneously to an area of the illuminated surface while moving the illuminated surface relative to the long beam in one direction, wherein the first The laser beam is a harmonic. The method of irradiating a laser according to claim 6, wherein the illuminated surface comprises a substrate having a thickness "d" translucent to the first laser beam. a film formed thereon, and when the length of the long axis or the minor axis of the long beam is represented by "W", the incident angle "Φ" of the first laser beam with respect to the illuminated surface satisfies the inequality arctan (W/2d) 8. - Used to manufacture semiconductor devices The method comprising the steps of: processing a wavelength of visible light - 2 - (3) 1322463 or a first laser beam having a shorter wavelength than visible light into a long beam on or near the surface of the semiconductor film; A second laser beam of the fundamental wave and the long beam are simultaneously irradiated to a region of the surface of the semiconductor film while the surface of the semiconductor film is relatively moved in one direction with respect to the long beam to make the semiconductor Film crystallization 'where the first laser beam is a harmonic. 9. 一種用來製造半導體器件的方法,包含如下步驟: 在半導體膜的表面或它的附近,將具有可見光的波長 或者具有比可見光更短波長的第一雷射光束處理爲長光束 :和 藉由將基波的第二雷射光束和該長光束同時照射到該 半導體膜之該表面的一個區域,同時使該半導體膜之該表 面相對於該長光束在一個方向中相對地移動,來啓動形成 在該半導體膜中的雜質區域,9. A method for fabricating a semiconductor device comprising the steps of: processing a first laser beam having a wavelength of visible light or having a shorter wavelength than visible light as a long beam at or near a surface of the semiconductor film: Activating a second laser beam of the fundamental wave and the long beam simultaneously to a region of the surface of the semiconductor film while simultaneously moving the surface of the semiconductor film relative to the long beam in one direction An impurity region formed in the semiconductor film, 其中,該第一雷射光束爲諧波。 10. —種用來製造半導體器件的方法,包含如下步驟 在玻璃基板上形成半導體層; 形成用來覆蓋該半導體層的絕緣層; 在該半導體層上形成導電層,且該絕緣層在二者之間 t 在該半導體層之被照表面或它的附近,將具有可見光 的波長或者具有比可見光更短波長的第一雷射光束處理爲 -3- (4) 1322463 長光束:和 藉由將基波的第二雷射光束和該長光束同時照射到該 半導體層之該被照表面的一個區域,同時使該半導體層之 該被照表面相對於該長光束在一個方向中相對地移動,來 選擇性地加熱該導電層,以便執行該半導體層和該絕緣層 的熱處理, 其中,該第一雷射光束爲諧波。Wherein, the first laser beam is a harmonic. 10. A method for fabricating a semiconductor device comprising the steps of: forming a semiconductor layer on a glass substrate; forming an insulating layer for covering the semiconductor layer; forming a conductive layer on the semiconductor layer, and the insulating layer is Between the irradiated surface of the semiconductor layer or its vicinity, a first laser beam having a wavelength of visible light or having a shorter wavelength than visible light is treated as a -3-(4) 1322463 long beam: and The second laser beam of the fundamental wave and the long beam simultaneously illuminate a region of the illuminated surface of the semiconductor layer while causing the illuminated surface of the semiconductor layer to move relatively in one direction relative to the long beam, The conductive layer is selectively heated to perform heat treatment of the semiconductor layer and the insulating layer, wherein the first laser beam is a harmonic. 1 1 · 一種照射雷射的方法,包含如下步驟: 在被照表面或它的附近,將具有可見光的波長或者具 有比可見光更短波長的第一雷射光束處理爲長光束;和 將基波的第二雷射光束和該長光束照射到該被照表面 的一個區域,同時使該被照表面相對於該長光束在一個方 向中相對地移動, 其中,該長光束在該被照表面之該區域與該第二雷射 光束相重疊,和 其中,該第一雷射光束爲諧波。 包含如下步驟 12.—種用來製造半導體器件的方法 在半導體膜的表面或它的附近,將具有可見光的波長 或者具有比可見光更短波長的第一雷射光束處理爲長光束 :和 藉由將基波的第二雷射光束和該長光束照射到該半導 體膜之該表面的一個區域’同時使該半導體膜之該表面相 對於該長光束在一個方向中相對地移動,來使該半導體膜 -4- (5) 1322463 結晶, 其中,該長光束在該區域與該第二雷射光束相重疊, 和 其中,該第一雷射光束爲諧波。 13.—種用來製造半導體器件的方法,包含如下步驟1 1 · A method of irradiating a laser, comprising the steps of: processing a wavelength having visible light or a first laser beam having a shorter wavelength than visible light into a long beam at or near the illuminated surface; and applying a fundamental wave a second laser beam and the long beam illuminate an area of the illuminated surface while causing the illuminated surface to move relative to the long beam in a direction, wherein the long beam is on the illuminated surface The region overlaps the second laser beam, and wherein the first laser beam is a harmonic. The method includes the following steps: - a method for fabricating a semiconductor device, processing a first laser beam having a wavelength of visible light or having a shorter wavelength than visible light as a long beam on or near a surface of the semiconductor film: Irradiating a second laser beam of the fundamental wave and the long beam to a region of the surface of the semiconductor film while simultaneously moving the surface of the semiconductor film relative to the long beam in one direction to cause the semiconductor Membrane-4-(5) 1322463 crystallizes, wherein the long beam overlaps the second laser beam in the region, and wherein the first laser beam is a harmonic. 13. A method for fabricating a semiconductor device, comprising the steps 在半導體膜的表面或它的附近,將具有可見光的波長 或者具有比可見光更短波長的第一雷射光束處理爲長光束 :和 藉由將基波的第二雷射光束和該長光束同時照射到該 半導體膜之該表面的一個區域,同時使該半導體膜之該表 面相對於該長光束在一個方向中相對地移動,來啓動形成 在該半導體器件中的雜質區域, 其中,該長光束在該區域與該第二雷射光束相重疊, 和Processing a first laser beam having a wavelength of visible light or having a shorter wavelength than visible light as a long beam at or near the surface of the semiconductor film: and by simultaneously filtering the second laser beam of the fundamental wave and the long beam Irradiating a region of the surface of the semiconductor film while relatively moving the surface of the semiconductor film relative to the long beam in one direction to initiate an impurity region formed in the semiconductor device, wherein the long beam Overlaid in the region with the second laser beam, and 其中,該第一雷射光束爲諧波。 1 4.如申請專利範圍第6或1 1項所述的照射雷射的方 法,其中,該第一和第二雷射光束之每一者係自連續波氣 體雷射器、固體雷射器或金屬雷射器發射。 1 5 .如申請專利範圍第6或1 1項所述的照射雷射的方 法,其中’該第一和第二雷射光束之每一者係自 Ar雷射 器' Kr雷射器、C02雷射器、YAG雷射器' YV〇4雷射器 、YLF雷射器、YAl〇3雷射器、紅寶石雷射器、翠綠寶石 雷射器、Ti :藍寶石雷射器、氨-鍚雷射器、銅蒸汽雷射 -5- 1322463 • (6) 器或金蒸汽雷射器發射。 16. 如申請專利範圍第8、9、10、12或13項之製造 半導體器件的方法’其中,該第一和第二雷射光束之每一 者係自連續波氣體雷射器、固體雷射器或金屬雷射器發射 〇 17. 如申請專利範圍第8、9、10、12或13項之製造 半導體器件的方法’其中,該第一和第二雷射光束之每一 φ者係自Ar雷射器、Kr雷射器、C02雷射器、YAG雷射器 、YV04雷射器、YLF雷射器、ΥΑ1〇3雷射器、紅寶石雷 射器、翠綠寶石雷射器、Ti :藍寶石雷射器、氦-鎘雷射 器、銅蒸汽雷射器或金蒸汽雷射器發射。 18. 如申請專利範圍第8、9、10、12或13項之製造半 導體裝置之方法,其中配置該第二雷射光束以覆蓋該長光 束。 19.如申請專利範圍第8、9、10、12或13項之製造半 ^導體裝置之方法,其中該第一雷射光束爲固體雷射器之諧 波。 2〇_如申請專利範圍第8、9、10、12或13項之製造半 導體裝置之方法,其中該第二雷射光束係自固體雷射器發 射’且該第二雷射光束係經由該半導體膜而傳送且由被該 長光束所溶化之半導體膜所吸收。 21_如申請專利範圍第8、9、10、12或13項之製造半 導體裝置之方法,其中該第一與第二雷射光束之每一者係 自連續波固體雷射器發射。 -6- (7) (7)1322463 22.如申請專利範圍第8、9' 10、12或〗3項之製造半 導體裝置之方法,其中該第一與第二雷射光束之每一者係 自YAG雷射器、YV〇4雷射器、YLF雷射器、YA丨〇3雷射 器 '紅寶石雷射器以及翠綠寶石雷射器發射射。Wherein, the first laser beam is a harmonic. The method of irradiating a laser according to claim 6 or 11, wherein each of the first and second laser beams is a continuous wave gas laser or a solid laser Or a metal laser launch. The method of irradiating a laser as described in claim 6 or claim 11, wherein 'the first and second laser beams are each from an Ar laser 'Kr laser, C02 Laser, YAG laser 'YV〇4 laser, YLF laser, YAl〇3 laser, ruby laser, emerald laser, Ti: sapphire laser, ammonia-salmon Radiator, copper vapor laser - 5 - 1322463 • (6) or gold vapor laser launch. 16. The method of fabricating a semiconductor device of claim 8, wherein the first and second laser beams are each derived from a continuous wave gas laser, a solid thunder. A method of fabricating a semiconductor device according to claim 8, wherein the first and second laser beams are each of the φ From Ar laser, Kr laser, C02 laser, YAG laser, YV04 laser, YLF laser, ΥΑ1〇3 laser, ruby laser, emerald laser, Ti : Sapphire lasers, samarium-cadmium lasers, copper vapor lasers or gold vapor lasers. 18. A method of fabricating a semiconductor device according to claim 8, wherein the second laser beam is arranged to cover the long beam. 19. The method of fabricating a semi-conductor device of claim 8, wherein the first laser beam is a harmonic of a solid laser. 2. A method of fabricating a semiconductor device according to claim 8, wherein the second laser beam is emitted from a solid laser and the second laser beam is passed through The semiconductor film is transported and absorbed by the semiconductor film melted by the long light beam. The method of fabricating a semiconductor device of claim 8, wherein the first and second laser beams are each emitted from a continuous wave solid laser. -6- (7) (7) 1322463 22. A method of fabricating a semiconductor device according to claim 8, 9'10, 12 or 3, wherein each of the first and second laser beams From YAG lasers, YV〇4 lasers, YLF lasers, YA丨〇3 lasers, ruby lasers and emerald lasers. 1322463 第92127701號專利申請案 中文圖式修正頁民國98年12月30日修正 年丨 > 月和3修(^)正替換頁1322463 Patent application No. 92127701 Chinese map revision page Republic of China revised December 30, 1998 Year 丨 > Month and 3 repair (^) replacement page 405a 405b 405c 405d405a 405b 405c 405d
TW092127701A 2002-10-07 2003-10-06 Method of irradiating laser, laser irradiation system, and manufacturing method of semiconductor device TWI322463B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294305A JP2004128421A (en) 2002-10-07 2002-10-07 Laser irradiation method, laser irradiation device, and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
TW200503083A TW200503083A (en) 2005-01-16
TWI322463B true TWI322463B (en) 2010-03-21

Family

ID=32064097

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092127701A TWI322463B (en) 2002-10-07 2003-10-06 Method of irradiating laser, laser irradiation system, and manufacturing method of semiconductor device

Country Status (6)

Country Link
US (1) US7674663B2 (en)
JP (1) JP2004128421A (en)
KR (1) KR101019137B1 (en)
CN (1) CN100444333C (en)
SG (1) SG112000A1 (en)
TW (1) TWI322463B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587955B (en) * 2011-09-15 2017-06-21 日本電氣硝子股份有限公司 Glass plate cutting method

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW552645B (en) * 2001-08-03 2003-09-11 Semiconductor Energy Lab Laser irradiating device, laser irradiating method and manufacturing method of semiconductor device
JP2004128421A (en) 2002-10-07 2004-04-22 Semiconductor Energy Lab Co Ltd Laser irradiation method, laser irradiation device, and method for manufacturing semiconductor device
US7160762B2 (en) * 2002-11-08 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
JP4429586B2 (en) * 2002-11-08 2010-03-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7232715B2 (en) * 2002-11-15 2007-06-19 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor film and semiconductor device and laser processing apparatus
SG129265A1 (en) 2002-11-29 2007-02-26 Semiconductor Energy Lab Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
US7056810B2 (en) * 2002-12-18 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor apparatus, and semiconductor apparatus and electric appliance
KR100563045B1 (en) 2003-02-11 2006-03-24 삼성에스디아이 주식회사 Solidification apparatus of amorphous silicon and method thereof
EP1468774B1 (en) 2003-02-28 2009-04-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method for manufacturing semiconductor device
JP4515034B2 (en) 2003-02-28 2010-07-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7524712B2 (en) * 2003-03-07 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device and laser irradiation method and laser irradiation apparatus
JP4481040B2 (en) * 2003-03-07 2010-06-16 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7304005B2 (en) 2003-03-17 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
JP4373115B2 (en) * 2003-04-04 2009-11-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7374981B2 (en) 2003-04-11 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, electronic device having the same, and method for manufacturing the same
KR101188356B1 (en) * 2003-12-02 2012-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
EP1553643A3 (en) 2003-12-26 2009-01-21 Sel Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method for manufacturing crystalline semiconductor film
TWI297521B (en) * 2004-01-22 2008-06-01 Ultratech Inc Laser thermal annealing of lightly doped silicon substrates
JP2005217209A (en) * 2004-01-30 2005-08-11 Hitachi Ltd Laser annealing method and laser annealer
JP4579575B2 (en) 2004-05-14 2010-11-10 株式会社半導体エネルギー研究所 Laser irradiation method and laser irradiation apparatus
JP5072197B2 (en) * 2004-06-18 2012-11-14 株式会社半導体エネルギー研究所 Laser irradiation apparatus and laser irradiation method
JP2006038666A (en) * 2004-07-28 2006-02-09 Ricoh Co Ltd Electric potential variation measuring device
US7772523B2 (en) 2004-07-30 2010-08-10 Semiconductor Energy Laboratory Co., Ltd Laser irradiation apparatus and laser irradiation method
JP4942959B2 (en) * 2004-07-30 2012-05-30 株式会社半導体エネルギー研究所 Laser irradiation apparatus and laser irradiation method
US7381600B2 (en) * 2004-12-02 2008-06-03 The Hong Kong University Of Science And Technology Method of annealing polycrystalline silicon using solid-state laser and devices built thereon
US7316942B2 (en) * 2005-02-14 2008-01-08 Honeywell International, Inc. Flexible active matrix display backplane and method
JP2006243640A (en) * 2005-03-07 2006-09-14 Joyo Kogaku Kk Method and device for manufacturing liquid crystal alignment film
US7279721B2 (en) 2005-04-13 2007-10-09 Applied Materials, Inc. Dual wavelength thermal flux laser anneal
EP1716964B1 (en) * 2005-04-28 2009-01-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and laser irradiation apparatus
US7943534B2 (en) 2005-08-03 2011-05-17 Phoeton Corp. Semiconductor device manufacturing method and semiconductor device manufacturing system
WO2007049525A1 (en) * 2005-10-26 2007-05-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and manufacturing method of semiconductor device
JP2007141945A (en) * 2005-11-15 2007-06-07 Hitachi Displays Ltd Display device and manufacturing method thereof
WO2007072744A1 (en) * 2005-12-20 2007-06-28 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method and method for manufacturing semiconductor device
US7563661B2 (en) * 2006-02-02 2009-07-21 Semiconductor Energy Laboratory Co., Ltd. Crystallization method for semiconductor film, manufacturing method for semiconductor device, and laser irradiation apparatus
US7790636B2 (en) * 2006-06-29 2010-09-07 International Business Machines Corporation Simultaneous irradiation of a substrate by multiple radiation sources
US7635656B2 (en) 2006-06-29 2009-12-22 International Business Machines Corporation Serial irradiation of a substrate by multiple radiation sources
US7662703B2 (en) * 2006-08-31 2010-02-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing crystalline semiconductor film and semiconductor device
TWI438823B (en) * 2006-08-31 2014-05-21 Semiconductor Energy Lab Method for manufacturing crystalline semiconductor film and semiconductor device
US7972943B2 (en) * 2007-03-02 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5105915B2 (en) * 2007-03-15 2012-12-26 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
KR100815483B1 (en) * 2007-05-09 2008-03-20 한국전기연구원 Diode pumped laser apparatus using anisotropic laser crystal
JP2008294186A (en) 2007-05-24 2008-12-04 Shimadzu Corp Crystallization device and crystallization method
JP2009081383A (en) * 2007-09-27 2009-04-16 Hitachi Displays Ltd Display unit equipped with thin-film semiconductor device and manufacturing method of thin-film semiconductor device
US8546172B2 (en) 2008-01-18 2013-10-01 Miasole Laser polishing of a back contact of a solar cell
US8536054B2 (en) * 2008-01-18 2013-09-17 Miasole Laser polishing of a solar cell substrate
US8586398B2 (en) * 2008-01-18 2013-11-19 Miasole Sodium-incorporation in solar cell substrates and contacts
JP5605821B2 (en) * 2008-06-11 2014-10-15 ワイエイシイフェトン株式会社 Laser annealing equipment
KR101800404B1 (en) * 2008-09-17 2017-11-22 어플라이드 머티어리얼스, 인코포레이티드 Managing thermal budget in annealing of substrates
US20100068898A1 (en) 2008-09-17 2010-03-18 Stephen Moffatt Managing thermal budget in annealing of substrates
US8314369B2 (en) * 2008-09-17 2012-11-20 Applied Materials, Inc. Managing thermal budget in annealing of substrates
WO2011016176A1 (en) * 2009-08-03 2011-02-10 東芝機械株式会社 Pulse laser machining apparatus and pulse laser machining method
JP4678700B1 (en) * 2009-11-30 2011-04-27 株式会社日本製鋼所 Laser annealing apparatus and laser annealing method
US8711896B2 (en) * 2010-01-05 2014-04-29 Kla-Tencor Corporation Alleviation of laser-induced damage in optical materials by suppression of transient color centers formation and control of phonon population
US20110284508A1 (en) * 2010-05-21 2011-11-24 Kabushiki Kaisha Toshiba Welding system and welding method
US9217731B2 (en) 2010-05-21 2015-12-22 Kabushiki Kaisha Toshiba Welding inspection method and apparatus thereof
JP5678333B2 (en) * 2010-05-27 2015-03-04 株式会社ブイ・テクノロジー Laser annealing method and apparatus
JP5393598B2 (en) * 2010-06-03 2014-01-22 キヤノン株式会社 Galvano device and laser processing device
JP5307093B2 (en) * 2010-08-23 2013-10-02 株式会社日本製鋼所 Manufacturing method of semiconductor device
TWI451301B (en) * 2011-08-08 2014-09-01 Hannstar Display Corp Electronic apparatus and assembling method and application thereof
JP5537615B2 (en) * 2011-08-10 2014-07-02 ウルトラテック インク System and method for forming a time-averaged line image
KR101865222B1 (en) * 2011-10-18 2018-06-08 삼성디스플레이 주식회사 Laser crystallization apparatus and laser crystallizatio method using the same
US8785815B2 (en) * 2012-06-22 2014-07-22 Applied Materials, Inc. Aperture control of thermal processing radiation
JP5610493B2 (en) * 2012-10-03 2014-10-22 株式会社日本製鋼所 Semiconductor device manufacturing method and manufacturing apparatus
WO2014136237A1 (en) 2013-03-07 2014-09-12 三菱電機株式会社 Laser annealing device, and method of producing semiconductor device
TW201528379A (en) * 2013-12-20 2015-07-16 Applied Materials Inc Dual wavelength annealing method and apparatus
US9343307B2 (en) 2013-12-24 2016-05-17 Ultratech, Inc. Laser spike annealing using fiber lasers
PL3165615T3 (en) * 2014-07-03 2023-05-08 Nippon Steel Corporation Use of a laser processing apparatus for refining magnetic domains of a grain-oriented electromagnetic steel sheet
KR102245780B1 (en) 2014-11-03 2021-04-29 삼성디스플레이 주식회사 Laser crystallization system and laser crystallizatio method using the same, and display method using the same
CN108581185A (en) * 2018-07-06 2018-09-28 温州大学激光与光电智能制造研究院 Laser working light path switching system and its method
JP7139886B2 (en) * 2018-10-30 2022-09-21 Agc株式会社 Method for manufacturing glass substrate having holes, and glass laminate for annealing
KR102446159B1 (en) * 2019-07-30 2022-09-22 (주)에이치아이티오토모티브 heat treatment device
KR102324610B1 (en) * 2019-12-26 2021-11-09 세메스 주식회사 Substrate heating unit, substrate processing apparatus and substrate processing method
CN112435920B (en) * 2020-11-05 2024-02-23 北京华卓精科科技股份有限公司 Long wavelength laser annealing method and device
JP2022144977A (en) 2021-03-19 2022-10-03 キオクシア株式会社 Method for manufacturing semiconductor device

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329323A (en) 1976-08-31 1978-03-18 Nippon Electric Glass Co Glass beads of high refraction index for recurrent reflection
JPS5629323A (en) 1979-08-17 1981-03-24 Nec Corp Two-wavelength laser surface treating apparatus
JPS57104217A (en) 1980-12-22 1982-06-29 Toshiba Corp Surface heat treatment
JPS57183023A (en) 1981-05-02 1982-11-11 Fujitsu Ltd Laser annealing
JPH02153582A (en) * 1988-12-06 1990-06-13 Asahi Glass Co Ltd Laser diode excitation solid-state laser
JP2923016B2 (en) * 1990-09-17 1999-07-26 株式会社日立製作所 Method and apparatus for manufacturing thin film semiconductor
JP3213338B2 (en) * 1991-05-15 2001-10-02 株式会社リコー Manufacturing method of thin film semiconductor device
JPH0521340A (en) 1991-07-10 1993-01-29 Ricoh Co Ltd Thin film semiconductor device, method and apparatus for manufacturing the same
JPH05226790A (en) 1992-02-18 1993-09-03 Hitachi Ltd Laser annealer
JPH06124913A (en) * 1992-06-26 1994-05-06 Semiconductor Energy Lab Co Ltd Laser treatment
US5643801A (en) * 1992-11-06 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Laser processing method and alignment
US6544825B1 (en) * 1992-12-26 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a MIS transistor
TW403972B (en) * 1993-01-18 2000-09-01 Semiconductor Energy Lab Method of fabricating mis semiconductor device
KR100255689B1 (en) * 1993-05-27 2000-05-01 윤종용 Semiconductor laser device and its manufacturing method
US5923962A (en) * 1993-10-29 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP3431041B2 (en) 1993-11-12 2003-07-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH07187890A (en) 1993-12-22 1995-07-25 Nippon Steel Corp Laser annealing method
US5611946A (en) * 1994-02-18 1997-03-18 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
JPH0883765A (en) 1994-07-14 1996-03-26 Sanyo Electric Co Ltd Manufacture of polycrystalline semiconductor film
JP3469337B2 (en) * 1994-12-16 2003-11-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH08186268A (en) 1994-12-28 1996-07-16 Sony Corp Manufacturing method for thin film semiconductor device
JP3778456B2 (en) * 1995-02-21 2006-05-24 株式会社半導体エネルギー研究所 Method for manufacturing insulated gate thin film semiconductor device
JP3917231B2 (en) * 1996-02-06 2007-05-23 株式会社半導体エネルギー研究所 Laser irradiation apparatus and laser irradiation method
JPH09234579A (en) * 1996-02-28 1997-09-09 Semiconductor Energy Lab Co Ltd Laser beam irradiating device
JPH10244392A (en) * 1997-03-04 1998-09-14 Semiconductor Energy Lab Co Ltd Laser irradiation device
US6423585B1 (en) * 1997-03-11 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Heating treatment device, heating treatment method and fabrication method of semiconductor device
JP3503427B2 (en) * 1997-06-19 2004-03-08 ソニー株式会社 Method for manufacturing thin film transistor
JP3462053B2 (en) * 1997-09-30 2003-11-05 株式会社半導体エネルギー研究所 Beam homogenizer, laser irradiation apparatus, laser irradiation method, and semiconductor device
JP2002261015A (en) 1997-12-17 2002-09-13 Matsushita Electric Ind Co Ltd Semiconductor thin film, method of manufacturing it, manufacturing device, semiconductor element and method of manufacturing it
KR20010033202A (en) * 1997-12-17 2001-04-25 모리시타 요이찌 Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
JP3586558B2 (en) 1998-04-17 2004-11-10 日本電気株式会社 Method for reforming thin film and apparatus used for implementing the method
JP2000012484A (en) 1998-06-25 2000-01-14 Mitsubishi Electric Corp Laser annealing system
JP4827276B2 (en) * 1999-07-05 2011-11-30 株式会社半導体エネルギー研究所 Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
JP2001023918A (en) * 1999-07-08 2001-01-26 Nec Corp Semiconductor thin-film forming apparatus
US6426245B1 (en) * 1999-07-09 2002-07-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP2001044120A (en) * 1999-08-04 2001-02-16 Mitsubishi Electric Corp Laser heat treatment method and laser heat treatment apparatus
US6548370B1 (en) * 1999-08-18 2003-04-15 Semiconductor Energy Laboratory Co., Ltd. Method of crystallizing a semiconductor layer by applying laser irradiation that vary in energy to its top and bottom surfaces
JP3579316B2 (en) * 1999-10-19 2004-10-20 三洋電機株式会社 Method for manufacturing semiconductor device
JP4514861B2 (en) * 1999-11-29 2010-07-28 株式会社半導体エネルギー研究所 Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
US6451631B1 (en) * 2000-08-10 2002-09-17 Hitachi America, Ltd. Thin film crystal growth by laser annealing
US6737672B2 (en) * 2000-08-25 2004-05-18 Fujitsu Limited Semiconductor device, manufacturing method thereof, and semiconductor manufacturing apparatus
KR100473245B1 (en) * 2000-10-06 2005-03-10 미쓰비시덴키 가부시키가이샤 Method and apparatus for producing polysilicon film, semiconductor device, and method of manufacture thereof
SG113399A1 (en) * 2000-12-27 2005-08-29 Semiconductor Energy Lab Laser annealing method and semiconductor device fabricating method
JP4845309B2 (en) 2000-12-27 2011-12-28 株式会社半導体エネルギー研究所 Laser annealing method and manufacturing method of semiconductor device
JP2002217125A (en) 2001-01-23 2002-08-02 Sumitomo Heavy Ind Ltd Surface treatment apparatus and its method
JP2002231628A (en) * 2001-02-01 2002-08-16 Sony Corp Method of forming semiconductor thin film, method of manufacturing semiconductor device, device used for carrying out the same, and electro-optical device
TW544938B (en) * 2001-06-01 2003-08-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
US6645454B2 (en) * 2001-06-28 2003-11-11 Sharp Laboratories Of America, Inc. System and method for regulating lateral growth in laser irradiated silicon films
US6700096B2 (en) * 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US7026227B2 (en) * 2001-11-16 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Method of irradiating a laser beam, and method of fabricating semiconductor devices
JP3934536B2 (en) * 2001-11-30 2007-06-20 株式会社半導体エネルギー研究所 Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
JP2003347237A (en) 2002-05-30 2003-12-05 Mitsubishi Electric Corp Method of manufacturing semiconductor device and manufacturing device thereof
US6984573B2 (en) * 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP2004146782A (en) * 2002-08-29 2004-05-20 Advanced Lcd Technologies Development Center Co Ltd In-situ monitoring method in crystallization state
JP2004119971A (en) 2002-09-04 2004-04-15 Sharp Corp Laser processing method and laser processing device
JP2004111584A (en) * 2002-09-18 2004-04-08 Sanyo Electric Co Ltd Process for fabricating semiconductor device
JP2004128421A (en) 2002-10-07 2004-04-22 Semiconductor Energy Lab Co Ltd Laser irradiation method, laser irradiation device, and method for manufacturing semiconductor device
JP4429586B2 (en) * 2002-11-08 2010-03-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
SG129265A1 (en) * 2002-11-29 2007-02-26 Semiconductor Energy Lab Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
US7056810B2 (en) * 2002-12-18 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor apparatus, and semiconductor apparatus and electric appliance
EP1468774B1 (en) * 2003-02-28 2009-04-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method for manufacturing semiconductor device
JP4515034B2 (en) * 2003-02-28 2010-07-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7524712B2 (en) * 2003-03-07 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device and laser irradiation method and laser irradiation apparatus
US7304005B2 (en) * 2003-03-17 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
JP4373115B2 (en) * 2003-04-04 2009-11-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7208395B2 (en) * 2003-06-26 2007-04-24 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
US7148159B2 (en) * 2003-09-29 2006-12-12 Ultratech, Inc. Laser thermal annealing of lightly doped silicon substrates
JP2006041082A (en) * 2004-07-26 2006-02-09 Sharp Corp Device and method for crystallizing semiconductor thin film
US7772523B2 (en) * 2004-07-30 2010-08-10 Semiconductor Energy Laboratory Co., Ltd Laser irradiation apparatus and laser irradiation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587955B (en) * 2011-09-15 2017-06-21 日本電氣硝子股份有限公司 Glass plate cutting method

Also Published As

Publication number Publication date
JP2004128421A (en) 2004-04-22
KR20040031622A (en) 2004-04-13
TW200503083A (en) 2005-01-16
CN1497684A (en) 2004-05-19
US20040069751A1 (en) 2004-04-15
CN100444333C (en) 2008-12-17
SG112000A1 (en) 2005-06-29
US7674663B2 (en) 2010-03-09
KR101019137B1 (en) 2011-03-04

Similar Documents

Publication Publication Date Title
TWI322463B (en) Method of irradiating laser, laser irradiation system, and manufacturing method of semiconductor device
TW569287B (en) Semiconductor film, semiconductor device and method of their production
JP4850858B2 (en) Method for manufacturing semiconductor device
TWI261358B (en) Semiconductor device and method of manufacturing the same
US20050236622A1 (en) Electronic device and method of manufacturing the same
TW200529449A (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
TW200539285A (en) Laser irradiation apparatus and method for manufacturing semiconductor device
JP2003051446A (en) Method of manufacturing semiconductor device
CN106783536B (en) Laser annealing equipment, polycrystalline silicon thin film and preparation method of thin film transistor
TW200525844A (en) Laser irradiation method and method for manufacturing crystalline semiconductor film
US7199027B2 (en) Method of manufacturing a semiconductor film by plasma CVD using a noble gas and nitrogen
KR101133827B1 (en) Thin-film transistor manufacturing method and thin-film transistor
JP2003173968A (en) Method for manufacturing semiconductor device
JP5244832B2 (en) Method for manufacturing semiconductor device
US8034671B2 (en) Polysilicon film, thin film transistor using the same, and method for forming the same
JP2010278095A (en) Method of manufacturing thin film transistor substrate, and intermediate structure for forming thin film transistor substrate
JP4200530B2 (en) Thin film transistor manufacturing method
JP2003173969A (en) Semiconductor film, semiconductor device and method for manufacturing them
TW200409239A (en) Forming method of polysilicon layer and manufacturing method of polysilicon transistor using the method thereof
JP3493160B2 (en) Method for manufacturing semiconductor device
JP4337554B2 (en) Manufacturing method of semiconductor device
JP2001223208A (en) Semiconductor element manufacturing device and method of manufacturing the same
JP4337555B2 (en) Manufacturing method of semiconductor device
JP2004327649A (en) Semiconductor device, thin film transistor, and method of manufacturing semiconductor device
JP2007095989A (en) Method of manufacturing thin film transistor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees