TWI317463B - Low supply voltage bandgap reference circuit and negative temperature coefficient current generation unit thereof and method for supplying bandgap reference current - Google Patents

Low supply voltage bandgap reference circuit and negative temperature coefficient current generation unit thereof and method for supplying bandgap reference current Download PDF

Info

Publication number
TWI317463B
TWI317463B TW95109404A TW95109404A TWI317463B TW I317463 B TWI317463 B TW I317463B TW 95109404 A TW95109404 A TW 95109404A TW 95109404 A TW95109404 A TW 95109404A TW I317463 B TWI317463 B TW I317463B
Authority
TW
Taiwan
Prior art keywords
transistor
current
voltage
resistor
coupled
Prior art date
Application number
TW95109404A
Other languages
Chinese (zh)
Other versions
TW200736878A (en
Inventor
Kuen Shan Chang
Uei Shan Uang
Mei Show Chen
Chia Ming Hong
Original Assignee
Faraday Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faraday Tech Corp filed Critical Faraday Tech Corp
Priority to TW95109404A priority Critical patent/TWI317463B/en
Publication of TW200736878A publication Critical patent/TW200736878A/en
Application granted granted Critical
Publication of TWI317463B publication Critical patent/TWI317463B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Description

63 6363 63

九、發明說明: 【聲明所屬之技術領域】 本發明是有關於-種能隙參考電路,且 a古 、餐低供應電壓之能隙參考電路。 、&有關於 【先前技術】 cr導==:)統:路往::;極基本且: =根源參考電流(或電壓)’因此其決 圖1A是說明傳統能隙參考電路之電路圖。圖出 圖1A所不傳統能隙參考電路所輸出電壓盘 _。請同時參照圖1A與圖1B,皿度之關係 气電流均為!’二極 足電阻值融3,則運算放大s為h, (Vbei - VBE2) = VBE1IX. Description of the invention: [Technical field to which the present invention pertains] The present invention relates to a bandgap reference circuit, and a gap reference circuit for a low supply voltage. [Previous technique] cr-guide ==:) system: way to::; extremely basic and: = root reference current (or voltage)' Therefore, FIG. 1A is a circuit diagram illustrating a conventional bandgap reference circuit. Figure 1A shows the output voltage _ of the conventional energy gap reference circuit. Please refer to FIG. 1A and FIG. 1B at the same time, the relationship between the degrees of gas and the gas current are! 'The two poles have a resistance value of 3, then the operational amplification s is h, (Vbei - VBE2) = VBE1

Ri R' (△ VBE) = Vj + ^Lfv_ v 、_ ” 扣11^之輪出電壓 VBG = VBE1 R1 R2 耶/ — vBEI 十 <(VT.ln⑻卜VBE1 + κ·ντ = u〇5v。藉由適當地調整則 ϊΐ2定之與二極體D1與D2之元件面積比例(亦 Μ疋一者之間電流密度比例n),此 M不受溫度影響而維持於固定電壓。 肪將可 現今基於低電壓與低功率 低於1.5V之系考里衫需求供應電壓 所示傳統能隙參考雷_茶考电屋。圖1A 電壓與低功較生低㈣«。為了滿足低 /杲國專利公告第US6〇52020號專利 1317463 /卞揭硌一種以電壓平Ri R' (△ VBE) = Vj + ^Lfv_ v , _ ” buckle 11 ^ wheel voltage VBG = VBE1 R1 R2 yeah / — vBEI ten < (VT.ln (8) Bu VBE1 + κ · ντ = u〇5v. By appropriately adjusting the ratio of the element area of the diodes D1 and D2 (also the current density ratio n between the two), the M is maintained at a fixed voltage without being affected by the temperature. Low-voltage and low-power less than 1.5V, the demand for the supply of voltage is shown in the traditional energy gap reference lightning _ tea test electric house. Figure 1A voltage and low power is lower (four) «. In order to meet the low / 专利 country patent notice No. US Pat. No. 5,520,020, Patent No. 1,317,463

路,^參照圖2A。此電壓^能隙參考電 之低此隙電屢。圖23是說明 生低於〗.2〇5V 所輸出電屢與溫度之關^^^習知能隙參考電路 此能隙參考電路利’ θ、明同時參照圖2A與圖犯, 供其内部負溫度係數之T流產生單元21 〇提 Κ.ντ,然後再經由带壓 ΒΕ /、正溫度係數之電壓 二者平均後輪出低二ν =H22G將電壓m.vT 考電路是藉由調整電阻值R1=、電壓Vbg。此習知能隙參 的輪出電壓準位。 ,、R2之比例、,來產生所需要 之電=Γ、ΪΓ=!^β3個運算放大器與具有大阻值 參考電路之複雜度。尤其,由於因$^首提高圖2a中能陈 小不—之偏移雷懕v 由於只際運昇放大器都具有大 會有越多的偏移電壓^使用越多個運算放大器,則 再者,為了杯接& os來影響能隙筝考電路之精確性。 為了低靜恶電流的考量,雷阻R3A组pm 便須設定為大 T =與_之阻值 R2、R3A與咖i二為96 ΚΩ)。大阻值之電阻R1、 與成本。、❿要較Α面積’因此將會增加晶片面積 【發明内容】 路,t:::就,供-種低供應電壓之能隙參考電 並降低電“=之%境中,以產生穩定之低能隙_, 吸甩路面積與成本。 7 1317463Road, ^ Refer to Figure 2A. This voltage ^ energy gap is lower than the reference voltage. Figure 23 is a diagram showing the output of the power and the temperature of the lower than 〖.2〇5V. ^^^ The known energy gap reference circuit, the energy gap reference circuit, ' θ, Ming, while referring to Figure 2A and the figure, for its internal negative The temperature coefficient T-flow generating unit 21 〇 Κ ν ν ν ν , ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν The value R1 = voltage Vbg. This is the known voltage gap of the energy gap. , the ratio of R2, to generate the required power = Γ, ΪΓ = ! ^ β three operational amplifiers and the complexity of the reference circuit with large resistance. In particular, because the $^ first raises the offset in Figure 2a, the offset is different. Since the only amplifiers have more offset voltages, the more operational amplifiers are used, then, For the cup connection & os to affect the accuracy of the gap test circuit. In order to consider the low static current, the lightning resistance R3A group pm must be set to a large T = and _ resistance R2, R3A and coffee i is 96 Κ Ω). Large resistance R1 and cost. ❿ Α Α ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 【 【 【 【 【 【 【 【 t t t t t t t t t t t t t t t t t t Low energy gap _, suction road area and cost. 7 1317463

元,目的為提供—種負溫度係數電流產生單 之電=降低構面積與成本的前提下產生具有負溫度係數 法,目的_供—種供應能隙參考電流之方 產生%疋且低電壓之能隙參考電流。 能隙及其他目的’本發·出—種低供應電壓之 單二=度::=,正溫度係數電流產生 =:據其内部部電二第: 度係數電流產生單元包括電壓_轉_ 而產生對應之第-電流。電流 比例=第二=換r接收第-電流,並依預定 流。其中,令=二%流鏡之僕電流端提供負係數電 參考電路之輪出。 …亥負係數屯流之加總即為能隙 流鏡之主電電;,之第-電流1 並依預定比例複製第;而接收第1流, 係數電流。 C鏡之僕電流端提供負 8 1^5 具有參’包括形成 形S:數Ϊ;=係數電流與該負係數電流。其中 内部電壓.Ϊ二.形成具有負溫度係數之第― 丄電遂,形成具有負溫度係數之第二 據第一内部電壓與第_内 ’及依 負溫度传數之第:, 第一内部電壓轉換為具有 皿度係數之弟-電流;以及 流,而形成負係數電流。 (匕例U弟1 考低供應電壓之能隙參考電路。此能隙象 產lit數電流產生單元以及負溫度係數電流 楔式之:产補二:流加總方式來實現。本發明因採用電流 =求電壓頂邛空間與運算放大器之數量,並降低偏移雪 =電^響,進而產生低電壓而穩定=2 因為減少運算放大器與高阻值電阻之數 里,口,即省電路面積並降低晶片成本。 為之上述和其他目的、特徵和優點能更明顯 明二。#寸牛較佳實施例,並配合所附圖式,作詳細說 【實施方式】 衫超大型積體電路系統中,往往内建負責產生根 /原參考电叙能隙(BandGap)參考 屋與低功率之考量,往往需要能隙參考電路提::: 1317463 1.205V之低能隙電壓。圖3A是依照本發明說明一種低供 應電壓之能隙麥考電路實施例。請參照圖3A’此能隙參考 , 電路Ϊ括正溫度係數電流產生單元310與負溫度係數電流 — ^生單= 320。正溫度係數電流產生單元31〇中,第—運 异放大器316輪出電壓v〇ut調整p型電晶體312與gw, 使Va=Vb,進而依據電阻315的兩端跨壓而產生具有正溫 度係數之正係數電流ΙρτΑτ。負溫度係數電流產生單元灿 貝j將第-内部電墨Va轉換為具有負溫度係數之負係數電 々iL Intc /、中正係數電流ΙρτΑτ與負係數電流心兀之加總 即為本能隙參考電路之輸出Ibg。於本實施例中,更利用電 阻321將帶隙電流W轉換為帶隙電壓VBG。 於本實施例中,正溫度係數電流產生單元310包括第 :電晶體3=7、第四電晶體扣、第五電晶體312、第六電 曰曰體313、第七電晶體314、第二電阻315以及第一運算放 大:316。在此以PNP型雙極性接面電晶體(BJT)實施 ^晶體311與313 ’而以P型金氧半場效電晶體(MOSFET ) 擊實知电晶體312與314。電晶體311與313之基極與第-射/集極(在此為集極)均耦接至第一定電壓 (例如接地電 幻。電晶體311之第二射/集極(在此為射極)轉接至電晶 體312之第—源/汲極(在此為汲極)並提供第一内部電壓 電阻315之第一端耦接至電晶體313之第二射/集極(在 此為射極)而提供第三内部電壓,而電阻315之第二端粞接 =晶體314之第一源/没極(在此為没極)並提供第二内部 电壓Vb。上述電晶體312與314之第二源/汲極(在此為源 10 1317463 _均耦接至第二定電壓(例如系統電壓 Lij 器316之第一輸入端(例如負輪入端)與第^運算放大 如正輪入端)分別耦接至電晶體與〜輸入端(例 據第-内部電屢Va與第二内部電壓 ^及極,而依 V〇ut。在此第一電晶體327可以是?型 別出偏壓電壓 之閘極接收運算放大器316輸出之偏壓=。電晶體327 源/汲極(在此為源極)耦接至第二定電壓 OUT’其第一 汲極(在此為汲極)輸出正係數電流心了^。如,其第二源/ 負溫度係數電流產生單元320包括 及電流鏡。於本實施例中,由第三電阻I電流轉換器以 323以及第二運算放大器324所組 二第八電晶體 據正溫度係數電流產生單元31Q之第二二^;轉換器依 生對應之第一電流^,。其中,電阻322 ^fV= 接於電流鏡之主電流端與接地電壓之間,也1 =串 322的第-端執接至第—定電壓n晶體: 源/汲極(在此為源極)耦接至第三電阻322之第二 八電晶體323之第二源/汲極(在此為沒極你接至電流= 主電流端。運算放大器324之第一輪入端(例如正輸入端) 輕接至第四電晶體311之射極。運算放大器324之第二輸 ^端(例如負輸入端)搞接至第八電晶體323之源極 异放大器324之輸出端耦接至電晶體323之閘極。於本實 施例中,H晶體323可以是N型金氧半場效電晶體 (MOSFET)。另外,設計者亦可視需要將運算放大器324 改耦接至電阻315,以接收第二内部電壓Vb,而使電壓電 1317463Yuan, the purpose is to provide a negative temperature coefficient current to produce a single electricity = reduce the area and cost of the premise to produce a negative temperature coefficient method, the purpose of the supply - supply gap can refer to the side of the current generated % 疋 and low voltage Bandgap reference current. Energy gap and other purposes 'this hair · out - a low supply voltage single two = degree:: =, positive temperature coefficient current generation =: according to its internal part of the second: the coefficient coefficient current generating unit includes voltage _ turn _ A corresponding first current is generated. Current ratio = second = change r receives the first current and follows the predetermined flow. Wherein, the servant current terminal of the =2% flow mirror provides a round trip of the negative coefficient electrical reference circuit. The total of the negative coefficient of the turbulence is the main electric current of the energy gap mirror; the first current 1 is copied according to a predetermined ratio; and the first current, the coefficient current is received. The current terminal of the C mirror provides a negative 8 1^5 with a reference 'including a shape S: a number Ϊ; = a coefficient current and the negative coefficient current. Wherein the internal voltage is Ϊ2. forming a first 具有 electric enthalpy having a negative temperature coefficient, forming a second internal voltage having a negative temperature coefficient and a first _ inner ' and a negative temperature passing number:, the first internal The voltage is converted to a dipole-current with a coefficient of capacitance; and a current is formed to form a negative coefficient current. (Example U brother 1 test the low-supply voltage gap reference circuit. This energy gap produces the lit number current generating unit and the negative temperature coefficient current wedge type: production complement two: flow plus total mode to achieve. The present invention is adopted Current = the voltage top space and the number of operational amplifiers, and reduce the offset snow = electric noise, which in turn produces a low voltage and is stable = 2 because the number of operational amplifiers and high-resistance resistors is reduced, the port, that is, the circuit area And reduce the cost of the wafer. The above and other objects, features and advantages can be more clearly seen. The preferred embodiment of the #inch cattle, and with the accompanying drawings, is described in detail [Embodiment] The ultra-large integrated circuit system of the shirt Often, built-in is responsible for generating the root/original reference energy bandgap (BandGap) reference house and low power considerations, often requiring a bandgap reference circuit to mention:: 1317463 1.205V low bandgap voltage. Figure 3A is in accordance with the present invention An embodiment of a low-supply voltage bandgap circuit is described. Please refer to FIG. 3A' for the bandgap reference, the circuit includes a positive temperature coefficient current generating unit 310 and a negative temperature coefficient current - ^sheng single = 320. Positive temperature coefficient In the flow generating unit 31, the first operational amplifier 316 rotates the voltage v〇ut to adjust the p-type transistors 312 and gw so that Va=Vb, and further generates a positive temperature coefficient according to the voltage across the two ends of the resistor 315. The coefficient current ΙρτΑτ. The negative temperature coefficient current generating unit can convert the first internal ink Va into a negative coefficient with a negative temperature coefficient 々iL Intc /, the positive coefficient current ΙρτΑτ and the negative coefficient current 兀 即 is the instinct In the present embodiment, the bandgap current W is further converted into the bandgap voltage VBG by the resistor 321. In the embodiment, the positive temperature coefficient current generating unit 310 includes: the transistor 3=7 a fourth transistor button, a fifth transistor 312, a sixth electrode body 313, a seventh transistor 314, a second resistor 315, and a first operational amplification: 316. Here, a PNP-type bipolar junction transistor is used. (BJT) implements the crystals 311 and 313' and compacts the crystals 312 and 314 with a P-type metal oxide half field effect transistor (MOSFET). The base and the ejector/collector of the transistors 311 and 313 (here All of the collectors are coupled to a first constant voltage (eg grounded phantom) The second emitter/collector (here, the emitter) of the transistor 311 is coupled to the first source/drain (here the drain) of the transistor 312 and provides a first end coupling of the first internal voltage resistor 315. Connected to the second emitter/collector (here, the emitter) of the transistor 313 to provide a third internal voltage, and the second end of the resistor 315 is connected = the first source/no pole of the crystal 314 (here is no And providing a second internal voltage Vb. The second source/drain of the above transistors 312 and 314 (here the source 10 1317463 _ are both coupled to a second constant voltage (eg, the first input of the system voltage Lij 316) The end (for example, the negative wheel input end) and the second operational amplifier (such as the positive wheel input terminal) are respectively coupled to the transistor and the input terminal (the first internal voltage Va and the second internal voltage ^ and the pole, and V 〇ut. Here the first transistor 327 can be? The gate of the type of bias voltage receives the bias voltage of the output of the operational amplifier 316. The transistor 327 source/drain (here the source) is coupled to the second constant voltage OUT' whose first drain (here the drain) outputs a positive coefficient current. For example, its second source/negative temperature coefficient current generating unit 320 includes a current mirror. In this embodiment, the third resistor I is configured by the third resistor I current converter 323 and the second operational amplifier 324, and the second transistor is the second one of the positive temperature coefficient current generating unit 31Q; A current ^,. Wherein, the resistance 322 ^fV = is connected between the main current terminal of the current mirror and the ground voltage, and also 1 = the first end of the string 322 is connected to the first constant voltage n crystal: source / drain (here the source a second source/drain coupled to the second transistor 323 of the third resistor 322 (here, you are connected to the current = main current terminal. The first wheel of the operational amplifier 324 (eg, positive input) The light is connected to the emitter of the fourth transistor 311. The second terminal of the operational amplifier 324 (eg, the negative input terminal) is coupled to the output of the source-isolator 324 of the eighth transistor 323. The gate of the crystal 323. In this embodiment, the H crystal 323 can be an N-type metal oxide half field effect transistor (MOSFET). In addition, the designer can also couple the operational amplifier 324 to the resistor 315 as needed to receive the Two internal voltage Vb, while making voltage electricity 1317463

0 4 流轉換器依據第二内 W二=施方式之變化亦屬本發^^第-電流 第―電流Γ鏡^電流㈣接至電壓讀_以接收 鏡之=Γ 依敎比例複製第—電流W而於電泣 體坊與第三電』:"^=2573^含^二電晶 晶體 325'二 3^: :為,、Λ|' 鏡之主電i端與僕;流電 ί電壓v Hm極(在此為源極)接_接至第二 DD。電晶體325之汲極更耦接至電晶體325盥326 可二本實施例中,第二電晶體325與第三電晶體326 ^疋P型金氧半場效電晶體。另外,前述預定比例可以 ,亦即第-電流w與負係數電流Intc之電流量相 寻0 你於本實施例中將第一電阻321之第一端耦接至電流鏡 /、正溫度係數電流產生單元310而接收負係數電流Intc與 ^係數電流IPTAT’而第一電阻321之第二端耦接第—定電 ,(例如接地)。藉由電阻321將電流:^扣與ΙρτΑτ之加總 電流Ibg轉換為低能隙電壓VBG。若電阻315、321、322 之阻值分別為R315、R321、r322,則 月b 隙電壓 Vbg = R321,Ibg =R32i.(Intc+Iptat) VBE1 丄 AVbe Κ-321'(0 4 stream converter according to the second internal W = the change of the mode is also the current ^ ^ first - current ― current Γ mirror ^ current (four) connected to the voltage read _ to receive the mirror = 敎 敎 敎 敎 敎 复制 第Current W and the electric weeping body and the third electricity』:"^=2573^ contains ^ two crystal crystal 325' two 3^: :,, Λ|' mirror main electric i end and servant; galvanic ί voltage v Hm pole (here the source) is connected to the second DD. The drain of the transistor 325 is further coupled to the transistor 325 326. In this embodiment, the second transistor 325 and the third transistor 326 ^ P-type MOS half-effect transistor. In addition, the predetermined ratio may be, that is, the current amount of the first current w and the negative coefficient current Intc is 0. In this embodiment, the first end of the first resistor 321 is coupled to the current mirror / positive temperature coefficient current. The generating unit 310 receives the negative coefficient current Intc and the ^ coefficient current IPTAT', and the second end of the first resistor 321 is coupled to the first constant power (for example, ground). The summing current Ibg of the current: ^ buckle and ΙρτΑτ is converted into a low bandgap voltage VBG by the resistor 321. If the resistance values of the resistors 315, 321, and 322 are R315, R321, and r322, respectively, the monthly b-slot voltage Vbg = R321, Ibg = R32i. (Intc + Iptat) VBE1 丄 AVbe Κ -321' (

R 322R 322

RR

R 321R 321

315 R315 R

R 322 (V bei+· V T· ln(n))R 322 (V bei+· V T· ln(n))

R 315 12 1317463R 315 12 1317463

假設電流 Iptat=6.75uA,R315=8KQ,而 R32l>58 2ΚΏ。 在室溫條件下,vBE1約為733mV。藉由將電阻322之阻值 選擇為100ΚΩ,使得電流Intc=^=7uA。最後,能隙電 壓 VBG = R321.(INTC + ΙρτΑτ) = 58 2ΚΩ .(7uA + 6 7 二 :.8〇〇25V。因此,本實施例可以產生穩定且低於lv 月匕隙電壓。本實施例可以藉由調整電阻321的阻值R _ 而簡單地調整理想的能隙電壓Vbg之準位。與 3=上 比較,本實施例不必調整圖2A中具有大阻值電阻目 ^間的阻值比例,因此可以更精料更㈣ 相2 月匕隙電壓VBG之準位。圖3B是圖3A中能隙:的 度之特性崎目。 Ml與溫 若能隙參考電路所需最低供應電壓大約為 ^尤其在·40。(:環境下Vbe=G 83v)而受限。為解決此— =象’热習此技藝者可以於能隙參考電路中加人' 电阻網路,以便將VBE之準位分壓。 間早的 電路發明說明另一種低供應電壓之能隙參考 單清,圖4,此能隙參考電路包括正溫度係 ‘與負溫度係數電流產生單元 1 γ單元42。包括電壓電輯絲以及電流 、^ /现度係數電流產生單元410、負溫产#數雷 流產生單元420中之雷法揞以及帛…貞/里度係數電 之弟—電阻421可以與圖3Α 流產生單元310、電流鏡 相冋,故不在此贅述。 % 13 1317463 ~~~--~~ 圖4令電壓電流轉換器包括第四電阻422、第五電阻 423、第六電阻424、第九電晶體425、第十電晶體426、 第十一電晶體427以及第三運算放大器428。於本實施例 中,第九電晶體425為N型金氧半場效電晶體,第十電晶 體426為PNP型雙極性接面電晶體’第十一電晶體427為 ^型金氧半場效電晶體。電阻422之第一端耦接至第一定 電壓(在此為接地電壓),而電阻422之第二端則搞接至 電晶體425之第一源/没極(在此為源極)。f晶體奶之第 二源/汲極(在此為汲極)耦接至電流鏡之主電流端(即電晶 體429之沒極)。電阻423之第一端接地。電阻似= 於,阻423第二端與電晶體426第二射/集極(在此為射極) Γ 體426之基極與第一射/集極(在此為集極)均接 職1曰曰體427之弟二源/汲極(在此 至第二定電壓(在此為系統電壓)I。電晶體 極接收偏壓電壓V〇UT。運算放 之閘 此為正輸入端_至電阻423二入端(在 此為負輸入端)_至電晶體425H\—輪^在 至電晶體425之閘極。 而輸出端耦接 藉由第五電阻423金镇 得跨於電阻422之電屋不至4將Vbe分蜃,而使 以小於K猜t在,環境下可 操作於供應電壓小於i抑之環^中例之i隙參考電路可以Assume that the current Iptat = 6.75uA, R315 = 8KQ, and R32l > 58 2ΚΏ. At room temperature, vBE1 is about 733 mV. By selecting the resistance of the resistor 322 to be 100 Ω, the current Intc = ^ = 7 uA. Finally, the bandgap voltage VBG = R321.(INTC + ΙρτΑτ) = 58 2ΚΩ .(7uA + 6 7 2: .8〇〇25V. Therefore, this embodiment can produce a stable and lower than lv month gap voltage. For example, the level of the ideal bandgap voltage Vbg can be simply adjusted by adjusting the resistance R _ of the resistor 321 . Compared with 3 = , the embodiment does not need to adjust the resistance of the resistor having a large resistance value in FIG. 2A . The ratio of the value can be more fine (4) the level of the phase gap voltage VBG. Figure 3B is the characteristic of the energy gap of Figure 3A: The minimum supply voltage required for the Ml and the temperature gap reference circuit It is limited to ^ especially in · 40. (: Vbe = G 83v in the environment). To solve this - = like 'heat learners can add a 'resistance network' to the bandgap reference circuit, so that VBE The differential circuit invention describes another low supply voltage gap reference single clear, FIG. 4, the gap reference circuit includes a positive temperature system 'and a negative temperature coefficient current generating unit 1 γ unit 42. Voltage electric wire and current, ^ / current coefficient current generating unit 410, negative temperature production # number of lightning flow generation The thunder method in element 420 and the 帛 ... 贞 / 里度 coefficient electric brother - the resistor 421 can be compared with the Α stream generating unit 310 and the current mirror of Fig. 3, so it will not be described here. % 13 1317463 ~~~--~~ 4 illustrates the voltage-current converter including a fourth resistor 422, a fifth resistor 423, a sixth resistor 424, a ninth transistor 425, a tenth transistor 426, an eleventh transistor 427, and a third operational amplifier 428. In the embodiment, the ninth transistor 425 is an N-type gold oxide half field effect transistor, and the tenth transistor 426 is a PNP type bipolar junction transistor. The eleventh transistor 427 is a type of gold oxide half field effect transistor. The first end of the resistor 422 is coupled to the first constant voltage (here, the ground voltage), and the second end of the resistor 422 is connected to the first source/no pole (here the source) of the transistor 425. The second source/drain of the f crystal milk (here, the drain) is coupled to the main current terminal of the current mirror (ie, the pole of the transistor 429). The first end of the resistor 423 is grounded. The resistance is like = The second end of 423 is connected to the second emitter/collector of the transistor 426 (here, the emitter). The base of the body 426 is connected to the first emitter/collector (here, the collector). 1 曰曰 body 427 brother two source / 汲 pole (here to the second constant voltage (here is the system voltage) I. The transistor pole receives the bias voltage V 〇 UT. The operation of the gate is the positive input _ The second input terminal (here, the negative input terminal) _ to the transistor 425H\-the wheel is at the gate of the transistor 425. The output terminal is coupled to the resistor 422 by the fifth resistor 423. The electric house does not divide the Vbe into 4, but makes the sub-gap reference circuit which is less than K guess, and can operate in the environment where the supply voltage is less than i.

為了使能隙參考電路可以操作於供 之環境中,亦可參照圖5來每 、日、心固電壓小於1.0V 來a本發H是依照本發 14 1317463 明說明再-種低供應電壓之㈣參考電路實關。請參照 圖5 ’此能隙參考電路包括正溫度係數電流 γ、、〇 係數電流產生單元別。圖5之能隙參考電路』 ,3^目似’故二者之間相同部分將不在此重述。相較ς 圖’圖/之正溫度係數電流產生單元更包括第七 ί阻第九電阻513以及第十電阻51“ 之間。電阻513串電晶體515射極與電晶體516射極 二端則祕至電阻511 t 5—阻514之第 大器324之正輸入端接°不=圖3A中運算放 阻網路(包含電阻 ^,BE1,本只施例中先利用電 放大器524之正輪〜)將VBE分壓後才提供給運算 可以操作於供應“壓:广’本實施例之能隙參考電路 犯、513以及之環境中。上述電阻川、 係數電流產生單I::設計者之需求而改配置在 負溫度 _ 圖知=與本發明實施例圖3A、圖4、 少 V, 唧冩之電阻鱼運曾 .,山今、饯%褚實;? 。因為減少了量比圖从之習知電路; 確性之可能。另外,亦可由; 例所需之電阻表J中可以看出本發明諸實施 少。囡盔异放大益之數量比圖2Α之習知蝥·,々洁 中可以看出太二电路精確,f生之可能。另外,亦可_ 知電路更節省實施例所需之總電阻值比圖2A ^ 袼節省達422KO ®从之實施例即比圖2A之習知 (即約節省79.2%晶片面積與成本)。 15 1317463 率―3, 3修正替換頁-Q8—a η 4 表 電阻(Ω ) 運算放大 器 方法 圖2Α R1=78KQ R2=240KQ R3A=96KQ R3B=96KQ R4=70.4KQ R5=8KQ 4個 電壓加總 圖3Α R322=l〇〇KQ R321=58.2KQ R315=8K Q 2個 電流加總 圖4 R-423^~R424=2〇〇K Q R422=21KQ R421=29.8KQ R415=8M 2個 電流加總 圖5 R5n+R5i2=200KQ R513+R514=200KQ R522=20KQ R521=35.5KQ R5i5-8KQ 2個 電流加總 綜上所述,本發明因採用電流模式之合成技術,因此 可以產生穩定之低能隙電壓,並減少運算放大器之數量, 進而降低因偏移電壓而影響能隙電壓之精確性。再者,因 16 1317463 、… 為減少運算放大n與高阻值電阻數 :並降低崎。因此,本實施例之二 t:於供應祕於1.0V之環境中。所蝴8=可; 地貫作於任何健CM0S製程(例如G25um ^易 〇.13um 等)。 υ·Ι8_、 雖然本發明已以較佳實施例揭露如 =本發明’_熟習此技藝者,在不脫離本發== =内:當可作些許之更動靖,因此本如= &圍―彳之冑請專職騎界定者。.…蔓 【圖式簡單說明】· 圖1Α『δ兒明傳統能隙參考電路之電路圖。 與溫相1錢補統·參考紐所輪出電壓 露之美國專利公告第US6052020號專利案揭 與溫圖2A所示習知能隙參考電路所輸出電壓 電4二是依照本發明說明-種低供應電壓之㈣ 中_壓Vbg與溫度之特性曲線圖。 電路本發明說明另-種低供應電壓之能隙參考 電路本發明說明再—種低供應電壓之能隙參考 1317463 露31】3日料替換買I ★ 3/0 4 】 110、316、324、428、524 :運算放大器 210 :傳統正溫度係數電流產生單元 220 :電壓平均電路 310、 410、510 :正溫度係數電流產生單元 311、 312、313、314、323、325、326、327、425、426、 427、429、515、516 :電晶體In order to enable the bandgap reference circuit to operate in the environment, reference may be made to FIG. 5 for the daily, daily, and cardiac voltages being less than 1.0V. The present invention is in accordance with the description of the present invention. (4) The reference circuit is closed. Please refer to Figure 5'. This bandgap reference circuit includes positive temperature coefficient current γ, 〇 coefficient current generating unit. The bandgap reference circuit of Fig. 5, 3^ is similar, so the same part will not be repeated here. In contrast, the positive temperature coefficient current generating unit of the figure/FIG Illustrator further includes a seventh tens of the ninth resistor 513 and the tenth resistor 51. The resistor 513 is connected to the emitter of the transistor 515 and the emitter of the transistor 516. Secret to the positive input terminal of resistor 511 t 5 - resistor 514 of the largest device 324 ° not = Figure 3A in the operation of the resistor network (including resistance ^, BE1, this example only uses the positive wheel of the electric amplifier 524 ~) The VBE is divided into voltages and supplied to the operation to operate in the environment of "supply: wide" energy gap reference circuit of this embodiment, 513 and its environment. The above-mentioned resistance, coefficient current generation single I:: the designer's demand and changed to the negative temperature _ Fig. = with the embodiment of the invention, Figure 3A, Figure 4, less V, 唧冩 电阻 鱼 鱼 ,.饯%褚实;? Because the amount of the figure is reduced from the conventional circuit; the possibility of certainty. Further, it can be seen from the resistance table J required for the example that the invention has few implementations. The number of 囡 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 异 々 々 々 々 々 々 々 In addition, it is also known that the total resistance value required for the embodiment of the circuit is more than that of the embodiment of Fig. 2A (i.e., about 79.2% wafer area and cost savings). 15 1317463 rate -3, 3 correction replacement page -Q8-a η 4 table resistance (Ω) Operational amplifier method Figure 2Α R1=78KQ R2=240KQ R3A=96KQ R3B=96KQ R4=70.4KQ R5=8KQ 4 voltages total Figure 3Α R322=l〇〇KQ R321=58.2KQ R315=8K Q 2 currents total Figure 4 R-423^~R424=2〇〇KQ R422=21KQ R421=29.8KQ R415=8M 2 current sum total map 5 R5n+R5i2=200KQ R513+R514=200KQ R522=20KQ R521=35.5KQ R5i5-8KQ Two current summations In summary, the present invention can generate a stable low-gap voltage by using a current mode synthesis technique. It also reduces the number of operational amplifiers, which in turn reduces the accuracy of the gap voltage due to the offset voltage. Furthermore, because 16 1317463, ... to reduce the operation of the amplification of n and high resistance resistors: and reduce the roughness. Therefore, the second embodiment of the present embodiment is in an environment where the supply is secreted at 1.0V. The butterfly 8= can be used in any healthy CM0S process (such as G25um^易〇.13um, etc.). υ·Ι8_, although the present invention has been disclosed in the preferred embodiment as in the 'present invention', skilled in the art, without departing from the present invention ===: when a little more can be made, therefore, such as = &彳 彳 胄 Please hire a full-time rider. .... 蔓 [Simple diagram of the diagram] · Figure 1 Α "The circuit diagram of the traditional energy gap reference circuit of δ 儿明. U.S. Patent Publication No. US6052020, the disclosure of the temperature and the reference of the temperature, and the output voltage of the conventional energy gap reference circuit shown in Fig. 2A is in accordance with the description of the present invention. Characteristic curve of _pressure Vbg and temperature in (4) of supply voltage. The present invention describes another low-supply voltage gap reference circuit. The present invention describes a low-supply voltage gap reference 1317463. 31] 3 day material replacement buy I ★ 3/0 4 】 110, 316, 324, 428, 524: operational amplifier 210: conventional positive temperature coefficient current generating unit 220: voltage averaging circuit 310, 410, 510: positive temperature coefficient current generating unit 311, 312, 313, 314, 323, 325, 326, 327, 425, 426, 427, 429, 515, 516: transistor

315、321、322、421、422、423、424、5H、512、513、 514、R1 〜R5、R3A、R3B :電阻 320、420、520 :負溫度係數電流產生單元 Dl ' D2 :二極體315, 321, 322, 421, 422, 423, 424, 5H, 512, 513, 514, R1 to R5, R3A, R3B: resistors 320, 420, 520: negative temperature coefficient current generating unit Dl 'D2: diode

【主要元件符號說明】[Main component symbol description]

Intc :負係數電流 Ibg :加總電流 ΙρΤΑΤ :正係數電流 Va :第一内部電壓 Vb .弟一内部電壓 V〇UT .偏壓電壓 V〇s :偏移電麗 Vbg .能隙電壓 18Intc: Negative coefficient current Ibg: Total current ΙρΤΑΤ: Positive coefficient current Va: First internal voltage Vb. Dielectric voltage V〇UT. Bias voltage V〇s: Offset electric Vbg. Bandgap voltage 18

Claims (1)

13 1 746^6twf.doc/g 十、申請專利範圍: 1.一種低供應電壓之能隙參考電路,包括: 一正溫度係數電流產生單元,用以依據其内部之一第 一内部電壓與—第二内部電壓而產生-正係數電流;以及 一負溫度係數電流產生單元,包括: 抑-一電壓電流轉換器,用以依據該正溫度係數電流 生皁凡之該第-内部電壓,而產生對應之一電流; 以及 、 电々IL鏡,其主電流端輕接至該電壓電流轉換器 =接收該第一電流’並依—預定比例複製該第一電流而於 该電^鏡之一僕電流端提供一負係數電流; 其中该正係數電流與該負係數電流之加總即為該能隙 參考電路之輸出。 ㊉2.如申請專利範圍第1項所述低供應電壓之能隙彖考 電路’更包括: ㈣—電阻,其第—端减至該電流鏡與該正溫度係 產生單元而接收該正係數電流與該負係數電 弟—電阻之第二端接地。 5亥 3.如申請專利範圍第丨項所述低供應電壓之 電路’其巾該f流鏡包括: 〜考 一第二電晶體,其第一源/涑極為該電後鏡之主 端’該第二電晶體之第二源級極耦接至1二定電^電流 =二電晶體之閘極耦接至該第二電晶體之苐一源/及諄 19 13174^^6twfd〇c/g 山_第三電晶體,其第一源/汲極為該電流鏡之僕電流 ^ 。亥第二電晶體之第二源/汲極I馬接至該第二定電壓,而 5亥第二電晶體之閘極耦接至該第二電晶體之閘極。 “ 4.如申請專利範圍第3項所述低供應電壓之能隙參考 電路,其中該第二電晶體與該第三電晶體為p型金 效電晶體(MOSFET)。 每 5.如申請專利範圍第1項所述低供應電壓之能隙參考 電路’其中該正溫度係數電流產生單元包括: " -第-運算放大器’其第—輸人端與第二輸入端 ^收該第-内部電壓與該第二内部電壓,並輸出一偏璧電 一第-電晶體’其__至該第—運算放大 =收該偏壓電麼,其第-源/汲極麵接至-第 ^ ,、第一源/汲極輸出該正係數電流; 定電;第:ΐί體’其基極與第一射/集極均耦接至-第-疋電[,而其第二射/集極提供該第一内部電屬. 第it電?第五其 第==之閘極接收該 定電壓U日日體,其基極與第-射/集極均_至該第_ 一第二電阻’其第-端输至該第六電 集極,該第二電阻之第二端提供該第二内部ii;以:、 131 y46B6twf-d〇c/g -第=電晶體’其第—源/汲軸接 二端,第七電晶體之第二源她二 而該第七電晶體之閘極接收該偏壓電壓。 疋電昼’ 1申請專利範圍第5項所述低供 電路,其中該第—定電壓為接地電壓,而4 If考 系統電壓。 Μ第一疋電壓為 7气申請專利範圍第5項所述低 電路,其中該第-電晶體為ρ型電晶體。此隙參考 電路第5項所述低供應電壓之能隙參考 =電晶體==晶體與該第六電晶體為置型雙: 9=申請專利朗第5項所述低供 電路,其中該第五電晶鹊盥兮笙丄+ 电m隙參考 效電晶體(MOSFET)%晶體為P型金氧半場 10,如申請專利範圍第5 考電路:其中該電流轉糾=财、應電壓之能隙參 ❿ 一:八’其第厂端耦接至該第-定電壓; # m =體’其第—源/汲極㈣至該第三電阻之第 二=f敵1細咖頌流鏡之主電 體之;=:;:=端_該第, 該第八電晶體之第-源 柄接至該第八電晶體之閘極。運听放大為之輪出端 2113 1 746^6twf.doc/g X. Patent application scope: 1. A low-supply voltage gap reference circuit, comprising: a positive temperature coefficient current generating unit for using a first internal voltage according to one of its internals - a second internal voltage generates a positive coefficient current; and a negative temperature coefficient current generating unit, comprising: a voltage-to-current converter for generating the first internal voltage according to the positive temperature coefficient current Corresponding to one of the currents; and, the electric 々IL mirror, the main current terminal is lightly connected to the voltage current converter=receives the first current' and copies the first current according to a predetermined ratio to be a servant of the electric mirror The current terminal provides a negative coefficient current; wherein the sum of the positive coefficient current and the negative coefficient current is the output of the bandgap reference circuit. 12. The energy gap reference circuit of the low supply voltage as recited in claim 1 further includes: (4) a resistor whose first end is reduced to the current mirror and the positive temperature generating unit to receive the positive coefficient current The second end of the resistor is grounded to the negative coefficient. 5Hai 3. The circuit of the low supply voltage as described in the scope of the patent application of the invention, the f-flow mirror includes: - a second transistor, the first source / 涑 is the main end of the electric mirror The second source of the second transistor is coupled to the first and second constant currents. The gate of the second transistor is coupled to the first source of the second transistor and/or 19 13174^^6twfd〇c/ g Mountain_third transistor, whose first source / 汲 is the servant current of the current mirror ^. The second source/drain of the second transistor is connected to the second constant voltage, and the gate of the second transistor is coupled to the gate of the second transistor. 4. The energy gap reference circuit of the low supply voltage according to claim 3, wherein the second transistor and the third transistor are p-type gold effect transistors (MOSFETs). The low-supply voltage gap reference circuit of the first item, wherein the positive temperature coefficient current generating unit comprises: " -the first operational amplifier', the first input terminal and the second input terminal receive the first-internal a voltage and the second internal voltage, and output a bias voltage - a first transistor - its __ to the first operational amplification = receive the bias voltage, its first source / drain surface is connected to - ^ , the first source/drain outputs the positive coefficient current; the power is fixed; the first: the base body and the first emitter/collector are coupled to the -th-th power [, and the second shot/set The pole is provided with the first internal electric current. The fifth electric device of the fifth == the gate receives the constant voltage U-day body, and the base and the first-shot/collector are both _ to the first _ second The first end of the resistor is connected to the sixth electrical collector, and the second end of the second resistor provides the second inner ii; to: 131 y46B6twf-d〇c/g - the first transistor - its first source/ The second axis of the seventh transistor is connected to the second source of the seventh transistor, and the gate of the seventh transistor receives the bias voltage. The low-supply circuit described in claim 5, wherein The first constant voltage is the ground voltage, and the 4 If is the system voltage. The first voltage is the low voltage circuit described in the fifth application patent range, wherein the first transistor is a p-type transistor. The energy gap reference of the low supply voltage according to item 5 = transistor == crystal and the sixth transistor are double-shaped: 9 = the low-supply circuit described in claim 5, wherein the fifth transistor兮笙丄+ electric m-gap reference effect transistor (MOSFET)% crystal is P-type gold oxide half field 10, as in the patent application scope 5th test circuit: where the current is rectified = the energy gap of the voltage should be referenced: Eight's first factory end is coupled to the first constant voltage; #m = body 'its first source/drain (four) to the third resistance second =f enemy 1 fine turbulent mirror main body ;=:;:=end_the first, the first source of the eighth transistor is connected to the gate of the eighth transistor. 1317463561^^°^ 考電第1G項所述低供應電壓之能隙參 ==固 電晶MN型金氧半場效電晶體 考電!5項所述低供應電壓之能隙參 考電路其中5亥電壓電流轉換器包括: 一第四電阻,其第一端耦接至該第一定電壓; 一第五電阻’其第-端祕至該第-定電歷; -第六電阻’其第—端叙接至該第五電阻之#. -第九電晶體’其第一源/汲極耦接至該第四電::第 二,’該第九電晶體之第二源/汲極減至該電流鏡之主電 流端; -第十電晶體’其基極與第—射/集極均婦至該第一 定電壓,而其第二射/集極耦接至該第六電阻之第二端; 一第十一電晶體,其第一源/汲極耦接至該第十電晶體 之第二射/集極,該第十—電晶體之第二源/¾:極輕接至該 第一疋電壓而5玄第十一電晶體之閘極接收該偏墨電壓; 以及 * 一第二運算放大器,其第一輸入端耦接至該第五電阻 之第二端,該第三運算放大器之第二輸入端耦接至該第九 電晶體之第一源/汲極,而該第三運算放大器之輸出端耦接 至該第九電晶體之閘極。 13.如申請專利範圍第π項所述低供應電壓之能隙參 考電路,其中該第九電晶體為N型金氧半場效電晶體,該1317463561^^°^ Test the energy gap of the low supply voltage according to the 1G item. == Solid-state crystal MN type gold-oxygen half-field effect transistor test! 5 items of the low-supply voltage gap reference circuit The voltage-current converter comprises: a fourth resistor having a first end coupled to the first constant voltage; a fifth resistor 'the first end thereof to the first constant electric calendar; and a sixth resistor 'the first one thereof The terminal is connected to the fifth resistor #. - the ninth transistor 'its first source / drain is coupled to the fourth power:: second, 'the second source / drain of the ninth transistor is reduced To the main current terminal of the current mirror; - the tenth transistor 'the base and the first emitter/collector are both at the first constant voltage, and the second emitter/collector is coupled to the sixth resistor a second end; an eleventh transistor, the first source/drain is coupled to the second emitter/collector of the tenth transistor, and the tenth-electrode second source/3⁄4: is extremely lightly connected a gate of the fifth eleventh transistor receives the offset voltage; and a second operational amplifier having a first input coupled to the second end of the fifth resistor, the first The second input terminal of the third operational amplifier is coupled to the first source/drain of the ninth transistor, and the output of the third operational amplifier is coupled to the gate of the ninth transistor. 13. The low-supply voltage gap reference circuit of claim π, wherein the ninth transistor is an N-type MOS half-field effect transistor, 22 13174636twf.d〇c/g 第十電晶體為pNP型雙極性接面電晶體,該第十一電晶體 為1>型金氧半場效電晶體。 14,如申請專利範圍第5項所述低供應電壓之能隙參 考電路,其中該正溫度係數電流產生單元更包括: —第七電阻’其第一端耦接至該第四電晶體之第二射/ 集極; —第八電阻,其第一端耦接至該第七電阻之第二端,22 13174636twf.d〇c/g The tenth transistor is a pNP type bipolar junction transistor, and the eleventh transistor is a 1> type gold oxide half field effect transistor. The gap reference circuit of the low supply voltage according to claim 5, wherein the positive temperature coefficient current generating unit further comprises: a seventh resistor having a first end coupled to the fourth transistor a second resistor, the first resistor is coupled to the second end of the seventh resistor, 而該第八電阻之第二端耦接至該第六電晶體之第二射/集 極; 一第九電阻,其第一端耦接至該第一定電壓;以及 一第十電阻’其第一端耦接至該第九電阻之第二端, 而該第十電阻之第二端耦接至該第七電阻之第二端。 15.如申請專利範圍第14項所述低供應電壓之能隙參 考電路’其中該電壓電流轉換器包括: 第十一電阻,其第一端耦接至該第一定電壓; # 一第十二電晶體,其第一源/汲極耦接至該第十—電阻 端,該第十二電晶體之第二源/汲極耦接至該電流鏡 之主電流端;以及 /电〃W 异放大器,其第—輪入端耦接至該第九電阻 之第二端,該第四運算放大器之篦_ 二電晶體之第—源/汲極,而該第;: =該第: 接至該第十二電晶體之陳'放之輪出端耦 考雷蹊專利辈a圍第15項所述低供應電壓之能隙東 考電路’其中十二t晶體為N型金氧半場 ⑧ 23The second end of the eighth resistor is coupled to the second emitter/collector of the sixth transistor; a ninth resistor having a first end coupled to the first constant voltage; and a tenth resistor 'its The first end is coupled to the second end of the ninth resistor, and the second end of the tenth resistor is coupled to the second end of the seventh resistor. 15. The low-supply voltage gap reference circuit of claim 14, wherein the voltage current converter comprises: an eleventh resistor, the first end of which is coupled to the first constant voltage; #一十a second transistor having a first source/drain coupled to the tenth-resistive terminal, a second source/drain of the twelfth transistor coupled to a main current terminal of the current mirror; and/or an electric 〃 a different amplifier, the first wheel-in terminal is coupled to the second end of the ninth resistor, the fourth operational amplifier has a first source/drain of the second transistor, and the first:: = the first: To the twelfth transistor, the 'rounding end of the coupling', the patent of the company's patents, the 15th item of the low supply voltage, the east of the circuit, the twelve-t crystal is the N-type gold-oxygen half-field 8 twenty three 第二電晶體為P型金氧半場 —第二電阻,其第一端耦接至一第一定電壓; 13 1146S6twf.doc/g / 17.-種負溫度係數電流產生單元,用以依據—正溫度 係數電流產生單元之—第—内部電壓,而產生對應之一負 係數電流,該負温度係數電流產生單元包括: 、 。-電壓電流轉換n,用職據該正溫度係數電流產生 單元找第^部電壓,而產生對應之-第-電流;以及 電流鏡,其主電流端耦接至該電壓電流轉換器以接 =第-電流,並依-預定比例複製該第—電流而於 &鏡之一僕電流端提供該負係數電流。 單元項料貞溫度餘電流產生 …-第二電晶體’其第一源/没極為該電流鏡之主電济 =该第—電晶體之第二源級極_接至—第二定電壓,該 -電晶體之祕祕至該第二f晶體之第—源/沒極;以 * -第三電晶體’其第—源沒極為該電流鏡之 二第該:三電晶體之第二助及極耗接至該第二定電壓,: “弟-電晶體之閘極_至該第二電晶體之間極。 單元19ί^利範圍第18賴述貞溫度係數電流產生 早7〇其中该第二電Η 效電晶體(mosfet) 20.如申請專利範圍第17項所述負溫度係數電流產生 早几,其中該電壓電流轉換器包括: 24The second transistor is a P-type gold-oxygen half-field-second resistor, the first end of which is coupled to a first constant voltage; 13 1146S6twf.doc/g / 17.- a negative temperature coefficient current generating unit for using - The positive temperature coefficient current generating unit generates a corresponding first negative coefficient current, and the negative temperature coefficient current generating unit comprises: . - voltage and current conversion n, according to the positive temperature coefficient current generating unit to find the voltage of the first part, and generate the corresponding - the first current; and the current mirror, the main current end is coupled to the voltage current converter to connect = The first current, and the first current is copied in a predetermined ratio, and the negative current is supplied to the current terminal of the & mirror. The unit item 贞 temperature residual current is generated...-the second transistor's first source/not the main current of the current mirror=the second source level of the first transistor is connected to the second constant voltage, The secret of the transistor - to the second source of the second f crystal - source / no pole; to * - the third transistor 'the first source is not the second of the current mirror: the second help of the three transistors And is extremely consuming to the second constant voltage, "the gate of the transistor - the gate of the transistor _ to the pole between the second transistor. The unit 19 ί ^ 范围 range 18 贞 贞 temperature coefficient current generation 7 〇 where the second Electro-effect transistor (mosfet) 20. The negative temperature coefficient current is generated as described in claim 17 of the patent scope, wherein the voltage-current converter comprises: 24 13174‘3twf.d〇c/g 一第八電晶體,其第一源/汲極耦接至該第三電阻之第 二端,该第八電晶體之第二源/汲極耦接至該電流鏡之主 流端;以及 第二運异放大态,其第一輸入端接收該正溫度係數 電肌產生單元之該第一内部電壓,該第二運算放大器之第 二輸入端祕至該第人電晶體之第一源/沒極,該第二運算 放大器之輸出端耦接至該第八電晶體之閘極。 汁 — η.如巾料利範㈣2G韻述貞溫度係數電流產生 單7C ’其中_第八電晶體為N型金氧半場效 (MOSFET)。 。22.如中明專利範圍第17項所述負溫度係數電流產生 單元,其中該正溫度係數電流產生單元更依據其第—内部 電壓與第二内部電壓而產生—偏壓電壓,而該電壓電流 換器包括: 一第四電阻,其第一端耦接至一第一定電壓; 一第五電阻,其第一端耦接至該第一定電壓; 一第六電阻,其第一端耦接至該第五電阻之第二端; 一第九電晶體,其第一源/汲極耦接至該第四電阻之第 二端,該第九電晶體之第二源/汲極耦接至該電流鏡之主 流端; 一第十電晶體,其基極與第一射/集極均耦接至該第一 定電壓,而其第二射/集極耦接至該第六電阻之第二端. 一第十一電晶體,其第一源/汲極耦接至該第十^晶俨 之第二射/集極’該第十-電晶體之第二源/汲極_ = 25 131746361^^°°7¾ 第二定電壓,而該第卜電晶體之閘極接收該偏壓電壓; 以及 之第:ΐ三放大器,其第一輪入端耦接至該第五電阻 Si:第ί/ΐ!算放大器之第二輸,接至該第九 電曰曰體之弟-源/祕,而該第三運算放大 至該第九電晶體之閘極。 ㈣知稱接 申請專魏圍第22項所述負溫度係 ^電f —定電壓為接地電壓,而該第二定電壓為 24·如巾請專利範圍第22項所述負溫度係數電流產生 十Ξ曰體1=九電晶體為N型金氧半場效電晶體,該第 十電曰曰體為PNP㈣極性接面電晶體 P型金氧半場效電晶體。 針電曰曰體為 單开25.^請專利範圍第17項所述負溫度係數電流產生 $、中該正溫度係數電流產生單^内更具有第三内部 甩反’而該電壓電流轉換器包括: —第七電阻’其第—端接收該正溫度健電流產生單 凡之第一内部電壓; 二★第八電阻,其第一端I馬接至該第七電阻之第二端, & 一第八電阻之第二端接收該正溫度係數電流產生單元之 弟三内部電壓; 一,九電阻,其第一端耦接至一第一定電壓; 第十電阻,其第一端執接至該第九電阻之第二端, 而該第十電阻之第二端耦接至該第七電阻之第二端; 2613174'3twf.d〇c/g an eighth transistor, the first source/drain is coupled to the second end of the third resistor, and the second source/drain of the eighth transistor is coupled to the a second end of the current mirror; and a second input differential state, the first input end of the first temperature receiving the first internal voltage of the positive temperature coefficient electromyography generating unit, the second input end of the second operational amplifier is secretive to the first person The first source/no pole of the transistor, the output end of the second operational amplifier is coupled to the gate of the eighth transistor. Juice — η. For example, Lifan (4) 2G rhyme 贞 temperature coefficient current generation Single 7C ’ where _ eighth transistor is N-type MOS half-field effect (MOSFET). . 22. The negative temperature coefficient current generating unit of claim 17, wherein the positive temperature coefficient current generating unit generates a bias voltage according to the first internal voltage and the second internal voltage, and the voltage current is generated. The converter includes: a fourth resistor having a first end coupled to a first constant voltage; a fifth resistor having a first end coupled to the first constant voltage; and a sixth resistor having a first end coupled Connected to the second end of the fifth resistor; a ninth transistor, the first source/drain is coupled to the second end of the fourth resistor, and the second source/drain is coupled to the ninth transistor To the main end of the current mirror; a tenth transistor, the base and the first emitter/collector are coupled to the first constant voltage, and the second emitter/collector is coupled to the sixth resistor a second end. An eleventh transistor, the first source/drain is coupled to the second emitter/collector of the tenth transistor, and the second source/drain of the tenth transistor is _ 25 131746361^^°°73⁄4 a second constant voltage, and the gate of the transistor is received by the bias voltage; and the third: a third amplifier The first input is coupled to the fifth resistor Si: the second output of the ί/ΐ! amplifier, connected to the ninth electric body, the source/secret, and the third operation is amplified to the ninth The gate of the transistor. (4) Knowing that the negative temperature system of the 22nd item of the application for Weiwei is the same as the grounding voltage, and the second constant voltage is 24. The negative temperature coefficient current is generated according to item 22 of the patent scope. The tenth body 1=nine transistor is an N-type gold oxygen half field effect transistor, and the tenth electric body is a PNP (four) polarity junction transistor P-type gold oxide half field effect transistor. The needle electric body is single-open 25. The patented range 17th negative temperature coefficient current generation $, the positive temperature coefficient current generation unit has a third internal anti-inversion and the voltage current converter Including: - the seventh resistor 'the first end receives the positive temperature and the current generates the first internal voltage; the second and the eighth resistor, the first end of which is connected to the second end of the seventh resistor, & The second end of the eighth resistor receives the internal voltage of the positive temperature coefficient current generating unit; one, nine resistors, the first end of which is coupled to a first constant voltage; the tenth resistor, the first end of which Connected to the second end of the ninth resistor, and the second end of the tenth resistor is coupled to the second end of the seventh resistor;
TW95109404A 2006-03-20 2006-03-20 Low supply voltage bandgap reference circuit and negative temperature coefficient current generation unit thereof and method for supplying bandgap reference current TWI317463B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95109404A TWI317463B (en) 2006-03-20 2006-03-20 Low supply voltage bandgap reference circuit and negative temperature coefficient current generation unit thereof and method for supplying bandgap reference current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95109404A TWI317463B (en) 2006-03-20 2006-03-20 Low supply voltage bandgap reference circuit and negative temperature coefficient current generation unit thereof and method for supplying bandgap reference current

Publications (2)

Publication Number Publication Date
TW200736878A TW200736878A (en) 2007-10-01
TWI317463B true TWI317463B (en) 2009-11-21

Family

ID=45073372

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95109404A TWI317463B (en) 2006-03-20 2006-03-20 Low supply voltage bandgap reference circuit and negative temperature coefficient current generation unit thereof and method for supplying bandgap reference current

Country Status (1)

Country Link
TW (1) TWI317463B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524407B2 (en) * 2009-01-28 2010-08-18 学校法人明治大学 Semiconductor device
US7948305B2 (en) * 2009-04-24 2011-05-24 Triquint Semiconductor, Inc. Voltage regulator circuit
CN109765962B (en) * 2019-01-17 2021-03-16 深圳能芯半导体有限公司 Band-gap reference circuit with low power consumption and high PSRR (power supply rejection ratio)
US11566950B2 (en) 2020-04-06 2023-01-31 Realtek Semiconductor Corp. Process and temperature tracking reference load and method thereof

Also Published As

Publication number Publication date
TW200736878A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
TWI307211B (en) Current source with adjustable temperature coefficient and method for generating current with specific temperature coefficient
TWI290274B (en) Low voltage bandgap reference (BGR) circuit
TWI330307B (en) Folded cascode bandgap reference voltage circuit
TWI361967B (en) Bandgap voltage reference circuit
US7164260B2 (en) Bandgap reference circuit with a shared resistive network
TW200910050A (en) Bandgap reference circuit
TW200912587A (en) Voltage reference circuit
TW200410059A (en) Modified brokaw cell-based circuit for generating output current that varies linearly with temperature
TW201135398A (en) Temperature independent reference circuit
JPS61187020A (en) Voltage reference circuit
TW201011494A (en) Rrecision voltage and current reference circuit
TWI260772B (en) Reference voltage circuit with low energy gap
CN102841629A (en) Bipolar complementary metal oxide semiconductor (BiCMOS) current-type reference circuit
TWI317463B (en) Low supply voltage bandgap reference circuit and negative temperature coefficient current generation unit thereof and method for supplying bandgap reference current
TW201135397A (en) Voltage and current generator with an approximately zero temperature coefficient
CN103399612B (en) Resistance-less bandgap reference source
CN113110691A (en) Voltage reference circuit and method for providing reference voltage
JPS6326895B2 (en)
TW200417001A (en) Bandgap reference circuit
TW200839480A (en) Bandgap voltage and current reference
JPH08512161A (en) Reference voltage source with temperature compensated current source for biasing multiple current source transistors
TW201017360A (en) Bandgap voltage reference circuit
TW201039090A (en) Bandgap reference circuits
JP3593858B2 (en) Reference voltage source circuit
JPH08185236A (en) Reference voltage generating circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees