TWI310321B - Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate - Google Patents

Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate Download PDF

Info

Publication number
TWI310321B
TWI310321B TW94135485A TW94135485A TWI310321B TW I310321 B TWI310321 B TW I310321B TW 94135485 A TW94135485 A TW 94135485A TW 94135485 A TW94135485 A TW 94135485A TW I310321 B TWI310321 B TW I310321B
Authority
TW
Taiwan
Prior art keywords
surfactant
nano
inorganic
group
particles
Prior art date
Application number
TW94135485A
Other languages
Chinese (zh)
Other versions
TW200714352A (en
Inventor
Shu Hua Chan
Ching Ting
Hong Ping Lin
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW94135485A priority Critical patent/TWI310321B/en
Publication of TW200714352A publication Critical patent/TW200714352A/en
Application granted granted Critical
Publication of TWI310321B publication Critical patent/TWI310321B/en

Links

Description

1310321 九、發明說明: 【發明所屬之技術領域】 一種奈米級中孔洞無機奈米粒子及一種包含其之高分子奈 米複合材料。 【先前技術】 近年來,隨著高分子科技的日漸成熟,高分子材料在應用 除了 /函蓋傳統的塑膠及合成樹脂產業外,對於高科技產業, 例如:、電:、光電、通訊及生物科技,亦扮演著十分關鍵的角 色。尤其是具有高透光性及可撓曲性質的高分子材料,除了可 作為包裝材外,已被廣泛的應用在顯示器及光電元件領域中, 以作為基板、光學鏡片、或是光學塗膜等。具有高透光性及可 繞曲性質的有機高分子材料,雖然易於加工,但是由於呈且有 較高的熱膨脹係數(coefflcient of thermal expansi〇n、⑽)純 低的对熱度,^機械強度較差,導致在實際翻上的諸多限制。 為增加高分子材料的機械強度及耐熱度、降低熱膨脹係 數’-般來說,係摻雜無機物於高分子材料中,以形成有機-盔 ^複ί材料。在—f知的技術中’係、利用無機粒子(Panicles)與 機同》子材料進行混摻H _般所使用的無機粒子^係 ^米尺t其與高分子材料1〇混摻時,常因重力關係而分佈 =且極今易有聚集(aggregation)的現象發生,請參照第1圖。 子之業界目前正f試降低作為摻質的無機粒 中之均I 及’以增加無機粒子混摻至有機高分子材料 中之’在習知技術中,係利 町咖⑷製作奈米級無機粒子 ’,=法(1繼 心⑽ld)結構,當此實心子係為實 …機粒子作為摻雜時之摻雜量增加時 0424-A21092-TWF(N2);P02940015;ph〇elip 5 (S) B10321 (大於20wt%時),無機粒子在有機高分子材料中之均勻性將迅速 下降,並使大幅降低有機高分子材料之透光度。此外,使用雷 射熱解法製作奈米級無機粒子,其製程成本較高且較為複雜, 且雷射熱解法對於起始物之選用也有所限制,較無法利用成本 降低廉的原料(例如:水玻璃)來製作奈米級無機粒子。 因此,重新設計及開發出與高分子材料匹配度較佳、製程 較簡單、及原料取得容易的奈米級無機粒子,以與高分子材料 混摻得到高透光性且低熱膨脹係數的複合材料,是為一項極為 重要的課題。 【發明内容】 有鑑於此,本發明之目的在於提供一種具有奈米級中孔洞 (mesoporous)結構的無機奈米粒子,其粒徑小於300nm,當與高 分子材料(polymer)進行混摻時,可避免無機粒子發生聚集現 象,並均勻分散於該高分子材料中,以有效降低高分子材料之 熱膨脹係數。此外,由於該無機奈米粒子具有奈米尺寸之孔洞, 使得高分子材料(或可聚合單體)能進一步填入,如此可使得孔洞 内外均混合高分子,可大幅降低無機奈米粒子對高分子材料透 光度的影響。本發明所述之具有奈米級中孔洞(mesoporous)結構 的無機奈米粒子,在其製程中,可進一步進行表面改質,使其 表面具有反應性官能基,可與高分子材料鏈結,以進行化學混 摻。 本發明之又一目的係在於提供一種高分子奈米複合材料, 除了具有高分子材料之透明及可撓曲的特性,亦同時具有較低 的熱膨脹係數及較佳的機械強度,非常適合應用於光電材料, 例如作為顯示裝置之透明基板、光學鏡片、光學塗膜、光纖、 0424-A21092-TWF(N2);P02940015;phoelip 6 *v1310321 IX. Description of the invention: [Technical field to which the invention pertains] A nano-scale mesoporous inorganic nanoparticle and a polymer nanocomposite comprising the same. [Prior Art] In recent years, with the maturity of polymer technology, polymer materials are used in high-tech industries, such as: electricity, optoelectronics, communication, and biology, in addition to the traditional plastic and synthetic resin industries. Technology also plays a very important role. In particular, in addition to being used as a packaging material, polymer materials with high light transmittance and flexibility can be widely used in the field of displays and optoelectronic components, as substrates, optical lenses, or optical coatings. . An organic polymer material having high light transmittance and bendable properties, although easy to process, has a high coefficient of thermal expansion (coefflcient of thermal expansi〇n, (10)), a low degree of heat, and a poor mechanical strength. , resulting in many restrictions on the actual turn. In order to increase the mechanical strength and heat resistance of the polymer material and reduce the coefficient of thermal expansion, it is doped with inorganic substances in the polymer material to form an organic-helical material. In the technique of "f", the inorganic particles (using the inorganic particles (Panicles) and the machine" are mixed with H-like inorganic particles, which are mixed with the polymer material. Often distributed due to gravity relationship = and it is easy to have aggregation phenomenon, please refer to Figure 1. In the industry, the sub-industry is currently trying to reduce the average I and 'in the inorganic particles as dopants to increase the mixing of inorganic particles into the organic polymer material. In the conventional technology, the Kobemachi Coffee (4) produces nano-scale inorganic Particle ', = method (1 concentric (10) ld) structure, when this solid sub-system is real... when the doping amount of the machine particles as doping increases 0424-A21092-TWF(N2); P02940015; ph〇elip 5 (S B10321 (greater than 20% by weight), the uniformity of inorganic particles in the organic polymer material will rapidly decrease, and the transmittance of the organic polymer material will be greatly reduced. In addition, the use of laser pyrolysis to produce nano-scale inorganic particles, the process cost is relatively high and complex, and the laser pyrolysis method also has limitations on the choice of starting materials, and is less able to use low-cost raw materials (for example: water Glass) to make nano-scale inorganic particles. Therefore, redesigned and developed nano-scale inorganic particles with better matching with polymer materials, simpler process, and easier raw materials, and mixed with polymer materials to obtain composite materials with high light transmittance and low thermal expansion coefficient. Is an extremely important issue. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an inorganic nanoparticle having a mesoporous structure in a nanometer, which has a particle diameter of less than 300 nm, when mixed with a polymer material. The aggregation phenomenon of the inorganic particles can be avoided and uniformly dispersed in the polymer material to effectively reduce the thermal expansion coefficient of the polymer material. In addition, since the inorganic nanoparticle has a pore of a nanometer size, the polymer material (or polymerizable monomer) can be further filled, so that the polymer can be mixed both inside and outside the pore, and the inorganic nanoparticle can be greatly reduced. The influence of the transmittance of molecular materials. The inorganic nanoparticle having the mesoporous structure in the nanometer of the present invention can be further surface-modified in the process thereof to have a reactive functional group on the surface, and can be linked with the polymer material. For chemical mixing. Another object of the present invention is to provide a polymer nano composite material which has the characteristics of transparency and flexibility of a polymer material, a low thermal expansion coefficient and a good mechanical strength, and is very suitable for application. Photoelectric material, for example, a transparent substrate as a display device, an optical lens, an optical coating film, an optical fiber, 0424-A21092-TWF (N2); P02940015; phoelip 6 *v

1310321 或是包裝材。 為達上述目的,本發明所述之奈米中孔洞無機奈米粒子, 係為經下列步驟後所得之產物: 在pH值介於4〜8的環境下,將(a)—含界面活性劑之溶液 與(b)—矽酸鹽水溶液進行反應,形成一孔洞尺寸小於4〇nm之 中孔洞無機奈米粒子。其中,該含界面活性劑之溶液係包含一 界面活性劑溶解於一由水及有機溶劑所組成之共溶劑中,而水 及有機溶劑之比例係介於50:1至1:3之間,較佳係介於25:ι至 1:3之間。 依據本發明一較佳實施例,本發明所述之中孔洞無機奈米 粒子,可進一步為經下列步驟後所得之產物·· 將-嵌段共聚物界面活性劑溶於一由水及親油性碳氣化合 物所組成之共溶劑中’形成該含界面活性劑之溶液。將該含界 面活性劑之溶液與該矽酸鹽水溶液在?11值為4〜6的環境下反應 形成一氧化矽膠體,接著對該氧化矽膠體進行改質,形成一孔 洞尺寸小於4〇nm之單孔囊胞型中孔洞無機奈米粒子。 依據本發明另-較佳實施例,本發明所述之奈米中孔洞無 機奈米粒可進-步為經下列步驟後所得之產物: 將-長鏈型界面活性劑溶於一由水及親水性碳氯氧化合物 所、’且成之共/合劑中’形成該含界面活性劑之溶液。將該含界面 活性劑之溶液與該矽酸鹽水溶液在pH值為6〜8的環境下反應妒 成一氧化矽膠體,接著對該氧化矽膠體進行改質,形成一^洞 尺寸小於4〇nm之奈米蜂巢型中孔洞無機奈米粒子。 丨 依據本發明又較佳實施例,本發明所述之奈求中孔洞無 機奈米粒子’可進—步為經下列步驟後所得之產物: … 將一長鏈型界面活性劑及一嵌段共聚物界面活性劑溶於_ 0424-A21092-TWF(N2);P02940015;phoelip 7 1310321 由水及有機溶劑所組成之共溶劑中,形成該含界面活性劑之溶 液。將該含界面活性劑之溶液與一石夕酸鹽水溶液在pH值為μ 的環境下反應’形成-氧化㈣體,接著對該氧化㈣體進行 改質,形成一孔洞尺寸小於40疆之奈米中孔洞無機奈米粒子。 其中,所得之中孔洞無機奈米粒子物係為囊胞形,且該囊胞無 機奈求粒子之殼層上有複數之孔洞。 為達本發明所述之另一目的,本發明亦關於—種高分子奈 米複合材料,係由將-中孔洞無機奈餘? Q i〜5Gw齡一高 分子50〜99.9wt%進行混摻而得,其中該奈米中孔洞無機奈米粒 子係為經下列步驟後所得之產物: 在PH值介於4〜8的環境下’將⑷一含界面活性劑之溶液 與⑻一傾鹽水溶液進行反應,形成—氧切_。對該氧化 石夕膠體進行改質,形成-脑尺寸小於鳥W奈米中孔洞益 機奈水粒子。其中’該含界面活性劑之溶液係包含一界面活性 劑溶解於-由水及有機溶騎組叙共溶射,而水及有 劑之比例係介於50:1至1:3之間。 以下藉由數個實施例及比較實施例並配合所附圖式, 進-步說明本發明之方法、特徵及優點,但並非用來 明之範圍,本發明之範圍應以所附之申請專利範圍為準。發 【實施方式】 本發明所述之奈米中孔洞無機奈米粒子之尺寸係小於 300nm,較佳係介於2〇〇〜8〇nm,而孔洞之直徑係小於條⑺。 發明所述之奈米中孔洞無機奈米粒子之製程方法係 於4〜8的環境下’將-含界面活性劑之溶液與-石夕酸鹽水 進行反應’形成-奈米中孔洞無機奈 。 “液 0424-A21092-TWF(N2);P02940015;Dhoelip 8 (?) 1310321 該含界面活性劑之溶液係由一界面活性劑溶解於一由水及 有機溶劑所組成之共溶劑中以配製而成。該界面活性劑可為嵌 段共聚物界面活性劑、長鏈型界面活性劑或其混合。值得注意 的是’本發明所述之奈米中孔洞無機奈米粒子其構形會依界面 活性劑的選用而不同。 明確地說’依據本發明一較佳實施例,若使用嵌段共聚物 界面活性劑’則會形成單孔囊胞形中孔洞無機奈米粒子;若使 用長鏈型界面活性劑,則會形成蜂巢型中孔洞無機奈米粒子; 若同時使用嵌段共聚物界面活性劑與長鏈型界面活性劑,則會 形成囊胞型奈米中孔洞無機奈米粒子,且該囊胞無機奈米粒子 之殼層上具有複數之孔洞。在本發明中,該嵌段共聚物界面活 性劑可為聚乙氧基-聚丙氧基嵌段共聚物 (polyoxyethylene-polyoxypropylene block copolymer)例如: poloxamer 403 (P123)、poloxamer 407 (F127)、poloxamer 402 (L122)、poloxamer 181 (L61)、poloxamer 401 (L121)、poloxamer 185 (P65)、PE64、或 poloxamer 338 (F108);此外,該長鏈型界 面活性劑可為具有C8_2G烷基的陰離子界面活性劑、具有C8_20 烷基的陽離子界面活性劑、或其混合。其中,具有C8_2G烷基的 陰離子界面活性劑可為具有C8_2〇烷基的硫酸鹽化合物,例如十 二烧硫酸納(sodium dodecyl sulfate、SDS)、或十二苯烧續酸納 (sodium dodecylbenzene sulfonate、SDBS);具有 C8-2〇 烧基的陽 離子界面活性劑可為具有C8_2〇烷基的四級銨鹽化合物,例如十 六烧基三曱基漠化銨(cetyl trimethylammonium bromide、 CTMAB)、十二烧基三甲基漠化銨(dodecyl trimethyl ammonium bromide、DTMAB)、十六烧基三甲基氯化铵(cetyl trimethylammonium chloride、CTMAC)、十八烧基三甲基溴化録 0424-A21092-TWF(N2);P02940015;phoelip 9 T310321 (octadecyl trimethylammonium bromide、ΟΤΜΑΒ)或十八烷基 二甲基氣化銨(octadecyl trimethylammonium chloride、OTMAC)。 本發明所述之共溶劑係由水及有機溶劑所配製而成,水及 有機溶劑之比例係介於50:1至1:3之間,較佳係介於25:1至1:31310321 Or packaging material. In order to achieve the above object, the inorganic nanoparticle of the nano-hole in the present invention is a product obtained by the following steps: (a) containing a surfactant at a pH of 4 to 8 The solution is reacted with (b) an aqueous solution of bismuth citrate to form a porous inorganic nanoparticle having a pore size of less than 4 〇 nm. Wherein, the surfactant-containing solution comprises a surfactant dissolved in a co-solvent composed of water and an organic solvent, and the ratio of water to the organic solvent is between 50:1 and 1:3. Preferably, it is between 25: ι and 1:3. According to a preferred embodiment of the present invention, the porous inorganic nanoparticles of the present invention may further be obtained by the following steps: · Dissolving the -block copolymer surfactant in water and lipophilicity The solution containing the surfactant is formed in a cosolvent composed of a carbon gas compound. Is the solution containing the surfactant in the aqueous solution of the citrate? The reaction was carried out in an environment of 11 to 6 to form a cerium oxide colloid, and then the cerium oxide colloid was modified to form a single-hole vesicle type mesoporous inorganic nanoparticle having a pore size of less than 4 〇 nm. According to another preferred embodiment of the present invention, the nano-porous inorganic nanoparticle of the present invention can be further processed by the following steps: Dissolving a long-chain surfactant in a water and a hydrophilic A solution of the surfactant is formed in the 'co-oxygen oxychloride compound'. The surfactant-containing solution is reacted with the aqueous solution of citrate in a pH of 6 to 8 to form a cerium oxide colloid, and then the cerium oxide colloid is modified to form a hole size of less than 4 〇 nm. Nano Honeycomb Honeycomb Nanoparticles. According to still another preferred embodiment of the present invention, the inorganic nanoparticle of the present invention can be further processed by the following steps: ... a long chain surfactant and a block The copolymer surfactant is dissolved in _ 0424-A21092-TWF (N2); P02940015; phoelip 7 1310321 The solution containing the surfactant is formed from a cosolvent composed of water and an organic solvent. The surfactant-containing solution is reacted with an aqueous solution of a sulphate in a pH of μ to form a oxidized (tetra) body, and then the oxidized (tetra) body is modified to form a nanometer having a pore size of less than 40 Å. Intracellular pores of inorganic nanoparticles. Wherein, the obtained inorganic nano-particles of the pores are in the shape of a sac, and the vesicles have a plurality of pores on the shell of the particles. In order to achieve the other object of the present invention, the present invention is also directed to a polymeric nanocomposite material which is derived from a meso-porous inorganic residue. Q i~5Gw age-a polymer 50~99.9wt% is obtained by mixing, wherein the nano-hole inorganic nano-particles are obtained by the following steps: in a pH of 4~8 '(4) A solution containing a surfactant is reacted with (8) an aqueous solution of a salt of salt to form an oxygen-cut. The oxidized oligocolloid is modified to form a brain-sized particle smaller than the hole in the bird W nanometer. Wherein the surfactant-containing solution comprises a surfactant dissolved in water-soluble organic solvent, and the ratio of water to the agent is between 50:1 and 1:3. The method, features, and advantages of the present invention are described in the following by way of example and the accompanying drawings in the accompanying drawings. Prevail. [Embodiment] The nanometer pore inorganic nanoparticle of the present invention has a size of less than 300 nm, preferably 2 to 8 〇 nm, and the diameter of the pore is smaller than the strip (7). The method for preparing the nano-particles of the inorganic nano-particles in the invention is carried out in a 4~8 environment, and the solution containing the surfactant is reacted with the water of the sulphate to form a nano-hole. . "Liquid 0424-A21092-TWF(N2); P02940015; Dhoelip 8 (?) 1310321 The surfactant-containing solution is prepared by dissolving a surfactant in a cosolvent consisting of water and an organic solvent. The surfactant may be a block copolymer surfactant, a long-chain surfactant or a mixture thereof. It is noted that the nanoparticle inorganic nanoparticle of the present invention has a conformational activity depending on the interface activity. The choice of the agent is different. Specifically, 'in accordance with a preferred embodiment of the present invention, if a block copolymer surfactant is used, a single-pore vesicle-shaped mesoporous inorganic nanoparticle is formed; if a long-chain interface is used The active agent forms a honeycomb type mesoporous inorganic nanoparticle; if a block copolymer surfactant and a long-chain surfactant are used at the same time, a cystic nano-intermediate pore inorganic nanoparticle is formed, and The shell inorganic nanoparticle has a plurality of pores on the shell layer. In the present invention, the block copolymer surfactant may be a polyoxyethylene-polyoxypropylene block copolymer (polyoxyethylene-polyoxypropylene block copolym). Er) for example: poloxamer 403 (P123), poloxamer 407 (F127), poloxamer 402 (L122), poloxamer 181 (L61), poloxamer 401 (L121), poloxamer 185 (P65), PE64, or poloxamer 338 (F108); The long-chain surfactant may be an anionic surfactant having a C8_2G alkyl group, a cationic surfactant having a C8-20 alkyl group, or a mixture thereof, wherein the anionic surfactant having a C8_2G alkyl group may have C8_2〇 Alkyl sulfate compound, such as sodium dodecyl sulfate (SDS), or sodium dodecylbenzene sulfonate (SDBS); a cationic surfactant having a C8-2 anthracenyl group It is a quaternary ammonium salt compound having a C8_2 decyl group, such as cetyl trimethylammonium bromide (CTMAB) or dodecyl trimethyl ammonium bromide (DTMAB). , cetyl trimethylammonium chloride (CTMAC), octadecyl trimethyl bromide recorded 0424-A21092-TWF (N2); P02940015; phoelip 9 T310321 (octadecyl tr Imethylammonium bromide, ΟΤΜΑΒ) or octadecyl trimethylammonium chloride (OTMAC). The cosolvent of the present invention is prepared by water and an organic solvent, and the ratio of water to organic solvent is between 50:1 and 1:3, preferably between 25:1 and 1:3.

之間。值得注意的是,該共溶劑所使用之有機溶劑種類係隨著 所使用的界面活性劑不同而不同。依據本發明之較佳實施例, 若使用嵌段共聚物界面活性劑,則需將該嵌段共聚物界面活性 劑浴於由水及親油性碳氫化合物所組成之共溶劑中,形成該含 界面活性劑之溶液;若使用長鏈型共聚物界面活性劑,則需將 該傲段共聚物卩面活性劑溶於由水及親水性碳1氧化合物所組 成之共洛劑中,形成該含界面活性劑之溶液;此外,若同時使 用嵌段共聚物界面活性劑與長鏈型界面活性劑,則可使用由水 及有機溶劑(親油性碳氫化合物、親水性碳氫氧化合物、或其混 合)所組成之共溶劑中,形成該含界面活性劑之溶液。本發明之 主要特徵之一,係本發明可利用該有機溶劑在共溶劑中所佔的 比㈣調控該奈料孔洞無機化合無機奈米粒子物的粒徑的大 小’若該有機溶劑在共溶射所佔的比例愈高,則所形成之奈 米中孔洞無機m子的粒徑愈大。相反的,若該有機 共溶劑:所佔的比例愈低,則所形成之奈米中孔洞無機奈米粒 :的粒徑愈小。在本發明中,該親油性碳氫化合物可例如為甲 本(toluene)、二甲基苯、或液態之烷類。而該 物可例如為乙醇、異丙醇、丙醇、或丙酮。 飞氧化合 本發明之另—主要特徵係使用石夕酸鹽作為奈米中孔 奈米粒子的主要前趨物,可大幅降低成本,因此更適合大量: 產,符合工業界的需求。在習知技術中,利用石夕 : 無機奈練子-般只能作到微㈣尺寸,且為實㈣ 0424-A21092-TWF(N2);P〇294〇〇15;ph〇6|.p 10 ⑧ 1310321 發明藉由界面活性劑與有機溶劑的特定搭配,並且在一限定的 PH值範圍内’將含該界面活性劑的溶液與石夕酸鹽水溶液反應, 來形成奈米級的中孔洞無機奈米粒子。在本發明中,該石夕酸鹽 可為矽酸鈉(水玻璃)、矽酸鉀、矽酸鈣、或矽酸鎂。此外’該含 後段共聚物界面活性劑之溶液係在pH值為4〜6的環境下^該 石夕酸鹽水溶液反應;該含長鏈型界面活性劑之溶液係在pH值為 6〜8的環境下與該賴鹽水溶液反應;而同時含嵌段共聚物界面 活性劑及長鏈型界面活性劑之溶液係可在pH值為4〜8的環境下 與該石夕酸鹽水溶液反應。本發明對於調控pH值的方法並益限 疋,可為習知之任何方式,例如利用添加有機/無機酸驗來調控 pH值。 ,:有效控制所形成之奈米級無機奈錄子具有中孔洞結 構’本發明係進一步調控該砂酸納溶與該界面活性劑之比重。 -般來說,該料麟與該界面難劑之比錄佳係控制於 10:1至^0之間’可得較均句之奈米級中孔洞無機奈米粒子。、 =本發明,在形成該氧切㈣後,可對該氧 2改 除該界面活性劑,形成—孔洞尺寸小於術m之夺 奈米粒子。依據本發明之較佳實施例,移除該界 = ㈣該氧切膠體崎—料製程以移除該 界面活性劑。該锻燒製程可例如為利用-高溫爐管,在 :〜峨下對該氧化彻進行锻燒,去除有機物(界面; 性劑)’得到奈米級中孔洞無機奈米粒子。 利用:=月之#實施例’在形成該氧化石夕膠體後,亦可 二==氧化卿在乙醇存在下進行取代反應,以移 除泫界面活性劑。該取代反應包含以下步驟: 將氧化石夕孔洞材料之膠體溶液以減過滤法,儘可能移除 0424-A21092-TWF(N2):P02940015;Dhoelip 1310321 產物的水分後,倒入圓底瓶内,加入適量的乙醇,乙醇添加量 為氧化矽孔洞材料固體量之20〜50倍,待混合均勻後在加入欲 修飾的石夕烧於圓底瓶中,石夕烧量與含界面活性劑氧之化石夕孔洞 材的莫耳比係為10:1〜5:1。加熱迴流反應12小時後,過濾、烘 乾,即得到矽烷修飾之氧化矽孔洞材料。 在本發明中,可以使用具有可反應官能基(例如:醇基、胺 基、硫醇基、酸基、酯基、醯胺基或其他可進行聚合反應之官 能基)之矽烷來進行取代反應,以同時導入可反應官能基於該奈 米級中孔洞無機奈米粒子中,如化學式(I)所示:between. It is worth noting that the type of organic solvent used in the cosolvent varies with the surfactant used. According to a preferred embodiment of the present invention, if a block copolymer surfactant is used, the block copolymer surfactant is required to be bathed in a cosolvent composed of water and a lipophilic hydrocarbon to form the inclusion. a solution of a surfactant; if a long-chain copolymer surfactant is used, the proud copolymer co-surfactant is dissolved in a co-agent composed of water and a hydrophilic carbon 1 oxygen compound to form the a solution containing a surfactant; in addition, if a block copolymer surfactant and a long-chain surfactant are used at the same time, water and an organic solvent (lipophilic hydrocarbon, hydrophilic carbon oxyhydroxide, or The solution containing the surfactant is formed in the cosolvent composed of the mixed). One of the main features of the present invention is that the ratio of the organic solvent to the ratio of the particle diameter of the organic solvent in the cosolvent can be adjusted according to the ratio of the organic solvent in the cosolvent (4) if the organic solvent is co-solubilized. The higher the proportion, the larger the particle size of the inorganic m-hole in the formed nano-hole. Conversely, if the organic co-solvent: the lower the proportion, the smaller the particle size of the inorganic nanoparticle in the formed nano-particles. In the present invention, the lipophilic hydrocarbon may be, for example, toluene, dimethylbenzene, or a liquid alkane. And the substance may be, for example, ethanol, isopropanol, propanol, or acetone. Atomic Oxidation Another major feature of the present invention is the use of a sulphate as a major precursor of nanoporous nanoparticles, which can significantly reduce costs and is therefore more suitable for large quantities: production, meeting the needs of the industry. In the prior art, the use of Shi Xi: Inorganic na[beta] can only be made to the micro (four) size, and is true (four) 0424-A21092-TWF (N2); P〇294〇〇15; ph〇6|.p 10 8 1310321 The invention forms a nano-scale mesoporous by reacting a solution containing the surfactant with an aqueous solution of a solution of a solution in a specific pH range by a specific combination of a surfactant and an organic solvent. Inorganic nanoparticles. In the present invention, the oxalate salt may be sodium citrate (water glass), potassium citrate, calcium citrate or magnesium citrate. In addition, the solution containing the post-copolymer surfactant is reacted in an aqueous solution having a pH of 4 to 6; the solution containing the long-chain surfactant is at a pH of 6 to 8. The solution is reacted with the aqueous solution of the lysate; and the solution containing the block copolymer surfactant and the long-chain surfactant can be reacted with the aqueous solution of the oxalate in an environment of pH 4 to 8. The method of the present invention for regulating pH is not limited, and may be any means known in the art, for example, by adding an organic/inorganic acid test to adjust the pH. :: Effectively controlling the formed nano-scale inorganic na[iota] has a mesoporous structure. The present invention further regulates the specific gravity of the sodium silicate and the surfactant. In general, the ratio of the material to the interfacial agent is controlled between 10:1 and ^0, which results in a nano-particle inorganic nanoparticle in a more uniform sentence. In the present invention, after the oxygen chopping (four) is formed, the surfactant can be removed from the oxygen 2 to form a nanoparticle having a pore size smaller than that of the m. In accordance with a preferred embodiment of the present invention, the boundary is removed = (d) the oxygen cleavage process to remove the surfactant. The calcination process can be carried out, for example, by using a high-temperature furnace tube, and subjecting the oxidation to a calcination at a temperature of ~~峨 to remove organic matter (interfacial agent) to obtain nano-sized mesopores inorganic nanoparticles. After the formation of the oxidized olivine colloid, the substitution reaction may be carried out in the presence of ethanol to remove the ruthenium surfactant. The substitution reaction comprises the following steps: removing the colloidal solution of the oxidized stone and the pore material by the filtration method, removing as much as possible the moisture of the product 0424-A21092-TWF(N2): P02940015; Dhoelip 1310321, and pouring it into the round bottom bottle. Add an appropriate amount of ethanol, the amount of ethanol added is 20~50 times the solid amount of the cerium oxide hole material, and after being uniformly mixed, it is added to the round bottom bottle to be modified, and the amount of the surfactant is combined with the oxygen containing the surfactant. The Mohr ratio of the fossil-shaped cave hole material is 10:1~5:1. After heating and refluxing for 12 hours, it was filtered and dried to obtain a decane-modified cerium oxide hole material. In the present invention, a substitution reaction can be carried out using a decane having a reactive functional group (for example, an alcohol group, an amine group, a thiol group, an acid group, an ester group, a guanamine group, or another functional group capable of undergoing polymerization). To simultaneously introduce a reactive functional group based on the inorganic nanoparticle in the nanometer-sized pore, as shown in the chemical formula (I):

界面活性劑Surfactant

該矽烷係為矽氧烷或含_素之矽烷,且可進一步包含醇 基、胺基或其他可進行聚合反應之官能基,以利於與高分子材 料鏈結,進行化學混摻。 本發明更進一步揭露一種高分子奈米複合材料,係由將本 發明所得之奈米中孔洞無機奈米粒子(重量百分比為 0.1~50wt%)與一高分子(重量百分比為50~99.9wt%)進行混 摻而得,其中該奈米中孔洞無機奈米粒子係為經下列步驟後所 得之產物。本發明所述之奈米中孔洞無機奈米粒子可物理混摻 於任何高分子材料中,不論是極性高分子或是非極性高分子, 0424-A21092-TWF(N2);P02940015;phoe!ip 12 1310321 分散於該高分子中,可避免習知技術不易與非極性高 2 μ此摻的問題。此外,可將本發明所述表面改質(具有醇 或其他可進行聚合反應之官能基)之奈米中孔洞無機奈 :粒子與具有反應性官能基(例如:丙烯酸基、丙稀醯基、環氧 土、^是異氰酸鹽基)之高分子材料進行化學混摻,得到高 性之咼分子奈米複合材料。 …在製備本發明所述之高分子奈米複合材料時,可使用單一 種向分子㈣與奈米中孔洞無機奈録子進行混摻,亦可同時 利用兩種或兩種以上高分子材料與奈米中孔洞無機奈米粒子進 奈米中孔洞無機奈米粒子的製備 以下特舉實施例1〜8,用以說明本發明所述之奈米中孔洞 無機奈米粒子及其製備方法,以期使本發明能更為清楚: 實施例1 囊胞形中孔洞氧化矽奈米粒子之合成 ® 首先,將1_5克PE^CEOuPOsoEOi3,由磐亞)作為界面活性 劑,/谷於5 0毫升之水及曱苯所組成之共溶劑中(水與甲苯之重 量比1:4),並在40°C下攪拌至完全溶解,以形成一含界面活性 劑之溶劑。 接著,將20克矽酸鈉(s〇dium silicate)以100克水溶於另一 • 反應瓶中,此時PH值為1〇〜11。接著,利用H2S04調整溶液之 pH值至5.0,並靜置10〜20分鐘。 接著,將該含界面活性劑之溶劑與該矽酸鈉水溶液混合。 在100°C下反應24小時後,得到一含有界面活性劑的氧化矽膠 0424-A21092-TWF(N2);P02940015;phoelip 13 1310321 體接I收木產物,並將產物經水洗、過滤後,即得到奈米 囊胞財孔洞氧切奈米粒子。請參照第2圖,係為該囊胞形 中孔/同氧化⑪奈米粒子之穿透式電子顯微鏡影像圖,由該 圖中可知,該奈米囊胞形中孔洞氧化料米粒子之粒徑大小約 30〜100nm,且顆粒中的孔洞也清析可見。 接著,對該囊胞形中孔洞氧化矽奈米粒子進行氮氣吸附_ 脫附測式,得到其氮氣吸附-脫附曲線,請參照第3圖。由圖中 可以發現,在低的相對壓力(P/Pg)區域就存在有吸附量,這是來 自於中孔洞孔壁的單層吸附,隨著相對壓力增加吸附量逐漸上 升,在相對壓力(P/PG)= 0.4〜0.5時有一陡峭的氮氣吸附量(part I),這是由中孔洞材料之毛細凝結現象造成,由毛細凝結現象的 陡峭私度可判斷出樣品孔洞大小的一致性,愈陡ώ肖代表孔洞性 尺寸一致愈高,再經過BJH方法處理脫附曲線可得到孔洞大小 分佈圖。另外,在相對壓力(Ρ/Ρ〇)0.9處,也產生高量毛細凝結 現象(part II),推測係來自奈米顆粒間之相堆積所產生之外孔洞 (textural porosity)所造成。 實施例2 大孔徑奈米囊胞形中孔洞氧化梦奈米粒子之合成 首先取1_4克的P123 (E〇2〇P〇7〇E〇2〇,講自於BASF)溶於50 克的水中,再加入4克甲苯(t〇luene),並置於4〇〇c的恆溫水槽 中持續擾摔6小時’形成一含界面活性劑之溶劑。 接著,取5.5克的石夕酸鈉(s〇dium silicate)溶於1〇〇克的水 中,並將該矽酸鈉水溶液之調至ρΗ=5.0±0·05。接著,將含該界 面活性劑之溶劑(微乳液)倒入該矽酸鈉水溶液,待反應約丨〇分 鐘後,將該矽酸鈉水溶液及含界面活性劑之溶劑一起倒入反應 0424~A21092~TWF(N2);P029400l5;phoelip 14The decane is a decane or a decane-containing decane, and may further contain an alcohol group, an amine group or other functional group capable of undergoing polymerization to facilitate chemical bonding with a polymer material. The invention further discloses a polymer nano composite material, which is obtained by using the nanometer pore inorganic nano particles (0.1% by weight to 50% by weight) and a polymer (weight percentage of 50-99.9 wt%) obtained by the invention. It is obtained by mixing, wherein the inorganic nanoparticle in the nanometer is a product obtained by the following steps. The nanometer pore inorganic nanoparticle of the invention can be physically mixed into any polymer material, whether it is a polar polymer or a non-polar polymer, 0424-A21092-TWF(N2); P02940015;phoe!ip 12 1310321 Disperse in the polymer to avoid the problem that the prior art is difficult to mix with the non-polarity of 2 μ. In addition, the surface of the present invention may be modified (having an alcohol or other functional group capable of undergoing polymerization) in the nano-porous inorganic: particles and reactive functional groups (eg, acrylic acid, acrylonitrile, The polymer material of epoxy earth and isocyanate group is chemically mixed to obtain a high molecular weight nano-composite material. In the preparation of the polymer nanocomposite of the present invention, a single type of molecule (4) may be mixed with the inorganic melon in the nanometer hole, or two or more kinds of polymer materials may be simultaneously used. Preparation of inorganic nanoparticles in nanometer pores into nanometer pores Inorganic nanoparticles are described below. The following examples 1 to 8 illustrate the nanometer pore inorganic nanoparticles of the present invention and the preparation method thereof. The invention can be more clearly understood: Example 1 Synthesis of capsular cell-shaped mesoporous oxidized strontium nanoparticles. First, 1_5 g of PE^CEOuPOsoEOi3, from yttrium as a surfactant, / gluten in 50 ml of water And in a cosolvent composed of terpene (weight ratio of water to toluene 1:4), and stirred at 40 ° C until completely dissolved to form a solvent containing a surfactant. Next, 20 g of sodium silicate was dissolved in another • reaction bottle with 100 g of water at a pH of 1 〇 11 . Next, the pH of the solution was adjusted to 5.0 with H2SO4 and allowed to stand for 10 to 20 minutes. Next, the surfactant-containing solvent is mixed with the sodium citrate aqueous solution. After reacting at 100 ° C for 24 hours, a cerium oxide rubber 0424-A21092-TWF (N2) containing a surfactant was obtained; P02940015; phoelip 13 1310321 was ligated to the wood product, and the product was washed with water and filtered. Obtained the nanocapsules of the nanocapsules. Please refer to Fig. 2, which is a transmission electron microscope image of the cystic mesoporous/isolated 11 nm particles. It can be seen from the figure that the nanocapsules are granulated by the pores of the nanoparticles. The diameter is about 30 to 100 nm, and the pores in the particles are also clearly visible. Next, a nitrogen adsorption-desorption test was performed on the capsular cell-shaped mesoporous cerium oxide nanoparticles to obtain a nitrogen adsorption-desorption curve. Please refer to FIG. It can be found from the figure that there is an adsorption amount in the low relative pressure (P/Pg) region, which is a single-layer adsorption from the pore wall of the mesopores. As the relative pressure increases, the adsorption amount gradually rises at the relative pressure ( P/PG) = 0.4~0.5, there is a steep nitrogen adsorption amount (part I), which is caused by the capillary condensation phenomenon of the mesoporous material. The steepness of the capillary condensation phenomenon can determine the consistency of the sample pore size. The steeper the 代表 Xiao represents the uniformity of the pore size, and the pore size distribution map can be obtained by the BJH method. In addition, at a relative pressure (Ρ/Ρ〇) of 0.9, a high amount of capillary condensation (part II) was also produced, which was presumed to be caused by the textural porosity generated by the phase deposition between the nanoparticles. Example 2 Synthesis of large-aperture nanocapsule-shaped mesoporous oxidized monatin particles First, 1 to 4 g of P123 (E〇2〇P〇7〇E〇2〇, from BASF) was dissolved in 50 g of water. Then, 4 g of toluene (t〇luene) was added and placed in a constant temperature water bath of 4 ° C for 6 hours to form a solvent containing a surfactant. Next, 5.5 g of sodium silicate was dissolved in 1 gram of water, and the aqueous sodium citrate solution was adjusted to ρ Η = 5.0 ± 0.05. Next, the solvent (microemulsion) containing the surfactant is poured into the sodium citrate aqueous solution, and after about a minute of reaction, the sodium citrate aqueous solution and the solvent containing the surfactant are poured together into the reaction 0424~A21092. ~TWF(N2);P029400l5;phoelip 14

1310321 ,中’在U)(TC下加熱24小時。接著,將產物經水洗、過渡後, ^寻到含界面活性劑之奈轉胞财孔洞氧切奈米粒子。接 者’將該含界面活性劑之奈米囊胞形中孔洞氧化矽奈米粒子置 於南溫爐中’以580 π炮燒後,即可將界面活性劑pi23移除 掉,得到囊胞狀中孔洞氧化矽材料。 請參照第4圖’係為該囊胞狀中孔洞氧化石夕材料之穿透式 電子顯微鏡影像圖,由該TEM圖中可知,經過此快速的合成過 程和化學組成’能成功地合成出粒徑分布在5〇至2〇〇nm之間的 中孔洞材料。此外’該囊胞形中孔洞氧切材料之孔洞大小約 為30〜100nm,這使得這些泡泡狀之中孔洞氧化矽材料的通透度 和分散性大幅提升,有利於之後高分子材料的填入。 接著,對該囊胞狀中孔洞氧化矽材料進行氮氣吸附_脫附測 式,得到其氮氣吸附-脫附曲線,請參照第5圖。由圖中可以發 現,在低的相對壓力(p/pQ)之區域就存在有吸附量,這是來自孔 壁的單或多層吸附,隨著相對壓力(P/P())的增加,吸附量逐漸地 上升,而大約在相對壓力(P/P〇)0_95附近出現一陡峭的氮氣吸附 行為,這是由於泡泡狀的氧化矽孔洞材料產生了毛細凝結現 象。另外,存在一遲滯現象,代表ceH與wind〇w部分的孔徑不 同,利用BJH方法處理吸附/脫附曲線可得到產物的孔徑分 布’孔洞/洞口比〇11/奶!!(1籍)約在24.〇11111/17.〇11111〜35.0· /25.0 nm之間;另外’利用比表面積測定(bet sUrface area), 得知該囊胞狀中孔洞氧化石夕材料表面積大約在250〜350 m2/g。 這些結果都證明了藉由嵌段共聚物界面活性劑(pl23)的加入,利 用水包油相的微乳液(emulsion )方式可以合成出具有大孔洞(即 所謂的囊胞結構)、高表面積(250 m2/g)的氧化石夕孔洞材料。 0424-A21092-TWF(N2);P02940015;phoelip 1310321 實施例3 蜂巢型中孔洞氧化矽球的合成 首先’取1.155克十八烷基三 tn'mptv. 1 —甲基乳化録(octadecyl methylamm(3nium 细⑽和、〇tm 7S古土站:7 t π 7 两界面活性劑,溶於 5克去離子水及8〇克乙醇 糌拌妁句Α 力入〇·75克醋酸,於40°C下 搜择句勻,传到-含界面活性劑之溶液。 接著,取0.88克矽酸鈉,溶於2〇〇 入U克氫氧仙,並在歡切子水巾,之後加 Ή nu 乂古乂么入 下攪拌均勻,此時該矽酸鈉水溶 液之ΡΗ值係介於η〜12 ^ s 間持續攪拌丨5分鐘後,倒入該含 PH值溶液於該石夕酸納水溶液中,充分攪拌均勻,此時 = = η使用稀釋的氯氧化納和醋酸調控溶液之 ^對^ ㈣會㈣娜。在軟下反應刚 型中孔、、同離心’即可得包含界面活性劑之球狀蜂巢 中孔洞氧化U粒子。最後,再以⑽。 可將界面活性劑移除。 逆仃俶麂傻即 之穿二參if 6圖,係為該球狀蜂巢财孔洞氧化石夕奈米粒子 2式電子顯微鏡影像圖。由該簡圖中可知,該中孔洞氧 洞近球體,且其内部具有呈蜂巢狀之複數個孔 八千均粒徑經計算後係為83.〇〇±11 84nm。 實施例4〜6 以如實施例3之相间古斗., ΟΛ . ]方式進仃,但共溶劑中乙醇的用量由 8〇克分別改為90、1〇〇、《 11π 趣 由 及U〇g。實施例4〜6所得之令孔洞蓋 化石夕奈米粒子之穿透式電子能Τ孔騎 9圖,其平均粒徑嶋圖分別顯示於第7、8及 11516±n^ 仏,,工6十异後係分別為為H3.28士 14.62nm、1310321, medium 'in U' (heated at TC for 24 hours. Then, after washing the product with water, transition, ^ find the oxygen-cut nanoparticle containing the surfactant. The nanocapsules of the active agent are placed in a nano-temperature furnace. After being fired at 580 π, the surfactant pi23 can be removed to obtain a cystic mesoporous cerium oxide material. Please refer to Fig. 4 for the transmission electron microscopy image of the oxidized stone oxide material in the cystic medium. It can be seen from the TEM image that the rapid synthesis process and chemical composition can be successfully synthesized. a mesoporous material having a diameter of between 5 Å and 2 〇〇 nm. In addition, the pore size of the oxygen-cut material in the sac-shaped medium-hole is about 30 to 100 nm, which makes these bubble-like pores oxidize the ruthenium material. The permeability and dispersibility are greatly improved, which is beneficial to the filling of the polymer material. Next, the nitrogen-adsorption-desorption curve of the smear-shaped mesoporous cerium oxide material is obtained, and the nitrogen adsorption-desorption curve is obtained. Refer to Figure 5. It can be found from the figure that The relative pressure (p/pQ) region has an adsorption amount, which is single or multi-layer adsorption from the pore wall. As the relative pressure (P/P()) increases, the adsorption amount gradually increases, and approximately A steep nitrogen adsorption behavior occurs near the relative pressure (P/P〇) 0_95, which is due to the capillary condensation phenomenon of the bubble-like cerium oxide pore material. In addition, there is a hysteresis phenomenon, which represents the ceH and wind〇w parts. The pore size is different by using the BJH method to treat the adsorption/desorption curve. The pore size distribution of the product 'hole/hole ratio 〇11/milk!!(1) is about 24.11111/17.〇11111~35.0· /25.0 nm In addition, using the specific surface area measurement (bet sUrface area), it is known that the surface area of the vesicular medium-sized pore oxide oxide material is about 250 to 350 m 2 /g. These results all prove the interfacial activity by the block copolymer. The addition of the agent (pl23), using an oil-in-water emulsion method, can synthesize an oxide-hole material with a large pore (so-called cyst structure) and a high surface area (250 m2/g). -A21092-TWF(N2);P02940015;phoelip 1310321 Example 3 Synthesis of honeycomb-type mesoporous oxidized ruthenium ball First, take 1.155 g of octadecyl tri-tn'mptv. 1-methyl emulsification record (octadecyl methylamm (3nium fine (10) and 〇tm 7S ancient soil station: 7 t π 7 two surfactants, soluble in 5 grams of deionized water and 8 grams of ethanol, mixed with 妁 Α Α 〇 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 Next, take 0.88 g of sodium citrate, dissolve it into 2 gram of U hydroxy hydroxy sin, and add the Ή nu 水 水 之后 之后 之后 之后 之后 , , , , , , , , , , , , After the enthalpy of the aqueous solution is between η~12 ^ s and stirring for 5 minutes, pour the pH-containing solution into the aqueous solution of the aqueous solution, and stir well. At this time, == η is diluted with chlorine. The sodium and acetic acid control solution ^ ^ (four) will (four) Na. The pores in the spherical honeycomb containing the surfactant can be obtained by reacting the pores in the rigid form with the same centrifugal force. Finally, again (10). The surfactant can be removed. The reverse 仃俶麂 silly is wearing the two-in-one if 6 figure, which is the spherical electron honeycomb image of the oxidized stone holly granules. It can be seen from the diagram that the hole in the hole is close to the sphere, and the inside has a honeycomb-shaped plurality of pores. The average particle size of the eight thousand is calculated to be 83. 〇〇 ± 11 84 nm. Examples 4 to 6 were introduced in the same manner as in Example 3, but the amount of ethanol in the co-solvent was changed from 8 gram to 90, 1 〇〇, "11π Fun and U 分别g. The transmissive electron energy boring riding 9 of the hole-covering fossil granules obtained in Examples 4 to 6 is shown in the seventh, eighth and 11516±n^ 仏, respectively, The ten different post-systems are respectively H3.28±14.62nm,

n5.16±l3.〇5nm、及 141 17±15 12_。 0424-A21092-TWF(N2);P02940015;DhoeliD 16 1310321 經由實施例4〜6可知,所合成之中孔洞氧化矽奈米粒子之 粒徑”、,會隨著乙醇溶劑之添加量增加而增大,所以本發明 可以藉由調整共溶劑中有機溶劑(乙醇)的含量,來達到調控中孔 洞氧化矽奈米粒子之粒徑大小的目的。此外,由較大之粒徑大 小⑽〜180麵)所形成之基材(厚度為05〜3()_)可以清楚地發 現經由光線的照射之後,原本應該呈現白色的氧切,卻產生 了淡藍顏色。另外’由較小粒徑大小(〈⑽nm)所形成之基材, 其呈現之色澤為透明無色,巾此現象可由布纟格方程式來解 釋,由於所合成之氧切球粒徑較小,造成被反射光之波長變 小,促使可見光皆可通過此光晶結構,而呈現透明無色。 比較實施例1 以如實施例3之相同方式進行,但不添加任何乙醇。所得 之產物係為極微小之氧化矽中孔顆粒(fine panicle)。 實施例7 殼層具有複數孔洞之囊胞型奈米中孔洞無機奈米粒子的合成 百先,取0.75克十六烧基三甲基漠化錢(ctmab)、ο· 克十二烷硫酸鈉(SDS)溶於25克水中。接著,將〇35克pi23 (E〇2〇P〇7〇E〇2〇,購自於BASF)溶於25克水中。接著,混合上述 兩種溶液,得到-混合型界面活性劑溶液。在此實施^,該 界面活性劑溶液亦可使用共溶溶解之。 接著’取2.75克石夕酸鈉,溶於15〇克去離子水中,並用稀 釋的醋酸調整溶液的pH值,當溶液之pH值至5時,加人上述 混合型界面活性劑溶液,並在4〇QC下攪拌均勻。在4〇£&gt;C下反 應5小時後,對所得溶液進行離心、,即可得包含界面活性劑之 0424-A21092-TWF(N2);P02940015;phoelip 1310321 中孔洞氧化矽奈米粒子。 &quot;月參照第1G圖’係為該中孔洞氧化發奈米粒子之穿透式電 子顯微鏡(TEM)影像圖。由該而圖中,可清晰地看到利用中 f生界面活性劑(P123)、陰離子界面活性劑(㈣)、陽離子界面活 性劑(CTMAB)三種成分能生成囊胞狀且殼層具有複數孔洞的中 孔洞氧化石夕材料。該中孔洞氧化石夕材料的粒徑分㈣細〜3〇〇 ’這合乎熱力學的分佈行為。而在第1()圖中右上角的高倍率 插圖中’更可清楚地發現該氧化⑪囊胞的外殼具有明顯的介尺 度(mesoscopic scale)結構(即囊胞之殼層具有複數孔洞)。 此種具介尺度結構殼之氧化矽材料,呈現出不相同的吸附 行為,此樣品具有兩段式的A吸附脫附曲線,請參照第u圖。 第I段是典型的介尺度之孔洞吸附,孔洞大小為6 〇〜7 〇細之 間,而在相對壓力(P/P0)0.9時,便有第n段的吸附,異於由奈 米尺度顆粒所堆積形成的外孔洞,此產物的脫附曲線直到相對 壓力(P/P〇)〜0.4左右才與吸附曲線重疊,這種分叉狀的吸、脫附 曲線更印證了氧化矽囊胞之般層具有介尺度結構。此種高通性 之囊胞型的氧化石夕材料更易讓高分子進入其大尺度的囊胞内, 且因殼層厚度只有近20 nm厚,使得此囊胞型氧化矽材料在透 明無機添加劑的應用上更值得期待。 實施例8 具有氨基修飾之氧化石夕材料 取 1.4 克的 P123 (E02〇P〇7()E02(),購自於 BASF)溶於 50 克 的水中,再加入4克甲苯(toluene),並置於40〇C的恒溫水槽中 持續攪拌6小時,形成一含界面活性劑之溶劑。 接著’取5.5克的石夕酸納(sodium silicate)溶於1〇〇克的水 0424-A21092-TWF(N2);P02940015;phoelip 18 1310321 中,並將該矽酸鈉水溶液之調至pH=5.0±0.05。接著,將含該界 面活性劑之溶劑(微乳液)倒入該矽酸鈉水溶液,待反應約1 〇分 鐘後,將該矽酸鈉水溶液及含界面活性劑之溶劑一起倒入反應 瓶中,在100°C下加熱24小時,得到含界面活性劑之氧化矽中 孔洞膠體。接著,過濾並烘乾該含界面活性劑之氧化矽中孔洞 膠體,得到含界面活性劑之氧化矽中孔洞材料。 接著,取1克含界面活性劑之氧化矽中孔洞材料置於反應 瓶中 , 並加入 30 克 乙醇及 N-[3-(trimethoxysilyl)propyl]ethylenediamine(AEAPTMS)於該反 應瓶。其中,N-[3-(trimethoxysilyl)propyl]ethylenediamine 與含 界面活性劑之氧化矽中孔洞材料之莫耳比為5:1。加熱迴流反應 12小時後,即得到具有氨基修飾之氧化矽中孔洞材料。 高分子奈米複合材料的製備 實施例9 將0.15克實施例8所得之具有氨基修飾之氧化矽中孔洞材 料溶於10毫升曱苯(toluene)並攪拌2小時,得到一透明澄清溶 液A。接著,將5克含有環氡基之f_mC〇c溶於4〇毫升之曱苯 (toluene)中,攪拌1小時後’得到溶液b。接著,將透明澄清溶 液A與包含f-mCOC之溶液B混合,進行混摻反應。此時,由 於氧化矽材料上具有氨基’可對f-mC〇C上的環氧基進行開環 反應,而使該氧化矽材料與f-mCOC鍵結。 0424-A21092-TWF(N2) ;P02940015;phoelip 19 1310321N5.16±l3.〇5nm, and 141 17±15 12_. 0424-A21092-TWF(N2); P02940015; DhoeliD 16 1310321 It can be seen from Examples 4 to 6 that the particle size of the pore-shaped cerium oxide nanoparticles in the synthesis is increased as the amount of the ethanol solvent is increased. Therefore, the present invention can achieve the purpose of regulating the particle size of the cerium oxide nanoparticles in the middle hole by adjusting the content of the organic solvent (ethanol) in the cosolvent. In addition, the larger particle size (10) to 180 faces) The formed substrate (thickness 05~3()_) clearly shows that after irradiation with light, the oxygen cut should originally appear white, but a pale blue color is produced. In addition, 'by smaller particle size (< The substrate formed by (10) nm) is transparent and colorless. The phenomenon of the towel can be explained by the Bragg equation. Due to the smaller particle size of the oxygen oxidized sphere, the wavelength of the reflected light becomes smaller, which promotes visible light. Both of them can be transparent and colorless by this crystal structure. Comparative Example 1 was carried out in the same manner as in Example 3, but without adding any ethanol. The obtained product was a very fine cerium oxide mesoporous particle (fine pan Example 7 The synthesis of inorganic nanoparticles in the vesicle type nanopore with a plurality of pores in the shell layer is taken first, and 0.75 g of hexadecyltrimethylcarbamate (ctmab) and ο·g twelve are taken. Sodium alkane sulfate (SDS) was dissolved in 25 g of water. Next, 35 g of pi23 (E〇2〇P〇7〇E〇2〇, purchased from BASF) was dissolved in 25 g of water. Solution, to obtain a mixed-type surfactant solution. In this case, the surfactant solution can also be dissolved by co-dissolution. Then 'take 2.75 g of sodium sulphate, dissolve in 15 g of deionized water, and dilute with The acetic acid adjusts the pH of the solution. When the pH of the solution reaches 5, the above mixed surfactant solution is added and stirred uniformly at 4 〇 Q C. After reacting for 5 hours at 4 & C &gt; C, The obtained solution is centrifuged to obtain a surfactant containing 0424-A21092-TWF (N2); P02940015; phoelip 1310321 in the pores of the yttrium oxide nanoparticles. &quot;Monthly reference 1G map' is the middle hole oxidation A transmission electron microscope (TEM) image of a nanoparticle. From this, the figure can be clearly seen. The medium-cavity oxidized stone cerium material can be formed into a capsular cell shape with a plurality of pores in the shell layer, using a medium interfacial surfactant (P123), an anionic surfactant ((iv)), and a cationic surfactant (CTMAB). The particle size of the oxidized stone material is (4) fine ~ 3 〇〇 ' which is in accordance with the thermodynamic distribution behavior. In the high-magnification illustration in the upper right corner of the 1 () figure, the outer shell of the oxidized 11 vesicle is more clearly found. It has a distinct mesoscopic scale structure (ie, the shell of the cystic cell has a plurality of pores). The cerium oxide material with the mesoscale structure shell exhibits different adsorption behaviors. This sample has a two-stage A adsorption desorption curve, please refer to the u-graph. The first stage is the pore size of the typical mesoscale, the pore size is between 6 〇 and 7 〇, and at the relative pressure (P/P0) 0.9, there is the adsorption of the nth stage, which is different from the nano-sized particles. The outer pores formed by the accumulation, the desorption curve of the product does not overlap with the adsorption curve until the relative pressure (P/P〇)~0.4, and the bifurcation absorption and desorption curves confirm the sputum sac cells. The layer has a mesoscale structure. This high-pass vesicle-type oxidized oxide material is more likely to allow the polymer to enter its large-scale cystic cells, and because the thickness of the shell layer is only about 20 nm thick, the cytosolic cerium oxide material is in the transparent inorganic additive. The application is more worth looking forward to. Example 8 Amine-modified oxidized stone material 1.4 g of P123 (E02〇P〇7() E02(), purchased from BASF) was dissolved in 50 g of water, and then 4 g of toluene was added and placed. Stirring was continued for 6 hours in a constant temperature water bath at 40 ° C to form a solvent containing a surfactant. Next, '5.5 g of sodium silicate was dissolved in 1 g of water 0424-A21092-TWF (N2); P02940015; phoelip 18 1310321, and the sodium citrate aqueous solution was adjusted to pH= 5.0 ± 0.05. Next, the solvent (microemulsion) containing the surfactant is poured into the sodium citrate aqueous solution, and after reacting for about 1 minute, the sodium citrate aqueous solution and the surfactant-containing solvent are poured together into the reaction flask. Heating at 100 ° C for 24 hours gave a pore colloid in the cerium oxide containing a surfactant. Next, the colloidal colloid in the cerium oxide containing the surfactant is filtered and dried to obtain a pore material in the cerium oxide containing the surfactant. Next, 1 g of the cerium oxide material containing the surfactant was placed in a reaction flask, and 30 g of ethanol and N-[3-(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) were added to the reaction flask. Among them, the molar ratio of N-[3-(trimethoxysilyl)propyl]ethylenediamine to the pore material of the cerium oxide containing the surfactant is 5:1. After heating to reflux for 12 hours, a pore material having an amino group modified cerium oxide was obtained. Preparation of polymer nanocomposite Example 9 0.15 g of the amino-modified cerium oxide hole material obtained in Example 8 was dissolved in 10 ml of toluene and stirred for 2 hours to obtain a clear clear solution A. Next, 5 g of f_mC〇c containing a cyclodecyl group was dissolved in 4 ml of toluene, and after stirring for 1 hour, a solution b was obtained. Next, the clear and clear solution A was mixed with the solution B containing f-mCOC to carry out a mixing reaction. At this time, the ruthenium oxide material is bonded to the f-mCOC by having an amino group at the ruthenium oxide material to ring-open the epoxy group on the f-mC〇C. 0424-A21092-TWF(N2) ;P02940015;phoelip 19 1310321

f-mCOC a,b,c,d:選自1〜100之間的整數、n:選自1〜5000之間的整數 在持續反應5小時後,得到高分子奈米複合材料Α。利用 熱重分析儀(TGA)分析高分子奈米複合材料A (加熱速度為每分 鐘上升20°C,從25 °C升至600 °C),測量結果請參照第12圖所 示。由圖中可知,該具有氨基修飾之氧化矽中孔洞材料摻雜量 為3wt%左右。 接著,將該高分子奈米複合材料A利用熱壓機壓成約有8 mm厚度的試片,利用TMA儀器測量該高分子奈米複合材料A 的熱膨脹係數(coefficient of thermal expansion 、CTE),其分析 條件為每分鐘10 °C升溫速度,從25 °C升至200 °C,測式結果 係顯示於表1。 表1 mCOC 之 含量(wt%) 氧化矽中 孔洞材料 之摻雜量 (wt%) Tg(°C) 熱膨脹係 數(ppm/0C) 純 mCOC 100 0 134 55 實施例9 97 3 134 44 0424-A21092-TWF(N2);P02940015;phoelip 20 1310321 由表1可知,未摻雜氧化矽中孔洞材料的mCOC其熱膨脹 係數為55ppm/°C,而含有3 %之無機材料的mCOC混合材料其 熱膨脹係數則降至44ppm/°C,從此數據可得知填加無機材料確 實可有效降低mCOC之熱膨脹係數。 實施例10 以如實施例9之相同方式,但將該具有氨基修飾之氧化矽 中孔洞材料之摻雜量由3wt%調至2.3wt%得到高分子奈米複合 材料B。接著,利用UV分析儀分別分析高分子奈米複合材料 B、與未摻雜氧化矽中孔洞材料的純mCOC的透光度,請參照 第13圖所示。可得知沒有含氣泡型中孔洞材料無機材料的 mCOC材料其透光度有大於95 %,含有2.3 %之無機材料的 mCOC混合材料其透光度約95 %。由上述比較可得知,由於本 發明所述之無機材料其具有中孔洞結構,除了可大幅降低折射 率外,亦有利於高分子材料的填入,因此在一定的摻雜量下可 不影響高分子材料的透光度。 實施例11 將0.15克實施例8所得之具有氨基修飾之氧化矽中孔洞材 料溶於10毫升曱苯(toluene)並攪拌2小時,得到一透明澄清溶 液C。接著,將5克PMMA溶於40毫升之甲苯(toluene)中,攪 拌1小時後,得到溶液D。接著,將透明澄清溶液A與包含PMMA 之溶液D混合,進行混摻反應,得到摻雜量為3wt%的PMMA 高分子奈米複合材料C。f-mCOC a, b, c, d: an integer selected from 1 to 100, n: an integer selected from 1 to 5000. After a continuous reaction for 5 hours, a polymer nanocomposite crucible is obtained. The polymer nanocomposite A was analyzed by a thermogravimetric analyzer (TGA) (the heating rate was increased by 20 ° C per minute from 25 ° C to 600 ° C), and the measurement results are shown in Fig. 12. As can be seen from the figure, the doping amount of the pore material in the amino-modified cerium oxide is about 3 wt%. Next, the polymer nanocomposite A was pressed into a test piece having a thickness of about 8 mm by a hot press, and the coefficient of thermal expansion (CTE) of the polymer nanocomposite A was measured by a TMA instrument. The analysis conditions were a heating rate of 10 ° C per minute, from 25 ° C to 200 ° C, and the results are shown in Table 1. Table 1 Content of mCOC (wt%) Doping amount of pore material in cerium oxide (wt%) Tg (°C) Thermal expansion coefficient (ppm/0C) Pure mCOC 100 0 134 55 Example 9 97 3 134 44 0424-A21092 -TWF(N2);P02940015;phoelip 20 1310321 It can be seen from Table 1 that the mCOC of the pore material in the undoped cerium oxide has a thermal expansion coefficient of 55 ppm/° C., and the thermal expansion coefficient of the mCOC mixed material containing 3% of the inorganic material is It is reduced to 44ppm/°C. From this data, it can be known that the addition of inorganic materials can effectively reduce the thermal expansion coefficient of mCOC. Example 10 In the same manner as in Example 9, but the doping amount of the pore material of the amino group-modified cerium oxide was adjusted from 3 wt% to 2.3 wt% to obtain a polymer nanocomposite B. Next, the transmittance of the pure nano-cobalt material B and the pure mCOC of the hole material in the undoped cerium oxide were respectively analyzed by a UV analyzer, as shown in Fig. 13. It can be seen that the mCOC material having no inorganic material containing a bubble-type mesoporous material has a transmittance of more than 95%, and the mCOC mixed material containing 2.3% of an inorganic material has a transmittance of about 95%. It can be seen from the above comparison that since the inorganic material of the present invention has a mesoporous structure, in addition to greatly reducing the refractive index, it is also advantageous for the filling of the polymer material, so that it does not affect the high doping amount. The transmittance of molecular materials. Example 11 0.15 g of the amino-modified cerium oxide hole material obtained in Example 8 was dissolved in 10 ml of toluene and stirred for 2 hours to obtain a clear clear solution C. Next, 5 g of PMMA was dissolved in 40 ml of toluene, and after stirring for 1 hour, a solution D was obtained. Next, the transparent clear solution A and the solution D containing PMMA were mixed and subjected to a mixing reaction to obtain a PMMA polymer nanocomposite C having a doping amount of 3 wt%.

接著,將該高分子奈米複合材料C利用熱壓機壓成約有8 mm厚度的試片,利用TMA儀器測量該高分子奈米複合材料C 0424-A21092-TWF(N2);P02940015;phoe!iD 21 1310321 的熱膨脹係數(coefficient of thermal expansion 、CTE),其分析 條件為每分鐘l〇°C升溫速度,從25°C升至200°C,測式結果係 顯示於表2。 表2 PMMA 之 含量(wt%) 氧化矽中 孔洞材料 之摻雜量 (wt%) Tg(°C) 熱膨脹係 數(ppm/0C) PMMA 100 0 110 61 實施例11 97 3 121 54 • 由表2可知,未摻雜氧化矽中孔洞材料的PMMA其熱膨脹 係數為61ppm/°C,而含有3 %之無機材料的PMMA混合材料其 熱膨脹係數則降至54ppm/°C,從此數據可得知填加無機材料確 實可有效降低PMMA之熱膨脹係數。 實施例12 以如實施例11之相同方式,但將該具有氨基修飾之氧化矽 中孔洞材料之摻雜量由3wt%調至2.5wt%得到高分子奈米複合 材料D。接著,利用UV分析儀分別分析高分子奈米複合材料 D、與未掺雜氧化矽中孔洞材料的純PMMA的透光度,請參照 第14圖所示。可得知沒有含氣泡型中孔洞材料無機材料的 PMMA材料其透光度有大於85 %,而含有2.5 %之無機材料的 PMMA混合材料其透光度約85%左右,因此於PMMA中摻雜 2.5wt%之實施例8所述之氧化矽中孔洞材料,並不會對PMMA 之透光度造成太大之影響。 綜上所述,本發明所述之奈米中孔洞無機奈米粒子的製備 0424-A21092-TWF(N2);P02940015;phoelip 22 1310321 方法,具有簡單的操作步驟, 製程。且本發明可使用極 ^用到雷射熱解法等特殊的 大量生雇。的矽酸鹽作為矽源,十分適合 ^ 發明除了可藉由界面 奈米無機材料的結構 c用來s周控 量,來㈣大半丄 面活性劑相匹配之溶劑的 ,示未無機材料的粒徑。再者,本 孔洞無機奈米粒子可盥極 κ不木肀 尸^★ 、極或非極性之高分子材料進行混摻, 于^》子奈轉合材料。由於該奈米巾孔洞錢奈米粒子之 ;金J於300nm ’可避免無機粒子在高分子材料中發生聚集現 ’且可有效降低高分子材料之熱膨脹係數及增加機械強度。 =外,由於該奈米級無機奈米粒子具有奈米尺寸之孔洞,使得 间刀子材料(或可聚合單體)能進一步填入,如此可使得孔洞内外 均混合高分子,可大幅降低無機奈米粒子對高分子材料透光度 的影響(在波長450〜90〇nm之透光率大於6〇%),亦保有原高分 子材料之可撓曲特性,非常適合用作顯示裝置之透明基板、光 學鏡片、光學塗膜、光纖、或是包裝材。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍内, 當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之 申請專利範圍所界定者為準。 0424-A21092-TWF(N2);P02940015;phoelip 23 1310321 【圖式簡單說明】 第1圖係繪示習知以微米尺寸無機粒子(particles)混摻於高 分子材料之示意圖。 - 第2圖係繪示本發明實施例1所述之囊胞形中孔洞氧化矽 • 奈米粒子的穿透式電子顯微鏡影像(TEM)圖。 第3圖係繪示本發明實施例1所述之囊胞形中孔洞氧化矽 奈米粒子其氮氣吸附與相對壓力的關係圖。 第4圖係繪示本發明實施例2所述之囊胞形中孔洞氧化矽 奈米粒子的穿透式電子顯微鏡影像(TEM)圖。 # 第5圖係繪示本發明實施例2所述之囊胞形中孔洞氧化矽 奈米粒子其氮氣吸附與相對壓力的關係圖。 第6圖係繪示本發明實施例3所述之球狀蜂巢型中孔洞氧 化矽奈米粒子的穿透式電子顯微鏡影像(TEM)圖。 第7圖係繪示本發明實施例4所述之中孔洞氧化矽奈米粒 子的穿透式電子顯微鏡影像(TEM)圖。 第8圖係繪示本發明實施例5所述之中孔洞氧化矽奈米粒 子的穿透式電子顯微鏡影像(TEM)圖。 φ 第9圖係繪示本發明實施例6所述之中孔洞氧化矽奈米粒 子的穿透式電子顯微鏡影像(TEM)圖。 第10圖係繪示本發明實施例7所述之中孔洞氧化矽奈米粒 子的穿透式電子顯微鏡影像(TEM)圖。 ' 第11圖係繪示本發明實施例7所述之中孔洞氧化矽奈米粒 子其氮氣吸附與相對壓力的關係圖。 第12圖係繪示本發明實施例9所述之高分子奈米複合材料 A其熱重分析(TGA)圖。 第13圖係繪示本發明實施例10所述之高分子奈米複合材 0424-A21092-TWF(N2);P02940015;phoelip 24 1310321 B料其透光度與波長的關係圖。 第14圖係繪示本發明實施例12所述之高分子奈米複合材 料D其透光度與波長的關係圖。 【主要元件符號說明】 無機粒子〜12 ;以及 高分子材料〜14。Next, the polymer nanocomposite C was pressed into a test piece having a thickness of about 8 mm by a hot press, and the polymer nanocomposite C 0424-A21092-TWF (N2); P02940015; phoe! was measured by a TMA instrument. The coefficient of thermal expansion (CTE) of iD 21 1310321 was analyzed at a temperature increase rate of 1 ° C per minute from 25 ° C to 200 ° C. The results are shown in Table 2. Table 2 Content of PMMA (wt%) Doping amount of pore material in cerium oxide (wt%) Tg (°C) Thermal expansion coefficient (ppm/0C) PMMA 100 0 110 61 Example 11 97 3 121 54 • From Table 2 It can be seen that the PMMA of the pore material in the undoped cerium oxide has a thermal expansion coefficient of 61 ppm/° C., and the PMMA mixed material containing 3% of the inorganic material has a thermal expansion coefficient of 54 ppm/° C. Inorganic materials can effectively reduce the thermal expansion coefficient of PMMA. Example 12 In the same manner as in Example 11, but the doping amount of the pore material of the amino group-modified cerium oxide was adjusted from 3 wt% to 2.5 wt% to obtain a polymer nanocomposite D. Next, the transmittance of the polymer nanocomposite D and the pure PMMA of the pore material in the undoped cerium oxide was separately analyzed by a UV analyzer, as shown in Fig. 14. It can be known that the PMMA material without the inorganic material containing the bubble-type mesoporous material has a transmittance of more than 85%, and the PMMA mixed material containing 2.5% of the inorganic material has a transmittance of about 85%, so that it is doped in PMMA. 2.5 wt% of the pore material in the cerium oxide described in Example 8 did not have much influence on the transmittance of PMMA. In summary, the preparation of the inorganic nanoparticle in the nano-hole of the present invention is as follows: 0424-A21092-TWF (N2); P02940015; phoelip 22 1310321 The method has a simple operation procedure and a process. Moreover, the present invention can be used in a very large number of special occupations such as laser pyrolysis. The bismuth citrate is very suitable as a bismuth source. In addition to the invention, it can be used for the s weekly control by the structure of the interface nano inorganic material, and (4) the solvent of the majority of the surfactant is matched, and the granules of the non-inorganic material are shown. path. Furthermore, the inorganic nano-particles of the pores can be blended with bungee κ, hibiscus, corpse, or polar or non-polar polymer materials, and converted into materials. Because of the nano-particles of the nano-particles, the gold J at 300 nm 'can avoid the aggregation of inorganic particles in the polymer material and can effectively reduce the thermal expansion coefficient of the polymer material and increase the mechanical strength. In addition, since the nano-sized inorganic nano-particles have pores of a nanometer size, the inter-knife material (or polymerizable monomer) can be further filled, so that the polymer can be mixed both inside and outside the pores, and the inorganic naphthalene can be greatly reduced. The effect of rice particles on the transmittance of polymer materials (transmittance of more than 6〇% at a wavelength of 450~90〇nm) also preserves the flexible properties of the original polymer material, and is very suitable for use as a transparent substrate for display devices. , optical lenses, optical coatings, optical fibers, or packaging materials. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. 0424-A21092-TWF(N2); P02940015;phoelip 23 1310321 [Simplified Schematic] Fig. 1 is a schematic view showing the conventional mixing of micron-sized inorganic particles into a high molecular material. - Fig. 2 is a transmission electron microscope image (TEM) image of the sputum-shaped mesoporous cerium oxide nanoparticles according to the first embodiment of the present invention. Fig. 3 is a graph showing the relationship between nitrogen adsorption and relative pressure of the capsular cell-shaped mesoporous cerium oxide nanoparticles according to Example 1 of the present invention. Fig. 4 is a view showing a transmission electron microscope image (TEM) of the capsular cell-shaped mesoporous cerium oxide nanoparticles according to Example 2 of the present invention. Fig. 5 is a graph showing the relationship between nitrogen adsorption and relative pressure of the smear-shaped mesoporous cerium oxide nanoparticles according to the second embodiment of the present invention. Fig. 6 is a view showing a transmission electron microscope image (TEM) of the spherical honeycomb type mesoporous oxidized cerium nanoparticles according to Example 3 of the present invention. Fig. 7 is a view showing a transmission electron microscope image (TEM) of the pore-oxidized cerium nanoparticles in the fourth embodiment of the present invention. Fig. 8 is a view showing a transmission electron microscope image (TEM) of the pore-oxidized cerium nanoparticles in the fifth embodiment of the present invention. Fig. 9 is a transmission electron microscope image (TEM) image of the pore-oxidized cerium nanoparticles in the sixth embodiment of the present invention. Fig. 10 is a view showing a transmission electron microscope image (TEM) of the pore-oxidized cerium nanoparticles in the seventh embodiment of the present invention. Fig. 11 is a graph showing the relationship between nitrogen adsorption and relative pressure of the pore-oxidized cerium nanoparticles in the embodiment 7 of the present invention. Fig. 12 is a thermogravimetric analysis (TGA) chart of the polymer nanocomposite A according to Example 9 of the present invention. Figure 13 is a graph showing the relationship between the transmittance and the wavelength of the polymer nanocomposite 0424-A21092-TWF(N2); P02940015; phoelip 24 1310321B according to the tenth embodiment of the present invention. Fig. 14 is a graph showing the relationship between the transmittance and the wavelength of the polymer nanocomposite material D according to Example 12 of the present invention. [Explanation of main component symbols] Inorganic particles ~12; and Polymer materials ~14.

0424-A21092-TWF(N2);P02940015;phoelip 250424-A21092-TWF(N2); P02940015;phoelip 25

Claims (1)

‘ I310J?4丨35485號帽專利範_正本 - Γ干月⑽这轉翻I 十、申請專利範圍: u— 一 一 Ί 1.—種奈米中孔洞無機奈米粒子,其孔洞尺寸小於4〇nm, - 且粒徑小於300nm,係在pH值介於4〜8的環境下,將⑷一含 • 界面活性劑之溶液與(b)—矽酸鹽水溶液進行反應所得,其中, 該含界面活性劑之溶液係包含一界面活性劑溶解於一由水及有 機溶劑所組成之共溶劑中,而水及有機溶劑之比例係介於5〇:ι 至1:3之間。 鲁 2.如申請專利範圍第1項所述之奈米中孔洞無機奈米粒 子,其中該矽酸鹽水溶液係包含矽酸鈉溶於水中。 3.如申請專利範圍第2項所述之奈米中孔洞無機奈米粒 子其中該石夕酸納與該界面活性劑之比重係介於至1:1〇之 代反應 4·如申請專利範圍第丨項所述之奈米中孔洞無機奈米粒 子’其中該奈米中孔洞無機奈綠子係進—步與—錢進行取 5·如申請專利範圍第4項所述之奈求中孔洞無機奈米粒 子,其中該魏物包切氧烧或含㈣之石夕院。 6.如申請專利筋 項所述之奈米中孔洞無機奈米粒 醇基、胺基、硫醇基、酸基、酯基、 子’其中該矽化物係具有 或醯胺基。 7 ·如申6青專利範圍第 子,其中該界面活性劑 .項所述之奈米中孔洞無機奈米粒 係為嵌段共聚物(bl〇ck polymer)界面活 26 . 1310321 性、長鏈型界面活性、或其混合。 子 8.如申請專利範圍第1項所述之奈朱 係為經下列步驟後所得之產物: 中孔洞無機奈米粒 將-篏段共聚物界面活性劑溶於一由水及親油性碳氯化合 物所組成之共溶劑中,形成該含界面活性劑之溶液; 將該含界面活性劑之溶液與該矽酸鹽水溶液在pH值為Μ 的環境下反應,形成一氧化秒勝體;以及' I310J? 4丨35485 cap patent model _ original - Γ dry month (10) this turn over I ten, the scope of application patent: u - one Ί 1. - a nano-particle inorganic nano-particles, the hole size is less than 4 〇nm, - and a particle size of less than 300 nm, obtained by reacting (4) a solution containing a surfactant with an aqueous solution of (b)-hydrazine in an environment having a pH of 4 to 8, wherein the The surfactant solution comprises a surfactant dissolved in a cosolvent consisting of water and an organic solvent, and the ratio of water to organic solvent is between 5 〇: ι and 1:3. 2. The inorganic nanoparticle of nano-holes according to claim 1, wherein the aqueous solution of citrate comprises sodium citrate dissolved in water. 3. The inorganic nanoparticle of nano-holes according to claim 2, wherein the specific gravity of the sodium sulphate and the surfactant is between 1:1 and 反应. 4, as claimed in the patent application. In the nano-holes of the nano-particles described in the above item, wherein the nano-holes in the nano-holes of the nano-particles are taken in step - and the money is taken 5 as described in the fourth paragraph of the patent application scope. Inorganic nanoparticle, wherein the Weiwu is cut into oxygen or contains (4) Shi Xiyuan. 6. The nano-particle inorganic nano-particles of the nano-particles as described in the patent application, the alcohol group, the amine group, the thiol group, the acid group, the ester group, the sub-portion, wherein the telluride has a guanamine group. 7 · The first part of the patent scope of Shen 6 Qing, wherein the inorganic nano-particles of the nano-holes described in the surfactants are block copolymers (bl〇ck polymer) interface activity 26 . 1310321 sexual, long-chain type Interface activity, or a mixture thereof. Sub. 8. The product of the naphtha series described in the first paragraph of the patent application is obtained by the following steps: the mesoporous inorganic nanoparticle-dissolving the hydrazine-type copolymer surfactant in a water-soluble and lipophilic chlorocarbon compound Forming the solution containing the surfactant in the cosolvent composed; reacting the solution containing the surfactant with the aqueous solution of the citrate in an environment of pH , to form a oxidized second swell; 對該氧化石夕膠體進行改質,形成該奈米中孔洞無機奈米粒 子0 9. 如申請專利_第8項所述之奈米中孔洞無機奈米粒 子,其中該嵌段共聚物界面活性劑包含聚氧乙烯-聚氧丙烯嵌段 共聚物。 10. 如_請專利範圍第丨項所述之奈米中孔洞無機奈米粒 子’係為經下列步驟後所得之產物: 將一長鏈型界面活性劑溶於一由水及親水性碳氫氧化人物 所組成之共溶劑中,形成該含界面活性劑之溶液; 將該含界面活性劑之溶液與該矽酸鹽水溶液在P Η值為6〜8 的環境下反應,形成一氧化矽膠體;以及 對該氧化矽膠體進行改質,形成該奈米中孔洞無機奈米粒 子0 11.如申請專利範圍第10項所述之奈米中孔洞無機奈米粒 27 ,1310321 子’其巾該長鏈型界®活性劑係為具有絲的陰離子界面 活性劑、具有C8.2w基的_子界面活性劑、或其混合。 12·如中請專利範圍第1G項所述之奈米中孔洞無機奈米粒 子’其中該共溶劑之親水性碳氫氧化合物所佔之重量比係與該 奈米中孔洞無機奈米粒子之粒徑成正比。 13·如申請專利範圍第1項所述之奈米中孔洞無機奈米粒 子,係為經下列步驟後所得之產物:The oxidized olitic colloid is modified to form the nano-particles of the nano-particles in the nano-particles. 9. The inorganic nano-particles of the nano-holes as described in claim 8 wherein the block copolymer has an interfacial activity. The agent comprises a polyoxyethylene-polyoxypropylene block copolymer. 10. The nano-particles of the nano-particles described in the scope of the patent scope is the product obtained by the following steps: Dissolving a long-chain surfactant in a water- and hydrophilic hydrocarbon Forming the solution containing the surfactant in the cosolvent composed of the oxidized character; reacting the solution containing the surfactant with the aqueous solution of the citrate in an environment with a P Η value of 6 to 8 to form a cerium oxide colloid And modifying the cerium oxide colloid to form the inorganic nanoparticle in the nanometer hole. 11. 11. The nano-particle inorganic nano-particle 27 as described in claim 10 of the patent scope, 1310321 The chain boundary® active agent is an anionic surfactant having a filament, a _sub-surfactant having a C8.2w group, or a mixture thereof. 12. The intermediate nanoporous inorganic nanoparticle described in the first aspect of the patent scope, wherein the hydrophilic carbon oxyhydroxide of the cosolvent is in a weight ratio to the inorganic nanoparticle of the nanoparticle in the nanometer. The particle size is proportional. 13. The inorganic nanoparticle of nano-holes as described in claim 1 of the patent application is the product obtained by the following steps: 將一長鏈型界面活性劑及—农in_止取&amp;田 肷奴共聚物界面活性劑溶於一 由水及有機溶劑所組成之共溶劑中 合剜甲,形成該含界面活性劑之溶 液; π將該含界面活性劑之溶液與—料鹽水溶液在PH值為4〜8 的環境下反應,形成一氧化矽膠體;以及 對該氧化石夕膠體進行改質,形成該奈米中孔洞無機奈米粒 子。 14. 一種高分子奈米複合材料,係、由將_ 〇1,心奈米 中孔洞無機奈米粒子與-5G〜99.9wt%高分子進行混摻而得,其 中該奈米中孔洞無機奈米粒子之孔洞尺寸小於4()_、粒徑小於 3〇〇酿’係在pH值介於4〜8的環境下,將⑷—含界面活性劑之 溶液與(b)-㈣鹽水溶液進行反應所得,纟中該含界面活性劑 之溶液係包含一界面活性劑溶解於一由水及有機溶劑所組成: 共溶劑中,而水及有機溶劑之比例係介於5.〇:1至U之 * 曰』,且 28 1310321 該咼分子係具有反應性官能基。 15. 如申請專利範圍第14項所述之高分子奈米複合材料, 其中該該不米中孔洞無機奈米粒子所使用之石夕酸鹽水溶液係包 含石夕酸納溶於水中。 16. 如申明專利範圍帛15項所述之高分子奈米複合材料, 其中D亥石夕酉义鈉各液與該界面活性劑之比重係介於 10:1 至 1:10 之 間。 7. 士申叫專利範圍第14項所述之高分子奈米複合材料, 其中該奈米中孔洞無機奈米粒子係進-步與-石夕院進行取代反 應。 8·如申π專利圍第丨7項所述之高分子奈米複合材料, 其中該石夕化物包含矽氧烷或含鹵素之矽烷。 19. 如中請專利範圍f 17項所叙高分子❹複合材料, 其中該耗物係具有醇基、胺基、硫醇基、酸基、S旨基、或酸 胺基。 20. 如申請專利範圍f 18項所述之高分子奈米複合材料, 其中該反應性官能基係包含丙烯酸基、丙職基、環氧基、或 是異氰酸鹽基。 I如中請專利範圍第14項職之高分子奈米複合材料, 其中該界面活性劑係為嵌段共聚物(blQek pQly_)界面活性、長 .鏈型界面活性、或其混合。 29 ,1310321 分子奈米複合材 22.如申請專利_第2】項所述之高 其中該嵌段共聚物界面 ……一衬料 聚物。 ^包…乙稀-聚氧丙婦嵌段共 如申請專利範圍第21項所述之高分子奈 其中該長鏈型界面活性劑係為具有心以基的_子界 具有“絲㈣離子界面活㈣、或其混合。,性 Μ.如申請專利範圍第14項所述之高分子 ::該高分子奈谢材料係在波長~之透二 25_ -種透明基材,係由如中請專利 分子奈米複合材料所構成 範圍第14項所述之高 其係應用於 Μ.如申請專利範圍第25項所述之透明基材, 光電材料。Dissolving a long-chain surfactant and a surfactant in the cosolvent composed of water and an organic solvent to form a surfactant-containing surfactant Solution; π reacting the solution containing the surfactant with the aqueous salt solution in a pH of 4 to 8 to form a cerium oxide colloid; and modifying the oxidized oxide colloid to form the nanoparticle Holes of inorganic nanoparticles. A high-molecular nano composite material obtained by mixing _ 〇1, a hollow nanoparticle of a hole in a heart nanocrystal with a polymer of -5G to 99.9wt%, wherein the nano-hole is inorganic The size of the pores of the rice particles is less than 4 () _, the particle size is less than 3 〇〇 brewing in the environment of pH 4 to 8, the (4) - the solution containing the surfactant and the (b) - (iv) brine solution In the reaction, the surfactant-containing solution comprises a surfactant dissolved in a water and an organic solvent: a cosolvent, and the ratio of water to the organic solvent is between 5. 〇:1 to U. * 曰 』, and 28 1310321 The ruthenium molecule has a reactive functional group. 15. The polymeric nanocomposite according to claim 14, wherein the aqueous solution of the aqueous solution of the inorganic nanoparticle in the nano-particle is contained in the aqueous solution of sodium alginate. 16. The polymeric nanocomposite according to claim 15 , wherein the ratio of the liquid of the D-Dish and the surfactant is between 10:1 and 1:10. 7. Shishen is called the polymer nanocomposite according to item 14 of the patent scope, wherein the inorganic nanoparticle in the nano-hole is subjected to a substitution reaction with the stone court. 8. The polymeric nanocomposite of claim 7, wherein the alexandry comprises a decane or a halogen-containing decane. 19. The polymer ruthenium composite material as claimed in claim 17, wherein the consumer has an alcohol group, an amine group, a thiol group, an acid group, an S group, or an acid amine group. 20. The polymeric nanocomposite of claim 18, wherein the reactive functional group comprises an acrylic group, a propyl group, an epoxy group, or an isocyanate group. I. The polymer nanocomposite of the 14th term of the patent application, wherein the surfactant is a block copolymer (blQek pQly) interface activity, a long chain type interface activity, or a mixture thereof. 29, 1310321 Molecular Nanocomposite 22. As described in the patent _ 2nd item, the block copolymer interface ... a lining polymer. ^Package... Ethylene-polyoxypropylene block is a polymer as described in claim 21, wherein the long-chain surfactant has a "silk (tetra) ion interface with a core-based _ sub-boundary Living (four), or a mixture thereof., sexual Μ. The polymer described in claim 14 of the patent scope:: The polymer-neutral material is at a wavelength of ~ 2 _ 25 kinds of transparent substrate, such as The high molecular weight of the patented molecular nanocomposite according to item 14 is applied to the transparent substrate, photoelectric material as described in claim 25. 3030
TW94135485A 2005-10-12 2005-10-12 Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate TWI310321B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94135485A TWI310321B (en) 2005-10-12 2005-10-12 Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94135485A TWI310321B (en) 2005-10-12 2005-10-12 Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate

Publications (2)

Publication Number Publication Date
TW200714352A TW200714352A (en) 2007-04-16
TWI310321B true TWI310321B (en) 2009-06-01

Family

ID=45072222

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94135485A TWI310321B (en) 2005-10-12 2005-10-12 Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate

Country Status (1)

Country Link
TW (1) TWI310321B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457374B (en) * 2012-03-29 2014-10-21 Innocom Tech Shenzhen Co Ltd Method for fabricating the mesoporous oxide hollow particle and liquid crystal device comprising the same
TWI642831B (en) * 2017-06-23 2018-12-01 保佳利實業有限公司 Water hardware device with nano silver material and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554474B (en) * 2015-01-15 2016-10-21 國立宜蘭大學 Mesoporous adsorption material manufactured by waste calcium fluoride and glass, the manufacturing method and the method for processing acetone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457374B (en) * 2012-03-29 2014-10-21 Innocom Tech Shenzhen Co Ltd Method for fabricating the mesoporous oxide hollow particle and liquid crystal device comprising the same
TWI642831B (en) * 2017-06-23 2018-12-01 保佳利實業有限公司 Water hardware device with nano silver material and manufacturing method thereof

Also Published As

Publication number Publication date
TW200714352A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
US20220002554A1 (en) Structurally colored materials with spectrally selective absorbing components and methods for making the same
Ahmed et al. Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications
Contreras‐Cáceres et al. Encapsulation and growth of gold nanoparticles in thermoresponsive microgels
Hartlen et al. Facile preparation of highly monodisperse small silica spheres (15 to> 200 nm) suitable for colloidal templating and formation of ordered arrays
US8889044B2 (en) Method for producing mesoporous silica particles
TWI713729B (en) Hollow silicon dioxide particles and manufacturing method thereof
JP4711306B2 (en) Nanocarbon particle dispersion, method for producing the same, and method for producing core-shell type nanocarbon particles
Tao et al. Synthesis of shape-controlled hollow silica nanostructures with a simple soft-templating method and their application as superhydrophobic antireflective coatings with ultralow refractive indices
US8288001B1 (en) Method of making monodisperse nanoparticles
WO2021253727A1 (en) Method for preparing low dielectric hollow silica microsphere
Kraft et al. Conditions for equilibrium solid-stabilized emulsions
KR20070058356A (en) Method for preparing a phothchromic nanoparticle and nanoparticle prepared therefrom
Dabbaghian et al. A parametric study of the synthesis of silica nanoparticles via sol-gel precipitation method
JP2009078935A (en) &#34;konpeito&#34; (pointed sugar candy ball)-like composite silica sol
Yan et al. Hydrophobic modification on the surface of SiO2 nanoparticle: wettability control
US20150274538A1 (en) Core-shell silica nanoparticles, method for manufacturing the same, method for manufacturing hollow silica nanoparticles therefrom, and hollow silica nanoparticles manufactured thereby
KR20110058768A (en) Silica nanoparticle structure and process for production of same
TWI310321B (en) Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate
KR20200023228A (en) Method for preparing microcapsule
Lee et al. Mesoporous thin films with accessible pores from surfaces
Liu et al. Preparation and characterization of SiO2@ n-octadecane capsules with controllable size and structure
Nuruzzaman et al. Core–shell interface-oriented synthesis of bowl-structured hollow silica nanospheres using self-assembled ABC triblock copolymeric micelles
Yin et al. Preparation and size control of highly monodisperse vinyl functionalized silica spheres
Yang et al. Precise preparation of highly monodisperse ZrO 2@ SiO 2 core–shell nanoparticles with adjustable refractive indices
JP2011157506A (en) Coating composition