TWI308177B - Method of culturing microorganism and apparatus thereof - Google Patents

Method of culturing microorganism and apparatus thereof Download PDF

Info

Publication number
TWI308177B
TWI308177B TW91106181A TW91106181A TWI308177B TW I308177 B TWI308177 B TW I308177B TW 91106181 A TW91106181 A TW 91106181A TW 91106181 A TW91106181 A TW 91106181A TW I308177 B TWI308177 B TW I308177B
Authority
TW
Taiwan
Prior art keywords
carbon dioxide
reactor
biophotosynthetic
photosynthetic
gas
Prior art date
Application number
TW91106181A
Other languages
Chinese (zh)
Inventor
Fuh Long Chang
Yan-Huei Lin
Pearl Hsiu Ping Lin
Chih Yi Lu
Chi-Ren Lan
Shiau-Wei Chen
Tzan-Chiuan Shiu
Original Assignee
Dev Center Biotechnology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dev Center Biotechnology filed Critical Dev Center Biotechnology
Priority to TW91106181A priority Critical patent/TWI308177B/en
Application granted granted Critical
Publication of TWI308177B publication Critical patent/TWI308177B/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

1308177 五、發明說明(1) 技術領域 本發明係有關於一種微生物培養方法,更特別的,本 發明係有關於一種固定二氧化碳之光合反應器及利用該光 合反應器之方法。 背景技術 地球溫暖化(g lobal warming)問題,即溫室效應 (green house effect)主要是由於石油及煤炭等化石燃料 燃燒所排放過量二氧化碳及一氧化碳和大量使用氟氣碳化 合物及掩埋場等所排放甲院所引起。在這些溫室氣體中, 二氧化碳是最重要、最難處理的氣體,地球溫度上升有一 半是由二氧化碳引起。因此,解決處理二氧化碳的問題是 當前一項重要的議題。 目前常見的二氧化碳固定減量技術有化學處理技術、 薄膜物理分離浪縮技術、觸媒氫化反應程序法、有機合成 技術法、電化學固定法和光觸媒固定法等。將二氧化碳液 化加壓,送入深海或深地下水層儲存,亦是可行的方法之 一。但以上這些方法有成本高與處理技術困難等問題。近 年來’利用生物固定二氧化碳已逐漸受到重視。生物性二 氧化碳處理(biological carb〇n di〇xide utiHzati〇n) 主要包括能將二氧化碳作為碳源(carb〇n s〇urce)進行光 合作用(photosynthesis)者,如綠色植物、微細藻類 (microalgae)與光合成微生物(ph〇t〇tr〇phic miCr〇〇rganiSm),及—些能利用二氧化碳進行自營性代謝1308177 V. INSTRUCTION DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a method of culturing a microorganism, and more particularly to a photosynthetic reactor for immobilizing carbon dioxide and a method of using the same. BACKGROUND OF THE INVENTION The problem of global warming (g lobal warming), that is, the green house effect is mainly due to the emission of excess carbon dioxide and carbon monoxide from the burning of fossil fuels such as petroleum and coal, and the use of fluorine-carbon compounds and landfills. Caused by the institution. Among these greenhouse gases, carbon dioxide is the most important and most difficult to treat gas, and half of the rise in earth temperature is caused by carbon dioxide. Therefore, solving the problem of dealing with carbon dioxide is an important issue at present. At present, common carbon dioxide fixed reduction technologies include chemical treatment technology, thin film physical separation wave reduction technology, catalytic hydrogenation reaction procedure, organic synthesis technology method, electrochemical immobilization method and photocatalyst immobilization method. It is also a viable method to liquefy and pressurize carbon dioxide and send it to deep sea or deep groundwater storage. However, these methods have problems such as high cost and difficulty in processing technology. In recent years, the use of biologically fixed carbon dioxide has gradually gained attention. Biological carbon dioxide treatment (biological carb〇n di〇xide utiHzati〇n) mainly includes photosynthesis, such as green plants, microalgae and photosynthetic synthesis, which can use carbon dioxide as a carbon source (carb〇ns〇urce). Microorganisms (ph〇t〇tr〇phic miCr〇〇rganiSm), and some can use carbon dioxide for self-operating metabolism

IBM 第5頁 1308177 五、發明說明(2) 的微生物’如曱炫菌(methanogens)等。其中綠色植物(如 森林)雖然對二氧化碳有很大的函容量,但由於植物生長 較慢,且受制於土地面積和土地利用性的因素,故而在二 氧化碳的固定技術開發上,微生物具有更大的發展潛力, 而其中尤以微細藻類與光合菌最受嗎目。目前微細藻類在 二氧化碳固定方面的研究已有一些分析資料和報告,在 1990年日本的地球創新技術研究所(Research Institute of Innovative Technology for the Earth ,簡稱RITE) 即提出’在附有光纖的光合反應槽中利用微細藻類進行生 物性固定二氧化碳的計劃,初步篩選出6株藻類具有固定 二氧化碳能力至少達1克/公升/天,另外它們亦發現一些5 至1 0 % —氧化碳激度的藻類,能生長在4 〇 °c溫度下。IBM Page 5 1308177 V. Inventions (2) Microorganisms such as methanogens. Among them, green plants (such as forests) have a large capacity for carbon dioxide. However, due to the slow growth of plants and the constraints on land area and land use, microorganisms have greater The development potential, especially among the fine algae and photosynthetic bacteria. At present, there are some analytical data and reports on the research of microalgae in carbon dioxide fixation. In 1990, the Research Institute of Innovative Technology for the Earth (RITE) proposed the photosynthetic reaction with optical fiber. In the tank, the plan to use biological micro-algae to fix carbon dioxide is to screen out six algae with a fixed carbon dioxide capacity of at least 1 g / liter / day. In addition, they also found some 5 to 10% - carbon monoxide-activated algae. Can grow at 4 ° ° ° C temperature.

Kodama 等人於 1 993 年在J. Mar. Biotechnology 第1 卷 第21〜25頁發表的論文顯示’由日本Kamaishi海域中分離 出耐高濃度二氧化碳的海洋綠藻Cft/ore/k即.A paper published by Kodama et al. in J. Mar. Biotechnology Vol. 1 No. 21~25 in 993 shows that Cft/ore/k, a marine green algae resistant to high concentrations of carbon dioxide, was isolated from the Kamaishi Sea area of Japan.

Isochrysis sp.,經過馴養,此藻種能生長於6〇 %二氧化碳濃 的環境中。呂總翼等人於1997年在中華生質能源學會第十 七次會員大會論文摘要第1 4頁發表’針對8 3株藻類進行二 氧化碳利用性的探討’發現DCB-T1和DCB-T4能在50%二氧 化石厌濃度的環境下快速增殖’具有進一步研究開發的價 值。而亦有多種光合微生物已應用於光合反應器,進行固 定二氧化碳的反應。 習知的光合生物反應器為透光管之組合,如同木筏,Isochrysis sp., domesticated, this algae can grow in a 6〇% carbon dioxide-rich environment. In 1994, Lu Zongyi and others published a report on the utilization of carbon dioxide for 8 strains of algae on the 14th page of the abstract of the 17th General Assembly of the China Biomass Energy Society. It was found that DCB-T1 and DCB-T4 can The rapid proliferation of 50% anaerobic concentration in the anaerobic environment has the value of further research and development. There are also a variety of photosynthetic microorganisms that have been used in photosynthetic reactors to carry out fixed carbon dioxide reactions. The conventional photosynthetic bioreactor is a combination of light-transmitting tubes, like a raft.

0296-7897TWF(N);293;Chiueow.ptd 第6頁 13081770296-7897TWF(N);293;Chiueow.ptd Page 6 1308177

置於水池上, 透過管枉,將 而這種光合生 留藻類或其他 專利第4,8 6 8, 裝置,使光合 辅助水流產生 或暗反應,且 但根據雷諾數 與管徑成反比 用之效果,可 浦施壓有限度 以水池之i & 有利於管桎:士冷卻裝置’並由於光源可以 ⑥ 中光合微生物進行光合作用,然 物質, 骨柱中右有軋體’會使管壁内殘 而大為降低光合反應效果,因此美國 、揭露一種光合生物反應器,增加除氣 產生的氧氣不會干擾反應管,並以幫浦 2動,以讓光合微生物能均勻地進行光反應 讓微生物能平均得到培養液所提供的養分。 的物理意義,雷諾係數與體積流力成正比、Placed on the pool, through the tube, the photosynthetically retained algae or other patents 4,8 6 8 device, so that the photosynthetic auxiliary water flow or dark reaction, and according to the Reynolds number is inversely proportional to the pipe diameter The effect, the pressure can be limited to the pool of i & Conducive to the tube: the cooling device 'and because the light source can be photosynthetic in the photosynthetic microorganisms in 6, then the material, the right column in the bone column will make the wall Internally, it greatly reduces the photosynthetic reaction effect. Therefore, in the United States, a photosynthetic bioreactor is disclosed to increase the oxygen generated by degassing without interfering with the reaction tube, and to move the pump 2 so that the photosynthetic microorganism can uniformly perform the photoreaction. The microorganisms can average the nutrients provided by the culture solution. Physical meaning, the Reynolds coefficient is proportional to the volumetric flow force,

’要形成亂流以達到營養源均勻分配充分利 以由提高體積流力或縮小管徑調整,然而幫 ’過高將可能損及微生物,特別是有纖毛的 微生物可能纖毛會斷掉’因此必須限制管徑大小,使得管 徑通常只能有1 - 3公分直徑’最大也只能達到5 _ 6公分,如 此而來’必須有很大的光合生物反應器佔用設置面積,才 能提高光合微生物培養規模,但是對於空間利用上有其缺 陷。'To form a turbulent flow to achieve a uniform distribution of nutrient sources to increase volumetric flow or to reduce tube diameter adjustment, however, too high will damage microbes, especially cilia-producing microorganisms may break cilia 'must therefore Limit the diameter of the pipe so that the diameter of the pipe can usually only be 1 - 3 cm diameter 'maximum can only reach 5 _ 6 cm, so that 'must have a large photosynthetic bioreactor occupying the set area to enhance photosynthetic microbial culture Scale, but there are defects in space utilization.

曰本特開第2001-231538號揭示一種光合成培養裝 置,藻類懸浮於含培養液之複數個直立透光管中,並由下 方之溝槽連通各管並供給氣體與培養液,進行氣舉式培 養,其供給之氣體亦有助於水中藻類的均勻分布。然而在 底部提供氣體與培養液之溝槽會有藻類累積,在底部不能 交替進行光反應與暗反應’而上方的藻類又只能進行光反 應,結果使得反應效果不佳’且亦無溫控設備。Japanese Patent Laid-Open No. 2001-231538 discloses a photosynthetic culture device in which algae are suspended in a plurality of erected light-transmissive tubes containing a culture solution, and the tubes are connected from the lower grooves to supply gas and culture solution for gas lift. Culture, the gas it supplies also contributes to the uniform distribution of algae in the water. However, there are algae accumulation in the groove where the gas and the culture solution are provided at the bottom, and the photoreaction and the dark reaction cannot be alternated at the bottom. The algae above can only perform photoreaction, resulting in poor reaction effect and no temperature control. device.

0296 - 7897IW( N) ; 293; Ch i ueow. p t d 第7頁 13081770296 - 7897IW( N) ; 293; Ch i ueow. p t d Page 7 1308177

五、發明說明(4) 置,::專利第W099/20 738號亦揭示-種光合成培養裝 光源八古立式培養槽培養,並採用間接光源以避免直射會 透二位=均的問題’然而其缺點係為了使光源能完全穿 j培養槽厚度僅能介於卜5公分,且亦無溫度調控裝 謝物Γ生匕產不能充分利用培養液體積’也無法進行最佳代 題。以上各習知技藝的缺點,即是本發明所要解決之課 發明概述 有鑑於此,本發明之目的係提供一種可節省設置面 積j並能有效進行光合作用,促進光合微生物生長以固定 —氧化碳之生物光合反應器。 本發明之另一目的係提供一種能充分利用培養液體 積,且可迅速調控溫度與光罩強度,以進行最佳代謝物生 產的生物光合反應器。 因此’本發明係提供一種固定二氧化碳之生物光合反 應器’包括:一平板式生物反應槽;一進氣裝置,位於該 生物反應槽底部’具有複數個進氣孔;複數個光源裝置, 平均配置於該平板式生物反應槽的兩側;以及複數個垂直 式攪拌裝置’設置於該生物反應槽内部。 本發明亦提供一種固定二氧化碳之生物光合反應器, 包括:一平板式生物反應槽;一進氣裝置,位於該生物反 應槽底部’具有複數個進氣孔;複數個光源裝置,平均配V. INSTRUCTIONS (4) Place:: Patent No. W099/20 738 also reveals that a kind of light-synthesis culture light source is cultivated in the eight-column culture tank, and an indirect light source is used to avoid the problem that the direct shot will pass through the two bits=all. However, the shortcoming is that in order to make the light source can completely penetrate the thickness of the culture tank, it can only be 5 cm apart, and there is no temperature regulation, and the product cannot be fully utilized. The disadvantages of the above-mentioned prior art are the summary of the invention to be solved by the present invention. In view of the above, the object of the present invention is to provide a saving area j and effective photosynthesis for promoting photosynthetic microorganism growth to fix carbon monoxide. Biophotosynthetic reactor. Another object of the present invention is to provide a biophotosynthetic reactor capable of making full use of the culture liquid and rapidly adjusting the temperature and the stencil strength for optimal metabolite production. Therefore, the present invention provides a biophotosynthetic reactor for fixing carbon dioxide, comprising: a flat-plate biological reaction tank; an air intake device at the bottom of the biological reaction tank having a plurality of air inlet holes; a plurality of light source devices, an average configuration On both sides of the flat bioreactor; and a plurality of vertical stirring devices are disposed inside the biological reaction tank. The invention also provides a biophotosynthetic reactor for fixing carbon dioxide, comprising: a flat-plate biological reaction tank; an air inlet device at the bottom of the biological reaction tank having a plurality of air inlet holes; a plurality of light source devices, the average distribution

0296-7897TWF(N);293;Chiueow.ptd 第8頁 1308177 五、發明說明(5) 置於該平板式生物反應槽的兩側;以及複數個垂直式攪拌 裝置’設置於該生物反應槽内部;一培養基添加口,設置 於該生物反應槽上方;一微生物採收口,設置於該生物反 應槽側面;一偵測裝置’設置於該生物反應槽側面;以及 一控溫裝置’連接到該進氣裝置。 本發明之再一目的係提供一種微生物培養方法,包括 下列步驟:將一氣體先通過一控溫裝置,使達到一預定溫 度’以及將該溫度調整過之氣體通入一微生物培養裝置, 使該溫度調整過之氣體與含有微生物之培養基接觸,進行 微生物之培養。 此外’本發明亦提供利用本發明生物光合反應器之固 定二氧化碳的方法’包括下列步驟:將含有二氧化碳之氣 體通過一控溫裝置,使該氣體達到一預定溫度,再將該溫 度調整過之氣體通入一含有懸浮於培養基中之光合微生物 的光合反應器’使該溫度調整過之氣體與含有微生物之培 養基接觸’以及於該光合生物反應器之兩側提供光源,並 添加適當培養基,再輔以攪拌,以進行光合微生物固定二 氧化碳之作用。 發明之詳細說明 本發明之生物光合反應器係應用於電廠、鋼鐵場等重 工業’可以大為減少二氧化碳的排放。以下將以本發明生 物光合反應器,處理一火力發電薇所排放的二氧化礙,作 為本發明生物光合反應器固定二氧化碳之較佳實施例,以 IBMI 1^ 0296 -7897TWF(N);293;Ch i ueow.p t d 1308177 五、發明說明(6) 具體說明本發明。 請參照第3圖與第4圖,本發明之生物光合反應器系統 的流程為以不鏽鋼管連接工廠煙道氣,通過鹼液熱交換 器’進行去除煙道氣中的硫氧化物與氮氧化物的前處理 (102) ’同時以冷卻水塔冷卻煙遒氣(104),再經由真空抽 氣幫浦(1 0 6 )抽到滌氣水槽,該滌氣水槽為一冷水器,作 為控溫農置,可以直接將氣體冷卻至適當溫度(1〇8),而 不會有習知夾套式降溫裝置控溫不良的缺點,且氣體係在 進合反應器之前先調整溫度’為前人所沒有的設置。 接著氣體進入一光合反應器内部,從該光合反應槽底部之 ,數個小孔進氣’可平均分配於槽内,並以氣舉式培養, 例^接觸懸浮於培養基中的微生物’且於該光合反應器兩 二:供平均地光源’並添加適當培養基,再輔以攪拌,進 =有t微生物固定二氧化碳的反應(11 〇 )。光合反應器上 4測器,構成測試系統,系統的訊號資料 制I目,作爲抻击丨丨Λ 惫π队4 Γ f中心,並做記錄。前述之熱交換器去除硫 盥本化物的前處理亦可以不設置,因為有前處理 南《 埋氧’對藥類生長並無顯著差異,所以不經 月1J處理之煙痛允1 1 、 可直接培養藻種’而且可大量降低處理成 其包‘,士第5圖、’顯示本發明生物光合反應器的構造, 所t I,型光合反應槽10 ’本體為不錄鋼及強化玻璃 产、1存光i反應器,内附直立式攪拌機18、氫離子濃 又'谷氧量等感測器2 4。光合反應槽由國洲儀器公0296-7897TWF(N); 293; Chiueow.ptd Page 8 1308177 V. Description of the invention (5) placed on both sides of the flat bioreactor; and a plurality of vertical stirring devices 'located inside the biological reaction tank a medium addition port disposed above the biological reaction tank; a microbial harvesting port disposed on a side of the biological reaction tank; a detecting device disposed on a side of the biological reaction tank; and a temperature control device connected to the Intake device. A further object of the present invention is to provide a microbial culture method comprising the steps of: passing a gas through a temperature control device to achieve a predetermined temperature 'and passing the temperature-adjusted gas into a microorganism culture device, The temperature-adjusted gas is contacted with a medium containing microorganisms to culture the microorganisms. Further, 'the present invention also provides a method for fixing carbon dioxide by using the biophotosynthetic reactor of the present invention', comprising the steps of: passing a gas containing carbon dioxide through a temperature control device to bring the gas to a predetermined temperature, and then adjusting the temperature to the gas. Passing a photosynthetic reactor containing photosynthetic microorganisms suspended in the medium to "contact the temperature-adjusted gas with the medium containing the microorganisms" and providing a light source on both sides of the photosynthetic bioreactor, and adding an appropriate medium, and supplementing Stirring to effect the photosynthetic microorganism to fix carbon dioxide. DETAILED DESCRIPTION OF THE INVENTION The biophotosynthetic reactor of the present invention is applied to heavy industries such as power plants and steel fields, which can greatly reduce carbon dioxide emissions. Hereinafter, the bio-photosynthetic reactor of the present invention is used to treat the oxidizing gas discharged from a thermal power generation, as a preferred embodiment of the fixed photocarbon dioxide of the biophotosynthetic reactor of the present invention, to IBMI 1 0 0 296 -7 897 TWF (N); 293; Ch i ueow.ptd 1308177 V. Description of the Invention (6) The present invention will be specifically described. Referring to Figures 3 and 4, the flow of the biophotosynthetic reactor system of the present invention is to connect the factory flue gas with a stainless steel tube, and to remove sulfur oxides and nitrogen oxides in the flue gas through the lye heat exchanger. Pretreatment of the object (102) 'At the same time, the soot gas (104) is cooled by the cooling water tower, and then pumped to the scrubbing water tank through a vacuum pumping pump (1 0 6 ), which is a water cooler for temperature control. Farming, you can directly cool the gas to the appropriate temperature (1〇8), without the disadvantages of poor temperature control of the conventional jacketed cooling device, and the gas system adjusts the temperature before the reactor is turned into a predecessor. No settings. Then the gas enters the interior of a photosynthetic reactor. From the bottom of the photosynthetic reaction tank, a plurality of small pores of the inlet air can be evenly distributed in the tank and cultured in a gas lift manner, for example, contacting the microorganisms suspended in the medium. The photosynthetic reactor two or two: for the average source of light 'and add appropriate medium, supplemented by stirring, into the reaction of t microbiological fixed carbon dioxide (11 〇). On the photosynthetic reactor, the four detectors form the test system, and the signal data of the system is made as the target of the 抻 队 队 队 team 4 Γ f center, and records are made. The pretreatment of the above-mentioned heat exchanger for removing thioindigo may also be omitted, because there is no significant difference in the growth of the drug with the pretreatment of "buried oxygen" in the south, so the smoke pain without the treatment of the month 1J can be allowed. Directly cultivating the algae species 'and reducing the treatment into a large amount', the fifth diagram, 'showing the structure of the biophotosynthetic reactor of the present invention, the type I, the photosynthetic reaction tank 10' body is not recorded steel and reinforced glass production 1, a light storage i reactor, with a vertical mixer 18, hydrogen ion concentration and 'valley oxygen amount sensor 24 4 . Photosynthetic reaction tank

1308177 五、發明說明(7) 司承製,包括pH計(HI9224型),溶氧(含溫度)分析儀 (HI9141 型),體積為長 X 寬X 高= 80cmx21 cmxl20 cm 相當於200公升。該反應槽之寬度係經特殊設計,可介於 6-2 5cm,以2 1 cm為佳’可以在攪拌反應時,相應於光源而 產生閃光效果,而可充分利用光源及槽體積,改善W〇 99/120, 738之未能充分利用培養槽體積之缺點。二氧化碳 偵測器為Cal ifornia Analytical Instrument 公司所出品 的Model 100 ND IR Analyzer。於該板型光合反應槽10之 兩側,平均配置日光燈源1 4,提供光能介於丨7 〇 〇 1 ux至 15000 lux為佳’以5組日光燈’提供loooo iux光能最 佳。於該板型光合反應槽10底部配置有不鏽鋼管,其上並 有複數個孔洞’乃是氣體通入口 13,可調整氣體進入,使 氣體直接與培養基中的微生物接觸。且該板型光合反應槽 底有一開口(未顯示),當反應完畢,或需要清洗槽體内部 時可放流槽内液體。該光合反應槽丨〇上方側面具有一藻體 才采收口 1 6,當藻類生長過多時,可由此處採收。此外,該 光合反應槽上方具有培養基添加口 2〇,可由此加入新鮮培 養基,同時,上方亦有一氣體出口 2 2,連接到控制中心, 可偵測C〇2的含量。在該光合反應槽丨〇側面,有三個偵測 pH值、溶氧量以及溫度的管路,可以對槽内不同位置進行 摘測。該反應槽下方並附有輪子26,以利移動。 除本發明裝置之外’實施例所需材料如下所示: 1.實驗藻種1308177 V. INSTRUCTIONS (7) The company undertakes, including pH meter (HI9224 type), dissolved oxygen (including temperature) analyzer (HI9141 type), and the volume is long X width X height = 80cmx21 cmxl20 cm is equivalent to 200 liters. The width of the reaction tank is specially designed to be between 6-2 5cm and 2 1 cm. It can produce a flashing effect corresponding to the light source during the stirring reaction, and can fully utilize the light source and the groove volume to improve W. 〇99/120, 738 failed to make full use of the shortcomings of the culture tank volume. The CO2 detector is the Model 100 ND IR Analyzer from Cal ifornia Analytical Instrument. On both sides of the plate-type photosynthetic reaction tank 10, an average of the fluorescent light source 14 is provided, and it is preferable to provide light energy between 丨7 〇 〇 1 ux and 15000 lux, and it is preferable to provide loooo iux light energy with 5 sets of fluorescent lamps. A stainless steel tube is disposed at the bottom of the plate type photosynthetic reaction tank 10, and a plurality of holes are formed therein, which are gas inlets 13, which can adjust the gas to enter, so that the gas directly contacts the microorganisms in the medium. And the bottom of the plate type photosynthetic reaction tank has an opening (not shown), and when the reaction is completed, or the inside of the tank body needs to be cleaned, the liquid in the tank can be discharged. The photosynthetic reaction tank has an algae on the upper side of the crucible to collect the mouth. 16. When the algae grows too much, it can be harvested therefrom. In addition, a medium addition port 2 is provided above the photosynthetic reaction tank, whereby a fresh culture medium can be added thereto, and at the same time, a gas outlet 22 is also arranged above, and is connected to the control center to detect the content of C〇2. On the side of the photosynthetic reaction tank, there are three pipelines for detecting pH, dissolved oxygen and temperature, which can be used to extract different positions in the tank. A wheel 26 is attached below the reaction tank for movement. In addition to the apparatus of the present invention, the materials required for the examples are as follows: 1. Experimental algae species

1308177 五、發明說明(8) 本發明實施例分別採用淡水藻種真核細胞球藻 Chlorella sp.(請參照第1圖)與海水藻種金黃藻1308177 V. DESCRIPTION OF THE INVENTION (8) In the examples of the present invention, freshwater algae species Chlorella sp. (see Fig. 1) and seaweed species

Isochrysissp.(請參照第2圖)進行試驗。 2.培養基及能源 真核細胞球藻培養時採用B G _ I I培養基’其成分請參 照表1 ;金黃藻培養時採用wa 1 ne培養基,其成分請參照表Isochrysissp. (please refer to Figure 2) for testing. 2. Culture medium and energy The cells of E. coli are cultured with B G _ I I medium. For the components, please refer to Table 1. For the cultivation of golden algae, wa 1 ne medium is used.

表1 : BG-II培養基成分Table 1: BG-II medium components

成分 量(g/L) NaN03 1.5 Κ2ΗΡ04·3Η20 0.04 MgS04-7H20 0.075 CaCl2-2H20 0.036 草酸 0.006 Ferric ammonium cutrate 0.006 EDTA 0.001 Na2C03 0.02 微量金屬 1ml 去離子水 1000ml 酸驗值 7.4Component Amount (g/L) NaN03 1.5 Κ2ΗΡ04·3Η20 0.04 MgS04-7H20 0.075 CaCl2-2H20 0.036 Oxalate 0.006 Ferric ammonium cutrate 0.006 EDTA 0.001 Na2C03 0.02 Trace metal 1ml Deionized water 1000ml Acid test 7.4

0296-7897TWF(N);293;Ch1ueow.p t d 第12頁 1308177 五、發明說明(9) 表2 : Walne培養基成分 成分 量(g/L) Urea 60.0 NaH2P04-2H20 20.0 Na2EDTA 45.0 H3BO3 33.6 MnCl2_4H20 0.36 FeCl3-6H20 1.30 Vitamine B12 0.001 Vitamine B1 0.02 NaSiOs 6.6 微量金屬 1ml 海水 1000ml 在批次式試驗時,先注入co2廢氣,再將注氣閥關緊 使C〇2瞬間溶解於水中,並以1 ο ο ο ο 1 ux之光強度,全日照 射提供藻類生長所需能源。至於連續流式完全混合反應槽 (Continuous Stirred Tank Reactor, CSTR)試驗時,以 不同流量之煙道氣所含的二氧化碳做為碳源,並以丨〇 〇 〇 〇 1 ux之光強度,全日照射提供藻類生長所需能源。 3.標準氣體 二氧化碳標準氣體由美國加州San Bernardion公司提0296-7897TWF(N);293;Ch1ueow.ptd Page 12 1308177 V. Description of invention (9) Table 2: Component content of Walne medium (g/L) Urea 60.0 NaH2P04-2H20 20.0 Na2EDTA 45.0 H3BO3 33.6 MnCl2_4H20 0.36 FeCl3- 6H20 1.30 Vitamine B12 0.001 Vitamine B1 0.02 NaSiOs 6.6 Trace metal 1ml Seawater 1000ml In the batch test, first inject CO2 exhaust gas, then close the gas injection valve so that C〇2 is dissolved in water instantaneously, and 1 ο ο ο ο 1 The intensity of ux light, full-day illumination provides the energy needed for algae growth. As for the Continuous Stirred Tank Reactor (CSTR) test, the carbon dioxide contained in the flue gas of different flow rates is used as the carbon source, and the light intensity of 丨〇〇〇〇1 ux is used for full-day illumination. Provide the energy needed for algae growth. 3. Standard gas Carbon dioxide standard gas is provided by San Bernardion, California

0296-7897TWF(N);293;Chiueow.ptd 第13頁 13081770296-7897TWF(N);293;Chiueow.ptd Page 13 1308177

4.分析與統計方法: 4 1.光學达、度(optical density)測定· 測定單細胞球蒸和金黃溪之藻濃度,係利用 (optical density,簡稱:0D)值掃晦光譜分別: 胞球蕩在波長440-的吸收最為明顯,金黃藻在波:二〇細 的吸收最為明顯。因此,以的⑽代表單細胞球藻濃产,0nm 〇d68〇代表金黃藻濃度。 &4. Analysis and statistical methods: 4 1. Optical optical density measurement. Determination of single cell ball evaporation and concentration of algae in the golden stream, using optical density (abbreviation: 0D) value broom spectrum: cell The absorption at the wavelength of 440- is most obvious, and the absorption of golden algae in the wave: the second fine is the most obvious. Therefore, (10) represents a concentrated production of unicellular algae, and 0 nm 〇d68 〇 represents the concentration of golden algae. &

4-2.二氧化碳測定法和固定率計算 採用通氣法中之分光光學的方法,其原理為利用c 〇2 在紅外光區的4. 2 y處’具有吸收的特性來求得c 〇2濃 度的方法(田宮及渡邊’ 1 9 65)。係利用Model 100 NDIR Analyzer測定進氣的C02濃度及排氣的c〇2濃度,再代 入數學模式中,便可得到結果。4-2. Determination of carbon dioxide measurement and fixation rate The method of spectroscopic optics in the aeration method is based on the principle that c 〇2 is used to obtain the concentration of c 〇 2 in the infrared region of 4. 2 y. Method (Tiangong and Watanabe 1 9 65). The Model 100 NDIR Analyzer was used to measure the CO 2 concentration of the intake air and the c〇2 concentration of the exhaust gas, and then substituted into the mathematical mode to obtain the result.

CSTR數學模式 CSTR ,S. SCSTR mathematical mode CSTR, S. S

ΣΙΝ= ΣOUT + Accumu1 ation+ Zreaction Σ I N = Σ OUT + Accumulat ion + r,nnsn-gen F〇 =F0(l-X) + (-r)V F〇 X = (-r)V V〇C〇【(C0-C)/C0 】=(-]:)V 反應器的固定二氧化碳mole速率=VQ(CQ-C)ΣΙΝ= ΣOUT + Accumu1 ation+ Zreaction Σ IN = Σ OUT + Accumulat ion + r,nnsn-gen F〇=F0(lX) + (-r)VF〇X = (-r)VV〇C〇[(C0-C ) /C0 】=(-]:) V fixed carbon dioxide mole rate of the reactor = VQ (CQ-C)

0296-7897TWF(N);293;Chiueow.ptd 第14頁 1308177 發明說明(13) 用之儀器為配有火焰離子偵測器(FID),分析管柱(c〇luran )是Rtx-2330,初溫160 。〇保持15分鐘,再從16〇 t升溫 到2 0 0 C,8分鐘,以氮氣為流動相,流速為2. 6 6 m 1 /m 1 η,樣品注入量為2 u丨,而注入口及檢出口溫度分別 為250 C及28 0 °C。積分儀條件為衰減(attenuat i〇n)= 1, 紙速(chart Speed)= 2 。 準備例1 :藻種之培養 藻種。經活化後’培養於含100 ml基本培養基之fiask 内於20C培養1〇天後,再逐步放大培養至2〇[, 入光合反應槽。 實施例1 :具核細胞球藻之杯瓶操作舐獄uatch Test): 光合。反應槽’於培養之初’内裝170公升培養基, 2.〇%之藻種後,以室溫、光照強度1 0000 1UX ,禾 接入 丨又 从至溫、光照強度1 u 0 〇 〇 1 u X., 用直立式授拌機II拌,曝氣進行培養,微藥培養過程中, 煙道氣中二氧化碳是主要的碳源,進行杯瓶操作試驗。^ 核細胞球藻初始的操作條件為OD44D=0 6 537,ΡΗ=5 07,水 恤-32 C 合氧=2. 63mg/L。於不同時點偵測藻類生長變 化,/、_藻類生長以光學密度〇D值表示,結果請參照第5 圖,顯不批次系統的真核細胞球藻隨時間生長 時間2小時前’真核細胞球澡有生長遲滯情形,2小時= 長速率明顯增加,—直至“小時生長速率趨於 040小時之生長類似遲滞期(Ug phase),2〇〜45 =時0296-7897TWF(N);293;Chiueow.ptd Page 14 1308177 Description of invention (13) The instrument used is equipped with a flame ion detector (FID), and the analytical column (c〇luran) is Rtx-2330. Temperature 160. 〇 Hold for 15 minutes, then heat from 16 〇t to 200 ° C, 8 minutes, with nitrogen as mobile phase, flow rate is 2. 6 m 1 /m 1 η, sample injection amount is 2 u丨, and the injection port The temperature at the inspection outlet is 250 C and 28 0 °C, respectively. The integrator condition is attenuation (attenuat i〇n) = 1, paper speed (chart speed) = 2. Preparation Example 1: Cultivation of algae species Algae species. After activation, it was cultured in a fiask containing 100 ml of basic medium and cultured at 20 C for 1 day, and then gradually expanded to 2 〇 [, into a photosynthetic reaction tank. Example 1: Cup bottle operation with nucleated cell chlorella uatch Test: Photosynthetic. The reaction tank 'in the beginning of the culture' contains 170 liters of the medium, 2. 〇% of the algae species, at room temperature, light intensity of 1 0000 1 UX, and the access to the temperature and light intensity 1 u 0 〇〇1 u X., Mixing with the vertical mixing machine II, aeration for culture, in the micro-drug culture process, carbon dioxide in the flue gas is the main carbon source, and the cup bottle operation test is carried out. ^ The initial operating conditions of cytosolic cyanobacteria were OD44D=0 6 537, ΡΗ=5 07, and t-shirt-32 C oxygenation = 2.63 mg/L. The algae growth changes were detected at different time points. /, _ algae growth was expressed by optical density 〇D value. For the results, please refer to Figure 5, showing the eukaryotic cells of the eukaryotic cells of the eukaryotic cell growth time 2 hours before. Cell ball bath has growth retardation, 2 hours = long rate increases significantly - until "hour growth rate tends to 040 hours of growth similar to the lag phase (Ug phase), 2 〇 ~ 45 = hrs

13081771308177

五、發明說明(14) 長期(1〇g細)’而5〇小時以上類似平衡 ^(stationary phase)。 實施例2 :金黃藻之杯瓶操作試驗 同實施例!之條件,進行金黃藻之杯瓶操作試驗。 ^的操作條件為OD68〇 = 〇153,pH = 6 〇6,水溫=32 ” 生2.县〇3二Μ。亦於不同時點债測蕩類生長變化, =類生長同樣以0D值表示,結果請參照第6圖,顯示 統之金黃藻隨時間生長情形。、结果顯示金黃藻並盎 ‘顯m期’顯然金黃藻對環境因子之適應;萃 佳,因此,其維持到數生I t主 潘 ,# . E t數生長期時段較長。在反應時間為56 小時後,其生長漸趨於平衡生長期。 實施例3 :真核細胞球藻之連續流混合反應槽(c〇ntinu〇usV. INSTRUCTIONS (14) Long-term (1〇g fine)' and 5〇 hour or more similar equilibrium ^(stationary phase). Example 2: Cupping operation test of golden algae The same example! Under the conditions, the operation test of the bottle of golden algae was carried out. The operating conditions of ^ are OD68〇= 〇153, pH = 6 〇6, water temperature=32 ”2. County 〇3 Μ. Also at different times, the debt growth is measured, and the growth of the class is also represented by the 0D value. The results, please refer to Figure 6, showing the growth of the golden algae over time. The results show that the golden algae and the 'm-phase' apparently adapt to the environmental factors of the golden algae; the extraction is good, therefore, it is maintained to the number of life I t main Pan, #. E t number is longer in the growth period. After the reaction time is 56 hours, its growth gradually approaches the equilibrium growth period. Example 3: Continuous flow mixing reaction tank of eukaryotic cells (c〇 Ntinu〇us

Stirred Tank Reactor,CSTR)操作試驗 光合反應槽於培養之初,内裝丨7〇公升培養基接 入2. 0%之藻種後,以室溫、光照強度1〇〇〇〇 iux.,利用 直立式攪拌機攪拌,曝氣進行培養,微藻培養過程中,空 氣中二氧化碳是主要的碳源,微藻生長至平衡狀態 (stationary phase),再進行連續混合操作試驗,並曝以 不同2氣量的煙道氣進行測試,此時,微藻的碳源主要是 煙道氣中的二氧化碳。於不同時點偵測出流c〇2體積百分 比,結果如第8圖所示。第8圖顯示連續流混合反應槽在真 核細胞球藻利用C〇2其出流之體積濃度百分比。結果發Stirred Tank Reactor, CSTR) Operation test Photosynthetic reaction tank At the beginning of the culture, the built-in 〇7〇 liter medium was added to 2.0% of the algae species, and the room temperature and light intensity were 1〇〇〇〇iux. The mixer is stirred and aerated for cultivation. During the microalgae cultivation process, carbon dioxide in the air is the main carbon source, the microalgae grows to the stationary phase, and then the continuous mixing operation test is conducted, and the smoke of different 2 volumes is exposed. The gas is tested. At this time, the carbon source of the microalgae is mainly carbon dioxide in the flue gas. The volume c 〇 2 volume percentage was detected at different times, and the results are shown in Fig. 8. Figure 8 shows the percentage concentration of the continuous flow mixed reaction tank in the flow of E. coli using C〇2. Result

0296-7897TWF(N);293;Ch i ueow.p t d 第18頁 13081770296-7897TWF(N);293;Ch i ueow.p t d Page 18 1308177

T ’改變不同體積流量測試時’其反應時間最慢2小時後 皆可達到穩定狀態(steady-state condi t ion),如圖中流 量為5.0 L/min及11.0 L/min之曲線,其非穩定狀態期 (non-steady-state condition)分別為2 小時及1 小時。當 達到穩定狀態時’ C〇2之溶解速率與去除速率達一定,此田 時,可評估出C〇2固定效率,即由煙道氣流率和進出之體 積百分比計算。一般而言,煙道氣流量由現場流量計讀得 其數值’ C〇2分析儀所測得為c〇2體積百分比,兩者相乘所于 得為單位時間C02流量’在標準狀況下,即2 5 °C,1 a tm, c〇2 —莫耳所佔的體積為24. 5升,因此,單位時間c〇2流量 可轉換為單位時間C〇2質量表示之。經計算結果顯示,當 煙道氣流量為8. 0 L/min ’達到穩定狀態時,藻濃度為 〇.381g/l,真核細胞球藻最佳的固定率為7184 mg/min, 即608. 5 mg C02/L/day,相當於1. 6克C02 /克-藻體/天。 實施例4 .金黃藻之連續流混合反應槽(c 〇 n t i n u 〇 u s Stirred Tank Reactor, CSTR)操作試驗 同實施例3所示方法’培養之光合微生物改為金黃 藤’並於不同時點偵測出流C〇2體積百分比,結果如第9圖 所示。第9圖為連續流混合反應槽金黃藻固定c〇2其出流之 體積濃度百分比。圖中,煙道氣流量為1. 5 L/m i η之曲 線’為從開始曝煙道氣至達平衡之反應曲線,所以非穩定 期所需時間較長,而其餘流量之曲線為從一固定流量之穩 定狀態至另一稍高流量之穩定狀態,所以約於2小時左右T 'changes in different volume flow tests', the reaction time is 2 hours after the slowest response to steady state (steady-state condi t ion), as shown in the figure, the flow rate is 5.0 L / min and 11.0 L / min curve, which is not The non-steady-state conditions are 2 hours and 1 hour, respectively. When the steady state is reached, the dissolution rate and removal rate of 'C〇2' are constant. At this time, the fixed efficiency of C〇2 can be estimated, that is, calculated from the flue gas flow rate and the volume percentage of the inflow and outflow. In general, the flue gas flow is read by the on-site flow meter. The value measured by the C〇2 analyzer is c〇2 volume percent, and the two are multiplied by the unit time C02 flow rate' under standard conditions. That is, 2 5 ° C, 1 a tm, c 〇 2 - the volume occupied by the molar is 24.5 liters, therefore, the flow rate per unit time c 〇 2 can be converted into the unit time C 〇 2 mass expressed. The calculated results show that when the flue gas flow rate is 8. 0 L/min 'the steady state, the algae concentration is 381.381g/l, and the optimal fixation rate of eukaryotic cells is 7184 mg/min, ie 608. 5 mg C02 / L / day, equivalent to 1. 6 grams of C02 / gram - algae / day. Example 4: Continuous flow mixing reaction tank (c 〇ntinu 〇us Stirred Tank Reactor, CSTR) operation test of the golden algae was carried out as in the method shown in Example 3, and the photosynthetic microorganisms were changed to golden vines and detected at different time points. Flow C 〇 2 volume percent, the results are shown in Figure 9. Figure 9 is the volume concentration percentage of the outflow of the golden algae fixed c〇2 in the continuous flow mixing reaction tank. In the figure, the flue gas flow rate is 1.5 L / mi η curve 'is the reaction curve from the beginning of exposure flue gas to equilibrium, so the non-stable period takes longer, and the rest of the flow curve is from one The steady state of the fixed flow rate is stable to another slightly higher flow rate, so it takes about 2 hours.

0296-7897TWF(N);293;Chiueow.ptd 第19頁 1308177 五、發明說明(17) 表3 :金黄藻之:DHA產曼 DHA(乾細胞t之百分比%) 對赋纽 遲滯期 對軚生長期 平衝生長期 内生期 Λ ND PD Total ND PD Total ND PD Total ND PD Total ND PD Total 0 0.10 0.18 0.28 0.10 0.18 0.28 0.10 0.18 0.28 0.10 0.18 0.28 0.10 0.18 0.28 2 0.11 0.19 0.30 0.32 0.08 0.40 0.12 0.19 0.31 0.11 0.19 0.31 0.12 0.19 0.31 4 0.12 0.21 0.33 0.40 0.10 0.50 0.13 0.21 0.34 0.13 0.21 0.34 0.13 0.21 0.34 6 0.20 0.31 0.51 0.50 0.10 0.60 0.77 0.67 1.44 0.25 0.35 0.60 0.25 0.35 0.60 8 — .. 0.28 0.85 1.13 0.70 0.20 0.90 1.26 0.54 1.80 0.56 0.62 1.18 0.55 0.64 1.19 10 0.88 0.62 1.50 0.65 0.10 0.75 1.39 0.31 1.70 1.30 0.30 1.60 1.24 0.25 1.52 12 1.22 0.41 1.63 - - - 1.40 0.25 1.65 1.21 0.23 1 44 1.20 0.23 1.43 14 1.10 0.13 1.23 - - - 1.21 0.18 1.39 0.65 0.12 0.77 1.01 0.20 1.21 結論 本,明實施例顯示,在2〇〇公升板型生物光合反應器 ^統之最適化操作條件為,最適排釋煙氣通氣量為8. 〇 蓽插囡^一-依·不同電廠可略作調整。實驗室級真核細胞球 疋—氧化碳最適藻種數為1. 2 38 g/1 (3. 131 0D 定效率而二黃二為算3:6 g/ 1 ( 1.688 〇D值)。二氧化碳固 ,即6 08 Γ μ 胞球藻種為71.84 體/天,而金龙5 = CiVL/day ’相當於1. 6克(:〇〆克-藻 C02/L/day,相 V桌為86.20 mg/min,即730 赇 量,實施例5“:,克C〇2/克—藻體/天。至於DM產 胞乾重的養至第八天,測DHA總量為最高,達細 ”中性DHA為1.26%,而極性DHA為0,54%,0296-7897TWF(N);293;Chiueow.ptd Page 19 1308177 V. Description of invention (17) Table 3: Golden algae: DHA-derived DHA (% of stem cell t%)生PD growth period ND PD Total ND PD Total ND PD Total ND PD Total ND PD Total 0 0.10 0.18 0.28 0.10 0.18 0.28 0.10 0.18 0.28 0.10 0.18 0.28 0.10 0.18 0.28 2 0.11 0.19 0.30 0.32 0.08 0.40 0.12 0.19 0.31 0.11 0.19 0.31 0.12 0.19 0.31 4 0.12 0.21 0.33 0.40 0.10 0.50 0.13 0.21 0.34 0.13 0.21 0.34 0.13 0.21 0.34 6 0.20 0.31 0.51 0.50 0.10 0.60 0.77 0.67 1.44 0.25 0.35 0.60 0.25 0.35 0.60 8 — .. 0.28 0.85 1.13 0.70 0.20 0.90 1.26 0.54 1.80 0.56 0.62 1.18 0.55 0.64 1.19 10 0.88 0.62 1.50 0.65 0.10 0.75 1.39 0.31 1.70 1.30 0.30 1.60 1.24 0.25 1.52 12 1.22 0.41 1.63 - - - 1.40 0.25 1.65 1.21 0.23 1 44 1.20 0.23 1.43 14 1.10 0.13 1.23 - - - 1.21 0.18 1.39 0.65 0.12 0.77 1.01 0.20 1.21 Conclusions, the examples show that the optimum operating conditions for the 2 liter liter plate type biophotosynthetic reactor are optimal Ventilation flue 8. The square of a Piper inserted nan ^ - * by different plants may be slightly adjusted. The number of optimal algae in the laboratory-grade eukaryotic cell sphere-oxidized carbon is 1. 2 38 g/1 (3. 131 0D is the efficiency and the second yellow is 3:6 g/ 1 ( 1.688 〇D value). Solid, ie 6 08 Γ μ Cyanophyta species is 71.84 bodies/day, while Golden Dragon 5 = CiVL/day 'equivalent to 1.6 g (: gram-algae C02/L/day, phase V table is 86.20 mg /min, ie 730 赇 quantity, Example 5 ":, gram C 〇 2 / gram - algae body / day. As for the dry weight of DM production to the eighth day, the total amount of DHA is the highest, up to fine" The DHA is 1.26%, while the polar DHA is 0,54%.

1308177 五、發明說明(18) 此時期之控制組其DHA總量為1. 1 3%,中性DHA為〇. 28%,極 性 DHA 為 0.85%, Helis 等人( 1 99 4 )以連續式(chemostat) (JCMP13Z4 ^ isochrysis 培養同樣為 — aff. galbana C 1 one T- I SO時,同樣於高生長率下(即光 照強)其為極性脂質的醣脂質會明顯增加,而於低生長率 下(即光照弱),則中極脂質會增加。其原因為建造光合作 用的細胞膜之醣脂質代謝需較高之(Hght/cell)比率,所 以在較高光照情況下,會降低中性脂質合成,妨礙中性脂 質進到儲存系統。DHA在產業上有極大用途,因此,本發 明方法所收集之藻類可以達到再利用之功效。 x T然本發明已以較佳實施例揭露如上,然 限疋本發明,任何熟悉此技藝 和範圍内,當可作各種之更動U不:離本發明之精神 範圍’當視後附之申請專利範圍而所界定者為/之保裏1308177 V. Description of invention (18) The total DHA of the control group in this period was 1.1 3%, the neutral DHA was 〇. 28%, the polar DHA was 0.85%, and Helis et al. (1 99 4 ) were continuous. (chemostat) (JCMP13Z4 ^ isochrysis culture is also - aff. galbana C 1 one T- I SO, also at high growth rate (ie strong light), it is a polar lipid, the lipid lipid will increase significantly, and the low growth rate Lower (ie, weak light), the lipids in the middle will increase. The reason is that the cell membrane of photosynthesis has a higher hght/cell ratio, so it will reduce the neutral lipid under higher illumination. Synthetic, hindering the entry of neutral lipids into the storage system. DHA has great industrial use, and therefore, the algae collected by the method of the present invention can achieve the re-use effect. x T. The present invention has been disclosed in the preferred embodiment as above. It is to be understood that the invention may be varied and varied within the scope of the invention and the scope of the invention as defined in the appended claims.

0296-7897W(N);293;Chiue〇w.ptd 第22頁 1308177 圖式簡單說明 為了讓本發明之上抒、i # 明 說明如下 工述和其他目的、特糌 „ 顯易懂,下文特舉較佳# & γs ^/寻徵,及優點能f , 干秋佳實施例並配合所附閽_ 把更 如下: 附圖不’做詳細 圖示之簡單說明 第1圖係本發明生物光合反應器所採用之 Chiorella sp.之顯微照片。 '、水藻類 第2圖係本發明生物光合反應器所採用 Isochrysissp.之顯微照片。 韦頰 第3圖係利用本發明生物光合反應器之麻 圖。 贗乳處理流程 第4圖係第3圖之流程說明。 第5圖係本發明生物光合反應器之示意圖。 ^ 第6圖係實施例1杯瓶試驗真核細胞球藻隨時門& 第7圖係實施例2杯瓶試驗金黃藻隨時間生長情妒 第8圖係實施例3連續流混合反應系統中,真^細胞球 藻作用下,出流二氧化碳之體積百分比。 第9圖係實施例4連續流混合反應系統中’金黃藻作用 下,出流二氧化碳之體積百分比。 第1 0圖係二十二碳六稀酸甲醋化標準品氣相層析圖。 第11圖係實施例5產生之二十二碳六烯酸曱酯化產物 氣相層析圖。0296-7897W(N);293;Chiue〇w.ptd Page 22 1308177 Schematic description of the present invention In order to make the present invention, the following description and other purposes, special features, Preferably, the < γs ^ / search, and the advantages of the energy f, the dry autumn embodiment and with the attached 阍 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Photomicrograph of Chiorella sp. used in the photosynthetic reactor. ', algaeFig. 2 is a photomicrograph of Isochrysissp. used in the biophotosynthetic reactor of the present invention. Fig. 3 shows the use of the biophotosynthetic reactor of the present invention. Fig. 4 is a schematic diagram of the flow diagram of Fig. 3. Fig. 5 is a schematic view of the biophotosynthetic reactor of the present invention. ^ Fig. 6 is an example of a bottle test of eukaryotic cells. < Fig. 7 is a second example of the growth of golden algae over time in the cup bottle test. Fig. 8 is a volume percentage of the outflowing carbon dioxide in the continuous flow mixed reaction system in the continuous flow mixing reaction system. Figure 4 Example of a continuous flow mixed reaction system The volume percentage of carbon dioxide in the outflow is used. Figure 10 is a gas chromatogram of the hexacarbon hexahydrate acid acetal standard. Figure 11 is the bismuth hexaenoate produced in Example 5. A gas chromatogram of the esterified product.

0296-7897TWF(N);293;Chi ueow. ptd 第 23 頁 1308177 圖式簡單說明 參考標號之說明 10- 板 型 光 合 反應槽; 12~ .氣 體 進 入 管; 13~ .氣 體 進 入 孔; 14' .曰 光 燈 源 > 16- '藻 體 採 收 口 ; 1 8〜直立式攪拌機; 2 0〜培養基添加口; 22〜氣體出口同時可偵測C02 ; 24〜pH、溶氧以及溫度偵測; 26〜輪子。0296-7897TWF(N);293;Chi ueow. ptd Page 23 1308177 Schematic description of the reference number 10--plate photosynthetic reaction tank; 12~. Gas inlet tube; 13~. Gas inlet hole; 14'. Xenon light source > 16- 'Algae harvesting port; 1 8 ~ vertical mixer; 20 0 ~ medium addition port; 22 ~ gas outlet can simultaneously detect C02; 24 ~ pH, dissolved oxygen and temperature detection; 26~ wheels.

第24頁 0296-7897TWF(N);293;Chiueow.p t dPage 24 0296-7897TWF(N); 293; Chiueow.p t d

Claims (1)

1308177 .案號 91106181 二Ί、 Λ-, 六、申請專利範圍 1 · 一種固定二氧化碳之生物光合反應器,包括:〜〜一 一平板式生物反應槽; 一進氣裝置,位於該生物反應槽底部,具有複數個進 氣孔; 複數個光源裝置,設置於該平板式生物反應槽的兩 側;以及 複數個垂直式攪拌裝置,設置於該反應槽内部; 其中該平板式生物反應槽更包括: 一培養基添加口,設置於該生物反應槽上方; 一微生物採收口,設置於該生物反應槽側面; 一偵測裝置’設置於該生物反應槽側面;以及 一控溫裝置,設置於該生物反應槽外,連接到該進氣 裝置。 2 ·如申請專利範圍第1項所述之固定二氧化碳之生物 光合反應器,其中該微生物採收口係用以排出過多微生 物。 3. 如申請專利範圍第1項所述之固定二氧化;5炭之生物 光合反應器,其中該偵測裝置可偵測二氧化碳含量。 4. 如申請專利範圍第1項之固定二氧化碳之生物光合 反應器,其中該偵測裝置可偵測酸鹼值。 5. 如申請專利範圍第1項之固定二氧化碳之生物光合 反應器,其中該偵測裝置可偵測溫度。 6 ·如申請專利範圍第1項之固定二氧化碳之生物光合 反應器,其中該偵測裝置可偵測溶氧量。1308177. Case No. 91106181 二Ί, Λ-, VI. Patent Application No. 1 · A biophotosynthetic reactor for fixing carbon dioxide, comprising: ~~ one-plate bioreactor; an air inlet device located at the bottom of the bioreactor a plurality of air inlets, a plurality of light source devices disposed on both sides of the flat type bioreactor; and a plurality of vertical stirring devices disposed inside the reaction tank; wherein the flat bioreactor further comprises: a medium addition port disposed above the biological reaction tank; a microbial harvesting port disposed on a side of the biological reaction tank; a detecting device disposed on a side of the biological reaction tank; and a temperature control device disposed on the living organism Outside the reaction tank, it is connected to the intake device. 2. The biophotosynthetic reactor for immobilizing carbon dioxide as described in claim 1, wherein the microbial collection port is for discharging excess microorganisms. 3. The fixed photodiode reactor of the 5 carbon as described in claim 1, wherein the detecting device can detect the carbon dioxide content. 4. The biophotosynthetic reactor for fixed carbon dioxide, as claimed in claim 1, wherein the detection device detects the pH value. 5. The biophotosynthetic reactor for fixed carbon dioxide, as claimed in claim 1, wherein the detecting device detects the temperature. 6 • A biophotosynthetic reactor for fixed carbon dioxide as claimed in claim 1 wherein the detection device detects dissolved oxygen. 0296-7897TWF3(N);sus anwu.p t c 第25頁 1308177 _ 案號 9110B1R1 六、申請專利範圍 '--- 修正 7 ’如申请專利範園第 反應器,其中該控溫袭置 前控制溫度。 1項之固定二氧化碳之生物光合 可在氣體進入平板式生物反應槽 8. 如申請專利範園第 反應器,其中該進氣孔可 板式生物反應槽,以進行 9. 如申請專利範圍第 反應器’其中該光源袭置 侧。 1項之固定二氧化碳之生物光合 使含有二氧化碳之氣體通入該平 氣舉式培養。 1項之固定二氧化碳之生物光合 係平均配置於該生物反應槽之兩 & .如#申:寸利乾圍第1項之固定二氧化碳之生物光合 反應盗,其中該光源範圍介Ki7〇〇_i5〇〇〇 。 yv ^ 如申明專利旄圍第1 〇項之固定二氧化碳之生物光 5反應器,其中該光源約為丄〇 〇 〇 〇丨ux。 1 2.如中明專利範圍第1項之固定二氧化碳之生物光合 反應器,其^該攪拌裝置係垂直貫穿該生物反應槽。 1 3.如申明專利範圍第丨項所述之固定二氧化碟之生物 光合反應器,其中該平板式生物反應槽之厚度介於6_25公 分。 1 4.如申請專利範圍第1 3項所述之固定二氧化碳之生 物光合反應盜’其中該平板式生物反應槽之厚度約為21公 分。 1 5 · —種光合微生物培養方法,包括下列步驟: 將一二氧化碳氣體先通入如申請專利範圍第1項之固 定二氧化碳之生物光合反應器中的控溫裝置,使達到一預0296-7897TWF3(N); sus anwu.p t c Page 25 1308177 _ Case No. 9110B1R1 VI. Application for patent scope '--- Amendment 7 ‘If the patent is applied to the reactor, the temperature is controlled before the temperature control. A fixed carbon dioxide biophotosynthetic energy can enter the flat bioreactor in the gas. 8. For example, the patented Fan Park reactor, wherein the gas inlet can be a plate type biological reaction tank to carry out 9. As claimed in the patent scope reactor 'The light source hits the side. Bio-photosynthetic of a fixed carbon dioxide in one item allows a gas containing carbon dioxide to pass into the flat-lift culture. A fixed carbon dioxide biophotosynthetic system of the first item is disposed in the biological reaction tank of the two &. #申:寸利干围1 item of fixed carbon dioxide biophotosynthetic reaction stolen, wherein the source range is Ki7〇〇_ I5〇〇〇. Yv ^ As claimed in the patent, the fixed carbon dioxide bio-light 5 reactor of the first item, wherein the source is approximately 丄〇 〇 〇丨 ux. 1 2. The biophotosynthetic reactor for immobilizing carbon dioxide according to item 1 of the patent scope of the invention, wherein the stirring device vertically penetrates the biological reaction tank. The biological photosynthetic reactor of the fixed dioxide disc according to the invention of claim 2, wherein the flat bioreactor has a thickness of 6-25 cm. 1 4. The photosynthetic reaction of the fixed carbon dioxide as described in claim 13 of the patent application wherein the thickness of the flat bioreactor is about 21 cm. 1 5 · A method for cultivating a photosynthetic microorganism, comprising the steps of: introducing a carbon dioxide gas into a temperature control device in a biophotosynthetic reactor of fixed carbon dioxide as claimed in claim 1 0296-7897TWF3(N);susanwu.ptc 第 26 頁 1308177 __案號9Π06:181_车月 .日 修正__ 六、申請專利範圍 定溫度,以及 使該温度調整過之二氧化碳氣體與該生物光合反應器 中含有光合微生物之培養基接觸,進行光合微生物之培 養。 1 6.如申請專利範圍第1 5項所述之光合微生物培養方 法’其中該控溫裝置包括一冷卻器。 17_ —種固定二氧化碳之方法’其包括下列步驟: 將含有二氧化碳之氣體通入如申請專利範圍第1項之 固定二氧化碳之生物光合反應器中的控溫裝置,使^ i ^氣體 達到一預定溫度; 再使該氣體與該生物光合反應器中含有光合微生物纪 浮之培養基接觸;以及 @ 於該生物光合反應器之兩側提供光源,並添加適去拉 養基,再輔以攪拌’以進行光合微生物固定二氧化碳:^ 用。 作 1 8 ·如申請專利範圍第〗7項所述之固定二氧化碳之方 法’其中該控溫裝置包括一冷卻器。 1 9.如申請專利範圍第1 7項所述之固定二氧化碳之方 法,其中該光合微生物包括藻類。 2 0.如申請專利範圍第丨7項所述之固定二氧化碳之方 法’其中該光合反應器包括一平板式光合反應器。 21.如申請專利範圍第1 7項所述之固定二氧化噥之方 法’其中該光源範圍介於lux。 2 2.如申請專利範圍第2 1項所述之固定二氧化碳之方0296-7897TWF3(N);susanwu.ptc Page 26 1308177 __Case No. 9Π06:181_车月.日修正__ 6. Applying the patent range to set the temperature, and making the temperature adjusted carbon dioxide gas and the biophotosynthetic The medium containing the photosynthetic microorganism in the reactor is contacted to culture the photosynthetic microorganism. 1 6. The photosynthetic microorganism culture method according to claim 15 wherein the temperature control device comprises a cooler. 17_ a method for fixing carbon dioxide', comprising the steps of: introducing a gas containing carbon dioxide into a temperature control device in a biophotosynthetic reactor of fixed carbon dioxide according to claim 1 of the patent application, so that the gas reaches a predetermined temperature And contacting the gas with the medium containing the photosynthetic microorganisms in the biophotosynthetic reactor; and @ providing a light source on both sides of the biophotosynthetic reactor, adding a suitable pull-out group, and then stirring Photosynthetic microorganisms fix carbon dioxide: ^. The method of fixing carbon dioxide as described in claim 7 wherein the temperature control device comprises a cooler. A method of immobilizing carbon dioxide as described in claim 17 wherein the photosynthetic microorganism comprises algae. A method of fixing carbon dioxide as described in claim 7 wherein the photosynthetic reactor comprises a flat photosynthetic reactor. 21. A method of immobilizing cerium oxide as described in claim 17 wherein the source range is between lux. 2 2. The method of fixing carbon dioxide as described in item 2 of the patent application scope. 1308177 修正 _案號911Q6181_年月曰 六、申請專利範圍 法,其中該光源約為1 〇 〇 〇 〇 1 ux。1308177 Amendment _ Case No. 911Q6181_Yearly Month 曰 VI. Patent Application Law, where the light source is about 1 〇 〇 〇 〇 1 ux. 第28頁 0296-7897TWF3(N);susanwu.ptc 13081W1 06181號圖式修ϋ 修正日期:94.5.5 〇 20 30 40 50 60 70 af»s(、H5!:雒6 a 真核細胞球藻之光學密度0D值 ° 〇 P 〇 P 〇 ° 00 00 Γ™ΤPage 28 0296-7897TWF3(N); Susanwu.ptc 13081W1 06181 Schema Revision Date: 94.5.5 〇20 30 40 50 60 70 af»s(, H5!:雒6 a Eukaryotic Cell Optical density 0D value ° 〇P 〇P 〇° 00 00 ΓTMΤ 1308177 补年Γ月ΓΕ1 修止丨補充I 金黃藻之光學密度0D值 Ο 〇 to P w Ρ Ui U) 20 30 40 50 60 70 80m^£5(、h^) •c9 ._ι. ,α___J____L.1308177 Supplementary Year of the Moon ΓΕ 1 Restoration 丨 Supplement I The optical density of the golden algae 0D value Ο 〇 to P w Ρ Ui U) 20 30 40 50 60 70 80m^£5 (, h^) • c9 ._ι. , α___J____L. 1308177 修正;補充 二氧化碳之體積百分比(%)1308177 Correction; supplemental volume percentage of carbon dioxide (%)
TW91106181A 2002-03-28 2002-03-28 Method of culturing microorganism and apparatus thereof TWI308177B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91106181A TWI308177B (en) 2002-03-28 2002-03-28 Method of culturing microorganism and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91106181A TWI308177B (en) 2002-03-28 2002-03-28 Method of culturing microorganism and apparatus thereof

Publications (1)

Publication Number Publication Date
TWI308177B true TWI308177B (en) 2009-04-01

Family

ID=45071768

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91106181A TWI308177B (en) 2002-03-28 2002-03-28 Method of culturing microorganism and apparatus thereof

Country Status (1)

Country Link
TW (1) TWI308177B (en)

Similar Documents

Publication Publication Date Title
Yue et al. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae
Sadeghizadeh et al. CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor
Pires et al. Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept
Chiang et al. Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes
Hsueh et al. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta
Mousavi et al. CO 2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO 2 concentrations
KR102229628B1 (en) System for Biofuel production and Manufacturing method thereof
Karube et al. Biotechnological reduction of CO 2 emissions
Carlozzi Hydrogen photoproduction by Rhodopseudomonas palustris 42OL cultured at high irradiance under a semicontinuous regime
CN105209591A (en) Photobioreactor for CO2 biosequestration with immobilised biomass of algae or cyanobacteria
CN106399113A (en) High density microalgae culture method in membrane photobioreactor using municipal wastewater
Xu et al. Strengthening CO2 dissolution with zeolitic imidazolate framework-8 nanoparticles to improve microalgal growth in a horizontal tubular photobioreactor
Mortensen et al. The growth of Chlorella sorokiniana as influenced by CO 2, light, and flue gases
Romagnoli et al. Novel stacked modular open raceway ponds for microalgae biomass cultivation in biogas plants: preliminary design and modelling
Alhaboubi CO2 sequestration using a novel Belt Conveyor Reactor with rotating sieve trays compared with Airlift Bubble Column as photobioreactors
Vlaskin et al. Effectiveness of CO2 Capture by Arthrospira platensis Microalgae from a Mixture Simulating Flue Gases
US20120329089A1 (en) Methods of generating hydrogen
CN107937276A (en) A kind of method that carbon dioxide and acetic acid mixing regulation and control promote the growth of chlorella carbon sequestration
TWI308177B (en) Method of culturing microorganism and apparatus thereof
Konur Algal photobioreactors
CN105420176A (en) Microalgae breeding method with high CO2 tolerance and fixed rate
Lee et al. Continuous medium perfusion leads to long-term cell viability and oxygen production in high-density photobioreactors
RU2797838C1 (en) Method for utilization of carbon dioxide using microalgae chlorella
KR101250856B1 (en) Method of controlling concentration of carbon dioxide for carbon dioxide fixing device using catbonated water
CN114107044B (en) Baffle plate type magneto-optical biological hydrogen production reactor and photo-fermentation hydrogen production process

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent