TWI306939B - Micro displacement sensor - Google Patents

Micro displacement sensor Download PDF

Info

Publication number
TWI306939B
TWI306939B TW95149079A TW95149079A TWI306939B TW I306939 B TWI306939 B TW I306939B TW 95149079 A TW95149079 A TW 95149079A TW 95149079 A TW95149079 A TW 95149079A TW I306939 B TWI306939 B TW I306939B
Authority
TW
Taiwan
Prior art keywords
channel
crystal column
crystal
column
substrate
Prior art date
Application number
TW95149079A
Other languages
Chinese (zh)
Other versions
TW200827656A (en
Inventor
Zhen-Feng Xu
Guo-Fan Jin
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95149079A priority Critical patent/TWI306939B/en
Publication of TW200827656A publication Critical patent/TW200827656A/en
Application granted granted Critical
Publication of TWI306939B publication Critical patent/TWI306939B/en

Links

Description

1306939 九、發明說明: 【發明所屬之技術領域】 本發明係涉及一種微位移感測器,特別涉及一種光子 晶體的微位移感測器。 【先前技術】 微位移感測器係微機電系統 (Micro-Electro-Mechanical Systems,MEMS)中較爲重1306939 IX. Description of the Invention: [Technical Field] The present invention relates to a micro-displacement sensor, and more particularly to a micro-displacement sensor for a photonic crystal. [Prior Art] The micro-displacement sensor is relatively heavy in Micro-Electro-Mechanical Systems (MEMS)

要的元件之一,係用於準確測量微機電系統部件之間的相 對位移,另,微位移感測器於生物感測、原子力顯微鏡等 器件中亦有著較爲廣泛的應用。 由於光子晶體具錢制光子禁帶效應,基於光子晶 體設計的微位減測H被廣泛發展,#,基於光子晶體波 導的高靈敏度位移感㈣,其能於G〜15a (a爲光子晶體 的晶格常數)的測量範圍内實現高於的測量靈敏 度;基於光子贿效應與法^ (FanQ)干涉的位移感測器, 當相對位移改縣波長的1%,能實現難的透過率對比 度;基於光子晶體缺陷諧振腔的微位移感測器,其能於 -〇.55a〜G.6Ga _量範圍實現的測量靈敏度。 惟’於上述微位移感測器中,由於可測量的位移範圍很小, 很難具有較大的動態範圍,因而,不㈣量超過二倍 當數的付銘。 的位移。 、有鑒於此’確有必要提供—種微位移感測器,該微位 移感測器具有較大的_範圍,可測量超過二倍晶格常數 7 1306939 ’ 【發明内容】 . 下面將藉由實施例進一步詳細說明一種微位移感測 器,該微位移感測器具有較大的動態範圍,可測量超過兩 倍晶格常數的位移。 一種微位移感測器,包括第一光子晶體模組、第二光 子晶體模組、鐳射源及探測器。該第一光子晶體模組包括 固定設置的第一基底及呈矩陣方式垂直排列於第一基底上 Φ 的第一晶柱。第一晶柱矩陣内藉由第一晶柱的缺失形成第 一導光通道,該第一導光通道包括第一水平通道及分別設 置入光口與出光口且分別與第一水平通道兩末端連通的兩 第垂直通道。错射源設置於入光口處。第二光子晶體模 組包括第二基底及呈矩陣方式垂直排列於第二基底上的第 一晶柱。第二基底與第一基底平行設置且可相對於第一基 底水平移動。第二晶柱矩陣内藉由第二晶柱的缺失形^ 二導光通道’該第二導光通道包括與第—水平通道間隔一 • 排第一晶柱及一排第二晶柱的第二水平通道以及與第二水 平通道末端連通並形成探測口的第二垂直通道。探測器設 置於探測口處並與其相對固定。第二水平通道於第二光= 晶體模組的移動中與第一水平通道相互耦合。 “本發明亦提供一種微位移感測器,包括第一光子晶體 杈組、第二光子晶體模組、第三光子晶體模組、録射源、 第一探測器及第二探測器。第—光子晶體模組包括第一基 底及呈矩陣方結直於第—絲上㈣—晶柱: 晶柱矩陣内藉由第一晶柱的缺失形成第一導光通道。第一 1306939 導光通道包括第一水平通道及三個分別與第一水平通道中 間位置與兩末端連通並形成一入光口及兩出光口的第一垂 直通道。鐳射源設置於入光口處。第二光子晶體模組包括 第一基底及呈矩陣方式垂直排列於第二基底上的第二晶 柱。第二晶柱矩陣内藉由第二晶柱的缺失形成第二導光通 道。第二導光通道包括與第一水平通道間隔一排第一晶柱 與一排第二晶柱的第二水平通道及與第二水平通道末端連One of the required components is used to accurately measure the relative displacement between MEMS components. In addition, micro-displacement sensors are also widely used in biosensing, atomic force microscopy and other devices. Due to the photonic band gap effect of photonic crystals, the micro-bit reduction measurement H based on photonic crystal design is widely developed, #, based on the high-sensitivity displacement of photonic crystal waveguides (4), which can be used in G~15a (a is a photonic crystal The measurement sensitivity is higher than the measurement sensitivity within the measurement range of the lattice constant; the displacement sensor based on the photon bridging effect and the method of (FanQ) interference can achieve a difficult transmittance contrast when the relative displacement is changed to 1% of the wavelength of the county; A micro-displacement sensor based on a photonic crystal defect resonator, which is capable of measuring sensitivity in the range of -〇.55a~G.6Ga_. However, in the above micro-displacement sensor, since the measurable displacement range is small, it is difficult to have a large dynamic range, and therefore, the amount of the (four) quantity exceeds two times. Displacement. In view of the fact that it is indeed necessary to provide a micro-displacement sensor, the micro-displacement sensor has a larger _ range and can measure more than two times the lattice constant 7 1306939 '. [Invention] The embodiment further details a micro-displacement sensor having a large dynamic range that can measure displacements in excess of twice the lattice constant. A micro-displacement sensor includes a first photonic crystal module, a second photonic crystal module, a laser source, and a detector. The first photonic crystal module includes a first substrate fixedly disposed and a first crystal column vertically arranged on the first substrate in a matrix manner. a first light guiding channel is formed in the first crystal column matrix by the deletion of the first crystal column, the first light guiding channel includes a first horizontal channel and is respectively disposed at the optical port and the light exit port and respectively ends with the first horizontal channel Two vertical channels connected. The wrong source is placed at the entrance. The second photonic crystal module includes a second substrate and a first crystal column vertically arranged in a matrix on the second substrate. The second substrate is disposed in parallel with the first substrate and is horizontally movable relative to the first substrate. a second light guide channel in the second crystal column matrix by a second crystal column, the second light guide channel includes a first column and a second crystal column spaced apart from the first horizontal channel a second horizontal channel and a second vertical channel that communicates with the end of the second horizontal channel and forms a detection port. The detector is placed at the detection port and fixed relative to it. The second horizontal channel is coupled to the first horizontal channel in the movement of the second light=crystal module. The present invention also provides a micro-displacement sensor comprising a first photonic crystal unit, a second photonic crystal module, a third photonic crystal module, a recording source, a first detector and a second detector. The photonic crystal module includes a first substrate and a matrix squared on the first-wire (four)-crystal column: the first light guiding channel is formed by the deletion of the first crystal column in the crystal column matrix. The first 1306939 light guiding channel includes a first horizontal channel and three first vertical channels respectively communicating with the two ends at the intermediate position and the first horizontal channel, and forming a light entrance port and two light exit ports. The laser source is disposed at the light entrance port. The second photonic crystal module The first substrate and the second crystal column vertically arranged on the second substrate in a matrix manner. The second crystal column is formed by the deletion of the second crystal column in the second crystal column matrix. The second light guiding channel includes a horizontal channel is spaced apart by a row of first crystal columns and a second row of second column of horizontal columns and ends of the second horizontal channel

通並形成苐一探測口的第二垂直通道。第一探測器設置於 第一探測口處並與其相對固定設置。第三光子晶體模組包 括第三基底及呈矩陣方式垂直排列於第三基底上的第三晶 柱。第一晶柱、第二晶柱及第三晶柱具有相同的晶格常數 a。第二晶柱與第一晶柱交錯排列,即第三晶柱與對應列中 的第一晶柱的水平中心距離爲〇.25a的奇數倍。第三晶柱 矩陣内精由第三晶柱的缺失形成第三導光通道。第三導光 通道包括與第-水平通道則卜排第—晶柱與—排第三晶 柱的第三水平通道以及與第三水平通道末猶通並形成第 二探測口的第三垂直通道。第二探·設置於第二探測口 處並與其相_定。第二水平通道及第三水平通道於第二 光子晶體模_第三光子晶體模組的移動巾均與第一水平 通道相耦合。 曰與先前技術她較’本伽的微位移感·係基於光 =體間綠合效朗—餘移感漸構,具有較大動態 二狄ΙΓ量超過兩倍晶格常數的位移,甚至可測量數十 乜晶格常數的位移。 9 1306939 【實施方式】 下面將結合附圖對本發明微位移感測器10、60作進-步之詳細說明。 。月參閱目1 ’本實施例跑立移感測器10主要包括第- "體模、、且2◦、第一光子晶體模組30、鐳射源40及探 測器50。 第一光子晶ϋ模组2〇藉由一固定邊緣212固定設置, 該^一光子晶體模組2Q包括—第—基底_及垂直設置於 第基底210上的複數第一晶柱220。其中,第一晶柱220 呈矩陣方式排列於第一基底210上,第-晶柱矩陣内藉由 邰刀第一晶柱220的缺失形成第一導光通道24〇。該第一 ‘光通道240 u形分佈,包括一第一水平通道犯 及兩第-垂直通道244、246,該兩第一垂直通道施、卻 ㈣連通於第—水平通道242的兩末端並於第—光子晶體 模組20的固定邊緣212分別形成一入光口 248及一出光口 280。鐳射源40設置於第一光子晶體模組2〇的入光口 2仙。 第一光子晶體模組3〇與第一光子晶體模組2〇平行設 置且可相對於第—光子晶體模組20平行雜。該第二光子 晶體模組30包括-第二基底31〇及垂直設置於第二基底 310上的複數第二晶柱320。其中,第二基底310與第一基 底210處於同一平面内。第二晶柱320呈矩陣方式排列於 第二基底310上且與第—光子晶體模組2〇上第一晶柱22〇 對齊’第二晶柱矩陣内藉由部分第二晶柱32{)的缺失形成 第二導光通道340。該第二導光通道34〇呈“^ ”形分佈, 1306939 • 包括一第一水平通道342及一第二垂直通道344。其中, • 該苐一水平通道342與第一水平通道242平行設置,其與 第一水平通道242相隔一排第一晶柱220及一排第二晶柱 320,該第二水平通道342的長度L優選爲l〇a〜30a並於其 一末端形成一透光口 346。該第二垂直通道344連通第二 水平通道342的另一末端並於第二光子晶體模組3〇遠離第 一光子晶體模組20的邊緣形成一探測口 348。探測器50 5又置於第一光子晶體模組30的探測口 348並與該探測口 ί 348相對固定,優選地’探測器2〇爲光纖探測器。 其中,第一基底210與第二基底310均由絕緣材料或 半導體材料製成,如,矽、二氧化矽。第一晶柱220與第 二晶柱320具有相同的晶格常數a (晶格常數a爲相鄰晶 柱間的中心距離),該晶格常數的範圍優選爲1〇〇奈米〜1〇〇 微米’各晶柱的直徑優選爲〇. 3a〜0. 7a。第一導光通道240 的第一水平通道242與第二導光通道340的第二水平通道 _ 342間隔的第一晶柱210與第二晶柱310的中心距離D優 選爲0.7a〜1_ la。第二導光通道340的第二垂直通道344 與第一導光通道240形成出光口 280的第一垂直通道246 的水平距離爲沁,第一導光通道240形成入光口 248的第 一垂直通道244與第二光子晶體模組20靠近該第一垂直通 道244的邊緣312處的第二晶柱320的距離爲仏,第二導 光通道240的透光口 346與第一導光通道240形成入光口 248的第一垂直通道244的水平距離爲Ns,於第二光子晶 體模組30相對於第一光子晶體模組20水平向左或向右的 11 1306939 移動過程中,Nl、N2與吣均應大於零,從而確保第一光子 晶體模!且20的第-水平通道242與第二光子晶體模組3〇 的第二水平通道342相互耦合。即,當第二光子晶體模組 30相對於第一光子晶體模組2〇水平向左移動時,第二導 光通道340的透光口 346不應超過第一導光通道24〇形成 入光口 248的第-垂直通道244 ·,當第二光子晶體馳3〇 相對於弟一光子晶體模組2〇水平向右移動時,第二導光通 道340的第二垂直通道344不應超過第一導光通道2仙形 ^出光口 280的第一垂直通道246,同時’第二光子晶體 拉組20靠近第一垂直通道244的邊緣312處的第二晶柱 320不應超過第一導光通道24〇形成入光口 2牝的第一垂 直通道244。 使用時’將第二光子晶體模組3〇固定於待測器件上並 隨待測器件(圖中未顯示)相對於第一光子晶體模組移 動,鐳射源40發出的光進入第一光子晶體模組2〇的第一 導光通道240内,一部分光通過第一導光通道24〇並經由 出光口 280出射,另一部分光由於耦合效應透過第二光子 曰曰體模組30的透光口 346耗合到第二導光通道340内並經 由探測口 348被探測器50探測。隨著第二光子晶體模組 30的移動,耦合效率發生變化,透過光的光強也隨之變化, 藉由§買取探測器50獲得的光強與位移的正弦曲線(如圖2 所不)熊得出透過光的光強,進而得出第二光子晶體模組 30的水平位移’結合細分技術,本實施繼轉感測器可 實現小於0.01a的高解析度。由於上述Ni、Ns與沁的限制, 12 1306939 . 本實施例中微位移感測器的測量範圍爲a的整數倍,即測 -量的最大值爲⑹视與⑷他中的最小值,控制⑷、仏與仏 的數值可使本實施例微位移感測器的測量範圍達數十倍晶 格常數。 〇日日 凊參閱圖3 ’本發明另—實施例的微位移翻器即包 括第-光子晶體模組70、第二光子晶體模組8〇、第三光子 晶體模組90、鐳射源62、第一探測器64及第二探測器邸。 優選地,第-探測器64與第二探測器66均爲光纖探測器。 第一光子晶體模組70藉由一固定邊緣712固定設置, 該第-光子晶體模組70包括第一基底71〇及呈矩陣方式垂 直排列於第-基底710上的複數第一晶柱72Q。第一晶柱 矩陣内藉由第-晶柱720的缺失形成第一導光通道73〇。 第-導光通道730呈“η”形分佈,包括一第一水平通道 732及複數第一垂直通道734、736、738,中間的第一垂直 通道與第一水平通道732的中間位置連通並且於第一基底 . 710的固定邊緣712處形成一入光口 740。鐳射源62設置 於該入光口 740處。兩侧的第一垂直通道736、738與第一 水平通道732的兩末端相連通並於第一基底71〇的固定邊 緣Π2處分別形成一第一出光口 75〇及一第二出光口 76〇。 第二光子晶體模組80平行設置於第一光子晶體模組 70的一側,包括第二基底81〇及呈矩陣方式垂直排列於第 一基底.810上的第二晶柱820。該第二晶柱820與第一光 子晶體模組70上第一晶柱720對齊,第二晶柱矩陣内藉由 第二晶柱820的缺失形成第二導光通道83〇。該第二導光 13 1306939 通道830呈“π ”形分佈,包括一第二水平通道832及一 第二垂直通道834。第二水平通道832與第一水平通道732 平行設置,其與第一水平通道732相隔一排第一晶柱720 與一排第一晶柱820。該第二水平通道的長度Li優選爲 10a〜30a並於其靠近鐳射源62的末端形成一第一透光口 836。第二垂直通道834與第二水平通道832的另一末端連 通,其於第二光子晶體模組80遠離第一光子晶體模組 的邊緣形成一第一探測口 838。第一探測器64設置於第一 探測口 838處並與該第一探測口 838相對固定。 第二光子晶體模組90平行設置於第一光子晶體模組 70的另一側,其與第二光子晶體模組8〇設置爲一體結構, 亦可與第二光子晶體模組80分開且並列。該第三光子晶體 模組90包括第三基底91〇及呈矩陣方式垂直排列於第三基 底910上的第三晶柱92〇,第三晶柱92〇與第一光子晶體 模組70的第一晶柱720交錯排列,第三晶柱92〇與對應列 中的第一晶柱720的水平中心距離(1爲〇. 25a的奇數倍, 優選地,水平中心距離d爲〇. 25a。第三晶柱矩陣内藉由 第二晶柱920的缺失形成第三導光通道93〇,該第三導光 通這930呈“厂”形分佈,包括一第三水平通道932及一 第三垂直通道934。第三水平通道932與第一水平通道了32 平行設置’其與第-水平通道732相隔一排第—晶柱卿 與一排第三晶柱920。該第三水平通道的長度L2優選爲 l〇a〜30a並於其靠近鐳射源62的末端形成一第二透光口 936。第三垂直通道934與第三水平通道932的另一末端連 14 13〇6939 通其於第二光子晶體模組90遠離第一光子晶體模組7〇 、邊緣开^成—第二探測口 938。第二探測器66設置於第二 援測口 938處並與該第二探測口 938相對固定。 ^其中,第一基底710、第二基底810與第三基底910 岣由絕緣材料或者半導體材料製成,如,矽、二氧化矽。 ,—曰=柱720、第二晶柱82G與第三晶柱92Q具有相同的 才:苇數a (晶格常數a爲相鄰晶柱間的中心距離),該晶 | ¥數的範圍優選爲奈岽〜l〇Q微米,各晶柱的直徑優 選爲0.3a〜0.7a。第一導光通道730的第一水平通道732 輿第二導光通道830的第二水平通道832間隔的第一晶柱 720與第二晶柱82〇的中心距離爲仏;第一導光通道73〇 的第水平通道732與第三導光通道930的第三水平通道 932間隔的第一晶柱72〇與第三晶柱92Q的中心距離爲匕, 該中心距離1)2與Dl相同,均優選為0.7a〜1.1a。該第二導 光通道830的第二垂直通道834與第一導光通道73〇形成 | 第一出光口 760的第一垂直通道738的水平距離爲n4,第 二導光通道930的第三垂直通道934與第一導光通道73〇 形成第一光出口 750的第一垂直通道γ36的水平距離爲 Ns ’該第二導光通道83〇的第二水平通道832形成第一透 光口 836的末端與第一導光通道730形成入光口 740的第 一垂直通道734的水平距離爲a,該第三導光通道930的 第三水平通道932形成第二透光口 936的末端與第一導光 通道730形成入光口 740的第一垂直通道734的水平距離 爲Ντ ’於第二光子晶體模組8〇與第三光子晶體模組9〇相 15 1306939 =第:光子晶體模組7〇水平向左或向右的移動過程 73?㈣5、&與N?均應大於零,從而確保第—水平通道 、,、:第―水平通道832以及第一水平通道732與第三水 平通道932均相互耦合。即,當第二光子晶體模組 80與第 二先^體· 9G姉於第—光子晶體模組Μ水平向右 移動第_垂直通道834不應超過第一導光通道7別形 成第二光出口 76G的第-垂直通道738,同時,第二透光 口 936不應超過第一導光通道730形成入光口 740的第一 垂直通道734;當第二光子晶體模組8G與第三光子晶體模 組90相對於第一光子晶體模、组70水平向左移動時,第三 垂直通道934不應超過第一導光通道730形成第一出光口 750的第垂直通道736 ’同時,第一透光口 836不應超過 第一導光通道730形成入光口 740的第一垂直通道734。 使用時,將第二光子晶體模組80與第三光子晶體模組 90固丈於待測器件(圖未示)上並隨待測器件移動,當待 測器件帶動第二光子晶體模組80與第三光子晶體模組90 相對於第—光子晶體模組70水平移動時,鐳射源62發出 的光進入第一光子晶體模組70的第一導光通道730内,一 部分光通過第一導光通道730並經由第一出光口 750與第 二光出口 760出射,一部分光由於耦合效應透過第二光子 晶體模組80的第一透光口 836耦合到第二導光通道830内 並經由第—探測口 838被第一探測器64探測,另一部分光 由於輪合效應透過第三光子晶體模組90的第二透光口 936 耗合到第三導光通道930内並經由第二探測口 938被第二 16 1306939 第一透光口 836 第一探測口 838 第三光子晶體模塊 90 第三基底 910 第二晶柱 920 第三導光通道 930 第三水平通道 932 第三垂直通道 934 第二透光口 936 第二探測口 938 19The passage forms a second vertical passage of the first detection port. The first detector is disposed at the first detecting port and disposed opposite to the first detecting port. The third photonic crystal module includes a third substrate and a third crystal column vertically arranged on the third substrate in a matrix manner. The first crystal column, the second crystal column, and the third crystal column have the same lattice constant a. The second crystal column is staggered with the first crystal column, that is, the horizontal center distance of the third crystal column and the first crystal column in the corresponding column is an odd multiple of 〇.25a. The third crystal column matrix is formed by the absence of the third crystal column to form a third light guiding channel. The third light guiding channel includes a third horizontal channel that is aligned with the first horizontal channel and the third crystal column, and a third vertical channel that is opposite to the third horizontal channel and forms a second detecting port. . The second probe is disposed at the second detection port and is set to be opposite thereto. The second horizontal channel and the third horizontal channel are coupled to the first horizontal channel of the second photonic crystal mode to the third photonic crystal module.曰 Compared with the prior art, she compares the 'micro-displacement sensation of the gamma' based on the light-body-green kinetic effect--the shift of the residual sensation, and the displacement of the larger dynamic Didi 超过 more than twice the lattice constant, even Measures the displacement of several ten thousand lattice constants. 9 1306939 [Embodiment] A detailed description of the micro-displacement sensor 10, 60 of the present invention will be made in conjunction with the accompanying drawings. . Referring to the item 1 of the present embodiment, the running motion sensor 10 mainly includes a first " phantom, and 2, a first photonic crystal module 30, a laser source 40, and a detector 50. The first photonic crystal module 2 is fixedly disposed by a fixed edge 212. The photonic crystal module 2Q includes a first substrate and a plurality of first crystal pillars 220 vertically disposed on the substrate 210. The first crystal pillars 220 are arranged in a matrix on the first substrate 210. The first light guide channel 24 is formed by the absence of the first crystal pillar 220 in the first crystal column matrix. The first 'light channel 240 is u-shaped, including a first horizontal channel that occupies two first-vertical channels 244, 246, and the two first vertical channels are connected, but (4) are connected to both ends of the first horizontal channel 242 and The fixed edge 212 of the photonic crystal module 20 forms an optical entrance 248 and a light exit 280, respectively. The laser source 40 is disposed at the entrance of the first photonic crystal module 2 2 2 sen. The first photonic crystal module 3 is disposed in parallel with the first photonic crystal module 2A and can be parallel with respect to the photonic crystal module 20. The second photonic crystal module 30 includes a second substrate 31 and a plurality of second crystal pillars 320 vertically disposed on the second substrate 310. The second substrate 310 is in the same plane as the first substrate 210. The second crystal pillars 320 are arranged in a matrix on the second substrate 310 and aligned with the first crystal column 22〇 on the first photonic crystal module 2'. The second crystal column matrix is partially in the second crystal column 32{) The absence of the second light guide channel 340 is formed. The second light guiding channel 34 is distributed in a "^" shape, and 1306939 includes a first horizontal channel 342 and a second vertical channel 344. Wherein, the first horizontal channel 342 is disposed in parallel with the first horizontal channel 242, and is separated from the first horizontal channel 242 by a row of the first crystal column 220 and a row of the second crystal column 320, and the length of the second horizontal channel 342 L is preferably l〇a to 30a and forms a light-transmissive opening 346 at one end thereof. The second vertical channel 344 communicates with the other end of the second horizontal channel 342 and forms a detection port 348 at an edge of the second photonic crystal module 3 away from the first photonic crystal module 20. The detector 50 5 is again placed in the detection port 348 of the first photonic crystal module 30 and is relatively fixed to the detection port 348, preferably the detector 2 is a fiber optic detector. Wherein, the first substrate 210 and the second substrate 310 are both made of an insulating material or a semiconductor material, such as germanium or germanium dioxide. The first crystal pillar 220 and the second crystal pillar 320 have the same lattice constant a (the lattice constant a is the center distance between adjacent crystal pillars), and the lattice constant preferably ranges from 1 nanometer to 1 〇. 5a〜0. 7a。 The diameter of the 〇. The center distance D between the first crystal pillar 210 and the second crystal pillar 310 of the first horizontal channel 242 of the first light guiding channel 240 and the second horizontal channel 342 of the second light guiding channel 340 is preferably 0.7a~1_la . The second vertical channel 344 of the second light guiding channel 340 and the first light guiding channel 240 form a horizontal distance 沁 of the first vertical channel 246 of the optical port 280, and the first light guiding channel 240 forms a first vertical direction of the optical port 248. The distance between the channel 244 and the second photonic crystal module 20 near the second crystal pillar 320 at the edge 312 of the first vertical channel 244 is 仏, and the light transmission port 346 of the second light guiding channel 240 and the first light guiding channel 240 The horizontal distance of the first vertical channel 244 forming the light entrance 248 is Ns, and the movement of the second photonic crystal module 30 relative to the first photonic crystal module 20 to the left or right 11 1306939, Nl, N2 Both 吣 and 吣 should be greater than zero to ensure that the first photonic crystal mode! and the first horizontal channel 242 of 20 and the second horizontal channel 342 of the second photonic crystal module 3 相互 are coupled to each other. That is, when the second photonic crystal module 30 moves horizontally to the left relative to the first photonic crystal module 2, the light transmission port 346 of the second light guiding channel 340 should not form light into the light beyond the first light guiding channel 24 The first vertical channel 244 of the port 248 does not exceed the second vertical channel 344 of the second light guiding channel 340 when the second photonic crystal is moved horizontally to the right relative to the photonic crystal module 2 A light guide channel 2 defines a first vertical channel 246 of the light exit port 280, while the second crystal column 320 of the second photonic crystal pull group 20 near the edge 312 of the first vertical channel 244 should not exceed the first light guide. The channel 24 is formed into a first vertical channel 244 that enters the aperture 2牝. When in use, the second photonic crystal module 3 is fixed on the device to be tested and moves with respect to the first photonic crystal module with the device to be tested (not shown), and the light emitted by the laser source 40 enters the first photonic crystal. In the first light guiding channel 240 of the module 2, a part of the light passes through the first light guiding channel 24 and exits through the light emitting port 280, and the other part of the light passes through the light transmitting port of the second photonic body module 30 due to the coupling effect. 346 is consuming into the second light guiding channel 340 and is detected by the detector 50 via the detecting port 348. As the second photonic crystal module 30 moves, the coupling efficiency changes, and the intensity of the transmitted light also changes, and the sinusoidal curve of the intensity and displacement obtained by the finder 50 is obtained (as shown in FIG. 2). The bear derives the light intensity of the transmitted light, and then the horizontal displacement of the second photonic crystal module 30 is combined with the subdivision technique. The relay of the present embodiment can achieve a high resolution of less than 0.01a. Due to the above limitation of Ni, Ns and enthalpy, 12 1306939. The measurement range of the micro-displacement sensor in this embodiment is an integral multiple of a, that is, the maximum value of the measurement-quantity is (6) and (4) the minimum value among them, control The values of (4), 仏 and 仏 can make the measurement range of the micro-displacement sensor of the embodiment reach tens of times the lattice constant. Referring to FIG. 3, the micro-shifting device of the present invention includes a first photonic crystal module 70, a second photonic crystal module 8A, a third photonic crystal module 90, a laser source 62, The first detector 64 and the second detector 邸. Preferably, the first detector 64 and the second detector 66 are both fiber optic detectors. The first photonic crystal module 70 is fixedly disposed by a fixed edge 712. The first photonic crystal module 70 includes a first substrate 71 and a plurality of first crystal pillars 72Q arranged in a matrix on the first substrate 710. The first light guiding channel 73 is formed in the first crystal column matrix by the absence of the first crystal column 720. The first light guiding channel 730 has an "n" shape distribution, and includes a first horizontal channel 732 and a plurality of first vertical channels 734, 736, 738. The first vertical channel in the middle is connected with the intermediate position of the first horizontal channel 732 and An entrance port 740 is formed at the fixed edge 712 of the first substrate 710. A laser source 62 is disposed at the light entrance 740. The first vertical channels 736, 738 on both sides communicate with the two ends of the first horizontal channel 732 and form a first light exit port 75 and a second light exit port 76 at the fixed edge Π 2 of the first substrate 71 分别, respectively. . The second photonic crystal module 80 is disposed in parallel on one side of the first photonic crystal module 70, and includes a second substrate 81 and a second crystal column 820 vertically arranged in a matrix on the first substrate .810. The second crystal column 820 is aligned with the first crystal column 720 on the first photonic crystal module 70. The second crystal column 83 is formed by the absence of the second crystal column 820. The second light guide 13 1306939 has a channel 830 distributed in a "π" shape, and includes a second horizontal channel 832 and a second vertical channel 834. The second horizontal channel 832 is disposed in parallel with the first horizontal channel 732, and is spaced apart from the first horizontal channel 732 by a row of first crystal columns 720 and a row of first crystal columns 820. The length Li of the second horizontal passage is preferably 10a to 30a and a first light transmitting opening 836 is formed at the end thereof near the laser source 62. The second vertical channel 834 is connected to the other end of the second horizontal channel 832. The second photonic crystal module 80 forms a first detecting port 838 away from the edge of the first photonic crystal module. The first detector 64 is disposed at the first detecting port 838 and is opposite to the first detecting port 838. The second photonic crystal module 90 is disposed on the other side of the first photonic crystal module 70 in parallel with the second photonic crystal module 8 , and may be separated from the second photonic crystal module 80 and juxtaposed. . The third photonic crystal module 90 includes a third substrate 91 〇 and a third crystal pillar 92 垂直 vertically arranged on the third substrate 910 in a matrix manner, and the third crystal pillar 92 〇 and the first photonic crystal module 70 A crystal column 720 is staggered, and the horizontal distance between the third crystal column 92A and the first crystal column 720 in the corresponding column (1 is an odd multiple of 〇. 25a, preferably, the horizontal center distance d is 〇. 25a. A third light guiding channel 93A is formed in the matrix of the third crystal column by the deletion of the second crystal column 920. The third light guiding light is distributed in a "factory" shape, including a third horizontal channel 932 and a third a vertical channel 934. The third horizontal channel 932 is disposed in parallel with the first horizontal channel 32. It is spaced apart from the first horizontal channel 732 by a row of crystallographic columns and a row of third crystal columns 920. The length of the third horizontal channel L2 is preferably l〇a~30a and forms a second light-transmissive opening 936 near the end of the laser source 62. The third vertical channel 934 is connected to the other end of the third horizontal channel 932 by 14 13〇6939. The two-photonic crystal module 90 is away from the first photonic crystal module 7〇, and the edge is opened into a second detecting port 938. The second detector 66 is disposed at the second sensing port 938 and is opposite to the second detecting port 938. Wherein, the first substrate 710, the second substrate 810 and the third substrate 910 are made of an insulating material or a semiconductor material. For example, 矽, 二2, 曰 = column 720, second column 82G and the third column 92Q have the same 苇 number a (lattice constant a is the center distance between adjacent crystal columns) The number of the crystals is preferably in the range of n- to 〇Q micron, and the diameter of each crystal column is preferably 0.3a to 0.7a. The first horizontal channel 732 of the first light guiding channel 730 舆 the second light guiding channel 830 The center distance between the first crystal column 720 and the second crystal column 82A of the second horizontal channel 832 is 仏; the third horizontal channel 732 of the first light guiding channel 73〇 and the third horizontal channel of the third light guiding channel 930 The distance between the center of the first crystal column 72〇 and the third crystal column 92Q of 932 is 匕, and the center distance 1)2 is the same as D1, and is preferably 0.7a to 1.1a. The second vertical channel 834 of the second light guiding channel 830 is formed with the first light guiding channel 73 | | the horizontal distance of the first vertical channel 738 of the first light exit opening 760 is n4, and the third vertical direction of the second light guiding channel 930 is vertical The horizontal distance between the channel 934 and the first light guiding channel 73 〇 forming the first vertical channel γ36 of the first light exit 750 is Ns 'the second horizontal channel 832 of the second light guiding channel 83 形成 forms the first light transmitting port 836 The horizontal distance from the end to the first vertical channel 734 of the first light guiding channel 730 into the optical port 740 is a, and the third horizontal channel 932 of the third light guiding channel 930 forms the end of the second light transmitting port 936 and the first The horizontal distance of the light guiding channel 730 forming the first vertical channel 734 of the light entrance 740 is Ντ ' in the second photonic crystal module 8 〇 and the third photonic crystal module 9 15 15 1306939 =: photonic crystal module 7 〇 Horizontal left or right movement process 73? (4) 5, & and N? should be greater than zero, thereby ensuring the first horizontal channel,,,: the first horizontal channel 832 and the first horizontal channel 732 and the third horizontal channel 932 are all coupled to each other. That is, when the second photonic crystal module 80 and the second precursor 9G are moved horizontally to the right of the first photonic crystal module, the first vertical channel 834 should not exceed the first light guiding channel 7 to form the second light. The first vertical channel 738 of the outlet 76G, at the same time, the second light transmission port 936 should not exceed the first vertical channel 734 of the first light guiding channel 730 into the optical port 740; when the second photonic crystal module 8G and the third photon When the crystal module 90 moves horizontally to the left relative to the first photonic crystal mode, the group 70, the third vertical channel 934 should not exceed the first light guide channel 730 to form the first vertical channel 736 of the first light exit port 750'. The light transmissive opening 836 should not exceed the first vertical channel 734 of the first light guiding channel 730 formed into the optical port 740. In use, the second photonic crystal module 80 and the third photonic crystal module 90 are fixed on the device to be tested (not shown) and moved with the device to be tested, and when the device under test drives the second photonic crystal module 80 When the third photonic crystal module 90 is horizontally moved relative to the photonic crystal module 70, the light emitted by the laser source 62 enters the first light guiding channel 730 of the first photonic crystal module 70, and a part of the light passes through the first guiding. The light channel 730 is emitted through the first light exit port 750 and the second light exit port 760, and a part of the light is coupled into the second light guide channel 830 through the first light transmission port 836 of the second photonic crystal module 80 due to the coupling effect. The detection port 838 is detected by the first detector 64, and the other part of the light is absorbed into the third light guiding channel 930 through the second light transmitting port 936 of the third photonic crystal module 90 due to the wheeling effect and via the second detecting port. 938 is second 16 1306939 first light transmission port 836 first detection port 838 third photonic crystal module 90 third substrate 910 second crystal column 920 third light guiding channel 930 third horizontal channel 932 third vertical channel 934 second Light transmission port 936 Probe port 93819

Claims (1)

1306939 十、申請專利範圍 1. 一種微位移感測器,包括第一光子晶體模組、第二光子 晶體模組、鐳射源及探測器,該第一光子晶體模組包括 固定設置的第一基底及呈矩陣方式垂直排列於第一基底 上的第一晶柱,該第一晶柱矩陣内藉由第一晶柱的缺失 形成第一導光通道,該第一導光通道包括一第一水平通 道及分別設置有入光口與出光口且分別與第一水平通道 兩末端連通的兩第一垂直通道,鐳射源設置於入光口 處,該第二光子晶體模組包括第二基底及呈矩陣方式垂 直排列於第二基底上的第二晶柱,該第二基底與第-基 底平行設置且可姉於第—基底水平㈣,該第二晶柱 與第一晶柱具有相同的晶格常數,第二晶柱矩陣内藉由 第二晶柱的缺失形成第二導光通道,該第二導光通道包 ,與第-水平通道間隔_排第—晶柱與—排第二晶桂的 弟二水平顧以及與第二水平通道末端連通並形成探測 口 ^第,垂直通道,探·設置於探測Π處並與其相對 疋第一水平通道於第二光子晶體模組的移動中與 一水平通道相互耦合。 〃 如申明專利ΙϋΙΙ第1項所述的微位移感測器,其令,第 -^柱與第二晶柱的晶格常數3爲刚奈米〜⑽微求。 如明專利範圍第2項所述的微位移感測器,並中 一晶柱與第二晶柱的晶柱直徑爲G.3a〜〇 7a。八 4.如申請專利範圍第2項所述的微位移感測器 —水平通道與第二水平通道間隔的第—晶柱*第二曰= 20 1306939 的中心距離爲〇.7a〜i.la。 5·如申請專利範圍第2項所述的微位移感測 一水平通道的長度爲IGa〜30a。 6·、如申請專利範圍第2項所述的微位移感測 測器爲光纖探測器。 7. =申μ專利乾圍第丨項所述的微位移感啦,其中,第 -基底與第二基底由絕緣材料或半導體材料製成。1306939 X. Patent Application Range 1. A micro-displacement sensor comprising a first photonic crystal module, a second photonic crystal module, a laser source and a detector, the first photonic crystal module comprising a first substrate fixedly disposed And a first crystal column vertically arranged on the first substrate in a matrix manner, wherein the first crystal column matrix forms a first light guiding channel by the deletion of the first crystal column, the first light guiding channel including a first level a first vertical channel having a light entrance port and a light exit port respectively connected to the two ends of the first horizontal channel, wherein the laser source is disposed at the light entrance, the second photonic crystal module includes a second substrate and a second crystal column vertically arranged on the second substrate, the second substrate being disposed in parallel with the first substrate and being at a level (four) of the first substrate, the second crystal column having the same lattice shape as the first crystal column a second light guiding channel formed by the deletion of the second crystal column in the second crystal column matrix, the second light guiding channel being spaced apart from the first horizontal channel _ row first - crystal column and - second crystal Brother's second level and the same And forming the horizontal end of the channel communicating port ^ detecting section, a vertical channel, disposed in the probe-probe Π and opposite thereto at a first horizontal passage piece goods to move in the second photonic crystal module coupled to each other with a horizontal channel.微 The micro-displacement sensor according to claim 1, wherein the lattice constant 3 of the first-th column and the second crystal column is a nano-~10 micro-finish. The micro-displacement sensor according to claim 2, wherein the crystal column diameter of the one crystal column and the second crystal column is G.3a to 〇 7a. 8. The micro-displacement sensor as described in claim 2 of the patent scope—the horizontal distance between the horizontal channel and the second horizontal channel—the second 曰=20 1306939 has a center distance of 〇.7a~i.la . 5. The micro-displacement sensing as described in claim 2 of the patent scope has a length of IGa~30a. 6. The micro-displacement sense detector described in claim 2 is a fiber optic detector. 7. The micro-displacement feeling described in the above-mentioned patent application, wherein the first substrate and the second substrate are made of an insulating material or a semiconductor material. 8. -種微位移_器,包括第4子晶體模組、第二光子 晶體模組、第二朵早Β辦描·知 先子日日體mt射源、第—探測器及8. A micro-displacement _ device, including a fourth sub-crystal module, a second photonic crystal module, a second pre-draw, a first-day mt source, a detector 器,其中,第 器,其中,探 第二探測n,該第-光子晶體模組包姉—基底及呈矩 陣方式垂直排列於第—基底上的第—晶柱,該第一晶柱 矩陣内藉由第-晶柱的缺失形成第—導光通道,該第一 導光通道包括第-水平通道及分別連通第一水平通道中 間位置與兩末端並形成-人光口及兩出如的三第一垂 直通道’錯射源設置於人光Π處’第二光子晶體模組包 括第二基底及呈矩陣方式垂直排列於第二基底上的第二 晶柱,該第二晶柱矩陣内藉由第二晶柱的缺失形成第二 導光通道’該第二導光通道包括與第一水平通道間隔一 排弟一晶柱與一排第二晶柱的第二水平通道以及與第二 水平通道末端連通並形成第一探測口的第二垂直通道, 第一探測器設置於第一探測口處並與其相對固定設置, 該弟二光子晶體模組包括第三基底及呈矩陣方式垂直排 列於第二基底上的第二晶柱’第一晶柱、第二晶柱及第 三晶柱具有晶格常數a ’苐二晶柱與第一晶柱交錯排列, 21 1306939 第三晶柱與對應列中的第一晶柱的水平中心距離d爲 0:251的奇數倍’第二晶柱轉内藉由第三晶柱的缺失 形成第—V光通道’該第二導光通道包括與第_水平通 I門隔排第^柱與—排第三晶柱的第三水平通道以 及與第三水平通道末端連通並形成第二探測口的第三垂 巧’第二探測器設置於第二探測口處並與其相對固 第—水平通道與第二水平通道於第二光子晶體模組 ,、第二光子晶體模組的移動中均分別與第—水平通道相 互耦合。 9.如申請專利範圍第8項所述的微位移感測器,其中,晶 格常數a爲1〇〇奈米〜100微米。 ★如申明專利第9項所述的微位移感測器,其中, 第—晶柱、第二晶柱與第三晶柱的晶柱直徑爲 〇. 3a〜0· 7a。 * •★如u利範圍第9項所述的微位移感測器,其中, 第-水平通道與所述的第二水平通道間隔的第—晶柱及 第二晶柱的中心距離爲0.7a〜Ma,第一水平通道與第 三水平通道間隔的第-晶柱和第三晶柱的中心距離 0.7a 〜l.la。 ”’、 12. —如中請專利範圍第9項所述的微姆感測器,其中, 第一水平通道及第三水平通道的長度爲1〇a〜3〇a。 13. ^申請專利範圍第9項所述的微位移感難,其中, 第三晶柱與對應列中的第一晶柱的水平中心距產 〇.25a。 A 22 1306939 - 14.如申請專利範圍第9項所述的微位移感測器,其中, . 第一探測器及第二探測器爲光纖探測器。 15.如申請專利範圍第8項所述的微位移感測器,其中, 第一基底、第二基底及第三基底由絕緣材料或半導體材 料製成。 23Wherein the first detector n, the first photonic crystal module comprises a substrate and a first crystal column vertically arranged on the first substrate in a matrix, the first crystal column matrix Forming a first light guiding channel by the deletion of the first crystal column, the first light guiding channel comprising a first horizontal channel and respectively connecting the intermediate position and the two ends of the first horizontal channel and forming a human optical port and two The first vertical channel 'dislocation source is disposed at the human pupil'. The second photonic crystal module comprises a second substrate and a second crystal column vertically arranged on the second substrate in a matrix manner, the second crystal column matrix borrowing Forming a second light guiding channel by the deletion of the second crystal column. The second light guiding channel includes a second horizontal channel spaced apart from the first horizontal channel by a row of a crystal column and a row of a second crystal column, and a second level a second vertical channel is formed at the end of the channel and forming a first detecting port. The first detector is disposed at a first detecting port and is fixedly disposed opposite thereto. The second photonic crystal module includes a third substrate and is vertically arranged in a matrix manner. On the second substrate The crystal column 'the first crystal column, the second crystal column and the third crystal column have a lattice constant a '苐 two crystal columns and the first crystal column are staggered, 21 1306939 the third crystal column and the first crystal column in the corresponding column The horizontal center distance d is an odd multiple of 0: 251. The second crystal column is rotated to form a first-V optical channel by the deletion of the third crystal column. The second light guiding channel includes a gap from the first horizontal channel. a third horizontal channel of the first column and the third column, and a third vertical 'second detector connected to the end of the third horizontal channel and forming a second detecting port are disposed at the second detecting port and opposite thereto The solid-horizontal channel and the second horizontal channel are respectively coupled to the first horizontal channel in the movement of the second photonic crystal module and the second photonic crystal module. 9. The micro-displacement sensor of claim 8, wherein the lattice constant a is from 1 nanometer to 100 micrometers. The micro-displacement sensor according to claim 9, wherein the diameter of the crystal column of the first crystal column, the second crystal column and the third crystal column is 〇. 3a~0· 7a. The micro-displacement sensor of claim 9, wherein the first-horizontal channel is spaced apart from the second horizontal channel by a center-to-crystal column and a second crystal column having a center distance of 0.7a ~Ma, the first horizontal channel is spaced apart from the third horizontal channel by a center-to-crystal column and a third crystal column having a center distance of 0.7a to 1.la. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The micro-displacement feeling described in the ninth item is difficult, wherein the horizontal distance between the third crystal column and the first crystal column in the corresponding column is 〇25a. A 22 1306939 - 14. As claimed in claim 9 The micro-displacement sensor, wherein: the first detector and the second detector are fiber optic detectors. The micro-displacement sensor of claim 8, wherein the first substrate, the first substrate The second substrate and the third substrate are made of an insulating material or a semiconductor material.
TW95149079A 2006-12-27 2006-12-27 Micro displacement sensor TWI306939B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149079A TWI306939B (en) 2006-12-27 2006-12-27 Micro displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149079A TWI306939B (en) 2006-12-27 2006-12-27 Micro displacement sensor

Publications (2)

Publication Number Publication Date
TW200827656A TW200827656A (en) 2008-07-01
TWI306939B true TWI306939B (en) 2009-03-01

Family

ID=44817351

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149079A TWI306939B (en) 2006-12-27 2006-12-27 Micro displacement sensor

Country Status (1)

Country Link
TW (1) TWI306939B (en)

Also Published As

Publication number Publication date
TW200827656A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
Smith et al. [7] Optical-trap force transducer that operates by direct measurement of light momentum
CN105209883B (en) For the index sensor and its manufacturing method analyzed analyte
JP2008533468A (en) Device for detecting single nanoparticles
US20120096956A1 (en) Photonic crystal pressure sensor
US7777873B2 (en) Refractive index sensor
Wang et al. Polymeric dual-slab waveguide interferometer for biochemical sensing applications
US7990527B2 (en) Refractive-index sensor
US7499606B2 (en) Method for measuring micro displacements
JP2010261958A (en) Photonic crystal fiber sensor
TWI306939B (en) Micro displacement sensor
Xiang et al. Nanophotonics sensor based on microcantilever for chemical analysis
Huang et al. High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure
Girault et al. Influence of losses, device size, and mode confinement on integrated micro-ring resonator performance for absorption spectroscopy using evanescent field sensing
US9562810B2 (en) Deformable interferometric sensor using a polymer between reflectors to measure analyte absorption
JP4553240B2 (en) Photodetection device and photodetection method
Ren et al. Optical waveguide humidity sensor with symmetric multilayer configuration
US7596288B2 (en) Micro displacement sensor
Chaitavon et al. Highly sensitive refractive index measurement with a sandwiched single-flow-channel microfluidic chip
Gaber et al. Volume refractometry of liquids using stable optofluidic Fabry–Pérot resonator with curved surfaces
Berkmann et al. Optimization of fully integrated Al nanohole array-based refractive index sensors for use with a led light source
TWI306940B (en) Method of measuring micro displacements
Arafa et al. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities
Hocini et al. RETRACTED: Design of high sensitive glucose concentration sensor of photonic crystal cavity
Kauppinen et al. Grated waveguide optical cavity as a compact sensor for sub-nanometre cantilever deflections
US11828592B2 (en) Apparatus with cantilever light guide