TWI298415B - Microdisplay screen and lenticular lens sheet thereof - Google Patents

Microdisplay screen and lenticular lens sheet thereof Download PDF

Info

Publication number
TWI298415B
TWI298415B TW94101938A TW94101938A TWI298415B TW I298415 B TWI298415 B TW I298415B TW 94101938 A TW94101938 A TW 94101938A TW 94101938 A TW94101938 A TW 94101938A TW I298415 B TWI298415 B TW I298415B
Authority
TW
Taiwan
Prior art keywords
lenticular lens
lenticular
lens sheet
light
lens
Prior art date
Application number
TW94101938A
Other languages
Chinese (zh)
Other versions
TW200627042A (en
Inventor
Yen Chun Chou
Chung Mo Chiu
Original Assignee
Prodisc Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prodisc Technology Inc filed Critical Prodisc Technology Inc
Priority to TW94101938A priority Critical patent/TWI298415B/en
Publication of TW200627042A publication Critical patent/TW200627042A/en
Application granted granted Critical
Publication of TWI298415B publication Critical patent/TWI298415B/en

Links

Landscapes

  • Overhead Projectors And Projection Screens (AREA)

Description

1298415 九、發明說明: 【發明所屬之技術領域】 " 本發明係關於一種螢幕及其柱狀透鏡板,特別是關於 , 一種微顯示器螢幕及其柱狀透鏡板。 【先前技術】 月投顯示器係以其大螢幕、圖像清晰爲特色,與傳統 利用映像管之顯示器相比,背投式顯示器除了具有無輻 • 射、晝面尺寸大等優點外,更可直接接上電腦或是其他影 . 音設備,達到最大的娛樂效果。因此,隨著生活水準的提 高和居住條件的改善,背投顯示器愈來愈受到消費者的青 睞。 背投顯示器按照投影技術來區分,可以分成陰極射線 管(Cathode Ray Tube,CRT)投影技術、以及微顯示器 (Microdisplay)投影技術。其中,陰極射線管顯示器主要 是利用陰極射線管上的影像經由光學系統在螢幕上擴大 • 投影的顯示器;微顯示器則是利用各種不同的顯像單元, 例如穿透式液晶面板、數位微鏡元件(DMD)、反射式液 · 晶面板(LCoS),將光源發出的光投射在螢幕上的顯示器。 • 隨著視訊技術的提昇與市場的需求,近年來微顯示器 螢幕(Microdisplay Screen)係廣泛地運用於背投電視機 (Rear Projection TV )之顯示螢幕、終端機螢幕(Monitor Screen )、及多媒體展示發幕(Multi-screen Installation )等 等 1298415 請參照圖1 ’微顯不器螢幕1係為一穿透型營幕 (Transmissive Screen),其主要係由一菲淫耳透鏡板n (Fresnel Lens Sheet)與一柱狀透鏡板 i2 ( Lenticular Lens1298415 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a screen and a lenticular lens sheet thereof, and more particularly to a microdisplay screen and a lenticular lens sheet thereof. [Prior Art] The moon-projection display features its large screen and clear image. Compared with the traditional display with the image tube, the rear-projection display has the advantages of no radiation and large size. Connect directly to a computer or other audio equipment to achieve maximum entertainment. Therefore, with the improvement of living standards and the improvement of living conditions, rear projection displays are increasingly favored by consumers. Rear projection displays are classified according to projection technology and can be classified into cathode ray tube (CRT) projection technology and microdisplay (microdisplay) projection technology. Among them, the cathode ray tube display mainly uses a display on the cathode ray tube to expand and project the projection on the screen via an optical system; the micro display uses a variety of different developing units, such as a transmissive liquid crystal panel and a digital micromirror element. (DMD), reflective liquid crystal panel (LCoS), a display that projects light from a light source onto a screen. • With the advancement of video technology and market demand, in recent years, the Microdisplay Screen has been widely used in the display screens of Rear Projection TVs, Monitor Screens, and multimedia displays. Multi-screen Installation, etc. 1298415 Please refer to Figure 1 'Microdisplay Screen 1 is a Transmissive Screen, which is mainly composed of a Fresnel Lens Sheet. ) with a lenticular lens plate i2 ( Lenticular Lens

Sheet)所構成。其中,光源所發出的入射光先射入菲涅耳 透鏡板11聚光以形成平行光’再射至柱狀透鏡板12。藉 由柱狀透鏡板12之入光側上之複數柱狀透鏡12ι來控制 水平方向的光線分佈,以提昇影像的亮度均勻度,並使得 視域内的光線能做良好的運用。 驗另外,在柱狀透鏡板12之出光侧,更具有複數黑帶 條紋122 (Black Stripes),其係具有遮光性材料,且分別 精確覆蓋相對於柱狀透鏡121之非聚光部(N〇n_F〇cusing Part ),用以散射光線,並同時降低外部光線之影響。 通系’習知的柱狀透鏡板12之製造方法有二種,一 種是利用滾輪(Roller)來壓合並經過紫外光硬化成型, 其所製作之柱狀透鏡板12較薄;而另一種則是利用壓出 φ 機(Extruder)來壓出成形。然而,壓出機所製造出來的 柱狀透鏡板12,之厚度較厚(約800μιη)。如圖2所示,柱 狀透鏡板12之厚度愈小,光線折射的角度愈小(θι>θ2), 貝J螢幕較易有大視角;反之,如圖3所示,柱狀透鏡板I], 之厚度愈大,光線折射的角度愈小,則螢幕愈不容易有大 視角。因此,習知柱狀透鏡板12之製程中,大都係利用 滾輪壓合成形,以減少柱狀透鏡板 12之厚度(約200μιη), 進而達到大視角的作用。 然而’利用滾輪壓合成形來製造柱狀透鏡板12,則需 1298415 要較多的人力、無法自動化生產、會浪費較多的生產時 間,並且造成量產性較低等等缺點。因此,如何能使柱狀 :透鏡板12不受滾輪壓合製程及壓出機壓出製程之厚度限 r制,而均能達到大視角的功效,一直是業者致力要解決的 重要問題之一。 有鑑於上述課題,本案發明人爰因於此,亟思一種可 以不受柱狀透鏡板厚度限制均具有大視角功效之「微顯示 器螢幕及其柱狀透鏡板」。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種具有導光 部之微顯示器螢幕及其柱狀透鏡板,以增加大柱狀透鏡板 之視角。 緣是,為達上述目的,依本發明之微顯示器螢幕,其 係包含一柱狀透鏡板、以及一菲涅爾透鏡板。其中,柱狀 •透鏡板係具有複數第一柱狀透鏡,第一柱狀透鏡係沿一第 一方向平行設置於一光入射侧,第一柱狀透鏡係分別具有 一寬度,且分別具有至少一導光部。當複數光束由導光部 入射第一柱狀透鏡後,部份光束經折射後出射柱狀透鏡板 ' 於第一方向之位移距離,係大於第一柱狀透鏡之寬度。菲 涅爾透鏡板係與柱狀透鏡板相對而設。 為達上述目的,依本發明之柱狀透鏡板係具有複數第 一柱狀透鏡,第一柱狀透鏡係沿一第一方向平行設置於一 光入射侧,第一柱狀透鏡係分別具有一寬度,且分別具有 1298415 至少一導光部。當複數光束由導光部入射第一柱狀透鏡 後,部份光束經折射後出射柱狀透鏡板於第一方向之位移 二距離,係大於第一柱狀透鏡之寬度。 : 纟上所述,因依本發日狀微航H鋒及其柱狀透鏡 板,於柱狀透鏡板上係具有導光部。與習知技術相比,本 發明之微顯示器螢幕及其柱狀透鏡之導光部,係能使光束 折射後出射柱狀透鏡板於第一方向之位移距離,大於第一 柱狀透鏡之寬度。如此一來,即能提高微顯示器螢幕及其 鲁柱狀透鏡於大視角區域之亮度,使得微顯示器螢幕具有大 視角。因此,位於視角較大區域之使用者,則可因為微顯 示器螢幕亮度之提高而獲得較清晰之影像,使得產品之品 貝h之挺幵。再者,柱狀透鏡板係可利用壓出機來製作, 不但自動化生產容易、量產性高,故也降低了製程所需之 人力成本。 •【實施方式】 以下將參照相關圖式,說明依本發明之微顯示器螢幕 及其柱狀透鏡板之數個實施例。 第一實施例 、 如圖4所示,微顯示器螢幕2係包含一柱狀透鏡板 21、以及一菲淫爾透鏡板22。 柱狀透鏡板21係具有複數第一柱狀透鏡211。其中, 第一柱狀透鏡211之材質係為一熱塑性塑膠、或一光固性 樹脂。本實施例中,柱狀透鏡板21係由壓出機(Extruder) 1298415 壓出成形’其厚度係約為O.lmm至2mm。 菲涅爾透鏡板22係與柱狀透鏡板21相對而設。本實 細例中,菲涅爾透鏡板22係具有一菲涅爾透鏡221,菲涅 爾透鏡221係與複數柱狀透鏡板21相對而設。 睛苓照圖5,第一柱狀透鏡211係沿一第一方向!)平 4亍。又置於光入射側212。本實施例中,第一柱狀透鏡211 平行入射光線之截面形狀為一梯形。第一柱狀透鏡211係 分別具有一寬度P,且分別具有至少一導光部213。其中, ❿寬度P係、約為,而且寬度p係可與柱狀鏡 板21之厚度匹配。 月门時參知圖5及圖6 ’當複數光束由導光部213入 射第一柱狀透鏡211後,部份光束經折射後出射柱狀透鏡 板於第一方向D之位移距離s,係大於第一柱狀透鏡 之覓度P。如此一來,即可提昇大視角區域之亮度,使微 顯示器螢幕2具有大視角。 鲁 本汽知例中,由於出射柱狀透鏡板21之光束可能較 不夠分散,故可於柱狀透鏡板21之光出射側214再設置 :具有高密度擴散顆粒之擴散板,以使光束均勻分散。 請參照圖7,柱狀透鏡板21更具有複數第二柱狀透鏡 215,其係位於柱狀透鏡板21之一光出射側214,每一第 才主狀透鏡215係各自對應每一第一柱狀透鏡: # $本實施例中,第二柱狀透鏡215之材質係為一熱塑性 2膠、或一光固性樹脂。第一柱狀透鏡211及第二柱狀透 1298415 鏡215係為一體成形。 另外,柱狀透鏡板21更具有至少一黑帶條紋216,其 , 係設置於相鄰之第二柱狀透鏡215之間,黑帶條紋216係 具有遮光桎材料,用以提昇與外部光線(External light) 之對比’如此一來,可使微顯示器螢幕2具有高對比之性 質。 圖8係為圖7中之柱狀透鏡板21之光學路徑模擬圖。 如圓8所示,當部份光束由導光部213入射第一柱狀透鏡 春211後’係經折射後出射柱狀透鏡板21。由圖中可知,部 份出射柱狀透鏡板21之光束,係出射至較大視角之區域, 故能提高大視角區域之亮度,使得微顯示器螢幕2具有大 視角。 圖9係為本實施例中圖7之柱狀透鏡板21之增益值, 在此稱為”實驗組”,而對照組則為沒有導光部214之柱狀 透鏡板21’之增益值。由圖中可知,本實施例中之柱狀透Sheet). The incident light from the light source is first incident on the Fresnel lens plate 11 to condense to form parallel light and re-shot to the lenticular lens sheet 12. The horizontal light distribution is controlled by a plurality of cylindrical lenses 12ι on the light incident side of the lenticular lens sheet 12 to enhance the brightness uniformity of the image and to make the light in the field of view work well. In addition, on the light exiting side of the lenticular lens sheet 12, there are a plurality of black strips 122 (Black Stripes) which have a light-shielding material and precisely cover the non-concentrating portion with respect to the lenticular lens 121 (N〇). n_F〇cusing Part ) to scatter light while reducing the effects of external light. There are two methods for manufacturing the conventional lenticular lens sheet 12, one is to use a roller (roller) to press and combine ultraviolet light curing, and the lenticular lens sheet 12 is thinner; the other is It is formed by extrusion using an extrusion machine (Extruder). However, the lenticular lens sheet 12 manufactured by the extruder has a relatively thick thickness (about 800 μm). As shown in FIG. 2, the smaller the thickness of the lenticular lens sheet 12, the smaller the angle of light refraction (θι> θ2), the Bay J screen is more likely to have a large viewing angle; conversely, as shown in FIG. 3, the lenticular lens sheet I The greater the thickness, the smaller the angle of light refraction, the less likely the screen is to have a large viewing angle. Therefore, in the process of the conventional lenticular lens sheet 12, most of them are formed by a roll press to reduce the thickness of the lenticular lens sheet 12 (about 200 μm), thereby achieving a large viewing angle. However, the use of the roller press forming to manufacture the lenticular lens sheet 12 requires 1298415, which requires more manpower, cannot be automated, wastes more production time, and causes lower mass productivity. Therefore, how to make the column: the lens plate 12 is not subject to the roller pressing process and the thickness limit of the extrusion process, and all of them can achieve the effect of large viewing angle, and have been one of the important problems that the industry is trying to solve. . In view of the above problems, the inventors of the present invention have a "microdisplay screen and a lenticular lens sheet" which can have a large viewing angle without being limited by the thickness of the lenticular lens sheet. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a microdisplay screen having a light guiding portion and a lenticular lens sheet thereof to increase the viewing angle of the large lenticular lens sheet. For the above purpose, the microdisplay screen according to the present invention comprises a lenticular lens sheet and a Fresnel lens sheet. The columnar lens plate has a plurality of first lenticular lenses, and the first lenticular lens is disposed parallel to a light incident side along a first direction, and the first lenticular lens has a width and respectively a light guide. When the plurality of beams are incident on the first lenticular lens by the light guiding portion, the displacement distance of the partial illuminating beam exiting the lenticular lens plate in the first direction is greater than the width of the first lenticular lens. The Fresnel lens plate is opposed to the lenticular lens plate. In order to achieve the above object, a lenticular lens sheet according to the present invention has a plurality of first lenticular lenses, and the first lenticular lens system is disposed in parallel with a light incident side along a first direction, and the first lenticular lens system has one Width, and each has 1298415 at least one light guide. When the plurality of beams are incident on the first lenticular lens by the light guiding portion, the partial beam is refracted and the lenticular lens plate is displaced in the first direction by two distances, which is greater than the width of the first lenticular lens. : As mentioned above, the light guide is provided on the lenticular lens plate by the H-shaped front and the lenticular lens plate. Compared with the prior art, the microdisplay screen of the present invention and the light guiding portion of the lenticular lens enable the displacement distance of the lenticular lens sheet in the first direction after the beam is refracted, which is greater than the width of the first lenticular lens. . In this way, the brightness of the microdisplay screen and its lenticular lens in a large viewing angle area can be improved, so that the microdisplay screen has a large viewing angle. Therefore, a user who is located in a larger viewing area can obtain a clearer image due to an increase in the brightness of the microdisplay screen, making the product a good product. Further, the lenticular lens sheet can be produced by an extruder, which is not only easy to automate, but also high in mass productivity, thereby reducing the labor cost required for the process. [Embodiment] Several embodiments of the microdisplay screen and the lenticular lens sheet according to the present invention will be described below with reference to the related drawings. First Embodiment As shown in Fig. 4, the microdisplay screen 2 includes a lenticular lens sheet 21 and a fluorosensor lens sheet 22. The lenticular lens sheet 21 has a plurality of first lenticular lenses 211. The material of the first lenticular lens 211 is a thermoplastic plastic or a photo-curable resin. In the present embodiment, the lenticular lens sheet 21 is press-formed by an extruder 1298415, and its thickness is about 0.1 mm to 2 mm. The Fresnel lens plate 22 is provided to face the lenticular lens sheet 21. In the present embodiment, the Fresnel lens plate 22 has a Fresnel lens 221, and the Fresnel lens 221 is provided opposite to the plurality of lenticular lens plates 21. Looking at Figure 5, the first lenticular lens 211 is along a first direction! ) Flat 4亍. It is again placed on the light incident side 212. In this embodiment, the cross-sectional shape of the parallel incident light of the first lenticular lens 211 is a trapezoid. The first lenticular lenses 211 have a width P and respectively have at least one light guiding portion 213. Here, the width P is approximately, and the width p is matched to the thickness of the columnar mirror 21. FIG. 5 and FIG. 6 'When the plurality of beams are incident on the first lenticular lens 211 by the light guiding portion 213, the displacement distance s of the lenticular lens sheet in the first direction D is refracted by the partial beam. It is larger than the twist P of the first lenticular lens. In this way, the brightness of the large viewing angle area can be increased, so that the microdisplay screen 2 has a large viewing angle. In the example of the present invention, since the light beam exiting the lenticular lens sheet 21 may be less dispersed, a diffusing plate having high-density diffusion particles may be disposed on the light exiting side 214 of the lenticular lens sheet 21 to make the light beam uniform. dispersion. Referring to FIG. 7, the lenticular lens sheet 21 further has a plurality of second lenticular lenses 215 disposed on one of the light exiting sides 214 of the lenticular lens sheet 21, and each of the second main lens 215 is corresponding to each first first. Cylindrical lens: # $ In this embodiment, the material of the second lenticular lens 215 is a thermoplastic 2 glue or a photocurable resin. The first lenticular lens 211 and the second columnar transmissive 1298415 mirror 215 are integrally formed. In addition, the lenticular lens sheet 21 further has at least one black stripe stripe 216 disposed between the adjacent second lenticular lenses 215, and the black strip stripe 216 has a light-shielding material for lifting and external light ( External light) 'This makes the microdisplay screen 2 highly contrasting. Fig. 8 is a view showing an optical path of the lenticular lens sheet 21 of Fig. 7. As shown by the circle 8, when a part of the light beam is incident on the first lenticular lens 211 by the light guiding portion 213, it is refracted and then exits the lenticular lens sheet 21. As can be seen from the figure, the light beam which is partially emitted from the lenticular lens sheet 21 is emitted to a region of a large viewing angle, so that the brightness of the large viewing angle region can be improved, so that the microdisplay screen 2 has a large viewing angle. Fig. 9 is a gain value of the lenticular lens sheet 21 of Fig. 7 in the present embodiment, which is referred to as "experimental group", and the control group is a gain value of the lenticular lens sheet 21' having no light guiding portion 214. As can be seen from the figure, the columnar penetration in this embodiment

籲鏡板21的確提高了大視角區域(圖中之約6〇度至川度) 之亮度。 ^ 第三實施I 女圖10所不,第一柱狀透鏡211平行入射光線之截 面形狀也可依實際製程需要而改變,例如成為弧線組成之 一弧狀禚彬。 1束由導光部213入射第一柱狀透鏡2ιι,係經折射 =射柱狀透鏡板21。由圖η可知,部份出射柱狀透鏡 板21之光束’係能出射至較大視角之區域,故能提高大 1298415 視角區域之亮度,使得微顯示器螢幕2具有大視角。 α接著,請參照圖5至圖12以說明本發明之柱狀透鏡 如圖5及圖12所示,柱狀透鏡板21係包含複數第一 ^狀透鏡2H,第一柱狀透鏡211係沿一第一方向〇平行 叹置於一光入射側212,第一柱狀透鏡211係分別具有一 寬,Ρ,且分別具有至少-導光部213。當複數光束、由導 光。卩213入射第一柱狀透鏡21後,部份光束經折射後出 射柱狀透鏡板21於第一方向D之位移距離,係大於第一 柱狀透鏡21之寬度p。 本貫施例中之柱狀透鏡板21,其功效及特徵係鱼本發 明之微顯示器螢幕2之柱狀透鏡板21相同,於此不再^ 述。 綜上所述,本發明之微顯示器螢幕及其柱狀透鏡板, 於柱狀透鏡板上係具有導光部。與習知技術相比,本發明 之微顯示器螢幕及其柱狀透鏡之導光部,係能使光束折射 後出射柱狀透鏡板於第一方向之位移距離,大於第一柱狀 透鏡之寬度。如此一來,即能提高微顯示器螢幕及其柱狀 透鏡於大視角區域之亮度,使得微顯示器螢幕具有大視 角。因此,位於視角較大區域之使用者,則可因為微顯示 器螢幕亮度之提高而獲得較清晰之影像,使得產品之品質 隨之提昇。再者,柱狀透鏡板係可利用壓出機來製作,木 但自動化生產容易、量產性高,故也降低了製程所需之人 力成本。 11 1298415 圖12係本發明之柱狀透鏡板之一示意圖。 元件符號說明: 1 微顯示器螢幕 11 菲涅耳透鏡板 12 柱狀透鏡板 12’ 柱狀透鏡板 121 柱狀透鏡 φ 122 黑帶條紋 2 微顯示器螢幕 21 柱狀透鏡板 211 第一柱狀透鏡 212 光入射侧 213 導光部 214 光出射侧 215 第二柱狀透鏡 _ 216黑帶條紋 22 菲涅爾透鏡板 221 菲涅爾透鏡 Θ1 角度 Θ2 角度 D 第一方向 P 寬度 S 位移距離 13The mirror plate 21 does increase the brightness of the large viewing angle area (about 6 degrees to the degree) in the figure. ^ Third Embodiment I Figure 10 is not shown. The cross-sectional shape of the parallel incident ray of the first lenticular lens 211 can also be changed according to the actual process requirements, for example, an arc-shaped ridge formed by an arc. One of the bundles is incident on the first lenticular lens 2 by the light guiding portion 213, and is refracted = the lenticular lens sheet 21. As can be seen from the figure η, the partial beam exiting the lenticular lens sheet 21 can be emitted to a region of a large viewing angle, so that the brightness of the large viewing area of 1298415 can be improved, so that the microdisplay screen 2 has a large viewing angle.接着 Next, referring to FIG. 5 to FIG. 12, the lenticular lens of the present invention is illustrated in FIGS. 5 and 12, and the lenticular lens sheet 21 includes a plurality of first lens 2H, and the first lenticular lens 211 is along the edge. A first direction 〇 is placed in parallel on a light incident side 212. The first lenticular lens 211 has a width, a Ρ, and at least a light guiding portion 213, respectively. When the complex beam is guided by light. After the iridium 213 is incident on the first lenticular lens 21, the partial beam is refracted and the displacement distance of the lenticular lens sheet 21 in the first direction D is greater than the width p of the first lenticular lens 21. The function and characteristics of the lenticular lens sheet 21 in the present embodiment are the same as those of the lenticular lens sheet 21 of the microdisplay screen 2 of the present invention, and will not be described here. In summary, the microdisplay screen of the present invention and the lenticular lens sheet have a light guiding portion on the lenticular lens sheet. Compared with the prior art, the microdisplay screen of the present invention and the light guiding portion of the lenticular lens enable the displacement distance of the lenticular lens sheet in the first direction after the beam is refracted, which is greater than the width of the first lenticular lens. . In this way, the brightness of the microdisplay screen and its cylindrical lens in a large viewing angle area can be improved, so that the microdisplay screen has a large viewing angle. Therefore, users located in a larger viewing area can obtain clearer images due to the increased brightness of the microdisplay screen, resulting in an increase in the quality of the product. Further, the lenticular lens sheet can be produced by an extruder, but the automated production is easy and the mass production is high, so that the labor cost required for the process is also reduced. 11 1298415 Figure 12 is a schematic view of a lenticular lens sheet of the present invention. Description of component symbols: 1 Microdisplay screen 11 Fresnel lens plate 12 Cylindrical lens plate 12' Cylindrical lens plate 121 Cylindrical lens φ 122 Black stripe 2 Microdisplay screen 21 Cylindrical lens plate 211 First cylindrical lens 212 Light incident side 213 Light guide portion 214 Light exit side 215 Second lenticular lens _ 216 Black stripe stripe 22 Fresnel lens plate 221 Fresnel lens Θ 1 Angle Θ 2 Angle D First direction P Width S Displacement distance 13

Claims (1)

1298415 十、申請專利範圍: 1、 一種微顯示器螢幕,其係包含: 一柱狀透鏡板,其係具有複數第一柱狀透鏡,該等第 一柱狀透鏡係沿一第一方向平行設置於一光入射 侧,該等第一柱狀透鏡係分別具有一寬度,且分別 具有至少一導光部,當複數光束由該導光部入射該 第一柱狀透鏡後,部份該等光束經折射後出射該桎 狀透鏡板於第一方向之位移距離,係大於該第一桂 狀透鏡之該寬度;以及 一菲涅爾透鏡板,其係與該柱狀透鏡板相對而設。 2、 如申請專利範圍第1項所述之微顯示器螢幕,其中該 專第一柱狀透鏡之材質係為一熱塑性塑膠、或一光固 性樹脂。1298415 X. Patent Application Range: 1. A microdisplay screen comprising: a cylindrical lens plate having a plurality of first cylindrical lenses, wherein the first cylindrical lenses are disposed in parallel along a first direction a light incident side, each of the first lenticular lens systems has a width, and each has at least one light guiding portion. When the plurality of light beams are incident on the first lenticular lens by the light guiding portion, some of the light beams are After the refraction, the displacement distance of the lens plate in the first direction is greater than the width of the first lenticular lens; and a Fresnel lens plate is opposite to the lenticular lens plate. 2. The microdisplay screen of claim 1, wherein the material of the first lenticular lens is a thermoplastic plastic or a photocurable resin. 3、 如申請專利範圍第1項戶斤述之彳政顯不裔邊幕,其中該 第一柱狀透鏡平行該入射光線之截面形狀為一梯形。 4、 如申請專利範圍第1項所述之微顯示器螢幕,其中該 第一柱狀透鏡平行該入射光線之截面形狀為由弧線 所組成之一弧狀梯形。 5、如申請專利範圍第1項戶斤述之被顯示器螢幕,其中該 柱狀透鏡板之厚度係約為〇·1ιηιη至2mm。 1298415 6、 如申請專利範圍第i項所述之微顯示器螢幕,其中該 柱狀透鏡板係由壓出機成形。 7、 如申請專利範圍第1項所述之微顯示器螢幕,其中該 第柱狀透鏡之該寬度係約為〇 · 1 mm至2mm。 8、 如申請專利範圍第1項所述之微顯示器螢幕,其中該 柱狀透鏡板更具有複數第二柱狀透鏡,其係位於該柱 • 狀透鏡板之一光出射側,每一該第二柱狀透鏡係各自 對應每一該第一柱狀透鏡。 9、 如申請專利範圍第8項所述之微顯示器螢幕,其中該 等第二柱狀透鏡之材質係為一熱塑性塑膠、或一光固 性樹脂。 鲁10、如申請專利範圍第8項所述之微顯示器螢幕,其中該 等第一柱狀透鏡及該等第二柱狀透鏡係為一體成形。 11、 如申請專利範圍第8項所述之微顯示器螢幕,其中該 柱狀透鏡板更具有至少一黑帶條紋,其係設置於相鄰 之該第二柱狀透鏡之間。 12、 如申請專利範圍第,項所述之微顯示器螢幕,其中該 菲涅爾透鏡板係具有一菲涅爾透鏡,該菲涅爾透鏡係 15 1298415 面對該等第一柱狀透鏡。 13、 一種柱狀透鏡板,其係包含: 複數第一柱狀透鏡,其沿一第一方向平行設置於一 光入射侧,該等第一柱狀透鏡係分別具有一寬 度,且分別具有至少一導光部,當複數光束由該 導光部入射該第一柱狀透鏡後,部份該等光束經 折射後出射該柱狀透鏡板於第一方向之位移距 離,係大於該第一柱狀透鏡之該寬度。 14、 如申請專利範圍第13項所述之柱狀透鏡板,更包含: 複數第二柱狀透鏡,其係位於一光出射侧,每一該 第二柱狀透鏡係各自對應每一該第一柱狀透鏡。 1 15、 如申請專利範圍第14項所述之柱狀透鏡板,其中該 等第一柱狀透鏡及該等第二柱狀透鏡之材質係為一 熱塑性塑膠、或一光固性樹脂。 16、 如申請專利範圍第14項所述之柱狀透鏡板,其中該 等第一柱狀透鏡及該等第二柱狀透鏡係以壓出機一 體成形。 17、 如申請專利範圍第13項所述之柱狀透鏡板,其中該 第一柱狀透鏡平行該入射光線之戴面形狀為一梯 1298415 18、 如申請專利範圍第13項所述之柱狀透鏡板,其中該 4 第一柱狀透鏡平行該入射光線之截面形狀為由弧線 所組成之一弧狀梯形。 19、 如申請專利範圍第13項所述之柱狀透鏡板,其中該 第一柱狀透鏡之該寬度係約為0.1mm至2mm。 ⑩20、如申請專利範圍第13項所述之柱狀透鏡板,其中該 柱狀透鏡板之厚度係約為0.1mm至2mm。 21、如申請專利範圍第14項所述之柱狀透鏡板,更包含: 至少一黑帶條紋,其係設置於相鄰之該第二柱狀透 鏡之間。 173. If the patent application scope is the first item, the first lenticular lens is parallel to the cross-sectional shape of the incident light as a trapezoid. 4. The microdisplay screen of claim 1, wherein the cross-sectional shape of the first lenticular lens parallel to the incident ray is an arc trapezoid formed by an arc. 5. The display screen of the first item of the patent application scope is wherein the thickness of the lenticular lens sheet is about 〇·1ιηιη to 2 mm. 1298415 6. The microdisplay screen of claim i, wherein the lenticular lens sheet is formed by an extruder. 7. The microdisplay screen of claim 1, wherein the width of the lenticular lens is about 〇 1 mm to 2 mm. 8. The microdisplay screen of claim 1, wherein the lenticular lens plate further has a plurality of second lenticular lenses located on a light exit side of the column lens plate, each of the Two columnar lens systems each correspond to each of the first lenticular lenses. 9. The microdisplay screen of claim 8, wherein the material of the second lenticular lens is a thermoplastic plastic or a photocurable resin. The microdisplay screen of claim 8, wherein the first lenticular lens and the second lenticular lens are integrally formed. 11. The microdisplay screen of claim 8, wherein the lenticular lens sheet further has at least one black stripe strip disposed between the adjacent second lenticular lenses. 12. The microdisplay screen of claim 1, wherein the Fresnel lens plate has a Fresnel lens facing the first lenticular lens 15 1298415. 13. A lenticular lens sheet comprising: a plurality of first lenticular lenses disposed in parallel along a first direction on a light incident side, the first lenticular lens systems each having a width and having at least a light guiding portion, when a plurality of light beams are incident on the first lenticular lens by the light guiding portion, a portion of the light beams are refracted to emit a displacement distance of the lenticular lens sheet in a first direction, which is greater than the first column The width of the lens. 14. The lenticular lens sheet of claim 13, further comprising: a plurality of second lenticular lenses located on a light exit side, each of the second lenticular lens systems corresponding to each of the first A cylindrical lens. The lenticular lens sheet of claim 14, wherein the first lenticular lens and the second lenticular lens are made of a thermoplastic or a photocurable resin. The lenticular lens sheet of claim 14, wherein the first lenticular lens and the second lenticular lens are integrally formed by an extruder. The lenticular lens sheet of claim 13, wherein the shape of the first lenticular lens parallel to the incident ray is a step 1298415 18, as in the column of claim 13 a lens plate, wherein the 4th lenticular lens has a cross-sectional shape parallel to the incident ray as an arc trapezoid formed by an arc. The lenticular lens sheet of claim 13, wherein the width of the first lenticular lens is about 0.1 mm to 2 mm. The lenticular lens sheet of claim 13, wherein the lenticular lens sheet has a thickness of about 0.1 mm to 2 mm. The lenticular lens sheet of claim 14, further comprising: at least one black stripe strip disposed between the adjacent second cylindrical lenses. 17
TW94101938A 2005-01-21 2005-01-21 Microdisplay screen and lenticular lens sheet thereof TWI298415B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94101938A TWI298415B (en) 2005-01-21 2005-01-21 Microdisplay screen and lenticular lens sheet thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94101938A TWI298415B (en) 2005-01-21 2005-01-21 Microdisplay screen and lenticular lens sheet thereof

Publications (2)

Publication Number Publication Date
TW200627042A TW200627042A (en) 2006-08-01
TWI298415B true TWI298415B (en) 2008-07-01

Family

ID=45069386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94101938A TWI298415B (en) 2005-01-21 2005-01-21 Microdisplay screen and lenticular lens sheet thereof

Country Status (1)

Country Link
TW (1) TWI298415B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384215B (en) * 2009-06-30 2013-02-01 Au Optronics Corp Examining method of lens substrate and applied to manufacturing method of display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384215B (en) * 2009-06-30 2013-02-01 Au Optronics Corp Examining method of lens substrate and applied to manufacturing method of display apparatus

Also Published As

Publication number Publication date
TW200627042A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US7715096B2 (en) Light diffusing screen
US7054068B2 (en) Lens array sheet and transmission screen and rear projection type display
JP4821484B2 (en) Light diffusion sheet, transmissive screen, and rear projection display device
US6926412B2 (en) Projection display apparatus with a curved screen
US7139124B2 (en) Wide viewing angle screen and projection television comprising the same
US7268942B2 (en) Method of making a self-aligned light guide screen
TW200405118A (en) Transmissive screen and rear projector
JP2008033245A (en) Fresnel lens sheet, transmission screen, and rear projection display apparatus
TWI298415B (en) Microdisplay screen and lenticular lens sheet thereof
JPH08327805A (en) Light-diffusing plate, its production and transmission type projecting screen using the same
WO2003067327A1 (en) Transparent screen
KR100553887B1 (en) Screen for image display having wide view angle in vertical and horizontal and projection television comprising the same
KR19990012816A (en) Projection screen
JP2005043516A (en) Optical sheet, surface light source device, and transmission-type display device
JP5343490B2 (en) Prism sheet, transmissive screen, rear projection display
JPH11344769A (en) Back projection type screen and production of light diffusion member
JP2000180968A (en) Transmission type projection screen
JP2007304399A (en) Rear projection screen and rear projection type display apparatus
JP2008033097A (en) Fresnel lens sheet and transmission type screen
JP2003131325A (en) Projection screen
JP2006301589A (en) Light diffusing member, manufacturing method thereof and transmission type screen
JP2002090891A (en) Fresnel lens sheet and its manufacture
JP2002006401A (en) Screen of back projection type
JPH0764190A (en) Projection screen
JPH06242509A (en) Screen structure for projector