TWI292962B - Package structure for a solid-state lighting device and method of fabricating the same - Google Patents

Package structure for a solid-state lighting device and method of fabricating the same Download PDF

Info

Publication number
TWI292962B
TWI292962B TW94136845A TW94136845A TWI292962B TW I292962 B TWI292962 B TW I292962B TW 94136845 A TW94136845 A TW 94136845A TW 94136845 A TW94136845 A TW 94136845A TW I292962 B TWI292962 B TW I292962B
Authority
TW
Taiwan
Prior art keywords
conductive layer
state light
package structure
layer
emitting device
Prior art date
Application number
TW94136845A
Other languages
Chinese (zh)
Other versions
TW200717849A (en
Inventor
Wen Liang Tseng
Lung Hsin Chen
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW94136845A priority Critical patent/TWI292962B/en
Priority to US11/580,966 priority patent/US7719099B2/en
Priority to JP2006284812A priority patent/JP4658897B2/en
Publication of TW200717849A publication Critical patent/TW200717849A/en
Application granted granted Critical
Publication of TWI292962B publication Critical patent/TWI292962B/en
Priority to US12/232,882 priority patent/US7989237B2/en
Priority to US12/255,165 priority patent/US7994628B2/en

Links

Landscapes

  • Weting (AREA)
  • Led Device Packages (AREA)

Description

1292962 九、發明說明: 【發明所屬之技術領域】 本發明係有關於固態發光元件的封装結構及其製造方 法,特別是有關於使用矽基板於發光二極體(led)的封裳結 構及其製造方法。 【先前技術】 發光二極體應用在日常生活中是愈來愈普及。舉凡指示 馨设備’照明設備’或是提供均勻的線光源或是面光源等都 可以見到發光二極體。 目前有關發光二極體之研發重點是在於光的取出效益以 及散熱的速度。在光的取出效益中,可以在磊晶階段,晶 粒製造階段,或是在封裝階段分別進行改善。而散熱方面 目前主要是在封裝階段予以改良。能夠同時進行改善的主 要會是在封裝的階段。 發光二極體的封裝目前有許多的方式,例如燈杯(lamp) ® 形式,或是使用反射杯。其中使用反射的燈杯的形式,很 容易提升反射率以增加發光二極體的發光效率。同時,如 果反射杯有較佳的設計,反射杯也有機會增加發光二極體 的政熱。目剷朝运方面改善的技術有美國專利第6,5 6 2,6 4 3 號、第6,268,660號以及美國專利公開號2〇〇4/〇21839〇。另 外,一種先前技術如美國專利第6,531,328號所述,主要是 使用石夕基板10做為封裝的基材。在石夕基板丨〇上使用微機 電(MEMS)的製程製造反射杯,其結構如圖丨所示。一絕緣 層12以及一金屬層20依序包覆矽基板1〇,其中金屬層2〇 H:\HU\LGC\A34276\105957\105957.doc -5 - A34276 105957 004881020 1292962 同時作為電極22及24。發光二極體30以打線方式設於反 射杯内,並且使用環氧樹脂將發光二極體3〇封入反射杯。 形成如圖1所示之結構之製程步驟,如圖2所示,包含 先提供一矽基板,然後以濕式蝕刻的方式在矽基板上形成 反射腔。接著,在矽基板的另一面以乾式蝕刻的方式形成 電極的介層洞。之後,以熱氧化法或是氮化方式形成一層 氧化石夕層或是氮化矽層包覆該矽基板。然後,以電鍍的方 式形成一導體層包覆該矽基板。最後,以雷射處理的方式 在反射腔上形成金屬反射層而在另一面形成電極。 然而,這樣的設計有一些缺點。首先,反射層金屬與電 極是屬於同一個材料,目前沒有一種金屬可以同時滿足良 好的反射率以及可適用於後續的焊接製程。再者,對於不 同波長的發光二極體,不同的金屬會有不同的反射率,這 表示電極的材料也會因著改變。較佳的電極的材料是以焊 錫為主,但焊錫並不適用於可見光的反光材料。好的反射 材料,例如:金(Au)、銀(Ag)、鈀(Pd)、鉑(Pt),並不適用 作為電極之材料。 另外底邛"層洞的钱刻採用乾餘刻,其钱刻後的輪廓 (Profile)的後續至成空間較低。再者,需要使用雷射處理反 射金屬層,成本較高。 丁、上所述,市場上亟需要一種可靠且簡易之大面積的高 功率發光二極體,俾能改善上述習知發光:極體之各種缺 點。 【發明内容】 H:\HlALGC\A34276\105957\105957.doc 1292962 本發明之主要目的係提供一種固態發光元件的封裝結構 及其製造方法’可使用⑦基板做為封裝的基板增加散熱以 及可使用微機電的製程。 本發月之另一目的係對於反射金屬層與電極可選擇不同 的材質’其中反射金屬層可以針對特定⑽的波長進行選 擇而不會影響電極材質的選擇,因而可以各自最佳化其材 料。 本毛明之又一目的係提供一絕緣層保護反射金屬層,避 免金屬產生氧化、硫化,或是與其他化學物質反應。而該 絕緣層的厚度可以調整為對特定光線進行建^性干涉。 本卷月之再一目的係、使用濕钱刻形成底部的電極介層 洞’對於後績的製程空間(pr〇cess ⑽)較為充裕。 本發明之再-目的在於電極製程使用簡單的微影鍅刻製 程或是掀起(lift-off)製程,成本較雷射處理低。 本發明之再—目的係每個步驟都是成熟的製程,成本較 低0 提供一種固態發 面與一第二表面 、一反射層、一 個電極墊並且與 一第二導電層。 表面具有一反射· 洞於其上且透過 該第一導電層位 為達上述目的,本發明揭示一種本發明 光元件之封裝結構,包含一具有一第一表 之矽基材,一包覆該矽基材之第一絕緣層 位於該反射層上之第二絕緣層,一作為兩 該反射層電性地隔離之第一導電層,以及 該第一表面與該第二表面相對,而該第一 t於其上,該第二表面具有兩個電極介層 至該反射腔。該反射層位於該反射腔上。 H:\HU\LGC\A34276\105957\105957.doc 1292962 於:兩電極介層洞上,且該第一導電層作為兩個電極墊並 且…玄反射層電性地隔離。該第二導電層位於該第二表面 下以及位於該兩電極介層洞内。1292962 IX. Description of the Invention: [Technical Field] The present invention relates to a package structure of a solid-state light-emitting element and a method of fabricating the same, and more particularly to a package structure using a germanium substrate for a light-emitting diode (LED) Production method. [Prior Art] Luminous diode applications are becoming more and more popular in daily life. Light-emitting diodes can be seen by indicating the sleek device 'illumination device' or providing a uniform line source or surface source. At present, the focus of research and development on light-emitting diodes lies in the efficiency of light extraction and the speed of heat dissipation. In the light extraction benefit, it can be improved in the epitaxial phase, in the grain manufacturing phase, or in the packaging phase. The heat dissipation is currently mainly improved during the packaging phase. The main reason for the simultaneous improvement is at the stage of packaging. There are many ways to package LEDs, such as the lamp ® form or the use of a reflective cup. In the form of a reflective lamp cup, it is easy to increase the reflectance to increase the luminous efficiency of the light-emitting diode. At the same time, if the reflector cup has a better design, the reflector cup also has the opportunity to increase the political heat of the LED. Techniques for improving the shovel are disclosed in U.S. Patent Nos. 6,5, 2,6, 4, 3, 6, 268, 660, and U.S. Patent Publication No. 2, 4/2, 218, 839. In addition, a prior art, as described in U.S. Patent No. 6,531,328, is mainly based on the use of the Shishi substrate 10 as a substrate for packaging. A reflector cup is fabricated on a lithography substrate using a microelectromechanical (MEMS) process, the structure of which is shown in FIG. An insulating layer 12 and a metal layer 20 are sequentially coated on the substrate 1〇, wherein the metal layer 2〇H:\HU\LGC\A34276\105957\105957.doc -5 - A34276 105957 004881020 1292962 simultaneously as electrodes 22 and 24 . The light-emitting diode 30 is placed in the reflective cup in a wire-bonding manner, and the light-emitting diode 3 is sealed into the reflective cup using an epoxy resin. The process steps for forming the structure shown in Figure 1, as shown in Figure 2, include first providing a substrate and then forming a reflective cavity on the germanium substrate by wet etching. Next, a via hole of the electrode is formed by dry etching on the other side of the germanium substrate. Thereafter, a layer of oxidized stone or a layer of tantalum nitride is formed by thermal oxidation or nitridation to coat the substrate. Then, a conductor layer is formed by plating to coat the ruthenium substrate. Finally, a metal reflective layer is formed on the reflective cavity and an electrode is formed on the other side in a laser processing manner. However, such a design has some drawbacks. First, the reflective layer metal and the electrode belong to the same material. Currently, no metal can satisfy both good reflectivity and can be applied to subsequent soldering processes. Furthermore, for light-emitting diodes of different wavelengths, different metals have different reflectivities, which means that the material of the electrodes is also changed. The preferred electrode material is based on solder, but the solder is not suitable for visible light reflective materials. Good reflective materials such as gold (Au), silver (Ag), palladium (Pd), and platinum (Pt) are not suitable as materials for the electrodes. In addition, the bottom of the 邛 quot 层 的 的 的 的 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层Furthermore, it is necessary to use a laser to treat the reflective metal layer, which is costly. Ding, above, there is a need in the market for a reliable and simple large-area high-power light-emitting diode that can improve the above-mentioned conventional illumination: various disadvantages of the polar body. SUMMARY OF THE INVENTION H:\HlALGC\A34276\105957\105957.doc 1292962 The main object of the present invention is to provide a package structure of a solid-state light-emitting element and a method of manufacturing the same, which can use a substrate as a package to increase heat dissipation and can be used. Microelectromechanical process. Another object of this month is to select a different material for the reflective metal layer and the electrode. The reflective metal layer can be selected for a particular (10) wavelength without affecting the choice of electrode material, and thus the material can be optimized individually. Another object of the present invention is to provide an insulating layer to protect the reflective metal layer from oxidation, vulcanization or reaction with other chemicals. The thickness of the insulating layer can be adjusted to interfere with specific light. In addition to the purpose of this volume, the use of wet money to form the bottom electrode via hole is more abundant for the process space (pr〇cess (10)). A further object of the present invention is that the electrode process uses a simple lithography engraving process or a lift-off process at a lower cost than laser processing. A further object of the present invention is that each step is a mature process at a relatively low cost. 0 A solid surface and a second surface, a reflective layer, an electrode pad and a second conductive layer are provided. The present invention discloses a package structure for an optical component according to the present invention, comprising a substrate having a first surface, and a cladding layer. The substrate has a reflective layer and a first conductive layer. a first insulating layer of the base material of the base material is disposed on the second insulating layer of the reflective layer, a first conductive layer electrically separated from the two reflective layers, and the first surface is opposite to the second surface, and the first surface The second surface has a second electrode layer to the reflective cavity. The reflective layer is located on the reflective cavity. H:\HU\LGC\A34276\105957\105957.doc 1292962 is: a two-electrode via hole, and the first conductive layer acts as two electrode pads and the mysterious reflective layer is electrically isolated. The second conductive layer is located below the second surface and within the two electrode via holes.

、本發明亦提供—種形成固態發光元件之封裝結構的方 法’如圖3所示’纟包含之步驟為提供—石夕基材,並且以 濕式餘刻㈣基材之—第―表面㈣成—反射腔於其上。 之後,以濕式蝕刻該矽基材之一第二表面以形成二電極介 層洞於其上並穿透該硬基板到該反射腔,#中該第二表面 相對於該第—表面。然後,形成—第—絕緣層以包覆該碎 基材。接著’形成-反射層於該反射腔上,以及在該反射 層上形成-第二絕緣層。再者,形成一第一導電層於該兩 電極"層洞上’其中該第__導電層作為兩個電極墊並且與 該反射層電性地隔離,以及形成一第二導電層於該第二表 面下以及位於該兩電極介層洞内。 【實施方式】 本發明的一些實施例會詳細描述如下。然而,除了詳細 描述外’本發明還可以廣泛地在其它的實施例中施行,且 本發明的範圍不受限定,其以之後的申請專利範圍為準。 本發明揭示一種本發明提供一種固態發光元件之封裝 結構’包含一具有一第一表面與一第二表面之矽基材,一 包覆該矽基材之第一絕緣層、一反射層、一位於該反射層 上之弟二絕緣層,一作為兩個電極墊並且與該反射層電性 地隔離之第一導電層以及一第二導電層。該第一表面與該 苐一表面相對,而該第一表面具有一反射腔於其上,該第 H:\HlALC3C\A34276\105957\105957.doc 1292962 二表面具有兩個電極介層洞於其上且透過至該反射腔。該 反射層位於該反射腔上。該第一導電層位於該兩電極介層 洞上,且該第一導電層作為兩個電極墊並且與該反射層電 • 十生地隔離。該第二導電層位於該第二表面下以及位於該兩 電極介層洞内。 本發明亦提供一種形成固態發光元件之封裝結構的方 法,如圖3所示,其包含之步驟為提供一矽基材,並且以 • 濕、式㈣該石夕基材之—第—表面以形成-反射腔於其上。 之後,以濕式韻刻該石夕基材之一第二表面以形成二電極介 層洞於其上並穿透該石夕基板到該反射腔,其中該第二表面 相對於該第一表面。然後,形成一第一絕緣層以包覆該石夕 基材。接S,形成一反射層於該反射腔上,以及在該反射 層上形成一第二絕緣層。再者,形成一第一導電層於該兩 電極’|層/同上,其中該第一導電層作為兩個電極塾並且與 該反射層電性地隔離,以及形力一第二導電層於該第二表 除 面下以及位於該兩電極介層洞内。 上述之第一絕緣層係氧化石夕,可由熱氧化法形成,或是 化學氣相沉積法’而熱氧化法較佳。上述之反射層可為銀, 銘’金’或疋錫’其中材料的選擇取決於所使用的光的波 長。上述之第一導電層與第二導電層為可焊接的材料。上 述之第二導電層與該第—導電層電性地聯接。上述之第一 導電層與第:導電層可使用圖案轉移錢刻㈣⑽㈣t〇 etch)法或是掀起(lift.off)法形成。上述之第二絕緣層係氧化 石夕,可由化學氣相沉積法形成,特別是可使用電漿增益化 H:\HU\LGC\A34276\105957\105957.doc A34276 105957 004881020 -9 _ 1292962 學氣相沉積(PECVD ; Plasma Enhanced Chemical VaporThe present invention also provides a method for forming a package structure of a solid-state light-emitting element. As shown in FIG. 3, the step of "including" is to provide - the stone substrate, and the wet-type (four) substrate - the first surface (four) The reflective cavity is placed thereon. Thereafter, a second surface of the tantalum substrate is wet etched to form a two-electrode via hole therethrough and penetrate the hard substrate to the reflective cavity, the second surface of the second surface being opposite to the first surface. Then, a -first insulating layer is formed to coat the broken substrate. Next, a formation-reflecting layer is formed on the reflective cavity, and a second insulating layer is formed on the reflective layer. Furthermore, a first conductive layer is formed on the two electrodes "layers, wherein the first conductive layer acts as two electrode pads and is electrically isolated from the reflective layer, and a second conductive layer is formed thereon. The second surface is located below and within the two electrode via holes. [Embodiment] Some embodiments of the present invention will be described in detail below. However, the present invention can be widely practiced in other embodiments, and the scope of the present invention is not limited, and the scope of the present invention will be limited. The present invention provides a package structure for a solid-state light-emitting element that includes a germanium substrate having a first surface and a second surface, a first insulating layer covering the germanium substrate, a reflective layer, and a reflective layer. a second insulating layer on the reflective layer, a first conductive layer and a second conductive layer as two electrode pads and electrically isolated from the reflective layer. The first surface is opposite to the first surface, and the first surface has a reflective cavity thereon. The second surface has two electrode vias on the surface of the H:\HlALC3C\A34276\105957\105957.doc 1292962 Up and through to the reflective cavity. The reflective layer is located on the reflective cavity. The first conductive layer is located on the two electrode vias, and the first conductive layer acts as two electrode pads and is electrically isolated from the reflective layer. The second conductive layer is located below the second surface and within the two electrode via holes. The invention also provides a method for forming a package structure of a solid-state light-emitting element, as shown in FIG. 3, which comprises the steps of providing a substrate, and using: wet, (4) the surface of the stone substrate Forming a reflective cavity thereon. Thereafter, a second surface of the stone substrate is wet-engraved to form a two-electrode via hole thereon and penetrate the stone substrate to the reflective cavity, wherein the second surface is opposite to the first surface . Then, a first insulating layer is formed to coat the stone substrate. S is formed to form a reflective layer on the reflective cavity, and a second insulating layer is formed on the reflective layer. Furthermore, a first conductive layer is formed on the two electrodes '|layer/same, wherein the first conductive layer acts as two electrodes and is electrically isolated from the reflective layer, and a second conductive layer is formed The second table is placed under the surface and in the two-electrode via hole. The first insulating layer described above is an oxide oxide, which may be formed by a thermal oxidation method or a chemical vapor deposition method, and a thermal oxidation method is preferred. The reflective layer described above may be silver, Ming 'gold' or tantalum tin. The choice of material depends on the wavelength of the light used. The first conductive layer and the second conductive layer are solderable materials. The second conductive layer is electrically coupled to the first conductive layer. The first conductive layer and the first conductive layer may be formed by a pattern transfer method or a lift.off method. The second insulating layer is an oxide oxide, which can be formed by chemical vapor deposition, in particular, plasma gain can be used: H:\HU\LGC\A34276\105957\105957.doc A34276 105957 004881020 -9 _ 1292962 Phase deposition (PECVD; Plasma Enhanced Chemical Vapor

Deposition)法。上述之兩電極介層洞是由濕蝕刻法形成。 上述之固態發光元件可為發光二極體或是雷射二極體。本 發明結構可應用於打線封裝或是覆晶封裝。 前述之固態發光元件之封裝結構及其形成方法中,可更 包含兩個電極介層洞於其上且透過至該反射腔。上述之第 -導電層因此作為四個電極墊,而該第二導電層位於該四 • 1極介層洞内且與該第一導電層電性地聯接。上述之形成 該反射層之步驟可為電鍍法、蒸鑛法或是電子束蟲晶法形 成。 本發明在各步驟中的結構示意圖請參照圖4到圖^ 3。 如圖4所示,一矽基材1〇〇具有一第一表面與一第二表 面,在圖中第-表面是上表面而第二表面是下表面。石夕基 材100可以是五时、六时、八时或是十二呼等的晶圓。石夕 基材100可使用<100>的結晶表面⑽dentati〇n urface) I用石夕基板的幾個重要的優點就是散熱佳,以及 可以進行成熟的微機電製程。 如圖5所不,卩濕钱亥j的方式形成一反射腔⑽於石夕基 ^ 〇❸帛纟面上。石夕基材的濕姓刻的餘亥,J溶劑可為氫 氧化鉀(KOH)。在這個步驟包含光學微影的製程,也就是 $案轉移以㈣的技術完成’包含的步驟有光阻塗佈、軟 #光'曝光、顯影 '硬供烤、餘刻石夕基材以及去光阻。 ::、钱刻㊅#式形成的反射腔1〇2,其钱刻的輪麻(p滅⑷ 疋可以调整的,這是因為濕餘刻的等向性所造成。 H:\HU\LG〇\A34276\l〇5957\l〇5957.d< 105957 004881020 10- 1292962 如圖6所示,繼續以濕蝕刻的方式形成電極介層洞ι〇4 於矽基材100的第二表面上。電極介層洞ι〇4可以是兩個, 或是兩個以上,特別是使用的發光元件超過兩個以上時可 能會有四個或是六個電極介層洞1〇4。由於使用濕蝕刻形成 電極介層洞104,電極介層洞104的開口較大,對於後續的 製成空間(process window)較為寬裕。同樣的,這個步驟包 含光學微影的製程。Deposition) method. The above two electrode via holes are formed by wet etching. The solid state light emitting device described above may be a light emitting diode or a laser diode. The structure of the present invention can be applied to wire bonding or flip chip packaging. In the package structure of the solid-state light-emitting device and the method of forming the same, the two electrode layers may be further included and transmitted to the reflective cavity. The first conductive layer is thus used as four electrode pads, and the second conductive layer is located in the four-electrode via and electrically coupled to the first conductive layer. The above step of forming the reflective layer may be formed by electroplating, steaming or electron beam crystallization. Please refer to FIG. 4 to FIG. 3 for a schematic structural diagram of the present invention in each step. As shown in Fig. 4, a substrate 1 has a first surface and a second surface, in which the first surface is the upper surface and the second surface is the lower surface. The Shixi base material 100 can be a wafer of five o'clock, six o'clock, eight o'clock or twelve o'clock. The stone substrate 100 can use the crystalline surface of <100> (10) dentati〇n urface. I have several important advantages of using the stone substrate, that is, good heat dissipation, and a mature microelectromechanical process. As shown in Fig. 5, a reflection cavity (10) is formed on the surface of the Shi Xiji ^ 方式. The wetness of the Shi Xi substrate is Yu Hai, and the J solvent can be potassium hydroxide (KOH). In this step, the process of optical lithography is included, that is, the case transfer is completed by the technique of (4) 'The steps included are photoresist coating, soft #光' exposure, development 'hard baking, the remaining stone substrate and go Light resistance. ::, money carved six #-formed reflection cavity 1〇2, its money engraved numbness (p extinction (4) 疋 can be adjusted, which is caused by the isotropic nature of the wet residue. H:\HU\LG 〇\A34276\l〇5957\l〇5957.d<105957 004881020 10- 1292962 As shown in FIG. 6, the electrode via hole 〇4 is continuously formed on the second surface of the ruthenium substrate 100 by wet etching. The number of electrode vias ι 4 may be two or more, and in particular, when more than two light-emitting elements are used, there may be four or six electrode vias 1 〇 4. Due to the use of wet etching The electrode via hole 104 is formed, and the opening of the electrode via hole 104 is large, which is relatively versatile for the subsequent process window. Similarly, this step includes an optical lithography process.

如圖7所不,形成一包覆矽基材1〇〇的氧化矽層作為第 —絕緣層110。氧化矽層形成的方式可為熱氧化法或是化學 氣相沉積法,而熱氧化法較佳,因為以熱氧化法形成的氧 化矽,其結構較為緻密。在本發曰月中,可使用乾式或是濕 式熱氧化法。另外,亦可以使用氮化矽作為第一絕緣層u〇。 如圖8所示,形成一反射層12〇在反射腔1〇2上。反射 層㈣的材質可為銀、紹、金或是錫,其中材料的選擇取 決於所使用的光線的波長。反㈣12〇的形成方式可以使 用電鍍(electroplating),蒸鍍法(evap〇ming),或是電子束 蟲晶法形成。由於反射層12〇只形成切基板刚的第一 表面上,製程條件較簡單。另外,形成反射層!20後亦可 以使用另-钱刻的製程將反射腔1〇2以外的反射層部 份移除,而這個步驟是可選擇的步驟。 如圚y尸/r不,形成 w曰復盖夂射層12〇。 第二絕㈣13G可為氧切或是氮切,可由化學氣相沉 積法形成。其中氧切可制電漿增益化學氣相沉積法而 氮化石夕可使用㈣化學氣相沉積法。沉積的厚度,可以調 H:\HU\LGC\A34276\105957\105957.doc 105957 004881020 11- 1292962 ,為對於特定光束具有建設性干涉。反射層12〇是由第二 繞緣層130包覆保護,可以避免反射金屬的氧化,硫化, 或是與其它的化學物質反應,特別是可以選擇金屬紹或是 錫作為反射金屬’因為這兩種金屬特別容易氧化。As shown in Fig. 7, a tantalum oxide layer covering the tantalum substrate 1 is formed as the first insulating layer 110. The ruthenium oxide layer may be formed by a thermal oxidation method or a chemical vapor deposition method, and the thermal oxidation method is preferred because the ruthenium oxide formed by the thermal oxidation method is denser in structure. Dry or wet thermal oxidation can be used during this month. In addition, tantalum nitride may also be used as the first insulating layer u〇. As shown in FIG. 8, a reflective layer 12 is formed on the reflective cavity 1〇2. The material of the reflective layer (4) can be silver, sho, gold or tin, and the choice of material depends on the wavelength of the light used. The formation of the inverse (tetra) 12 Å can be formed by electroplating, evaporation (evap 〇ming), or electron beam crystallization. Since the reflective layer 12 is formed only on the first surface of the cut substrate, the process conditions are relatively simple. In addition, form a reflective layer! After 20, the portion of the reflective layer other than the reflective cavity 1〇2 can also be removed using a separate process, and this step is an optional step. If 圚 y corpse / r does not form a w 曰 cover 夂 夂 layer 12 〇. The second (four) 13G may be oxygen cut or nitrogen cut, and may be formed by a chemical vapor deposition method. Among them, oxygen cutting can be made into plasma gain chemical vapor deposition method and nitride nitride can be used (4) chemical vapor deposition method. The thickness of the deposit can be adjusted to H:\HU\LGC\A34276\105957\105957.doc 105957 004881020 11- 1292962 for constructive interference with specific beams. The reflective layer 12 is covered by the second rim layer 130 to prevent oxidation, vulcanization, or reaction with other chemicals, in particular, metal or tin as a reflective metal. Metals are particularly susceptible to oxidation.

如圖1〇所不,形成—第一金屬層作為正面電極14(M, 140 2。正面電極14(M,14()_2的材料的選擇為可焊接的材 料,其選擇由後續的封裝程所決定,例如:打線封裝或是 覆晶封裝’因為正面電極主要是與發光元件焊接。正面電 極140-1 ’ 140-2的形成方式可使用電鑛或是蒸鑛等的方 ’、S電極14(M,14G_2的圖案可使用上述的圖案轉移 以餘刻法或是掀起⑽,成形成。掀起製程與圖案轉移 讀刻製程類似’但順序不同。掀起製程的步驟為先形成 光阻層,然後是曝光顯影,這時金屬層才形成在綠層上, 之後在綠層移除㈣候會將位於光阻上的金屬層一起移 除。掀起製程不需要針對金屬層姓刻’減少一個步驟。不 論是圖案轉移以姓刻法或是掀起法,其成本皆較傳統的雷 射製程便宜,且均為成熟的製成。 因為有一第二絕緣居 _ ^ ^ 曰!30 ’正面電極Mo」,14〇 2與反 射層120電性的隔離。這 、J以避免因漏電對元件產生損害。 如圖11所示,形成一第一 、〇 乐一金屬層作為背面電極l5〇_j, 150-2。背面電極15〇 的材料的選擇可為可焊接 的材料或是一般性的雷^^ ^ 『的電極材料皆可。背面電極150·1, 150-2的形成方式血正面 飞/、正面電極14(Μ,14〇_2的形成方式相 同,而圖案轉移的方式可盥 正面電極140-1,140-2的形成 H:\HU\LGC\A34276\105957\105957.doc Α34276 105957 004881020 •12· 1292962 方式相同或是不相同。背面電極15〇-1, 150-2需要將電 極介層洞104填滿與正面電極moj,14〇_2電性地聯接。 如圖12所示,將發光二極體16〇打線封裝後使用環氧樹 脂170封入。環氧樹脂17〇可以掺雜螢光粉,螢光粉可為 釔鋁石榴石(YAG)族系或是矽酸鹽族系。環氧樹脂17〇封入 的方式可為轉模(transfer m〇iding)或是點膠注入的方式。 如圖13所示,將發光二極體i 6〇覆晶封裝後使用環氧樹 脂170封入。同樣的,環氧樹脂17〇可以掺雜螢光粉,螢 光粉可為釔鋁石榴石族系或是矽酸鹽族系。而環氧樹脂 封入的方式可為轉模(transfer m〇lding)或是點膠注入的方 式。 本lx明使用碎基板做為封裝的基板增加散熱以及可使用 微機電的製程。由於反射金屬層與電極可選擇不同的材 質,反射金屬層可以針對特定光線的波長進行選擇而不會 影響電極材質的選擇,因而可以各自最佳化其材料。本發 明提供一絕緣層保護反射金屬層,可避免金屬產生氧化, 硫化,或是與其他化學物質反應。而該絕緣層的厚度更可 以调整為對特定光線進行建設性干涉。本發明使用濕蝕刻 形成底部的電極介層洞,對於後續的製程空間(process window)較為充裕。本發明對於電極製程使用簡單的微影蝕 刻製程或是掀起(lift_off)製程,成本較雷射處理低。本發明 的母個步驟都是成熟的製成,成本較低。 本發明之技術内容及技術特點已揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 H:\HU\LGC\A34276M05957\105957.doc 105957 004881020 -13- 1292962 背離本發明精神之替換及修飾。因此,本發明之保護範 應不限於實施例所揭示者’而應包括各種不背離本發= 替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 圖1係習知之發光二極體之封裝結構示意圖; 圖2顯示形成如圖1之結構的製程流程圖;As shown in FIG. 1 , a first metal layer is formed as the front electrode 14 (M, 140 2 . The material of the front electrode 14 (M, 14 ( ) 2 is selected as a solderable material, and the selection is performed by a subsequent package process. It is determined, for example, that the wire-bonding package or the flip-chip package is used because the front electrode is mainly soldered to the light-emitting element. The front electrode 140-1 '140-2 can be formed by using electric ore or the like, and the S electrode. 14 (M, 14G_2 pattern can be formed by the above-mentioned pattern transfer by the residual method or pick-up (10). The pick-up process is similar to the pattern transfer read-and-etch process, but the order is different. The step of picking up the process is to form the photoresist layer first. Then there is exposure development, when the metal layer is formed on the green layer, and then the metal layer on the photoresist is removed together in the green layer removal. The pick-up process does not need to be a step for the metal layer. Whether the pattern is transferred by the surname method or the pick-up method, the cost is cheaper than the traditional laser process, and both are mature. Because there is a second insulation _ ^ ^ 曰! 30 'front electrode Mo", 14〇2 with reflective layer 1 20 electrical isolation. This, J to avoid damage to the components due to leakage. As shown in Figure 11, a first, 〇乐-metal layer is formed as the back electrode l5〇_j, 150-2. The back electrode 15〇 The material may be selected from a solderable material or a general electrode material. The back electrode 150·1, 150-2 is formed in the form of a frontal fly/front electrode 14 (Μ, 14). The formation of 〇_2 is the same, and the pattern transfer can be performed in the same way as the formation of the front electrodes 140-1, 140-2, H:\HU\LGC\A34276\105957\105957.doc Α34276 105957 004881020 •12· 1292962 The back electrodes 15〇-1, 150-2 need to fill the electrode via 104 to be electrically connected to the front electrodes moj, 14〇_2. As shown in Fig. 12, the light-emitting diodes 16〇 After the wire is packaged, it is sealed with epoxy resin 170. Epoxy resin 17〇 can be doped with fluorescent powder, and the fluorescent powder can be yttrium aluminum garnet (YAG) or strontium salt. The way can be transfer m〇iding or dispensing. As shown in Figure 13, the light-emitting diode i 6 After the flip chip package, the epoxy resin 170 is used for sealing. Similarly, the epoxy resin 17 can be doped with fluorescent powder, and the fluorescent powder can be a yttrium aluminum garnet or a bismuth oxide family. The method of encapsulation can be transfer m〇lding or dispensing. This lx uses a broken substrate as a packaged substrate to increase heat dissipation and can use MEMS process. Due to the choice of reflective metal layer and electrode Different materials, reflective metal layer can be selected for the wavelength of specific light without affecting the choice of electrode material, so they can optimize their materials. The present invention provides an insulating layer to protect the reflective metal layer from oxidation, vulcanization, or other chemical reactions. The thickness of the insulating layer can be adjusted to constructive interference with specific light. The present invention uses wet etching to form an electrode via hole at the bottom, which is sufficient for a subsequent process window. The present invention uses a simple micro-etching process or a lift-off process for the electrode process, which is less expensive than laser processing. The parent steps of the present invention are both mature and less costly. The technical content and technical features of the present invention have been disclosed above, but those skilled in the art may still make various kinds based on the teachings and disclosures of the present invention. H:\HU\LGC\A34276M05957\105957.doc 105957 004881020 -13- 1292962 Alternatives and modifications may be made without departing from the spirit of the invention. Therefore, the scope of the invention is not limited by the scope of the invention, and the invention is intended to cover various modifications and alternatives. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a package structure of a conventional light-emitting diode; FIG. 2 is a flow chart showing a process for forming the structure shown in FIG.

圍 之 圖3顯示本發明的製程流程圖;以及 圖4至圖13顯示本發明在各步驟的結構示意圖3 shows a process flow chart of the present invention; and FIGS. 4 to 13 show the structure of the present invention at each step.

主要元件符號說明】 1〇 基板 20金屬層 24 電極 40環氧樹脂 102 反射腔 no 絕緣層 130 絕緣層 15〇·1;15〇·2背面電極 12 絕緣層 22 電極 30 發光二極體 100 矽基板 104 電極介層洞 120 反射金屬層 140-1;140-2 正面電極 160 發光二極體 170環氧樹脂 H:\HU\LGOA34276\105957\l05957.doc 105957 〇〇488ι〇2〇 14-Main component symbol description] 1 〇 substrate 20 metal layer 24 electrode 40 epoxy resin 102 reflective cavity no insulating layer 130 insulating layer 15 〇 · 1; 15 〇 2 back electrode 12 insulating layer 22 electrode 30 light emitting diode 100 矽 substrate 104 electrode interlayer hole 120 reflective metal layer 140-1; 140-2 front electrode 160 light emitting diode 170 epoxy resin H:\HU\LGOA34276\105957\l05957.doc 105957 〇〇488ι〇2〇14-

Claims (1)

1292962 十、申請專利範圍: 1 · 一種固態發光元件之封裝結構,包含: 一具有一第一表面與一第二表面之碎基材,而該第一 表面與該第二表面相對,其中該第一表面具有一反射腔於 其上,該第二表面具有至少兩個電極介層洞於其上且透過 至該反射腔; 一包覆該矽基材之第一絕緣層; Φ 一位於該反射腔上之反射層; 一位於該反射層上之第二絕緣層; 一位於該兩電極介層洞上之第一導電層,該第一導電 層作為兩個電極墊並且與該反射層電性地隔離;以及 一位於該第二表面下以及位於該兩電極介層洞内之第 二導電層。 2.根據請求項1所述之固態發光元件之封裝結構,其中該第 一絕緣層係氧化矽,由熱氧化法形成。 • 3.根據請求項1所述之固態發光元件之封裝結構,其中該反 射層為銀、銘、金或是錫。 4. 根據請求項1所述之固態發光元件之封裝結構,其中該第 一導電層與該第二導電層為可焊接的材料。 5. 根據請求項4所述之固態發光元件之封裝結構,其中該第 二導電層與該第一導電層電性地聯接。 6. 根據請求項4所述之固態發光元件之封裝結構,其中該第 一導電層與該第二導電層係使用圖案轉移以蝕刻法或是 掀起法形成。 H:\HU\LGC\A34276\105957\105957.doc A34276 105957 004881020 1292962 根據凊求項1所述之固態發光元件之封裝結構,其中該第 二絕緣層係氧化矽,由化學氣相沉積法形成。 8·根據請求項1所述之固態發光元件之封裝結構,其中該兩 私極介層洞是由濕蝕刻法形成。 9·根據請求項1所述之固態發光元件之封裝結構,更包含兩 個電極介層洞於該第二表面上且透過至該反射腔。 iO·根據請求項9所述之固態發光元件之封裝結構,其中該第 一導電層作為四個電極墊,而該第二導電層位於該四電極 介層洞内且與該第一導電層電性地聯接。 U·根據請求項1所述之固態發光元件之封裝結構,其中上述 之固態發光元件為發光二極體。 12· —種形成固態發光元件之封裝結構的方法,包含: 提供一矽基材; 濕式蝕刻該矽基材之一第一表面以形成一反射腔於其 上; 濕式蝕刻該矽基材之一第二表面以形成二電極介層洞 於其上並穿透孩矽基板到該反射腔,其中該第二表面相對 於該第一表面; 形成一弟一絕緣層包覆該碎基材; 形成一反射層於該反射腔上; 在该反射層上形成一第二絕緣層; 形成一第一導電層於該兩電極介層洞上,該第一導電 層作為兩個電極墊並且與該反射層電性地隔離;以及 形成-第二導電層於該第二表面下以及位於該兩電極 H:\HU\LGC\A34276\105957\105957.doc 2 · 1292962 介層洞内。 α根據請求項12所述之形成㈣發光元件之料結構的方 去,其中孩第一絕緣層係氧化矽,由熱氧化法形成。 κ根據請求項12所述之形成固態發光元件之封裳結構的方 去其中★亥反射層為銀、銘、金或是錫。 15.根據請求項14所述之形成固態發光元件之封裝結構的方 去,其中該形成該反射層之步驟係以電鍍法、蒸鍍法或是 電子束磊晶法形成。 疋 根據請求項12所述之形成固態發光元件之封裝結構的方 去,其中Μ第一導電層與該第二導電層為可焊接的材料。 17.根據請求項16所述之形成固態發光元件之封裝結構的方 法,其中該第一導電層與該第二導電層係使用圖案轉移以 餘刻法或是掀起法形成。 18·根據請求項12所述之形成固態發光元件之封裝結構的方 法’其中該第二絕緣層係氧化矽,由化學氣相沉積法形成。 19·根據請求項12所述之形成固態發光元件之封裝結構的方 法’其中該濕式蝕刻該第二面之步驟以形成四個電極介層 洞’並穿透該矽基板到該反射腔。 20·根據請求項19所述之形成固態發光元件之封裝結構的方 法’其中該第一導電層作為四個電極塾,而該第二導電層 位於該四電極介層洞内且與該第一導電層電性地聯接。 21.根據請求項12所述之形成固態發光元件之封裝結構的方 法’其中該固態發光元件為發光二極體。 H:\HU\LGC\A34276\105957\105957.doc1292962 X. Patent Application Range: 1 . The package structure of a solid state light emitting device, comprising: a broken substrate having a first surface and a second surface, wherein the first surface is opposite to the second surface, wherein the first surface a surface having a reflective cavity thereon, the second surface having at least two electrode vias thereon and transmitted to the reflective cavity; a first insulating layer covering the germanium substrate; Φ a a reflective layer on the cavity; a second insulating layer on the reflective layer; a first conductive layer on the two electrode via holes, the first conductive layer acts as two electrode pads and is electrically connected to the reflective layer Ground isolation; and a second conductive layer under the second surface and within the two-electrode via. 2. The package structure of a solid state light-emitting device according to claim 1, wherein the first insulating layer is yttrium oxide and is formed by a thermal oxidation method. 3. The package structure of a solid state light emitting device according to claim 1, wherein the reflective layer is silver, inscription, gold or tin. 4. The package structure of a solid state light emitting device according to claim 1, wherein the first conductive layer and the second conductive layer are solderable materials. 5. The package structure of a solid state light emitting device according to claim 4, wherein the second conductive layer is electrically coupled to the first conductive layer. 6. The package structure of a solid state light emitting device according to claim 4, wherein the first conductive layer and the second conductive layer are formed by etching or etching using pattern transfer. The package structure of the solid state light-emitting device according to claim 1, wherein the second insulating layer is yttrium oxide, formed by chemical vapor deposition. . 8. The package structure of a solid state light emitting device according to claim 1, wherein the two private via holes are formed by wet etching. 9. The package structure of the solid state light emitting device of claim 1, further comprising two electrode vias on the second surface and transmitted to the reflective cavity. The package structure of the solid-state light-emitting device according to claim 9, wherein the first conductive layer functions as four electrode pads, and the second conductive layer is located in the four-electrode via hole and electrically connected to the first conductive layer Sexually connected. The package structure of the solid-state light-emitting element according to claim 1, wherein the solid-state light-emitting element is a light-emitting diode. 12. A method of forming a package structure of a solid state light emitting device, comprising: providing a germanium substrate; wet etching a first surface of the germanium substrate to form a reflective cavity thereon; wet etching the germanium substrate a second surface to form a two-electrode via hole thereon and penetrating the child substrate to the reflective cavity, wherein the second surface is opposite to the first surface; forming an insulating layer covering the broken substrate Forming a reflective layer on the reflective cavity; forming a second insulating layer on the reflective layer; forming a first conductive layer on the two electrode via holes, the first conductive layer serving as two electrode pads and The reflective layer is electrically isolated; and a second conductive layer is formed under the second surface and in the via hole of the two electrodes H:\HU\LGC\A34276\105957\105957.doc 2 · 1292962. α is formed according to the material structure of the (four) light-emitting element described in claim 12, wherein the first insulating layer is yttrium oxide and is formed by thermal oxidation. κ According to claim 12, the formation of the solid-state light-emitting element is such that the reflection layer is silver, inscription, gold or tin. 15. The package structure for forming a solid state light emitting device according to claim 14, wherein the step of forming the reflective layer is formed by electroplating, evaporation, or electron beam epitaxy. The package structure for forming a solid-state light-emitting element according to claim 12, wherein the first conductive layer and the second conductive layer are solderable materials. 17. The method of forming a package structure for a solid state light emitting device according to claim 16, wherein the first conductive layer and the second conductive layer are formed by pattern transfer using a pattern transfer or a lift method. The method of forming a package structure of a solid-state light-emitting device according to claim 12, wherein the second insulating layer is yttrium oxide, which is formed by chemical vapor deposition. The method of forming a package structure of a solid-state light-emitting element according to claim 12, wherein the step of wet etching the second face forms a four-electrode via hole and penetrates the germanium substrate to the reflective cavity. The method of forming a package structure of a solid-state light-emitting device according to claim 19, wherein the first conductive layer functions as four electrode layers, and the second conductive layer is located in the four-electrode via hole and is first The conductive layers are electrically coupled. 21. The method of forming a package structure of a solid state light emitting device according to claim 12, wherein the solid state light emitting device is a light emitting diode. H:\HU\LGC\A34276\105957\105957.doc
TW94136845A 2005-10-21 2005-10-21 Package structure for a solid-state lighting device and method of fabricating the same TWI292962B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW94136845A TWI292962B (en) 2005-10-21 2005-10-21 Package structure for a solid-state lighting device and method of fabricating the same
US11/580,966 US7719099B2 (en) 2005-10-21 2006-10-16 Package structure for solid-state lighting devices and method of fabricating the same
JP2006284812A JP4658897B2 (en) 2005-10-21 2006-10-19 Package structure for semiconductor lighting device and method of manufacturing the same
US12/232,882 US7989237B2 (en) 2005-10-21 2008-09-25 Package structure for solid-state lighting devices and method of fabricating the same
US12/255,165 US7994628B2 (en) 2005-10-21 2008-10-21 Package structure of photoelectronic device and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94136845A TWI292962B (en) 2005-10-21 2005-10-21 Package structure for a solid-state lighting device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW200717849A TW200717849A (en) 2007-05-01
TWI292962B true TWI292962B (en) 2008-01-21

Family

ID=45067680

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94136845A TWI292962B (en) 2005-10-21 2005-10-21 Package structure for a solid-state lighting device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI292962B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470621B2 (en) 2009-03-13 2013-06-25 Advanced Optoelectronic Technology, Inc. Method for fabricating a flip-chip semiconductor optoelectronic device
TWI412163B (en) * 2010-10-18 2013-10-11 Advanced Optoelectronic Tech Led package structure and the method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394300B (en) * 2007-10-24 2013-04-21 Advanced Optoelectronic Tech Packaging structure of photoelectric device and fabricating method thereof
TWI407599B (en) * 2010-08-02 2013-09-01 Advanced Optoelectronic Tech Package structure of led
CN102479889A (en) * 2010-11-30 2012-05-30 中芯国际集成电路制造(上海)有限公司 Method for forming optical platform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470621B2 (en) 2009-03-13 2013-06-25 Advanced Optoelectronic Technology, Inc. Method for fabricating a flip-chip semiconductor optoelectronic device
TWI412163B (en) * 2010-10-18 2013-10-11 Advanced Optoelectronic Tech Led package structure and the method of manufacturing the same

Also Published As

Publication number Publication date
TW200717849A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
US7719099B2 (en) Package structure for solid-state lighting devices and method of fabricating the same
TWI394300B (en) Packaging structure of photoelectric device and fabricating method thereof
CN100490195C (en) Package structure for solid light-emitting element and method for manufacturing same
CN105308765B (en) Light-emitting diode (LED) module and light emitting diode with the light emitting diode bonded by soldering paste
CN104465942B (en) Light emitting diode, light-emitting diode (LED) module and the method for manufacturing light emitting diode
JP5179766B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4999696B2 (en) GaN-based compound semiconductor light emitting device and manufacturing method thereof
TWI246783B (en) Light-emitting device and its manufacturing method
EP2299503A2 (en) Light-emitting device package and method of manufacturing the same
CN103682004B (en) A kind of light emitting diode flip-chip for improving light emission rate and preparation method thereof
CN105247695A (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP4963950B2 (en) Semiconductor light emitting device and manufacturing method thereof
TWI292962B (en) Package structure for a solid-state lighting device and method of fabricating the same
TWI255568B (en) Light emitting diode and fabricating method thereof
JP7112596B2 (en) semiconductor light emitting device
JP2007067184A (en) Led package
KR100887758B1 (en) Flip-chip type vertical light emitting device and method of fabricating the device
CN101459210A (en) Encapsulation structure for photoelectric element and manufacturing process thereof
CN102646774A (en) Light emitting diode element and manufacturing method thereof
JP2012529170A (en) Light emitting semiconductor device and manufacturing method
TWI331415B (en) Packaging structure of photoelectric device and fabricating method thereof
JP4836769B2 (en) Semiconductor light emitting device and manufacturing method thereof
CN113284997B (en) Flip LED chip and preparation method thereof
KR101154666B1 (en) Vertical Type Light Emitting Device And Fabricating Method Thereof
CN116885084B (en) LED chip with package substrate and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees