TWI290665B - Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing - Google Patents

Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing Download PDF

Info

Publication number
TWI290665B
TWI290665B TW94123027A TW94123027A TWI290665B TW I290665 B TWI290665 B TW I290665B TW 94123027 A TW94123027 A TW 94123027A TW 94123027 A TW94123027 A TW 94123027A TW I290665 B TWI290665 B TW I290665B
Authority
TW
Taiwan
Prior art keywords
droplets
volume
pattern
region
droplet
Prior art date
Application number
TW94123027A
Other languages
Chinese (zh)
Other versions
TW200643654A (en
Inventor
Pankaj B Lad
Ian M Mcmackin
Van N Truskett
Norman E Schumaker
Sidlgata V Sreenivasan
Original Assignee
Molecular Imprints Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/143,092 external-priority patent/US20050270312A1/en
Application filed by Molecular Imprints Inc filed Critical Molecular Imprints Inc
Publication of TW200643654A publication Critical patent/TW200643654A/en
Application granted granted Critical
Publication of TWI290665B publication Critical patent/TWI290665B/en

Links

Abstract

The present invention is directed to a method for dispensing a total volume of liquid on a substrate, the method including, inter alia, disposing a plurality of spaced-apart droplets on a region of the substrate, each having an unit volume associated therewith, with an aggregate volume of the droplets in the region being a function of a volume of a pattern to be formed thereat.

Description

1290665 九、發明說明:1290665 IX. Description of invention:

C發明戶斤廣技術領域U 發明領域 本發明的領域概有關於壓印微影法。更具言之,本發 5明係有關一種可在壓印微影製程中配佈一定量的液體於一 基材上以減少填滿一模板之細構所須時間的方法。 t先前技術3 發明背景C FIELD OF THE INVENTION TECHNICAL FIELD The field of the invention relates to imprint lithography. More specifically, the present invention relates to a method for dispensing a certain amount of liquid on a substrate in an imprint lithography process to reduce the time required to fill a template. t prior art 3 invention background

10 15 微製造係包括非常細小結構物的製造,例如,具有微 米或更小尺寸的細構等。一曾受微製造重大影響的領域係 在積體電路的處理。由於半導體製造產業不斷地致力於更 大的產能,同時逐增製設在-基材上之每單位面積電路 數,故微製造變得愈來愈重要。微製造能提供更大的製程 控制,並可大大地縮減所製成結構的最小特徵尺寸。微製 造曹被使㈣其它發展領域包括生物科技,光學科技,機 械系統等等。10 15 Microfabrication consists of the manufacture of very fine structures, for example, fine structures of micrometers or smaller. An area that was heavily influenced by microfabrication was processed in integrated circuits. Micro-manufacturing is becoming more and more important as the semiconductor manufacturing industry continues to focus on greater capacity while increasing the number of circuits per unit area on the substrate. Microfabrication provides greater process control and greatly reduces the minimum feature size of the resulting structure. Micro-manufacturing Cao is responsible for (4) other areas of development including biotechnology, optical technology, mechanical systems and so on.

▼▼UUUll 寸八的 No 633侧美國專财。·_等人揭露—種在—結構物中形 二路影像的方法。該方法包括提供一基材,其具有一▼▼UUUll Inch eight No 633 side US special wealth. · _ et al. reveals the method of forming a two-way image in a structure. The method includes providing a substrate having a

移轉層。該移轉層會被霜# A 锊曰曰孤覆叹-可聚合化的流體成分。-模 t會與該可聚合化流體機械地接觸。該模含有-紋路結 才而4可聚合化流體成分會填滿該紋路結構。該可聚合 化=分㈤會被處縣_並聚合化,而在_轉層上形成 1固的’其會包含一紋路結構互補對應於該模 20 129〇665 紐的紋路。該模嗣會由該固體聚合材料 'η ::結構之一複印圖案—料 二、聚合材料將會被置於-環境中來相對於該聚合 除了其 性地蝕刻該移轉層,而使—紋路影像形成於該移轉; 内。以此技術所提供之最小特徵尺寸和所需時間, θ 它因素外主要取決於該可聚合化材料的成分。 因此,最好能提供-種技術以減少填滿一壓印微影模 板之特徵細構所須的時間。 Λ〜果Transfer layer. The transfer layer will be sighed by the frost #A --polymerizable fluid component. - The mold t will be in mechanical contact with the polymerizable fluid. The mold contains a texture and the 4 polymerizable fluid component fills the texture. The polymerizable = minute (five) will be aggregated by the county and aggregated to form a solid on the layer, which will contain a texture complementary to the pattern of the mold 20 129 665 665. The mold will be copied from the solid polymeric material 'n:: one of the structures. The second, the polymeric material will be placed in the environment to etch the transfer layer in addition to the polymerization. The image of the texture is formed in the transfer; The minimum feature size and time required by this technique, θ, depends primarily on the composition of the polymerizable material. Therefore, it is desirable to provide a technique to reduce the time required to fill the features of an embossed lithography template. Λ~fruit

10 t發明内容3 發明概要 本發明係有關一種可供配佈一總量液體於一基材上的 方法,該方法主要包括:配置許多間隔分開的液滴於該基 材之一區域上,該各液滴皆具有一單位體積,且在該區域 内之該等液滴的總合體積係為一所要形成之圖案的體積之 15 一函數。這些及其它的實施例會被更完整說明於後。 圖式簡單說明 • 第1圖係為依據本發明之一微影系統的立體圖; 第2圖為第1圖中所示之微影系統的簡化平面圖; 第3圖為第2圖中所示之壓印層材料在被聚合化且交鍵 20 之前的簡化示意圖; 第4圖為第3圖中所示之材料在被照射之後而轉變成交 鏈聚合材料的簡化示意圖; 第5圖為第1圖中所示之模在該壓印層圖案化之後,與 該壓印層釋離分開的簡化平面圖; 6 1290665 第6圖為依本發明第一實施例的頂視圖,示出有一陣列 的壓印材料液滴配置在第2圖所示的基材之一區域上;及 第7圖為一流程圖示出依一模板的設計來在一基材之 一區域上配佈液滴的方法。 5 【實施方式】 較佳實施例之詳細說明 第1圖示出本發明一實施例的微影系統10,其包含一對 間隔分開的橋架12,並有一橋14及一枱座16延伸於其間。 該橋14與枱座16係間隔分開。有一印頭18連結於該橋14, 10並會由該橋14朝向枱座16延伸,而能沿其z軸移動。有一移 動枱20設在該枱座16上而面對印頭18。該移動枱20係可沿X 和Y軸來相對於枱座16移動。應請瞭解該印頭18係可沿X、 Y軸及Z軸移動,且移動枱20亦可沿Z軸和X、Y移動。一移 動枱裝置之例曾被揭於2002年7月11日申請之Ν〇· 15 ι〇/194414美國專利申請案中,其名稱為“逐步重複壓印微 影系統”,且被讓渡給本發明的受讓人,而其内容併此附 送參考。一輻射源22會連結於該系統10來將光化性輕射照 射在移動抬20上。如所不’该輪射源22係連結於橋14,並 包含一能量產生器23連接於該輻射源22。該系統1〇的操作 20 典型係藉一可傳輸資料的處理器25來控制。 請參閱第1及2圖,有一模板26連結於該印頭μ,該模 板上具有一模28。該模28上含有由許多間隔分開的凹部28& 與凸部28b所形成的多數特徵細構。該等細構會形成一原妒 圖案,其將會被移轉至一固置於移動枱20上的基材3〇中。 1290665 其中娜頭18及/或移動枱_可改變該獅與基材3 〇 距離“d”。以此方式’則該模28上的細構將能被印入 之—可流祕域巾,如制述。雜射源22係被 -又/使該卿置於婦源22和紐3G之間。因此,該模 28疋由—種能供輻射源22所產生之輕射穿透的材料來製 成。故,該模28乃可由以下的材料來製成,例如石英、溶 凝的二氧切、石夕、藍寶石、有機聚合物、錢烧聚合物、10 t SUMMARY OF THE INVENTION The present invention relates to a method for dispensing a total amount of liquid onto a substrate, the method comprising: arranging a plurality of spaced apart droplets on a region of the substrate, Each droplet has a unit volume and the total volume of the droplets in the region is a function of the volume of a pattern to be formed. These and other embodiments will be more fully described below. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a lithography system according to the present invention; Fig. 2 is a simplified plan view of the lithography system shown in Fig. 1; Fig. 3 is a view of Fig. 2 A simplified schematic of the embossed layer material prior to being polymerized and cross-linked 20; Figure 4 is a simplified schematic diagram of the transition of the cross-linked polymeric material after the material shown in Figure 3 is illuminated; Figure 5 is a first A simplified plan view of the mold shown in the mold after the imprinting layer is separated from the imprinted layer; 6 1290665 FIG. 6 is a top view of the first embodiment of the present invention showing an array of imprints The material droplets are disposed on a region of the substrate shown in Fig. 2; and Fig. 7 is a flow chart showing a method of dispensing droplets on a region of a substrate according to the design of a template. 5 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A first embodiment of a lithography system 10 according to an embodiment of the present invention includes a pair of spaced apart bridges 12 with a bridge 14 and a pedestal 16 extending therebetween. . The bridge 14 is spaced apart from the pedestal 16 by a distance. A print head 18 is attached to the bridge 14, 10 and will be extended by the bridge 14 toward the pedestal 16 to be movable along its z-axis. A mobile station 20 is disposed on the pedestal 16 to face the print head 18. The mobile station 20 is movable relative to the pedestal 16 along the X and Y axes. It should be noted that the print head 18 can be moved along the X, Y axis and Z axis, and the mobile table 20 can also move along the Z axis and X, Y. An example of a mobile station device was disclosed in the US Patent Application No. 15 ι〇/194414 filed on July 11, 2002, entitled "Step-by-Step Repetitive Imprinting Micro-Shadow System", and was transferred to The assignee of the present invention, the contents of which are hereby incorporated by reference. A radiation source 22 is coupled to the system 10 to illuminate the actinic light radiation on the moving lift 20. The wheel source 22 is coupled to the bridge 14 and includes an energy generator 23 coupled to the radiation source 22. The operation of the system is typically controlled by a processor 25 that can transmit data. Referring to Figures 1 and 2, a template 26 is attached to the print head μ, which has a die 28. The mold 28 contains a plurality of features that are formed by a plurality of spaced apart recesses 28 & and convex portions 28b. The textures form an original pattern that will be transferred to a substrate 3 that is placed on the mobile station 20. 1290665 Where the head 18 and/or the mobile station _ can change the distance between the lion and the substrate 3 “ "d". In this way, the fine structure on the mold 28 will be able to be printed - a flowable tissue, as described. The source of the source 22 is - and / / is placed between the source 22 and the New 3G. Therefore, the mold 28 is made of a light-transmitting material that can be supplied to the radiation source 22. Therefore, the mold 28 can be made of the following materials, such as quartz, condensed dioxophone, sapphire, sapphire, organic polymer, money burned polymer,

10 1510 15

财酸鹽玻璃、祕聚合物,或其組合物等。又該模板% 亦可由前述材料以及金屬來製成。 ,凊芩閱第2及3圖,一可流動區域,譬如壓印層34將會 形成於-平坦表面32的-部份上…構成壓印層%的可二 動區域之例,餘歸30上魏置辆多_分開的材料 液滴36,如後所詳述。—絲配置液滴私例曾被揭於纖 #月9日申請之Νο·觀91749美國專利申請案,其名稱為 用以配佈液體的祕和方法”,並被讓渡給本發明的受 讓人,其内容併此附送參考。該壓印層34係由__材料恤所 形成,其可被選擇地聚合化並交鏈而將該原始圖案轉鮮 中來形成-轉錄圖案。該材料36a的成分㈣被揭於綱年 2月27日中請之Ng. 1()/789319美國專利中請案,& “用於-切㈣之侧罩的成分,,,内容亦併此附送參 考。在第4圖中示出該材料36a係交鏈在各點灿處,而形成 又鍵的聚合材料36c 〇 請參閱第2、3及5圖,被轉錄在壓印層34中的 係藉與該模2 8機械接觸而來形成 圖案部份 其中,該距離“d”會被縮 20 1290665 =使壓特滴顺_獅,並延频㈣滴36來形成 ,層34而以一連續材料恤覆蓋該表面仏在一實施例 中,該輯“d”會被喊錢騎㈣之各:欠部^能嵌入 並填滿各凹部28a。 5 10 15 …為便於填滿σ凹部28a,該材料恤會具有所需性質俾 真滿凹^28a同時並以_連續的材料施來覆蓋該表 面32。在本實施例中,該壓印層34介於各凸部挪之間的次 部34b等,當於該所需距離“d,,(通常是最小距離则之後將 Π留,而留下厚度為&的次部地和厚度為⑽次部34b 卜遠寻厚度t々t2可為任何所需厚度,肖視用途而定。通 常被選成令t邮3u,如第5圖所示。而次部灿典型 係被稱為殘留層。 射二:閱第2、3'4圖’在-所須距離“d”達到後,該輻 身源22將會產生光化性轄射,其可聚合化並交鏈該材料 36a,而形成交鏈㈣合材料%。結果,該壓印層%的成 = 轉變,的聚合_6c,其係為固 °亥又鍵的聚合材料36(;將會固化而使壓印層34 :在广、有對應於雜28之表面28(:的形狀’如第5圖所 鏈料㈣36e(如 後’该印訓見㈣)將會移動來增加該距離“d 模28與壓印層34間隔分開。 使^ 請參閱第5圖,其它附加的製程將會被用來 3〇的圖案化。例如,該基材3咏壓印層 : 印層34的圖㈣轉於基材3 ㈣則〗以將[ r ’而形成一圖案化表面34c。 20 1290665 為便於蝕刻,製成該壓印層34的材料係可依需要來改變, 而相對於基材30造成一相對蝕刻率。 請參閱第2、3及6圖,針對具有非常密集的細構(例如 奈米規格的凹部28a和凸部28b等)之模而言,將液滴36散佈 5於基材30與模28間之一區域40上來填滿各凹部28a等乃需 要一段較長時間,故會減缓該壓印製程的產出。為促進該 壓印製程的產能,該等液滴36須被配佈成能儘量減少散佈 在基材30上並填滿各凹部28a所需的時間。此乃可藉將該等 液滴36配佈成一二維矩陣42且令其相鄰液滴%之間的間隔 10 (如所示之&及S2)隶小化而來達成。如圖所示,該矩陣々a的 液滴係被排列成6直行η:〜〜及6橫列m〗〜m0。但,事實上 该等液滴36亦可呈任何二維的佈設方式來排列在基材3〇 上。所需要的是能使該矩陣42中的液滴36數目最大化,並 令材料36a的總體積%足以形成該壓印層34。此將會最小化 15各相鄰液滴36之間的間距心和1。又,其最好能使在該陣 列中每一液滴36皆具有實質相同的材料36&量,而形成—單 位體積vu。依據這些標準,即可決定在該矩陣42中的液滴 總數η,如下所述: (1) n=Vt/Vu 其中vt*vu係被定義如上。假設為一液滴36的方形陣 列,則該液滴36的總數η可被界定如下: (2) η = ηιΧη2 其中〜係沿一第一方向的液滴數目,而化則為沿—第二 方向的液滴數目。相鄰液滴36沿一第一方向(即一維向)的間 1290665 距係可如下來決定。 (3)Si = Lj/ii] 方向的間距S2 “其中Ll係該區域40沿該第—方向的長度。同樣地,相 鄰液滴36沿一橫交於第一方向延伸之第 係可如下來決定: (4)S2 = L2/n2 其中L2係該區域40沿該第二方向的長度。 由於各液滴36所賦具的材料36a單位體_取決㈣ 佈裝置,故顯然該等間距S々s2會取決於解 H)形成各液滴36的液滴配佈裝置(未示出)之操作^制。具言 之’最好該配佈裝置(未示出)能令各液滴乂具有一最小量的 材料36a,俾使其能被精密地控制。以此方式,則該各液滴 36中之材料36a必須在該區域40上佈散的面積將會最小 化。此將能減少填滿各凹部28a,並以一連續材料層來覆蓋 15 該基材所須的時間。 配佈該等液滴3 6係可藉一次全部配佈於該整體基材3 〇 上,或使用一逐區配佈技術來達成;該逐區配佈技術曾被 揭述於No. 10/194414美國專利申請案中,其為美國專利公 告案No· 2004/0008334的標的,内容併此附送。就此,所使 20用的配佈系統乃可為一種壓電喷墨式或一種微螺線管式的 技術。因此,該配佈系統係可為單一喷嘴,一線狀陣列的 噴嘴,或一矩陣的喷嘴,其能用來配佈該材料36a,而該線 狀和矩形的喷嘴陣列會包含100個以上的個別喷頭。該等喷 嘴陣列中的噴頭能以高達4kHz的頻率來噴佈。噴嘴陣列之噴 11 1290665 頭係能以on-off體積控制或灰標體積控制能力來使用,其中 該灰標體積控制能力係可配佈1〜42微微升(pL)的體積。當 使用逐區配佈技術時,該喷嘴陣列的每一喷頭皆可喷佈相 同成分的材料36a;但在另一實施例中,該喷嘴陣列的每一 5噴頭則能噴佈不同的材料36a成分。 喷墨器之例包括可由總公司在Cambridge,UK之Xaar 公司購得的〇mnid〇t,及可由Spectra購得的噴墨器,該 Spectra為總部在Lebanon,New Hampshire之Dimatix公司的 分公司。一喷嘴陣列之例係為一多喷頭喷佈系統,其含有 10 126個噴頭,而被xaar公司以XJ126的型號來銷售。又,一 使用超音波喷頭來配佈液滴36的霧化喷佈法亦可被使用。 此外’針對具有高黏度(如20厘泊(cps)或更高)的材料36a, 則可使用購自Xaar公司的Leopard,其中該材料36a乃可被加 熱來將其黏度降低至可噴佈範圍。 15 為能獲得一既薄又均勻的殘留層,並使用來壓印一區 域的時間最少化,有若干方法可依據本發明來實施。 請參閱第1〜3及7圖,例如,該等液滴36乃可被配佈如 模板26的設計之一函數,並使用適當的環境氣體(例如He) 來消減該壓印層34中的滯陷氣體。一依模板26之設計來配 20佈材料36a的實施例會被說明於後。該等液滴36可包含一很 小的體積Vs,例如在1〜l〇〇〇pL左右。首先,考量該模板26 沒有特徵細構的狀況。為在基材3〇上達到一指定的殘留層 厚度,在步驟100時,會假設該模板26能將所有的材料36a 圍限在該模板26之一作用區域内,而來計算出所須的材料 12 1290665Acid carbonate glass, secret polymer, or a combination thereof. Further, the template % can also be made of the aforementioned materials as well as metals. Referring to Figures 2 and 3, a flowable region, such as the embossed layer 34, will be formed on the - portion of the flat surface 32 ... an example of a movable region constituting the embossed layer %, The upper Wei sets more _ separate material droplets 36, as will be detailed later. - The wire configuration droplet private case has been disclosed in the fiber #月9日申请 Νο·view 91749 US patent application, the name is the secret method for dispensing liquids, and was transferred to the invention The contents are hereby incorporated by reference. The embossed layer 34 is formed of a __shirt, which can be selectively polymerized and crosslinked to reproduce the original pattern to form a -traning pattern. The composition of the 36a component (4) was disclosed in the Ng. 1 () / 789319 U.S. Patent Application, & "The component used for the side cover of the cut (4), and the contents are also attached. reference. In Fig. 4, the material 36a is shown to be interlaced at each point, and the polymer material 36c which forms a bond is also referred to in Figures 2, 3 and 5, and is transcribed in the embossed layer 34. The mold 28 is mechanically contacted to form a pattern portion, wherein the distance "d" is reduced by 20 1290665 = the pressure drops are squirted, and the frequency is extended (four) drops 36 to form a layer 34 with a continuous material shirt Covering the surface 仏 In an embodiment, the series "d" will be called by each of the money rides (four): the undercuts can be embedded and filled with the recesses 28a. 5 10 15 ... To facilitate filling of the σ recess 28a, the sheet of material will have the desired properties 真 true full recess 28a while simultaneously covering the surface 32 with _ continuous material. In this embodiment, the embossed layer 34 is interposed between the protrusions 34b and the like, when the required distance "d," (usually the minimum distance will be retained, leaving a thickness The sub-ground and thickness of & is (10) sub-portion 34b. The thickness t々t2 can be any desired thickness, depending on the application. It is usually chosen to be t-mail 3u, as shown in Figure 5. The second part of the typical system is called the residual layer. Shot 2: After reading the 2nd, 3'4 picture 'after the required distance d', the body source 22 will produce actinic radiation, The material 36a can be polymerized and crosslinked to form a crosslinked (tetra) material. As a result, the % of the imprinted layer = the transition, the polymerization_6c, which is a polymeric material 36 (; Will be cured to make the embossed layer 34: in the wide, there is a surface 28 corresponding to the miscellaneous 28 (: the shape ' as shown in Figure 5 (4) 36e (as in the latter 'the printing see (4)) will move to increase The distance d mold 28 is spaced apart from the embossed layer 34. Please refer to Fig. 5, and other additional processes will be used for the patterning of 3 。. For example, the substrate 3 embossing layer: printing layer 34 Figure (four) turn Substrate 3 (d) to form a patterned surface 34c with [r'. 20 1290665 For ease of etching, the material from which the imprinting layer 34 is made can be changed as needed to create a relative relative to the substrate 30. Etching rate. Referring to Figures 2, 3 and 6, for droplets having very dense textures (e.g., nanometer-sized recesses 28a and protrusions 28b, etc.), droplets 36 are dispersed 5 on substrate 30 and It takes a long time for the region 40 between the molds 28 to fill the recesses 28a, etc., so that the output of the imprint process is slowed down. To facilitate the productivity of the imprint process, the droplets 36 must be matched. The cloth can minimize the time required to spread over the substrate 30 and fill the recesses 28a. This can be achieved by arranging the droplets 36 into a two-dimensional matrix 42 and spacing between adjacent droplets The interval 10 (as shown in & and S2) is achieved by miniaturization. As shown, the droplets of the matrix 々a are arranged in 6 straight rows η: ~~ and 6 rows m 〗 〖m0 However, in fact, the droplets 36 can also be arranged on the substrate 3 in any two-dimensional arrangement. What is needed is to enable the number of droplets 36 in the matrix 42. Maximizing, and making the total volume % of material 36a sufficient to form the embossed layer 34. This will minimize the spacing center between the adjacent droplets 36 and 1. Again, it will preferably be in the array. Each of the droplets 36 has substantially the same amount of material 36 & and forms a unit volume vu. According to these criteria, the total number of droplets η in the matrix 42 can be determined as follows: (1) n = Vt /Vu where vt*vu is defined as above. Assuming a square array of droplets 36, the total number η of droplets 36 can be defined as follows: (2) η = ηιΧη2 where ~ is a liquid along a first direction The number of drops, and the number of drops along the second direction. The distance between adjacent droplets 36 in a first direction (i.e., one dimension) 1290665 can be determined as follows. (3) Si = Lj / ii] direction spacing S2 "where L1 is the length of the region 40 along the first direction. Similarly, the adjacent droplets 36 along a transverse line extending in the first direction may be as follows It is determined that: (4) S2 = L2/n2 where L2 is the length of the region 40 along the second direction. Since the material 36a of each droplet 36 is provided by the unit body _ depends on the (four) cloth device, it is obvious that the spacing S 々s2 will depend on the operation of the droplet dispensing device (not shown) that forms each droplet 36. It is preferred that the dispensing device (not shown) can cause each droplet to collapse. There is a minimum amount of material 36a that can be precisely controlled. In this manner, the area of material 36a in each droplet 36 that must be spread over the area 40 will be minimized. Filling each of the recesses 28a and covering the substrate with a continuous layer of material. The dispensing of the droplets may be performed on the entire substrate 3, or one This is a zone-by-zone distribution technique that has been disclosed in U.S. Patent Application Serial No. 10/194,414, which is incorporated herein by reference. The subject matter of 2004/0008334 is hereby incorporated. In this regard, the distribution system for 20 can be a piezoelectric ink jet type or a micro solenoid type technology. Therefore, the distribution system can be a single unit. Nozzles, a linear array of nozzles, or a matrix of nozzles that can be used to dispense the material 36a, and the linear and rectangular array of nozzles will contain more than 100 individual nozzles. The nozzles in the array of nozzles Can be sprayed at frequencies up to 4 kHz. Nozzle array spray 11 1290665 head system can be used with on-off volume control or gray mark volume control capability, where the gray mark volume control capability can be dispensed with 1 to 42 picoliters Volume of (pL). When using a zone-by-zone dispensing technique, each nozzle of the nozzle array can be sprayed with the same composition of material 36a; but in another embodiment, each of the nozzles of the nozzle array is Different materials 36a can be sprayed. Examples of inkjets include 〇mnid〇t, available from the head office of Xaar Corporation of Cambridge, UK, and inkjets available from Spectra, which is based in Lebanon. Dimatix of New Hampshire A nozzle array is a multi-nozzle spray system that contains 10 126 nozzles and is sold by xaar in the XJ126 model. In addition, an ultrasonic nozzle is used to dispense droplets 36. An atomizing spray method can also be used. Further, for material 36a having a high viscosity (e.g., 20 centipoise (cps) or higher), Leopard from Xaar Corporation can be used, wherein the material 36a can be heated. The viscosity is reduced to the range that can be sprayed. 15 In order to obtain a thin and uniform residual layer and minimize the time required to imprint an area, several methods can be implemented in accordance with the present invention. Referring to Figures 1 through 3 and 7, for example, the droplets 36 can be configured as a function of the design of the template 26 and a suitable ambient gas (e.g., He) is used to attenuate the embossed layer 34. Gas trapped. An embodiment in which the 20 cloth material 36a is designed in accordance with the design of the template 26 will be described later. The droplets 36 may comprise a small volume Vs, for example around 1 to 1 〇〇〇pL. First, consider the situation in which the template 26 has no feature detailing. In order to achieve a specified residual layer thickness on the substrate 3, at step 100, it is assumed that the template 26 can confine all of the material 36a within one of the regions of the template 26 to calculate the required material. 12 1290665

10 1510 15

20 36a總體積。假設為一m列xn行的格陣,在步驟1〇2時’ 會算出m和η以使mxnxVs^^Vi。當m和η被選定之後,在步 驟104時,會確認代表控制區Ac之各格點周圍的多邊形區 域,其具有一面積係約略等於模板26之作用區總面積除以 (mxn)的大小。在步驟106時,會配佈一體積=vs的液滴在 各方格位置,其中該模板26並無凹部(細構)位於該控制區 Ac上。在步驟108時,會在對應於該模板26上完全凹陷部位 之控制區Ac的格點處配佈一體積= (Vs+AcXd)的液滴,該d 係為模板26的蝕刻深度。在步驟110時,會在對應於模板有 部份(譬如J%)凹陷的控制區Ac之格點處配佈一體積= (Vs+AeXdxJ/100)的液滴,其中d係為模板26的蝕刻深度。 凊簽閱第2及7圖,該印頭18的操作和液滴6〇的配佈係 可藉一處理器21來控制,其能傳輸資料。一記憶體23會與 该處理器21資料傳訊。該記憶體23包含—電腦可讀的媒 體並有-電腦可積的程式設於其内。該電腦可讀的程式 3有‘ Ub進行第7圖所示的操作,或能執行某些類似的程 序而來异出在各袼點處所要配佈的體積。該等軟體程式可 處理=板料細如GDS㈣,其係被用來製造模板%。 乃.J 2 3、7圖’要被配佈在各控制區Ac處的體積 w藉液滴36有固定的體積,則改變在各控制區 液滴36圖案;或若有固定的液滴圖案,則改變在各 ==之每—液滴36的體積;或以此二者的組合方式 、,4 μ達成。又,一液滴圖案及/或每一液滴體積的經驗 _亦可破用來獲得各相鄰控制區Α乂間所形成的轉換區 13 1290665 之所需特性。 上述方法能在該基材30之一區域内提供所需的材料 36a’並能最小化一液滴材料36a在與相鄰的液滴材料36过合 併之前須要佈展的距離,故能減少液滴36填滿各凹部加所 5須的=間。當合併二或更多的液滴36時,可能會有氣袋產 生於靠近各合併材料36a之邊界處的壓印層34中。 最好能儘量減少液滴36填滿凹部28a的時間(此猶兔 板26的充填日寺間),並造成幾乎沒有氣隙_印層^。為= • 少該模板26的充填時間,則材料36a取代上述介於合併材料 10 36a之間的氣袋所須的時間需要被最小化。就此,假使每— 液滴36皆包含相同的體積,則該等氣袋的平均體積和體積 差異將可被最小化。結果,該等氣袋即可被合併的材料^ 以較快的速率來排除。一能減少該等氣袋之平均體積和體 積差異的液滴36圖案之例可包括,但不限於六角形和三角 !5形。又,已發現針對一厚度為3〇〜4〇nm或更小的殘留:, 該模板26的充填時間是可接受的。 鼸 A外’儘ϊ減少上述—液滴材料施在與相鄰液滴如 合併之前須佈展的距離,亦會減少液滴36a的黏性阻滞,而 造成更大的材料36a速度和力量來排除該等氣袋,故能更為 20減少模板26的充填時間。且,若該等氣袋僅為小體積區域、, 即橫向約為數微米而厚度係為次微米規格,則該等氣袋將 可被迅速地排除來供進行快速壓印製程。 "、 為更進-步地減少充填時間,則該等氣袋的排除迷率 乃可被提高而使合併之材料施能以更快的速率來取代氣 14 .1290665 衣。其中,該等氣袋的排除速率會正比於施加其上的液壓。 乂液^ 了為一毛細管力及任何施加於液滴36之外力的函 數。為增加該液壓,該毛細管力乃可被增加,而該毛細管 力可藉減少厚度t2,如第5圖所示,而來最大化。 5 應請瞭解配佈在液滴%中的體積亦會如溫度的函數來 改變。例如,該材料36a的黏度,以及用來作動泵以使材料 36a由噴嘴噴出之ρζτ材料的尺寸皆可改變,此兩者皆能改 變一指定液滴36的體積。壓電微噴頭可包含一内建的溫度 修感測器,如同在X⑽r,s I26線狀陣列中的情況,其會持續地 1〇控制该泵的溫度。一有關溫度和電壓的定標曲線可被設來 維持一特定的料量輸出。此定標曲線可被用於瞬間實時, 俾當得知溫度變化時能調整電壓電平。 此外,為避免偶發的故障導致噴滴失誤,則可使用一 種配佈技術,其中該等液滴36之一小組或每一滴,係可由 噴囔在一相同位置配佈多次材料3如,而使每一液滴36在 •'累積下能具有一所需體積。具言之’一特定液滴36的體積 將可為該噴嘴在相同位置多次噴佈體積的總合值。 人又,在基材30上之-特定區域中,眾多的液滴%將會 2〇合併而使該液滴的局部膜厚成為整體N個液滴%的平均 值,因此若有一滴液滴36未被喷佈,則該局部膜厚(所需膜 厚/N)會與理想者有奈米之差。因此,只要N數夠高^如 〇〇),則一滴液滴36之漏失的影響將會微不足道。舉例而 言,於一XmmxXnm^場區内,要建立_1〇〇nm的殘I層, 則所需的最小體積係為(〇.lxX2)nL,此指模板26中沒有凹0陷 15 1290665 細構。假使該模板26含有細構,則需要更多的材料36a,故 更要增加N數。因此,該模板26沒有細構的狀況將會是最壞 狀況。該等壓電喷頭能提供低至lpL的體積。若假設80pL 為基本液滴單位,則以nm計的RLT誤差將會反比於以nm計 5 之場區尺寸之特性長度If的平方(定義為包括多邊形場區之 以mm2計之場區面積的平方根)。此係如下所示:20 36a total volume. Assuming an array of m columns xn rows, m and η are calculated at step 1 〇 2 to make mxnxVs^^Vi. When m and η are selected, at step 104, a polygonal area around each of the lattice points representing the control area Ac is confirmed, which has an area which is approximately equal to the total area of the active area of the template 26 divided by (mxn). At step 106, a droplet of volume = vs is placed at each of the grid locations, wherein the template 26 has no recess (detail) located on the control zone Ac. At step 108, a droplet of volume = (Vs + AcXd) is dispensed at a grid point corresponding to the control zone Ac of the completely recessed portion of the template 26, which is the etch depth of the template 26. At step 110, a droplet of volume = (Vs + AeXdxJ/100) is dispensed at a grid point corresponding to a portion of the template (eg, J%) depressed, where d is template 26 Etching depth. Referring to Figures 2 and 7, the operation of the print head 18 and the dispensing of the liquid droplets 6 can be controlled by a processor 21 which is capable of transmitting data. A memory 23 communicates with the processor 21 for data. The memory 23 includes a computer readable medium and a computer accumulable program disposed therein. The computer readable program 3 has ‘Ub performing the operations shown in Fig. 7, or can perform some similar procedures to dissipate the volume to be dispensed at each defect. These software programs can handle = sheet material as GDS (4), which is used to make template %. Fig. J 2 3, 7 'The volume w to be distributed at each control zone Ac has a fixed volume by the droplet 36, then the pattern of the droplet 36 in each control zone is changed; or if there is a fixed droplet pattern Then, change the volume of each droplet = 36; or a combination of the two, 4 μ is achieved. Moreover, the experience of a droplet pattern and/or each droplet volume can also be used to obtain the desired characteristics of the transition region 13 1290665 formed between the adjacent control regions. The above method provides the desired material 36a' in one of the regions of the substrate 30 and minimizes the distance that a droplet of material 36a needs to spread before it merges with the adjacent droplet material 36, thereby reducing droplets. 36 fills each recess plus the 5 required. When two or more droplets 36 are combined, there may be an air pocket created in the embossed layer 34 near the boundary of each of the combined materials 36a. It is preferable to minimize the time during which the liquid droplet 36 fills the concave portion 28a (this is the filling of the Japanese rabbit plate 26 between the temples) and causes almost no air gap_print layer ^. In order to reduce the filling time of the template 26, the time required for the material 36a to replace the air bag between the combined materials 10 36a needs to be minimized. In this regard, if each droplet 36 contains the same volume, the average volume and volume difference of the pockets will be minimized. As a result, the air bags can be excluded from the combined material at a faster rate. An example of a pattern of droplets 36 that reduces the average volume and volume difference of the air pockets may include, but is not limited to, hexagonal and triangular! Again, it has been found that for a residue having a thickness of 3 Å to 4 〇 nm or less: the filling time of the template 26 is acceptable.鼸A outside 'to reduce the above--the distance that the droplet material must be spread before the adjacent droplets are merged, also reduces the viscous retardation of the droplet 36a, resulting in a larger material 36a speed and strength. Excluding these air bags, the filling time of the template 26 can be reduced by 20 more. Moreover, if the air pockets are only small volumetric regions, i.e., laterally on the order of a few microns and the thickness is in the submicron size, the airbags can be quickly removed for rapid imprinting. ", in order to further reduce the filling time, the elimination rate of these air bags can be improved and the combined materials can be used to replace the gas 14.1290665 clothes at a faster rate. Among them, the removal rate of the air bags will be proportional to the hydraulic pressure applied thereto. The sputum is a function of a capillary force and any force applied to the droplet 36. To increase the hydraulic pressure, the capillary force can be increased, and the capillary force can be maximized by reducing the thickness t2 as shown in Fig. 5. 5 It should be noted that the volume of the distribution in the % of the droplets will also change as a function of temperature. For example, the viscosity of the material 36a, as well as the size of the material used to actuate the pump to eject the material 36a from the nozzle, can be varied, both of which can change the volume of a given droplet 36. The piezoelectric micro-spray can include a built-in temperature-sensing sensor, as in the X(10)r, s I26 linear array, which continuously controls the temperature of the pump. A calibration curve for temperature and voltage can be set to maintain a specific throughput output. This calibration curve can be used for instantaneous real-time, and the voltage level can be adjusted when the temperature change is known. In addition, in order to avoid sporadic failures that lead to droplet errors, a dispensing technique can be used in which one or each of the droplets 36 can be dispensed multiple times by a sneeze at the same location. Each droplet 36 is capable of having a desired volume under accumulation. In other words, the volume of a particular drop 36 will be the sum of the volumes of the nozzle sprayed multiple times at the same location. Further, in a specific region on the substrate 30, a large number of droplets will be combined to make the local film thickness of the droplet an average of the total N droplet %, so if there is a droplet If the 36 is not sprayed, the local film thickness (required film thickness / N) will be different from the ideal one. Therefore, as long as the number of N is high enough (such as 〇〇), the effect of the drop of a drop of droplet 36 will be negligible. For example, in a XmmxXnm^ field region, to establish a residual layer of _1 〇〇 nm, the minimum volume required is (〇.lxX2)nL, which means that there is no concave 0 in the template 26 15 1290665 Fine structure. If the template 26 is finely structured, more material 36a is required, so the number of N is increased. Therefore, the condition that the template 26 is not detailed will be the worst case. These piezoelectric nozzles are capable of providing volumes as low as lpL. If 80pL is assumed to be the basic droplet unit, the RLT error in nm will be inversely proportional to the square of the characteristic length If of the field size of 5 in nm (defined as the area of the field including the polygon field in mm2). Square root). This is as follows:

5 10 15 20 25 以_計之場區尺寸的特性長度(1〜25mm範圍) 若一失誤液滴36之可容許的膜厚差異為5nm,則1〖係大約為 4mn,此並無干於所造成的壓印層34厚度。 1〇 應請瞭解若該液滴36的體積減少,則蒸發的影響將會 增加。藉著調校該液滴36的蒸發程度,則被配佈的體積將 可增加來補償蒸發。例如,在該基材3〇之各區域中,首先 被配佈液滴36的區域相較於最後配佈液滴36的區域,將會 需要更多的材料36a。先被配佈的液滴36會蒸發較多,因為 15其在模板26和基材30來夾含其間的液體之前會等待較長時 間。 請參閱第3和5圖,在另一實施例中,該等液滴%可包 含一表面活化劑預處理溶液。該表面活化劑預處理溶劑可 被使用,俾當液滴36接觸模板26時,有一部份的該表面活 16 1290665 化劑預處理溶液能黏附其上。包含有該表面活化劑預處理 溶液的液滴36乃可使用上述的方法而呈一圖案被佈設在基 材30上,以減少模板26的充填時間。惟,在其它實施例中, 該等液滴36亦可呈一圖案來被佈設在基材3〇上,以消除可 5能發生在相鄰液滴36合併處的表面活化劑聚積,而得促進 液滴36填滿各凹部28a。 在又另一貫施例中,最好能於基材3〇與液滴36之間置 設一底層(未示出)。該底層可包含一成分具有一低表面能量 來與模板26反應,及一鬲表面能量來與液滴36反應。該底 10層的成分可具有最小的蒸發率,及大約10〜10〇cps的黏度 以便於其旋塗沈積。該底層與液滴36係可混合的,且該底 層亦可為該等液滴36之一溶劑。 以上所述之本發明的各實施例皆為舉例而已。許多修 正變化亦可被實施於上述内容中,而仍保留在本發明的範 15圍内。因此,本發明的範圍不應受上述說明的限制,而應 簽照所附申請專利範圍及其等效實質的全部範圍來決定。 【圖或簡單說明】 第1圖係為依據本發明之一微影系統的立體圖; 第2圖為第1圖中所示之微影系統的簡化平面圖; 20 第3圖為第2圖中所不之塵印層材料在被聚合化且交鏈 之前的簡化示意圖; 第4圖為第3圖中所不之材料在被照射之後而轉變成交 鏈聚合材料的簡化示意圖; 第5圖為第1圖中所示之模在該壓印層圖案化之後,與 17 1290665 - 該壓印層釋離分開的簡化平面圖; 第6圖為依本發明第一實施例的頂視圖,示出有一陣列 的壓印材料液滴配置在第2圖所示的基材之一區域上;及 第7圖為一流程圖示出依一模板的設計來在一基材之 5 一區域上配佈液滴的方法。 【主要元件符號說明】 10…微影系統 12…橋架 14…橋 16…枱座 18…印頭 20…移動枱 22…輻射源 23…能量產生器 25…處理器 26…模板 28…模 28a···凹部 28b…凸部5 10 15 20 25 Characteristic length of the field size in _ (range of 1 to 25 mm) If the allowable film thickness difference of a missed droplet 36 is 5 nm, then 1 is about 4 mn, which is not dry. The resulting thickness of the embossed layer 34. 1〇 It should be noted that if the volume of the droplet 36 is reduced, the effect of evaporation will increase. By adjusting the degree of evaporation of the droplets 36, the volume dispensed will be increased to compensate for evaporation. For example, in each of the regions of the substrate 3, the region where the droplets 36 are first dispensed will require more material 36a than the region where the droplets 36 are last dispensed. The droplets 36 that are first dispensed will evaporate more because they will wait for a longer period of time before the template 26 and substrate 30 are filled with liquid therebetween. Referring to Figures 3 and 5, in another embodiment, the droplet % may comprise a surfactant pretreatment solution. The surfactant pretreatment solvent can be used, and when the droplet 36 contacts the template 26, a portion of the surface pretreatment solution can adhere thereto. The droplets 36 containing the surfactant pretreatment solution can be disposed on the substrate 30 in a pattern using the method described above to reduce the filling time of the template 26. However, in other embodiments, the droplets 36 may also be disposed in a pattern on the substrate 3 to eliminate the accumulation of surfactants that can occur at the junction of adjacent droplets 36. The droplets 36 are promoted to fill the respective recesses 28a. In still another embodiment, it is preferred to provide a bottom layer (not shown) between the substrate 3 and the droplets 36. The bottom layer can comprise a component having a low surface energy to react with the template 26 and a surface energy to react with the droplets 36. The composition of the bottom 10 layer may have a minimum evaporation rate and a viscosity of about 10 to 10 cp cps to facilitate spin coating deposition. The bottom layer is miscible with the droplets 36, and the bottom layer can also be a solvent for the droplets 36. The various embodiments of the invention described above are by way of example. Many modifications can also be implemented in the above, while still remaining within the scope of the present invention. Therefore, the scope of the invention should not be limited by the description of the invention, but the scope of BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a lithography system according to the present invention; Fig. 2 is a simplified plan view of the lithography system shown in Fig. 1; 20 Fig. 3 is a view of Fig. 2 A simplified schematic diagram of the non-dusting layer material before being polymerized and crosslinked; Figure 4 is a simplified schematic diagram of the transformation of the material of the transaction chain after the irradiation of the material in Figure 3; Figure 5 is the first The pattern shown in the figure is a simplified plan view after the imprinting layer is patterned, and 17 1290665 - the imprinting layer is separated; FIG. 6 is a top view of the first embodiment of the present invention, showing an array The embossed material droplets are disposed on a region of the substrate shown in FIG. 2; and FIG. 7 is a flow chart showing the arrangement of droplets on a region of a substrate 5 according to a template design. method. [Description of main component symbols] 10... lithography system 12...bridge 14...bridge 16...seat 18...printer 20...mobile station 22...radiation source 23...energy generator 25...processor 26...template 28...modulo 28a· ··recess 28b...convex

28c,32,34c…表面 30…才 34…壓印層 34a,b…次部 36…液滴 36a…材料 36b"·交鏈點 36c…聚合材料 40…配佈區域 42…液滴矩陣 100〜110···各步驟 Si,S2…間距 1828c, 32, 34c... surface 30... 34: embossed layer 34a, b... sub-portion 36... droplet 36a... material 36b" cross-linking point 36c... polymeric material 40... distribution area 42... droplet matrix 100~ 110···Steps Si, S2... Spacing 18

Claims (1)

1290665 十、申請專利範圍: 1. 一種用來配佈一液體總量於一基材上的方法,包含: 配置多數間隔分開的液滴於該基材之一區域上,該 各液滴皆具有一單位體積,而在該區域中之所有液滴的 5 總合體積係隨著一要被形成於該處之圖案的體積而變 化。 2. 如申請專利範圍第1項之方法,其中該圖案的體積係取 決於要被設在該區域上之一殘留層的厚度。 > 3.如申請專利範圍第1項之方法,其中該圖案的體積係取 10 決於要被設在該區域中之一特徵細構的尺寸。 4. 如申請專利範圍第1項之方法,其中該圖案的體積係取 決於要被設在該區域上之一殘留層的厚度,及一要被設 在該區域中之一特徵細構的尺寸。 5. 如申請專利範圍第4項之方法,其中該圖案的體積更取 15 決於包含該特徵細構的區域之百分比。 6. 如申請專利範圍第1項之方法,其中該配置步驟更包括 > 配佈多數次的某一材料量而來形成一所述的液滴。 7. 如申請專利範圍第1項之方法,其中該配置步驟更包括 配佈該等間隔分開的液滴,使其能補償在圖案化製程中 20 該等液滴的蒸發損耗。 8. 如申請專利範圍第1項之方法,其中該配置步驟更包括 最小化一所述液滴與一相鄰液滴之間的間隔。 9. 如申請專利範圍第1項之方法,其中該等間隔分開的液 滴會具有一圖案係選自一主要包含六角形和三角形的 19 1290665 組群。 1 〇. —種用來配佈一液體總量於一基材上的方法,包含: 配置一第一組間隔分開的液滴於該基材之一第一 區上,該各液滴皆具有一單位體積,而在該第一區中之 5 該第一組液滴的總合體積係隨著一要被形成於該處之 一第一圖案的體積而變化;及 配置一第二組間隔分開的液滴於該基材之一第二 區上,該各液滴皆具有一單位體積,而在該第二區中之 > 該第二組液滴的總合體積係隨著一要被形成於該處之 10 一與第一圖案不同之第二圖案的體積而變化。 11. 如申請專利範圍第10項之方法,其中該第一圖案的體積 係取決於一要被形成於第一區上之殘留層的厚度。 12. 如申請專利範圍第10項之方法,其中該第二圖案的體積 係取決於一要被形成於第二區上之殘留層的厚度,及一 15 要被形成於該區域之特徵細構的尺寸。 13. 如申請專利範圍第10項之方法,其中該第一和第二圖案 > 的體積係取決於一要被形成於該第一和第二區上之殘 留層的厚度,且該第二圖案更取決於一要被形成於第二 區中之特徵細構的尺寸。 20 14.如申請專利範圍第13項之方法,其中該第二圖案的體積 更決於包含該特徵細構的第二區之百分比。 15. 如申請專利範圍第10項之方法,其中該配置步驟更包括 配佈多數次的某一材料量而來形成一所述的液滴。 16. —種用來配佈一液體總量於一基材上的方法,包含: 20 1290665 配置多數間隔分開的液滴於該基材之一區域上,該 各液滴皆具有一單位體積,而在該區域中之所有液滴的 總合體積係隨著一要被形成於該區域上之殘留層的厚 度及一要被形成於該殘留層上之圖案的體積而變化。 5 17.如申請專利範圍第16項之方法,其中該圖案的體積係取 決於一要被形成於該區域中之特徵細構的尺寸。 18.如申請專利範圍第17項之方法,其中該圖案的體積更取 決於包含該特徵細構的區域之百分比。 > 19.如申請專利範圍第18項之方法,其中該配置步驟更包括 10 佈多數次的某一材料量而來形成一所述的液滴。 20. 如申請專利範圍第19項之方法,其中該配置步驟更包括 配佈該等間隔分開的液滴,使其能補償在圖案化製程中 該等液滴的蒸發損耗。 21. —種在一基材上配佈一液體的方法,包含: 15 配置一具多數間隔分開的液滴之圖案於該基材 上,該等液滴會在相鄰的液滴之間形成多數的氣袋,而 I 該圖案係被構建成能使該等氣袋的體積最小化。 22. 如申請專利範圍第21項之方法,其中該圖案更被構建成 能使該各氣袋的平均體積最小化。 20 23.如申請專利範圍第21項之方法,其中該圖案更被構建成 能使該各氣袋的體積之平均值和差異最小化。 24.如申請專利範圍第21項之方法,其中配置該圖案更包括 以一選自主要包含六角形及三角形之組群的圖案來定 位該等間隔分開的液滴。 21 1290665 25. 如申請專利範圍第21項之方法,其中該各間隔分開的液 滴實質含有相同的體積。 26. 如申請專利範圍第21項之方法,其中其中該配置步驟更 包括配佈多數次的某一材料量而來形成一所述的液滴。 5 27.如申請專利範圍第21項之方法,其中其中該配置步驟更 包括配佈該等間隔分開的液滴,使其能補償在圖案化製 程中該等液滴的蒸發損耗。 28.如申請專利範圍第21項之方法,其中該配置步驟更包括 最小化一所述液滴與一相鄰液滴之間的間隔。 221290665 X. Patent Application Range: 1. A method for dispensing a total amount of liquid onto a substrate, comprising: arranging a plurality of spaced apart droplets on a region of the substrate, the droplets having One unit volume, and the total volume of all of the droplets in the region varies with the volume of the pattern to be formed there. 2. The method of claim 1, wherein the volume of the pattern depends on the thickness of a residual layer to be disposed on the area. 3. The method of claim 1, wherein the volume of the pattern is 10 depending on the size of the feature to be provided in one of the regions. 4. The method of claim 1, wherein the volume of the pattern depends on a thickness of a residual layer to be disposed on the region, and a size of a feature to be disposed in the region. . 5. The method of claim 4, wherein the volume of the pattern is further determined by a percentage of the area containing the fine structure of the feature. 6. The method of claim 1, wherein the step of configuring further comprises > dispensing a quantity of material a plurality of times to form a droplet. 7. The method of claim 1, wherein the step of disposing further comprises dispensing the equally spaced droplets to compensate for evaporation losses of the droplets during the patterning process. 8. The method of claim 1, wherein the step of configuring further comprises minimizing an interval between the droplet and an adjacent droplet. 9. The method of claim 1, wherein the spaced apart droplets have a pattern selected from the group consisting of a group of 19 1290665 comprising primarily hexagons and triangles. 1 〇. A method for dispensing a total amount of a liquid onto a substrate, comprising: arranging a first set of spaced apart droplets on a first region of the substrate, the droplets having One unit volume, and the total volume of the first set of droplets in the first zone varies with the volume of a first pattern to be formed at one of the locations; and a second set of intervals is configured Separate droplets are on a second region of the substrate, each droplet has a unit volume, and in the second region, the total volume of the second group of droplets is The size of the second pattern formed at 10 is different from the first pattern. 11. The method of claim 10, wherein the volume of the first pattern is dependent on a thickness of a residual layer to be formed on the first region. 12. The method of claim 10, wherein the volume of the second pattern is dependent on a thickness of a residual layer to be formed on the second region, and a feature 15 to be formed in the region size of. 13. The method of claim 10, wherein the volume of the first and second patterns > is dependent on a thickness of a residual layer to be formed on the first and second regions, and the second The pattern is more dependent on the size of the features to be formed in the second zone. The method of claim 13, wherein the volume of the second pattern is more dependent on the percentage of the second region comprising the fine structure of the feature. 15. The method of claim 10, wherein the step of configuring further comprises dispensing a quantity of material a plurality of times to form a droplet. 16. A method for dispensing a total amount of liquid onto a substrate, comprising: 20 1290665 arranging a plurality of spaced apart droplets on a region of the substrate, each droplet having a unit volume, The total volume of all droplets in the region varies with the thickness of a residual layer to be formed on the region and the volume of a pattern to be formed on the residual layer. The method of claim 16, wherein the volume of the pattern depends on a size of a feature to be formed in the region. 18. The method of claim 17, wherein the volume of the pattern is more dependent on the percentage of the area comprising the feature. 19. The method of claim 18, wherein the step of arranging further comprises 10 times a certain amount of material to form a droplet. 20. The method of claim 19, wherein the step of configuring further comprises dispensing the equally spaced droplets to compensate for evaporation losses of the droplets during the patterning process. 21. A method of dispensing a liquid on a substrate, comprising: 15 arranging a pattern of a plurality of spaced apart droplets on the substrate, the droplets forming between adjacent droplets Most airbags, and I. The pattern is constructed to minimize the volume of the airbags. 22. The method of claim 21, wherein the pattern is further constructed to minimize the average volume of the air pockets. The method of claim 21, wherein the pattern is further constructed to minimize the average and difference in volume of the respective air pockets. 24. The method of claim 21, wherein the patterning further comprises positioning the equally spaced droplets in a pattern selected from the group consisting essentially of hexagons and triangles. The method of claim 21, wherein the separately separated droplets substantially contain the same volume. 26. The method of claim 21, wherein the step of disposing further comprises dispensing a quantity of the material a plurality of times to form a droplet. The method of claim 21, wherein the step of disposing further comprises dispensing the equally spaced droplets to compensate for evaporation losses of the droplets during the patterning process. 28. The method of claim 21, wherein the configuring step further comprises minimizing an interval between the droplet and an adjacent droplet. twenty two
TW94123027A 2005-06-02 2005-07-07 Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing TWI290665B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/143,092 US20050270312A1 (en) 2004-06-03 2005-06-02 Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing

Publications (2)

Publication Number Publication Date
TW200643654A TW200643654A (en) 2006-12-16
TWI290665B true TWI290665B (en) 2007-12-01

Family

ID=39327554

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94123027A TWI290665B (en) 2005-06-02 2005-07-07 Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing

Country Status (2)

Country Link
MY (1) MY144018A (en)
TW (1) TWI290665B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505877B (en) * 2010-03-30 2015-11-01 Fujifilm Corp Nanoimprinting method, method for producing a droplet arrangement pattern, and method for fabricating substrates
TWI673109B (en) * 2018-01-09 2019-10-01 精膜科技股份有限公司 Ultrasonic driving device with self-calibration funciton

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448958B2 (en) * 2017-09-21 2022-09-20 Canon Kabushiki Kaisha System and method for controlling the placement of fluid resist droplets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505877B (en) * 2010-03-30 2015-11-01 Fujifilm Corp Nanoimprinting method, method for producing a droplet arrangement pattern, and method for fabricating substrates
US10180623B2 (en) 2010-03-30 2019-01-15 Fujifilm Corporation Nanoimprinting method, and method for producing a droplet arrangement pattern
TWI673109B (en) * 2018-01-09 2019-10-01 精膜科技股份有限公司 Ultrasonic driving device with self-calibration funciton

Also Published As

Publication number Publication date
MY144018A (en) 2011-07-29
TW200643654A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
JP4792028B2 (en) Fluid distribution and drop-on-demand distribution technology in nanoscale manufacturing technology
US7281919B2 (en) System for controlling a volume of material on a mold
US7491637B2 (en) Formation of conductive templates employing indium tin oxide
US7927541B2 (en) Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
TWI432311B (en) Partial vacuum environment imprinting
TWI339159B (en) Patterning a plurality of fields on a substrate to compensate for differing evaporation times
TWI336422B (en) Method for expelling gas positioned between a substrate and a mold
TWI428710B (en) Imprint lithography
JP5539295B2 (en) Imprint lithography
US20120189780A1 (en) Controlling Thickness of Residual Layer
US20050106321A1 (en) Dispense geometery to achieve high-speed filling and throughput
JP2006521682A (en) UV nanoimprint lithography using multiple relief element stamps and selective applied pressure
KR20070115735A (en) Pattern forming method and pattern forming apparatus
US20090212012A1 (en) Critical dimension control during template formation
JP2010076219A (en) Method for processing substrate by nanoimprint
TWI794584B (en) Methods of generating drop patterns, systems for shaping films with the drop pattern, and methods of manufacturing an article with the drop pattern
JP6700844B2 (en) Imprint apparatus, imprint method, article manufacturing method, determination method, computer and program
JP6135119B2 (en) Imprint method, imprint resin dripping position determination method, and imprint apparatus
US20050160011A1 (en) Method for concurrently employing differing materials to form a layer on a substrate
TWI290665B (en) Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing
US8097400B2 (en) Method for forming an electronic device
JP6666039B2 (en) Imprint method, imprint apparatus, program, and article manufacturing method
KR20190101777A (en) Method of forming imprinted patterns for suppressing template damages from particles