TWI289084B - Method of preparing mesoporous iron metal-containing nanoparticles - Google Patents

Method of preparing mesoporous iron metal-containing nanoparticles Download PDF

Info

Publication number
TWI289084B
TWI289084B TW094112548A TW94112548A TWI289084B TW I289084 B TWI289084 B TW I289084B TW 094112548 A TW094112548 A TW 094112548A TW 94112548 A TW94112548 A TW 94112548A TW I289084 B TWI289084 B TW I289084B
Authority
TW
Taiwan
Prior art keywords
iron
salt
containing metal
scale
metal particles
Prior art date
Application number
TW094112548A
Other languages
Chinese (zh)
Other versions
TW200637675A (en
Inventor
Jin-Jung Yang
Chih-Hsiung Hung
De-Guang Jang
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW094112548A priority Critical patent/TWI289084B/en
Priority to US11/406,434 priority patent/US20070044591A1/en
Publication of TW200637675A publication Critical patent/TW200637675A/en
Application granted granted Critical
Publication of TWI289084B publication Critical patent/TWI289084B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

A method of preparing mesoporous iron metal-containing nanoparticles is disclosed by slowly mixing the aqueous solution of iron salt and the reducing agent and controlling the ratio of moles of the reducing agent to the iron ion in the reaction system to be roughly 4 to 10 times of the reaction stoichiometric value, such that the reaction system falls in the super-saturation state to enable the production of nano-scale iron metal containing-particles. Finally, refrigeration drying is carried out to obtain the nano-scale iron metal-containing particles with excellent uniformity of particle diameter, mesoporous surface structure, and specific surface area falling under the range of 45 to 75 m<2>/g. The disclosed method has the advantages of low overall preparation cost, simple process of preparation, and excellent reaction capability derived from the extremely large specific surface area of the nano-scale ion metal containing-particles.

Description

1289084 九、發明說明·· 【發明所屬之技術領域】 曰t本發明是有關於一種含鐵金屬粒子的製備方法,特別 疋才曰種孔性奈米級含鐵金屬粒子的製備方法。 【先前技術】 〇年代以來,奈米材料技術蓬勃發展,而廣泛應用1289084 IX. INSTRUCTIONS OF THE INVENTION · TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for preparing iron-containing metal particles, and more particularly to a method for preparing porous nano-scale iron-containing metal particles. [Prior Art] Since the beginning of the decade, nanomaterial technology has flourished and is widely used.

般來說,奈米粒子的製備方法可分成三種:(一)氣相Generally speaking, the preparation method of nano particles can be divided into three types: (1) gas phase

Method);(二)機械合金法Method); (2) Mechanical alloying method

得奈米粒子相對具有粒隸小且分布均自的優勢,故化學 溶液合成法於製備各型態奈米粒例如:金屬、陶究、 滅結法(Gas Condensation (Mechanical Alloying 介金屬、半導體、高分子等材料組成者)的運用上較為普 遍,特別是「化學還原法」最為廣泛採用。 ,反應機制在於利用 並促使其於過飽和反 以化學還原法合成奈米鐵粉為例 還原劑將鐵鹽前驅物之鐵離子還原, 1289084The getter particles have the advantages of small particle size and uniform distribution. Therefore, the chemical solution synthesis method is used to prepare various types of nano particles such as metal, ceramics, and carbonization. (Gas Condensation (Mechanical Alloying, metal, semiconductor, high) The use of molecules and other materials is more common, especially the "chemical reduction method" is the most widely used. The reaction mechanism is to use and promote the synthesis of nano-iron powder by chemical reduction method. Precursor iron ion reduction, 1289084

應系統中成核,隨著核成長而致結晶沉澱形成,再予以固 液分離或乾燥後即可得所需之奈米級(Nanoscale)零價鐵。相 關文獻研究中,有採取氯化鐵(FeCl3)作為被還原之鐵鹽 前驅物,並用硼氫化鈉(NaBH4)為還原劑,混合後進行將 鐵離子(Fe3+、Fe2+)還原成零價鐵沉澱之化學反應,所 合成製得奈米級零價鐵之BET比表面積(BET Specific Surface Area)約 31.4 1112/8((^]1〇6,8.,丫.丫.(1;1^1^,1^.丫· Hwangnd,and J. Khim,2000,“Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron,’’ Chemosphere, 41(8), pp. 1307-1311 ),或約 33.5m2/g (Wang, C. B. and W. X. Zhang5 1997,“Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs,” Environmental Science &amp; Technology,31(7),pp. 2154-2156)。 於以化學還原法製備奈米粒子過程中,可藉由反應物 物種、反應物之添加比例與方式、還原劑強弱、反應pH值 、反應速率、反應溫度、反應壓力與反應系統介質…等條件 控制,以獲得符合需求且具備獨特特性的奈米粒子。而奈 米粒子所具備最基本特徵特性即在於其「高反應能力( High Reactivity)」,與高的表面積/體積比(High Surface Area-to-Volume Ratio),又綜觀目前文獻研究結果與商品化 市場顯示,所合成奈米鐵粒子之BET比表面積值皆小於3 8 m2/g,於反應能力提升上相對受限,故本案申請人利用控制 反應物(即鐵鹽前驅物與還原劑)之添加比例及其添加方式, !289〇84 于不未,·及鐵粒子具有獨特的介孔 ,明顯大騎❹贿㈣&amp; ± porous) r BET比表面積值與反應能力。 【發明内容】 備程^易本發明之目的,即在提供一種製備成本低、製 ::烟上更優異之介孔性奈米級含鐵金屬粒子:製: ::丄本發明介孔性奈米級含鐵金屬粒子的製備方法 序包广化學還原步驟、—固液分離步驟,以及一 , 東乾燥步驟。於該化學還原步驟中,將鐵鹽水溶液盘還; 劑混合以進行鐵還原反應,並產生黑色零價鐵顆粒沉嫂, 其中,混合水溶液中所含還原劑/鐵離子之莫耳數比值是約 為其反應化學計量值的4〜1G倍。接著,於該固液分離步驟 ,將反應所產生含鐵金屬顆粒予以自水溶液中分離出。最 後,於該冷涞乾燥步驟中,將固液分離出之含鐵金屬顆粒 予以乾燥後,即獲得比表面積介於45〜175平方公尺/公克且 具介孔性的奈米級含鐵金屬粒子成品。 本發明之功效在於利用鐵鹽水溶液與還原劑之緩慢混 合,配合還原劑的過量添加(即約過量4〜1〇倍),讓反應 系統處於過飽和狀態’促使瞬間成核並持續成長為奈米級 含鐵金屬顆粒。最後予以冷凍乾燥,便可得比表面積介於 45〜Π5平方公尺/公克的介孔性奈米級含鐵金屬粒子(例如 :奈米級零價鐵,或奈米級含鐵雙金屬粒子)成品。整體 製備成本低,且製備程序簡易,所製得介孔性奈米級含鐵 1289084 金屬粒子更呈現出優異的反應結構特性,而極具應用 潛力。 X &quot; 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 乂下配5參考圖式之二個較佳實施例的詳細說明中,將可 清楚地呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内容中,類似的元件是以相同的編號來表示。 參閱圖1與圖2,本發明介孔性奈米級含鐵金屬粒子的 製備方法之第一較佳實施例是依序包含一化學還原步驟工、 一固液分離步驟2,以及一冷康乾燥步驟3,是用以製備出 介孔性奈米級零價鐵。 於該化學還原步驟1中,於常溫常壓下,將還原劑緩 k加入鐵鹽水〉谷液中’使混合溶液反應系統中所含還原劑/ 鐵離子之莫耳數比值X是約為其反應化學計量值γ的4〜1 〇 倍,配合予攪拌混合作用以促進鐵還原反應進行,並產生 黑色令償鐵顆粒沉;殿。其中’用以配製鐵鹽水溶液的鐵鹽 前驅物是選自於下列物所構成之群組:氯化鐵(FeC13 )、氣 化亞鐵(FeCl2)、硫酸鐵(Fe2(S04)3)、硫酸亞鐵(FeS〇4)、硝 酸鐵(Fe(N03)3)、硝酸亞鐵(Fe(N03)2)、溴化鐵(FeBr3)、溴 化亞鐵(FeBr2),以及此等之一組合;還原劑是選自於下列 物所構成之群組:硼氫化鈉(NaBH4)、硼氫化鉀(KBH4)、硼 氫化鋰(LiBH4)、碳酸鈉(Na2C03)、碳酸鉀(K2C03)、氫氧化 鈉(NaOH)、氫氧化鉀(KOH)、氫氧化鋰(LiOH)、曱醇 8 1289084It should be nucleated in the system, crystallized and precipitated as the nucleus grows, and then solid-liquid separation or drying to obtain the desired nanoscale zero-valent iron. In the related literature research, ferric chloride (FeCl3) was used as the reduced iron salt precursor, and sodium borohydride (NaBH4) was used as the reducing agent. After mixing, the iron ions (Fe3+, Fe2+) were reduced to zero-valent iron precipitate. The chemical reaction, the BET Specific Surface Area of the nano-scale zero-valent iron synthesized by the synthesis is about 31.4 1112/8 ((^]1〇6,8.,丫.丫.(1;1^1 ^,1^.丫·Hwangnd, and J. Khim, 2000, “Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron,'' Chemosphere, 41(8), pp. 1307-1311), or about 33.5 m2/g (Wang, CB and WX Zhang5 1997, "Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs," Environmental Science &amp; Technology, 31(7), pp. 2154-2156). Preparation of Nai by Chemical Reduction In the process of rice particles, it can be controlled by conditions such as the reactant species, the ratio and mode of addition of the reactants, the strength of the reducing agent, the reaction pH, the reaction rate, the reaction temperature, the reaction pressure, and the reaction system medium. Have independence Nano particles with characteristics. The most basic characteristics of nano particles are their "high Reactivity" and high surface area-to-volume ratio. The literature research results and the commercial market show that the BET specific surface area values of the synthesized nano-iron particles are all less than 3 8 m2/g, which is relatively limited in the improvement of reaction ability. Therefore, the applicant of this case uses controlled reactants (ie, iron salt precursors). The ratio of the addition of the substance to the reducing agent and the manner of its addition, !289〇84 is not included, and the iron particles have a unique mesopores, which are obviously large and brittle (four) &amp; ± porous) r BET specific surface area value and reaction ability. SUMMARY OF THE INVENTION The purpose of the present invention is to provide a mesoporous nano-scale iron-containing metal particle which is more inexpensive to produce and which is more excellent in smoke:::: The mesoporosity of the present invention The preparation method of the nano-scale iron-containing metal particles is carried out by a chemical reduction step, a solid-liquid separation step, and an east drying step. In the chemical reduction step, the iron salt aqueous solution is replenished; the agent is mixed for iron reduction. The reaction produces black zero-valent iron particles, wherein the molar ratio of the reducing agent/iron ion contained in the mixed aqueous solution is about 4 to 1 G times the stoichiometric value of the reaction. Next, in the solid-liquid separation step, the iron-containing metal particles produced by the reaction are separated from the aqueous solution. Finally, in the cold-drying step, the solid metal-separated iron-containing metal particles are dried to obtain a nano-scale iron-containing metal having a specific surface area of 45 to 175 m ^ 2 /g and having mesoporosity. Finished particles. The effect of the invention is to utilize the slow mixing of the aqueous solution of iron salt and the reducing agent, and the excessive addition of the reducing agent (ie, about 4~1 times the excess), so that the reaction system is in a supersaturated state, which prompts instant nucleation and continues to grow into nanometer. Grade iron-containing metal particles. Finally, freeze-drying can obtain mesoporous nano-sized iron-containing metal particles with a specific surface area of 45 to Π5 m ^ 2 /g (for example: nano-scale zero-valent iron, or nano-sized iron-containing bimetallic particles) ) Finished product. The overall preparation cost is low, and the preparation procedure is simple. The mesoporous nano-scale iron containing 1289084 metal particles exhibits excellent reaction structure characteristics and has great application potential. [Embodiment] The foregoing and other technical contents, features and effects of the present invention will be apparent from the detailed description of the preferred embodiments of the present invention. Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals. Referring to FIG. 1 and FIG. 2, a first preferred embodiment of the method for preparing mesoporous nano-sized iron-containing metal particles of the present invention comprises a chemical reduction step, a solid-liquid separation step 2, and a cold-cold step. Drying step 3 is for preparing mesoporous nano-scale zero-valent iron. In the chemical reduction step 1, the reducing agent is slowly added to the iron salt solution in the gluten solution at normal temperature and pressure, so that the ratio of the molar ratio of the reducing agent/iron ion contained in the mixed solution reaction system is about The reaction stoichiometric value γ is 4 to 1 〇 times, and the mixture is stirred and mixed to promote the iron reduction reaction, and the black is produced to compensate the iron particles; The 'iron salt precursor used to prepare the iron salt aqueous solution is selected from the group consisting of ferric chloride (FeC13), ferrous ferrous oxide (FeCl2), and ferric sulphate (Fe2(S04)3), Ferrous sulfate (FeS〇4), ferric nitrate (Fe(N03)3), ferrous nitrate (Fe(N03)2), iron bromide (FeBr3), ferrous bromide (FeBr2), and one of these The reducing agent is selected from the group consisting of sodium borohydride (NaBH4), potassium borohydride (KBH4), lithium borohydride (LiBH4), sodium carbonate (Na2C03), potassium carbonate (K2C03), hydrogen. Sodium oxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), decyl alcohol 8 1289084

• I (CHgOH)、乙醇(CHgCHaOH)、四氫化鋁經(LiAij^)、敍鹽 (NH/)、聯氨(N2H4)、檸檬酸(c6h8〇7 )、檸檬酸納( Na3C6H507 )、檸檬酸鉀(K3C6H507 ),以及此等之—組合, 而還原劑可以是固態相或液態相。 本實施例中,先配製0.09M氯化鐵水溶液以作為被還 原之鐵鹽前驅物,以及0.50M硼氫化鈉水溶液以作為還原 劑。於常溫常壓下,取等體積之氯化鐵水溶液(盛裴於三角 .錐瓶中)與硼氫化鈉水溶液(盛裝於定量滴定管中),將硼氫 化鈉水溶液緩慢地滴加入氣化鐵水溶液中,此即所謂「正 滴疋」程序,同時配合以實驗用攪拌器予以強烈攪拌,促 使充分混合;待硼氫化鈉水溶液全量滴加入氯化鐵水溶液 中時,混合溶液系統中所含還原劑(即NaBH;4) /鐵離子(即• I (CHgOH), ethanol (CHgCHaOH), aluminum hydride (LiAij^), salt (NH/), hydrazine (N2H4), citric acid (c6h8〇7), sodium citrate (Na3C6H507), citric acid Potassium (K3C6H507), and combinations thereof, and the reducing agent can be a solid phase or a liquid phase. In this example, a 0.09 M aqueous solution of ferric chloride was first prepared as a reduced iron salt precursor and a 0.50 M aqueous solution of sodium borohydride as a reducing agent. Under normal temperature and pressure, take an equal volume of aqueous ferric chloride solution (in a triangle flask) and sodium borohydride aqueous solution (filled in a quantitative burette), slowly add sodium borohydride solution to the aqueous solution of iron hydride. In this case, the so-called "positive drip" procedure is accompanied by vigorous stirring with an experimental stirrer to promote thorough mixing; when the aqueous solution of sodium borohydride is added dropwise to the aqueous solution of ferric chloride, the reducing agent contained in the mixed solution system (ie NaBH; 4) / iron ions (ie

Fe3+)之莫耳數比值X約為45/2 = 22·5。並控制溶液反應系 統之pH值約在6〜11,其中所進行化學還原反應如下式所示 ’月b將氯化鐵之鐵離子(Fe3+)還原成黑色零價鐵(Fe〇)顆粒沉 _ 澱: 2 FeCl3 + 6 NaBH4 +18 H20-&gt;2 Fe(s) | + 21 H20 + 6 B(OH)3 + 6 NaCl 由上述反應式可知,BKU7 Fe3+之反應化學計量值γ = 6/2 — 3,故反應系統中BH47 Fe3+之莫耳數比值χ約為其反 應化予劑里值Υ白勺7.5倍。主要藉以讓混合溶液反應系統呈 過飽和狀恶,促使絕大部分核相於此系統過飽和狀態下瞬 間自發形成,並以多核表面成長機制(p〇ly_nuclear G⑺〜化 〇f Surface Process)逐漸成長至粒徑約5〇〜8〇 nm的奈米級黑 色零價鐵顆粒。 9 1289084 接著,於該固液分離丰_。丄 , 刀離步驟2中,利用濾紙(0.2 Am)過 濾法將該化學還原步驟]由 中所產生奈米級含鐵金屬顆粒(本The molar ratio X of Fe3+) is about 45/2 = 22.5. And controlling the pH of the solution reaction system is about 6~11, wherein the chemical reduction reaction is carried out as shown in the following formula: 'Month b reduces the iron ion (Fe3+) of ferric chloride to black zero-valent iron (Fe〇) particles sinking_ Precipitation: 2 FeCl3 + 6 NaBH4 +18 H20-&gt;2 Fe(s) | + 21 H20 + 6 B(OH)3 + 6 NaCl From the above reaction formula, the stoichiometric value of BKU7 Fe3+ is γ = 6/2 3, so the molar ratio of BH47 Fe3+ in the reaction system is about 7.5 times that of the reaction agent. The main reason is that the mixed solution reaction system is supersaturated, causing most of the nuclear phase to spontaneously form under the supersaturation state of the system, and gradually grow to the grain by the multi-core surface growth mechanism (p〇ly_nuclear G(7)~ 〇f Surface Process). Nano-grade black zero-valent iron particles with a diameter of about 5 〇 to 8 〇 nm. 9 1289084 Next, the solid-liquid separation is abundant.丄 , the knife is separated from the step 2, using a filter paper (0.2 Am) filtration method to chemically reduce the nano-scale iron-containing metal particles produced by the medium

貫施例為奈米級零價错);A 1貝鐵)予以自水溶液中濾出。當然,也可 以使用肖隹心分離方式予以分離出。 最後’於該冷凍乾燥步驟 哪3中將濾紙以及濾積於該 渡紙上的奈米級含鐵金屬顆粒(本實施例為奈米級零價鐵)一 併置放入冷柬真空乾燥機中,以於低溫負壓環境下讓含鐵 金屬顆粒充分去水乾焊,甘&amp;站 ^ ’、 亚此猎以確保其表面結構特性與 還原能力。完成冷凍齡操# &amp;你 /、 軏秌私序後,便可獲得具介孔性表面 結構且BET比表面積約4S 2 〜 檟、'勺45〜175 m/g的奈米級含鐵金屬粒 子(本實施例為介孔性奈米級零價鐵)成品' 如圖3所示,為本實施例所製得奈米級零價鐵於場發 射型掃描式電子顯微鏡(FE SEM)下所攝得影像,可見粒徑 分佈約為5〇〜8〇腿的奈米級零價鐵是呈均句球型顆粒狀, 且所具磁性較強而緊密聚集。 ,圖5所不所製得奈米級零價鐵經由比表面積分 析儀於真空及溫度控制在77 35K下推;r &amp; a 、 :HK下進仃虱氣吸/脫附試驗後 ,測得其BE丁比表面積為128 2/ t ^ ^ ^ ^ . /g / I其表面呈現出介孔 ㈣構’表面孔洞直徑分佈評於3〜4 nm。顯見所製得奈 …級零價鐵於粒徑尺寸與均—性上極佳,且具備介孔性表 面結構而bet比表面積極大,能古唠The example is a nano-scale zero-valent error; A 1 shell iron) is filtered from the aqueous solution. Of course, it can also be separated by using the method of separation. Finally, in the freeze-drying step 3, the filter paper and the nano-scale iron-containing metal particles (in this embodiment, the nano-scale zero-valent iron) filtered on the paper are placed in a cold vacuum vacuum dryer. In the low-temperature negative pressure environment, the iron-containing metal particles are fully dehydrated and dry-welded, and the Gan &amp; station is hunted to ensure its surface structural characteristics and reducing ability. After completing the freezing age operation, you can obtain a nano-scale ferrous metal with a mesoporous surface structure and a BET specific surface area of about 4S 2 槚, 'spoon 45~175 m/g. Particles (in this embodiment, mesoporous nano-scale zero-valent iron) finished product' As shown in Fig. 3, the nano-scale zero-valent iron prepared in the present example was subjected to a field emission scanning electron microscope (FE SEM). The captured image shows that the nano-scale zero-valent iron with a particle size distribution of about 5〇~8〇 is a uniform sentence-shaped granular shape, and it has strong magnetic and close aggregation. The nano-scale zero-valent iron produced in Figure 5 is pushed down by vacuum and temperature control at 77 35K through a specific surface area analyzer; r &amp; a , :HK under the enthalpy air suction/desorption test, measured The specific surface area of BE is 128 2 / t ^ ^ ^ ^ · /g / I. The surface of the mesoporous (four) structure 'surface pore diameter distribution is evaluated at 3~4 nm. It is obvious that the graded zero-valent iron is excellent in particle size and uniformity, and has a mesoporous surface structure and a bet specific surface area.

Ab 位人此有效增加反應位址且反應 月b力(例如:還原能力)強。 ,因此’本發明介孔性奈米級含鐵金屬粒子的製備方法 ’製作程序簡易且製作成本低廉’能迅速製得大量且質純 10 1289084 的奈米級零價鐵。特別是,所製得奈米級零價鐵粒徑分佈 於50〜80 nm,於粒徑尺寸與均一性上皆佳,並形成有 性,面結構而其耐比表面積高達128 m2/g,表面反應位 址多而有相當優異的表面反應能力特性,於各領域之應用 效率上勢必會明顯優異於目前文獻研究所呈現粒徑分佈較 不均且BET比表面積皆小於38以的奈米鐵粒子。 苓閱圖6,為本發明介孔牲奈米級含鐵金屬粒子的製備 方法之第二較佳實施例,與該第一較佳實施例不同處在於 二在該化學還原㈣1巾,是將賴鹽水㈣(即氯化鐵水 /谷液)、、爰陵滴加入還原劑(即氫化納水溶液)中,以進行所 明的,反滴定」程序,並於強烈攪拌充分混合下促使鐵還 原反應進行,以產生黑色奈米級零價鐵顆粒沉澱。 而於呈過飽和狀態的混合溶液反應系統中,會促使絕 大邛分核相瞬間自發形成,於核成長受到擴散控制 ntrolled by Diffusion)之機制下,而逐漸成長至粒徑約 3〇〜40 nm的黑色奈米級零價鐵顆粒。反應生成之黑色奈米 級零價鐵顆粒於續經該固液分離步驟3與該冷凍乾燥步驟4 後’便可製得奈米級零價鐵成品。 如圖7所示,為本實施例所製得奈米級零價鐵的sem 衫像,可見粒徑分佈約為30〜40 nm的奈米級零價鐵同樣是 呈均勻球型顆粒狀,因所具磁性較弱而排列成鏈狀。故相 較於該第一較佳實施例,本實施例所製得奈米級零價鐵於 液相介質中相對具有較佳的分散性。 如圖8、9所示,所製得奈米級零價鐵之bet比表面積 1289084 高達約77 mVg’其表面亦呈現出介孔性結構,且表面孔洞 直徑亦分佈集中於3〜4 nm。 因此,本較佳實施例同樣能如該第一較佳實施例具有 製作程序簡易、製作成本低廉,與製作成型效率佳等功效 ,同樣地,所製得奈米級零價鐵之粒徑尺寸與均一性皆佳 且因具介孔性結構而BET比表面積大,能呈現優異的表 面反應能力。 參閱圖10與圖u,為本發明介孔性奈米級含鐵金屬粒 子的製備方法之第三較佳實施例,與該第二較佳實施例不 $处在於t包含一位在该化學還原步驟丨與該固液分離 步驟2間的複合步驟4,藉以製備出介孔性奈米級含鐵雙金 屬粒子(例如:介孔性奈米級鐵鈀雙金屬粒子)。 故於该化學還原步驟丨後,緊接進行該複合步驟4。主 要是再將一具催化性質之非鐵金屬鹽前驅物添加入已形成 有不米、、及零 貝鐵的混合水溶液系統中,用以產生雙金屬型 態之奈米級含鐵金屬粒子。其中,非鐵金屬鹽前驅物是選 自於下列物所構成之群組:免鹽、铑鹽、鉑鹽、鉉鹽、釕 鹽、餓鹽、金鹽、鎳鹽、銅鹽、猛鹽、鋅鹽、始鹽、釩鹽 ,以及此等之一組合。本實施例中,所使用非鐵金屬鹽前 驅物為鈀鹽-硝酸鈀(p#N〇3)2)。 過程中,控制所添加入非鐵金屬鹽離子(本實施例為 pd )對令彳貝鐵(Fe)值之重量百分比值介於1/1〇〜1/3〇〇〇,以 為擔載體,讓生長於FeG上,形成“小顆粒長在大顆 粒上”(Particle-on-Panide)結構而非形成“核_殼”(c〇re_ 12 1289084Ab person effectively increases the reaction site and reacts to a strong monthly b-force (eg, reducing ability). Therefore, the method for producing mesoporous nano-sized iron-containing metal particles of the present invention is simple in production and low in production cost, and can rapidly produce a large amount of nano-scale zero-valent iron having a purity of 10 1289084. In particular, the nanometer-sized zero-valent iron has a particle size distribution of 50 to 80 nm, which is excellent in particle size and uniformity, and forms a sexual, surface structure with a surface area of up to 128 m2/g. The surface reaction sites are many and have excellent surface reaction ability characteristics, and the application efficiency in various fields is bound to be significantly better than the nano-irons in the literature research showing that the particle size distribution is relatively uneven and the BET specific surface area is less than 38. particle. Referring to FIG. 6, a second preferred embodiment of a method for preparing a mesoporous nanometer-containing iron-containing metal particle according to the present invention is different from the first preferred embodiment in that the chemical reduction (four) 1 towel is Lai brine (four) (ie, ferric chloride water / gluten solution), and Fuling drops are added to the reducing agent (ie, aqueous solution of sodium hydride) to carry out the known, back titration procedure, and promote iron reduction under strong agitation and thorough mixing. The reaction proceeds to produce a precipitate of black nano-scale zero-valent iron particles. In the mixed solution reaction system which is supersaturated, it will promote the spontaneous formation of the nucleus of the nucleus, and under the mechanism of diffusion growth controlled by ntrolled by Diffusion, it will gradually grow to a particle size of about 3〇~40 nm. Black nano-grade zero-valent iron particles. The black nano-scale zero-valent iron particles formed by the reaction can be used to obtain a nano-scale zero-valent iron product after the solid-liquid separation step 3 and the freeze-drying step 4. As shown in FIG. 7 , in the sem shirt image of the nano-scale zero-valent iron prepared in the present embodiment, it can be seen that the nano-scale zero-valent iron having a particle size distribution of about 30 to 40 nm is also uniform spherical particles. They are arranged in a chain shape due to their weak magnetic properties. Therefore, in comparison with the first preferred embodiment, the nano-sized zero-valent iron produced in this embodiment has relatively good dispersibility in a liquid medium. As shown in Figures 8 and 9, the bet specific surface area of the nano-scale zero-valent iron is 1289084 up to about 77 mVg', and the surface also exhibits a mesoporous structure, and the surface pore diameter is also concentrated at 3 to 4 nm. Therefore, the preferred embodiment of the present invention can also have the advantages of simple manufacturing procedure, low production cost, and good molding efficiency, and the same as the particle size of the nano-scale zero-valent iron. It has excellent homogeneity and a large BET specific surface area due to its mesoporous structure, and exhibits excellent surface reaction ability. Referring to FIG. 10 and FIG. 9 , a third preferred embodiment of the method for preparing a mesoporous nano-sized iron-containing metal particle according to the present invention, and the second preferred embodiment does not include a bit in the chemistry. The reduction step 复合 and the composite step 4 between the solid-liquid separation step 2 are performed to prepare mesoporous nano-sized iron-containing bimetallic particles (for example, mesoporous nano-scale iron-palladium bimetallic particles). Therefore, after the chemical reduction step, the composite step 4 is performed immediately. It is mainly to add a catalytic non-ferrous metal salt precursor to a mixed aqueous solution system in which non-meter, and zero-shell iron have been formed to produce a bimetallic type of nano-sized iron-containing metal particles. Wherein, the non-ferrous metal salt precursor is selected from the group consisting of: salt-free, barium salt, platinum salt, barium salt, barium salt, starving salt, gold salt, nickel salt, copper salt, salt, Zinc salt, starting salt, vanadium salt, and a combination of these. In the present embodiment, the non-ferrous metal salt precursor used was a palladium salt-palladium nitrate (p#N〇3) 2). In the process, the control adds the non-ferrous metal salt ion (pd in this embodiment) to the weight of the mussel iron (Fe) value of 1/1〇~1/3〇〇〇, as the carrier, Let it grow on FeG to form a "Particle-on-Panide" structure instead of forming a "nuclear-shell" (c〇re_ 12 1289084)

Shell)結構的鐵鈀雙金屬顆粒,其反應途徑為:Shell) structure of iron-palladium bimetallic particles, the reaction pathway is:

Pd24- + Fe° -&gt;Pd° + Fe2+ 而本貝她例巾,Pd2+/Fe〇之重量百*比值是小於1/100。 最後,接績進行該固液分離步驟2與該冷凍乾燥步驟3 更可製備彳寸奈米級含鐵金屬粒子(本實施例為奈米級鐵鈀 雙金屬粒子)成品。 、、二由比表面積分析’所製得奈米級鐵鈀雙金屬粒子之 BET比表面積高達、約1()1 ^,纟表面亦呈現出介孔性結 構,且表面孔洞直獲分佈集中於3〜4疆。 歸、、内上述,本發明介孔性奈米級含鐵金屬粒子的製備 方法/主要使鐵鹽水溶液與還原劑緩慢混合,並利用控制 反=系統中所含還原劑/鐵離子之莫耳數比值是約為其反應 子十里值的4〜1〇倍,讓反應系統處於過飽和狀態以促使 瞬間成核亚持績成長為奈米級含鐵金屬顆粒。再予以冷柬 乾燥後便可得粒徑均-性佳、具介孔性表面結構,且顧 比表面知介於45〜175 m2/g的奈米級含鐵金屬粒子(例如·· 奈米級零價鐵,或奈米級含鐵雙金屬粒子)成品。整體製 備成本低,且製備程序簡易,所製得奈米級含鐵金屬粒子 a ^ T比表面積而能表現極佳的反應能力特性,故確 貫能達到本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 月巨以此限定本發明會力念夕孟々岡 Χ月貫鈀之靶圍,即大凡依本發明申嗜專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 13 1289084 , , 【圖式簡單說明】 圖1是一步驟圖,說明本發明介孔性奈米級含鐵金屬 粒子的製備方法之一第一較佳實施例; 圖2是該第一較佳實施例之一流程簡圖; 圖3是一影像圖,說明該第一較佳實施例所製得奈米 級零價鐵成品的SEM影像; : 圖4是一曲線圖,說明該第一較佳實施例所製得奈米 φ 級零價鐵成品於比表面積分析儀所測得氮氣吸/脫附等溫曲 線; 圖5疋一曲線圖,說明該第一較佳實施例所製得奈米 級零價鐵成品於BJH模式所得顆粒表面孔洞分佈情形; 圖6是一流程簡圖,說明本發明介孔性奈米級含鐵金 屬粒子的製備方法之一第二較佳實施例; 圖7疋一影像圖,說明該第二較佳實施例所製得奈米 - 級零價鐵成品的SEM影像; φ 圖8是一曲線圖,說明該第二較佳實施例所製得奈米 級零價鐵成品於比表面積分析儀所測得氮氣吸/脫附等溫曲 線; 圖9是一曲線圖,說明該第二較佳實施例所製得奈米 級零價鐵成品於BJH模式所得顆粒表面孔洞分佈情形· 圖10是一步驟圖,說明本發明介孔性奈米級含鐵金屬 粒子的製備方法之一第二較佳實施例;以及 圖11是該第三較佳實施例之一流程簡圖。 14 1289084 【主要元件符號說明】 1 化學還原步驟 2 固液分離步驟 3 冷凍乾燥步驟 複合步驟 4Pd24- + Fe° -&gt;Pd° + Fe2+ and the ratio of the weight of Pd2+/Fe〇 is less than 1/100. Finally, the solid-liquid separation step 2 and the freeze-drying step 3 are carried out to prepare a finished product of 彳-inch nano-sized iron-containing metal particles (in this embodiment, nano-sized iron-palladium bimetallic particles). The BET specific surface area of the nano-sized iron-palladium bimetallic particles prepared by the specific surface area analysis is as high as about 1 () 1 ^, and the surface of the crucible also exhibits a mesoporous structure, and the surface pores are directly distributed and concentrated. ~4 Xinjiang. In the above, the preparation method of the mesoporous nano-scale iron-containing metal particles of the present invention mainly comprises slowly mixing the aqueous solution of the iron salt with the reducing agent, and using the control agent to reduce the amount of the reducing agent/iron ion contained in the system. The number ratio is about 4 to 1 times the value of the tenth of its reaction, and the reaction system is supersaturated to promote the instant nucleation sub-performance to grow into nano-scale iron-containing metal particles. After cold-drying, it can obtain nano-scale iron-containing metal particles with good particle size and good mesoporous surface structure, and the surface is known to be between 45 and 175 m2/g (for example, nanometer) Grade zero-valent iron, or nano-grade iron-containing bimetallic particles). The overall preparation cost is low, and the preparation procedure is simple, and the nano-sized iron-containing metal particles are obtained to have a specific surface area and can exhibit excellent reaction ability characteristics, so that the object of the present invention can be achieved. However, the above description is only a preferred embodiment of the present invention, and when it is not limited to the present invention, it will be limited to the target range of Meng Pugang's monthly palladium. And the simple equivalent changes and modifications made by the description of the invention are still within the scope of the invention. 13 1289084, , [Simple Description of the Drawings] FIG. 1 is a step view showing a first preferred embodiment of a method for preparing mesoporous nano-iron-containing metal particles of the present invention; FIG. 2 is the first preferred embodiment. FIG. 3 is an image diagram illustrating an SEM image of a nano-scale zero-valent iron product produced by the first preferred embodiment; FIG. 4 is a graph illustrating the first comparison The nitrogen absorption/desorption isotherm curve measured by the specific surface area analyzer obtained by the preferred embodiment is obtained. The graph of Fig. 5 is a graph showing the preparation of the first preferred embodiment. FIG. 6 is a schematic flow chart showing a second preferred embodiment of a method for preparing mesoporous nano-scale iron-containing metal particles according to the present invention; FIG. 7 疋 image diagram illustrating the SEM image of the finished nano-scale zero-valent iron produced in the second preferred embodiment; φ FIG. 8 is a graph illustrating the nanometer prepared in the second preferred embodiment. The nitrogen-absorbing/desorption isotherm curve measured by the specific zero-surface iron product in the specific surface area analyzer; Figure 9 is The graph illustrates the surface pore distribution of the nano-zero-valent iron produced in the second preferred embodiment in the BJH mode. FIG. 10 is a step diagram illustrating the mesoporous nano-scale iron-containing metal of the present invention. A second preferred embodiment of the method of preparing particles; and Figure 11 is a schematic flow diagram of one of the third preferred embodiments. 14 1289084 [Description of main component symbols] 1 Chemical reduction step 2 Solid-liquid separation step 3 Freeze-drying step Compound step 4

Claims (1)

1289084 十、申請專利範圍: 粒子的製備方法,依序包含 1· 一種介孔性奈米級含鐵金屬 下列步驟: -化子還原步驟,於常溫常塵下,將還原劑緩慢滴 加入鐵皿水〜夜中’且予攪拌混合以進行鐵還原反應, 並產生奈米級零價鐵顆粒,其中,混合系統中所含還原 響 劑/鐵離子之莫耳數比值是約為其反應化學計量值的 6〜10倍; 口夜;7離步驟,將反應所產生含鐵金屬顆粒予以 自水溶液分離出;以及 一冷束乾燥步驟,將固液分離出之含鐵金屬顆粒予 以乾燥後,即獲得比表面積介於45〜175平方公尺/公克 且具介孔性的奈米級含鐵金屬粒子成品。 2. 依據申請專利範圍第&quot;員所述介孔性奈米級含鐵金屬粒 子的製備方法’其中’於該冷;東乾燥步驟中,所獲得奈 • 米級含鐵金屬粒子成品的平均粒徑約為50〜80奈米,平 均表面孔徑約為3〜4奈米。 3. 依據中請專利範圍第2項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,混合水溶 液糸統的酸驗值介於6〜11。 4·依據申請專利範圍第3項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,用以配製 鐵鹽水溶液的鐵鹽前驅物是選自於下列物所構成之群組 :氯化鐵、氯化亞鐵、硫酸鐵、硫酸亞鐵、硝酸鐵、硝 16 1289084 碎/月油修正替_ f .—一 —— ! 酸亞鐵、溴化鐵、溴化亞鐵,以及此等之一組合。 5·依據申請專利範圍第4項所述介孔性奈米級含鐵金屬粒 子的製備方法,於該化學還原步驟中,還原劑是選自於 下列物所構成之群組:侧氫化納、爛氫化鉀、侧氫化鐘 、石反酸鈉、碳酸鉀、碳酸鋰、氫氧化鈉、氫氧化鉀、氫 氧化鋰、甲醇、乙醇、四氫化鋁鋰、銨鹽、聯氨、檸檬 酸、彳争檬酸鈉、檸檬酸鉀,以及此等之一組合。 6·依據申凊專利範圍第5項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,鐵鹽水溶 液是氣化鐵水溶液。 7·依據申請專利範圍第5項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,該化學還原步驟中,鐵鹽水溶液 是硫酸亞鐵水溶液。 8·依據申請專利範圍第6項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,還原劑是 石朋氫化納水溶液。 9·依據申請專利範圍第7項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,還原劑是 石朋氫化納水溶液。 1 〇·依據申#專利範圍第8或9項任一所述介孔性奈米級含 鐵金屬粒子的製備方法,其中,更包含一位於該化學還 原步驟與該固液分離步驟間的複合步驟,是將一具催化 II貝之非鐵金屬鹽前驅物添加入已形成有黑色零價鐵顆 粒的此合水溶液系統中,以產生多金屬型態之含鐵金屬 17 1289084 込年’月肉 修丨 優)正替樊 顆粒。 11 ·依據申凊專利範圍第1 〇項所述介孔性奈米級含鐵金屬粒 - 子的製備方法,其中,具催化性質之非鐵金屬鹽前驅物 是選自於下列物所構成之群組:鈀鹽、鍺鹽、鉑鹽、銥 鹽、釕鹽、餓鹽、金鹽、鎳鹽、銅鹽、錳鹽、辞鹽、鈷 •鹽、鈒鹽,以及此等之一組合。 -丨2·依據申請專利範圍第11項所述介孔性奈米級含鐵金屬粒 φ子的製備方法,其中,於該複合步驟中,該非鐵金屬鹽 刖驅物為姜巴鹽。 13·依據申請專利範圍第12項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該複合步驟中,所添加入鈀鹽 ㈣價鐵之重量百分比值介於1/1G〜1/3_,所形成含鐵 金屬粒子即為鐵鈀雙金屬粒子。 I4·一種介孔性奈米級含鐵金屬粒子的製備方法,依序包含 下列步驟: 一化學還原步驟,於常溫常壓下,將鐵鹽水溶液緩 慢滴加入還原劑中,且予攪拌混合以進行鐵還原反應, 並產生奈米級零價鐵顆粒,其中,混合系統中所含還原 劑/鐵離子之莫耳數比值是約為其反應化學計量值的 4〜1 0倍; 固液分離步驟,將反應所產生含鐵金屬顆粒予以 自水溶液分離出;以及 一冷凍乾燥步驟,將固液分離出之含鐵金屬顆粒予 以乾燥後,即獲得比表面積介於45〜175平方公尺/公克 18 ⑧ 12890841289084 X. Patent application scope: Preparation method of particles, including in sequence 1. One mesoporous nano-scale iron-containing metal The following steps: - Reduction step of the chemical, the reducing agent is slowly added to the iron dish under normal temperature and frequent dust Water ~ night "and stir mixing to carry out iron reduction reaction, and produce nano-scale zero-valent iron particles, wherein the molar ratio of the reducing agent / iron ion contained in the mixing system is about its reaction stoichiometric value 6 to 10 times; night and night; 7 steps away, the iron-containing metal particles produced by the reaction are separated from the aqueous solution; and a cold-beam drying step, after the solid-liquid separated iron-containing metal particles are dried, A finished nano-scale ferrous metal particle having a specific surface area of 45 to 175 m ^ 2 /g and mesoporous. 2. According to the preparation method of the mesoporous nano-scale iron-containing metal particles described in the patent application scope &quot; in the cold; east drying step, the average of the finished nanometer-containing iron-containing metal particles The particle size is about 50 to 80 nm, and the average surface pore diameter is about 3 to 4 nm. 3. The method for preparing a mesoporous nano-scale iron-containing metal particle according to the second aspect of the patent application, wherein in the chemical reduction step, the acid value of the mixed aqueous solution system is between 6 and 11. 4. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 3, wherein in the chemical reduction step, the iron salt precursor for preparing the iron salt aqueous solution is selected from the following Group of substances: ferric chloride, ferrous chloride, iron sulfate, ferrous sulfate, ferric nitrate, nitrate 16 1289084 broken / moon oil correction for _ f. - one - ! ferrous iron, iron bromide , ferrous bromide, and a combination of these. 5. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 4, wherein in the chemical reduction step, the reducing agent is selected from the group consisting of: side hydrogenation, Rotten hydrogen hydride, side hydrogenation clock, sodium sulphate, potassium carbonate, lithium carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide, methanol, ethanol, lithium aluminum hydride, ammonium salt, hydrazine, citric acid, hydrazine Sodium citrate, potassium citrate, and a combination of these. 6. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 5, wherein in the chemical reduction step, the iron salt solution is an aqueous solution of iron oxide. 7. The method for preparing mesoporous nano-sized iron-containing metal particles according to claim 5, wherein in the chemical reduction step, the aqueous iron salt solution is an aqueous solution of ferrous sulfate. 8. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 6, wherein in the chemical reduction step, the reducing agent is an aqueous solution of Sipeng hydride. 9. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 7, wherein in the chemical reduction step, the reducing agent is an aqueous solution of Sipeng hydride. The method for preparing a mesoporous nano-scale iron-containing metal particle according to any one of the items 8 or 9 of the invention, further comprising a composite between the chemical reduction step and the solid-liquid separation step The step is to add a non-ferrous metal salt precursor of catalytic II to the aqueous solution system in which black zero-valent iron particles have been formed to produce a multi-metal type iron-containing metal 17 1289084 Repairing excellent) is replacing Fan particles. 11. The method for preparing a mesoporous nano-scale iron-containing metal particle according to the first aspect of the invention, wherein the non-ferrous metal salt precursor having catalytic properties is selected from the group consisting of the following: Group: palladium salt, strontium salt, platinum salt, strontium salt, strontium salt, hungry salt, gold salt, nickel salt, copper salt, manganese salt, salt, cobalt salt, barium salt, and a combination thereof. - 丨2. The method for preparing a mesoporous nano-scale iron-containing metal particle φ according to claim 11, wherein in the compounding step, the non-ferrous metal salt ruthenium is a ginger salt. 13. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 12, wherein in the compounding step, the weight percentage of the palladium salt (tetra) added iron is between 1/1G ~1/3_, the iron-containing metal particles formed are iron-palladium bimetallic particles. I4· A preparation method of mesoporous nano-scale iron-containing metal particles, comprising the following steps in sequence: a chemical reduction step, slowly adding an aqueous solution of iron salt to the reducing agent under normal temperature and normal pressure, and stirring and mixing Performing an iron reduction reaction and producing nano-scale zero-valent iron particles, wherein the molar ratio of the reducing agent/iron ion contained in the mixing system is about 4 to 10 times the stoichiometric value of the reaction; solid-liquid separation a step of separating the iron-containing metal particles produced by the reaction from the aqueous solution; and a freeze-drying step of drying the solid metal-containing iron-containing metal particles to obtain a specific surface area of 45 to 175 m ^ 2 /g 18 8 1289084 且具介孔性的奈米級含鐵金屬粒子成 15·依據申請專利範圍第14項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該冷凍乾燥步驟中,所獲得奈 米級含鐵金屬粒子成品的平均粒徑約為30〜40奈米,平 均表面孔徑約為3〜4奈米。 16·依據申請專利範圍第15項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,混合水溶 液系統的酸驗值介於6〜11。 17·依據申請專利範圍第16項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,用以配製 鐵鹽水溶液的鐵鹽前驅物是選自於下列物所構成之群組 •氯化鐵、氯化亞鐵、硫酸鐵、硫酸亞鐵、硝酸鐵、硝 酸亞鐵、溴化鐵、溴化亞鐵,以及此等之一組合。 18·依據申請專利範圍第I?項所述介孔性奈米級含鐵金屬粒 子的製備方法,於該化學還原步驟中,還原劑是選自於 下列物所構成之群組:硼氫化鈉、硼氫化鉀、硼氫化經 、碳酸鈉、碳酸鉀、碳酸鋰、氫氧化鈉、氫氧化鉀、氫 氧化鋰、甲醇、乙醇、四氫化鋁鋰、銨鹽、聯氨、檸檬 酸、檸檬酸鈉、檸檬酸鉀,以及此等之一組合。 19·依據申請專利範圍第μ項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中’於該化學還原步驟中,鐵鹽水溶 液是氣化鐵水溶液。 2〇.依據申請專利範圍第18項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,該化學還原步驟中,鐵鹽水溶液 19 1289084 是硫酸亞鐵水溶液 21 ·依據申請專利範圍第19項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,還原劑是 石朋氫化鈉水溶液。 22·依據申請專利範圍第20項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該化學還原步驟中,還原劑是 石朋氫化納水溶液。And a mesoporous nano-sized iron-containing metal particle is formed according to the method for preparing mesoporous nano-scale iron-containing metal particles according to claim 14 of the patent application, wherein in the freeze-drying step, the obtained The finished nano-sized iron-containing metal particles have an average particle diameter of about 30 to 40 nm and an average surface pore diameter of about 3 to 4 nm. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 15, wherein in the chemical reduction step, the acid value of the mixed aqueous solution system is between 6 and 11. 17. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 16, wherein in the chemical reduction step, the iron salt precursor for preparing the iron salt aqueous solution is selected from the following Group of substances • Ferric chloride, ferrous chloride, iron sulfate, ferrous sulfate, ferric nitrate, ferrous nitrate, iron bromide, ferrous bromide, and a combination of these. 18. The method according to claim 1, wherein the reducing agent is selected from the group consisting of sodium borohydride in accordance with the method for preparing mesoporous nano-iron-containing metal particles according to claim 1. , potassium borohydride, hydroboration, sodium carbonate, potassium carbonate, lithium carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide, methanol, ethanol, lithium aluminum hydride, ammonium salt, hydrazine, citric acid, citric acid Sodium, potassium citrate, and a combination of these. A method of producing a mesoporous nano-sized iron-containing metal particle according to the item [51] of the patent application, wherein the iron salt solution is an aqueous solution of iron oxide in the chemical reduction step. 2〇. The preparation method of mesoporous nano-scale iron-containing metal particles according to claim 18, wherein in the chemical reduction step, the iron salt aqueous solution 19 1289084 is an aqueous solution of ferrous sulfate 21 · according to the patent application scope The method for producing mesoporous nano-scale iron-containing metal particles according to Item 19, wherein, in the chemical reduction step, the reducing agent is an aqueous solution of Sippo Sodium hydride. 22. A method of preparing a mesoporous nano-scale iron-containing metal particle according to claim 20, wherein in the chemical reduction step, the reducing agent is an aqueous solution of a stone. 23·依據申請專利範圍第21或22項任一所述介孔性奈朱級 含鐵金屬粒子的製備方法,其中,更包含一位於該化學 還原步驟與該固液分離步驟間的複合步驟,是將一具催 化性質之非鐵金屬鹽前驅物添加入已形成有黑色零價鐵 顆粒的混合水溶液糸統中’以產生多金屬型態之含鐵金 屬顆粒。 24.依據申請專利範圍第23項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,具催化性質之非鐵金屬鹽前驅物 是選自於下列物所構成之群組:鈀鹽、铑鹽、鉑鹽、錶 鹽、釕鹽、餓鹽、金鹽、鎳鹽、銅鹽、錳鹽、鋅鹽、綠 鹽、飢鹽,以及此等之一組合。 25·依據申請專利範圍第24項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該複合步驟中,該非鐵金屬鹽 前驅物為鈀鹽。 26·依據申請專利'範圍第25項所述介孔性奈米級含鐵金屬粒 子的製備方法,其中,於該複合步驟中,所添加入把鹽 與零價鐵之重量百分比值介於1/10〜1/3000,所形成含鐵 20 ⑧ 1289084 、 . —1 ?#/月(钿修(要)正替換頁| “一… . 1 金屬粒子即為_雙金1Ή。The method for preparing mesoporous nai-class iron-containing metal particles according to any one of claims 21 or 22, further comprising a compounding step between the chemical reduction step and the solid-liquid separation step, A catalytically non-ferrous metal salt precursor is added to a mixed aqueous solution system in which black zero-valent iron particles have been formed to produce a multi-metal type iron-containing metal particle. 24. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 23, wherein the catalytic non-ferrous metal salt precursor is selected from the group consisting of palladium. Salt, strontium salt, platinum salt, surface salt, strontium salt, hungry salt, gold salt, nickel salt, copper salt, manganese salt, zinc salt, green salt, starving salt, and a combination thereof. The method for producing mesoporous nano-sized iron-containing metal particles according to claim 24, wherein the non-ferrous metal salt precursor is a palladium salt in the compounding step. 26. The method for preparing mesoporous nano-scale iron-containing metal particles according to claim 25, wherein in the compounding step, the weight percentage of the added salt and the zero-valent iron is between 1 /10~1/3000, the formation of iron containing 20 8 1289084, . —1 ?#/month (钿修(要) is replacing page | "一... . 1 metal particles are _ double gold 1Ή.
TW094112548A 2005-04-20 2005-04-20 Method of preparing mesoporous iron metal-containing nanoparticles TWI289084B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW094112548A TWI289084B (en) 2005-04-20 2005-04-20 Method of preparing mesoporous iron metal-containing nanoparticles
US11/406,434 US20070044591A1 (en) 2005-04-20 2006-04-19 Method for producing mesoporpus nanoscale iron-containing metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094112548A TWI289084B (en) 2005-04-20 2005-04-20 Method of preparing mesoporous iron metal-containing nanoparticles

Publications (2)

Publication Number Publication Date
TW200637675A TW200637675A (en) 2006-11-01
TWI289084B true TWI289084B (en) 2007-11-01

Family

ID=37802214

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094112548A TWI289084B (en) 2005-04-20 2005-04-20 Method of preparing mesoporous iron metal-containing nanoparticles

Country Status (2)

Country Link
US (1) US20070044591A1 (en)
TW (1) TWI289084B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070022839A1 (en) * 2005-07-29 2007-02-01 Changzai Chi Syntheses and applications of nano-sized iron particles
EP2658666B1 (en) 2010-12-30 2018-12-19 Uniwersytet Ekonomiczny W Poznaniu Nanoiron-based oxygen scavengers
US10625343B2 (en) * 2013-11-01 2020-04-21 Council Of Scientific And Industrial Research Process for the preparation of metal nanoparticles
CN110976898B (en) * 2019-12-12 2022-07-15 沈阳工业大学 Soft magnetic metal iron porous micron line and preparation method thereof
CN111804930B (en) * 2020-07-22 2022-10-14 成都理工大学 Nano zero-valent ferro-manganese bimetal and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641424A (en) * 1995-07-10 1997-06-24 Xerox Corporation Magnetic refrigerant compositions and processes for making and using
US20030039857A1 (en) * 1998-04-01 2003-02-27 Zhang Wein-Xian Nanoscale particles and the treatment of chlorinated contaminants
US6777449B2 (en) * 2000-12-21 2004-08-17 Case Logic, Inc. Method of making and using nanoscale metal
US6676729B2 (en) * 2002-01-02 2004-01-13 International Business Machines Corporation Metal salt reduction to form alloy nanoparticles
US7008964B2 (en) * 2002-05-29 2006-03-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Contaminant removal from natural resources
US7641971B2 (en) * 2003-08-13 2010-01-05 Crane Company Metal-treated particles for remediation
US7128841B2 (en) * 2004-03-11 2006-10-31 Lehigh University Dispersed zero-valent iron colloids
TW200637796A (en) * 2005-04-20 2006-11-01 Univ Nat Sun Yat Sen A transportation method of nanoparticles suspension for multi-hole medium.
US20070022839A1 (en) * 2005-07-29 2007-02-01 Changzai Chi Syntheses and applications of nano-sized iron particles
US7635236B2 (en) * 2006-03-30 2009-12-22 Auburn University In situ remediation of inorganic contaminants using stabilized zero-valent iron nanoparticles
KR100766819B1 (en) * 2006-10-17 2007-10-17 광주과학기술원 A novel method of synthesis of air-stable zero-valent iron nanoparticles at room temperature and their applications

Also Published As

Publication number Publication date
TW200637675A (en) 2006-11-01
US20070044591A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
Yao et al. Facile synthesis of graphene-supported Ni-CeO x nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane
US11345608B2 (en) Method for prepareing copper-nickel cobaltate nanowire
CN109663608B (en) Carbon-cobalt-molybdenum bimetal phosphide composite material and preparation method thereof
TWI289084B (en) Method of preparing mesoporous iron metal-containing nanoparticles
He et al. Recent progress on mixed transition metal nanomaterials based on metal–organic frameworks for energy-related applications
Xu et al. Zinc cobalt bimetallic nanoparticles embedded in porous nitrogen-doped carbon frameworks for the reduction of nitro compounds
KR20190002814A (en) Gold multipod nanoparticle core-cobalt-based metal organic framework nanohybrids and synthetic method thereof
CN112354549A (en) Preparation method of metal composite porous nanosheet
CN114210343A (en) Reduced graphene oxide loaded Ru-Ni bimetallic nanocluster catalytic material
CN110876950B (en) Composite material containing metal hydroxide, preparation method and application thereof
CN111137927A (en) Preparation method of nickel copper cobaltate nanoparticles and application of nickel copper cobaltate nanoparticles in catalyzing ammonia borane hydrolysis to produce hydrogen
Zhao et al. Modulating zeolitic imidazolate framework-67 and its derivatives as advanced oxygen evolution reaction electrocatalysts
Zhang et al. High performance Pd x Cu y bimetal catalysts with adjustable Faraday current efficiency for nitrogen fixation
KR101049335B1 (en) Method for preparing hexahedral cuprous oxide powder
CN110835103B (en) Preparation method of cobalt-copper phosphate microspheres and application of cobalt-copper phosphate microspheres in catalyzing ammonia borane hydrolysis to produce hydrogen
CN1265921C (en) Wet manufacturing method for high vibrancy solid ultra micro sphere metal nickel powder
Xu et al. One-pot synthesis of lotus-shaped Pd–Cu hierarchical superstructure crystals for formic acid oxidation
Liang et al. Tailored synthesis of well-faceted single crystals of Fe 3 O 4 and their application in p-nitrophenol reduction
CN103349993A (en) Method for synthesizing magnetically separable iron nitride-based magnetic nanophotocatalyst
CN114082972B (en) Method for green preparation of Rh ultrathin nanosheets and low crystallinity nanoparticles
CN113594476B (en) Carbon nitride modified methanol electrocatalyst and preparation method and application thereof
KR101044726B1 (en) A method for producing ultrafine nickel powder by chemical reduction
CN111924813B (en) Carbon composite metal phosphide and preparation method thereof
CN110935451A (en) Preparation method and application of double non-noble metal catalyst with high specific surface area and high defects
CN116948206B (en) Method for accurately regulating and controlling morphology of ZIF-8 material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees