TWI283743B - Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate - Google Patents

Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate Download PDF

Info

Publication number
TWI283743B
TWI283743B TW95102078A TW95102078A TWI283743B TW I283743 B TWI283743 B TW I283743B TW 95102078 A TW95102078 A TW 95102078A TW 95102078 A TW95102078 A TW 95102078A TW I283743 B TWI283743 B TW I283743B
Authority
TW
Taiwan
Prior art keywords
substrate
sensors
sensor
edge
detect
Prior art date
Application number
TW95102078A
Other languages
Chinese (zh)
Other versions
TW200728708A (en
Inventor
William A Bagley
Pao-Huei Lee
Kyung-Tae Kim
Sam-Kyung Kim
Toshio Kiyotake
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to TW95102078A priority Critical patent/TWI283743B/en
Application granted granted Critical
Publication of TWI283743B publication Critical patent/TWI283743B/en
Publication of TW200728708A publication Critical patent/TW200728708A/en

Links

Landscapes

  • Controlling Sheets Or Webs (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

An apparatus and method incorporating at least two sensors that detect the presence of substrate defects, such as breakage or misalignment, along the lengths of at least two parallel edges of a moving substrate. In one embodiment, an apparatus for detecting substrate defects includes a sensor arrangement including at least two sensors that continuously sense a substrate near at least two parallel edges of the substrate as the substrate passes the sensors. In another embodiment, an apparatus for detecting substrate defects includes a robot having a substrate support surface, and a sensor arrangement including at least two sensors that continuously sense a substrate near at least two parallel edges of the substrate during substrate transfer on the substrate support surface. In another embodiment, a method of continuously detecting substrate defects includes positioning at least two sensors to continuously sense a substrate near at least two parallel edges of the substrate as the substrate passes the sensors, and transmitting a signal from each of the at least two sensors to a controller that continuously monitors the signals from the at least two sensors to detect the presence of a substrate defect.

Description

關於一種以連續 損毁與偏位之設About a design with continuous damage and deviation

1283743 玖、發明說明: 【發明所屬之技術領域】 本發明之實施例係廣泛地 之方式偵測一移動基材之基材 【先前技術】 基材製程系統係用於處理基材,此基材例 體電路元件之矽晶圓以及生產平板顯示器之玻 常,一個或多個機械手臂(robots)係設置在基材 以將基材於複數個製程腔體中轉移以進行一連 程步驟。一般來說,基材製程系統包含群集 tool),其具有位於中央的傳送室,此傳送室具 械手臂設置其中並具有複數個製程腔體包圍傳 室有時耦接至工廠界面,工廠界面容納有工廠 臂與複數個基材晶圓匣,每一個晶圓匣中皆容 材。為了幫助基材在工廠界面之周圍環 environment)與傳送室之真空環境(vacuum env 間的轉換,可於工廠界面與傳送室之間設置 (load lock chamber),其中可將負载閉鎖室抽氣 生真空,並可打開以提供周圍環境條件。對於 同製程技術來處理大量基材而可以減少污染( 理污染)、提供高速且可準確減少缺陷並提供一 統,使用機械手臂於處理基材係很重要。 在操作上,工廠界面機械手臂由晶圓匣中 且節省成本 ff與方法。 如為生產積 璃面板。通 製程系統中 串之生產製 L 具(cluster 有傳送室機 送室。傳送 界面機械手 納複數個基 境(ambient ir〇nment)之 負載閉鎖室 以於其中產 經由許多不 如,基材處 個高產量系 傳送一或多 6 1283743 個基材進入 中產生真空 基材至一或 傳送室機械 載閉鎖室打 負載閉鎖室 ,接著傳送 多個製程腔 手臂將已處 開而工廠界 的内部。負 室機械手臂 體中。在基 理之基材傳 面之機械手1283743 玖Invention Description: [Technical Field] The present invention is a method for detecting a substrate of a moving substrate in a wide range of ways. [Prior Art] A substrate processing system is used for processing a substrate, the substrate The wafer of the conventional circuit component and the glass of the flat panel display, one or more robots are disposed on the substrate to transfer the substrate into the plurality of process chambers for a continuous step. Generally, the substrate processing system includes a cluster tool having a centrally located transfer chamber, the transfer chamber having an arm disposed therein and having a plurality of process chambers surrounding the chamber and sometimes coupled to the factory interface, the factory interface housing There are factory arms and a plurality of substrate wafers, each of which has a material. In order to help the substrate between the ambient environment of the plant interface and the vacuum environment of the transfer chamber (vacuum env conversion, a load lock chamber can be set between the factory interface and the transfer chamber, wherein the load lock chamber can be pumped Vacuum and can be opened to provide ambient conditions. For the same process technology to handle a large number of substrates, it can reduce pollution (contamination), provide high speed and accurately reduce defects and provide a unified system. It is important to use a robotic arm to process the substrate. In operation, the factory interface robot arm is saved from the wafer and saves cost ff and method. For the production of the glass panel, the production system is manufactured in the process system (the cluster has the transfer chamber machine. The transfer interface machine) Hand-loading a plurality of load-locking chambers of ambient ir〇nment for producing a vacuum substrate to one or more through a number of inferior, high-yield substrates at the substrate to transfer one or more 6 1283743 substrates into The chamber mechanical lock chamber is loaded with the lock chamber, and then the multiple process chamber arms are opened and the interior of the factory is opened. Arm body. The surface of the substrate transfer robot of rationale

至晶圓E中以將基材於製程系統中移除( 系統可於ΑΚΤ公司購得,此公司為加 Applied Material公司所屬的子公司。 載閉鎖室被 由負戴閉鎖 材製程步驟 回負戴閉鎖 臂將已處理 上述 州聖To the wafer E to remove the substrate in the process system (the system can be purchased from the company, the company is a subsidiary of Applied Material. The lock chamber is backed by the negative lock process steps The locking arm will have been processed in the above state

由於基材面積趨向持續增加而元件圖案 小,因此必須不斷增加基材在各種製程腔體; 性,以確保重複的元件製作與低缺陷速率。增 程系統中的位置正確性是一項挑戰。在—每曰 示器基材(如,玻璃基材)係位在機械手臂的 (end effector)(如,葉片或指狀物)上而被傳送 系統的腔體間。要確保平板顯示器基材與機械 效應適當地調準係具有困難度;不過—曰巧 可通過在負載閉鎖室或製程腔體中的槽孔或其 不會面臨因傳送過程中的調準偏移(即,偏位 碰撞。碰撞不但會造成平板顯示器基材之缺c 裂(crack),亦會在負載閉鎖室或製程腔體中產 成碎片沈積。產生上述之碎片可能會造成製程 對上述顯示器或後續處理之顯示器的損害。因 存在時,需要停止整個系統,或停止系統的一 底移除潛在的污染碎片。此外,由於基材尺寸 抽氣以於其 室内部傳輸 完成之後, 室,接著負 的基材傳送 之基材製程 塔摩尼卡之 趨向持續縮 的位置正確 加基材在製 中,平板顯 末端效應器 至各種製程 手臂之末端 準,基材即 他障礙,而 )所產生之 〖(chip)或破 生碎片並造 缺陷或其他 此,當碎片 部分,以徹 漸大且元件 7 1283743 密度漸增,每片基材的價值已大大增加。因此,必須避免 由於基材偏位而產生對基材之損害或產量損失,因為此會 造成成本增加與產量減少。As the substrate area tends to increase and the component pattern is small, it is necessary to continuously increase the substrate in various process chambers to ensure repeated component fabrication and low defect rates. Positional correctness in an extended range system is a challenge. Each of the display substrates (e.g., glass substrates) is positioned between the cavity of the delivery system by being anchored to an end effector (e.g., a blade or finger). It is difficult to ensure that the flat panel display substrate and mechanical effects are properly aligned; however, it may be through slots in the load lock chamber or process chamber or it may not face alignment shifts during transport. (ie, a eccentric collision. The collision not only causes cracks in the flat panel display substrate, but also debris deposition in the load lock chamber or process chamber. The resulting debris may cause the process to be on the display or Subsequent damage to the display. Because of the need to stop the entire system, or stop the bottom of the system to remove potential contamination debris. In addition, because the substrate size is pumped to the interior of the room after the transfer is completed, the chamber, then negative The substrate transfer process of the substrate process, the direction of the Monica, continues to shrink, the correct substrate is added, the flat end effector is applied to the end of various process arms, the substrate is his obstacle, and the resulting 〖(chip) or broken fragments and create defects or other such, when the fragment part is gradually enlarged and the density of the component 7 1283743 is increasing, the value of each piece of substrate greatly increase. Therefore, damage to the substrate or loss of yield due to substrate misalignment must be avoided as this results in increased cost and reduced yield.

為了加強基材在整個製程系統中的位置準確性(即, 對準),公知技術中已經採用許多策略。例如,傳送室可於 鄰近每個負載閉鎖室與製程腔體之入口處裝配多組以四個 為一組之感測器,那麼感測器可同時偵測矩形玻璃面板之 四個角落的存在,以在機械手臂傳輸基材至腔體之前可先 感測面板之調準性。因此,四個感測器係分開設置於傳送 室的底座上,那麼四個感測器皆同時位於固定基材的四個 角落下方。上述將感測器分散安排於每個腔體前面的設置 係需要安置大量的感測器在傳送室底座的諸多位置上。習 知技術中已建議許多將感測器設置在傳送室底座的各種安 排。 雖然習知感測器設置之成效令人滿意,但是在實際操 作上,仍存在許多與感測器之擺置有關的限制。在實際操 作上,因為感測器一次只债測一個基材之調準性,且由於 感測器分散設置於傳送室之底座上,因此傳送室僅能一次 處理/管理一個基材。因此限制傳送室機械手臂為單臂機械 手臂,此造成製程系統產量的減少。另一個亦會減少製程 系統產量之限制在於,當基材在感測調準的過程中而位於 四個感測器上方時,基材必須固定不動。又另一個限制在 於,至少需要四個感測器以偵測單一個基材之調準。最後, 其他的限制為此四個感測器僅在基材之角落處偵測基材缺 8In order to enhance the positional accuracy (i.e., alignment) of the substrate throughout the processing system, a number of strategies have been employed in the prior art. For example, the transfer chamber can be equipped with a plurality of sets of four sensors in the vicinity of each load lock chamber and the entrance of the process chamber, and the sensor can simultaneously detect the presence of four corners of the rectangular glass panel. To sense the alignment of the panel before the robot arm transfers the substrate to the cavity. Therefore, the four sensors are separately disposed on the base of the transfer chamber, and the four sensors are simultaneously located under the four corners of the fixed substrate. The above arrangement of dispersing the sensors in front of each cavity requires placement of a large number of sensors at various locations on the base of the transfer chamber. A number of arrangements have been proposed in the prior art for placing the sensor in the base of the transfer chamber. While the performance of conventional sensor settings is satisfactory, in practice, there are still many limitations associated with the placement of the sensor. In practice, because the sensor only measures the alignment of a substrate at a time, and because the sensor is dispersedly disposed on the base of the transfer chamber, the transfer chamber can only process/manage one substrate at a time. Therefore, the transfer chamber robot arm is limited to a one-arm robot arm, which results in a reduction in the throughput of the process system. Another limitation that would also reduce the throughput of the process system is that the substrate must be stationary when the substrate is positioned over the four sensors during the sensing alignment. Yet another limitation is that at least four sensors are required to detect the alignment of a single substrate. Finally, other limitations are that the four sensors only detect substrate defects at the corners of the substrate.

1283743 陷(如’基材破片)。 利用本發明之設備與方法時,僅需要相對簡單之 與少量的感測器以偵測基材偏位以及/或損毀,此特徵 本發明易於實施且成本低廉。 【發明内容】 一般而言,本發明提供一種利用至少兩個感測器 測移動基材之基材缺陷(例如,損毀或偏位)存在的 與方法。在一實施例中,偵測基材缺陷之設備包含第 測器與第二感測器,當基材通過第一與第二感測器時 一感測器可偵測基材於靠近基材第一邊緣;以及第二 器可偵測基材於靠***行基材第一邊緣之第二邊緣。 一實施例中,偵測基材缺陷之設備包含:具有至少一 材支持表面之機械手臂’以支擇基材於其上;以及一 測器設置,其包含第一感測器與第二感測器,在基材 少一個基材支持表面上被傳送時,第一感測器可偵測 於接近基材第一邊緣,以及第二感測器可偵測基材於 平行基材第一邊緣之接近第二邊緣。在又另一實施例 偵測基材損毀與偏位之設備包含:具有至少一個視窗 送室;一個位於傳送室的末端效應器上之基材;以及 感測器設置,其包含至少兩個感測器,其固定在至少 視窗之外部上或接近至少一個視窗之外部,使得此等 器中每一個的感測機構可通過至少一個視窗,其中至 個感測器係用以持續感測基材在接近基材之至少兩平 設置 使得 以偵 設備 一感 ,第 感測 在另 個基 種感 於至 基材 接近 中, 之傳 一個 一個 感測 少兩 行邊 9 1283743 緣,以當末端效應器移動基材通過至少兩個感測器之感測 機構時,感測器可偵測基材缺口、破裂或在至少兩平行邊 緣之偏位。在再一實施例中,持續偵測基材缺陷的方法包 含安置至少兩個感測器,使得當基材通過至少兩個感測器 時,此等感測器可持續偵測基材在接近基材之兩平行邊 緣,並且由此等感測器處傳達訊號至控制器,此控制器監 控來自此等感測器之訊號以偵測基材缺陷之存在。1283743 trapped (eg 'substrate fragmentation'). With the apparatus and method of the present invention, relatively simple and small amounts of sensors are required to detect substrate misalignment and/or damage, and this feature is easy to implement and inexpensive. SUMMARY OF THE INVENTION In general, the present invention provides a method and method for measuring the presence of substrate defects (e.g., damage or offset) of a moving substrate using at least two sensors. In one embodiment, the apparatus for detecting a defect in a substrate includes a detector and a second sensor. When the substrate passes through the first and second sensors, a sensor can detect the substrate near the substrate. a first edge; and the second device detects the substrate at a second edge adjacent the first edge of the parallel substrate. In one embodiment, the apparatus for detecting a defect in a substrate comprises: a robot arm having at least one support surface to support the substrate thereon; and a detector arrangement including the first sensor and the second sense The first sensor is detectable near the first edge of the substrate, and the second sensor can detect the substrate on the parallel substrate first when the substrate is transported on one substrate support surface The edge is close to the second edge. In yet another embodiment, the apparatus for detecting substrate damage and offset includes: a substrate having at least one window feed chamber; a substrate on the end effector of the transfer chamber; and a sensor arrangement including at least two senses a detector fixed to at least the exterior of the window or adjacent to at least one of the windows such that the sensing mechanism of each of the devices passes through at least one of the windows, wherein the sensors are used to continuously sense the substrate At least two flats close to the substrate are arranged to sense the sense of the device, and the first sense is sensed in the proximity of the other substrate to the substrate, and one of the senses is less than two rows of edges 9 1283743 edge to be the end effect When the substrate is moved through the sensing mechanism of at least two sensors, the sensor can detect the substrate gap, crack or offset at at least two parallel edges. In still another embodiment, the method of continuously detecting a defect in a substrate includes disposing at least two sensors such that when the substrate passes through at least two sensors, the sensors can continuously detect that the substrate is in proximity The two parallel edges of the substrate, and thus the sensor, communicate signals to the controller, which monitors signals from the sensors to detect the presence of substrate defects.

【實施方式】 本發明係有關於一種利用至少兩個感測器之設備與方 法,此等感測器可持續偵測基材缺口 、破裂之存在以及/ 或偵測沿著移動基材之兩平行邊緣之偏位。第1圖為製程 系統1 00實施例之平面圖,此製程系統用於處理具有大於 約25,000平方公分之上表面面積的大面積基材106 (如, 玻璃或聚合物基材),例如具有大約40,000平方公分(2.2 公尺X 1.9公尺)上表面面積之玻璃基材。製程系統100 通常包含工廠界面 1 1 〇,其透過至少一個負載閉鎖室 1 6 0 而耦接至傳送室120上。如第1圖所示,負載閉鎖室160 設置於工廠界面1 1 0與傳送室1 20之間以利基材於工廠界 面11 0的周圍環境以及傳送室1 20的真空環境之間傳輸。 工廠界面1 1 0 —般包含複數個基材儲存晶圓匣1 1 2與 至少一個大氣機械手臂1 1 4 (參照為前述之工廠界面機械 手臂)。晶圓匣1 1 2係為可移除式地設置在複數個形成於工 廠界面1 1 0 —側的隔間1 1 6中,其中每個晶圓匣可容納複 10 1283743 數個基材。大氣機械手臂1 1 4係用於傳送基材往返晶圓匣 1 1 2與負載閉鎖室1 6 0之間。通常,工廠界面1 1 0中係維 持在大氣壓力或稍微高於大氣壓力。已過濾之空氣通常供 給至工廠界面1 1 0之内部以將工廠界面内之微粒污染降至 最低,此微粒污染可能造成基材表面之微粒污染。[Embodiment] The present invention relates to an apparatus and method for utilizing at least two sensors that can continuously detect the presence of a substrate gap, a crack, and/or detect two substrates along a moving substrate. The offset of the parallel edges. 1 is a plan view of an embodiment of a process system 100 for processing a large area substrate 106 (eg, a glass or polymer substrate) having a surface area greater than about 25,000 square centimeters, for example, having about 40,000 A glass substrate with a square area (2.2 m X 1.9 m) on the upper surface area. The process system 100 typically includes a factory interface 1 1 〇 that is coupled to the transfer chamber 120 through at least one load lock chamber 160. As shown in Fig. 1, the load lock chamber 160 is disposed between the factory interface 110 and the transfer chamber 1 20 to facilitate transfer of the substrate between the ambient environment of the plant interface 110 and the vacuum environment of the transfer chamber 120. The factory interface 110 generally includes a plurality of substrate storage wafers 1 1 2 and at least one atmospheric robot arm 1 1 4 (refer to the aforementioned factory interface robot arm). The wafer cassette 1 1 2 is removably disposed in a plurality of compartments 1 1 6 formed on the side of the factory interface 110, wherein each wafer cassette can accommodate a plurality of substrates of 10 1283743. The atmospheric robot arm 1 1 4 is used to transport the substrate between the wafer 匣 1 1 2 and the load lock chamber 160. Typically, the factory interface 1 10 is maintained at atmospheric pressure or slightly above atmospheric pressure. The filtered air is typically supplied to the interior of the plant interface 110 to minimize particulate contamination within the plant interface, which may contaminate the surface of the substrate.

具有底座122、側壁124與頂蓋126 (未顯示於第1 圖中)之傳送室1 2 0係容納至少一個真空機械手臂1 3 0(參 照為前述之傳送室機械手臂),此機械手臂一般設置在傳送 室120之底座122上。傳送室120定義可排空之内部體積, 而真空機械手臂1 3 0可在基材於製程腔體1 5 0中處理或輸 送至負載閉鎖室1 60之前透過此體積以傳輸基材1 06。鄰 近每一個製程腔體150與負載閉鎖室160之側壁124可包 含一個開口或端口(未顯示),藉由真空機械手臂1 3 0,基 材1 0 6可通過此開口而傳送至每個腔體1 5 0、1 6 0之内部。 通常,為了降低或消除在每次基材傳送於兩個腔體後必須 調整傳送室1 2 0和個別製程腔體1 5 0内的壓力之必要,傳 送室1 20係維持在真空條件而製程腔體1 5 0則維持在負壓 條件。藉由使用缝閥(未顯示)以選擇性密封鄰接每個製 程腔體1 5 0之傳送室1 2 0側壁1 2 4之端口,每個製程腔體 1 5 0之内部係選擇性地與傳送室1 2 0之内部隔離。 製程腔體1 5 0通常係固定在傳送室1 2 0之外部。不同 製程腔體1 5 0可連接至傳送室1 2 0上以透過必要製程程序 處理基材進而形成預設結構或圖案於基材表面上。合適製 程腔體1 5 0之實例包含化學氣相沈積(CVD )腔體、物理 11 1283743 氣相沈積(PVD )腔體、離 腔體、平坦化製程腔體、微 程基材之腔體。或者,為了 體150之其中一種可為預熱 熱處理基材。 子佈植腔體、姓刻腔體、定向 影餘刻腔體、以及其他用於製 增加系統1 0 0之產量,製程腔 腔體’其可在基材製程之前先 負載閉鎖室1 6 〇有利於脾| #屑仏 巧"^么將基材傳輸於傳送室i 2 〇之真 工·玉衣土兄與工廠:界面110之大办 W i i U I大致上周圍裱境之間,而不會損The transfer chamber 1 2 0 having the base 122, the side wall 124 and the top cover 126 (not shown in FIG. 1) accommodates at least one vacuum robot arm 130 (refer to the aforementioned transfer chamber robot), which is generally It is disposed on the base 122 of the transfer chamber 120. The transfer chamber 120 defines an internal volume that can be emptied, and the vacuum robot arm 130 can pass through the volume to transport the substrate 106 before the substrate is processed or transported to the load lock chamber 1 60 in the process chamber 150. The side wall 124 adjacent to each of the process chamber 150 and the load lock chamber 160 may include an opening or port (not shown) through which the substrate 1060 can be transported to each chamber through the vacuum robot arm 130. The interior of the body 1 50, 1 60. Generally, in order to reduce or eliminate the necessity of adjusting the pressure in the transfer chamber 120 and the individual process chambers 150 after each transfer of the substrate to the two chambers, the transfer chamber 20 is maintained under vacuum conditions and the process is maintained. The cavity 150 is maintained under negative pressure conditions. By using a slit valve (not shown) to selectively seal the ports adjacent the side walls 1 2 4 of the transfer chamber 1 0 0 of each process chamber 150, the internals of each process chamber 150 are selectively The internal isolation of the transfer chamber 120. The process chamber 150 is typically attached to the exterior of the transfer chamber 120. Different process chambers 150 can be coupled to the transfer chamber 120 to process the substrate through the necessary processing procedures to form a predetermined structure or pattern on the surface of the substrate. Examples of suitable process chambers 150 include chemical vapor deposition (CVD) cavities, physical 11 1283743 vapor deposition (PVD) cavities, decentralized cavities, planarization process cavities, and microcavity substrate cavities. Alternatively, one of the bodies 150 may be a preheated heat treated substrate. Sub-planting cavity, surname cavity, directional shadow cavity, and other methods for increasing the output of the system, the process cavity can be loaded into the lock chamber before the substrate process. Conducive to the spleen | #屑仏巧"^ The substrate is transported in the transfer room i 2 真之真工·玉衣土兄and factory: interface 110 big W ii UI is roughly between the surrounding environment, and No damage

失在傳迗t 120内之真空。在鄰接工廠界面ιι〇之負載閉 鎖室160的側壁處,負載閉鎖室16〇具有一個或多個入口 / 出口槽孔(未顯示),大氣機械手臂114可透過此槽孔傳輸 基材106進出負载閉鎖室160。同樣地,有相同數量之入 口 /出口槽孔位於負載閉鎖室1 6 0之另一側壁上,真空機械 手臂130可透過此處槽孔傳輸基材1〇6於負載閉鎖室ι6〇 之内部與傳送室丨2 〇之間。每個負載閉鎖室丨6 〇之入口 / 出口槽孔係由縫閥(未顯示)選擇性地密封以使負載閉鎖 室160之内部與工廠界面11〇内部及傳送室12〇隔離。 大氣機械手臂1 1 4與真空機械手臂1 3 0係裝設有末端 效應器-例如,分別為葉片1 1 8或指狀物1 3 6-以在傳送過 程中直接支撐基材106。每個機械手臂114、130可具有一 個或多個末端效應器,每個末端效應器耦接至可獨立控制 之馬達上(例如,雙臂式機械手臂)’或者,例如兩個末端 效應器透過一般連結而耦接至機械手臂1 1 4、1 3 0上。如同 第1圖中所示’真空機械手臂13 0係為雙臂式機械手臂’ 甘a 士钕,臂132 ’連接至具有指狀物136之上層末端效 兵具有弟 12 1283743 應⑼4’以支撑基材1〇6 (以虛線標示)於其上;以及第 二臂138,連接至具有指狀物之下層末端效應器(未顯 示以在傳送室12"支揮及移動另—個基材。為了增加 產量,雙臂式真空機械手臂130可同時傳輸兩個基材於各 種製程腔ϋ15〇與負載閉鎖室16〇之間。為增加產量,每 個機械手臂U4、130係較佳地裝配兩個末端效應器。Lost in the vacuum inside the t 120. At the side wall of the load lock chamber 160 adjacent to the factory interface, the load lock chamber 16 has one or more inlet/outlet slots (not shown) through which the atmospheric robot 114 can transport the substrate 106 into and out of the load. Locking chamber 160. Similarly, the same number of inlet/outlet slots are located on the other side wall of the load lock chamber 160, through which the vacuum robot arm 130 can transmit the substrate 1〇6 into the load lock chamber ι6〇 and Transfer room between 丨2 〇. The inlet/outlet slots of each of the load lock chambers 选择性6 are selectively sealed by a slit valve (not shown) to isolate the interior of the load lock chamber 160 from the interior of the factory interface 11 and the transfer chamber 12A. The atmospheric manipulator 1 14 and the vacuum manipulator 1 30 are equipped with end effectors - for example, blades 1 18 or fingers 1 3 6 - respectively to directly support the substrate 106 during transport. Each of the robot arms 114, 130 can have one or more end effectors, each of which is coupled to an independently controllable motor (eg, a two-armed robotic arm)' or, for example, two end effectors Generally connected and coupled to the robot arm 1 1 4, 1 30. As shown in Figure 1, the 'vacuum robotic arm 130 is a two-armed robotic arm', the arm 132' is connected to the upper end with the finger 136. The effect has a brother 12 1283743 (9) 4' to support Substrate 1 〇 6 (indicated by dashed lines) thereon; and a second arm 138 connected to a lower end effector having a finger (not shown to support and move another substrate in the transfer chamber 12". In order to increase the output, the dual-arm vacuum robot arm 130 can simultaneously transfer two substrates between the various process chambers 15〇 and the load lock chamber 16〇. To increase the yield, each robot arm U4, 130 is preferably assembled with two. End effectors.

傳送室i20之底| 122包含複數個視窗128,其設置 在鄰接每個製程腔體150與負載閉鎖t 16〇之端口的附 近。鄰近每個端口處,有至少兩個感測器i4〇A、i4〇B位 於或接近兩個視窗128之外部,使得至少兩個感測器 140A、140B中的每一個可在基材通過端口之前,觀測(即, 感測)基材1 0 6之邊緣部分。較佳地,感測器1 4 〇 A、丨4 〇 B 係設置在視窗1 28之外部(即,傳送室的外部),使得感測 器1 4 0 A、1 4 Ο B係與壤境隔離並可能減輕在傳送室1 2 〇中 的高溫。視窗1 2 8可由石英或其他大致不影響感測器偵測 機制-例如光束透過視窗1 2 8發射並反射回感測器1 4 〇 a (或1 4 Ο B )-的材料所製成(例如,玻璃、塑膠)。 第2圖係為傳送室1 20之放大的部分剖面側視圖,其 繪示感測器140A、140B中任何一個之擺置,感測器係設 置在鄰近每個製程腔體150與負載閉鎖室16〇之傳送室 12 0側壁 1 2 4的入口 /出口端口處(未顯示)。參照其中之 一的感測器’以第1圖製程腔體1 5 0附近的感測器1 4 〇 a 為例,感測器140A包含設置於或接近視窗128外部的發 送器144與接收器148。相對應之反射器142A係固定在或 13 1283743 接近傳送室蓋126之内側上。因為反射器lUA係實質上 為鏡子種類的元件,其通常對於溫度較不敏感且可在傳送 至1 2 0之真空與適度的溫度環境下運作。在感測過程中, 由發送器144發射的光束沿著光束路徑146行經視窗128 而到達反射器1 4 2 A處,且被反射器1 4 2 A反射而沿著另一 個光束路徑1 4 7行經視窗1 2 8而回到接收器1 4 8。當玻璃 基材通過光束路徑146、147時,因為在沿著路徑146、147 之每個玻璃/空氣界面處的光束反射產生之訊號損失,所以 接收器接收的光束密度衰減,此係顯示基材1〇6之存 在。感測器140A、140B係耦接至控制器129處,控制器 係用以持續紀錄、監控與比較由感測器14〇A與ΐ4〇β的接 收器148所接受之光束訊號。控制器129 一般包含中央處 理器(C P U )、記憶體與支持電路。The bottom of the transfer chamber i20 | 122 includes a plurality of windows 128 disposed adjacent the ports of each of the process chambers 150 and the load locks t16〇. Adjacent to each port, there are at least two sensors i4〇A, i4〇B located at or near the outside of the two windows 128 such that each of the at least two sensors 140A, 140B can pass through the substrate through the port Previously, the edge portion of the substrate 106 was observed (i.e., sensed). Preferably, the sensors 1 4 〇A, 丨4 〇B are disposed outside the window 128 (ie, outside the transfer chamber), so that the sensor 1 4 0 A, 1 4 Ο B system and the soil Isolation and possibly alleviating the high temperatures in the transfer chamber 1 2 。. The window 1 2 8 may be made of quartz or other material that does not substantially affect the sensor detection mechanism - for example, a beam that is transmitted through the window 1 2 8 and reflected back to the sensor 1 4 〇a (or 1 4 Ο B )- ( For example, glass, plastic). 2 is an enlarged partial cross-sectional side view of the transfer chamber 120 showing the placement of any of the sensors 140A, 140B disposed adjacent to each of the process chambers 150 and the load lock chamber. At the inlet/outlet port of the side wall 1 2 4 of the transfer chamber 12 0 (not shown). Referring to one of the sensors' as an example of the sensor 1 4 〇a near the processing chamber 1 0 0 of the first drawing, the sensor 140A includes a transmitter 144 and a receiver disposed at or near the outside of the window 128. 148. The corresponding reflector 142A is fixed to the inner side of the transfer chamber cover 126 or 13 1283743. Since the reflector lUA is essentially a mirror-type component, it is generally less sensitive to temperature and can operate under vacuum and moderate temperature conditions that are transmitted to 120. During the sensing process, the beam emitted by the transmitter 144 travels along the beam path 146 through the window 128 to the reflector 1 4 2 A and is reflected by the reflector 1 4 2 A along the other beam path 1 4 7 Go through the window 1 2 8 and go back to the receiver 1 4 8 . When the glass substrate passes through the beam paths 146, 147, the beam density received by the receiver is attenuated due to signal loss at the beam/air interface at each of the glass/air interfaces along the paths 146, 147. The existence of 1〇6. The sensors 140A, 140B are coupled to the controller 129 for continuously recording, monitoring, and comparing the beam signals received by the receivers 148 of the sensors 14A and ΐ4〇β. Controller 129 typically includes a central processor (C P U ), memory and support circuitry.

許多其他的感測器可用於扁、日丨盆U J π於偵測基材10 6之存在。例 如,反射器142Α可固定在另―j 而 一 另 個視® (未顯示)之外側, 此視窗位於傳送室120之頂莒Ί 上 J只盍1 2 6處。類似地,在另一個 實例中,感測器140A可發惠+ >〆、日办μ。 4射仃經視窗1 2 8而到達第二感Many other sensors can be used to detect the presence of the substrate 106 in the flat and sundial U J π. For example, the reflector 142 can be attached to the other side of the other side (not shown), which is located at the top of the transfer chamber 120 at J 盍1 2 6 . Similarly, in another example, sensor 140A can benefit + > 4 shots through the window 1 2 8 to reach the second sense

測器(未顯示)之光束,Φ楚—π、Bt时/ A /、中第二感測器位於設置在傳送 室12〇之頂蓋126處另一個禎翁广去游一、々从”上 丨口悦_ c未顯不)之外側。或者, 感測器140A在傳送室中的Α4 〜*他位置可加以利用,只要感 測器暴露在傳送室12 0之環ρ θ 4 <咏忧是在特定感測器之操作範圍 内(例如,熱操作範圍)。 感測器140A或140B可—人、na 了包含分開的發射單元與接收單 元或可為自我控制之感測哭Γ 1 土办4 , 4 —例如,「光束穿透型」與「反 14 1283743 射型」感測器,或其他種適合於偵測基材存在之感測機構。 在本發明之至少一實施例中,濾波器或類似機構可加以運 用以阻隔來自當熱基材在傳送室1 2 0中傳輸時會到達/加 熱反射器1 4 2 A之熱能量(如,紅外線波長),因為此熱能 量可影響某些反射器之反射特性。例如’可通過由發送器 1 44所發射的一種或數種波長但是可反射紅外線波長之滤 波器可位於接近反射器142A處。 在一實例中,發送器1 44與接收器1 48可為位於伊利 諾州Schaumburg之Omron® Electronics公司所製造之型號 為E32-R16的 Omron®感測器頭,其具有E3X-DA6擴大器 /發送器/接收器且可在波長660奈米下運作。反射器142A 可為,例如’由肯塔基洲福羅倫斯(F1 〇 r e n c e,K e n t u c k y )之 Balluff公司所製造,Balluff型號為B〇s R-14的反射器或 為Omron®型號為E39-R1的反射器。〇mron® E32-R1 6感測 器具有發光二極體(LED )’其可用以偵測具有大於或等於 大約4英吋大小之基材缺陷(即,損毁或偏位)。在另一個 實例中,發送器144與接收器148可為omron®型號 E3C-LR11之雷射感測器頭,其可與型號為E3C_LDA11、 E3C-LDA21之擴大器以及型號為E39-R12之反射器一同運 作。Omron® E3C-LR11雷射感測器頭可用以偵測具有大於 或等於約1毫米之基材缺陷。其他感測器、反射器、擴大 器、發送器、接收器及波長等皆可加以採用。此外,其他 具有不同感測機構-例如’超音波—之感測器亦可加以利用。 參照第1圖,負載閉鎖室1 6 〇亦可在接近工廠界面1 1 〇 15 1283743 之負載閉鎖室的入口 /出口槽孔處附近裝配至少兩個 器140A、140B。負載閉鎖室160較佳地包含一或多 直堆豐、環境隔離之基材傳送室,此等傳送室可個別 抽氣以維持真空並打開以產生周圍環境條件於傳送室 一或多個垂直堆疊且環境隔離之傳送室中每一個皆具 或多個入口 /出口槽孔以允許基材於其間通過。這些感 14 0A、14 0B之設置可允許基材106在進入負載閉鎖室 以被傳送至傳送室1 20並進行製程以前,就先偵測基 毀以及/或基材偏位。感測器1 4 0 A與1 4 〇 B係分開固 使得基材在被傳送進出負載閉鎖室1 6 〇之槽孔並通過 器時’每個來自感測器140A、140B之光束通過基材 之邊緣。此等分開的感測器設置係可應用在具有任意 槽孔之任意大小的負載閉鎖室i 6 〇上。 第3 A圖與第3 B圖繪示第1圖之感測器1 4 〇 a、 設置中,沿著線3-3的放大剖面側視圖。每個感 140A、140B與對應之反射器i42A、142B通常係固定 載閉鎖室160、170之外部ι62、ι72,此係利用固定肩 例如’托架(如在第5圖中所示的感測器托架54〇與 器托架5 4 2 )或框架—以使感測器/反射器牢固在固定 上。在繪示於第3A圖之實例中,感測器ι4〇Α、14〇B 在負載閉鎖室160之三個槽孔ι64、ι66、ι68上方, 相對應之反射器1 4 2 A、1 4 2 B係安置在三個槽孔下方 有三個槽孔之負載閉鎖室丨6 〇可包含一或多個環境隔 腔體’例如三層之單槽孔負載閉鎖室(如第3A圖所: 感场J 個垂 地被 中。 有〜 蜊器 1 6〇 材損 定, 感測 平行 數量 140B 測器 在負 t置-反射 位置 係嵌 以及 。具 離之 π ) ' 16 1283743The beam of the detector (not shown), Φ Chu-π, Bt / A /, the second sensor is located at the top cover 126 of the transfer chamber 12〇, another 祯 翁 广 游 游 游The upper side of the _ 悦 _ 未 未 未 未 未 c 或者 。 。 。 。 。 。 。 。 。 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者 或者Worrying is within the operating range of a particular sensor (eg, thermal operating range). Sensor 140A or 140B can be a human, na containing separate transmitting and receiving units or can be self-controlled sensing crying 1 Earthworks 4, 4 — For example, “beam-transmission” and “reverse 14 1283743” sensors, or other sensing mechanisms suitable for detecting the presence of a substrate. In at least one embodiment of the invention, a filter or similar mechanism can be utilized to block thermal energy from reaching/heating the reflector 1 4 2 A as the thermal substrate is transported in the transfer chamber 120 (eg, Infrared wavelength) because this thermal energy can affect the reflective properties of some reflectors. For example, a filter that can pass one or more wavelengths emitted by the transmitter 1 44 but can reflect infrared wavelengths can be located proximate to the reflector 142A. In one example, transmitter 1 44 and receiver 1 48 may be an E32-R16 Omron® sensor head manufactured by Omron® Electronics, Inc., Schaumburg, Ill., with an E3X-DA6 expander/ The transmitter/receiver operates at a wavelength of 660 nm. The reflector 142A can be, for example, 'made by Balluff Corporation of F1 〇rence, Kentucky, Balluff model B〇s R-14 reflector or Omron® model E39-R1 Reflector. The 〇mron® E32-R1 6 sensor has a light-emitting diode (LED) that can be used to detect substrate defects (i.e., damage or offset) having a size greater than or equal to about 4 inches. In another example, transmitter 144 and receiver 148 may be laser sensor heads of the omron® model E3C-LR11, which are compatible with E3C_LDA11, E3C-LDA21 amplifiers, and E39-R12 reflectors. The device works together. The Omron® E3C-LR11 laser sensor head can be used to detect substrate defects greater than or equal to about 1 mm. Other sensors, reflectors, amplifiers, transmitters, receivers, and wavelengths can be used. In addition, other sensors having different sensing mechanisms, such as 'ultrasonics,' can also be utilized. Referring to Fig. 1, the load lock chamber 16 can also fit at least two of the heaters 140A, 140B near the inlet/outlet slots of the load lock chamber near the factory interface 1 1 〇 15 1283743. The load lock chamber 160 preferably includes one or more straight, environmentally isolated substrate transfer chambers that can be individually pumped to maintain vacuum and open to create ambient conditions for one or more vertical stacks in the transfer chamber. And each of the environmentally isolated transfer chambers has one or more inlet/outlet slots to allow the substrate to pass therethrough. These settings 140A, 140B allow the substrate 106 to detect substrate damage and/or substrate misalignment prior to entering the load lock chamber for transfer to the transfer chamber 120 and processing. The sensors 1 4 0 A and 1 4 〇B are separated so that the substrate passes through the substrate when the substrate is transported into and out of the slot of the load lock chamber 16 6 and passes through the device. The edge. These separate sensor settings can be applied to any size of the load lock chamber i 6 具有 having any slot. Figures 3A and 3B show an enlarged cross-sectional side view of the sensor 1 4 〇 a, in the arrangement, along line 3-3. Each of the senses 140A, 140B and the corresponding reflectors i42A, 142B typically secure the outer ι 62, ι 72 of the load lock chambers 160, 170, using a fixed shoulder such as a bracket (as sensed in Figure 5) The bracket 54 is coupled to the bracket 5 4 2 or the frame to secure the sensor/reflector to the fixture. In the example illustrated in Figure 3A, the sensors ι4〇Α, 14〇B are above the three slots ι64, ι66, ι68 of the load lock chamber 160, corresponding to the reflectors 1 4 2 A, 14 2 B is a load lock chamber 丨6 that has three slots below the three slots. It can contain one or more environmental compartments, such as a three-slot single-slot load lock chamber (as shown in Figure 3A: Field J is placed in the ground. There are ~ 1 1 6 〇 损 , , , , 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 16

單層之三槽孔負載閉鎖室、三個具有單槽孔之垂直堆疊負 載閉鎖室、或其他負載閉鎖室之組合。同樣地,在另一實 例中,第3 B圖繪示設置在四槽孔負載閉鎖室1 7 0附近之 感測器140A、140B的側視圖。感測器140A、140B係嵌 在負載閉鎖室170之四個槽孔174、176、178、180下方, 以及相對應之反射器 142A、142B係安置在四個槽孔上 方。具有四個槽孔之負載閉鎖室1 70可包含一或多個環境 隔離之腔體,例如雙層雙槽孔負載閉鎖室(DDSL )、四層 單槽孔負載閉鎖室、單層四槽孔負載閉鎖室、四個具有單 槽孔之垂直堆疊負載閉鎖室、或其他負載閉鎖室之組合。 如第3 A圖與第3B圖所示,感測器140A、140B可固定在 負載閉鎖室160、170之上方或下方。 第3A圖與第3B圖中,每個感測器140A、140B與相 對應之反射器142A、142B可一起運作,如第2圖所示; 然而因為在工廠界面側沒有環境供給,因此不需要視窗以 環境隔離感測器。如此一來,由感測器140A (或140B ) 之發送器所發射的光束沿著路徑(以虛線標示)行經至相 對應的反射器142A (或142B)處,且由反射器142A處反 射沿著另一個路徑(亦標示為虛線;路徑的真正分隔在此 圖中無法識別)到達感測器1 40A (或1 40B )之接收器處。 在操作上,當基材106通過由一組感測器140A、140B 所發射之光束時,基材損毀與基材調準度可加以偵測,其 中感測器設置在傳送室1 2 0中接近製程腔體1 5 0或負載閉 鎖室160之端口附近,如第4A圖至第4E圖所示。接近基 17 1283743 材1 06之邊緣的虛線表示接近基材邊緣之路徑,其中移動 之玻璃基材係通過由位於基材下方之感測器l4〇A、MOB 所發射的光束。 第4A圖繪示無缺陷(即,無缺口或破裂)基材1〇6 之上視圖’此基材在末端效應器134上以合適之調準度而 加以傳送。在感測基材400A、400B之前,每個感測器 140A、140B之接收器148偵測由位於基材上方相對應之 反射器142A、142B (未顯示)所反射的完整光束訊號。 當基材106進入(即,打斷)在點4〇2a、4〇2B處的光束 路徑時,由於在基材106的玻璃/空氣界面處之訊號損失, 所以由接收器148所接受的光束訊號4〇3A、403B減少, 此顯示基材1 0 6之存在。當基材1 〇 6持續沿著基材1 〇 6之 長度而橫越光束(以虛線表示)時,光束訊號405A、405B 維持弱的狀態。當基材4 0 6 A、4 0 6 B之末端剛越過光束時, 光束訊號407A、407B增回其原本未受阻斷時的完整光束 訊號409A、409B。同樣地,當無缺陷基材在末端效應器 上以合適對準狀態由製程腔體15〇(或負載閉鎖室16〇)被 傳送出時’可獲得類似的訊號,因為基材首先進入點 406A、406B處之光束路徑且離開點4〇2A、402B處之光束- 即,以前述之方式逆向行進。 參照第4B圖、第4C圖與第4D圖,當基材1〇6通過 由一組感測器140A、140B所發射的光束時,可偵測基材 損毀。第4B圖繪示在接近基材邊緣有邊緣缺口之基材1〇6 的上視圖,此基材在末端效應器丨3 4上以合適之對準度被 18 1283743 傳送。在感測基材4 Ο 0 A、4 Ο Ο B之前,每個感測器1 4 0 A、 14OB之接收器148偵測到完整光束訊號401A、40 1B。當 基材進入點402A、402B處的光束路徑時,由接收器148 所接受的光束訊號403 A、403B減少,此係可顯示基材ι〇6 之存在。當基材1 06持續沿著基材丨〇6之長度而橫越光束 (以虛線表示)時,光束訊號4 0 5 A、4 0 5 B維持弱的狀態。 然而,當基材缺口 4 1 0B之前端進入光束路徑時,訊號增 加至未受阻斷時的完整光束訊號411b且持續於缺口 412B 之整個長度上偵測到基材4 1 3B係不存在。當基材缺口 414B之末端通過光束時,光束訊號415B再次減少,顯示 基材再次存在直到基材406B之終端通過光束。 第4C圖%不在接近基材邊緣有破裂之基材1〇6的上 視圖,此基材在末端效應器丨34上以合適之對準度被傳 迗。在感測基材之前,每個感測器14〇A、14〇B之接收器 "8偵測到完整光束訊號4〇lA、4〇ib。當基材進入點 〇2A 4〇2B的光束路徑時,由接收器148所接受的光束 訊號403A、403b減少,此係顯示基材ι〇6之存在。在基 寺、‘ /σ著基材之長度而橫越光束時,光束訊號405A、 、〇5B、准持弱的狀態。然而,當基材破裂420B之前頭進入 光束路瓜時,訊號增加至未受阻斷時的完整光束訊號々Η b 且持2而在整個破裂長度422B上偵測到基材423B之不存A single-layer three-slot load lock chamber, three vertical stack load lock chambers with single slot holes, or a combination of other load lock chambers. Similarly, in another example, Figure 3B depicts a side view of the sensors 140A, 140B disposed adjacent the four-slot load lock chamber 170. The sensors 140A, 140B are embedded beneath the four slots 174, 176, 178, 180 of the load lock chamber 170, and the corresponding reflectors 142A, 142B are disposed above the four slots. The load lock chamber 1 70 having four slots may include one or more environmentally isolated chambers, such as a double layer dual slot load lock chamber (DDSL), a four layer single slot load lock chamber, and a single layer four slot A combination of a load lockout chamber, four vertically stacked load lock chambers with a single slot, or other load lockout chambers. As shown in Figures 3A and 3B, the sensors 140A, 140B can be secured above or below the load lock chambers 160, 170. In FIGS. 3A and 3B, each of the sensors 140A, 140B and the corresponding reflectors 142A, 142B can operate together as shown in FIG. 2; however, since there is no environmental supply on the factory interface side, it is not required The window is an environmentally isolated sensor. As such, the beam emitted by the transmitter of sensor 140A (or 140B) travels along the path (indicated by the dashed line) to the corresponding reflector 142A (or 142B) and is reflected by reflector 142A. Another path (also labeled as a dashed line; the true separation of the path is not recognized in this figure) reaches the receiver of sensor 1 40A (or 1 40B). In operation, when the substrate 106 passes the light beam emitted by the set of sensors 140A, 140B, the substrate damage and substrate alignment can be detected, wherein the sensor is disposed in the transfer chamber 1 2 0 Near the port of the process chamber 150 or the load lock chamber 160, as shown in Figures 4A-4E. A dashed line near the edge of the base 17 1283743 material 106 indicates a path near the edge of the substrate, wherein the moving glass substrate passes through a beam of light emitted by the sensors l4A, MOB located below the substrate. Figure 4A depicts a top view of the substrate 1〇6 without defects (i.e., no gaps or cracks). This substrate is transferred on the end effector 134 with a suitable degree of alignment. Prior to sensing the substrates 400A, 400B, the receiver 148 of each of the sensors 140A, 140B detects the complete beam signal reflected by the corresponding reflectors 142A, 142B (not shown) located above the substrate. When the substrate 106 enters (i.e., breaks) the beam path at points 4〇2a, 4〇2B, the beam received by the receiver 148 is lost due to signal loss at the glass/air interface of the substrate 106. The signal 4〇3A, 403B is reduced, which indicates the presence of the substrate 106. When the substrate 1 〇 6 continues to traverse the beam (indicated by the dashed line) along the length of the substrate 1 〇 6, the beam signals 405A, 405B remain weak. When the end of the substrate 4 0 6 A, 4 0 6 B has just passed the beam, the beam signals 407A, 407B are added back to their intact beam signals 409A, 409B when they were not blocked. Similarly, a similar signal can be obtained when the defect-free substrate is transported out of the process chamber 15 (or load lock chamber 16) in a suitable alignment state on the end effector because the substrate first enters point 406A. The beam path at 406B and leaving the beam at points 4〇2A, 402B - that is, traveling in the reverse direction as described above. Referring to Figures 4B, 4C, and 4D, when the substrate 1〇6 passes the light beam emitted by the set of sensors 140A, 140B, the substrate can be detected to be damaged. Figure 4B is a top view of the substrate 1 〇 6 with edge nicks near the edge of the substrate, which is conveyed on the end effector 丨 34 by a suitable alignment of 18 1283743. The receiver 148 of each of the sensors 1 40 A, 14OB detects the complete beam signal 401A, 40 1B before sensing the substrate 4 Ο 0 A, 4 Ο Ο B. As the substrate enters the beam path at points 402A, 402B, the beam signals 403 A, 403B received by the receiver 148 are reduced, which indicates the presence of substrate ι6. When the substrate 106 continues to traverse the beam (indicated by the dashed line) along the length of the substrate 丨〇6, the beam signals 4 0 5 A, 4 0 5 B remain weak. However, when the front end of the substrate notch 4 10 B enters the beam path, the signal is increased to the uncompleted beam signal 411b and the substrate 4 1 3B is detected to be absent throughout the length of the gap 412B. When the end of the substrate notch 414B passes the beam, the beam signal 415B is again reduced, indicating that the substrate is again present until the end of the substrate 406B passes the beam. The 4C figure % is not in the upper view of the substrate 1 〇 6 which is ruptured near the edge of the substrate, and the substrate is transferred at the end effector 丨 34 with a suitable degree of alignment. The receiver "8 of each sensor 14A, 14〇B detects the complete beam signal 4〇lA, 4〇ib before sensing the substrate. When the substrate enters the beam path of point A2A 4〇2B, the beam signals 403A, 403b received by the receiver 148 are reduced, which indicates the presence of the substrate ι6. When the light beam is traversed in the base temple and _σ is the length of the substrate, the beam signals 405A, 〇5B are in a state of being weak. However, when the head enters the beam path before the substrate breaks 420B, the signal increases to the uncompleted beam signal 々Η b and holds 2, and the substrate 423B is not detected over the entire rupture length 422B.

在Y當基材破裂424B之末端通過光束時,光束訊號425B 再人減夕,顯不基材再次存在直到基材4〇6B之終端通過 光束。 19 1283743When Y passes the beam at the end of the substrate rupture 424B, the beam signal 425B is again reduced, and the substrate is no longer present until the end of the substrate 4 〇 6B passes the beam. 19 1283743

第4D圖繪示接近基材邊緣處有角落邊緣缺口之基材 1 〇 6的上視圖,此基材在末端效應器1 3 4上以合適之對準 度被傳送。在感測基材 400A、400B之前,每個感測器 140A、140B之接收器148偵測由位於基材下方相對應之 反射器142A、142B (未顯示)所反射的完整光束訊號 401 A、42 9B。當基材進入點402A處之感測器1 4〇A的光 束路徑時,光束訊號4 0 3 A減少,此顯示基材1 0 6之存在; 然而,同時,在點43 0B處之感測器140B之光束路徑維持 未受阻斷時的狀態,此係因為角落缺口之存在且訊號429b 維持高的狀態。當來自感測器140B之光束橫越角落缺口 之長度43 2B時,未受阻斷之完整訊號42 9B持續。達到缺 口 4 3 4 B之末端時,在點4 3 5 B處之訊號減少,此係顯示基 材再次存在,直到基材406B之終端通過光束。由於基材 缺口,相較於感測器140A所偵測之基材405A的長度,感Figure 4D shows a top view of the substrate 1 〇 6 near the edge of the substrate with a corner edge notch that is transferred at the appropriate effect on the end effector 134. Prior to sensing the substrates 400A, 400B, the receiver 148 of each of the sensors 140A, 140B detects the complete beam signal 401 A reflected by the corresponding reflectors 142A, 142B (not shown) located below the substrate, 42 9B. When the substrate enters the beam path of the sensor 1 4A at point 402A, the beam signal 4 0 3 A decreases, which indicates the presence of the substrate 106; however, at the same time, the sensing at point 43 0B The beam path of the device 140B maintains the unblocked state due to the presence of a corner notch and the signal 429b remains high. When the beam from sensor 140B traverses the length 43 2B of the corner notch, the unblocked full signal 42 9B continues. When the end of the gap 4 3 4 B is reached, the signal at point 4 3 5 B is reduced, which indicates that the substrate is again present until the end of substrate 406B passes the beam. Due to the substrate gap, compared to the length of the substrate 405A detected by the sensor 140A, the sense

測器1 4 0 B偵測到較短長度之基材4 3 7 B。由感測器1 4 〇 B 所偵測之基材長度係縮短了長度43 2B,此在基材1 〇6在點 4 3 5 B處被偵測前產生延遲4 3 3 B。 第4E圖繪示在末端效應器1 3 4上以偏位狀態被傳送 之基材1 0 6的上視圖。在感測基材4 4 2 A、4 4 2 B之前,每 個感測器1 4 0、1 4 0之接收器1 4 8偵測由位於基材下方相對 應之反射器1 4 2 A、1 4 2 B (未顯示)所反射的完整光束訊 號443A、443B。當基材進入點444A處之感測器140A的 光束路徑時,由相對應之反射器1 4 8所接收的光束訊號 445A減少,此係顯示基材1 〇6之存在;然而,同時因為位 20 1283743 置偏移(即,偏位)’使得感測器1 40B之光束路徑維持未 受阻斷狀態一段額外長度444B。當光束橫越偏位444b之 長度時,未受阻斷之完整訊號444B持續。當基材打破在 點446B處之感測器140B之光束路徑時,訊號447b係減 少,此顯示出基材106存在。之後,在點448A處,感測 器140A之光束路徑偵測到基材之末端,以及相對應之接 收器148增加至元整長度449A’而感測器140B之光束路 徑持續偵測基材之存在’直到在點4 5 0B處出現基材末端, 此時在此處之訊號4 5 1 B係增加至其原本未受阻斷時的完 整光束訊號45 3B。因為偏位,感測器ι4〇Α與ι4〇Β偵測 較短之基材長度447A、449B。由感測器14〇a所偵測之基 材長度係減短了距離4 5 0 A,而相較於合適對準之基材,上 述情況造成在點449A處之訊號提早增加。同樣地,由感 測器1 4 0 B所彳貞測之基材1 0 6長度係減短了距離4 4 4 B,此 使基材在點4 4 7 B處被偵測以前係產生延遲。 在基材被支撐且在雙臂機械手臂上被傳送時,本發明 之感測裔設置有利於偵測基材之損毁(例如,缺口或破裂) 與偏位。使用雙臂機械手臂以增加製程系統的產量。另一 個亦可增加產量之優點在於,即使基材在機械手臂的末端 效應器上以高傳送速率(如,1000毫米/秒)時,使用本 發明之感測器設置可偵測基材在移動中的偏位與損毁。而 本發明另一個優點為,僅需要兩個感測器以偵測基材之損 毀與偏位。最後,本發明另一個優點為:當基材移‘動超過 感測器時,本發明能夠偵測基材沿著整個基材長度之偏位 21 1283743 與損毁。再者,基材偏位與損毁之 傳送操作過程中(即,原處) ,、可在一般機械手臂 订,此彳真承μ 少為了感測基材所需之額外機械移動I ”·使得本發明減 移動(包含停止與開始以提供固定美=甚至不需要此機械 本發明之一優點在於當基材 移動時,可偵測基材損毀與偏位。甚至以高傳送速率 基材係較佳地以大約100毫米,4測缺陷的過程中, 率移動(即,在機械手臂之末端效應^米/秒的傳送速 LED或雷“統加則貞測之小型基^上被傳送)。可由 度的基材偏位係視當光束照射在;材^、破裂或最小程 之發射本击^ , / T衣面之頂部或底部時 <七射先束的大小(即,點大小 速度而宕 一傻)以及基材之傳送 ㈣言’發射光束的直徑越小,則可横測之 缺陷圖案越好或越小。例如,人滴“ 貝旧,則之 有直# ^ 例 適的雷射感測器可發射具 有直徑大約〇 5毫米至大約3毫 了佶、丨 ”之每射光束。然而,為 了偵测大小約為1毫米( 或 大於約1耄米)之基材缺口 ::如,照射基材表面的雷射光束的直徑係較佳地 離内、毛米。因此,基材係設置在特定感測器之工作距 小2,以確保在基材表面頂部或底部之發射光束直徑係夠 以偵測最小尺寸的基材缺口、破裂或需要被偵測的偏位。 、可利用雷射系統加以偵測之缺陷大小亦受基材之傳送 速率所旦《鄕 ^ ν 9 ’此係因為當基材在機械手臂的末端效應器上 被傳送時,其u I 4心 土材9感雙震動。一般而言,傳送速率或基材 速^率越体Η主 ^ LL· K寻,基材感受的震動越大。震動容易造成基材邊 緣向上^ ^ α下移動。因此設置感測器,使得照射在移動基 22 1283743The detector 1 4 0 B detects a shorter length of the substrate 4 3 7 B. The length of the substrate detected by the sensor 1 4 〇 B is shortened by a length of 43 2B, which produces a delay of 4 3 3 B before the substrate 1 〇 6 is detected at point 4 3 5 B. Fig. 4E is a top view of the substrate 106 which is transported in a biased state on the end effector 134. Before sensing the substrate 4 4 2 A, 4 4 2 B, the receivers 1 4 0 of each of the sensors 1 400 and 1 4 are detected by the corresponding reflector 1 4 2 A located under the substrate. , 1 4 2 B (not shown) reflected by the complete beam signal 443A, 443B. When the substrate enters the beam path of the sensor 140A at the point 444A, the beam signal 445A received by the corresponding reflector 148 is reduced, which indicates the presence of the substrate 1 ; 6; however, because of the bit 20 1283743 Offset (i.e., offset) is such that the beam path of sensor 1 40B remains unblocked for an additional length 444B. When the beam traverses the length of the offset 444b, the unblocked full signal 444B continues. When the substrate breaks the beam path of the sensor 140B at point 446B, the signal 447b is reduced, indicating the presence of the substrate 106. Thereafter, at point 448A, the beam path of the sensor 140A detects the end of the substrate, and the corresponding receiver 148 is increased to the full length 449A' and the beam path of the sensor 140B continues to detect the substrate. There is 'until the end of the substrate appears at point 45 0B, where the signal 4 5 1 B here is increased to the full beam signal 45 3B when it was originally unblocked. Because of the misalignment, the sensors ι4〇Α and ι4〇Β detect shorter substrate lengths 447A, 449B. The length of the substrate detected by sensor 14A is reduced by a distance of 4500 amps, which causes an early increase in the signal at point 449A as compared to a suitably aligned substrate. Similarly, the length of the substrate 106 measured by the sensor 1 400 B is reduced by a distance of 4 4 4 B, which causes the substrate to be delayed before being detected at point 4 4 7 B. . The sensory setting of the present invention facilitates detection of damage (e.g., nicks or ruptures) and misalignment of the substrate when the substrate is supported and transported on the dual arm robot. Use a dual arm robot to increase the throughput of the process system. Another advantage that can also increase throughput is that the substrate can be detected to be moved using the sensor arrangement of the present invention even when the substrate is at a high transfer rate (e.g., 1000 mm/sec) on the end effector of the robot arm. Deviation and damage in the middle. Yet another advantage of the present invention is that only two sensors are needed to detect damage and misalignment of the substrate. Finally, another advantage of the present invention is that the present invention is capable of detecting the offset of the substrate along the entire length of the substrate 21 1283743 and damage when the substrate is moved over the sensor. Furthermore, during the transfer operation of the substrate misalignment and damage (ie, in situ), it can be ordered in a general mechanical arm, which is less than the additional mechanical movement required to sense the substrate. The invention reduces movement (including stopping and starting to provide a fixed beauty = even without the need for such a machine. One of the advantages of the present invention is that when the substrate is moved, the damage and offset of the substrate can be detected. Even at a high transfer rate, the substrate is compared. The good ground is moved at a rate of approximately 100 mm, 4 in the process of measuring defects (ie, at the end of the robot arm effect ^ m / s of the transmission speed LED or Ray "can be transmitted on the small base ^ measured] The degree of substrate bias is determined by the size of the beam when the beam is irradiated, the rupture or the minimum of the emission, or the top or bottom of the surface.宕 傻 傻 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) The sensor can emit from about 毫米5 mm to about 3 mm in diameter. Each beam of light is 。". However, in order to detect a substrate gap of about 1 mm (or more than about 1 mm): for example, the diameter of the laser beam illuminating the surface of the substrate is preferably from the inside, Maize. Therefore, the substrate is placed at a specific sensor with a small working distance of 2 to ensure that the emission beam diameter at the top or bottom of the substrate surface is sufficient to detect the smallest size of the substrate gap, crack or need to be detected. The measured offset is also the size of the defect that can be detected by the laser system. The transmission rate of the substrate is also "鄕^ ν 9 ' because when the substrate is transferred on the end effector of the robot arm, Its u I 4 heart soil material 9 double shock. In general, the transfer rate or the substrate speed rate is more Η Η Η , , , , , , , , , , , , , , , , , , , , , , , , , , 基材 基材 基材 基材 基材^ α moves down. So set the sensor so that the illumination is on the mobile base 22 1283743

材之頂表面與底表面上的發射光束在距離基材邊緣向内之 標稱距離上。否則,在震動基材之極邊緣處的光束在基材 邊緣因震動而移入與移出光束時,總是感測到基材之不存 在。因此,基材震動越大,入射光束被導至距基材邊緣向 内之距離越遠。以具有直徑大約0.5毫米至大約3毫米間 的發射光束之雷射感測器以及以大約 1 〇 〇毫米/秒至大約 2 0 00毫米/秒之傳送速率移動的基材為例,雷射光束可加 以引導,使得照射在基材頂(或底)表面上的光束係距離 基材邊緣大約1毫米至大約1 0毫米内的距離上。 實例: 在一實例中,當支撐在雙臂機械手臂的末端效應器上 之基材通過兩個型號為 E3C-LR11之 Omron®雷射感測器 時,此等雷射感測器係用以感測基材沿著其兩個平行邊緣 之移動,且此等雷射感測器具有小於約0.8毫米光束直徑 且位於大約1 000毫米工作距離(即,小於大約40英吋之 工作距離)。當基材傳送速度大約為1 0 0 0毫米/秒時,具有 大小約3毫米或更大之缺陷可被偵測。來自感測器之照射 光束的中心係位於距離基材邊緣向内約 3 毫米處的距離 上。當基材傳送速度大約為1 〇〇毫米/秒時,具有大小約1 毫米或更大之缺陷可被偵測,以及當基材傳送速度大約為 2 0 00毫米/秒時,具有大小約10毫米或更大之缺陷可被偵 測。因此,用於感測傳送速率為大約 1 0 0毫米/秒至大約 2 0 00亳米/秒之基材的兩個照射光束係較佳地設置在距離 基材邊緣向内分別為大約1毫米至大約1 0毫米處。藉由降 23 1283743 低基材速率而達成利用雷射以偵測具有小於3毫米大小的 缺陷圖案。降低基材速率可減少基材感受的震動,進而產 生較小缺陷。相反地,增加基材速率會增加基材的震動, 進而造成可偵測到的較大缺陷。 在另一實例中’當位於機械手臂之末端效應器上的基 材被傳送至三槽孔負载閉鎖室中時,使用兩個〇mr〇n(g)型號The emitted light beam on the top and bottom surfaces of the material is at a nominal distance inward from the edge of the substrate. Otherwise, the beam at the extreme edge of the vibrating substrate always senses the absence of the substrate as it moves into and out of the beam at the edge of the substrate due to vibration. Therefore, the greater the substrate vibration, the farther the incident beam is directed inward from the edge of the substrate. For example, a laser sensor having an emission beam having a diameter of about 0.5 mm to about 3 mm and a substrate moving at a transmission rate of about 1 mm/sec to about 200 mm/sec, for example, a laser beam It can be directed such that the beam of light impinging on the top (or bottom) surface of the substrate is at a distance of from about 1 mm to about 10 mm from the edge of the substrate. Example: In one example, when a substrate supported on an end effector of a dual arm robot passes two Omron® laser sensors of the type E3C-LR11, the laser sensors are used The substrate is sensed to move along its two parallel edges, and the laser sensors have a beam diameter of less than about 0.8 mm and are located at a working distance of about 1 000 mm (ie, a working distance of less than about 40 inches). When the substrate transport speed is about 1000 mm/sec, defects having a size of about 3 mm or more can be detected. The center of the beam from the sensor is located approximately 3 mm inward from the edge of the substrate. When the substrate conveyance speed is about 1 mm/sec, a defect having a size of about 1 mm or more can be detected, and when the substrate conveyance speed is about 200 mm/sec, it has a size of about 10 Defects of millimeters or more can be detected. Accordingly, the two illumination beams for sensing a substrate having a transfer rate of from about 100 mm/sec to about 200 pm/sec are preferably disposed about 1 mm inwardly from the edge of the substrate. Up to approximately 10 mm. The use of a laser to detect a defect pattern having a size of less than 3 mm is achieved by lowering the low substrate rate of 23 1283743. Reducing the substrate rate reduces the perceived vibration of the substrate, which in turn produces fewer defects. Conversely, increasing the substrate rate increases the vibration of the substrate, which in turn results in larger defects that can be detected. In another example, when the substrate on the end effector of the robot arm is transferred to the three-slot load lock chamber, two 〇mr〇n(g) models are used.

為E32-R16之LED感測器以及兩個BaUuff型號為B0S R-1 4之反射器以感測基材之兩邊緣,此係繪示於第3 a圖 中。固定在頂端槽孔處的LED感測器可發射光束,此光束 沿著光束路徑行進至位於LED感測器之工作距離内的反 射益中。基材傳送速率為大約i 〇〇〇毫米/秒時,可偵測到 傳送至每個槽孔中的基材上具有大約4英吋或更大之基材 缺口與大於或等於約2.6度之偏位。 在又另一實例中,當位於機械手臂之末端效應器上的 基材被傳送至DDSL室中時,使用兩個〇mron®型號為 E3C-LR11之雷射感測器以及兩個〇mr〇n®型號為E39-R12 之反射器以感測基材之兩邊緣,此係繪示於第3 b圖中。 固定在底部槽孔處的雷射感測器可發射光束,此光束沿著 光束路徑通過四個槽孔之每一個而進入位於雷射感測器之 工作距離内的反射器中。基材以大約1〇〇〇毫米/秒之速率 被傳送至負載閉鎖室之四個槽孔中的每一個時,可偵測到 大、力3宅米或更大之基材缺口以及大約〇18度或更大之基 材偏位。 在操作上’位於製程腔體150與負載閉鎖室160之每 24 1283743 個入口/出口端口附近 雍/5射哭、士 — 乂對感測器140Λ、140B (與相對 應反射盗)中的每一個 弋、g Λ *莽叫μ '、在基材於製程腔體内之製程前後 或通過負載閉鎖室時 ^ ^ ^ ^ .. y. 、’、彳基材損毁與偏位。關於感測基 材之彳貝毁或偏位’可鹱 ^ ^ 己輕接至感測器的控制器以啟動計 k為與即時停止有缺 ,,7 土材之動作/轉移,以便利用決定基 材指毀或偏位之原因 、彳貝毀或偏位基材送回並將缺口 / 破裂基材加以取代, 从η i ^ ^ 及修正偏位基材的調準。有時偵測 缺口基材需要打開傳详^、, .,、至U及/或製程腔體,以徹底清潔任 何由缺口產生的可能 曰沾.al # 木耳片。本發明之感測器設置可提 早偵測基材缺陷,此 寺徵將減小系統停工期並因此增加系 統1 0 0之整體產量。 如’第5圖繪示接近基材邊緣有邊 緣缺口之基材106的 上視圖,此基材在工廠界面114之末 端效應器11 8上被傳详$ $ 寻k至負载閉鎖室16〇中。接近基材邊 緣的虛線表示路徑,复中 Λ 八Y移動基材經此路徑通過由位於蜃 材106上方之感測器μ 140A ' 140B與分別對應的訊號A、βThe LED sensor of E32-R16 and two BaUuff models of B0S R-1 4 are used to sense the two edges of the substrate, which is shown in Figure 3a. An LED sensor fixed at the top slot can emit a beam that travels along the beam path to the reflection gain within the working distance of the LED sensor. When the substrate transfer rate is about i 〇〇〇 mm/sec, it can be detected that the substrate transferred to the substrate in each slot has a substrate gap of about 4 inches or more and greater than or equal to about 2.6 degrees. Offset. In yet another example, when the substrate on the end effector of the robotic arm is transferred to the DDSL chamber, two 〇mron® models of E3C-LR11 laser sensors and two 〇mr〇 are used. The n® model is an E39-R12 reflector to sense both edges of the substrate, which is shown in Figure 3b. A laser sensor fixed at the bottom slot emits a beam of light that passes through each of the four slots along the beam path into a reflector located within the working distance of the laser sensor. When the substrate is transferred to each of the four slots of the load lock chamber at a rate of about 1 mm/sec, a substrate gap of about 3 m or more and about 〇 can be detected. Substrate offset of 18 degrees or more. In operation, 'near every 24 1283743 inlet/outlet ports of the process chamber 150 and the load lock chamber 160 雍/5 shot crying, —-乂 to each of the sensors 140Λ, 140B (and corresponding reflection thieves) A 弋, g Λ * 莽 μ μ ', ^ ^ ^ ^ .. y., ', 彳 substrate damage and offset when the substrate is in the process chamber or through the load lock chamber. Regarding the mussel destruction or misalignment of the sensing substrate, the controller can be lightly connected to the sensor to start the meter k and the immediate stop is missing, 7 the action/transfer of the soil material, so as to make use of the decision The substrate refers to the cause of the destruction or deviation, the mussel destruction or the offset substrate is returned and the notch/rupture substrate is replaced, and the alignment of the offset substrate is corrected from η i ^ ^. Sometimes it is necessary to open the gap substrate to open the details, , , , , to the U and / or the process chamber to thoroughly clean any possible defects caused by the gap. The sensor arrangement of the present invention provides early detection of substrate defects, which will reduce system downtime and thus increase the overall throughput of the system 1000. As shown in Fig. 5, a top view of the substrate 106 having an edge notch near the edge of the substrate is transferred to the load lock chamber 16 at the end effector 11 of the factory interface 114. . The dashed line near the edge of the substrate indicates the path through which the intermediate Λ8Y moving substrate passes through the sensors μ 140A ' 140B located above the dam 106 and the corresponding signals A, β, respectively.

所發射的光束。在點5l〇A感測基材缺口時,對應訊號511八 增加且控制器立即停止末端效應^ ιΐ8前進至負載閉鎖爹 160中。接著評估具缺口基材以決定是否需要進一步處癯 基材106。 雖然偵測基材損毁與偏位之範例中使用至少兩個感測 器140A、140B以偵測基材在接近其邊緣之整個長度,炎 提供有關缺口長度以及/或偏位程度的資訊,但是額外感測 益可加以利用以感測基材1 〇 6之内部長度以提供其他貨 訊。例如,設置在感測器140A與140B之間的額外感測器 25The beam emitted. When point 5l 〇A senses the substrate gap, the corresponding signal 511 is increased and the controller immediately stops the end effect ^ ΐ 8 from advancing into the load lock 爹 160. The notched substrate is then evaluated to determine if further substrate 106 is needed. While at least two sensors 140A, 140B are used in the example of detecting substrate damage and misalignment to detect the entire length of the substrate near its edge, inflammation provides information about the length of the gap and/or the degree of offset, but Additional sensing benefits can be utilized to sense the internal length of substrate 1 〇 6 to provide additional information. For example, an additional sensor 25 disposed between sensors 140A and 140B

1283743 可以提供額外資訊,例如基材缺口之大小(如,缺 際深度或寬度)或偏位程度(如,調準時偏移的程2 者,額外的成對感測器140A、140B可設置在製程系 中的其他位置上,可利用在這些位置上的感測器 1 40B以在任何時間感測單一基材。感測器可固定在 統之任何内部以及/或外部表面上且位於移動基材J: 下方)。因此,接近傳送室120之每個端口處可有兩 的視窗。例如,為了引導由感測器140A、140B所 橫越移動基材之基材至少兩邊緣附近的光束,底座 具有任意數量的視窗以容納額外感測器以及/或容 感測不同尺寸基材之不同且分隔設置的感測器 1 40B 〇或者,不使用鄰近腔體附近端口的複數個視1 反而使用相當於安裝在底座122上之端口長度的單 視窗-例如,長矩形視窗,使得複數個固定在單一長 之外部附近的感測器可感測通過的基材。最後,<貞 損毁與偏位之實例係闡述於製程系統1 00的範例中 此範例僅為其中一個實例,且此方法可使用於偵測 材之損毁或偏位。 雖然前文已闡述本發明之具體實施例,在不脫 明之基本精神與範圍下,當可設計出本發明之其他 施例,且本發明之範圍係由後附之申請專利範圍所 【圖式簡單說明】 本發明以上所列舉之特徵,已在上述之說明文 口的實 曼)。再 統100 140A、 製程系 L方(或 個以上 發射並 122可 納用於 140A、 | 128, 一長型 型視窗 測基材 ,然而 移動基 離本發 具體實 界定。 字中輔 261283743 can provide additional information, such as the size of the substrate notch (eg, depth or width of the defect) or the degree of deviation (eg, the process of offset 2, additional pairs of sensors 140A, 140B can be placed in At other locations in the process system, sensors 1 40B at these locations can be utilized to sense a single substrate at any time. The sensor can be attached to any internal and/or external surface of the system and located at the mobile base. Material J: below). Therefore, there are two windows near each port of the transfer chamber 120. For example, to guide the beam of light near at least two edges of the substrate that is moved across the substrate by the sensors 140A, 140B, the base has any number of windows to accommodate additional sensors and/or to sense substrates of different sizes. The differently and separately disposed sensors 1 40B or, instead of using a plurality of views 1 adjacent to the ports in the vicinity of the cavity, use a single window equivalent to the length of the port mounted on the base 122 - for example, a long rectangular window, such that a plurality of A sensor mounted near the exterior of a single length senses the substrate that passes through. Finally, <贞 examples of damage and offset are described in the example of process system 100. This example is only one example, and this method can be used to detect damage or misalignment of the material. While the invention has been described in detail with reference to the embodiments of the present invention, the embodiments of the invention may be devised, and the scope of the invention is defined by the appended claims. Description of the Invention The features enumerated above in the present invention have been described in the above description. Re- ing 100 140A, process L-way (or more than 122 can be used for 140A, | 128, a long type of window measuring substrate, however, the mobile base is specifically defined by this issue.

1283743 以圖式做更詳細與更特定之闡述。然而需注意的是本發 附加之圖式僅為代表性實施例,並非用以限定本發明之 圍,其他等效之實施例仍應包含在本發明之範圍中。 第1圖為製程系統實施例之平面圖,其包含根據本 明實施例所設置的感測器; 第2圖為製程系統之放大的部分剖面圖,其繪示接 製程腔體之入口 /出口端口處的感測器設置,此設置係用 偵測基材在腔體中製程前後的損毀與偏位; 第3 A圖與第3 B圖係為第1圖之製程系統中沿著 3-3斷面之放大的部分剖面圖,其繪示在工廠界面之周 環境中的感測器設置,其中第3 A圖顯示靠近三槽孔負 閉鎖室之感測器設置,其用以偵測基材損毁與基材轉移 出三個槽孔時的偏位,以及第3 B圖繪示靠近四槽孔負 閉鎖室之感測器設置; 第4A圖至第4E圖係為基材在兩個感測器上移動與 應之感測訊號之上視圖,其中第4A圖繪示正確調準、 缺陷的基材,第4B與第4D圖繪示具缺口之基材,第 圖繪示破裂基材,以及第4E圖繪示偏位之基材;以及 第5圖係為在工廠界面機械手臂葉片上被轉移之基 通過固定在負載閉鎖室外部之感測器下方以及相應之感 訊號的上視圖。 【主要元件符號說明】 100 製程系統 106 基材 明 範 發 近 以 線 圍 載 進 載 對 零 4C 材 測 27 12837431283743 Make more detailed and specific explanations in the schema. It is to be noted that the appended drawings are only representative of the embodiments and are not intended to limit the scope of the invention, and other equivalent embodiments are intended to be included within the scope of the invention. 1 is a plan view of an embodiment of a process system including a sensor disposed in accordance with an embodiment of the present invention; and FIG. 2 is an enlarged partial cross-sectional view of the process system showing the inlet/outlet port of the process cavity The sensor setting is used to detect the damage and offset of the substrate before and after the process in the cavity; the 3A and 3B are the 3-3 process system along the 3-3 An enlarged partial cross-sectional view of the section showing the sensor settings in the ambient environment of the factory interface, wherein Figure 3A shows the sensor arrangement near the three-slot negative lock chamber for detecting the base Material damage and offset when the substrate is transferred out of the three slots, and Figure 3B shows the sensor arrangement close to the four-slot negative lock chamber; Figures 4A to 4E show the substrate in two Above view of the sensor and the sensing signal, wherein FIG. 4A shows the substrate with correct alignment and defects, and FIGS. 4B and 4D show the substrate with the notch, and the figure shows the fracture base. Material, and Figure 4E shows the offset substrate; and Figure 5 is transferred on the factory interface robot blade Fixed to the external view of the load lock chamber beneath the sensor and a corresponding sense signal through. [Main component symbol description] 100 Process system 106 Substrate Mingfan is near-line loading load-to-zero 4C material measurement 27 1283743

110 工廠界面 114 大氣機械手臂 118 葉片 124 傳送室側壁 128 視窗 140A、140B 感測器 144 發送器 148 接收器 164 、 166 、 168 、 174 、 176 160、170 負載閉鎖室 401 A、401B、403 A、403B、 束訊號 422B 破裂 542 反射器托架 112 基材儲存晶圓匣 116 隔間 120 傳送室 126 傳送室頂蓋 134 末端效應器 142A、142B 反射器 146 、 147 光束 15 0 製程腔體 178 > 180 槽孔 412B 缺口 405 A、405B、407A、407B 光 540 感測器托架110 Factory Interface 114 Atmospheric Manipulator 118 Blade 124 Transfer Chamber Side Wall 128 Window 140A, 140B Sensor 144 Transmitter 148 Receiver 164, 166, 168, 174, 176 160, 170 Load Locking Chamber 401 A, 401B, 403 A, 403B, beam signal 422B rupture 542 reflector bracket 112 substrate storage wafer 匣 116 compartment 120 transfer chamber 126 transfer chamber top cover 134 end effector 142A, 142B reflector 146, 147 beam 15 0 process chamber 178 > 180 slot 412B notch 405 A, 405B, 407A, 407B light 540 sensor bracket

2828

Claims (1)

1283743 拾、申請專利範圍: 1. 一種用於偵測基材缺陷之設備,至少包含:一第一感測 器;以及一第二感測器,其中當一基材通過該第一與第 二感測器時,該第一感測器偵測該基材在接近該基材之 一第一邊緣,而該第二感測器偵測該基材在接近與該基 材之該第一邊緣平行之一第二邊緣。1283743 Picking up, claiming patent range: 1. A device for detecting defects of a substrate, comprising at least: a first sensor; and a second sensor, wherein when a substrate passes the first and second In the sensor, the first sensor detects that the substrate is near a first edge of the substrate, and the second sensor detects that the substrate is near the first edge of the substrate Parallel to one of the second edges. 2 ·如申請專利範圍第1項所述之設備,其中該第一與第二 感測器係位於一腔體之一通道附近,使得該基材在進入 該腔體之該通道前,該第一與該第二感測器中每一個可 偵測該基材之一邊緣部分,或在該基材離開該腔體之該 通道後,該第一與該第二感測器中每一個可偵測該基材 之一邊緣部分。. 3.如申請專利範圍第1項所述之設備,另包含複數個視 窗,其中該第一與該第二感測器中每一個係固定在一視 窗之一外部上或接近該視窗之該外部,使得該第一與該 第二感測器中每一個之一感測機構可it過該視窗。 4.如申請專利範圍第1項所述之設備,另包含一機械手 臂,其具有一第一臂,連接至一末端效應器上以支撐該 基材並傳送該基材通過每個該第一與該第二感測器之 一感測機構;以及一第二臂,連接至另一末端效應器上 292. The device of claim 1, wherein the first and second sensors are located adjacent one of the channels of the cavity such that the substrate is in front of the channel entering the cavity, the first And each of the second sensors can detect an edge portion of the substrate, or after the substrate leaves the channel of the cavity, each of the first and second sensors can A portion of the edge of the substrate is detected. 3. The device of claim 1, further comprising a plurality of windows, wherein each of the first and second sensors is attached to or adjacent to one of the windows Externally, the sensing mechanism of each of the first and second sensors can be passed through the window. 4. The apparatus of claim 1, further comprising a robot arm having a first arm coupled to an end effector to support the substrate and transport the substrate through each of the first And a sensing mechanism of the second sensor; and a second arm connected to the other end effector 29 1283743 以同時支撐並移動另一基材。 5 .如申請專利範圍第1項所述之設備,另包含至少一 效應器,其用以支撐該基材並傳送該基材通過每個 一與該第二感測器之一感測機構。 6.如申請專利範圍第1項所述之設備,其中每個該第 該第二感測器包含一發送器與一接收器,其位於該 之一邊緣下方;以及一對應之反射器,其位於該基 該邊緣上方,使得一共同垂直之平面與該發送器、 收器以及該對應之反射器相交。 7.如申請專利範圍第6項所述之設備,其中該發送器 一雷射或一發光二極體。 8 .如申請專利範圍第6項所述之設備,其中該發送器 一雷射,用以發射一雷射光束,當該雷射光束照射 基材之一頂表面或一底表面上時,該雷射光束具有 約3毫米之直徑。 9 ·如申請專利範圍第8項所述之設備,其中當該雷射 照射在該基材之一頂表面或一底表面上時,該雷射 具有小於約1毫米之直徑。 末端 該第 一與 基材 材之 該接 係為 係為 在該 小於 光束 光束 301283743 to support and move another substrate at the same time. 5. The apparatus of claim 1, further comprising at least one effector for supporting the substrate and transporting the substrate through each of the sensing mechanisms of the second sensor. 6. The device of claim 1, wherein each of the second sensors comprises a transmitter and a receiver located below the edge of the one; and a corresponding reflector, Located above the edge of the base such that a common vertical plane intersects the transmitter, the receiver, and the corresponding reflector. 7. The device of claim 6, wherein the transmitter is a laser or a light emitting diode. 8. The apparatus of claim 6, wherein the transmitter has a laser for emitting a laser beam, and when the laser beam illuminates a top surface or a bottom surface of the substrate, The laser beam has a diameter of about 3 mm. 9. The apparatus of claim 8 wherein the laser has a diameter of less than about 1 mm when the laser is incident on a top surface or a bottom surface of the substrate. The end of the first contact with the substrate is such that the beam is less than 30 1283743 1 ο. —種用以偵測基材缺陷之設備,至少包含: 一機械手臂,具有至少一基材支持表面,用以支 - 一基材於其上;以及 - 一感測設置,包含一第一感測器,其位於適當位 以當基材在至少一基材支持表面上被傳送時,其可偵 該基材於接近該基材之一第一邊緣;以及一第二感 Φ 器,其位於適當位置以當基材在至少一基材支持表面 被傳送時,可偵測該基材於接近與該基材之第一邊緣 行之一第二邊緣。 1 1.如申請專利範圍第1 0項所述之設備,其中該第一與 第二感測器係位於一腔體之一通道附近,使得該基材 進入該腔體之該通道前,每個該第一與該第二感測器 偵測該基材之一邊緣部分,或在該基材離開該腔體之 通道後,每個該第一與該第二感測器可偵測該基材之 邊緣部分。 1 2.如申請專利範圍第1 0項所述之設備,其中該感測器 置另包含複數個視窗,其中每個該第一與該第二感測 係固定在一視窗之一外部上或接近該視窗之該外部, 得每個該第一與該第二感測器之一感測機構可通過 撐 置 測 測 上 平 該 在 可 該 設 器 使 該 31 1283743 視窗。 1 3 .如申請專利範圍第1 0項所述之設備,其中該機械手 另包含一第一臂,其連接至一末端效應器上以支樓該 材並傳送該基材通過每個該第一與該第二感測器之 感測機構;以及一第二臂,其連接至另一末端效應器 以同時支撐並移動另一基材。 臂 基 上1283743 1 ο. —A device for detecting a defect in a substrate, comprising at least: a robot arm having at least one substrate support surface for supporting a substrate thereon; and - a sensing setting, comprising a first sensor positioned in position to detect the substrate proximate to a first edge of the substrate when the substrate is transferred over the at least one substrate support surface; and a second Φ The device is positioned to detect that the substrate is adjacent to a second edge of the first edge row of the substrate when the substrate is transferred over the at least one substrate support surface. 1 1. The device of claim 10, wherein the first and second sensors are located adjacent one of the channels of the cavity such that the substrate enters the channel of the cavity, each The first and the second sensors detect an edge portion of the substrate, or after the substrate exits the channel, each of the first and second sensors can detect the edge The edge portion of the substrate. 1 2. The device of claim 10, wherein the sensor further comprises a plurality of windows, wherein each of the first and second sensing systems are attached to an exterior of one of the windows or Adjacent to the exterior of the window, each of the sensing mechanisms of the first and second sensors can be used to position the 31 1283743 window by the tiling test. The apparatus of claim 10, wherein the robot further comprises a first arm coupled to an end effector to support the material and transport the substrate through each of the first a sensing mechanism with the second sensor; and a second arm coupled to the other end effector to simultaneously support and move the other substrate. Arm base 1 4.如申請專利範圍第1 0項所述之設備,其中該至少一 材支持表面包含一末端效應器,其用以支撐該基材並 送該基材通過每個該第一與該第二感測器之一感測 構。 1 5 .如申請專利範圍第1 0項所述之設備,其中每個該第 與該第二感測器包含一發送器與一接收器,其位於該 材之一邊緣下方;以及一對應之反射器,位於該基材 該邊緣上方,使得一共同垂直之平面與該發送器、該 收器以及該對應反射器相交。 1 6.如申請專利範圍第1 5項所述之設備,其中該發送器 為一雷射或一發光二極體。 1 7.如申請專利範圍第1 5項所述之設備,其中該發送器 基 傳 機 基 之 接 係 係 32 1283743 為一雷射,用以發射一雷射光束,當該雷射光束照射在 該基材之一頂表面或一底表面上時,該雷射光束具有小 於約3毫米之直徑。 1 8.如申請專利範圍第1 7項所述之設備,其中當該雷射光 束照射在該基材之一頂表面或一底表面上時,該雷射光 束具有小於約1毫米之直徑。The apparatus of claim 10, wherein the at least one material support surface comprises an end effector for supporting the substrate and sending the substrate through each of the first and the first One of the two sensors senses the structure. The apparatus of claim 10, wherein each of the second and second sensors comprises a transmitter and a receiver located below an edge of the material; and a corresponding A reflector is positioned over the edge of the substrate such that a common vertical plane intersects the transmitter, the receiver, and the corresponding reflector. The device of claim 15, wherein the transmitter is a laser or a light emitting diode. 1 7. The device of claim 15 wherein the transmitter base transceiver system 32 1283743 is a laser for emitting a laser beam when the laser beam is illuminated. The laser beam has a diameter of less than about 3 mm when it is on one of the top or bottom surfaces of the substrate. The apparatus of claim 17, wherein the laser beam has a diameter of less than about 1 mm when the laser beam is incident on a top surface or a bottom surface of the substrate. 1 9. 一種用以偵測基材損毁與偏位之設備,至少包含: 一傳送室,具有至少一視窗; 一基材,支撐於位於該傳送室内之一末端效應器 上;以及 一感測器設置,其包含至少二個感測器固定在該至 少一視窗之一外部上或接近該至少一視窗之一外部,使 得該至少二個感測器中之每一個的一感測機構可通過 該至少一視窗,其中該至少二個感測器係用以持續感測 該基材在接近該基材之至少二平行邊緣,以在該末端效 應器移動該基材通過該至少二個感測器之該感測機構 時可偵測一基材缺口、破裂或該至少二平行邊緣之偏 位。 2 0.如申請專利範圍第19項所述之設備,其中該至少二個 感測器係位於一鄰近腔體之一通道附近,使得該基材在 331 9. An apparatus for detecting damage and misalignment of a substrate, comprising: at least one transfer chamber having at least one window; a substrate supported on an end effector located in the transfer chamber; and a sensing And a device comprising: at least two sensors fixed on or near one of the at least one window, such that a sensing mechanism of each of the at least two sensors can pass The at least one window, wherein the at least two sensors are configured to continuously sense the substrate at least two parallel edges adjacent to the substrate to move the substrate through the at least two sensing at the end effector The sensing mechanism of the device can detect a substrate gap, a crack or a deviation of the at least two parallel edges. The device of claim 19, wherein the at least two sensors are located adjacent one of the channels adjacent to the cavity such that the substrate is at 33 1283743 進入該鄰近腔體之該通道前,該至少二個感測器中 個可偵測該基材之一邊緣部分,或在該基材離開該 腔體之該通道後,該至少二個感測器中每一個可偵 基材之一邊緣部分。 2 1 .如申請專利範圍第1 9項所述之設備,其中該末端 器以大約 100毫米/秒至大約2000毫米/秒之速率 該基材通過該至少二個感測器中每一個之該感測名 22.如申請專利範圍第1 9項所述之設備,其中該至少 感測器係用以偵測大於約1毫米之一基材缺口或為 2 3.如申請專利範圍第19項所述之設備,其中該至少 感測器中每一個包含一發送器與一接收器,其位於 材之一邊緣下方;以及一對應之反射器,其位於該 之該邊緣上方,使得一共同垂直之平面與該發送器 接收器以及該對應反射器相交。 24. 如申請專利範圍第23項所述之設備,其中該發送 為一雷射或一發光二極體。 25. 如申請專利範圍第23項所述之設備,其中該發送 為一雷射,用以發射一雷射光束,當該雷射光束照 每一 鄰近 測該 效應 移動 ί:構。 二個 :裂。 二個 該基 基材 、該 器係 器係 射在 34 1283743 該基材之一頂表面或一底表面上時,該雷射光束具有小 於約3毫米之直徑。 ^ 2 6 . —種用以持續偵測基材缺陷之方法,至少包含: - 設置至少二個感測器,使得當一基材通過該至少二 個感測器中之每一個時,該至少二個感測器持續感測該 基材在接近該基材之至少二平行邊緣;以及 # 自該至少二個感測器中每一個發送一訊號至一控制 器上,該控制器可持續監控來自該至少二個感測器之該 訊號以偵測一基材缺陷之存在。 2 7.如申請專利範圍第2 6項所述之方法,其中該基材由大 約100毫米/秒至大約2000毫米/秒之範圍内的速率移 動通過該至少二個感測器中每一個之該感測機構。1283743 Before entering the channel of the adjacent cavity, one of the at least two sensors can detect an edge portion of the substrate, or the at least two senses after the substrate leaves the channel of the cavity Each of the detectors can detect one of the edge portions of the substrate. The apparatus of claim 19, wherein the end piece passes the substrate at a rate of from about 100 mm/sec to about 2000 mm/sec through each of the at least two sensors The device of claim 19, wherein the at least the sensor is configured to detect a substrate gap greater than about 1 mm or to be 2 3. As claimed in claim 19 The apparatus, wherein each of the at least one sensor comprises a transmitter and a receiver located below an edge of the material; and a corresponding reflector located above the edge such that a common vertical The plane intersects the transmitter receiver and the corresponding reflector. 24. The device of claim 23, wherein the transmitting is a laser or a light emitting diode. 25. The apparatus of claim 23, wherein the transmitting is a laser for emitting a laser beam, and the laser beam moves as the proximity of the effect. Two: Split. The laser beam has a diameter of less than about 3 mm when the base substrate is attached to a top surface or a bottom surface of the substrate. ^ 2 6 - A method for continuously detecting a defect in a substrate, comprising at least: - providing at least two sensors such that when a substrate passes through each of the at least two sensors, the at least The two sensors continuously sense that the substrate is adjacent to at least two parallel edges of the substrate; and # from each of the at least two sensors to send a signal to a controller, the controller is continuously monitored The signals from the at least two sensors detect the presence of a substrate defect. The method of claim 26, wherein the substrate is moved through each of the at least two sensors at a rate ranging from about 100 mm/sec to about 2000 mm/sec. The sensing mechanism. 2 8 .如申請專利範圍第2 6項所述之方法,其中設置該至少 二個感測器包含固定該至少二個感測器在該至少一視 窗之一外部上或接近該至少一視窗之一外部,使得該至 少二個感測器中每一個之一感測機構可在感測基材之 前或之後通過該至少一視窗。 2 9.如申請專利範圍第2 6項所述之方法,其中藉由傳送位 於一機械手臂之一末端效應器上之該基材,該基材可通 35 1283743 過一感測機構。 3 〇.如申請專利範圍第2 6項所述之方法,其中該機械手臂 具有另一末端效應器,其可同時支撐並移動另一基材。 3 1 .如申請專利範圍第2 6項所述之方法,其中該基材係為 一玻璃或一塑膠基材。The method of claim 26, wherein the at least two sensors are disposed to fix the at least two sensors on or near one of the at least one of the windows An exterior such that one of the at least two sensors can pass through the at least one window before or after sensing the substrate. 2. The method of claim 26, wherein the substrate passes through a sensing mechanism by transferring the substrate on one end effector of a robotic arm. 3. The method of claim 26, wherein the robot arm has another end effector that simultaneously supports and moves another substrate. The method of claim 26, wherein the substrate is a glass or a plastic substrate. 3636
TW95102078A 2006-01-19 2006-01-19 Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate TWI283743B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95102078A TWI283743B (en) 2006-01-19 2006-01-19 Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95102078A TWI283743B (en) 2006-01-19 2006-01-19 Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate

Publications (2)

Publication Number Publication Date
TWI283743B true TWI283743B (en) 2007-07-11
TW200728708A TW200728708A (en) 2007-08-01

Family

ID=39430864

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95102078A TWI283743B (en) 2006-01-19 2006-01-19 Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate

Country Status (1)

Country Link
TW (1) TWI283743B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI839997B (en) * 2022-12-06 2024-04-21 鴻揚半導體股份有限公司 Wafer transfer apparatus and wafer transfer system

Also Published As

Publication number Publication date
TW200728708A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
US7834994B2 (en) Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate
KR101009092B1 (en) Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate
TWI306281B (en) On-line wafer and robot position correcting system
US6856858B2 (en) Shared sensors for detecting substrate position/presence
JP3202171U (en) Robot-mounted through-beam substrate detector
KR20130086914A (en) Robot hand and robot
US7379174B2 (en) Wafer detecting device
US20030167102A1 (en) Valve/sensor assemblies
JP2007227781A (en) Misregistration inspection mechanism of substrate, processing system, and misregistration inspection method of substrate
US20070180676A1 (en) Method of and tool for calibrating transfer apparatus
TWI283743B (en) Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate
US7832353B2 (en) Semiconductor manufacturing apparatus equipped with wafer inspection device and inspection techniques
JP2011124294A (en) Vacuum processing apparatus
JPH11195695A (en) Electronic device manufacturing apparatus
US20090294442A1 (en) Lid opening/closing system for closed container, contained object insertion/takeout system having same lid opening/closing system, and substrate processing method using same lid opening/closing system
JP7199432B2 (en) Shallow Angle, Multi-Wavelength, Multi-Receiver, Adjustable Sensitivity Aligner Sensor for Semiconductor Manufacturing Equipment
US6992316B2 (en) Angled sensors for detecting substrates
JP4079206B2 (en) Substrate inspection apparatus, substrate inspection method, and liquid processing apparatus including substrate inspection apparatus
JP2011139074A (en) Sensor dynamically detecting breakage of substrate and shift of substrate being moved
TW202308024A (en) Load port
JP2002164416A (en) Apparatus for detecting object and processing system using it
JP2825618B2 (en) Wafer transfer method and wafer transfer apparatus
KR101389269B1 (en) Method for sensing of substrate and Device for sensing of substrate in apparatus for manufacturing of FPD
KR20030047975A (en) The Transfering Method of Wafer and Glass for Manufacturing Semiconductor and LCD
JP2002270671A (en) Substrate processing apparatus