TWI282778B - Method of manufacturing metallic nanoparticles - Google Patents

Method of manufacturing metallic nanoparticles Download PDF

Info

Publication number
TWI282778B
TWI282778B TW93113911A TW93113911A TWI282778B TW I282778 B TWI282778 B TW I282778B TW 93113911 A TW93113911 A TW 93113911A TW 93113911 A TW93113911 A TW 93113911A TW I282778 B TWI282778 B TW I282778B
Authority
TW
Taiwan
Prior art keywords
metal salt
group
metal
reducing agent
nanoparticles
Prior art date
Application number
TW93113911A
Other languages
Chinese (zh)
Other versions
TW200538398A (en
Inventor
Chien-Liang Lee
Jung-Chou Oung
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW93113911A priority Critical patent/TWI282778B/en
Publication of TW200538398A publication Critical patent/TW200538398A/en
Application granted granted Critical
Publication of TWI282778B publication Critical patent/TWI282778B/en

Links

Abstract

This invention provides a method of manufacturing metallic nanoparticles, which uses a chemical compound shown below in formula (I) as a reducing agent to be mixed with a metal salt in a solvent, which is then subject to heating until the reflux of solvent carrying out a reaction; wherein R is selected from a group consisting of C1-6 alkyl, C1-6 alkenyl and C1-6 alkynyl; and n is the integer between 1 to 1,000.

Description

1282778 五、發明說明(1) 【發明所屬之技術領域】 本發明係關於一種製造金屬奈米粒子之方法,特別是 一種利用高分子化合物作為還原劑製造金屬奈米粒子之方 法。 【先前技術】 相較於一般金屬微米級粒子,金屬奈米粒子之比表面 積增大(surface-to-volume)、表面能提高、承受壓力 後延展性高、硬度高、比熱大等優良性質,使得金屬奈米 粒子的應用性,在過去十年來倍受以材料導向為主的工業 界及科學界矚目。例如現今以各類型金屬奈米粒子為主的 催化劑已被應用在多種的催化反應中,且對不飽和碳氫化 合物的催化反應有高轉化率的優點。 根據奈米粒子大小的不同,可有不同的電子能帶組態 (size-dependent property),進而影響其物理及化學 性質,其對工業應用上非常重要。例如,在無電鍍鎳反應 中以鉑(P t )奈米粒子當催化觸媒時,隨著粒子大小的不 同,會有不同的無電鐘反應速率。因此,如何控制合成不 同粒徑金屬奈米粒子的製備方法已成為當前工業應用的熱 門話題。 目前在製備金屬奈米粒子的程序上可分成化學合成法 及物理合成法,其中以化學還原法因其產量大、製備程序 簡單、成本低,最常為工業界使用。一般來說,化學還原 法是將無機金屬鹽類溶在内溶有高分子化合物或界面活性 劑之溶液内,再利用外加還原劑,如聯氨、NaBH 4、乙醇1282778 V. INSTRUCTION DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a method for producing metal nanoparticles, and more particularly to a method for producing metal nanoparticles using a polymer compound as a reducing agent. [Prior Art] Compared with general metal micron-sized particles, metal nanoparticles have excellent surface-to-volume, improved surface energy, high ductility after compression, high hardness, and high specific heat. The applicability of metal nanoparticles has attracted the attention of industry-oriented and scientific circles in the past decade. For example, catalysts based on various types of metal nanoparticles have been used in various catalytic reactions, and the catalytic reaction to unsaturated hydrocarbons has the advantage of high conversion. Depending on the size of the nanoparticle, there are different size-dependent properties that affect its physical and chemical properties, which are important for industrial applications. For example, in the electroless nickel reaction, when platinum (P t ) nanoparticles are used as the catalytic catalyst, different electroless clock reaction rates may occur depending on the particle size. Therefore, how to control the preparation of metal nanoparticles of different particle sizes has become a hot topic in current industrial applications. At present, the procedures for preparing metal nanoparticles can be divided into a chemical synthesis method and a physical synthesis method, wherein the chemical reduction method is most commonly used in the industry because of its large yield, simple preparation procedure, and low cost. In general, the chemical reduction method is to dissolve an inorganic metal salt in a solution in which a polymer compound or a surfactant is dissolved, and then use an external reducing agent such as hydrazine, NaBH 4 or ethanol.

17790工研院.ptd 第4頁 1282778 五、發明說明(2) 或氫氣,還原無機金屬鹽類以形成金屬奈米粒子。17790 ITRI. ptd Page 4 1282778 V. INSTRUCTIONS (2) or hydrogen, reducing inorganic metal salts to form metal nanoparticles.

例如美國第4,5 9 3,0 1 6號專利即揭示將氯化鈀及氣化 亞錫分別溶於HC 1水溶液中,再將兩液混和升高溫度至1 0 0 °C,使亞錫離子能夠還原鈀離子,形成錫纪合金奈米膠體 粒子。美國第5,1 8 7,2 0 9號專利揭示將1^2?1:(:14溶於含有 1. 1克之聯氨(hy dr azide)官能基共聚合物的50毫升等比例 混和之水與乙醇溶液中,再用5 0 0 w高壓汞燈(h i gh p r e s s u r e m e r c u r y 1 a m p )照射兩小時,還原P t溶液合成約 3 nm之P t奈米粒子。美國第5,1 4 7,8 4 1號專利揭示一種將 Naz PtCl 4或Na2 PdCl 4溶於含有陽離子界面活性劑雙十二烷 基二曱基銨溴化物(DDAB)之正辛烷溶液中,再加入NaBH4 或聯氨還原溶液中的p t2+或Pd 2+,形成粒徑為1 0至2 〇 nm之 P t或P d奈米粒子。美國第5,7 5 9,2 3 0號專利揭示將p d C 1 2或 AgN^溶於乙醇溶液中,以乙醇當還原劑,迴流加熱12〇至 至〇〇。。,1至3小時合成10⑽之Pd奈米粒子及4〇㈣之“奈 Ϊ Ϊ Ϊ 1 f國第5, 3 32, 646揭示利用氫氣還原溶於内含有 性劑之有機溶劑中Pd與Pt之有機金屬鹽類,合成並 有效y刀散2至5 0 nm之Pd與Pt金屬夺半私工 、 5叫利揭示利3_毫升國第以20,For example, U.S. Patent No. 4,5,9,0,016 discloses that palladium chloride and vaporized stannous are respectively dissolved in an aqueous solution of HC 1, and the two liquids are mixed and raised to a temperature of 100 ° C. Tin ions can reduce palladium ions and form tin-based alloy nano-colloidal particles. U.S. Patent No. 5,1,8,0,09 discloses the dissolving of 1^2?1::14 in a 50 ml equimolar mixture containing 1.1 g of a hy dr azide functional group copolymer. In water and ethanol solution, it was irradiated with a 500 Hz high pressure mercury lamp (hi gh pressuremercury 1 amp ) for two hours, and the P t solution was reduced to synthesize P 3 nano particles of about 3 nm. US 5,1 4 7,8 No. 4 1 discloses dissolving Naz PtCl 4 or Na 2 PdCl 4 in a solution of a cationic surfactant, dodecyldidecyl ammonium bromide (DDAB), in n-octane, followed by NaBH4 or a hydrazine reduction solution. P t 2+ or Pd 2+ in the form of P t or P d nanoparticles having a particle size of 10 to 2 〇 nm. U.S. Patent No. 5,7 5 9,2 3 0 discloses pd C 1 2 or AgN. ^ Dissolved in ethanol solution, using ethanol as a reducing agent, heating under reflux for 12 〇 to 〇〇., 1 to 3 hours to synthesize 10 (10) Pd nanoparticles and 4 〇 (4) "Nest Ϊ Ϊ 1 f country 5 , 3 32, 646 discloses the use of hydrogen to reduce the organic metal salts of Pd and Pt in an organic solvent dissolved in an internal containing agent, and synthesize and effectively halve 2 to 50 nm of Pd and Pt metal. Workers, called Lee reveals the first 5 ml of national interest 3_ 20,

液當做電解液,以兩片妃金屬片分化…HF溶 陽極氧化陰極還原離子之電化學的=κ、險電極,以 奈米粒子,並且改變不同的電流密:式2液中合成出p( 奈米粒子。美國第6, 1 0 3, 868號專利& a成不同粒徑的P( • 3H2〇溶於25毫升去離 中 。不將150¾客HAuCl /战S色水溶液,再將The liquid is used as an electrolyte to differentiate into two pieces of bismuth metal sheet... HF dissolves the anodized cathode to reduce the electrochemical ion of the cathode = κ, the dangerous electrode, to the nanoparticle, and changes the different current density: the formula 2 synthesizes p ( Nanoparticles. US Patent No. 6, 1 0 3, 868 & a into different particle sizes of P ( • 3H2 〇 dissolved in 25 ml of deionization. Will not be 1503⁄4 guest HAuCl / war S color aqueous solution, and then

1282778 五、發明說明(3) 0 . 3 6 5克之N ( C 8 H 17 ) 4 Br溶於2 5毫升曱苯中,將水溶液與甲 苯溶液強烈攪拌,再加入0· 151克之NaB Η 4還原出金奈米粒 子。 然而,外加還原劑往往會影響粒子的大小,加得過 多,還原力強,成核速率太快,以致合成的金屬奈米粒子 過大且大小不均勻。若添加還原劑量過少,常會導致還原 速率過慢,粒子合成需要數天時間,甚至無法還原無機金 屬鹽類。因此,外加還原劑的劑量、攪拌方式及種類的選 擇都成了關鍵,增加製程上的複雜性。 綜上所述,如何開發出一種可以簡單地製造金屬奈米 粒子,並使所製得之金屬奈米粒子具有均勻粒徑以及穩定 分散性,確為此相關研發領域所需迫切面對之課題。 【發明内容】 本發明之一目的即在於提供一種直接使用高分子化合 物作為還原劑製造金屬奈米粒子之方法。 本發明之另一目的係在於提供一種使用高分子化合物 作為還原劑製造具有均勻粒徑分布之金屬奈米粒子之方 法。 本發明之又一目的係在於提供一種使用高分子化合物 作為還原劑製造可長時間分散於溶液中之金屬奈米粒子之 方法。 本發明之再一目的係在於提供一種使用簡單配方即可 大規模製造金屬奈米粒子之方法。 本發明之又一目的係在於提供一種以低成本製造金屬1282778 V. Description of the invention (3) 0. 3 6 5 g of N (C 8 H 17 ) 4 Br is dissolved in 25 ml of toluene, the aqueous solution is stirred vigorously with the toluene solution, and then 0.51 g of NaB Η 4 is added. Out of the gold nanoparticles. However, the addition of a reducing agent tends to affect the size of the particles, too much, the reducing power is strong, and the nucleation rate is too fast, so that the synthesized metal nanoparticles are too large and uneven in size. If the amount of reducing agent added is too small, the rate of reduction will often be too slow, the synthesis of the particles will take several days, and even the inorganic metal salts cannot be reduced. Therefore, the dosage of the added reducing agent, the manner of stirring, and the choice of the type are all critical, increasing the complexity of the process. In summary, how to develop a metal nanoparticle that can be easily fabricated, and to obtain a uniform particle size and stable dispersion of the prepared metal nanoparticle, is an urgent problem for the related research and development field. . SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing metal nanoparticles by directly using a polymer compound as a reducing agent. Another object of the present invention is to provide a method for producing metal nanoparticles having a uniform particle size distribution using a polymer compound as a reducing agent. Another object of the present invention is to provide a method for producing metal nanoparticles which can be dispersed in a solution for a long period of time using a polymer compound as a reducing agent. Still another object of the present invention is to provide a method for producing metal nanoparticles on a large scale using a simple formulation. Another object of the present invention is to provide a metal for manufacturing at low cost.

]7790工研院.ptd 第6頁 1282778 五、發明說明(4) 劑子 式溶粒 下於米 如合奈 用混屬 使類金 種鹽造 一 屬製 供金以 提與應 明而反 發劑行 本原進 ,還, 的為济 目作迴 他以劑 。其物溶 法及合使 方述化致 之前之熱 子達示加: 粒為Μ並法 米 },方 I 奈 C中之 (1) 〇 式中 之其 微泡 與金 的條 於本 容易 明之 化合 使所 散於 【實 R係選自C】 — 中一者 不同於 作為保 屬鹽類 件下, 發明之 大規模 方法適 物作為 製得之 溶液中 施方式 以下係 ;以及 習知方 護劑, 混合的 直接使 方法不 量產、 用製造 還原劑 金屬奈 等優點 3烧基、C η稀基、及C η快基所組成組群 η係介於1至1,0 0 0之整數。 法使用高分子化合物溶於溶劑所形成之 本發明之方法係直接利用高分子化合物 自身還原能力,在不需額外使用還原劑 用式(I )所示之化合物作為還原劑。由 需其他複雜的配方,而具有製法簡單、 以及成本低廉等優點。另一方面,本發 於多種金屬元素之奈米粒子,利用特定 ,控制所形成之金屬奈米粒子的粒徑, 米粒子具有粒徑分布均勻,可長時間分 藉由特定的具體實例說明本發明之實施方式7790工工院.ptd Page 6 1282778 V. Description of the invention (4) Under the solvate of the granules, the genus of the genus of the genus of the genus is used to make the genus of the genus The hair is made in the original, and the other is to return to him. The solution of the matter and the enthalpy of the combination of the genus and the genus of the genus: the granule is Μ 法 } } 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The combination of the fact that the solid R is selected from C is different from the one of the large-scale method of the invention as the preservation salt, and the following is the method of the solution; The mixture is directly mixed with the method of mass production, and the advantages of the production of the reducing agent metal naphthalene 3, the C η dilute group, and the C η fast group are grouped between η and 1 0, 0 0 0 . The method of the present invention in which the polymer compound is dissolved in a solvent directly utilizes the self-reducing ability of the polymer compound, and the compound represented by the formula (I) is used as a reducing agent without additionally using a reducing agent. Due to the need for other complicated formulas, it has the advantages of simple manufacturing method and low cost. On the other hand, the nanoparticles of various metal elements are used to control the particle size of the formed metal nanoparticles, and the rice particles have a uniform particle size distribution, which can be explained by a specific specific example for a long time. Embodiment of the invention

17790工研院.ptd 第7頁 1282778 五、發明說明(5) 熟悉此技藝之人士可由本說明書所揭示之内容輕易地瞭解 本發明之其他優點與功效。本發明亦可藉由其他不同的具 體實例加以施行或應用,本說明書中的各項細節亦可基於 不同觀點與應用,在不悖離本發明之精神下進行各種修飾 與變更。 本發明提供一楂使用如下式(I )所示之化合物以作為 還原劑而與金屬鹽類混合於溶劑中,並加熱致使溶劑迴 流,進行反應以製造金屬奈米粒子之方法:17790 ITRI. ptd Page 7 1282778 V. INSTRUCTIONS (5) Other advantages and effects of the present invention will be readily apparent to those skilled in the art from this disclosure. The present invention may be embodied or applied by other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. The present invention provides a method of producing a metal nanoparticle by using a compound represented by the following formula (I) as a reducing agent and mixing it with a metal salt in a solvent, and heating to cause a solvent to reflux.

式中,R係獨立地選自C η烷基、C !_6烯基、及C η炔基所組 成組群之其中一者;以及η係介於1至1,0 0 0之整數。 該烷基可為直鏈、分支、或環狀烷基,其實例包括, 但不限於曱基、乙基、丙基、異丙基、丁基、第二丁基、 戊基、己基、及環己基等;該烯基的實例包括,但不限於 乙烯基、丙烯基、及丁烯基;該炔基的實例包括,但不限 於乙炔、及丙炔等。 於本發明一具體實例中,用作為還原劑之化合物係以 具有介於3,5 0 0至1,3 0 0,0 0 0分子量之高分子化合物較佳, 其實例可為具有介於3,5 0 0至1,3 0 0,0 0 0分子量之聚乙烯吡 咯烷酮(以下簡稱PVP)。較佳者,該用作為還原劑之高分Wherein R is independently selected from one of the group consisting of C η alkyl, C -6 olefin, and C η alkynyl; and the η is an integer from 1 to 1,0 0 . The alkyl group may be a linear, branched, or cyclic alkyl group, and examples thereof include, but are not limited to, an anthracenyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a second butyl group, a pentyl group, a hexyl group, and Cyclohexyl and the like; examples of the alkenyl group include, but are not limited to, a vinyl group, a propenyl group, and a butenyl group; examples of the alkynyl group include, but are not limited to, acetylene, propyne, and the like. In a specific embodiment of the present invention, the compound used as the reducing agent is preferably a polymer compound having a molecular weight of from 3,500 to 1,300,0 0, and an example thereof may have a ratio of 3 , 500 0 to 1, 3 0 0, 0 0 0 molecular weight polyvinylpyrrolidone (hereinafter referred to as PVP). Preferably, the high score used as a reducing agent

17790工研院.ptd 第8頁 1282778 五、發明說明(6) 子化合物係以水溶液之型式使用。 本發明之方法係先使該用作為還原劑之高分子化合物 水溶液與金屬鹽類混和;接著,加熱致使溶劑迴流而使該 高分子化合物還原劑與該金屬鹽進行反應,而形成金屬奈 米粒子。其可藉由抽取少許反應溶液利用光譜檢測是否已 反應完全’一般而言,迴流時間係介於1至2 0小時,且較 佳係為3至1 0小時。 於本發明一具體實例中,該金屬鹽類係以貴金屬鹽類 較佳,例如P d、P t、A g、或A u之鹽類。該等貴金屬鹽類的 實例包括,但不限於 Pd(OAc) 2、PdCl 2、H2 PtCl 6 · H2 0、 Ag(OAc)、 Ag(N03)、以及 HAuC14· 3H20。 以下茲藉由具體實驗實例,進一步詳述本發明之特點 及功效。其中,係利用穿透式電子顯微鏡(以下簡稱 TEM)、能量分散光譜儀(energy dispersion spectra-EDX)、紫外光可見光光譜儀(UV-Visble spectra)鑑定合成之金屬奈来粒子之粒徑及元素成分。 實施例1 將0· 1克之醋酸鈀(Pd(OAc)2 )溶於50毫升〇· 01M之聚乙 烯吡咯烷酮(PVP,分子量1 0,0 0 0 )水溶液中,在未添加其 他還原劑的條件下,以油浴迴流加熱,油浴溫度控制在 1 1 0°C至1 3 0°C之範圍,反應時間歷時1 6小時。當反應約i 小時後,反應液呈現澄清橘黃色,隨著反應時間增長,反 應液顏色由橘育色轉為標色’到反應時間為1 6小時後反廣、 液呈黑棕色。反應終止後利用1 5 0 0 0 r pm 2 0分鐘進行高速17790 ITRI. ptd Page 8 1282778 V. INSTRUCTIONS (6) Sub-compounds are used in the form of aqueous solutions. The method of the present invention first mixes the aqueous solution of the polymer compound used as a reducing agent with a metal salt; then, heating causes the solvent to reflux to react the polymer compound reducing agent with the metal salt to form metal nanoparticles. . It can be detected by spectrometry by extracting a small amount of the reaction solution. In general, the reflux time is from 1 to 20 hours, and preferably from 3 to 10 hours. In a specific embodiment of the invention, the metal salt is preferably a noble metal salt such as a salt of P d, P t, A g or A u . Examples of such noble metal salts include, but are not limited to, Pd(OAc) 2, PdCl 2, H2 PtCl 6 · H2 0, Ag(OAc), Ag(N03), and HAuC14·3H20. The features and effects of the present invention are further described in detail below by way of specific experimental examples. Among them, the particle size and elemental composition of the synthesized metal natrile particles were identified by a transmission electron microscope (hereinafter referred to as TEM), an energy dispersion spectra (EDX), and a UV-Visble spectrum. Example 1 0.1 g of palladium acetate (Pd(OAc) 2 ) was dissolved in 50 ml of an aqueous solution of polyvinylpyrrolidone (PVP, molecular weight 10,0 0 ) of 〇·01M, without adding other reducing agent. The oil bath temperature was controlled to be in the range of 110 ° C to 130 ° C, and the reaction time lasted for 16 hours. After about i hours of reaction, the reaction solution showed a clear orange color. As the reaction time increased, the color of the reaction liquid changed from orange color to color standard'. After the reaction time was 16 hours, the liquid was dark brown. After the reaction is terminated, the high speed is performed using 1 500 pm for 20 minutes.

1282778 五、發明說明(7) 離心,結果分為上層液及離心沈澱物,該上層液為澄清透 明淡黃色水溶液,經原子吸收光譜儀(A t 〇 m A b s 〇 r ρ ΐ i ο η S p e c t r u m )測定產率為9 0 %。取出反應液測T E M其結果為粒 子大小均勻之Pd奈米粒子,如第1圖所示。利用PVP來合成 Pd奈米粒子之平均粒徑在6. 1 7 nm,如第2圖所示,由第2 圖可知所合成之Pd奈米粒子大小相當均勻。經EDX之電子 束對準粒子測其經電子束激發之X-ray鑑定其化學成分為 純P d 〇 將所製備之Pd奈米粒子沈澱物,再度分散於水溶液 中。經長時間實驗觀察,發現所製備之金屬奈米粒子約1 至2年後仍可有效地分散於水溶液中。 實施例2 重複實施例1之步驟,以同樣方法,將Pd(OAc) 2改為 0 . 5克之P d C 1 2 ’合成黑彳宗色P d奈米粒子溶液。經長時間貫 驗觀察,發現所製備之金屬奈米粒子約1至2年後仍可有效 分散於水溶液中。 實施例3 重複實施例1之步驟,以同樣方法,將Pd (0 Ac) 2改為 0. 06克之乙醯丙酮鉑(Pt (acac) 2 ),合成黑棕色Pt奈米粒 子,如第3圖所示,其平均粒徑為2. 3 6 nm,如第4圖所 示。 將所製備之Pd奈米粒子沈澱物,再度分散於水溶液 中。經長時間實驗觀察,發現所製備之金屬奈米粒子約1 至2年後仍可有效分散於水溶液中。1282778 V. INSTRUCTIONS (7) Centrifugation, the results are divided into an upper layer liquid and a centrifugal sediment, which is a clear transparent pale yellow aqueous solution by atomic absorption spectrometry (A t 〇m A bs 〇r ρ ΐ i ο η S pectrum The yield was determined to be 90%. The reaction solution was taken out and measured as T E M as a Pd nanoparticle having a uniform particle size, as shown in Fig. 1. The Pd nanoparticles synthesized by PVP have an average particle size of 6.1 nm. As shown in Fig. 2, it can be seen from Fig. 2 that the synthesized Pd nanoparticles have a relatively uniform size. The electron beam excited by EDX was measured by electron beam excitation X-ray to identify the chemical composition of pure P d 〇. The prepared Pd nanoparticle precipitate was dispersed again in an aqueous solution. After a long period of experimental observation, it was found that the prepared metal nanoparticles were effectively dispersed in the aqueous solution after about one to two years. Example 2 The procedure of Example 1 was repeated, and in the same manner, Pd(OAc) 2 was changed to 0.5 g of P d C 1 2 'a synthetic black enamel P d nanoparticle solution. After a long period of observation, it was found that the prepared metal nanoparticles were effectively dispersed in the aqueous solution after about one to two years. Example 3 The procedure of Example 1 was repeated, and in the same manner, Pd (0 Ac) 2 was changed to 0.06 g of acetonitrile platinum (Pt (acac) 2 ) to synthesize black brown Pt nano particles, such as the third As shown in the figure, the average particle diameter is 2.36 nm, as shown in Fig. 4. The prepared Pd nanoparticle precipitate was again dispersed in an aqueous solution. After a long period of experimental observation, it was found that the prepared metal nanoparticles were effectively dispersed in the aqueous solution after about one to two years.

17790工研院.ptd 第10頁 1282778 五、發明說明(8) 實施例4 此一實施例係為確定不同濃度之金屬鹽類變化(金屬 鹽類之添加量)對於製備金屬奈米粒子之影響。改變金屬 鹽類之濃度而固定高分子化合物還原劑之濃度,迴流反應 溫度皆控制於1 3 0°C,反應條件係如表1所載,所製得之金 屬奈米粒子的粒徑亦記載於表1。 表1 組別 PdCl2濃度 (克/50毫升) PVP濃度 (5克/50毫升) 平均粒徑統計 (nm) 4a 0.4 0.01M 6.32 4b 0.08 0.01M 5.46 4c 0.04 0.01M 6.08 4d 0.01 0.01M 4.62 實驗結果由UV-Vis光譜及TEM測定,發現PdCl 2濃度不管降 至0· 0 1克/50毫升或增加至0. 4克/50毫升都可合成出奈米 粒子。就不同濃度Pd C1 2所合成Pd奈米粒子溶液而言,由 於是由系統内高分子還原Pd 2+,反應較外加還原劑溫和, 因此金屬離子濃度對粒子粒徑之影響不大。 實施例5 此一貫例係為確定使用不同濃度之南分子化合物作為 還原劑對於合成金屬奈米粒子之影響。改變高分子化合物 還原劑之濃度同時固定金屬鹽類濃度,其結果係如表2所17790 ITRI. ptd Page 10 1282778 V. INSTRUCTIONS (8) EXAMPLE 4 This example is to determine the effect of varying concentrations of metal salts (addition of metal salts) on the preparation of metal nanoparticles. . The concentration of the metal salt is changed to fix the concentration of the polymer compound reducing agent, and the reflux reaction temperature is controlled at 130 ° C. The reaction conditions are as shown in Table 1, and the particle diameter of the prepared metal nanoparticle is also recorded. In Table 1. Table 1 Group PdCl2 concentration (g / 50 ml) PVP concentration (5 g / 50 ml) Average particle size statistics (nm) 4a 0.4 0.01M 6.32 4b 0.08 0.01M 5.46 4c 0.04 0.01M 6.08 4d 0.01 0.01M 4.62 Experimental results From the UV-Vis spectrum and TEM, it was found that the concentration of PdCl 2 could be reduced to 0. 0 g / 50 ml or increased to 0.4 g / 50 ml to synthesize nano particles. For the Pd nanoparticle solution synthesized by different concentrations of Pd C1 2, the Pd 2+ is reduced by the polymer in the system, and the reaction is milder than the externally added reducing agent, so the metal ion concentration has little effect on the particle size. EXAMPLE 5 This consistent example is to determine the effect of using different concentrations of a South molecular compound as a reducing agent on synthetic metal nanoparticles. Change the concentration of the polymer compound reducing agent and fix the concentration of the metal salt. The results are shown in Table 2.

]7790工研院.ptd 第11頁 1282778 五、發明說明(9) 示。 表2 組別 PdCl2濃度 (克/50毫升) PVP濃度 (克/50毫升) 平均粒徑統計 (nm) 5a 0.4 5 6.32 5b 0.4 4 6.59 5c 0.4 3 6.47 5d 0.4 2 7.69 5e 0.4 1 4.48 在實驗結果中發現’實驗結果由U V - V i s光譜及T E Μ測定, 不同的高分子化合物還原劑濃度皆可製備出金屬奈米粒 子。 實施例6 為釐清P d ( 0 A C ) 2在高分子水溶液中形成P d奈米粒子是 否是由於Pd(OAC)2受熱分解而非化學還原,故進行以下兩 個對照實驗: 6a : 1克之 Pd(OAc) 2+ 0· 01M之 PVP/50毫升 H2 0,油浴溫度 1 3 0°C ,時間1 6小時 6b : 0· 0 5 2克之 Pd(OAc) 2 / 50毫升 H2 0,油浴溫度 1 20°C,時 間4小時] 7790 ITRI. ptd Page 11 1282778 V. Description of the invention (9). Table 2 Group PdCl2 concentration (g / 50 ml) PVP concentration (g / 50 ml) Average particle size statistics (nm) 5a 0.4 5 6.32 5b 0.4 4 6.59 5c 0.4 3 6.47 5d 0.4 2 7.69 5e 0.4 1 4.48 It was found that the experimental results were determined by UV-Vis spectrum and TE ,, and metal nanoparticles were prepared by different polymer compound reducing agent concentrations. Example 6 To clarify whether P d ( 0 AC ) 2 forms P d nanoparticles in an aqueous polymer solution due to thermal decomposition of Pd(OAC) 2 rather than chemical reduction, the following two control experiments were carried out: 6a : 1 gram Pd(OAc) 2+ 0· 01M PVP/50 ml H2 0, oil bath temperature 1 30 ° C, time 1 6 hours 6b: 0· 0 5 2 g of Pd(OAc) 2 / 50 ml H2 0, oil Bath temperature 1 20 ° C, time 4 hours

1779G工研院.ptd 第12頁 1282778 五、發明說明(ίο) 在6a加入PVP之實驗中,溶液顏色變成黑棕色,Pd奈 米粒子光譜出現;另一方面,在6b未加PVP之實驗中 P d ( 0 A C ) 2對水的溶解度不佳,只能部分溶於水,油浴加熱 12 0°C,4小時後,Pd(OAC)^然不溶於水。 由上述結果可知由本方法合成的奈米粒子不是由 Pd(OAC) 2受熱分解所形成Pd奈米粒子,而是由於PVP還原 金屬鹽類所形成者。1779G工研院.ptd Page 12 1282778 V. Invention Description (ίο) In the experiment of adding PVP to 6a, the color of the solution turned black and brown, and the spectrum of Pd nanoparticle appeared. On the other hand, in the experiment of 6b without PVP. P d ( 0 AC ) 2 has poor solubility in water and can only be partially dissolved in water. The oil bath is heated at 120 ° C. After 4 hours, Pd (OAC) is insoluble in water. From the above results, it is understood that the nanoparticles synthesized by the present method are not formed by Pd nanoparticle formed by thermal decomposition of Pd(OAC) 2 but by PVP reducing metal salts.

17790工研院.ptd 第13頁 1282778 圖式簡單說明 【圖式簡單說明】 第1圖係使用本發明之方法所製得之Pd奈米粒子的TEM 照片(放大倍率為30萬倍,圖中0. 5公分即為20 nm); 第2圖係使用本發明之方法所製得之Pd奈米粒子的平 均粒徑分布; 第3圖係使用本發明之方法所製得之Pt奈米粒子的TEM 照片(放大倍率為30萬倍,圖中0. 5公分即為20 nm);以 及 第4圖係使用本發明之方法所製得之P t奈米粒子的平 均粒徑分布。 (本案無元件符號)17790工研院.ptd Page 13 1282778 Brief description of the drawing [Simple description of the drawing] Figure 1 is a TEM image of Pd nanoparticle prepared by the method of the present invention (magnification of 300,000 times, in the figure 0. 5 cm is 20 nm); Figure 2 is the average particle size distribution of Pd nanoparticles prepared by the method of the present invention; Figure 3 is the Pt nanoparticle prepared by the method of the present invention. The TEM image (magnification of 300,000 times, 0. 5 cm in the figure is 20 nm); and Fig. 4 is the average particle size distribution of the Pt nanoparticles prepared by the method of the present invention. (There is no component symbol in this case)

17790工研院.ptd 第14頁17790 ITRI.ptd第14页

Claims (1)

1282778 六、申請專利範圍 1 . 一種製造金屬奈米粒子之方法,該方法係使用如下式 (I )所示之化合物作為還原劑而與金屬鹽類混合於溶 劑中,並加熱致使溶劑迴流,進行反應: (1) 广 C,〇 式中,R係選自C η烧基、C η稀基、及C η炔基所 組成組群之其中一者;以及η係介於1至1,0 0 0之整數。 2. 如申請專利範圍第1項所述之方法,其中,該R係乙烯 基。 3. 如申請專利範圍第1項所述之方法,其中,該化合物之 分子量係介於3,5 0 0至1,3 0 0,0 0 0之間。 4. 如申請專利範圍第1項所述之方法,其中,該化合物之 分子量最佳係介於3,5 0 0至1 0,0 0 0之間。 5. 如申請專利範圍第4項所述之方法,其中,該溶劑係 水。 6. 如申請專利範圍第1項所述之方法,其中,該金屬鹽類 係選自P d金屬鹽、P t金屬鹽、A g金屬鹽、以及A u金屬 鹽所組成組群之其中一者。 7. 如申請專利範圍第6項所述之方法,其中,該Pd金屬鹽 係選自Pd(OAc) 2、以及PdCl 2之其中一者。 8. 如申請專利範圍第6項所述之方法,其中,該P t金屬鹽1282778 VI. Patent Application No. 1. A method for producing metal nanoparticles, which is obtained by mixing a compound represented by the following formula (I) as a reducing agent with a metal salt in a solvent, and heating to cause the solvent to reflux. Reaction: (1) In the broad C, 〇 formula, R is selected from one of the group consisting of C η alkyl, C η dilute, and C η alkynyl; and η is between 1 and 1, 0 An integer of 0 0. 2. The method of claim 1, wherein the R is a vinyl group. 3. The method of claim 1, wherein the compound has a molecular weight of between 3,500 and 1,300,0. 4. The method of claim 1, wherein the molecular weight of the compound is preferably between 3,500 and 1,0,0. 5. The method of claim 4, wherein the solvent is water. 6. The method of claim 1, wherein the metal salt is one selected from the group consisting of a P d metal salt, a P t metal salt, an Ag metal salt, and an Au metal salt. By. 7. The method of claim 6, wherein the Pd metal salt is selected from the group consisting of Pd(OAc) 2, and PdCl 2 . 8. The method of claim 6, wherein the P t metal salt 17790工研院.ptd 第15頁 1282778 六、申請專利範圍 係為 Η 2 P t C 1 6 · Η 2 0。 9.如申請專利範圍第6項所述之方法,其中,該Ag金屬鹽 係選自Ag(OAc)、以及Ag(N03)之其中一者。 1 0 .如申請專利範圍第6項所述之方法,其中,該A u金屬鹽 係為 HAuCl 4 · 3H2 0。 1 1.如申請專利範圍第1項所述之方法,其中,加熱致使溶 劑迴流之迴流時間係介於1至2 0小時之間。17790 ITRI. ptd Page 15 1282778 VI. The scope of application for the patent is Η 2 P t C 1 6 · Η 2 0. 9. The method of claim 6, wherein the Ag metal salt is selected from the group consisting of Ag (OAc) and Ag (N03). The method of claim 6, wherein the Au metal salt is HAuCl 4 · 3H2 0 . 1 1. The method of claim 1, wherein the heating causes a reflux time of the solvent to be between 1 and 20 hours. 17790工研院.ptd 第16頁17790 ITRI.ptd第16页
TW93113911A 2004-05-18 2004-05-18 Method of manufacturing metallic nanoparticles TWI282778B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93113911A TWI282778B (en) 2004-05-18 2004-05-18 Method of manufacturing metallic nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93113911A TWI282778B (en) 2004-05-18 2004-05-18 Method of manufacturing metallic nanoparticles

Publications (2)

Publication Number Publication Date
TW200538398A TW200538398A (en) 2005-12-01
TWI282778B true TWI282778B (en) 2007-06-21

Family

ID=38828912

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93113911A TWI282778B (en) 2004-05-18 2004-05-18 Method of manufacturing metallic nanoparticles

Country Status (1)

Country Link
TW (1) TWI282778B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115609001B (en) * 2022-07-15 2023-10-10 西北工业大学 Method for preparing functionalized gold nanoparticles by using alkyne compounds

Also Published As

Publication number Publication date
TW200538398A (en) 2005-12-01

Similar Documents

Publication Publication Date Title
Lei et al. Galvanic replacement–mediated synthesis of Ni‐supported Pd nanoparticles with strong metal–support interaction for methanol electro‐oxidation
Schrinner et al. Mechanism of the formation of amorphous gold nanoparticles within spherical polyelectrolyte brushes
Belousov et al. Formation of bimetallic Au–Pd and Au–Pt nanoparticles under hydrothermal conditions and microwave irradiation
US6572673B2 (en) Process for preparing noble metal nanoparticles
Huang et al. Simplifying the creation of hollow metallic nanostructures: one‐pot synthesis of hollow palladium/platinum single‐crystalline nanocubes
Glaspell et al. Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation
Xie et al. Synthesis and characterization of Pd@ MxCu1− x (M= Au, Pd, and Pt) nanocages with porous walls and a yolk–shell structure through galvanic replacement reactions
JP4851383B2 (en) Method for producing metal nanoparticles, metal nanoparticles, and conductive ink
Sanyal et al. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process
Zhuang et al. One-step rapid and facile synthesis of subnanometer-sized Pd6 (C12H25S) 11 clusters with ultra-high catalytic activity for 4-nitrophenol reduction
Lu et al. Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media
JP4774214B2 (en) Method for synthesizing metal nanoparticles
Cheng et al. Enhanced photocatalytic hydrogen evolution based on efficient electron transfer in triphenylamine-based dye functionalized Au@ Pt bimetallic core/shell nanocomposite
CN107262153A (en) A kind of preparation method of Pd/MIL 100 (Fe) photochemical catalyst
JP2006507409A (en) Method for the synthesis of metal nanoparticles
Zinchenko et al. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles
Varshney et al. On the Remarkable Performance of Silver‐based Alloy Nanoparticles in 4‐Nitrophenol Catalytic Reduction
Tate et al. Preparation of Pt-containing bimetallic and trimetallic catalysts using continuous electroless deposition methods
CN101168196A (en) Method for preparing nickel-base amorphous nano particles
Xu et al. Synthesis of Carbon‐Encapsulated Cu–Ag Dimetallic Nanoparticles and Their Recyclable Superior Catalytic Activity towards 4‐Nitrophenol Reduction
Dai et al. Evidence for the Antioxidation Effect of Boron on the Ultrafine Amorphous Ni− B Alloy Catalyst
JP2004332028A (en) Ternary metallic colloid having three layer core/shell structure and method for producing ternary metallic colloid
Wang et al. Controllable Synthesis of Hexagonal WO3 Nanoplates for Efficient Visible‐Light‐Driven Photocatalytic Oxygen Production
JP4852751B2 (en) Manufacturing method of metal nanowire
JP2011017071A (en) Method for producing nanoparticle of binary metal