TWI282183B - Total-reflection light emitting diode and production method thereof - Google Patents

Total-reflection light emitting diode and production method thereof Download PDF

Info

Publication number
TWI282183B
TWI282183B TW94123568A TW94123568A TWI282183B TW I282183 B TWI282183 B TW I282183B TW 94123568 A TW94123568 A TW 94123568A TW 94123568 A TW94123568 A TW 94123568A TW I282183 B TWI282183 B TW I282183B
Authority
TW
Taiwan
Prior art keywords
layer
emitting diode
luminescent
epitaxial layer
specular
Prior art date
Application number
TW94123568A
Other languages
Chinese (zh)
Other versions
TW200703707A (en
Inventor
Ruei-Hua Hung
Dung-Shing Wu
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW94123568A priority Critical patent/TWI282183B/en
Publication of TW200703707A publication Critical patent/TW200703707A/en
Application granted granted Critical
Publication of TWI282183B publication Critical patent/TWI282183B/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

The present invention provides a total-reflection light emitting diode and production method thereof. Because an air layer is locally formed in between the mirror reflection layer and light-emitting epilayer, the effect of total reflection can be achieved by means of interfaces with different refractions. Moreover, the air layer can be completed by means of directly or indirectly combining the non-planar mirror reflection layer and the light-emitting epilayer, or by means of locally forming other material layers in between the planar mirror reflection layer and the light-emitting epilayer.

Description

1282183 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光二極體及其製造方法,尤指一種鏡面 反射層與該發光磊晶層之間,僅局部直接或間接結合之全反射型 發光二極體及其製造方法。 【先前技術】 一般發光二極體的結構,主要包括一永久基板及發光蠢晶 • 層。傳統發光二極體發射的光經由半導體材質至空氣時,由於折 射率降低往往導致全反射現象,雨使發光效率大減。為了提高發 光效率及亮度,習知技術係於發光層底部鍍設一鏡面反射層,將 反射回的光重新導向空氣D此外,亦有在發光二極體的封裝結構 上加以改良’或將發光二極體表面作粗糙化處理,以提高發光效 率。然而,上述習知的發光二極體,皆具有完全連續的材料層結 構,因此不易加以變化,作進一步的改良。 本發明人根據對光電元件及製程多年研發經驗,將半導體材 • 料特性及光學原理融入發光二極體的改良,最後終獲致本發明『全 反射型發光二極體及其製造方法』。 【發明内容】 - 本發明之目的在於提供一種全反射型發光二極體及其製造 方法,其具有增強發光效率、降低製造成本之優點者。 本發明之全反射型發光二極體至少包括一發光蠢晶層及一 鏡面反射層’且該鏡面反射層僅局部直接或間接與該發先蟲晶層 結合。其中該鏡面反射層與該發光磊晶層相向之反射面中,未直 1282183 接或間接舆該發光轰Q尾 知尤石石日日層結合之反射面 士 τ 間接盥該#弁石曰爲从人 、我与乐一衣回,直接吱 佳為大於光波長。 弟一表面。弟一表面較 材料發光遙晶層"间可包括空氣、低折射係數 材“其何產生不时面折耗鼓㈣ 峻 折射係數通常需小於2。 -折射知數材科之 上逑之鏡面反射層與發光磊晶層 層及,或-透明導電層,或其他適當之材料 =乳化銦錫(卿氧化鋅雖。·Αί)、氧化師似)、氮化敛 ΓΠΝ)、亂化鈕(TaN)或氧化鎳(Ni〇)。 ' 反射/之述鏡面/射f之第一表面與第二表面可為共平面;則鏡面 曰之弟-表面與發光蟲晶層之間較佳為包括—金屬陣列芦。 但鏡面反射層之第-表面與第二表面亦可非共平面d θ _上述鏡面反射層之第-表面或第二表面通常形成複數個單 兀表面形成之陣列’例如圓形、矩形或正方形形成之陣列。 /本發明之發光蠢晶層之材料較佳為氮化錄系列或鱗化銘錄 銦系列材料,面反射層之底表面通常包括—秒基板、金屬基板 或鑽石基板。 本發明製造全反射型發光二極體之方法至少包括—步驟··將 一鏡面反射層之局部直接或間接與一發光磊晶層結合。 本發明方法之發光磊晶層可先局部形成一金屬陣列層,再將 金屬陣列層與鏡面反射層結合。 鏡靣反射層與發光磊晶層相向之反射面可為平面。或者,鏡 面反射層具有波峰及波谷之形狀;此結構可藉由先形成鏡面反射 層於一表面具有波峰及波谷形狀之永久基板上來達成。永久基板 1282183 圖形#刻(pattern etching)程序形成均勻分布的四槽,再鍍設鏡面 反射層141 ’使鏡面反射層ι41形成具有波峰及波谷的剖面結構; _ 第1e圖係將蠢晶用基板11及磊晶層12M23翻轉後,藉由晶片黏貼 技術(wafer bonding)與鏡面反射層141結合。此時,波谷與透明導 電層142之間為空氣層15,則光束經過磊晶層123/透明導電層142/ 空氣層15介面及空氣層15/鏡面反射層141介面,由於折射角度不同 於直接穿過磊晶層123/透明導電層142/鏡面反射層141介面,將可 造成全反射之效果。第Id圖為去除磊晶用基板π後,將磊晶層蝕 φ 刻至P-GaN層123裸露出,最後鍍上n型電極161以及p型電極162, 形成水平式發光二極體結構。 第2圖為本發明第二實施例之藍色發光二極體示意圖。與第 一實施例不同之處在於,磊晶用基板移除後,直接在 表面及金屬基板23背面,分別鍍設η型電極261及p型背面電極 262,形成垂直式發光一極體結構。其餘結構包括GaN發光蠢晶層 222 P_GaN蠢a曰層223、鏡面反射層241、1了〇透明導電層242及空 氣層或低介電材料層25則與第一實施例相同。 第3a_3d圖為本發明第三實施例之製造過程示意圖,本實施例 亦為監色發光一極體。先在磊晶用基板31上依序長成n_GaN磊晶層 321、GaN發光磊晶層322及p-GaN磊晶層323。接著鍍p型電極361。 ^再以蝕刻製程將部份n_GaN層321裸露出,並形成η型電極362,如 .第3a圖所示。為去除透光率較低之磊晶用基板31,如第3b圖所示, 藉由環氧樹脂38,將玻璃暫時基板37貼附在電極361、362表面, 便可將磊晶用基板31移除,而後於其上鍍上ιτ〇透明導電層。 接著’提供-如第基板33 ’其上純設有鏡面反射 層341 ’且具有波峰波谷之結構。將磊晶層32 i及ίτ〇透明導電層μ] 1282183 直接貼附在鏡面反射層341上,刻空氣層35提供相同的折射效果, 如第3c圖所示。最後,將環氧樹脂38溶融,去除玻璃暫時基板37, 即完成本實施例平面式電極之藍色發光二極體,如第3d圖所示。 第4圖為本發明第四實施例之垂直式藍色發光二極體示意 圖。本實施例與第三實施例大致相同,不同之處在於,ITO透明導 電層442貼附至鏡面反射層441之後,再鍍設η型背面電極462於金 屬基板43背面,形成垂直式發光二極體結構。其餘結構包括n-GaN 磊晶層421、GaN發光磊晶層422、p-GaN磊晶層423、p型電極461 及空氣層45則與第三實施例相同。 第5a-5d圖為本發明第五實施例之製造過程示意圖,本實施例 亦為藍色發光二極體。與第三實施例相似地,先在磊晶用基板上 依序長成η-GaN磊晶層521、GaN發光磊晶層522及p-GaN磊晶層 523。以程序將p-GaN層523以及n_GaN層521裸露出,並形成 p型電極561以及η型電極562。藉由環氧樹脂58,將玻璃暫時基板 57貼附在電極561、562表面,便可將磊晶用基板移除。接著,與 第三實施例不同,為在磊晶層521底部局部鍍設一厚度約3μπι金屬 陣列59,如第5a圖所示。金屬陣列59的形狀可為均勻分布的正方 形、圓形、矩形或其他形狀,並具有歐姆接觸及鏡面反射的效果。 本實施例之矽基板53表面為平面,鍍設其上之鏡面反射層54亦為 平面,如第5b圖所示。將金屬陣列59以貼附或其他方式結合於鏡 面反射層54之上,便可形成空氣層55,如第5e圖所示。最後,將 環氧樹脂58熔融,去除玻璃暫時基板57,即完成本實施例之平面 式藍光二極體,如第5d圖所示。 第6圖為本發明第六實施例之垂直式藍色發光二極體示意 圖。本實施例與第五實施例大致相同,不同之處在於,將金屬陣 1282183 列69以貼附或其他方式結合於鏡面反射層64之上,形成空氣層65 後,再鍍設η型背面電極662於金屬基板63背面。最後將環氧樹脂 - 溶融,去除玻璃暫時基板5形成如圖所示之垂直式發光二極體結 構。亦可於去除玻璃暫時基板後再鑛設η型背面電極於金屬基 板63背面。本實施例之其餘結構包括D-GaN磊晶層621、GaN發光 . 蟲晶層622、p-GaN蠢晶層623、鏡面反射層64及p型電極661與第五 實施例大致相同。 第7a及7b圖為本發明第七實施例之製造過程示意圖,本實施 _ 例為紅光二極體,製造過程輿第五實施例相似。先在GaAs磊晶用 基板上依序長成n-AlGalnP磊晶層721、AlGalnP發光磊晶層722及 p-AlGalnP磊晶層723。接著鍍設p型電極761。藉由環氧樹脂將玻 璃暫時基板貼附在電極761表面,便可將磊晶用基板移除。接著, 在n-AlGalnP蠢晶層721底部局部鍍設一金屬陣列79,形成如第7a 圖所不之結構。金屬陣列79具有歐姆接觸及鏡面反射的效果。本 貫施例之矽基板73表面及鍍設於其上之鏡面反射層74亦為平面。 將鏡面反射層74貼附在金屬陣列79上後,便可形成空氣層75。接 著將環氧樹脂熔融,去除玻璃暫時基板。最後,以lift-off程序將部 伤n AlGalnP層723裸露出,以形成!!型電極762,如第71>圖所示。 紅光二極體之製程亦可如第四、第五及第六實施例之藍光二 極體’惟發光材料採用AlGalnP。 、 上迷η施例中,空氣層亦可改為填充折射係數小於2的材 料例如Si〇2、MgF#。此外,亦可於鏡面反射層表面鐘設一層 至屬霉、層以增強晶片黏貼的效果。金屬黏貼層可完整鍍設在 鏡面反射層表面,形成相同的剖面結構;亦可僅鍍設在鏡面反射 層的波峰表面。 1282183 綜合來說,本發明之發光二極體結構之重點在於:發光磊晶 層及鏡面反射層之關係,亦即鏡面反射層僅局部直接或間接與發 光磊晶層結合。而本發明製造方法之重點在於:如何將鏡面反射 層之局部直接或間接與發光磊晶層結合。 就結構而言,可進一步定義鏡面反射層與發光磊晶層相向之 反射面中,未直接或間接與發光磊晶層結合之反射面為『第一表 面』,如第一實施例之波谷;直接或間接與發光磊晶層結合之反 射面為『第二表面』,如第一實施例之波峰。第一表面之大小應 可避免發生光繞射5因此通常需大於光波長。 本發明之之永久基板可採用秒基板、金屬基板或讚石基板。 此外,鏡面反射層之底部亦可藉由電鍍技術形成散熱基板,如金 屬銅製之基板。本發明之鏡面反射層以及金屬黏貼層之材質並無 特殊限制,可為含有銦、錫、銘、金、顧、白金、鋅、銀、鍺、 鎳、金鋅、金鈹、金鍺、金鍺鎳之物質或其中一種以上組合而成 具反射鏡以及黏貼功能之多層結構。透明導電層之材料則可為氧 化銦錫(ITO)、氧化鋅鋁(ΙΖ(Χ·Α1)、氧化銥(Ιι·02)、氮化鈦(TiN)、 氮化钽(TaN)或氧化鎳(NiO)。 此外,本發明全反射型發光二極體之製程方法並不限於上述 實施例,只要是可以將鏡面反射層之局部直接或間接結合至發光 磊晶層者皆可;例如磊晶層與其他層的結合可採用晶片黏貼技術 或其他適當程序,電極的鍍設可視情況,在鏡面反射層輿發光蠢 晶層結合之前或之後進行。 1282183 壞氧樹脂 38 - 58 金屬陣列 59 〜69、79 n-AlGalnP磊晶層 721 AlGalnP發光磊晶層 722 p-AlGalnP蠢晶層 7231282183 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode and a method of manufacturing the same, and more particularly to a combination of a specularly reflective layer and the luminescent epitaxial layer, which is only partially or directly combined. Reflective light-emitting diode and method of manufacturing the same. [Prior Art] The structure of a general light-emitting diode mainly includes a permanent substrate and a light-emitting layer. When the light emitted by the conventional light-emitting diode passes through the semiconductor material to the air, the reduction of the refractive index often leads to a total reflection phenomenon, and the rain causes the luminous efficiency to be greatly reduced. In order to improve the luminous efficiency and brightness, a conventional technique is to plate a specular reflection layer on the bottom of the luminescent layer, redirect the reflected light back to the air D, and also improve the package structure of the illuminating diode or emit light. The surface of the diode is roughened to improve luminous efficiency. However, the above-mentioned conventional light-emitting diodes have a completely continuous material layer structure, and thus are not easily changed, and are further improved. The present inventors have incorporated the semiconductor material properties and optical principles into the improvement of the light-emitting diode based on years of research and development experience in photovoltaic elements and processes, and finally obtained the "total reflection type light-emitting diode and its manufacturing method" of the present invention. SUMMARY OF THE INVENTION An object of the present invention is to provide a total reflection type light-emitting diode and a method of manufacturing the same, which have the advantages of enhancing luminous efficiency and reducing manufacturing cost. The total reflection type light-emitting diode of the present invention comprises at least a light-emitting layer and a specular reflection layer' and the specular reflection layer is only partially or directly bonded to the crystal layer. Wherein the specular reflection layer and the reflective surface facing the luminescent epitaxial layer are not directly connected to each other, or are indirectly 舆 发光 发光 尾 尾 知 知 知 知 知 知 知 知 知 知 τ τ τ τ τ τ τ τ τ τ τ τ τ τ From people, I and Le Yiyi back, directly better than the wavelength of light. A younger face. The surface of the younger brother is lighter than the material, and the light crystal layer can include air, low refractive index material. "Which is the occasional depletion drum (4). The refractive index is usually less than 2. - The refractive index of the refractive index is above the surface. And the luminescent epitaxial layer and or - transparent conductive layer, or other suitable materials = emulsified indium tin (Qing Zinc, 氧化 ) ) 、 、 、 、 氧化 氧化 氧化 氧化 氧化 氧化 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Or nickel oxide (Ni〇). 'Reflection / the first surface of the mirror / shot f can be coplanar; the mirror surface - the surface and the luminescent crystal layer preferably include - metal Array of reeds. However, the first surface and the second surface of the specularly reflective layer may also be non-coplanar d θ - the first surface or the second surface of the specularly reflective layer generally forms an array of a plurality of monolithic surfaces, such as a circle, An array formed of rectangles or squares. The material of the light-emitting layer of the present invention is preferably a nitrided series or a scaled indium series material, and the bottom surface of the surface reflective layer usually includes a -second substrate, a metal substrate or a diamond substrate. The invention produces a total reflection type light emitting diode The method comprises at least the steps of: directly or indirectly bonding a part of a specular reflection layer to a luminescent epitaxial layer. The luminescent epitaxial layer of the method of the invention may partially form a metal array layer, and then the metal array layer and the mirror surface. The reflection layer is combined. The reflection surface of the mirror reflection layer and the luminescent epitaxial layer may be a plane. Or, the specular reflection layer has a shape of a peak and a trough; the structure may have a peak and a trough on a surface by forming a specular reflection layer first. The shape of the permanent substrate is achieved. The permanent substrate 1282183 pattern etching process forms a uniformly distributed four grooves, and then the mirror reflection layer 141 ' is plated to form the specular reflection layer ι41 to form a cross-sectional structure having peaks and troughs; _ 1e The flip-flop substrate 11 and the epitaxial layer 12M23 are flipped, and then bonded to the specular reflection layer 141 by wafer bonding. At this time, the air layer 15 is between the valley and the transparent conductive layer 142, and the beam is After the interface of the epitaxial layer 123 / the transparent conductive layer 142 / the air layer 15 and the air layer 15 / specular reflection layer 141, the angle of refraction is different from that of the direct through the beam The layer 123 / transparent conductive layer 142 / specular reflection layer 141 interface, will cause the effect of total reflection. The first Id diagram is to remove the epitaxial substrate π, the epitaxial layer etch φ etched into the P-GaN layer 123 exposed, Finally, the n-type electrode 161 and the p-type electrode 162 are plated to form a horizontal light-emitting diode structure. Fig. 2 is a schematic view of the blue light-emitting diode according to the second embodiment of the present invention, which is different from the first embodiment in After the epitaxial substrate is removed, the n-type electrode 261 and the p-type back surface electrode 262 are respectively plated on the surface and the back surface of the metal substrate 23 to form a vertical light-emitting diode structure. The remaining structure includes the GaN light-emitting layer 222. The P_GaN stray layer 223, the specular reflection layer 241, the tantalum transparent conductive layer 242, and the air layer or low dielectric material layer 25 are the same as in the first embodiment. 3a-3d is a schematic view of a manufacturing process according to a third embodiment of the present invention, and this embodiment is also a color-sensing light-emitting body. First, an n-GaN epitaxial layer 321, a GaN light-emitting epitaxial layer 322, and a p-GaN epitaxial layer 323 are sequentially grown on the epitaxial substrate 31. Next, a p-type electrode 361 is plated. Then, a portion of the n-GaN layer 321 is exposed by an etching process, and an n-type electrode 362 is formed, as shown in Fig. 3a. In order to remove the epitaxial substrate 31 having a low light transmittance, as shown in FIG. 3b, the glass temporary substrate 37 is attached to the surfaces of the electrodes 361 and 362 by the epoxy resin 38, whereby the epitaxial substrate 31 can be used. It is removed and then plated with a transparent conductive layer. Next, a structure is provided which is provided with a specular reflection layer 341' and having a crest wave trough on the substrate 33'. The epitaxial layer 32 i and the ίτ〇 transparent conductive layer μ1 1282183 are directly attached to the specular reflection layer 341, and the engraved air layer 35 provides the same refraction effect, as shown in Fig. 3c. Finally, the epoxy resin 38 is melted to remove the glass temporary substrate 37, that is, the blue light-emitting diode of the planar electrode of the present embodiment is completed, as shown in Fig. 3d. Fig. 4 is a schematic view showing a vertical blue light-emitting diode according to a fourth embodiment of the present invention. This embodiment is substantially the same as the third embodiment except that the ITO transparent conductive layer 442 is attached to the specular reflection layer 441, and then the n-type back surface electrode 462 is plated on the back surface of the metal substrate 43 to form a vertical light-emitting diode. Body structure. The remaining structure including the n-GaN epitaxial layer 421, the GaN luminescent epitaxial layer 422, the p-GaN epitaxial layer 423, the p-type electrode 461, and the air layer 45 are the same as those of the third embodiment. 5a-5d are schematic views showing a manufacturing process of a fifth embodiment of the present invention, and this embodiment is also a blue light emitting diode. Similarly to the third embodiment, the η-GaN epitaxial layer 521, the GaN luminescent epitaxial layer 522, and the p-GaN epitaxial layer 523 are sequentially grown on the epitaxial substrate. The p-GaN layer 523 and the n-GaN layer 521 are exposed in a program to form a p-type electrode 561 and an n-type electrode 562. The substrate for epitaxy can be removed by attaching the glass temporary substrate 57 to the surfaces of the electrodes 561 and 562 by the epoxy resin 58. Next, unlike the third embodiment, a metal array 59 having a thickness of about 3 μm is partially plated on the bottom of the epitaxial layer 521 as shown in Fig. 5a. The shape of the metal array 59 may be a uniformly distributed square, circular, rectangular or other shape with an ohmic contact and a specular reflection effect. The surface of the ruthenium substrate 53 of this embodiment is a flat surface, and the specular reflection layer 54 plated thereon is also a flat surface as shown in Fig. 5b. The metal layer 59 is attached or otherwise bonded to the specular reflection layer 54 to form an air layer 55 as shown in Fig. 5e. Finally, the epoxy resin 58 is melted to remove the glass temporary substrate 57, i.e., the planar blue diode of this embodiment is completed, as shown in Fig. 5d. Figure 6 is a schematic view of a vertical blue light-emitting diode according to a sixth embodiment of the present invention. This embodiment is substantially the same as the fifth embodiment except that the metal array 1282183 column 69 is attached or otherwise bonded to the specular reflection layer 64 to form an air layer 65, and then an n-type back surface electrode is plated. 662 is on the back side of the metal substrate 63. Finally, the epoxy resin is melted, and the glass temporary substrate 5 is removed to form a vertical light emitting diode structure as shown. It is also possible to deposit an n-type back electrode on the back surface of the metal substrate 63 after removing the glass temporary substrate. The remaining structure of this embodiment includes a D-GaN epitaxial layer 621, GaN light emission. The crystal layer 622, the p-GaN stray layer 623, the specular reflection layer 64, and the p-type electrode 661 are substantially the same as those of the fifth embodiment. 7a and 7b are schematic views showing the manufacturing process of the seventh embodiment of the present invention. The present embodiment is a red light diode, and the manufacturing process is similar to the fifth embodiment. First, an n-AlGalnP epitaxial layer 721, an AlGalnP luminescent epitaxial layer 722, and a p-AlGalnP epitaxial layer 723 are sequentially grown on the GaAs epitaxial substrate. Next, a p-type electrode 761 is plated. The epitaxial substrate can be removed by attaching the glass temporary substrate to the surface of the electrode 761 by epoxy resin. Next, a metal array 79 is partially plated on the bottom of the n-AlGalnP stray layer 721 to form a structure as shown in Fig. 7a. Metal array 79 has the effect of ohmic contact and specular reflection. The surface of the ruthenium substrate 73 of the present embodiment and the specular reflection layer 74 plated thereon are also planar. After the specular reflection layer 74 is attached to the metal array 79, the air layer 75 can be formed. The epoxy resin is then melted to remove the glass temporary substrate. Finally, the damage n AlGalnP layer 723 is exposed by a lift-off procedure to form a !! type electrode 762 as shown in Fig. 71. The process of the red diode may also be the same as the blue diode of the fourth, fifth and sixth embodiments, except that the luminescent material is AlGalnP. In the above example, the air layer may also be filled with a material having a refractive index of less than 2, such as Si〇2, MgF#. In addition, a layer of mold can be placed on the surface of the specular reflection layer to enhance the adhesion of the wafer. The metal adhesive layer can be completely plated on the surface of the specular reflection layer to form the same cross-sectional structure; it can also be plated only on the peak surface of the specular reflection layer. 1282183 In summary, the structure of the light-emitting diode of the present invention focuses on the relationship between the luminescent epitaxial layer and the specularly reflective layer, that is, the specularly reflective layer is only partially or directly bonded to the luminescent epitaxial layer. The focus of the manufacturing method of the present invention is how to combine portions of the specularly reflective layer directly or indirectly with the luminescent epitaxial layer. In terms of structure, the reflective surface in which the specular reflection layer and the luminescent epitaxial layer face each other may be further defined, and the reflective surface not directly or indirectly combined with the luminescent epitaxial layer is a “first surface”, as in the trough of the first embodiment; The reflecting surface directly or indirectly combined with the luminescent epitaxial layer is the "second surface" as the peak of the first embodiment. The size of the first surface should be such that light diffraction 5 is avoided and therefore typically needs to be greater than the wavelength of light. The permanent substrate of the present invention may employ a second substrate, a metal substrate or a Zanshi substrate. In addition, the bottom of the specular reflection layer can also be formed by a plating technique, such as a substrate made of metal copper. The material of the specular reflection layer and the metal adhesion layer of the present invention is not particularly limited, and may be contained indium, tin, indium, gold, gu, platinum, zinc, silver, iridium, nickel, gold zinc, gold ruthenium, gold ruthenium, gold. A multilayer structure in which a nickel-nickel material or a combination of one or more of them is provided with a mirror and a pasting function. The material of the transparent conductive layer may be indium tin oxide (ITO), zinc aluminum oxide (ΙΖ·Α1), yttrium oxide (Ιι·02), titanium nitride (TiN), tantalum nitride (TaN) or nickel oxide. (NiO) In addition, the method for manufacturing the total reflection type light-emitting diode of the present invention is not limited to the above embodiments, as long as the part of the specular reflection layer can be directly or indirectly bonded to the luminescent epitaxial layer; for example, epitaxial The combination of the layer and the other layers may be performed by a wafer bonding technique or other suitable procedure, and the plating of the electrodes may be performed before or after the combination of the specular reflection layer and the light-emitting layer. 1282183 Odor Resin 38 - 58 Metal Array 59 ~ 69 , 79 n-AlGalnP epitaxial layer 721 AlGalnP luminescent epitaxial layer 722 p-AlGalnP stupid layer 723

1 ^·7-1 ^·7-

Claims (1)

1282183 卞月〜修 ILi_ 一一^—一1 ***^―~—'··'»'· ^j 〜-J 十、申請專利範圍·· 1. 一種全反射型發光二極體,至少包括一發光蠢晶層及一鏡面反 射層,且該鏡面反射層僅局部直接或間接與該發光磊晶層結 合6 2·如專利申請範圍第1項所述之全反射型發光二極體,其中該鏡 — 面反射層與該發光磊晶層相向之反射面中,未直接或間接與 該發光磊晶層結合之反射面定義為第一表面,直接或間接與 ^ 該發光磊晶層結合之反射面定義為第二表面。 3·如專利申請範圍第2項所述之全反射型發光二極體,其中該鏡 面反射層之第一表面及第二表面分別形成波峰及波谷,且讀 波谷之寬度或直徑大於光波長。 4.如專利申請範圍第2項所述之全反射型發光二極體,其中該鏡 面反射層之第一表面與該發光蠢晶層之間包括空氣。 5·如專利申請範圍第2項所述之全反射型發光二極體,其中該鏡 面反射層之第一表面與該發光磊晶層之間包括低折射係數柯 料。 Φ 6.如專利申請範圍第5項所述之全反射型發光二極體,其中該低 折射係數材料之折射係數小於2。 7·如專利申請範圍第2項所述之全反射型發光二極體,其中該鏡 面反射層與該發光磊晶層之間尚包括一金屬黏貼層。 8. 如專利申請範圍第2項所述之全反射型發光二極體,其中該鏡 面反射層與該發光磊晶層之間尚包括一透明導電層。 9. 如專利申請範圍第8項所述之全反射型發光二極體,其中該透 明導電層之材料係選自氧化銦錫(ITO)、氧化辞鋁(IZ0:A1)、 氧化銥(Ir02)、氮化鈦(TiN)、氮化钽(TaN)及氧化鎳(NiO)所組 1282183 之群。 10· 如專利申請範圍第2項所述之全反射型發光二極體,其中該 鏡面反射層之第一表面與第二表面係共平面。 11. 如專利申請範圍第1〇項所述之全反射型發光二極體,其中 該鏡面反射層之第二表面與該發光磊晶層之間尚包括一金屬 陣列層。 12. 如專利申請範圍第2項所述之全反射型發光二極體,其中該 鏡面反射層之第一表面與第二表面非共平面。 φ 13· 如專利申請範圍第2項所述之全反射型發光二極體,其中該 鏡面反射層之該第一表面或第二表面為複數個單元表面形成 之陣列。 14·如專利申請範圍第2項所述之全反射型發光二極體,其中該 鏡面反射層之該第一表面或第二表面為複數個圓形、矩形或 正方形形成之陣列。 15. 如專利申請範圍第1項所述之全反射型發光二極體,其中該 發光磊晶層之材料為氮化鎵系列或磷化鋁鎵銦系列材料。 16· 如專利申請範圍第1項所述之全反射型發光二極體,其中該 ® 鏡面反射層之底表面包括一石夕基板、金屬基板或鑽石基板。 17· —種製造全反射型發光二極體之方法,至少包括一步驟: 將一鏡面反射層之局部直接或間接與一發光磊晶層結合。 18.如專利申請範圍第17項所述之方法,其中該發光磊晶層係 先局部形成一金屬陣列層,該金屬陣列層再與該鏡面反射層 結合。 19·如專利申請範圍第18項所述之方法,其中該鏡面反射層與 該發光蟲晶層相向之反射面為平面。 1282183 ' 2〇.如專利申請範圍第17項所述之方法,其中該鏡面反射層具 有波峰及波谷之形狀。 21·如專利申請範圍第20項所述之方法,其中該鏡面反射層係 先形成於一表面具有波峰及波谷形狀之永久基板上,使該鏡 面反射層亦具有波舉及波谷之形狀。 22·如專利申請範圍第21項所述之方法,其中該永久基板係以 圖形钱刻(pattern etching)程序形成表面之波峰及波谷。 23.如專利申請範圍第Π項所述之方法,其中該發光磊晶層並 ^ 先形成一透明導電層。 24· 如專利申請範圍第17項所述之方法,其中該鏡面反射層表 面先形成一金屬黏貼層。 25· 如專利申請範圍第17項所述之方法,其中該發光磊晶層之 光射出表面先形成一η型電極及一P型電極,再與該鏡面反射 層結合。 26. 如專利申請範圍第17項所述之方法,其中該發光磊晶層之 光射出表面先形成一η (或ρ)塑電極,然後與該鏡面反射層結 合’再於該發光蠢晶層之光射出表面形成一ρ (或η)型電極。 • 27.如專利申請範圍第17項所述之方法,其中該發光磊晶層之 光射出表面先形成一η (或ρ)塑電極,然後與該鏡面反射層結 合,再於該鏡面反射層底部直接或間接形成一Ρ (或η)型電極。 28.如專利申請範圍第π項所述之方法,其中該發光磊晶層係 先形成於一磊晶用基板上。 29· 如專利申請範圍第28項所述之方法,其中該鏡面反射層之 局部直接或間接與該發光磊晶層結合後,即將該磊晶用基板 去除。 16 1282183 30·如專利申請範圍第28項所述之方法,其中該發光磊晶層與 該蠢晶用基板係翻轉後,再使該鏡面反射層之局部直接或間 接與該發光磊晶層結合。 31. 如專利申請範圍第28項所述之方法,其中該發光磊晶層之 表面先結合一暫時基板,接著將該磊晶用基板去除,再將該 鏡面反射層之局部直接或間接與該發光磊晶層結合,最後將 該暫時基板去除。 32·如專利申請範圍第17項所述之方法,其中該鏡面反射層之 局部係以晶片黏貼技術(wafer bonding)直接或間接與該發光 磊晶層結合。 33.如專利申請範圍第Π項所述之方法,其中該鏡面反射層之 底部並以電鍍技術形成散熱基板。1282183 卞月~修ILi_一一^—一1 ***^―~—'··'»'·^j ~-J X. Patent application scope·· 1. A total reflection type light-emitting diode, at least Including a luminescent layer and a specular layer, and the specular layer is only partially or indirectly bonded to the luminescent epitaxial layer. 6 2 . The total reflection type luminescent diode according to claim 1 of the patent application, Wherein the reflective surface of the mirror-reflecting layer and the luminescent epitaxial layer, the reflecting surface not directly or indirectly combined with the luminescent epitaxial layer is defined as a first surface, directly or indirectly combined with the luminescent epitaxial layer The reflective surface is defined as the second surface. The total reflection type light-emitting diode according to the second aspect of the invention, wherein the first surface and the second surface of the specular reflection layer respectively form peaks and troughs, and the width or diameter of the read trough is larger than the wavelength of the light. 4. The total reflection type light emitting diode according to claim 2, wherein air is included between the first surface of the specular reflection layer and the light emitting layer. The total reflection type light-emitting diode according to the second aspect of the invention, wherein the first surface of the specular reflection layer and the luminescent epitaxial layer comprise a low refractive index material. Φ 6. The total reflection type light-emitting diode according to claim 5, wherein the low refractive index material has a refractive index of less than 2. The total reflection type light-emitting diode according to claim 2, wherein a metal adhesion layer is further included between the specular reflection layer and the luminescent epitaxial layer. 8. The total reflection type light emitting diode according to claim 2, wherein a transparent conductive layer is further included between the specular reflection layer and the luminescent epitaxial layer. 9. The total reflection type light-emitting diode according to claim 8, wherein the material of the transparent conductive layer is selected from the group consisting of indium tin oxide (ITO), aluminum oxide (IZ0: A1), and cerium oxide (Ir02). ), a group of 1,282,183 groups of titanium nitride (TiN), tantalum nitride (TaN), and nickel oxide (NiO). The total reflection type light emitting diode according to claim 2, wherein the first surface of the specular reflection layer is coplanar with the second surface. 11. The total reflection type light emitting diode according to claim 1, wherein a metal array layer is further included between the second surface of the specular reflection layer and the luminescent epitaxial layer. 12. The total reflection type light emitting diode according to claim 2, wherein the first surface of the specular reflection layer is non-coplanar with the second surface. The total reflection type light emitting diode according to the second aspect of the invention, wherein the first surface or the second surface of the specular reflection layer is an array formed by a plurality of unit surfaces. The total reflection type light emitting diode according to claim 2, wherein the first surface or the second surface of the specular reflection layer is an array of a plurality of circles, rectangles or squares. 15. The total reflection type light emitting diode according to claim 1, wherein the material of the light emitting epitaxial layer is a gallium nitride series or an aluminum gallium indium phosphide series material. The total reflection type light emitting diode according to claim 1, wherein the bottom surface of the ® specular reflection layer comprises a stone substrate, a metal substrate or a diamond substrate. 17. A method of fabricating a total reflection type light emitting diode comprising at least one step of: bonding a portion of a specularly reflective layer directly or indirectly to a luminescent epitaxial layer. 18. The method of claim 17, wherein the luminescent epitaxial layer first partially forms a metal array layer, the metal array layer being combined with the specularly reflective layer. The method of claim 18, wherein the reflective surface of the specularly reflective layer and the luminescent layer is planar. The method of claim 17, wherein the specularly reflective layer has the shape of a crest and a trough. The method of claim 20, wherein the specularly reflective layer is formed on a permanent substrate having a peak and a trough shape on the surface, such that the specular reflection layer also has a wave-like and trough shape. The method of claim 21, wherein the permanent substrate forms a peak and a trough of the surface by a pattern etching process. 23. The method of claim 3, wherein the luminescent epitaxial layer first forms a transparent conductive layer. The method of claim 17, wherein the surface of the specular reflection layer first forms a metal adhesion layer. The method of claim 17, wherein the light emitting surface of the luminescent epitaxial layer first forms an n-type electrode and a p-type electrode, and then combines with the specular reflection layer. 26. The method of claim 17, wherein the light emitting surface of the luminescent epitaxial layer first forms an η (or ρ) plastic electrode, and then combines with the specular reflective layer to re-form the luminescent layer The light exits the surface to form a ρ (or η) type electrode. The method of claim 17, wherein the light exiting surface of the luminescent epitaxial layer first forms an η (or ρ) plastic electrode, and then combined with the specular reflective layer, and the specular reflective layer A Ρ (or η) type electrode is formed directly or indirectly at the bottom. 28. The method of claim π, wherein the luminescent epitaxial layer is formed on an epitaxial substrate. The method of claim 28, wherein the epitaxial substrate is removed by directly or indirectly bonding the specularly reflective layer to the luminescent epitaxial layer. The method of claim 28, wherein the luminescent epitaxial layer and the stray substrate are inverted, and then the portion of the specular reflective layer is directly or indirectly combined with the luminescent epitaxial layer. . The method of claim 28, wherein the surface of the luminescent epitaxial layer is bonded to a temporary substrate, and then the substrate for epitaxy is removed, and the portion of the specular reflective layer is directly or indirectly The luminescent epitaxial layer is bonded, and finally the temporary substrate is removed. 32. The method of claim 17, wherein the portion of the specularly reflective layer is bonded directly or indirectly to the luminescent epitaxial layer by wafer bonding. The method of claim 3, wherein the bottom of the specularly reflective layer forms a heat dissipating substrate by electroplating. 17 1282183 十一、圖式: l42\ 123〜 wmmmmmm 141 ) 122/ 121 ’ 11 第la圖 第lb圖17 1282183 XI, schema: l42\ 123~ wmmmmmm 141 ) 122/ 121 ’ 11 first picture lb 第2圖 1Figure 2 1
TW94123568A 2005-07-12 2005-07-12 Total-reflection light emitting diode and production method thereof TWI282183B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94123568A TWI282183B (en) 2005-07-12 2005-07-12 Total-reflection light emitting diode and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94123568A TWI282183B (en) 2005-07-12 2005-07-12 Total-reflection light emitting diode and production method thereof

Publications (2)

Publication Number Publication Date
TW200703707A TW200703707A (en) 2007-01-16
TWI282183B true TWI282183B (en) 2007-06-01

Family

ID=38777636

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94123568A TWI282183B (en) 2005-07-12 2005-07-12 Total-reflection light emitting diode and production method thereof

Country Status (1)

Country Link
TW (1) TWI282183B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546829B2 (en) 2011-07-19 2013-10-01 Phostek, Inc. Posts in glue layer for group-III nitride LEDs
TWI456793B (en) * 2011-08-15 2014-10-11

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395344B (en) * 2007-02-15 2013-05-01 Epistar Corp Light-emitting diode and manufacturing method thereof
TW200950138A (en) * 2008-05-26 2009-12-01 Genesis Photonics Inc LED chip of high-brightness light-emitting device
TWI419362B (en) * 2008-10-06 2013-12-11 Global Fiberoptics Inc High luminous efficiency solid state light emitting element and its manufacturing method
DE102008051048A1 (en) 2008-10-09 2010-04-15 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546829B2 (en) 2011-07-19 2013-10-01 Phostek, Inc. Posts in glue layer for group-III nitride LEDs
TWI456793B (en) * 2011-08-15 2014-10-11

Also Published As

Publication number Publication date
TW200703707A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
US11522104B2 (en) Light emitting device, and method for manufacturing thereof
US7018859B2 (en) Method of fabricating AlGaInP light-emitting diode and structure thereof
TWI244221B (en) Micro-reflector containing flip-chip light emitting device
US7067340B1 (en) Flip-chip light emitting diode and fabricating method thereof
US10050181B2 (en) Light emitting diode and fabrication method thereof
US6933160B2 (en) Method for manufacturing of a vertical light emitting device structure
US8664019B2 (en) Vertical group III-nitride light emitting device and method for manufacturing the same
US20070018184A1 (en) Light emitting diodes with high light extraction and high reflectivity
US6759685B2 (en) High-brightness light emitting diode
CN101536196A (en) Improvements in external light efficiency of light emitting diodes
TW200915603A (en) Light-emitting chip device with high thermal conductivity
TWI282183B (en) Total-reflection light emitting diode and production method thereof
TW200843144A (en) Transparent light emitting diodes
TWM255518U (en) Vertical electrode structure of Gallium Nitride based LED
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
TW200915604A (en) Light-emitting diode chip with high light extraction and method for manufacturing the same
CN108933187B (en) LED chip with luminous surface in specific plane geometric figure and preparation method thereof
CN1305633C (en) Laser separated die with tapered sidewalls for improved light extraction
TW201208134A (en) Light emitting device and semiconductor wafer
TW200926462A (en) Light-emitting device
CN214313231U (en) Reflection structure and GaN-based thin film type structure LED chip
CN109155351A (en) Semiconductor light-emitting apparatus
CN102629653B (en) Light-emitting component and its preparation method
CN101593801B (en) Method for preparing inverted light-emitting diodes
Wang et al. High-performance nitride vertical light-emitting diodes based on Cu electroplating technical route

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees