TWI276789B - Capacitive pressure sensor - Google Patents

Capacitive pressure sensor Download PDF

Info

Publication number
TWI276789B
TWI276789B TW95105725A TW95105725A TWI276789B TW I276789 B TWI276789 B TW I276789B TW 95105725 A TW95105725 A TW 95105725A TW 95105725 A TW95105725 A TW 95105725A TW I276789 B TWI276789 B TW I276789B
Authority
TW
Taiwan
Prior art keywords
electrode layer
capacitive pressure
conductive structure
pressure sensor
conductive
Prior art date
Application number
TW95105725A
Other languages
Chinese (zh)
Other versions
TW200732641A (en
Inventor
Hui-Chi Su
Yu-Sheng Hsieh
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW95105725A priority Critical patent/TWI276789B/en
Application granted granted Critical
Publication of TWI276789B publication Critical patent/TWI276789B/en
Publication of TW200732641A publication Critical patent/TW200732641A/en

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

A capacitive pressure sensor includes a substrate. A first electrode layer is disposed on the substrate. A first conductive structure is disposed on a surface of the first electrode layer. An insulation elastic supporting structure is disposed on the first electrode layer. A second electrode layer is disposed on the elastic supporting structure, so that the second electrode layer is above the first electrode layer. A second conductive structure is disposed on a surface of the second electrode layer, wherein the second conductive structure is conformal to the first conductive structure. When an external pressure is applied on the second electrode layer and causes the elastic supporting structure in contraction, a capacitance value is changed due to an overlapping between the first electrode layer with the first conductive structure and the second electrode layer with the second conductive structure.

Description

12767 893twfd〇c^ 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種電容式壓力感測技術,且特別是 有關於-種電容式壓力感測器,增加電容變化量的靈敏 度,進而達到壓力感測的靈敏度。 【先前技術】 電容式壓力感測器有可接受的靈敏度、低消耗功率、 長時間的穩定度、以及良好溫度特性等特點。因此電容式 壓力感測已普遍應用在許多不同的領域,包括工業、醫 療、生化···料。目前,大部分的電容式壓力感測器仍是 以石夕微加工技術(Silicon Micromachining Technology)的方 式製作。但是矽基材本身的材料特性以及結構因素,其電 谷變化量一般都很小,因此傳統的矽材質電容式壓力感測 器的靈敏度在一些應用上仍有不足的缺點。 因此’電谷式I力感測裔的製造業者,仍繼續研發具 有較高靈敏度的電容式壓力感測器。 【發明内容】 本發明的目的之一就是在提供一種電容式壓力感測 器,也可以使用導電的高分子材料做為電容基材,容易製 作出使具有高靈敏的電容變化量,以有效增加壓力感測的 靈敏度。 本發明提出/種電容式壓力感測器,包括一基板。 又,一第一電極層設置於該基板之上。一第一導電結構, 位於該第一電極層的一表面。一絕緣彈性支撐結構,設置 6 127678©3twfd〇c/g 於該第一電極層上。一第二電極層,設置於該彈性支撐結 構上,使該第二電極層位於該第一電極層上方。一第二導 電結構,位於第二電極層的一表面,其中該第二導電結構 與第一導電結構是相互共形結構。當該第二電極層受一外 部壓力時,促使該彈性支撐結構收縮時,藉由該第一電極 層與該第一導電結構和該第二電極層與該第二導電結構之 間的重疊,以改變一電容值。 本發明電容式壓力感測器,可以使用導電的南分子材 料做為電容基材。 依據本發明一實施例,在前述電容式壓力感測器中, 該第一電極層與該第一導電結構是單一結構體或是分開結 構體。 依據本發明一實施例,在前述電容式壓力感測器中, 該第二電極層與該第二導電結構是單一結構體或是分開結 構體。 依據本發明一實施例,在前述電容式壓力感測器中, 更包括一防止短路結構,設置於該第一電極層與該第二電 極層之間,以防止當該第二電極層受該外部壓力時,該第 一電極層與該第二電極層之間的電性短路。 依據本發明一實施例,在前述電容式壓力感測器中、, 該防止短路結構是一絕緣體,設置在該第一導電結構與該 第二導電結構的至少其一的頂端,以防止該二電極層短路。 依據本發明一實施例,在前述電容式壓力感測器中, 該防止短路結構是一絕緣凸體設置於該二電極層之至少其 7 127678,twfd〇c/g12767 893twfd〇c^ IX, invention description: [Technical field of the invention] The present invention relates to a capacitive pressure sensing technology, and in particular to a capacitive pressure sensor, increasing the amount of capacitance change Sensitivity, which in turn achieves sensitivity to pressure sensing. [Prior Art] Capacitive pressure sensors have acceptable sensitivity, low power consumption, long-term stability, and good temperature characteristics. Therefore, capacitive pressure sensing has been widely used in many different fields, including industrial, medical, and biochemical materials. Currently, most capacitive pressure sensors are still manufactured in the form of Silicon Micromachining Technology. However, the material properties and structural factors of the tantalum substrate itself are generally small, so the sensitivity of the conventional tantalum capacitive pressure sensor still has insufficient shortcomings in some applications. Therefore, the manufacturer of the Electric Valley-type force sensing industry continues to develop capacitive pressure sensors with higher sensitivity. SUMMARY OF THE INVENTION One object of the present invention is to provide a capacitive pressure sensor, which can also use a conductive polymer material as a capacitor substrate, and is easy to produce a highly sensitive capacitance change amount to effectively increase The sensitivity of pressure sensing. The invention proposes a capacitive pressure sensor comprising a substrate. Further, a first electrode layer is disposed on the substrate. A first conductive structure is located on a surface of the first electrode layer. An insulating elastic support structure is provided with 6 127678 © 3 twfd 〇 c / g on the first electrode layer. A second electrode layer is disposed on the elastic support structure such that the second electrode layer is located above the first electrode layer. A second conductive structure is located on a surface of the second electrode layer, wherein the second conductive structure and the first conductive structure are mutually conformal structures. When the second electrode layer is subjected to an external pressure, causing the elastic support structure to contract, by the overlap between the first electrode layer and the first conductive structure and the second electrode layer and the second conductive structure, To change a capacitor value. In the capacitive pressure sensor of the present invention, a conductive south molecular material can be used as a capacitor substrate. According to an embodiment of the invention, in the capacitive pressure sensor, the first electrode layer and the first conductive structure are a single structure or a separate structure. According to an embodiment of the invention, in the capacitive pressure sensor, the second electrode layer and the second conductive structure are a single structure or a separate structure. According to an embodiment of the present invention, the capacitive pressure sensor further includes a short-circuit prevention structure disposed between the first electrode layer and the second electrode layer to prevent the second electrode layer from being affected by the When the external pressure is applied, the electrical short between the first electrode layer and the second electrode layer. According to an embodiment of the present invention, in the capacitive pressure sensor, the short circuit prevention structure is an insulator disposed at a top end of at least one of the first conductive structure and the second conductive structure to prevent the second The electrode layer is shorted. According to an embodiment of the present invention, in the capacitive pressure sensor, the short-circuit prevention structure is an insulating protrusion disposed on at least 7 127678 of the two-electrode layer, twfd〇c/g

一,以限制該絕緣彈性支撐結構的壓縮程度。 依據本發明一實施例,在前述電容式壓力感測器中, 該防止短路結構是在該二電極層之至少其一的表面上,設 置一絕緣層,其中該絕緣層更可以做為產生該電容值的一 介電材料的一部分。 上一依據本發明一實施例,在前述電容式壓力感測器中, 该第一導電結構與第二導電結構之其一為凸出結構,另其 一為共形的凹陷結構。 二一依據本發明一實施例,在前述電容式壓力感測器中, 邊一凸出結構之—例如是由多個凸出單體,分佈成一陣列 所構成。 依據本發明一實施例,在前述電 该二凸出結構之一例如是柱狀、錐狀 或是半球狀。 容式壓力感測器中, 、直條狀、彎曲條狀、 依據本發明一實施例 你則处電容式壓力感測器中First, to limit the degree of compression of the insulating elastic support structure. According to an embodiment of the present invention, in the capacitive pressure sensor, the short circuit preventing structure is disposed on a surface of at least one of the two electrode layers, and an insulating layer is disposed, wherein the insulating layer is further configured to generate the insulating layer Capacitance value of a portion of a dielectric material. According to an embodiment of the present invention, in the capacitive pressure sensor, one of the first conductive structure and the second conductive structure is a convex structure, and the other is a conformal concave structure. According to an embodiment of the invention, in the above capacitive pressure sensor, a side protruding structure is formed, for example, by a plurality of protruding cells distributed in an array. According to an embodiment of the invention, one of the two protruding structures is, for example, columnar, tapered or hemispherical. In a capacitive pressure sensor, a straight strip, a curved strip, according to an embodiment of the invention, you are in a capacitive pressure sensor

该基板與該第二電極層為近似剛性% ^ _ ’钱“容式壓力感測器寸 忒基板為近似剛性體,該第二電極層為軟性俨。 本發二因採用相互共形的第1電結“ 、、,。構,配合多個凸出物與凹陷結構的耦合 …的變化量。也因此,電容式壓力感 ;二的較高靈敏度。 以達到壓力I 易懂 為讓本發明之上述和其他 ,下文特舉較佳實施例, 目的特徵和優點能更明顯 亚配合所附圖式,作詳細說 12767§93twfdoc/g 明如下。 【實施方式】The substrate and the second electrode layer are approximately rigid % ^ _ 'money" capacitive pressure sensor, the substrate is an approximately rigid body, and the second electrode layer is a soft 俨. 1 electric junction ",,,. The amount of change in the coupling of the plurality of protrusions to the recessed structure. Therefore, the capacitive pressure sense; the second is higher sensitivity. In order to achieve the pressure I, it is understood that the above and other preferred embodiments of the present invention, the features and advantages of the present invention will be more apparently described in the accompanying drawings, and the details are as follows: 12767 § 93 twfdoc / g. [Embodiment]

、树明提出-種電容式壓力感測器,其電容結構可以 達到南電容值變化量叫&。又,電容式壓力相器的結 構’適於使用高分子材料做為電容基材,射輔助^ f 技術(Laser-assisted Direct Imprinting,LADI)S作出具^ 面電容值的結構,使具有高靈㈣電容變化量,以有效增 加壓力感測的靈敏度。以下舉一些實施例,做為本發明^ 描述,但不是用來限制本發明。 X 圖1繪不依據本發明一實施例,當電容式壓力感測器 在未受外部壓力時,其結構剖面示意圖。參閱圖丨,電容 式壓力感測器的結構包括一基板1〇〇。又,一電極層1〇2 設置於基板1〇〇之上。一導電結構104設置於電極層1〇2 的一表面。一絕緣彈性支撐結構106,設置於電極層1〇2 上。另一電極層108設置於彈性支撐結構106上。如此, 電極層108是位於電極層1〇2的上方。另一導電結構11〇 位於電極層108的一表面。導電結構1〇4與導電結構11〇 是實質上相互共形的結構。電容式壓力感測器的細部結 構,以及製造方法的一些實施例,會進一步描述於後。又, 在基板100上會有一些所需要的電路,雖然沒有描述,但 是應為一般熟此技藝者可瞭解。 圖2繪示依據本發明一實施例,當電容式壓力感測器 受外部壓力時,其結構剖面示意圖。參閱圖2,當電極層 108承受一外部壓力時,促使由絕緣材料,例如絕緣高分 12767 8933twfd〇c/g 子材料’所製作的彈性支撐結構1〇6收縮,於是電極層1〇8 往電極層102移動。此時,由電極層102與導電結^ 1〇4 所構成的導電結構體,和由電極層108與導電結構110所 構成的導電結構體會有重疊的部份。依重疊的部份的大 小,就可以改變電容值。然而,藉由導電結構104與導電 結構110的設置,使電容的有效面積的大量增加,因此2 增加電容值,也同時增加電容值變化量的靈敏度。 另外’當外部壓力太大時,會使彈性支撐結構106過 度收縮,導致電極層102與電極層108之間的短路。為^ 防止短路的發生,可以增加設置一防止短路結構,其簡單 的結構例如可以是一絕緣凸體112,設置於導電結構1〇4 與導電結構110之其一或是二者。圖2是將絕緣凸體112 設置於導電結構104為例。但是,圖2僅是防止短^結構 的其中一例。其他(未示於圖2),例如也可以將絕緣凸體 112設置在電極層102與電極層108之其一或二者之上収 又或是,絕緣凸體112有可以是一絕緣層,其也可以做為 電谷介電材料的一部分。換句或說,任何可以防止 二 適當結構皆可以設置。 、 又’彈性支撐結構106可以使用高分子材料所製成, 但也不是唯一的選擇,也可以使用其他材料的彈性ς質。’ 如果使用金屬彈性體,則可以兩端增設絕緣的結構。二就 是說,彈性支撐結構106依實際的設計的考量,可以有= 同變化’例如其數量與支撐位置都可以適當變化。不 關於導電結構104與導電結構108的設計,電極層 12767S^3twfA〇c/^ 電結構104可以是單—結構體,例如利用ladi 亍衣^另外也可以是分開的結構體。相同地,電極層 導電結構110可以是單一結構體,例如利用ladi 显付‘作另外也可以是分開的結構體。這只是製作上差 ^而、、°構之間的相互關係特仍是一樣。以下更舉一些實 施例作說明,但不是用來限制本發明。、 對於圖2中的導電結構104與導電結構110,可以是 半面四方形的柱體。才主體的側壁互相可共形(conformal)相 鄉以構成黾谷結構。另外,導電結構丨〇4與導電結構 有可以疋一者為凸出結構,另一者為具有凹陷結構,與凸 出結構共形,以達成電容結構。電容介電物質,可以是空 氣。如果需要,可以在導電結構1〇4與導電結構11()再塗 佈一層絕緣層,除了可以做為前述防止二電極層1〇2、1〇8 的短路以外,也可以做為電容介電物質,以增加電容值。 以下更具體舉一實施例作為說明之用。圖3繪示導電 結構與導電層之間的一結構透視示意圖。參閱圖3,於此 實施例,導電結構104例如是由多個圓柱狀單體所構成。 這些圓柱狀單體分佈於電極層102上,較佳的是均勻分 布,更可以例如是規則的陣列。圖3僅繪出一部分做為說 明之用。又,圓柱狀也是適用的結構中的其中一例。其、它 可以了解的結構,例如是不同戴面的柱狀、錐狀、直條狀、 彎曲條狀、或是半球狀等等,皆可以做為設計變化的使用, 這些也不是准/的選擇。 圖4繪示導電結構與導電層之間的另一結構透視示意 12767893^°^ 圖。對應圖3的導電結構1〇4,在電極層1〇8上的導電結 構110,則是具有凹陷結構114。凹陷結構丨η的側壁 電結構104的側壁構成電容的一部分。又,導電結構 的頂面與電極層1 〇2也構成電容的一部分。類似地,導兩 結構104的頂面與電極層1〇8也構成電容的另一部分’。二 本上而言,由導電結構104與電極層1〇2所構成的結構二 形與導電結構11〇與電極層108所構成的結構外形,實質 上是共形的,因此有效構成電容。又,藉由導電結構^二 許多側壁,產生更多電容面積,使電容值加大。又,導電 結構104的側壁長度愈大,則可以有較大的壓力感測範 圍。如此,在電容值被有效增加的情形下,當電極層1〇8 受外部壓力而下移時,會產生更多的電容值變化量,也就 提昇壓力感測器的靈敏度。 又,對於電極層108而言,較佳地是具有剛體特性的 材質,其除了可以是金屬物質外,也可以是具有剛性的導 電高分子材料。剛性的電極層108,對於外部壓力可以有 較均勻受力’使壓力與電極層108的位移量成較佳的比例。 圖5繪示軟性電極層1〇8所造成的現象。參閱圖5, 當外部壓力施加於軟性的電極層108,其中間部位會下凹 成最小距離d2,而其他地方會有(U、d3不等距離的分佈、, 而邊緣由於不受力,為維持原距離d。因此,電容變化量 與壓力沒有明確的比例關係,較難反應出壓力的大小。反 之,圖6繪示剛性電極層1〇8所造成的現象。參閱圖6, 由於導電層1〇8剛性,當導電層108受壓力時,仍實質上 (s: 12 12767893twfd〇c/g 有同的位移,因此,在每一個地方有較均相等的距離d4。 因此’壓力的大小可以由電容值的大小轉換得知。 又’如果電極層102或電極層108是高分子材料時, 可以利用LADI技術製作,使電極層1〇2與導電結構1〇4 可以疋正體的單一結構體。相同地,電極層1Q8與導電結 構丄10可以是整體的單一結構體。圖7A〜7E繪示依據本發 明貫施例的製造流程,剖面示意圖。對於要在高分子材料 运7〇〇上製作凸狀的導電結構而言,例如想要在電極層1〇2 上=作凸狀結構1〇4,則先設計好一石英模板7〇2,其凹陷 =部分就是預計的凸狀結構。於圖7A,將石英模板7〇2 壓置放在高分子材料層7〇〇上的預定位置。於圖7β,例如 f用雷射加熱704,以將高分子材料層700的上部轉化成 :近似融態層。接著於圖7C,將石英模板702壓入近似融 =。於圖7D’進行冷卻固化。於圖7E,將石英模板7〇2 =高分子材料700移開。於是,高分子材料7〇〇上形成預 =的凸狀結構。這個流程是傳統的熱壓成形的流程,可以 間化製作流程。 另外,要製作圖4的凹陷結構114,可以用相同方犬 同時製作完成。 綜上所述,在本發明之電容式壓力感測器,藉由彈性 ,結構1〇6,配合具有多個凹凸共形的結構以產生大的 電容值,在使用上容易且具有高的靈敏度。 雖然本發明已以較佳實施例揭露如上,然其並非用以 又疋本發明,任何熟習此技藝者,在不脫離本發明之精神 13 1276789^doc/g 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1繪示依據本發明一實施例,當電容式壓力感測器 在未受外部壓力時,其結構剖面示意圖。 圖2繪示依據本發明一實施例,當電容式壓力感測器 受外部壓力時,其結構剖面示意圖。 圖3繪示導電結構與導電層之間的一結構透視示意 圖。 圖4繪示導電結構與導電層之間的另一結構透視示意 圖。 圖5繪示軟性電極層108所造成的現象。 圖6繪示剛性電極層108所造成的現象。 圖7A〜7E繪示依據本發明實施例的製造流程,剖面示 意圖。 【主要元件符號說明】 100 : 基板 102 第一電極層 104 第一導電結構 106 絕緣彈性支撐結構 108 第二電極層 110 第二導電結構 112 防止短路結構 114 :凹陷結構 1276789331^0^ 700 :高分子材料層 702 :石英模板 704 : 雷射加熱Shuming proposed a capacitive pressure sensor whose capacitance structure can reach the value of the south capacitance value called & Moreover, the structure of the capacitive pressure phase device is suitable for using a polymer material as a capacitor substrate, and a Laser-assisted Direct Imprinting (LADI) S is used to make a structure having a surface capacitance value, so that it has a high spirit. (4) The amount of capacitance change to effectively increase the sensitivity of pressure sensing. The following examples are given to illustrate the invention but are not intended to limit the invention. X Figure 1 is a cross-sectional view showing the structure of a capacitive pressure sensor when it is not subjected to external pressure, in accordance with an embodiment of the present invention. Referring to the figure, the structure of the capacitive pressure sensor includes a substrate. Further, an electrode layer 1〇2 is provided on the substrate 1A. A conductive structure 104 is disposed on a surface of the electrode layer 1〇2. An insulating elastic support structure 106 is disposed on the electrode layer 1〇2. Another electrode layer 108 is disposed on the elastic support structure 106. As such, the electrode layer 108 is located above the electrode layer 1〇2. Another conductive structure 11 is located on a surface of the electrode layer 108. The conductive structure 1〇4 and the conductive structure 11〇 are structures that are substantially conformal to each other. The detailed structure of the capacitive pressure sensor, as well as some embodiments of the manufacturing method, will be further described below. Also, there may be some circuitry required on the substrate 100, although not described, but should be understood by those skilled in the art. 2 is a cross-sectional view showing the structure of a capacitive pressure sensor when subjected to external pressure, in accordance with an embodiment of the present invention. Referring to FIG. 2, when the electrode layer 108 is subjected to an external pressure, the elastic supporting structure 1〇6 made of an insulating material such as an insulating high-profile 12767 8933 twfd 〇c/g sub-material is shrunk, so that the electrode layer 1 〇 8 The electrode layer 102 moves. At this time, the conductive structure composed of the electrode layer 102 and the conductive junctions and the conductive structure composed of the electrode layer 108 and the conductive structure 110 may overlap. The capacitance value can be changed depending on the size of the overlapped portion. However, by the arrangement of the conductive structure 104 and the conductive structure 110, the effective area of the capacitor is greatly increased, so that 2 increases the capacitance value and also increases the sensitivity of the capacitance value change amount. Further, when the external pressure is too large, the elastic support structure 106 is excessively shrunk, resulting in a short circuit between the electrode layer 102 and the electrode layer 108. In order to prevent the occurrence of a short circuit, a short-circuit prevention structure may be added. The simple structure may be, for example, an insulating protrusion 112 disposed on one or both of the conductive structure 1〇4 and the conductive structure 110. FIG. 2 is an example in which the insulating protrusion 112 is disposed on the conductive structure 104. However, Fig. 2 is only one example of the prevention of the short structure. Others (not shown in FIG. 2), for example, the insulating protrusions 112 may be disposed on one or both of the electrode layer 102 and the electrode layer 108. Alternatively, the insulating protrusions 112 may be an insulating layer. It can also be used as part of a dielectric dielectric material. In other words, any one can prevent two appropriate structures from being set. Further, the elastic support structure 106 can be made of a polymer material, but it is not the only option, and elastic enamel of other materials can also be used. ‘If a metal elastomer is used, an insulated structure can be added at both ends. Second, the elastic support structure 106 may have the same change as the actual design considerations, for example, the number and the support position may be appropriately changed. Regardless of the design of the conductive structure 104 and the conductive structure 108, the electrode layer 12767S^3twfA〇c/^ The electrical structure 104 may be a single-structure, for example, using a ladi, or may be a separate structure. Similarly, the electrode layer conductive structure 110 may be a single structure, for example, using ladi to make a separate structure. This is just the same as the difference between the production and the structure of the structure. The following examples are given to illustrate but not to limit the invention. For the conductive structure 104 and the conductive structure 110 in FIG. 2, it may be a half-square cylinder. The sidewalls of the body can be conformal to each other to form a valley structure. In addition, the conductive structure 丨〇4 and the conductive structure may have a convex structure and the other has a concave structure and conform to the convex structure to achieve a capacitor structure. Capacitive dielectric material, which can be air. If necessary, an insulating layer may be further coated on the conductive structure 1〇4 and the conductive structure 11(), and may be used as a capacitor dielectric as well as the short circuit preventing the two electrode layers 1〇2 and 1〇8. Material to increase the capacitance value. An embodiment will be described in more detail below for illustrative purposes. 3 is a perspective view showing a structure between a conductive structure and a conductive layer. Referring to Fig. 3, in this embodiment, the conductive structure 104 is composed of, for example, a plurality of cylindrical cells. These cylindrical monomers are distributed over the electrode layer 102, preferably evenly distributed, and may for example be a regular array. Figure 3 only depicts a portion for illustrative purposes. Further, the cylindrical shape is also an example of a suitable structure. The structure that it can understand, such as the columnar, tapered, straight strip, curved strip, or hemispherical shape of different wearing surfaces, can be used as design changes, these are not quasi/ select. FIG. 4 is a perspective view showing another structure between the conductive structure and the conductive layer. Corresponding to the conductive structure 1?4 of Fig. 3, the conductive structure 110 on the electrode layer 1?8 has a recessed structure 114. The sidewalls of the recess structure 丨η The sidewalls of the electrical structure 104 form part of the capacitance. Further, the top surface of the conductive structure and the electrode layer 1 〇 2 also form part of the capacitance. Similarly, the top surface of the two structures 104 and the electrode layer 1 〇 8 also form another portion of the capacitance '. In the above, the structural shape formed by the conductive structure 104 and the electrode layer 1〇2 and the structure of the conductive structure 11〇 and the electrode layer 108 are substantially conformal, thereby effectively forming a capacitance. Moreover, by using a plurality of sidewalls of the conductive structure, more capacitance area is generated, and the capacitance value is increased. Moreover, the larger the sidewall length of the conductive structure 104, the greater the range of pressure sensing. Thus, in the case where the capacitance value is effectively increased, when the electrode layer 1 〇 8 is moved downward by the external pressure, more capacitance value change is generated, which increases the sensitivity of the pressure sensor. Further, the electrode layer 108 is preferably a material having a rigid body property, and may be a conductive polymer material having rigidity as well as a metal material. The rigid electrode layer 108 may have a relatively uniform force for external pressure, making the pressure and the displacement of the electrode layer 108 a better ratio. FIG. 5 illustrates the phenomenon caused by the soft electrode layer 1〇8. Referring to FIG. 5, when external pressure is applied to the soft electrode layer 108, the middle portion thereof is recessed to a minimum distance d2, and elsewhere there are (U, d3 are not equidistantly distributed, and the edge is unstressed, The original distance d is maintained. Therefore, there is no clear proportional relationship between the amount of capacitance change and the pressure, and it is difficult to reflect the magnitude of the pressure. Conversely, Figure 6 shows the phenomenon caused by the rigid electrode layer 1 。 8. Referring to Figure 6, due to the conductive layer 1〇8 rigidity, when the conductive layer 108 is under pressure, it is still substantially (s: 12 12767893twfd〇c/g has the same displacement, therefore, there is a more equal distance d4 in each place. Therefore, the pressure can be It is known from the magnitude of the capacitance value. If the electrode layer 102 or the electrode layer 108 is a polymer material, it can be fabricated by the LADI technology, so that the electrode layer 1〇2 and the conductive structure 1〇4 can be a single body of the positive body. Similarly, the electrode layer 1Q8 and the conductive structure 10 can be a unitary single structure. Figures 7A to 7E are schematic cross-sectional views showing the manufacturing process according to the embodiment of the present invention. For a convex conductive structure, for example, if it is desired to make a convex structure 1〇4 on the electrode layer 1〇2, a quartz template 7〇2 is first designed, and the recess=part is the expected convex structure. 7A, the quartz template 7〇2 is placed on a predetermined position on the polymer material layer 7〇〇. In FIG. 7β, for example, f is heated by laser 704 to convert the upper portion of the polymer material layer 700 into: approximation Next, in Fig. 7C, the quartz template 702 is pressed into the approximate fusion = cooling solidification in Fig. 7D'. In Fig. 7E, the quartz template 7〇2 = polymer material 700 is removed. Thus, the polymer material A pre-concave convex structure is formed on the crucible. This process is a conventional hot press forming process, which can intervene the manufacturing process. In addition, the recessed structure 114 of Fig. 4 can be fabricated and simultaneously fabricated by the same square dog. As described above, in the capacitive pressure sensor of the present invention, the structure 1 〇 6 is elastic, and a structure having a plurality of concavo-convex conformal shapes is used to generate a large capacitance value, which is easy to use and has high sensitivity. Although the present invention has been disclosed above in the preferred embodiment, It is not intended to be used in the invention, and any person skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is attached. BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1] FIG. 1 is a schematic cross-sectional view showing the structure of a capacitive pressure sensor when it is not subjected to external pressure according to an embodiment of the present invention. According to an embodiment of the invention, when the capacitive pressure sensor is subjected to external pressure, its structural cross-sectional view is shown in Fig. 3. Fig. 3 is a perspective view showing a structure between the conductive structure and the conductive layer. Fig. 4 shows the conductive structure and the conductive layer A schematic perspective view of another structure between. FIG. 5 illustrates the phenomenon caused by the soft electrode layer 108. FIG. 6 illustrates the phenomenon caused by the rigid electrode layer 108. 7A-7E illustrate a manufacturing process in accordance with an embodiment of the present invention, and a cross-sectional view is shown. [Main component symbol description] 100: substrate 102 first electrode layer 104 first conductive structure 106 insulating elastic support structure 108 second electrode layer 110 second conductive structure 112 short circuit prevention structure 114: recessed structure 1267879331 ^ 0 ^ 700: polymer Material layer 702: quartz template 704: laser heating

Claims (1)

12767893 twfd〇c/g 十、申請專利範圍: 1. 一種電容式壓力感測器,包括: 一基板; 一第一電極層,設置於該基板之上; 一第一導電結構,位於該第一電極層的一表面; 一絕緣彈性支撐結構,設置於該第一電極層上; 一第二電極層,設置於該彈性支撐結構上,使該第二 電極層位於該第一電極層上方;以及 一第二導電結構,位於第二電極層的一表面,其中該 第二導電結構與第一導電結構實質上是相互共形, 其中當該第二電極層受一外部壓力時,促使該彈性支 撐結構收縮時’錯由該第一^電極層與該第一導電結構和該 第二電極層與該第二導電結構之間的重疊,以改變一電容 值。 2. 如申請專利範圍第1項所述之電容式壓力感測 器,其中該第一電極層、第一導電結構、該二電極層、與 該第二導電結構是導電南分子材料。 3. 如申請專利範圍第1項所述之電容式壓力感測 器,其中該第一電極層與該第一導電結構是單一結構體與 分開結構體之二者其一。 、 4. 如申請專利範圍第1項所述之電容式壓力感測 器,其中該第二電極層與該第二導電結構是單一結構體與 分開結構體之二者其一。 5. 如申請專利範圍第1項所述之電容式壓力感測 16 I27678^twf.d〇c& 器,更包括一防止短路結構,設置於該第一電極層與該第 二電極層之間,以防止當該第二電極層受該外部壓力時, 該第一電極層與該第二電極層之間的電性短路。 6. 如申請專利範圍第5項所述之電容式壓力感測 器,其中該防止短路結構是一絕緣凸體,設置在該第一導 電結構與該第二導電結構的至少其一的頂端,以防止該二 電極層短路。 7. 如申請專利範圍第5項所述之電容式壓力感測 器,其中該防止短路結構是一絕緣凸體設置於該二電極層 之至少其一,以限制該絕緣彈性支撐結構的壓縮程度。 8. 如申請專利範圍第1項所述之電容式壓力感測 器,其中該防止短路結構是在該二電極層之至少其一的表 面上,設置有一絕緣層,其中該絕緣層同時做為產生該電 容值的一介電材料的一部分。 9. 如申請專利範圍第1項所述之電容式壓力感測 器,其中該第一導電結構與第二導電結構之其一為凸出結 構,另其一為共形的凹陷結構。 ^ 10. 如申請專利範圍第1項所述之電容式壓力感測 器,其中該第一凸出結構或該第二凸出結構是由多個凸出 單體,分佈成一陣列所構成。 、 11. 如申請專利範圍第1項所述之電容式壓力感測 器,其中該第一凸出結構或該第二凸出結構包括柱狀、錐 狀、直條狀、彎曲條狀、或是半球狀。 12. 如申請專利範圍第1項所述之電容式壓力感測 17 12767893twfd〇c/g 器,其中該基板與該第二電極層為近似剛性體。 13.如申請專利範圍第1項所述之電容式壓力感測 器,其中該基板為近似剛性體,該第二電極層為軟性體。12767893 twfd〇c/g X. Patent Application Range: 1. A capacitive pressure sensor comprising: a substrate; a first electrode layer disposed on the substrate; a first conductive structure located at the first a surface of the electrode layer; an insulating elastic support structure disposed on the first electrode layer; a second electrode layer disposed on the elastic support structure such that the second electrode layer is located above the first electrode layer; a second conductive structure is located on a surface of the second electrode layer, wherein the second conductive structure and the first conductive structure are substantially conformal to each other, wherein when the second electrode layer is subjected to an external pressure, the elastic support is promoted When the structure shrinks, the error between the first electrode layer and the first conductive structure and the second electrode layer and the second conductive structure is changed to change a capacitance value. 2. The capacitive pressure sensor of claim 1, wherein the first electrode layer, the first conductive structure, the two electrode layer, and the second conductive structure are conductive south molecular materials. 3. The capacitive pressure sensor of claim 1, wherein the first electrode layer and the first conductive structure are both a single structure and a separate structure. 4. The capacitive pressure sensor of claim 1, wherein the second electrode layer and the second conductive structure are both a single structure and a separate structure. 5. The capacitive pressure sensing 16 I27678^twf.d〇c& described in claim 1 further comprising a short-circuit prevention structure disposed between the first electrode layer and the second electrode layer And preventing an electrical short between the first electrode layer and the second electrode layer when the second electrode layer is subjected to the external pressure. 6. The capacitive pressure sensor of claim 5, wherein the short circuit prevention structure is an insulating protrusion disposed at a top end of at least one of the first conductive structure and the second conductive structure, To prevent short circuit of the two electrode layers. 7. The capacitive pressure sensor of claim 5, wherein the short circuit prevention structure is an insulating protrusion disposed on at least one of the two electrode layers to limit the degree of compression of the insulating elastic support structure. . 8. The capacitive pressure sensor according to claim 1, wherein the short circuit prevention structure is provided on an surface of at least one of the two electrode layers, wherein an insulating layer is provided, wherein the insulating layer simultaneously serves as A portion of a dielectric material that produces the capacitance value. 9. The capacitive pressure sensor of claim 1, wherein one of the first conductive structure and the second conductive structure is a convex structure, and the other is a conformal recess structure. The capacitive pressure sensor of claim 1, wherein the first protruding structure or the second protruding structure is formed by a plurality of protruding cells distributed in an array. 11. The capacitive pressure sensor of claim 1, wherein the first protruding structure or the second protruding structure comprises a columnar shape, a tapered shape, a straight strip shape, a curved strip shape, or It is hemispherical. 12. The capacitive pressure sensing of claim 1, wherein the substrate and the second electrode layer are approximately rigid. 13. The capacitive pressure sensor of claim 1, wherein the substrate is an approximately rigid body and the second electrode layer is a soft body.
TW95105725A 2006-02-21 2006-02-21 Capacitive pressure sensor TWI276789B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95105725A TWI276789B (en) 2006-02-21 2006-02-21 Capacitive pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95105725A TWI276789B (en) 2006-02-21 2006-02-21 Capacitive pressure sensor

Publications (2)

Publication Number Publication Date
TWI276789B true TWI276789B (en) 2007-03-21
TW200732641A TW200732641A (en) 2007-09-01

Family

ID=38646355

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95105725A TWI276789B (en) 2006-02-21 2006-02-21 Capacitive pressure sensor

Country Status (1)

Country Link
TW (1) TWI276789B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615746B (en) * 2013-02-12 2018-02-21 Sony Corp Sensing device, input device and electronic machine
CN112461422A (en) * 2020-11-03 2021-03-09 清华大学 Collision detection electronic skin and detection quantity calculation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602084B (en) * 2017-03-15 2017-10-11 宏碁股份有限公司 Pressure identification system and pressure identification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615746B (en) * 2013-02-12 2018-02-21 Sony Corp Sensing device, input device and electronic machine
CN112461422A (en) * 2020-11-03 2021-03-09 清华大学 Collision detection electronic skin and detection quantity calculation method

Also Published As

Publication number Publication date
TW200732641A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
US8759719B2 (en) Heating floor
KR20180069990A (en) High sensitive flexible pressure sensor and method thereof
DE60328913D1 (en) TOUCH SENSOR ELEMENT AND SENSOR GROUP
CN111256571A (en) Flexible capacitive touch sensor, preparation method thereof and touch sensing system
TWI276789B (en) Capacitive pressure sensor
TWI362488B (en) Transistor type pressure sensor and method for making the same
CN106227380A (en) A kind of touch sensing, flexible touch-control display panel and electronic equipment
CN204924512U (en) Three -dimensional electric capacity sense of touch sensing array of floating electrode formula
WO2016022778A1 (en) Force-sensing capacitor elements, deformable membranes and electronic devices fabricated therefrom
CN102859732A (en) Actuator device with improved tactile characteristics
CN104316224A (en) Three-dimensional force touch sensing unit based on combination of capacitor and pressure-sensitive rubber
KR102438194B1 (en) Semiconductor gas sensor and method of manufacturing the same
KR20120111607A (en) Graphene touch sensor using piezoelectric effect
CN103310903B (en) Ito thin film engraving method
CN110057475B (en) High-sensitivity graphene piezoresistive strain sensor
KR102210634B1 (en) Micro heater and Micro sensor
CN102279660B (en) Method for manufacturing touch panel
CN105074407A (en) Capacitive pressure-measuring cell for measuring the pressure of a medium adjoining the measuring cell
KR20160125565A (en) Film type tactile sensor possible to detect a proximity
WO2018039939A1 (en) Capacitive pressure sensor and fabrication method thereof
TWM505004U (en) Touch panel
CN113970392B (en) Flexible proximity and pressure touch sensor, sensing system and flexible electronic skin
TWI546834B (en) Chip solid electrolytic capacitor and manufacturing method thereof
JP2008008854A (en) Tactile sensor, method of manufacturing the tactile sensor, and tactile sensor unit
EP2796844B1 (en) Mems capacitive pressure sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees