TWI274876B - Multistage examination method for a biosensor test piece - Google Patents

Multistage examination method for a biosensor test piece Download PDF

Info

Publication number
TWI274876B
TWI274876B TW94124217A TW94124217A TWI274876B TW I274876 B TWI274876 B TW I274876B TW 94124217 A TW94124217 A TW 94124217A TW 94124217 A TW94124217 A TW 94124217A TW I274876 B TWI274876 B TW I274876B
Authority
TW
Taiwan
Prior art keywords
test
biosensor
test piece
biochemical
biochemical reaction
Prior art date
Application number
TW94124217A
Other languages
Chinese (zh)
Other versions
TW200702663A (en
Inventor
Shiou-Jen Wang
Wen-Hai Tsai
Ying-Shiue Jeng
Tzai-Yi Chen
R-Shing Ye
Original Assignee
Tyson Biores Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyson Biores Inc filed Critical Tyson Biores Inc
Priority to TW94124217A priority Critical patent/TWI274876B/en
Publication of TW200702663A publication Critical patent/TW200702663A/en
Application granted granted Critical
Publication of TWI274876B publication Critical patent/TWI274876B/en

Links

Abstract

This invention relates to a multistage examination method for a biosensor test piece. It promotes the operation of biosensor, the convenience, the simplicity, and the accuracy of measuring. Especially, it aims at the liquid sample of some micro volumes. Via the design of equipment and the fixed enzyme adhesive agent characteristic, it rapidly absorbs the sample that required test and analysis into the biochemistry reaction zone. Further, it carries on a succession of biochemistry response. The electronic closed-loop design method executes the multistage detecting and logic interpreting. Eventually, it improves the precision and the accuracy of the biosensor.

Description

^ 1274876 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種生物感測器測試片之檢測方法,特 別是關於一種生物感測器測試片之多段式檢測方法。本發明 係一生物感測器可促使操作與量測的方便性、簡易性、精確 度與準確性。 • 【先前技術】 生物感測器係由一生化辨識元件和電子訊號轉換器所 組成,當待測樣品為辨識元件所確認後,一化學訊號經電子 訊號轉換器轉換成電子物理訊號,再經一連串邏輯運算分 析,將定量化的數位訊號換算成待測樣品的濃度直接輸出。 現今商業化的電化學生物感測器大都是以安培式生物 感測器(amperometric biosensor)為主,藉由控制工作電極 與參考電極的電位而得到待測樣品之電化學反應電流。此些 • 安培式生物感測器裝置的發展已經應用在血中葡萄糖、膽固 醇與其他藥物的偵測上。 一般此類安培式生物感測器主要由一絕緣基板、一對 薄膜電極、一絕緣層與一酵素生化反應區所組成。二極式的 薄膜電極測試片係指一工作電極與一輔助電極,當待測樣品 被均勻地牽引進入生化反應區内,待測樣品與酵素進行反 應,待測樣品被氧化後所產生的電子經酵素轉移到電子傳遞 介質,接著一控制的適當穩定電壓作用於兩電極間,起始第 ⑧ 5 •1274876 二次的氧化還原反應,此穩定電壓必須足夠驅動工作電極表 面上一擴散性所限制的電子氧化作用,但不至於引起逆向的 化學反應,經穩定電壓作用於工作電極一段時間後,偵測其 所產生的電流(其電流稱為Cottrell current),此電化學式氧 化還原所產生的電流正比於待測樣品的濃度,其方程式為:^ 1274876 IX. Description of the Invention: [Technical Field] The present invention relates to a method for detecting a biosensor test piece, and more particularly to a multi-segment detection method for a biosensor test piece. The present invention is a biosensor that facilitates ease of operation, measurement, accuracy, and accuracy. • [Prior Art] The biosensor consists of a biochemical identification component and an electronic signal converter. When the sample to be tested is confirmed by the identification component, a chemical signal is converted into an electronic physical signal by the electronic signal converter. A series of logical operation analysis converts the quantized digital signal into the concentration of the sample to be tested and outputs it directly. Most of today's commercial electrochemical biosensors are based on an amperometric biosensor. The electrochemical reaction current of the sample to be tested is obtained by controlling the potential of the working electrode and the reference electrode. These • The development of amperometric biosensor devices has been applied to the detection of blood glucose, cholesterol and other drugs. Generally, such an amperometric biosensor is mainly composed of an insulating substrate, a pair of thin film electrodes, an insulating layer and an enzyme biochemical reaction zone. The two-pole thin film electrode test piece refers to a working electrode and an auxiliary electrode. When the sample to be tested is uniformly drawn into the biochemical reaction zone, the sample to be tested reacts with the enzyme, and the electrons generated after the sample to be tested is oxidized After the enzyme is transferred to the electron transfer medium, a controlled stable voltage is applied between the two electrodes to initiate a second redox reaction of the 8 5 • 1274876. The stable voltage must be sufficient to drive a diffusion on the surface of the working electrode. The electron oxidation, but does not cause a reverse chemical reaction, after a stable voltage is applied to the working electrode for a period of time, the current generated by the current is detected (the current is called Cottrell current), and the current generated by the electrochemical redox is generated. Proportional to the concentration of the sample to be tested, the equation is:

n=轉移電子數 F =法拉第常數 Faraday’s constant A =測試電極面積 C。=分析物濃度 D=擴散係數 t =時間 【發明内容】 本發明所欲解決之技術問題 生物感測器應用於例如企液樣品之感測時,傳統的分 析法,血液樣品需做先前處理,直接以全血偵測將會更方便 與省時。再者,血液樣品的黏度與體積也會影響偵測結果, 對一些年紀大的患者而言,指尖全血可能非常微量,所以容 易產生進血不夠均勻與進血量不足,造成人為測試的誤差。 另一方面,偵測前後測試片生化反應區内的潮解也會造成讀 值的偏差,因此有必要發展檢測微量樣品、簡易的偵錯技術 以避免偵測結果偏差的裝置。 6 ⑧ '1274876 緣此,本發明之主要目的即是提供一種生物感測器測 試片之檢測方法,以提昇生物感測器之操作與量測的方便 性、簡易性與準確性。 本發明之另一目的是提供一種多段式之生物感測器測 試片檢測方法,以期增加此生物感測器在進行待測樣本測試 時的精確度與準確度。 本發明解決問題之技術手段 本發明為解決習知技術之問題所採用之技術手段係在 生物感測器在债測到一生化感測器測試片插置入生物感測 器時,即啟動該生物感測器供應一測試電壓至該生物感測器 測試片,接著在測試電壓作用於該生化感測器測試片一段時 間下,在選定之第一測試點及第二測試點時,進行該生物感 測器測試片之漏電流測試。當判斷出生化感測試片正常時, 則生物感測器進入待機狀態。當待測分析液體樣品滴入該生 化感測器測試片的滴入口時,該生物感測器進行臨界值檢測 程序,接著生物感測器停止供應測試電壓至該生物感測器測 試片,並使待測分析液體樣品與生化感測器測試片在生化反 應區進行一段時間之生化反應。依據該生化感測器測試片在 生化反應區所進行之生化反應,電子傳遞到導電介質,並由 該生物感測器量化分析液體樣品中生物分子的濃度。 本發明對照先前技術之功效 經由本發明所採用之技術手段,可以有效提昇生物感 •1274876 測器之操作與量測的方便性、簡易性與準確性。尤其是針對 一些微量體積的液體樣品,透過此裝置的設計與固定化酵素 附著劑的特性,可快速地將所要測試分析的樣品牽引吸入其 生化反應區内,進行一連串的生化反應;而多段式偵測與邏 輯判讀的電子迴路設計方法,更進一步地增加此生物感測器 的精確度與準確度。 本發明所採用的具體結構設計,將藉由以下之實施例 $ 及附呈圖式作進一步之說明。 【實施方式】 本發明係提供一種檢測微量待測液體樣品、簡易偵錯 方式以避免偵測結果偏差的生物感測器,尤其是針對一些微 量體積0.5〜3.5 ul的液體樣品,透過本發明的設計與固定化 酵素附著劑的特性,直接以全血為檢測樣品,快速地將所要 測試分析的樣品牽引吸入其生化反應區内,進行一連串的生 φ 化反應。而本發明中之多段式偵測與邏輯判讀的偵測設計, 更進一步地增加本發明之生物感測器的精確度與準確度。 參閱第一圖所示,其係顯示本發明生物感測器測試片 的立體分解圖,第二圖顯示該生物感測器測試片的立體圖。 本發明生物感測器測試片100之基本結構包括一絕緣基板 1 (Insulating Base Plate),係用以作為生物感測器測試片的基 體。 該絕緣基板1的材質具有絕緣與耐熱的特性,可以單 8 ^1274876 一或混合選擇下列材料作為基體:聚氯乙烯(polyvinyl chloride)、聚對苯二曱酸二乙醇酯(polyethylene glycol terephthalate)、聚碳酸酯(polycarbonate)、聚醯胺 (polyamide)、聚酯(polyester)、尼龍(nylon)或硝化纖維 (nitrocellulose) ° 在該絕緣基板1上配置有一對薄膜電極,係可以習知 之網版印刷技術(screen printing)或錢鍛技術(sputtering)製 作在絕緣基板1上。該對薄膜電極至少包含互不相接觸的陽 極導線和陰極導線’分別作為一工作電極21 (working electrode)及一輔助電極 22(counter electrode)。該工作電極 21與輔助電極22係以具有良好電傳導特性之材料所製成, 例如以單一或混合選擇下列材料:碳膠、銀膠、銀/氯化銀 膠、金、翻或把。 在該絕緣基板1一侧端之表面上定義出有一反應區平 面11,且該反應區平面11在該絕緣基板i上表面之三個侧 緣則分別定義為一待測樣品滴入側12、一生化反應啟妒侧 13、以及一端緣侧14。 該工作電極21之一端係經由一延伸區段211而延伸至 該反應區平面π之鄰近約中央區域位置,而該辅助電極22 之一端亦經由一延伸區段221而延伸至該反應區平面u之 生化反應啟始側13處。該工作電極21與輔助電極22之另 一端可作為與電子訊號轉換器的連接區。 在該工作電極21與輔助電極22上更分別形成有一第 一碳電極31與一第二碳電極32。該第一碳電極31與第二 1274876 碳電極32之尺寸寬度及佈設路徑與該工作電極21與輔助電 極22之尺寸寬度及佈設路徑一致,其亦分別包括有延伸區 段311、321。更者,該第二碳電極32在延伸至該絕緣基板 1上表面之反應區平面11處’更形成一擴大區域312。 該第一碳電極31與第二碳電極32上及該絕緣基板1 上再覆設有一絕緣層4(Dielectrical Layer)。該絕緣層4係部 分覆蓋於該第一碳電極31與第二碳電極32與絕緣基板1 Φ 上,並未覆蓋住絕緣基板1上表面之反應區平面11。 該絕緣層4之功能為保護電極之用’並形成一相當的 厚度,構成檢測樣品生化反應區6的三度空間,以輔助生化 反應層快速地將所要檢測的樣品牽引吸入生化反應區6 内。該絕緣層4的厚度介於〇.〇1〜〇.i〇mm之間,以構成足 夠的生化反應區6空間,輔助檢測樣品被生化反應層中的親 水性高分子牽引進入生化反應區6内。 該絕緣層4之厚度決定生化反應區6的大小與待測樣 • 品所需的反應體積。選擇適當的材質與利用不鏽鋼絲網的網 版印刷技術可以控制其厚度的均一性。 該絕緣層4所使用之絕緣材質可以選自下列的材料; acrylate、聚酯(vinylpolyester)、聚醯胺(polyimide)、環氧樹 酯(epoxy resin)、聚氣乙烯(p〇iyVinyi chloride)、聚對苯二曱 酸二乙醇酯(polyethylene glycol terephthalate)、聚碳酸酯 (polycarbonate)或聚酯(p〇iyester)。 該絕緣層4更可包括有一對擋制片41、42,分別配置 在該絕緣基板1之端緣側14處。兩個擋制片4卜42之間形 10 1274876 成一對流間隙43。 而該絕緣層4上最後再覆設黏貼有一上墊片 5(Lamina),且該上墊片5在對應於該絕緣基板1上表面之 待測樣品滴入侧12處,形成有一凹槽結構,以作為待測樣 品滴入口 51。 較佳實施例中,該上墊片5覆蓋於生化反應區6上方 的區域是透明的,可當作是一確認視窗,以方便使用者確認 待測樣品是否已完全進入生化反應區6内。其上墊片5的材 質可以單一或混合選擇下列材料··聚氯乙烯(polyvinyl chloride)、聚對苯二曱酸二乙醇 g旨(polyethylene glycol terephthalate)、聚碳酸酯(polycarbonate)、聚醯胺(polyamide) 聚酉旨(polyester)、或硝化纖維(nitrocellulose)。 經由上述各相關構件組立之後,而使得鄰近於該絕緣 基板1上表面反應區平面11之裸露薄膜電極(即工作電極 21與辅助電極22)之前端、一相當厚度的絕緣層4、及上墊 φ 片5所共同構成的三度空間形成一生化反應區6(同時參閱 第三圖所示)。 而在該反應區平面11上塗佈有一層生化反應試劑,作 為生化反應層(Reaction Layer),生化反應層除了扮演酵素反 應的重要角色之外,其親水性高分子附著劑也同時具有牽引 待測樣品吸入生化反應區6内的起始作用,反應區内的對流 間隙更加速將所要檢測的樣品快速地牽引吸入反應區中與 進行一連串的生化反應。該生化反應層的組成試劑包括:缓 衝液、生化反應酵素、電子傳遞介質(mediator)、高分子附 ⑧ 11 ~1274876 著劑與介面活性劑。 該生化反應區6内有適當的對流間隙,以瞬間增加生 化反應層中親水性高分子牵引待測樣品進入生化反應區6 内的速度;生化反應區6内的空間小到足夠使〇·5〜3·5ιι1的 待測樣品完全佈滿。 再者,由於工作電極21與輔助電極22在該生化反應 區6中係以一前一後的電路印刷設計,如此可確保待測樣品 在進入該生化反應區6中時之反應起始時間一致,待測樣品 經由生化反應層中親水性高分子的牽引與生化反應區6中 對流間隙的作用下,先接觸工作電極21,再到達輔助電極 22時,生化反應時間才會開始計時,以增加其測試的穩定 性0 第四圖係顯示生物感測器7與生物感測器測試片100 之間之電路連接示意圖。該生物感測器測試片100可以其前 端(即第一碳電極31與第二碳電極32之一端)插置入一生物 • 感測器7之一預設導電插槽71中。以使該生物感測器7可 經由一電壓供應單元72供應一測試電壓Vt至該生物感測器 測試片100,同時也可以經由一電流感測單元73感測該生 物感測器測試片100之電流It狀況。 本發明提供一種生物感測器待機前對生物感測器測試 片狀況的偵錯模式,在適當電壓作用於測試片一段時間下, 多段式偵測漏電流與啟始電流的變化與邏輯判讀的偵錯設 計模式,以減少測試片的錯誤,更提供消費者多一層的保障。 第五圖係顯示本發明生物感測器在執行生化感測器測 ⑧ 12 1274876 試片之測試、待測分析液體樣品進行生化反應、反應電流感 測時電流變化狀況之曲線圖。第六A圖及第六B圖係顯示 本發明之測試流程圖。茲對本發明之流程作一說明如后。 首先,以生物感測器測試片100正確地插置入生物感 測器7的導電插槽71中(步驟100),啟始生物感測器之電源 (步驟101),之後生物感測器系統會進行一連串的自我偵測 程序判定正常與否(步驟102)。如果系統測試錯誤,則會發 出系統錯誤之訊息(步驟103);而若系統測試正常,則該生 物感測器7會繼續經由電壓供應單元72供應一測試電壓Vt 至該生物感測器測試片1〇〇(步驟104)。 此時,本發明會進行生化感測試片之偵測程序,以測 試出不同反應模式下的電流變化。此一程序係在適當電壓 Vt作用於該生化感測器測試片一段時間下,接著在第一測 試點A時進行漏電流之測試(步驟105)、以及在第二測試點 B時進行漏電流之測試(步驟106)。 在完成該生化感測試片之偵測程序、再經生物感測器7 之演算,系統將進行邏輯比對以判斷該生物感測器測試片 100正常與否(步驟107),即藉由系統預先内建一電流參數 值與其漏電流值作邏輯判斷之後,生物感測器7將可判斷出 生化感測試片之狀況。其中預先内建該電流參數值係不超過 10微毫安培(1〇μΑ)。 如果該生化感測試片經測試不正常,則顯示生物感測 器7測試片的錯誤訊息(步驟108)以提醒操作者;若該生化 感測試片經測試正常,則生物感測器7進入待機狀態(步驟 13 1274876 109)。其所測第一測試點A與第二測試點B之漏電流的測 試時間點距開機起始點0〜10秒,以減少干擾,確保該生化 感測器測試片的穩定性。即第一測試點A的測試時間點係 距開機起始點0秒以後,而第二測試點B係在第一測試點A 測試時間點之後才進行測試,且第二測試點B的測試時間 點距開機起始點不超過10秒。其中所測第一測試點A與第 二測試點B之漏電流是不超過内建該電流參數值。 當待測分析液體樣品滴入生化感測器測試片的滴入口 時(步驟110),經由該生化感測器測試片100之生化反應層 中高分子附著劑的牽引與反應區内對流孔隙的輔助作用 下,快速地使待測分析液體樣品吸入反應區内。此時,該生 物感測器7會進行臨界值檢測程序(步驟111),藉由判斷感 測出之電流是否大於一臨限電流值Ith,以確認該待測分析 液體樣品之量是否足夠。 在通過臨界值檢測程序之後,生物感測器7之電壓供 應單元72會停止供應測試電壓Vt至該生物感測器測試片 100(步驟112),並使待測分析液體樣品與生化感測器測試片 100之生化反應區生物分子與酵素進行一段時間之生化反 應(步驟113)。 當待測分析液體樣品中的生物分子與酵素進行一段時 間的生化反應之後,接著電子傳遞到導電介質(步驟114)。 其中待測分析物與生化感測器測試片中的酵素只進行部份 生化反應,即可將電子傳到電子傳遞介質,此部份生化反應 時間介於1〜10秒之間。接著電壓供應單元72會再一次供應 1274876 測試電壓Vt至該生物感測器測試片100 —段時間(步驟 115),此時導電介質的電子經由生物感測器的電子訊號轉換 器的轉換作用,以量化分析液體樣品中生物分子的濃度(步 驟116),並顯示此生物分子的濃度(步驟117)。 由以上之實施例可知,本發明確具極佳之產業利用價 值,故本發明業已符合於專利之要件。惟以上之敘述僅為本 發明之較佳實施例說明,凡精於此項技藝者當可依據上述之 說明而作其它種種之改良,惟這些改變仍屬於本發明之創作 精神及以下所界定之專利範圍中。 【圖式簡單說明】 第一圖係顯示本發明生物感測器測試片的立體分解圖; 第二圖顯示本發明生物感測器測試片的立體圖; 第三圖顯示第二圖中3-3斷面之剖視圖; 第四圖係顯示生物感測器與生物感測器測試片之間之電路 連接不意圖, 第五圖係顯示本發明生物感測器在執行生化感測器測試片 之測試、待測分析液體樣品進行生化反應、反應電流 感測時電流變化狀況之曲線圖; 第六A圖及第六B圖顯示本發明之測試流程圖。 【主要元件符號說明】 100 生物感測器測試片 1 絕緣基板 ⑧ 15 反應區平面 待測樣品滴入侧 生化反應啟始側 端緣側 工作電極 延伸區段 輔助電極 延伸區段 第一礙電極 延伸區段 擴大區域 第二破電極 延伸區段 絕緣層 擋制片 擋制片 對流間隙 上墊片 待測樣品滴入口 生化反應區 生物感測器 導電插槽 電壓供應單元 電流感測單元 16n = number of transferred electrons F = Faraday constant Faraday's constant A = test electrode area C. = analyte concentration D = diffusion coefficient t = time [invention] The technical problem to be solved by the present invention is applied to, for example, the sensing of a liquid sample, the conventional analysis method, the blood sample needs to be treated previously, Direct detection with whole blood will be more convenient and time-saving. Furthermore, the viscosity and volume of blood samples can also affect the detection results. For some older patients, the whole blood of fingertips may be very small, so it is easy to produce insufficient blood and insufficient blood volume, resulting in human testing. error. On the other hand, the deliquescence in the biochemical reaction zone of the test piece before and after the detection also causes the deviation of the reading value. Therefore, it is necessary to develop a device for detecting a small sample and a simple debugging technique to avoid deviation of the detection result. 6 8 '1274876 Accordingly, the main object of the present invention is to provide a method for detecting a biosensor test piece to improve the convenience, simplicity and accuracy of the operation and measurement of the biosensor. Another object of the present invention is to provide a multi-segment biosensor test strip detection method in order to increase the accuracy and accuracy of the biosensor when testing a sample to be tested. Technical Solution for Solving the Problems According to the present invention, the technical means for solving the problems of the prior art is to activate the biosensor when the biosensor is inserted into the biosensor. The biosensor supplies a test voltage to the biosensor test piece, and then performs the test voltage on the biochemical sensor test piece for a period of time, at the selected first test point and the second test point, Leakage current test of biosensor test piece. When it is determined that the birth sensory test piece is normal, the biosensor enters a standby state. When the liquid sample to be tested is dropped into the drip inlet of the biochemical sensor test piece, the biosensor performs a threshold value detecting process, and then the biosensor stops supplying the test voltage to the biosensor test piece, and The biochemical reaction sample to be tested and the biochemical sensor test piece are subjected to a biochemical reaction for a period of time in the biochemical reaction zone. According to the biochemical reaction of the biochemical sensor test piece in the biochemical reaction zone, electrons are transferred to the conductive medium, and the concentration of the biomolecule in the liquid sample is quantified by the biosensor. The invention compares the efficacy of the prior art. The technical means adopted by the invention can effectively improve the biological sense. The convenience, simplicity and accuracy of the operation and measurement of the 1274876 detector. Especially for some micro-volume liquid samples, through the design of the device and the characteristics of the immobilized enzyme attaching agent, the sample to be tested and analyzed can be quickly drawn into the biochemical reaction zone for a series of biochemical reactions; The electronic loop design method of detection and logic interpretation further increases the accuracy and accuracy of the biosensor. The specific structural design employed in the present invention will be further illustrated by the following Example $ and the accompanying drawings. [Embodiment] The present invention provides a biosensor for detecting a small amount of liquid sample to be tested, and a simple debugging method to avoid deviation of detection results, especially for some liquid samples having a micro volume of 0.5 to 3.5 ul, through the present invention. Designed and immobilized with enzymes, the sample is directly sampled by whole blood, and the sample to be tested is quickly drawn into its biochemical reaction zone for a series of biochemical reactions. The multi-segment detection and logic interpretation detection design of the present invention further increases the accuracy and accuracy of the biosensor of the present invention. Referring to the first figure, which is a perspective exploded view of the biosensor test piece of the present invention, the second figure shows a perspective view of the biosensor test piece. The basic structure of the biosensor test strip 100 of the present invention comprises an insulating substrate 1 (Insulating Base Plate) for use as a substrate for a biosensor test piece. The material of the insulating substrate 1 has the characteristics of insulation and heat resistance, and the following materials can be selected as a substrate: polyvinyl chloride, polyethylene glycol terephthalate, or the like, or a mixture of polyethylene terephthalate or polyethylene terephthalate. Polycarbonate, polyamide, polyester, nylon, or nitrocellulose ° A pair of thin film electrodes are disposed on the insulating substrate 1, which is conventionally known as screen printing. Screen printing or money forging is made on the insulating substrate 1. The pair of thin film electrodes include at least the anode wires and the cathode wires ' which are not in contact with each other as a working electrode 21 and a counter electrode, respectively. The working electrode 21 and the auxiliary electrode 22 are made of a material having good electrical conductivity characteristics, for example, a single or a mixture of the following materials: carbon glue, silver glue, silver/silver chloride glue, gold, turn or handle. A reaction zone plane 11 is defined on a surface of one end of the insulating substrate 1, and the three side edges of the upper surface of the insulating substrate i are defined as a drop-in side of the sample to be tested 12, A biochemical reaction initiation side 13 and an end edge side 14 are provided. One end of the working electrode 21 extends to an adjacent central region of the reaction zone plane π via an extension section 211, and one end of the auxiliary electrode 22 also extends to the reaction zone plane via an extension section 221 The biochemical reaction starts at 13 on the side. The other end of the working electrode 21 and the auxiliary electrode 22 serves as a connection area to the electronic signal converter. A first carbon electrode 31 and a second carbon electrode 32 are formed on the working electrode 21 and the auxiliary electrode 22, respectively. The size width and the routing path of the first carbon electrode 31 and the second 1274876 carbon electrode 32 coincide with the size width and the routing path of the working electrode 21 and the auxiliary electrode 22, and also include extension sections 311 and 321 respectively. Further, the second carbon electrode 32 further forms an enlarged region 312 at a portion 11 of the reaction region extending to the upper surface of the insulating substrate 1. An insulating layer 4 (Dielectrical Layer) is further disposed on the first carbon electrode 31 and the second carbon electrode 32 and on the insulating substrate 1. The insulating layer 4 partially covers the first carbon electrode 31 and the second carbon electrode 32 and the insulating substrate 1 Φ, and does not cover the reaction surface plane 11 of the upper surface of the insulating substrate 1. The function of the insulating layer 4 is to protect the electrode 'and form a considerable thickness, which constitutes a three-dimensional space for detecting the biochemical reaction zone 6 of the sample, to assist the biochemical reaction layer to rapidly draw the sample to be inhaled into the biochemical reaction zone 6 . The thickness of the insulating layer 4 is between 〇.〇1~〇.i〇mm to form a sufficient biochemical reaction zone 6 space, and the auxiliary detection sample is drawn into the biochemical reaction zone by the hydrophilic polymer in the biochemical reaction layer. Inside. The thickness of the insulating layer 4 determines the size of the biochemical reaction zone 6 and the reaction volume required for the sample to be tested. The uniformity of the thickness can be controlled by choosing the appropriate material and screen printing technology using stainless steel wire mesh. The insulating material used for the insulating layer 4 may be selected from the following materials: acrylate, vinylpolyester, polyimide, epoxy resin, p〇iyVinyi chloride, Polyethylene glycol terephthalate, polycarbonate or polyester (p〇iyester). The insulating layer 4 may further include a pair of resisting pieces 41, 42 disposed at the edge side 14 of the insulating substrate 1, respectively. A pair of flow gaps 43 are formed between the two blocking sheets 4 and 42 1 . The insulating layer 4 is finally covered with an upper spacer 5 (Lamina), and the upper spacer 5 is formed with a groove structure at the dropping side 12 of the sample to be tested corresponding to the upper surface of the insulating substrate 1. As the sample drop inlet 51 to be tested. In the preferred embodiment, the area above the biochemical reaction zone 6 of the upper spacer 5 is transparent and can be regarded as a confirmation window to facilitate the user to confirm whether the sample to be tested has completely entered the biochemical reaction zone 6. The material of the upper gasket 5 can be selected from the following materials singly or in combination: polyvinyl chloride, polyethylene glycol terephthalate, polycarbonate, polyamine (polyamide) Polyester, or nitrocellulose. After the respective related members are assembled, the front end of the bare film electrode (ie, the working electrode 21 and the auxiliary electrode 22) adjacent to the upper reaction surface plane 11 of the insulating substrate 1 is formed, a relatively thick insulating layer 4, and an upper pad. The three-dimensional space formed by the φ sheet 5 forms a biochemical reaction zone 6 (see also the third figure). On the plane 11 of the reaction zone, a biochemical reaction reagent is coated as a biochemical reaction layer. In addition to playing an important role in the enzyme reaction, the biochemical reaction layer also has a hydrophobic polymer adhesive agent. The initial action of the sample into the biochemical reaction zone 6 is measured, and the convection gap in the reaction zone is accelerated to rapidly draw the sample to be inhaled into the reaction zone for a series of biochemical reactions. The composition reagents of the biochemical reaction layer include: a buffer, a biochemical reaction enzyme, an electron transfer medium (mediator), and a polymer-attached agent and an interface active agent. The biochemical reaction zone 6 has an appropriate convection gap to instantaneously increase the rate at which the hydrophilic polymer in the biochemical reaction layer pulls the sample to be tested into the biochemical reaction zone 6; the space in the biochemical reaction zone 6 is small enough to make the 〇·5 The sample to be tested of ~3·5ιι1 is completely covered. Furthermore, since the working electrode 21 and the auxiliary electrode 22 are printed in tandem in the biochemical reaction zone 6, the reaction start time of the sample to be tested when entering the biochemical reaction zone 6 is ensured. The sample to be tested is subjected to the traction of the hydrophilic polymer in the biochemical reaction layer and the convection gap in the biochemical reaction zone 6 to first contact the working electrode 21 and then reach the auxiliary electrode 22, and the biochemical reaction time starts to be counted to increase Stability of Test 0 The fourth figure shows a schematic diagram of the circuit connection between the biosensor 7 and the biosensor test strip 100. The biosensor test strip 100 can be inserted into a predetermined conductive slot 71 of one of the biosensors 7 at its front end (i.e., one end of the first carbon electrode 31 and the second carbon electrode 32). The biosensor 7 can be supplied with a test voltage Vt to the biosensor test strip 100 via a voltage supply unit 72, and the biosensor test strip 100 can also be sensed via a current sensing unit 73. Current It status. The invention provides a debugging mode for the condition of the biosensor test piece before the standby of the biosensor, and the multi-stage detection of the leakage current and the start current change and the logical interpretation when the appropriate voltage is applied to the test piece for a period of time. Debug design mode to reduce the error of the test piece, and provide consumers with one layer of protection. The fifth figure shows a graph of the current change of the biosensor of the present invention when performing the test of the biochemical sensor 8 12 1274876 test piece, the liquid sample to be tested for biochemical reaction, and the reaction current sensing. The sixth and sixth panels show the test flow chart of the present invention. The flow of the present invention will be described later. First, the biosensor test strip 100 is correctly inserted into the conductive slot 71 of the biosensor 7 (step 100), the power of the biosensor is initiated (step 101), and then the biosensor system A series of self-detection procedures are determined to be normal or not (step 102). If the system test is wrong, a system error message is sent (step 103); and if the system test is normal, the biosensor 7 continues to supply a test voltage Vt via the voltage supply unit 72 to the biosensor test piece. 1〇〇 (step 104). At this time, the present invention performs a biochemical test strip detection procedure to detect current changes in different reaction modes. This procedure is performed by applying a suitable voltage Vt to the biosensor test strip for a period of time, then performing a leakage current test at the first test point A (step 105), and performing a leakage current at the second test point B. Test (step 106). After completing the detection process of the biochemical test piece and then calculating by the biosensor 7, the system will perform a logical comparison to determine whether the biosensor test piece 100 is normal or not (step 107), that is, by the system. After pre-built a current parameter value and its leakage current value for logical determination, the biosensor 7 can determine the condition of the birth test strip. The value of the current parameter pre-built therein does not exceed 10 microamperes (1 μμΑ). If the biochemical test piece is not tested properly, an error message of the biosensor 7 test piece is displayed (step 108) to remind the operator; if the biochemical test piece is tested normally, the biosensor 7 enters standby mode. Status (step 13 1274876 109). The test time point of the leakage current of the first test point A and the second test point B measured is 0 to 10 seconds from the starting point of the startup to reduce interference and ensure the stability of the biochemical sensor test piece. That is, the test time point of the first test point A is 0 seconds after the start point of the power-on, and the second test point B is tested after the first test point A test time point, and the test time of the second test point B is The dot is no more than 10 seconds from the start of the boot. The leakage current of the first test point A and the second test point B measured is not more than the built-in current parameter value. When the liquid sample to be tested is dropped into the drip inlet of the biochemical sensor test piece (step 110), the traction of the polymer adhesive agent in the biochemical reaction layer of the biochemical sensor test piece 100 and the auxiliary of the convection pore in the reaction zone are tested. Under the action, the sample liquid to be tested is quickly taken into the reaction zone. At this time, the biosensor 7 performs a threshold value detecting process (step 111) to determine whether the amount of the liquid sample to be tested is sufficient by judging whether the sensed current is greater than a threshold current value Ith. After passing the threshold detection program, the voltage supply unit 72 of the biosensor 7 stops supplying the test voltage Vt to the biosensor test strip 100 (step 112), and causes the analysis liquid sample to be tested and the biochemical sensor. The biochemical reaction zone biomolecule of the test strip 100 is subjected to a biochemical reaction with the enzyme for a period of time (step 113). After the biomolecule in the liquid sample to be tested is subjected to a biochemical reaction with the enzyme for a period of time, electrons are then transferred to the conductive medium (step 114). The analyte and the enzyme in the biochemical sensor test strip only undergo partial biochemical reactions, and the electrons can be transferred to the electron transport medium. The biochemical reaction time is between 1 and 10 seconds. Then, the voltage supply unit 72 will again supply the 1274876 test voltage Vt to the biosensor test strip 100 for a period of time (step 115), at which time the electrons of the conductive medium are converted by the electronic signal converter of the biosensor. The concentration of the biomolecule in the liquid sample is quantified (step 116) and the concentration of the biomolecule is displayed (step 117). As can be seen from the above embodiments, the present invention has an excellent industrial utilization value, and thus the present invention has met the requirements of the patent. However, the above description is only for the preferred embodiment of the present invention, and those skilled in the art can make other improvements according to the above description, but these changes still belong to the creative spirit of the present invention and the following definitions. In the scope of patents. BRIEF DESCRIPTION OF THE DRAWINGS The first figure shows an exploded perspective view of a biosensor test piece of the present invention; the second figure shows a perspective view of the biosensor test piece of the present invention; and the third figure shows 3-3 in the second figure. A cross-sectional view of the cross section; the fourth figure shows the circuit connection between the biosensor and the biosensor test piece, and the fifth figure shows that the biosensor of the present invention performs the test of the biochemical sensor test piece. The graph of the current change of the liquid sample to be tested for biochemical reaction and the reaction current sensing; the sixth A diagram and the sixth B diagram show the test flow chart of the present invention. [Main component symbol description] 100 Biosensor test piece 1 Insulating substrate 8 15 Reaction zone plane Sample to be tested Drop side Biochemical reaction start side edge side Working electrode extension section Auxiliary electrode extension section First barrier electrode extension Section enlargement area second broken electrode extension section insulation layer block piece sheet convection gap pad test sample drop inlet biochemical reaction area biosensor conductive socket voltage supply unit current sensing unit 16

Claims (1)

'1274876 十、申請專利範圍: 1. 一種生物感測器測試片之多段式檢測方法,該生物感測器 測試片具有一生化反應區,當該生物感測器測試片插置連 接於一生物感測器時,一待測樣品在該生化反應區進行反 應之信號可送至該生物感測器中,該方法包括下列步驟: (a) 偵測生化感測器測試片是否插置入生物感測器; (b) 當偵測生化感測器測試片正確地插置入生物感測器 時,啟始該生物感測器之電源,並供應一測試電壓至 該生物感測器測試片; (c) 在測試電壓作用於該生化感測器測試片一段時間下, 在選定之第一測試點時進行該生物感測器測試片之漏 電流測試; (d) 當判斷出生化感測試片正常時,則生物感測器進入待 機狀態; (e) 當待測分析液體樣品滴入該生化感測器測試片的滴入 口時,該生物感測器進行臨界值檢測程序; (f) 通過臨界值檢測程序之後,生物感測器停止供應測試 電壓至該生物感測器測試片,並使待測分析液體樣品 與生化感測器測試片在生化反應區進行一段時間之生 化反應; (g) 依據該生化感測器測試片在生化反應區所進行之生化 反應,電子傳遞到導電介質; (E 17 !274876 (h)接著電壓供應單元會再一次供應測試電壓至該生物感 測器測忒片,以量化分析液體樣品中生物分子的濃 度’並顯示此生物分子的濃度。 2·如申請專利範圍帛1項所述之生物感測器測試片之多段 气檢利n其中步驟⑻之後,更包括—系統測試之步 驟若系統測試錯誤,則會發出系統錯誤之訊息。 I •如申印專利範圍第1項所述之生物感測器測試片之多段 式檢測方法,其中步驟(C)在第一測試點時進行該生物感 測器測試片之漏電流測試之後,更包括有在一選定之第二 測試點時進行該生物感測器測試片之第二次漏電流測試。 ⑧ 18'1274876 X. Patent application scope: 1. A multi-segment detection method for a biosensor test piece, the biosensor test piece has a biochemical reaction zone, and when the biosensor test piece is interposed and connected to a living organism In the sensor, a signal of a sample to be tested in the biochemical reaction zone can be sent to the biosensor, and the method comprises the following steps: (a) detecting whether the biochemical sensor test piece is inserted into the biological device (b) when the biochemical sensor test strip is correctly inserted into the biosensor, the power of the biosensor is initiated, and a test voltage is supplied to the biosensor test strip. (c) performing a leakage current test of the biosensor test piece at the selected first test point for a period of time during which the test voltage is applied to the biochemical sensor test piece; (d) when determining the birth sensation test When the film is normal, the biosensor enters a standby state; (e) when the liquid sample to be tested is dropped into the drip inlet of the biochemical sensor test piece, the biosensor performs a critical value detecting program; (f) Threshold detection After the sequence, the biosensor stops supplying the test voltage to the biosensor test piece, and performs a biochemical reaction of the test liquid sample to be tested with the biochemical sensor test piece in the biochemical reaction zone for a period of time; (g) according to the Biochemical sensor test strip biochemical reaction in the biochemical reaction zone, electron transfer to the conductive medium; (E 17 ! 274876 (h) then the voltage supply unit will again supply the test voltage to the biosensor test cymbal, To quantitatively analyze the concentration of biomolecules in a liquid sample' and display the concentration of the biomolecule. 2. The multi-segment gas test of the biosensor test piece described in the scope of claim 1 is included after step (8), and further includes - System test steps If the system test is incorrect, a system error message will be sent. I • A multi-segment test method for biosensor test strips as described in claim 1 of the scope of the patent application, wherein step (C) is in the After performing a leakage current test of the biosensor test piece at a test point, the method further includes performing the biosensor test piece at a selected second test point. Secondary leakage test. ⑧ 18
TW94124217A 2005-07-15 2005-07-15 Multistage examination method for a biosensor test piece TWI274876B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94124217A TWI274876B (en) 2005-07-15 2005-07-15 Multistage examination method for a biosensor test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94124217A TWI274876B (en) 2005-07-15 2005-07-15 Multistage examination method for a biosensor test piece

Publications (2)

Publication Number Publication Date
TW200702663A TW200702663A (en) 2007-01-16
TWI274876B true TWI274876B (en) 2007-03-01

Family

ID=38624191

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94124217A TWI274876B (en) 2005-07-15 2005-07-15 Multistage examination method for a biosensor test piece

Country Status (1)

Country Link
TW (1) TWI274876B (en)

Also Published As

Publication number Publication date
TW200702663A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
US7132041B2 (en) Methods of determining the concentration of an analyte in a fluid test sample
US7887682B2 (en) Analyte sensors and methods of use
JP5047975B2 (en) In vitro analyte sensor and method of use thereof
AU2008279274B2 (en) Electrochemical test strip
CA2794978C (en) Analyte measurement method and system
US6413411B1 (en) Method and apparatus for amperometric diagnostic analysis
CA2811565C (en) Analyte measurement method and system with error trapping
JPWO2007026683A1 (en) Sample supply state detection method and analysis tool
EP2900138B1 (en) System and method for determining hematocrit insensitive glucose concentration
US11774395B2 (en) Test element for electrochemically detecting at least one analyte
TWI274876B (en) Multistage examination method for a biosensor test piece
RU2656267C2 (en) Fill error trap for analyte measurement determined from specified sampling time derived from sensed physical characteristic of sample containing analyte
US20080169799A1 (en) Method for biosensor analysis
RU2780501C1 (en) Biosensor contamination determination used in analyte measurement systems
JP7371219B2 (en) Determination of contamination of biosensors used in analyte measurement systems
TWM268579U (en) Biosensor testing slice structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees