TWI274856B - Micro fluid oscillator - Google Patents

Micro fluid oscillator Download PDF

Info

Publication number
TWI274856B
TWI274856B TW94143006A TW94143006A TWI274856B TW I274856 B TWI274856 B TW I274856B TW 94143006 A TW94143006 A TW 94143006A TW 94143006 A TW94143006 A TW 94143006A TW I274856 B TWI274856 B TW I274856B
Authority
TW
Taiwan
Prior art keywords
fluid
microfluidic
micro
channel
flow
Prior art date
Application number
TW94143006A
Other languages
Chinese (zh)
Other versions
TW200722713A (en
Inventor
Jing-Tang Yang
Chi-Ko Chen
Kun-Chih Tsai
Original Assignee
Univ Tsinghua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tsinghua filed Critical Univ Tsinghua
Priority to TW94143006A priority Critical patent/TWI274856B/en
Application granted granted Critical
Publication of TWI274856B publication Critical patent/TWI274856B/en
Publication of TW200722713A publication Critical patent/TW200722713A/en

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

This invention provides a micro fluid oscillator. It is suitable for the low Reynold's number condition. The equipment induces a self-vibration phenomenon of micro fluid under low current condition. The oscillator comprises a suddenly dump micro nozzle, and a special flow channel structure. The suddenly dump micro nozzle is utilized for breaking through between the fluid and the wall surface mounts stagnate the shearing stress. It generates an unsteady current and vibration phenomenon. It is the main actuation principle of this equipment, and the core value of this invention. This special flow channel structure comprises a wall surface, a vibration cavity room, a dividing fluid, and a feedback attacks flow channel. It respectively utilizes a different angle, a different width, a different included angle, and an export staggered the design to maintain the fluid spontaneously vibration phenomenon. This invention possesses widespread application, such as: a discharge measurement, a fluid mix, a protein joint, and an immunity fluorescence dyeing, and so on. The implementation method employs a typical micro electrical machine system (MEMS) technology.

Description

1274856 九、發明說明: 【發明所屬之技術領域】 本發明關係於一具微流體振盪器,在低雷諾數的條件下利用突張式微 型喷嘴克服流體黏滯力增益流體不穩定性,以使微量低速流體發生自我擺 盪現象。1274856 IX. Description of the Invention: [Technical Field] The present invention relates to a microfluidic oscillator that overcomes fluid viscous gain gain fluid instability using a protruding micro nozzle under low Reynolds number conditions. The micro-low-speed fluid self-swings.

【先前技術】 一般的流體振盪器因受限於物理參數的限制,除了在某些流速可產生 振盪之外,若流體流速過低流體振盪器則無法順利的產生振盪行為,這將 使應用上受到相當大的限制,特別是在微流體的應用上更是如此。一般先 前的技術 U.S· Patent No. 6860157、U.S· Patent No. 3902367(圖一) 與U.S· Patent No· 4610162(圖二)顯示,在一般釐米或毫米級尺度下雖 然可以順利的運作,但以相同比例微型化之後完全沒有流體振盪的現象。 目前國内外的文獻或研發,均沒有同類型之微型流體振盪器。 如何使微型流體振盪器在極低的流速下依然能夠容易產生微流體的振 盪是本創作欲解決的問題。一般而言,流體振盪器之振盪是利用流體本身 的不穩定性使其產生振盪,並利用回饋流衝擊流道強化振盪驅動力來提昇 流體振盪ϋ不穩紐,但是經微小化後由於流體_滯力太大,以至於微 流體十分穩定不易產生振盪行為,如何使微小化後之微型流體振盪器順利 的產生振盪是本創作的重點,所採用之啟動及操作驅動原理也異於一般常 用之微型流體振盘器。 1274856 習用之《或毫米級尺度回饋魏體振魅明比舰型化後,發現 越在微米級流道中是以穩"流的模式_,故振魅無法正常發揮功 能’原因是流體在微通道中的黏滯力顯著增加,除非預紐合主動式微元 件於微通道中以.擾動微流體的目的,但主動式元❹半製程較絲难 損毁。 、 因此,基於上述揭示的技藝中尚無法以被動元件對微通道巾流體進行 线混合、振盈、擾動及攪料功能,目前有必要開發—種展新及簡單製 寿p可I備之平面型、無可動元件及結構強健之微流體振盈器。 【發明内容】 為了解決上述問題,本發明以突張式微型喷嘴為基礎克服微米等級流 道中高黏滯力影響並配合裝置中各部分獨特的設計即可實現微流體振盈 器。 本發明之目的在於提出-型可整合於微越全分㈣統巾之微流體振 堡器,透過本裝置可誘使低雷絲流體發生自我擺盘的現象。本裝置具有 突張式微對嘴赠體喷Π及特歧道結構,該微射嘴出,為突張結 構用以克服流體無面間麟剪應力並同_發不穩定流及紐現象為本 微型流體振之主要致動原理,亦為本發明之核心價值。流道結構特殊 之處包括兩側之回饋流衝擊流道分別以不同長度、不同寬度、與主噴流不 同夾角及出口上下錯開的設計,使流體在極低的流速之下依然能夠產生流 體振盪的行為。目前尚未有人針對喷射出σ以突張及兩側之_流衝擊流 1274856 道分別以獨長度、獨寬度、與主喷流不同夾角及出σ上下錯開的方式 設計微流體振魅提出任何的·,因此本創作具有優良之靖性。此設 計之微振盪器除了能夠容易產生振蓋外’回饋流的衝擊更能夠產生較大的 作用力’錄流體録雜夠錢麟蘭的流體㈣,_本創作改良 之後的微流體錄器,在極碰速下依贿有良好之流體健行為,因此 具備優良之進步性。本創作需_習知的微機電技藝以製作制性廣泛的 微流體振m器可包括流量測定、流體混合、蛋白質接合及免疫榮光染色等。 【實施方式】 下文為本發明結合該附加圖示之較佳實施已製作一個完成的實品。請 同時參照圖三與_,係本發明之—微频振魅示賴。本發明之微流 體振盡器包括—本體4,及—上蓋5用以封裝本體4。本體4上具有-振盡 腔室35 ’其兩側係由兩接觸壁& 34a、34b所組成以提供一流體之一振盈空 間’-突張式微型噴嘴29 ’其具—流體人口 3()、—喷流口 &與一突張區 32 ’且減腔室35 -端與突張區32連通。且,本體4更具有兩回饋流衝 擊流道撕、33b分別係在振麵室35之兩側,及兩分流體36a、勘位在 振盡腔室35之下游且後接一流體出口 37,且流體出口 37與振盪腔室%之 另細連通而兩回饋流衝擊流道33a、33b分別係從分流體施、36b延 伸至突張區32’其中回饋流衝擊流道33a具一回饋流衝擊流道入口綱與 -回饋流衝擊流道出口 33a2 ’回饋流衝擊流道33b具一回饋流衝擊流道入 口 33bl與-回饋流衝擊流道出口繼。其中,突張式微型嘴嘴29之突張 7 1274856 區32係利用直角型式或擴散型式製作,突張式微型噴嘴29之噴流口 之 流道;米度與寬度比(流道深寬比)係2〜20。 再者,上蓋5係具有一上蓋流體入口 51,其與流體入口 3〇對應,且上 蓋流體入口 51可供一入口導管53***以使液體從入口導管53流入至流體 入口 30。上蓋並具有一上蓋流體出口 52,其與流體出口 37對應,且上蓋 流體出口 52可供一出口導管54***以使液體從出口導管54流出。 因此,當液體從入口導管53流入至流體入口 30,之後再流入噴流口 Φ 31、突張區32與振盡腔室35,且液體流入振盪腔室35之後會遇到分流部 36a、36b,使得液體分成部分流入液體出口 37,而部分是流入回饋流衝擊 流道入口 36al、36bl以流進回饋流衝擊流道36a、36b中,再從回饋流衝 擊流道出口 36a2、36b2流出,進而再流入振盈腔室35,而再重複循環先前 之過程,以造成流體的不穩定產生振盪現象。 其中,兩回饋流衝擊流道33a、33b之長度或是内徑寬度可為不同大小, 回饋流衝擊流道出口 36a2與回鎮流衝擊流道出口施2之位置更可為互相 • 錯開、不對稱,並非完全相向對應,及突張區32與兩側的回饋流衝擊流道 33a、33b之夾角可不同,而夾角範圍是3〇度〜12〇度。以上這種設計方式, 係更加強化振娜動力,提昇流體振盪器的不歡性,即使在極低的流速 之下,流體依然能夠產生良好的振盈行為。其中,本發明之流體流量係ι〇 微升/分鐘〜謂微升/分鐘的低流速操作範圍。在本發明之實施事例中,該 本體4及上蓋5可以選擇性質廣泛且易於取得及適合半導體製程加工之材 料,例如料玻璃基板。然而,熟純機電技術之人士將會瞭解,亦可選 1274856 用其它適合的材料驗實施本發明之微型振魅本體,例如高分子材料或 電禱金屬㈣。在本發明之實施事例巾,可表减質或其它膠合工法 將本體及上蓋接合。如使用+同的材料時,則須選擇適當的方式加以接合。 無論用何種材料,在接合時必爵注意,不可有凸出的雜,以免對整體 的机场有所縛。最後連接流體出人σ之導管,即完成實品的製作。 以上所述之貫施例僅係為說明本發明之技m及特點,其 目的在使熟習此項技藝之人士能夠瞭解本發明之内容並據以實八 施’當不能以之限定本發明之專利範圍,即大凡依本發明所^一 之精神所作之均«化或修飾,仍·蓋在本發明之專利範圍内不。 【圖式簡單說明】 圖一係一習知微流體振盪器示意圖。 圖二係另1知微流體振iii示意圖。[Prior Art] The general fluid oscillator is limited by physical parameters, except that at some flow rates, oscillation can occur. If the fluid flow rate is too low, the fluid oscillator will not smoothly generate oscillation behavior, which will make the application It is subject to considerable restrictions, especially in microfluidic applications. The prior art US Patent No. 6860157, US Patent No. 3902367 (Fig. 1) and US Patent No. 4610162 (Fig. 2) show that although the operation can be smoothly performed at a general centimeter or millimeter scale, There is no fluid oscillation at all after the same proportion of miniaturization. At present, there is no microfluidic oscillator of the same type in literature or research at home and abroad. How to make the microfluidic oscillator can easily generate microfluidic oscillation at a very low flow rate is a problem to be solved by the present invention. In general, the oscillation of the fluid oscillator utilizes the instability of the fluid itself to cause oscillation, and the feedback flow is enhanced by the feedback flow to enhance the oscillation of the fluid, but after the miniaturization, the fluid is _ The stagnation force is too large, so that the microfluid is very stable and it is not easy to generate oscillating behavior. How to make the microfluidic oscillator after the micro-fluid oscillator smoothly oscillate is the focus of this creation. The principle of starting and operating drive is different from the commonly used one. Micro fluid vibrating disc. 1274856 The "use of the " or the millimeter-scale scale feedback Wei Weizhen charms than the ship type, found that in the micron-level flow channel is a stable "flow mode", so the vibration can not function properly' because the fluid is in the microchannel The viscous force is significantly increased unless the pre-filled active micro-elements are used to perturb the microfluids in the microchannels, but the active meta-half half-process is more difficult to damage. Therefore, based on the above-disclosed art, it is not possible to perform the functions of line mixing, vibration, disturbance, and stirring of the microchannel towel fluid by passive components. At present, it is necessary to develop a new plane for simple and simple life. Type, no moving parts and a robust microfluidic vibrator. SUMMARY OF THE INVENTION In order to solve the above problems, the present invention can realize a microfluidic vibrator by overcoming the influence of high viscous force in a micron-scale flow channel and cooperating with the unique design of each part in the device based on the protruding micro-nozzle. SUMMARY OF THE INVENTION The object of the present invention is to provide a microfluidic vibrator that can be integrated into the micro-cross-section (four) towel, and the device can induce the self-winding of the low-filament fluid through the device. The device has a protruding micro-to-mouth sneeze and a special channel structure, and the micro-probe is a protruding structure for overcoming the fluid-free interlaminar shear stress and the same as the unstable flow and the new phenomenon. The main actuation principle of microfluidic vibration is also the core value of the invention. The special structure of the flow channel includes the design of the feedback flow channels on both sides with different lengths, different widths, different angles from the main jet and the upper and lower outlets, so that the fluid can still generate fluid oscillation under the extremely low flow rate. behavior. At present, no one has proposed to design a microfluidic vibrator in such a way that the spurt spurt and the _ stream impinging stream 1274856 on both sides are respectively designed with a single length, a single width, a different angle from the main jet, and a sigma up and down. Therefore, this creation has excellent homage. The micro-oscillator of this design can produce a larger force in addition to the impact of the feedback flow. At the extreme speed, bribes have good fluid health behavior, so they have excellent progress. This creation requires the use of MEMS micro-electromechanical techniques to produce a wide range of microfluidic oscillators including flow measurement, fluid mixing, protein bonding, and immuno glory staining. [Embodiment] The following is a completed product of the present invention in combination with the preferred embodiment of the additional illustration. Please refer to Figure 3 and _ at the same time, which is the invention of the micro-frequency vibration. The microfluidizer of the present invention includes a body 4, and an upper cover 5 for enclosing the body 4. The body 4 has a --exhaustion chamber 35' which is composed of two contact walls & 34a, 34b on both sides to provide a fluid plenum space - a protruding micro-nozzle 29 'with a fluid population 3 (), the jet port & and a projecting zone 32' and the reducing chamber 35-end is in communication with the projecting zone 32. Moreover, the body 4 further has two feedback flow impact channel tears, 33b are respectively disposed on both sides of the vibration chamber 35, and the two-part fluid 36a is positioned downstream of the vibration chamber 35 and is followed by a fluid outlet 37. And the fluid outlet 37 is in fine communication with the oscillating chamber %, and the two return flow impinging channels 33a, 33b respectively extend from the fluid dividing device 36b to the protruding portion 32', wherein the return flow impact channel 33a has a feedback flow impact The flow path inlet and the return flow impact flow path outlet 33a2 'return flow impact flow path 33b have a return flow impact flow path inlet 33b1 and a return flow flow impact channel exit. Among them, the protruding micro-nozzle 29 protrusion 7 1274856 area 32 is made by a right-angle type or a diffusion type, the flow path of the jet opening of the protruding micro-nozzle 29; the ratio of the width to the width (the aspect ratio of the flow path) Department 2~20. Further, the upper cover 5 has an upper cover fluid inlet 51 corresponding to the fluid inlet 3〇, and the upper cover fluid inlet 51 is allowable for an inlet conduit 53 to be inserted to allow liquid to flow from the inlet conduit 53 to the fluid inlet 30. The upper cover has an upper cover fluid outlet 52 that corresponds to the fluid outlet 37 and the upper cover fluid outlet 52 is open for insertion of an outlet conduit 54 for fluid to flow from the outlet conduit 54. Therefore, when the liquid flows from the inlet duct 53 to the fluid inlet 30, and then flows into the jet port Φ 31, the protruding portion 32 and the vibrating chamber 35, and the liquid flows into the oscillating chamber 35, the diverting portions 36a, 36b are encountered. The liquid is divided into a portion that flows into the liquid outlet 37, and a portion that flows into the feedback flow impinging channel inlets 36a1, 36bb to flow into the return flow impinging channels 36a, 36b, and then flows out of the returning flow impinging channel outlets 36a2, 36b2, and then It flows into the vibration chamber 35, and the previous process is repeated again to cause the instability of the fluid to cause oscillation. Wherein, the lengths of the two feed flow impinging channels 33a, 33b or the inner diameter may be different sizes, and the positions of the return flow impinging channel outlet 36a2 and the returning ballast impinging channel outlet 2 may be mutually staggered, not The symmetry is not completely opposite, and the angle between the protruding portion 32 and the feedback flow impinging channels 33a, 33b on both sides may be different, and the angle range is 3 〜 to 12 〇. The above design method is to strengthen the Zhenna power and improve the fluid oscillator's dissatisfaction. Even at very low flow rates, the fluid can still produce good vibration behavior. Among them, the fluid flow rate of the present invention is ι 〇 microliter / minute ~ said microliter / minute low flow rate operating range. In the embodiment of the present invention, the body 4 and the upper cover 5 can be selected from materials having a wide range of properties and which are easy to obtain and suitable for semiconductor processing, such as a glass substrate. However, those skilled in the art of electromechanical technology will appreciate that it is also possible to use the other suitable materials to perform the micro-vibration body of the present invention, such as a polymeric material or an electric prayer metal (4). In the embodiment of the present invention, the body and the upper cover may be joined by a table reduction or other gluing method. If you use the same material, you must choose the appropriate way to join. No matter what kind of material is used, it must be noticed when joining, and there should be no protruding impurities to avoid binding to the overall airport. Finally, the conduit connecting the fluid to the σ is completed, that is, the production of the finished product is completed. The above-described embodiments are merely illustrative of the present invention and are intended to enable those skilled in the art to understand the subject matter of the present invention. The scope of patents, that is, the generalization or modification of the spirit of the invention, is still covered by the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic diagram of a conventional microfluidic oscillator. Figure 2 is a schematic diagram of another microfluidic vibration iii.

圖二係本翻微流體振盪ϋ本體之-平面示意圖 圖四係本翻微流體減ϋ之-立體示意圖。 12回饋流衝擊流道 14接觸壁面 16流體出口 22回饋流衝擊流道 24接觸壁面 【主要元件符號說明】 11噴射形成口 13振盪腔室 15分流體 21噴射形成口 23振盡腔室 9 1274856Figure 2 is a schematic diagram of the body of the microfluidic oscillation 图 body. Figure 4 is a three-dimensional diagram of the microfluidic reduction. 12 feedback flow impinging flow channel 14 contact wall surface 16 fluid outlet 22 feedback flow impinging flow channel 24 contact wall surface [Main component symbol description] 11 injection forming port 13 oscillating chamber 15 sub-fluid 21 injection forming port 23 vibrating chamber 9 1274856

25分流體 29突張式微型喷嘴 30流體入口 31喷流口 33a、33b回饋流衝擊流道 33al回饋流衝擊流道入口 33a2回饋流衝擊流道出口 33bl回饋流衝擊流道入口 33b2回饋流衝擊流道出口 34a、34b接觸壁面 35振盈腔室 36a、36b分流體 37流體出口 26流體出口 32突張區25 minute fluid 29 protruding micro nozzle 30 fluid inlet 31 jet port 33a, 33b feedback flow impact channel 33al feedback flow impact channel inlet 33a2 feedback flow impact channel outlet 33bl feedback flow impact channel inlet 33b2 feedback flow impact flow Channel outlets 34a, 34b contact wall 35 vibrating chambers 36a, 36b sub-fluid 37 fluid outlet 26 fluid outlet 32 protruding region

4本體 5上蓋 51上蓋流體入口 52上蓋流體出口 53入口導管 54出口導管4 body 5 upper cover 51 upper cover fluid inlet 52 upper cover fluid outlet 53 inlet conduit 54 outlet conduit

Claims (1)

1274856 十、申請專利範圍: 1· 一種微流體振堡器,包含· (a) —本體’本體上包含·· 一突張式微型喷嘴,其具-喷流Π與-突張區; -振盈腔室’該腔室由其兩側接觸壁面組以提供流體擺盪空間; -對分流體’位在該振i腔室之下游,且該對分流體後接—流體出口;及 兩回饋流衝擊流道,其位在該振盪腔室兩側;1274856 X. Patent application scope: 1. A microfluidic vibrating device, including (a) - the body of the body contains a · a micro-nozzle with a jet-jet and a protruding region; The chamber "the chamber is in contact with the wall panel on both sides thereof to provide a fluid swing space; - the bisector fluid is located downstream of the vibrating chamber, and the bisector is followed by a fluid outlet; and the two return flows a shock channel located on either side of the oscillating chamber; (b) —上蓋,上蓋用以封裝該本體。 2·如申#專利範圍第1項所述之微流體振盈器,其中該突張區係以直角型 式或擴散型式製作。 3·如申4她g第1項所述之微流體振盪器,其中鮮回職衝擊流道 之長度不同。 4.如申請專利範圍第χ項所述之微流體振盛器,其中該等回饋流衝擊流道 之内徑寬度不同。 • 5.如巾料利細第1項所述之微流體振魅,射該_流衝擊流道與 該突張區夾角範圍可從30到120度之間。 6.如申請專概圍第丨項所述之微越減器,其中該回饋流衝擊流道出 口以不對稱方式或是以錯開方式製作。 7·如申請專利範圍第丄項所述之微流體振盪器,其中該噴流口之流道深度 與寬度之比稱為流道深寬比,其深寬比為2到2〇。 8.如申請專利範圍第!項所述之微流體振盈器,其可操作範圍係ι〇微升/ 分鐘〜100微升/分鐘。(b) - an upper cover for enclosing the body. The microfluidic vibrator of claim 1, wherein the protruding region is made in a right angle or a diffused pattern. 3. The microfluidic oscillator of claim 4, wherein the length of the fresh return impact flow channel is different. 4. The microfluidic vibrator of claim 3, wherein the feedback flow impingements have different inner diameters. • 5. For the microfluidic stimuli described in item 1 of the towel, the angle between the _ stream impinging channel and the protruding zone may range from 30 to 120 degrees. 6. The micro-reducer as described in the above-mentioned application, wherein the feedback flow impact channel outlet is made in an asymmetric manner or in a staggered manner. 7. The microfluidic oscillator of claim 3, wherein the ratio of the depth of the flow channel to the width of the orifice is referred to as the channel aspect ratio, and the aspect ratio is 2 to 2 inches. 8. If you apply for a patent scope! The microfluidic vibrator described in the section has an operable range of ι 〇 / liter to 100 μl / min.
TW94143006A 2005-12-06 2005-12-06 Micro fluid oscillator TWI274856B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94143006A TWI274856B (en) 2005-12-06 2005-12-06 Micro fluid oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94143006A TWI274856B (en) 2005-12-06 2005-12-06 Micro fluid oscillator

Publications (2)

Publication Number Publication Date
TWI274856B true TWI274856B (en) 2007-03-01
TW200722713A TW200722713A (en) 2007-06-16

Family

ID=38624183

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94143006A TWI274856B (en) 2005-12-06 2005-12-06 Micro fluid oscillator

Country Status (1)

Country Link
TW (1) TWI274856B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553482A (en) * 2012-02-24 2012-07-11 张端 Novel backflow-type micro mixer
CN109282840A (en) * 2017-07-20 2019-01-29 代傲表计有限公司 For determining the measurement module of Fluid Volume
CN114370650A (en) * 2022-01-14 2022-04-19 中国航空发动机研究院 Sub-millimeter self-excited sweep jet oscillator
US11656032B2 (en) 2019-09-27 2023-05-23 Industrial Technology Research Institute High temperature flow splitting component and heat exchanger and reforming means using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215789B (en) * 2016-08-04 2019-02-05 江苏大学 A kind of reflux passive type micro-mixer based on jet current principle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553482A (en) * 2012-02-24 2012-07-11 张端 Novel backflow-type micro mixer
CN109282840A (en) * 2017-07-20 2019-01-29 代傲表计有限公司 For determining the measurement module of Fluid Volume
CN109282840B (en) * 2017-07-20 2022-06-07 代傲表计有限公司 Measuring module for determining a fluid quantity
US11656032B2 (en) 2019-09-27 2023-05-23 Industrial Technology Research Institute High temperature flow splitting component and heat exchanger and reforming means using the same
CN114370650A (en) * 2022-01-14 2022-04-19 中国航空发动机研究院 Sub-millimeter self-excited sweep jet oscillator

Also Published As

Publication number Publication date
TW200722713A (en) 2007-06-16

Similar Documents

Publication Publication Date Title
TWI274856B (en) Micro fluid oscillator
Huang et al. An acoustofluidic micromixer based on oscillating sidewall sharp-edges
Benson et al. An “off-the-shelf” capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates
Ahmed et al. A millisecond micromixer via single-bubble-based acoustic streaming
US8529026B2 (en) Droplet generator
JP4341372B2 (en) Liquid mixing method, mixing apparatus and mixing system
CN104525286B (en) The micro-fluidic chip of drop synchronous fusion is realized based on T-shaped passage
Xia et al. Nonlinear microfluidics: device physics, functions, and applications
CN104084247A (en) Elastic wall surface micro-fluidic chip based on T-shaped micro-channel
KR100931983B1 (en) Microfluidic Mixer
CN103638852B (en) A kind of synthesizing jet-flow Valveless piezoelectric micro-mixer
JP2017529493A (en) Improved three-jet island fluid oscillator circuit, method and nozzle assembly
JP6796877B2 (en) Composite particle manufacturing equipment and composite particle manufacturing method
US11559809B2 (en) Enhanced cell/bead encapsulation methods and apparatuses
Li et al. Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction
CN105195053A (en) Oscillation jetting type micromixer based on microbubble drive
Zhao et al. Rational design of robust flower-like sharp-edge acoustic micromixers towards efficient engineering of functional 3D ZnO nanorod array
CN109701430A (en) A method of vibration pipeline control T-type micro-fluidic chip generates microbubble
CN108499500A (en) A method of vibration pipeline control flow focusing type micro-fluidic chip generates microlayer model
CN113289530B (en) Micro-channel mixer of integrated synthetic double-jet actuator and application method thereof
JP4186637B2 (en) Particle manufacturing method and microchannel structure therefor
US20060219307A1 (en) Micromixer apparatus and method therefor
Liu et al. Adjustable behaviors and dynamic mechanisms of droplets in the cross junction
Glawdel et al. Droplet generation in microfluidics
CN103638837B (en) A kind of Piezoelectric micro-mixer based on synthesizing jet-flow

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees