TWI274207B - Liquid-crystal display - Google Patents

Liquid-crystal display Download PDF

Info

Publication number
TWI274207B
TWI274207B TW094130397A TW94130397A TWI274207B TW I274207 B TWI274207 B TW I274207B TW 094130397 A TW094130397 A TW 094130397A TW 94130397 A TW94130397 A TW 94130397A TW I274207 B TWI274207 B TW I274207B
Authority
TW
Taiwan
Prior art keywords
plate
phase difference
liquid crystal
lcd
film
Prior art date
Application number
TW094130397A
Other languages
Chinese (zh)
Other versions
TW200708822A (en
Inventor
Byoung-Kun Jeon
Sergey Belyaev
Jeong-Su Yu
Original Assignee
Lg Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Chemical Ltd filed Critical Lg Chemical Ltd
Application granted granted Critical
Publication of TWI274207B publication Critical patent/TWI274207B/en
Publication of TW200708822A publication Critical patent/TW200708822A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133749Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for low pretilt angles, i.e. lower than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides a liquid-crystal display (LCD) that can obtain high contrast from the tilted angle of the front side of a vertically aligned LCD (VA-LCD) and, by minimizing the chromatic aberration of the dark states in the tilted angle, improve the view angle of the VA-LCD. As a characteristic of the present invention, the LCD includes two glass plates, two polarizers, one VA panel, and one thin film layer. The two glass plates are located on top and bottom of the LCD, respectively. The two polarizers are installed between the two glass plates and with their light absorbing axes perpendicular with each other. The VA panel is placed between the two polarizers and its dielectric anisotropy is either positive or negative. The thin film layer is selected from three different plates, including -C- plate, +A- plate, and -A- plate, where the -C- plate satisfies the conditions of the mathematical expressions 5, 6, and 7, the +A- plate has its optical axis perpendicular with the absorbing axis of an adjacent polarizer (therefore, the retardation value increases due to reversed wavelength dispersion when the wavelength increases within the range of visible light) and satisfies the conditions of the mathematical expressions 1 and 2, and -A- plate satisfies the conditions of the mathematical expressions 3 and 4. Also, since the thin film layer is located between the two polarizers and its phase compensation is negative, the condition of the mathematical expression 8 is satisfied. Besides, when no voltage is applied between the two glass plates, the pre-tilt angle of the director of the VA panel's liquid crystal molecules lies between 75 degree and 90 degree. (Mathematical expressions 1 to 8 are the same as that written in the patent description.)

Description

1274207 九、發明說明: 【發明所屬之技術領域】 本發明係有關於液晶顯示裝置(liquid-crystal display ;以下稱之為LCD )中用以改善光視角特性的液晶 顯示裝置。 【先前技術】1274207 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display device for improving optical viewing angle characteristics in a liquid crystal display device (hereinafter referred to as LCD). [Prior Art]

本發明係有關於一種液晶顯示裝置,具體而言係有關於 一種具有一使用 A-板與C-板之膜層,而用以使一具有負 或正介電率異方性液晶之垂直配向液晶顯示裝置 (vertically aligned liquid-crystal display,VA-LCD)的黑 狀態色彩變化最小化,而來改善正面傾斜角之光視角特性 的垂直配向液晶顯示裝置(以下稱之為“ VA-LCD” )。 最近,在平面顯示器領域中,最被廣為使用的液晶顯示 裝置(LCD )中的最大缺點之一是視角狹窄,在液晶顯示 裝置中因視角之不同而看到不同影像的原因有:第一,因 液晶之異方性而起的;第二,因偏光板之不完全性而起的。 為了改善這樣之液晶顯示裝置其中缺點之一的光視角 問題,需達成完全黑之狀態(dark state )與均勻亮度 (brightness )的要求,尤其是,與TN模式相異之液晶初 期配向為垂直方向的VA-LCD中,使視角特性降低之問題 點可舉較大的二個例子,第一為直交偏光板之視角相關 性,第二為VA-LCD面板之複折射特性的視角相關性。 隨著這樣的要求與問題,進行多種用以改善液晶顯示裝 5The present invention relates to a liquid crystal display device, and more particularly to a film layer having an A-plate and a C-plate for vertical alignment of a liquid crystal having a negative or positive dielectric anisotropy. A vertical alignment liquid crystal display device (hereinafter referred to as "VA-LCD") for minimizing black color change of a liquid crystal display device (VA-LCD) to improve a viewing angle characteristic of a front tilt angle . Recently, one of the biggest drawbacks in the most widely used liquid crystal display device (LCD) in the field of flat panel displays is that the viewing angle is narrow. In liquid crystal display devices, different images are seen due to different viewing angles: , due to the anisotropy of the liquid crystal; second, due to the incompleteness of the polarizing plate. In order to improve the optical viewing angle problem of one of the disadvantages of such a liquid crystal display device, it is required to achieve a dark state and a uniform brightness. In particular, the initial alignment of the liquid crystal different from the TN mode is vertical. In the VA-LCD, the problem of lowering the viewing angle characteristics is exemplified by two larger examples. The first is the viewing angle dependence of the orthogonal polarizing plate, and the second is the viewing angle correlation of the birefringence characteristics of the VA-LCD panel. With such requirements and problems, various improvements are made to the liquid crystal display device 5

1274207 置之光視角的試驗,具體的改善方法可舉例 償膜,其可補償一因應角度所致And (複折 之積)變化而產生的狹窄視角;另一種是使 方式,亦即將像素分成多數個領域,而使其 使用視角補償膜來改善VA-LCD之光視j 美國專利4,889,4 1 2號中公開的VA-LCD,在 狀態下,使用一用以補償VA-LCD之黑狀態 的-C-板補償膜(當將面方向中之X軸方向才/ Y軸方向折射率設為 ny,Z軸方向折射痒 n x = n y > η z ),然而,因僅含有-C -板補償膜的 法作到完全補償,因而在傾斜角會有漏光之 此外,美國專利第6,141,075號中揭露一 償膜與A-板補償膜的補償膜例,其與習知才E 壓之狀態下的VA-LCD黑狀態(dark state ) 償,但在此場合下,黑狀態中在傾斜角70度 只有 20 : 1,若要有更佳的視角補償,則要 角中的對比,且同時必須改善黑狀態下之色 [專利文獻1]美國專利第4,889,41 2號 [專利文獻2]美國專利第6,141,075號 【發明内容】 本發明之目的在於提供一種在 VA-LCD 度中可獲得高對比特性,且藉由使傾斜角中 變化最小化而改善VA-LCD之視角特性的液 如使用視角補 射與試片間隔 .用多重領域的 視角提高。 尋的具體例:如 .未施加電壓之 (dark state ) f射率設為nx, l設為 η z時^ VA-LCD沒辦 缺點。 種含有-C-板補 3較,未施加電 雖有較佳之補 .時之最小對比 •改善正面傾斜 彩變化。 之正面傾斜角 之黑狀態的色 晶顯示裝置。 12742071274207 The test of the viewing angle of light, the specific improvement method can be used to compensate the film, which can compensate for a narrow angle of view caused by the change of And (folding product) due to the angle; the other is to make the way, that is, to divide the pixel into a majority In the field, the use of a viewing angle compensation film to improve the VA-LCD disclosed in U.S. Patent No. 4,889,411, the use of a VA-LCD to compensate for the black state of the VA-LCD. -C-plate compensation film (when the X-axis direction in the plane direction is /the Y-axis direction refractive index is set to ny, the Z-axis direction is refracted to itch nx = ny > η z ), however, since only the -C-plate is contained The method of compensating the film is completely compensated, so that there is light leakage at the tilt angle. In addition, a compensation film of a compensation film and an A-plate compensation film is disclosed in U.S. Patent No. 6,141,075, which is in the state of the conventional E-pressure. The VA-LCD dark state is compensated, but in this case, the black state has a tilt angle of 70 degrees and only 20: 1. For better viewing angle compensation, the contrast in the corner is required, and at the same time Improving the color in the black state [Patent Document 1] U.S. Patent No. 4,889,41 2 [Patent Document [2] U.S. Patent No. 6,141,075 [Disclosure] It is an object of the present invention to provide a high contrast characteristic in VA-LCD degrees and to improve the viewing angle of the VA-LCD by minimizing variations in tilt angle. The characteristic liquid is used as the angle of view and the test piece interval. It is improved from the perspective of multiple fields. Specific examples of homing: For example, the dark state f-rate is set to nx, and l is set to η z. VA-LCD does not have the disadvantage. The type contains -C-plate complement 3, no electricity is applied. Although there is a better complement, the minimum contrast is improved. A black crystal display device with a front tilt angle. 1274207

為了達成前述目的,本發明提供一種液晶顯示裝置 特徵在於包含有:二片上下方玻璃基板;位於該二片 基板間,且光吸收轴相互垂直的二片偏光板;位於該 偏光板之間,且具有介電率異方性為負或正值的一垂 向面板;以及一薄膜層,其至少選自以下三者之一: 一 -C-板,係滿足下述數學式5、6及7之條件;板-板,其光軸與相鄰偏光板之吸收軸垂直,在可見光範 波長增加,則相位差值因具有逆波長分散特性而增加 滿足下述數學式1及2之條件;以及一 -A-板,係滿足 數學式3及4之條件。該薄膜層位於該二片偏光板之 具有負值之相位差補償特性,並滿足下述數學式 8 件。該垂直配向面板之液晶分子的方向子在該二片玻 板之間未施加電壓之狀態下,具有75〜90度之預傾角 [數學式1] nx>ny>nz (式中,該nx為膜之平面内X轴方向的折射率,ny 之平面内的y軸方向的折射率,nz為膜之厚度方向的 率。) [數學式2] 250nm<RA(55〇) — 500nm (式中,該Ra(55〇)為550nm波長下+ A-板的平面内 差值) [數學式3] ,其 玻璃 二片 直配 亦即 .+ A - 圍内 ,並 下述 間, 之條 璃基 為膜 折射 相位 1274207 (式中,該nx為膜之平面内χ軸方向的折射率,ny為膜 之平面内的y軸方向的折射率,nz為膜之厚度方向的折射 率。) [數學式4] R-A(55〇) < 25 Onm (式中,該R-a(55〇)為550nm波長下-A-板的平面内相位 差值)In order to achieve the foregoing object, the present invention provides a liquid crystal display device characterized by comprising: two upper and lower glass substrates; two polarizing plates positioned between the two substrates and having mutually perpendicular light absorption axes; between the polarizing plates, And a vertical panel having a negative or positive dielectric anisotropy; and a film layer selected from at least one of the following three: a -C-plate, satisfying the following mathematical formulas 5, 6 and The condition of 7; the plate-plate, whose optical axis is perpendicular to the absorption axis of the adjacent polarizing plate, increases in the visible light wavelength, and the phase difference increases by the inverse wavelength dispersion characteristic to satisfy the conditions of the following mathematical formulas 1 and 2; And one-A-board, which satisfies the conditions of Mathematical Formulas 3 and 4. The film layer is provided with a negative phase difference compensation characteristic of the two polarizing plates, and satisfies the following mathematical formula. The direction of the liquid crystal molecules of the vertical alignment panel has a pretilt angle of 75 to 90 degrees in a state where no voltage is applied between the two glass plates [Math. 1] nx > ny > nz (where nx is The refractive index in the X-axis direction in the plane of the film, the refractive index in the y-axis direction in the plane of ny, and nz is the rate in the thickness direction of the film.) [Math 2] 250 nm < RA (55 〇) - 500 nm , Ra (55 〇) is the in-plane difference of + A-plate at 550 nm wavelength) [Math 3], the two pieces of glass are directly matched, ie, + A - inside, and the following, the strip The basis is the film refractive phase 1274207 (wherein nx is the refractive index in the y-axis direction in the plane of the film, ny is the refractive index in the y-axis direction in the plane of the film, and nz is the refractive index in the thickness direction of the film.) [ Mathematical formula 4] RA(55〇) < 25 Onm (wherein, Ra(55〇) is the in-plane phase difference value of the -A-plate at a wavelength of 550 nm)

[數學式5] nx=ny>nz (式中,該nx為膜之平面内X軸方向的折射率,ny為膜 之平面内的y軸方向的折射率,nz為膜之厚度方向的折射 率。) [數學式6] -500nm<R.c(55〇)^-180nm (式中,該R-c(55〇)為550nm波長下-C-板之厚度方向的 相位差值) [數學式7][Math. 5] nx=ny>nz (wherein nx is the refractive index in the X-axis direction in the plane of the film, ny is the refractive index in the y-axis direction in the plane of the film, and nz is the refractive index in the thickness direction of the film. Rate.) [Math. 6] -500 nm < Rc (55 〇) ^ - 180 nm (wherein Rc (55 〇) is a phase difference in the thickness direction of the -C-plate at a wavelength of 550 nm) [Math 7]

| R-C( 5 5 0 ) I > I R VA(550)I (式中,該|R-c(55〇)l為550nm波長下-C-板之厚度方向 的相位差絕對值,而該I Rva( 5 5 0 ) I為 5 5 Onm波長下垂直配 向面板之厚度方向的相位差絕對值) [數學式8] -180nm<R_c+ RvA^-l〇nm (式中’該R-c為-C-板之相位差值’而該Rva為垂直配 1274207 向面板之相位差值。) 該預傾角為87〜90度,而以89〜90度為較佳。 該垂直配向面板之液晶層的相位差值在5 5 0nm波長時 為80nm〜400nm,而以80nm〜300nm為較佳。 施加電壓時,該垂直配向面板之液晶分子的方向子 (director)與該偏光板之吸收軸呈45度。 在450nm、550nm、650nm之波長下,該-C-板之各別厚RC( 5 5 0 ) I > IR VA(550)I (wherein |Rc(55〇)l is the absolute value of the phase difference in the thickness direction of the -C-plate at a wavelength of 550 nm, and the I Rva( 5 5 0 ) I is the absolute value of the phase difference in the thickness direction of the vertical alignment panel at 5 5 Onm wavelength. [Math 8] -180 nm < R_c + RvA^-l〇nm (where Rc is -C-plate The phase difference 'and the Rva is the phase difference of the vertical matching 1274207 to the panel.) The pretilt angle is 87 to 90 degrees, and preferably 89 to 90 degrees. The phase difference of the liquid crystal layer of the vertical alignment panel is 80 nm to 400 nm at a wavelength of 550 nm, and preferably 80 nm to 300 nm. When a voltage is applied, the director of the liquid crystal molecules of the vertical alignment panel is at 45 degrees to the absorption axis of the polarizing plate. At the wavelengths of 450 nm, 550 nm, and 650 nm, the -C-plates are each thick

度方向上之相位差值R-C(450)、R-C(550)、R-C(65G)滿足下述 數學式9及數學式10之條件。 [數學式9] (R-C(4 5 0)/R-C( 5 5 0 ) ) < ( RvA(4 5 0)/RvA( 5 5 0 )) (式中,該 Rva(45〇)及 Rva(55〇)分別為 450nm、550nm 波 長下垂直配向面板之厚度方向的相位差值。) [數學式10] (R-C(6 5 0)/R-C( 5 5 0 ) ) > ( RvA(6 5 0)/Rva( 5 5 0 )) (式中,該 Rva(65〇)及 Rva(55〇)分別為 65 0nm、550nm 波 長下垂直配向面板之厚度方向的相位差值。) 在450nm、550nm、650nm之波長下,該A -板之各別平 面相位差值Ra(450)、Ra(550)、Ra(650)滿足下述數學式11及 數學式1 2之條件。 [數學式11] 0.6< ( Ra(4 5 0 )/Ra( 5 5 0 ) ) ^0.9 [數學式12] 1.1< ( Ra(6 5 0)/Ra(5 5 0 ) ) ^1.5 1274207 在450nm、550nm、650nm之波長下,該-C-板之各別厚 度方向相位差值R-C(4 5 0)、R-C(55G)、R-C(65〇)滿足下述數學 式1 3及數學式1 4之條件。 [數學式13] 0.9< ( R-C(4 5 0 )/R-C( 5 5 0 ) ) ^1.2 [數學式14] 0.9< ( R-C(6 5 0)/R-C( 5 5 0 ) ) <1.2The phase difference values R-C (450), R-C (550), and R-C (65G) in the degree direction satisfy the following conditions of Mathematical Formula 9 and Mathematical Formula 10. [Math. 9] (RC(4 5 0)/RC( 5 5 0 ) ) < ( RvA(4 5 0)/RvA( 5 5 0 )) (where Rva(45〇) and Rva( 55〇) The phase difference in the thickness direction of the vertical alignment panel at 450 nm and 550 nm, respectively.) [Math. 10] (RC(6 5 0)/RC( 5 5 0 ) ) > ( RvA(6 5 0 /Rva( 5 5 0 )) (wherein Rva (65〇) and Rva(55〇) are phase difference values in the thickness direction of the vertical alignment panel at 65 nm and 550 nm, respectively.) At 450 nm, 550 nm, At the wavelength of 650 nm, the respective plane phase differences Ra (450), Ra (550), and Ra (650) of the A-plate satisfy the conditions of Mathematical Formula 11 and Mathematical Formula 1 below. [Math 11] 0.6 < ( Ra (4 5 0 ) / Ra ( 5 5 0 ) ) ^ 0.9 [Math 12] 1.1 < ( Ra (6 5 0) / Ra (5 5 0 ) ) ^ 1.5 1274207 In the wavelengths of 450 nm, 550 nm, and 650 nm, the phase difference values RC (4 5 0), RC (55G), and RC (65 〇) of the thickness direction of the -C-plate satisfy the following mathematical formula 1 3 and mathematics. The condition of Equation 14. [Math. 13] 0.9 < ( RC (4 5 0 ) / RC ( 5 5 0 ) ) ^ 1.2 [Math 14] 0.9 < ( RC (6 5 0) / RC ( 5 5 0 ) ) < 1.2

前述本發明之目的與特徵以及優點,藉由所附之圖面及 以下之詳細說明,將可以更容易了解。 以下,即參考附圖,就本發明之構成及作用詳細說明如 下0 【實施方式】 第1圖至第7圖例示出一依據本發明而現之VA_LCD, 該V A _ L C D液晶胞係由吸收軸相互垂直之兩偏光板1 〇 〇、 1 1 0 ’配置於該二偏光板之間的垂直配向面板2 〇 〇,以及配 置於該二偏光板與垂直配向面板之間的薄膜層3 〇 〇、3丨〇、 400所構成。其中,該薄膜層至少含有八_板3〇〇、31〇及 -C-板 400其中之一。 該偏光板具有一具習用厚度方向之相位差值的 TAC(triacetate cellulose)保護膜,或是一無厚度方向之相 位差值的其它保護膜。 第1圖至第4圖為一根據實施例1至4而成之Va-LCD 液晶胞構造,其各使用A -板3 0 0或3 1 0以及-C -板4 0 0其 10 1274207 中之一者,將其配置於垂直配向面板200與相互垂直之二 上下方偏光板1 1 〇、1 〇 〇之間’並保持3〜8 // m之間隔。 第1圖為實施例1,將+ A -板 3 0 0配置於垂直配向面板 2 0 0與下方偏光板1 0 0之間,將-C -板 4 0 0配置於垂直配向 面板200與上方偏光板110之間。其中該+ A-板 300之光 軸與該下方偏光板1 〇 〇之吸收軸垂直。The foregoing objects, features, and advantages of the invention will be apparent from the accompanying drawings and appended claims. Hereinafter, the configuration and operation of the present invention will be described in detail below with reference to the accompanying drawings. [Embodiment] Figs. 1 to 7 show a VA_LCD according to the present invention, which is composed of an absorption axis. Two polarizing plates 1 〇〇, 1 1 0 'the vertical alignment panel 2 配置 disposed between the two polarizing plates, and a film layer 3 disposed between the two polarizing plates and the vertical alignment panel, 3丨〇, 400 constitutes. Wherein, the film layer contains at least one of eight-plate 3〇〇, 31〇 and -C-plate 400. The polarizing plate has a TAC (triacetate cellulose) protective film having a phase difference in the thickness direction, or another protective film having a phase difference in the thickness direction. 1 to 4 are a Va-LCD liquid crystal cell structure according to Embodiments 1 to 4, each of which uses an A-plate 300 or 3 1 0 and a -C-plate 400, 10 1274207 In one case, it is disposed between the vertical alignment panel 200 and the two upper and lower polarizing plates 1 1 〇, 1 相互 which are perpendicular to each other and maintains an interval of 3 to 8 // m. 1 is a first embodiment, in which a + A - plate 300 is disposed between a vertical alignment panel 200 and a lower polarizing plate 100, and a -C-plate 400 is disposed on a vertical alignment panel 200 and above. Between the polarizing plates 110. The optical axis of the + A-plate 300 is perpendicular to the absorption axis of the lower polarizing plate 1 〇 。.

第2圖為實施例2,將-A-板 3 1 0配置於垂直配向面板 2 0 0與上方偏光板1 1 0之間,將-C -板 4 0 0配置於垂直配向 面板200與下方偏光板100之間。其中該-A-板 310之光 軸與該上方偏光板1 1 0之吸收軸垂直。 第3圖為實施例3,將_A-板 3 1 0與· C -板 4 0 0依次配置 於垂直配向面板200與上方偏光板110之間。其中該- A-板 3 1 0之光軸與該上方偏光板1 1 0之吸收軸垂直。 第4圖為實施例4,將第3圖之-A-板 310與-C-板 400 之位置變換,依次配置於垂直配向面板2 0 0與上方偏光板 110之間。其中該-A-板 310之光軸與該上方偏光板110之 吸收軸垂直。 第5圖及第6圖顯示出根據實施例5及6而成之VA-LCD 液晶胞構造,其使用A-板3 00、3 10二者與一 -C-板 400, 將其分別配置於與垂直配向面板2 0 0相互垂直的二個上下 方偏光板1 1 0、1 00之間,並保持3〜8 // m之間隔。 第5圖為實施例5,將+ A ·板 3 0 0配置於垂直配向面板 200與下方偏光板100之間,將_A-板 3 10與-C-板 400相 繼配置於垂直配向面板2 0 0與上方偏光板1 1 0之間。其中 11 1274207 配置於該垂直配向面板200與下方偏光板100之間的+ A-板 3 0 0之光軸與下方偏光板1 0 0之吸收軸垂直,配置於該 垂直配向面板2 0 0與上方偏光板1 1 0之間的-A -板 3 1 0之 光軸與上方偏光板1 1 0之吸收軸垂直。2 is a second embodiment, the -A-plate 3 10 is disposed between the vertical alignment panel 200 and the upper polarizing plate 1 1 0, and the -C-plate 400 is disposed between the vertical alignment panel 200 and the lower portion. Between the polarizing plates 100. The optical axis of the -A-plate 310 is perpendicular to the absorption axis of the upper polarizing plate 110. Fig. 3 shows a third embodiment in which the _A-board 3 10 and the C-plate 400 are sequentially disposed between the vertical alignment panel 200 and the upper polarizing plate 110. The optical axis of the -A-plate 3 10 is perpendicular to the absorption axis of the upper polarizing plate 110. Fig. 4 shows a fourth embodiment in which the positions of the -A-plate 310 and the -C-plate 400 of Fig. 3 are changed, and are sequentially disposed between the vertical alignment panel 200 and the upper polarizing plate 110. The optical axis of the -A-plate 310 is perpendicular to the absorption axis of the upper polarizing plate 110. FIGS. 5 and 6 show a VA-LCD liquid crystal cell structure according to Embodiments 5 and 6, which uses A-boards 300 and 3 10 and a -C-plate 400, respectively, and respectively The distance between the two upper and lower polarizing plates 1 1 0 and 100 which are perpendicular to the vertical alignment panel 200 is maintained at intervals of 3 to 8 // m. 5 is a fifth embodiment, the + A · plate 300 is disposed between the vertical alignment panel 200 and the lower polarizing plate 100, and the _A-board 3 10 and the -C-plate 400 are successively disposed on the vertical alignment panel 2 0 0 is between the upper polarizing plate 1 10 0. 11 1274207 is disposed between the vertical alignment panel 200 and the lower polarizing plate 100, and the optical axis of the + A-plate 300 is perpendicular to the absorption axis of the lower polarizing plate 100, and is disposed on the vertical alignment panel 200 and The optical axis of the -A-plate 3 10 between the upper polarizing plates 1 10 is perpendicular to the absorption axis of the upper polarizing plate 1 10 .

第6圖為實施例6,將-A-板 3 1 0配置於垂直配向面板 200與上方偏光板 110之間,將+ A-板 300與-C-板 400 相繼配置於垂直配向面板2 0 0與下方偏光板1 0 0之間。其 中配置於該垂直配向面板2 0 0與上方偏光板1 1 0之間的-A -板 3 1 0之光軸與上方偏光板1 1 0之吸收軸垂直,配置於該 垂直配向面板200與下方偏光板100之間的+ A·板 300之 光軸與下方偏光板1 0 0之吸收軸垂直。 第7圖為依實施例7及8所成之形態,為VA-LCD液晶 胞構造’其構設成使用 A -板 300、310二者與二-C-板 400,並將其分別配置於與垂直配向面板200相互垂直的二 個上下方偏光板1 1 0、1 00之間,並保持3〜8 // m之間隔。 將+ A-板 300與-C-板 400依次配置於垂直配向面板200 與下方偏光板100之間,將-A-板 310與-C-板 400相繼配 置於垂直配向面板200與上方偏光板110之間。其中配置 於該垂直配向面板 200與下方偏光板 100之間的+ A-板 3 0 0之光軸與下方偏光板1 0 0之吸收軸垂直,配置於該垂 直配向面板200與上方偏光板1 10之間的-A-板 3 10之光 軸與上方偏光板1 1 0之吸收轴垂直。 本發明之垂直配向面板與-C -板之厚度方向的相位差值 總和(RVA+ R-c< 〇) —般具有負值,補償VA-LCD所需要 12 1274207 之-C_板的厚度方向相位差值(R_e 55G )可由下式求得。6 is a sixth embodiment, the -A-plate 3 10 is disposed between the vertical alignment panel 200 and the upper polarizing plate 110, and the + A-plate 300 and the -C-plate 400 are successively disposed on the vertical alignment panel 2 0 . 0 is between the lower polarizer and the lower polarizer. The optical axis of the -A-plate 3 1 0 disposed between the vertical alignment panel 200 and the upper polarizing plate 1 1 0 is perpendicular to the absorption axis of the upper polarizing plate 1 1 0, and is disposed on the vertical alignment panel 200 and The optical axis of the + A·plate 300 between the lower polarizing plates 100 is perpendicular to the absorption axis of the lower polarizing plate 100. Figure 7 is a view showing the form of the VA-LCD liquid crystal cell structure according to the embodiments 7 and 8, which are configured to use both the A-plates 300, 310 and the two-C-plate 400, and are respectively disposed on The two upper and lower polarizing plates 1 1 0 and 100 are perpendicular to the vertical alignment panel 200, and are kept at intervals of 3 to 8 // m. The +A-plate 300 and the -C-plate 400 are sequentially disposed between the vertical alignment panel 200 and the lower polarizing plate 100, and the -A-plate 310 and the -C-plate 400 are successively disposed on the vertical alignment panel 200 and the upper polarizing plate. Between 110. The optical axis of the + A-plate 300 disposed between the vertical alignment panel 200 and the lower polarizing plate 100 is perpendicular to the absorption axis of the lower polarizing plate 100, and is disposed on the vertical alignment panel 200 and the upper polarizing plate 1 The optical axis of the -A-plate 3 10 between 10 is perpendicular to the absorption axis of the upper polarizing plate 110. The sum of the phase difference values (RVA+R-c< 〇) of the vertical alignment panel of the present invention and the thickness direction of the -C-plate generally has a negative value, and compensates for the thickness direction phase of the -C_ board of 12 1274207 required for the VA-LCD. The difference (R_e 55G ) can be obtained by the following equation.

Rva ( 5 5 0 ) + R-c ( 5 5 0 ) = _2〇nm〜-I5 0nm (平均- 8 5nm) 其中,RVA( 5 5 0 ) = (dxAn 5 5 0 )VA係指在55 0波長下垂直配向 面板之厚度方向的相位差值,R_c ( 55G)為55〇nm波長下, -C-板之厚度方向的相位差值。 -C-板所品要之波長分散特性(waveiength dispersion) 可以由下式計算而得。 (AruMn5 50)VAxRVA(55〇) + (Alu/An55〇)_cXR c(55〇) = -85nm。Rva ( 5 5 0 ) + Rc ( 5 5 0 ) = _2〇nm~-I5 0nm (average - 8 5nm) where RVA( 5 5 0 ) = (dxAn 5 5 0 )VA means at 55 0 wavelength The phase difference in the thickness direction of the vertical alignment panel, R_c (55G) is the phase difference in the thickness direction of the -C-plate at a wavelength of 55 〇 nm. The wavelength dispersion characteristic (waveiength dispersion) of the -C-plate can be calculated by the following formula. (AruMn5 50) VAxRVA (55〇) + (Alu/An55〇)_cXR c(55〇) = -85nm.

其中’(Δηλ/Δη^ΟνΑ表示垂直配向面板之厚度方向的相 位差值之波長分散特性,(Δηλ/Δη55())_。表示-c_板之厚度方 向的相位差值之波長分散特性。 此外’ A-板係指一種薄膜,其在薄膜之平面内的X方向 折射率nx與y方向的折射率~中之任一者,與厚度方向 之折射率nz相同’而另一者則大於.厚度方向之折射率,亦 即具有nx>ny= nz之條件,或者,在薄膜之平面内的X方 向折射率nx與y方向的折射率心中之任一者,與厚度方 向之折射率nz相同,而另一者則小於厚度方向之折射率, 亦即具有nx < ny = nz之條件。 别述本發明之VA-LCD的薄膜層具有如下之特性。 該溥膜層各至少包含—八_板以及一 _c_板,該A_板係滿 足nx>ny= nz( + A-板)或二η〆板)之條件,該-c-板係滿足nx=ny>nz之條件,該a-板之光軸必與其相鄰之 偏光板的吸收轴垂直’且具有逆波長分散特性(reversed wavelength dispersion),當波長增加時相位差值亦增加, 13Wherein (Δηλ/Δη^ΟνΑ represents the wavelength dispersion characteristic of the phase difference in the thickness direction of the vertical alignment panel, and (Δηλ/Δη55())_ represents the wavelength dispersion characteristic of the phase difference in the thickness direction of the -c_ plate. Further, 'A-plate refers to a film whose refractive index in the X direction and the refractive index n in the y direction in the plane of the film are the same as the refractive index nz in the thickness direction' while the other is larger than The refractive index in the thickness direction, that is, the condition having nx > ny = nz, or the refractive index in the X direction refractive index nx and the y direction in the plane of the film, and the refractive index in the thickness direction nz The same, while the other is smaller than the refractive index in the thickness direction, that is, having the condition of nx < ny = nz. The film layer of the VA-LCD of the present invention has the following characteristics. The enamel layer each contains at least - An _ plate and a _c_ plate satisfying the condition of nx> ny= nz (+ A-plate) or two η 〆 plate, the condition of the -c-plate satisfying nx=ny> nz , the optical axis of the a-plate must be perpendicular to the absorption axis of the adjacent polarizing plate and have reverse wavelength dispersion characteristics (r Eversed wavelength dispersion), the phase difference also increases as the wavelength increases, 13

1274207 + A -板相位差值絕對值不超過5 0 0 nm,而-A -板相位 對值不超過250nm為較佳。 該-C -板具有大於垂直配向面板相位差值的相位 對值I R-c I &gt; I rva I,且總厚度方向之相位差值 thickness retardation value)必須設計成於 -180nmSR-C+RVAS-l〇nm之範圍,而以總厚度方向 差值之絕對值必須比例於波長而增加者為較佳。 該A -板與-C -板之光學特性如下所述。 該 A-板在二波長 400nm、550nm之相位; (R450/R550 )於0.6〜0.9之範圍,而在二波長550nm 之相位差比值(R65〇/R55〇)於〜1·5之範圍。其 為45 0nm波長下之相位差值,而Rho為55〇nm波 相位差值,Rwo為650nm波長下之相位差值。 該-C-板在 550nm 波長下,相位差 -50〇nmSR_cf 18〇nm之範圍,且在二波長中之相位 (R450/R550)於0.95〜1.2之範圍,在二波長中之 比值(R6 5 0/R5 5 0 )於〇·95〜1.2之範圍。其中,r45〇為 波長下之相位差值,而為55〇nm.波長丁之相位 R65。為65Onm波長下之相位差值。 第8圖至第1 1圖例示出透過本發明之各實施例 換擬結果。在第8圖與第1 〇圖中,以色座標顯示出 何方位角(azimuth angle )之〇〜80度範圍的傾斜 白色光時,由前述本發明之各實施例的VA-LCD而 比比值的模擬結果。在第9圖與第n圖中,以色座 差值絕 差值絕 (total 之相位 i比值 k 6 5 Onm r,R450 長下之 值於 差比值 相位差 45 Onm 差值, 而得之 對於任 角使用 得之對 標顯示 14 1274207 出在45度方位角下,0〜80度範圍之傾斜角,每次變更2 度,並使用白色光時,由本發明之各實施例所揭V A - L C D 而得之在黑狀態下的色變化模擬結果。 以下透過各實施例1至實施例7來詳細說明上述本發明 之液晶顯示裝置的相位差補償特性。然,這些實施例的目 的其僅係為了更容易了解本發明,而並非用以限定本發明。 &lt;實施例1 &gt;The absolute value of the phase difference of 1274207 + A - plate does not exceed 500 nm, and the phase-pair value of -A - plate does not exceed 250 nm. The -C-plate has a phase value I Rc I &gt; I rva I greater than the phase difference of the vertical alignment panel, and the phase difference value of the total thickness direction must be designed to be -180 nm SR-C+RVAS-l It is preferable that the range of 〇nm is increased by the absolute value of the difference in the total thickness direction which must be proportional to the wavelength. The optical characteristics of the A-plate and the -C-plate are as follows. The A-plate is in the phase of two wavelengths of 400 nm and 550 nm; (R450/R550) is in the range of 0.6 to 0.9, and the phase difference ratio (R65 〇 / R55 〇) at the two wavelengths of 550 nm is in the range of 〜1·5. It is the phase difference at a wavelength of 45 nm, and Rho is the phase difference of 55 〇 nm, and Rwo is the phase difference at a wavelength of 650 nm. The -C-plate has a phase difference of -50 〇 nm SR_cf 18 〇 nm at a wavelength of 550 nm, and a phase (R450/R550) in the two wavelengths in the range of 0.95 to 1.2, in a ratio of two wavelengths (R6 5 0/R5 5 0 ) in the range of 〇·95~1.2. Where r45〇 is the phase difference at the wavelength, and is 55〇nm. The phase of the wavelength is R65. It is the phase difference at 65Onm wavelength. Figures 8 through 1 1 illustrate the results of the various embodiments of the present invention. In Fig. 8 and Fig. 1 , the ratio of the VA-LCD of the respective embodiments of the present invention is shown by the color coordinates indicating the oblique white light in the range of 〇 to 80 degrees from the azimuth angle. Simulation results. In the 9th and nth figures, the absolute difference of the color difference is absolute (the phase i ratio of total is k 6 5 Onm r, and the value of R450 is lower than the difference of the phase difference of 45 Onm, and The VA-LCD is disclosed by the embodiments of the present invention when the angle is used to indicate the tilt angle of the range of 0 to 80 degrees at a 45 degree azimuth angle, and the white light is used. The result of the color change simulation in the black state is obtained. The phase difference compensation characteristics of the liquid crystal display device of the present invention described above will be described in detail below through the first to seventh embodiments. However, the purpose of these embodiments is only for the purpose of The invention is more readily understood and is not intended to limit the invention. <Example 1 &gt;

本例係各使用一 A-板及-C-板而實現VA-LCD者。第1 圖所示之VA-LCD含有一垂直配向面板200,其具有3 # m 之間隙。且使用一預傾角為8 9度,介電率異方性為△ ε = -4.9、折射率異方性Δη = 〇 〇99、波長分散特性 Δη4 00/Δη5 5 0= 1.0 5的VA-LCD。因此,垂直配向面板200之 尽度方向的相位差值為R ν A ( 550) = 29711111 ° 5亥-C-板使用厚度方向之相位差值R -35411111 的聚合物相位差膜。-C_板之波長分散特性 R - C (4 5。n m ) / R - C ( 5 5 G n m ) = 1 · 0 1。 該A-板使用平面内相位差值RA(55〇nm)= 3 95nrn之TAC 製作而成的聚合物相位差膜。該A_板之各別波長分散特性 為 R A ( 4 5 0 n m ) / R A ( 5 5 0 n m ) = 0.8 2。In this example, the VA-LCD is realized by using one A-plate and -C-plate. The VA-LCD shown in Figure 1 contains a vertical alignment panel 200 having a gap of 3 # m. And a VA-LCD having a pretilt angle of 89 degrees, a dielectric anisotropy of Δ ε = -4.9, a refractive index anisotropy Δη = 〇〇99, and a wavelength dispersion characteristic Δη4 00 / Δη5 5 0 = 1.0 5 . Therefore, the phase difference in the direction of the vertical direction of the vertical alignment panel 200 is R ν A ( 550) = 29711111 ° 5, and the polymer-phase difference film of the phase difference R - 35411111 in the thickness direction is used. Wavelength dispersion characteristics of the -C_ plate R - C (4 5. n m ) / R - C ( 5 5 G n m ) = 1 · 0 1 . The A-plate is a polymer retardation film produced by using a TAC having an in-plane retardation value of RA (55 〇 nm) = 3 95 nrn. The respective wavelength dispersion characteristics of the A_plate are R A ( 4 5 0 n m ) / R A ( 5 5 0 n m ) = 0.8 2 .

二偏光板 100、110 分別以 COP(cycloolefin)取代 TAC 作為保護膜。 第8圖中顯示出對於任何方位角(azimuthangle)之0 〜8 0度範圍的傾斜角使用白色光時之對比比值的模擬結 果。第9圖中顯示出在45度方位角下,〇〜8〇度範圍之傾 15 1274207 斜角,每次變更2度,並使用白色光時,VA-LCD在黑狀 態下的色變化模擬結果。 &lt;實施例2 &gt;The two polarizing plates 100 and 110 respectively replace TAC with COP (cycloolefin) as a protective film. Fig. 8 shows the simulation results of the contrast ratio when white light is used for the tilt angle of any azimuth angle in the range of 0 to 80 degrees. Figure 9 shows the color change simulation results of the VA-LCD in the black state at a 45 degree azimuth angle with a tilt angle of 15 1274207 at a range of 〇~8 , degrees, 2 degrees each time, and white light. . &lt;Example 2 &gt;

本例係使用一 A-板及一 -C-板而實現VA-LCD者。第2 圖所示之VA-LCD含有一垂直配向面板200,其具有3/zm 之間隙。且使用一預傾角為 8 9度,介電率異方性為Δ ε = -4.9、折射率異方性Δη = 0.099、 波長分散特性 Aruoo/AnssoM.OS的V A - L C D。因此,垂直配向面板200之 厚度方向的相位差值為Rva ( 55〇 ) = 297nm。 該-C-板使用厚度方向之相位差值 R_c(55〇nm) = -316nm 的 TAC而成的聚合物相位差膜。-C-板之波長分散特性 R-C(450nm)/R-C(550nm)=l.〇l。該 A-板使用平面内相位差值 RA(550nm)=316nm之TAC製作而成的聚合物相位差膜。該 A-板之波長分散特性為RA(450nm)/RA(550nm) = 〇.79。 第8圖中顯示出對於任何方位角(azimuth angle)之0 〜8 0度範圍的傾斜角使用白色光時之對比比值的模擬結 果。第9圖中顯示出在45度方位角下,0〜80度範圍之傾 斜角,每次變更2度,並使用白色光時,VA_LCD在黑狀 態下的色變化模擬結果。 &lt;實施例3 &gt; 本例係使用一 -A-板及一 -C-板而實現VA-LCD者。第3 圖所示之VA-LCD含有一垂直配向面板,其具有3/zm之 間隙。且使用一預傾角為89度,介電率異方性為Δε = -4.9、 折射率異方性Αη = 0.099、波長分散特性Δη4()()/Δη55()=1.05 16 1274207 的 VA-LCD。因此,垂直配向面板之厚度方向的相位差值 為 Rva(55〇) = 297nm。 該-C-板使用厚度方向之相位差值 R_c(55〇nm) = _352nm 的TAC而成的聚合物相位差膜。該-C-板之波長分散特性 R-C(450nm)/R-C(550nm)=l.〇l。該-A-板使用平面内相位差值 RA(55〇nm) = _150nm之苯乙稀樹脂(polystyrene)製作而成的 聚合物相位差膜。該 A-板之波長分散特性為 RA(450nm)/RA(550nm)=:〇-82 °In this example, an A-board and a -C-board are used to implement the VA-LCD. The VA-LCD shown in Fig. 2 contains a vertical alignment panel 200 having a gap of 3/zm. And a pretilt angle of 8 9 degrees is used, the dielectric anisotropy is Δ ε = -4.9, the refractive index anisotropy Δη = 0.099, and the wavelength dispersion characteristic A Ruoo / AnssoM. OS V A - L C D . Therefore, the phase difference in the thickness direction of the vertical alignment panel 200 is Rva ( 55 〇 ) = 297 nm. The -C-plate is a polymer retardation film obtained by using a phase difference R_c (55 〇 nm) in the thickness direction = T316 of -316 nm. -C-plate wavelength dispersion characteristics R-C (450 nm) / R-C (550 nm) = l. The A-plate was a polymer retardation film produced by using a TAC having an in-plane retardation value of RA (550 nm) = 316 nm. The wavelength dispersion characteristic of the A-plate is RA (450 nm) / RA (550 nm) = 〇.79. Fig. 8 shows the simulation results of the contrast ratio when white light is used for the tilt angle of any azimuth angle in the range of 0 to 80 degrees. Fig. 9 shows the simulation results of the color change of the VA_LCD in the black state when the inclination angle of the range of 0 to 80 degrees is changed at an angle of 0 to 80 degrees at a 45 degree azimuth angle and white light is used. &lt;Example 3&gt; This example is a VA-LCD using an -A-plate and a -C-plate. The VA-LCD shown in Figure 3 contains a vertical alignment panel with a 3/zm gap. And a pre-tilt angle of 89 degrees, a dielectric anisotropy of Δε = -4.9, a refractive index anisotropy Αη = 0.099, and a wavelength dispersion characteristic Δη4()()/Δη55()=1.05 16 1274207 VA-LCD . Therefore, the phase difference in the thickness direction of the vertical alignment panel is Rva (55 〇) = 297 nm. The -C-plate uses a polymer retardation film in which the phase difference in the thickness direction is R_c (55 〇 nm) = _352 nm of TAC. The wavelength dispersion characteristic of the -C-plate is R-C (450 nm) / R-C (550 nm) = 1. 〇l. The -A-plate was a polymer retardation film made of polystyrene having an in-plane retardation value of RA (55 Å nm) = _150 nm. The wavelength dispersion characteristic of the A-plate is RA (450 nm) / RA (550 nm) =: 〇 -82 °

二偏光板 100、110 分別以 COP(cycloolefin)取代 TAC 作為保護膜。 第8圖中顯示出對於任何方位角(azimuth angle)之0 〜8 0度範圍的傾斜角使用白色光時之對比比值的模擬結 果。第9圖中顯示出在45度方位角下,0〜80度範圍之傾 斜角,每次變更2度,並使用白色光時,VA-LCD在黑狀 態下的色變化模擬結果。 &lt;實施例4 &gt; 本例係使用一 -A-板及一 -C-板而實現VA-LCD者。第4 圖所示之VA-LCD含有一垂直配向面板,其具有3/zm之 間隙。且使用一預傾角為8 9度,介電率異方性為Δε = -4.9、 折射率異方性Αη= 0.099、波長分散特性△ruoo/Anwfl.OS 的 VA-LCD。因此,垂直配向面板之厚度方向的相位差值 為 Rva(55〇) = 297nm。 該-C-板使用厚度方向之相位差值 R_c(550nm) = -390nm 的TAC而成的聚合物相位差膜。該-C-板之波長分散特性 17 1274207 R-C(450nm)/R-C(550nm)=l.〇l。該- A-板使用平面内相位差值 RA(55〇nm) = _2 06nm之苯乙烯樹脂(polystyrene)製作而成的 聚合物相位差膜。該 A-板之波長分散特彳生為 RA(4 5 0nm)/RA( 5 5 0 nm) = 〇.92。The two polarizing plates 100 and 110 respectively replace TAC with COP (cycloolefin) as a protective film. Fig. 8 shows the simulation results of the contrast ratio when white light is used for the tilt angle of any azimuth angle in the range of 0 to 80 degrees. Fig. 9 shows the simulation results of the color change of the VA-LCD in the black state when the inclination angle of the range of 0 to 80 degrees is 45 degrees, the angle of change is 2 degrees each time, and white light is used. &lt;Example 4&gt; This example is a VA-LCD using an -A-plate and a -C-plate. The VA-LCD shown in Figure 4 contains a vertical alignment panel with a 3/zm gap. Further, a VA-LCD having a pretilt angle of 89 degrees and a dielectric anisotropy of Δε = -4.9, an index of anisotropy Αη = 0.099, and a wavelength dispersion characteristic Δruoo/Anwfl.OS was used. Therefore, the phase difference in the thickness direction of the vertical alignment panel is Rva (55 〇) = 297 nm. The -C-plate was a polymer retardation film formed by TAC having a phase difference R_c (550 nm) in the thickness direction = -390 nm. The wavelength dispersion characteristic of the -C-plate 17 1274207 R-C (450 nm) / R-C (550 nm) = l. The -A-plate is a polymer retardation film made of a polystyrene having an in-plane retardation RA (55 〇 nm) = _2 06 nm. The wavelength dispersion of the A-plate is RA (450 nm) / RA (550 nm) = 〇.92.

二偏光板 1〇〇、110 分別以 COP(cycloolefin)取代 TAC 作為保護膜。The two polarizing plates 1〇〇 and 110 respectively replace TAC with COP (cycloolefin) as a protective film.

第8圖中顯示出對於任何方位角(azimuthangle)之〇 〜8 0度範圍的傾斜角使用白色光時之對比比值的模擬結 果。第9圖中顯示出在45度方位角下,0〜80度範圍之傾 斜角,每次變更2度,並使用白色光時,VA-LCD在黑狀 態下的色變化模擬結果。 &lt;實施例5 &gt; 本例係使用二A-板及一 -C-板而實現VA-LCD者。第5 圖所示之VA-LCD含有一垂直配向面板200,其具有3//m 之間隙。且使用一預傾角為 89度,介電率異方性為Δε = -4 · 9、折射率異方性A η = 0.0 9 9、 波長分散特性 Δη40〇/Δη5 5 0= 1 ·〇5的VA-LCD。因此,垂直配向面板之厚度 方向的相位差值為rva(55〇) = 297nm。 該-C-板使用R c(55〇nm) = _425nm的聚合物-C-板。該- C-板之波長分散特性R-c(45Gnm)/Rc(55()nm)=1_02。該二A_板分 別使用聚合物,且平面内相位差值各為RA(550nm)= 43 6nm 。該 A-板之各別波長分散特性為 RA(4 5 0 nm)/RA( 5 5 0 nm) = 0.82。Fig. 8 shows the simulation results of the contrast ratio when white light is used for any azimuth angle of the azimuth angle. Fig. 9 shows the simulation results of the color change of the VA-LCD in the black state when the inclination angle of the range of 0 to 80 degrees is 45 degrees, the angle of change is 2 degrees each time, and white light is used. &lt;Example 5&gt; This example is a VA-LCD using a two A-plate and a -C-plate. The VA-LCD shown in Fig. 5 contains a vertical alignment panel 200 having a gap of 3/m. And using a pretilt angle of 89 degrees, the dielectric anisotropy is Δε = -4 · 9, the refractive index anisotropy A η = 0.0 9 9 , the wavelength dispersion characteristic Δη40 〇 / Δη5 5 0 = 1 · 〇 5 VA-LCD. Therefore, the phase difference in the thickness direction of the vertical alignment panel is rva (55 〇) = 297 nm. The -C-plate used a polymer-C-plate of R c (55 〇 nm) = _425 nm. The wavelength dispersion characteristic of the -C-plate is R-c (45 Gnm) / Rc (55 () nm) = 1_02. The two A_ plates were respectively polymerized, and the in-plane retardation values were each RA (550 nm) = 43 6 nm. The individual wavelength dispersion characteristics of the A-plate are RA (450 nm)/RA (550 nm) = 0.82.

二偏光板 1 00、1 1 〇 分另,J 以 COP(cycloolenn)取代 TAC 18 1274207 作為保護膜。 第10圖中顯示出對於任何方位角(azimuth angle)之 0 〜8 0度範圍的傾斜角使用白色光時之對比比值的模擬結 果。第11圖中顯示出在45度方位角下,0〜80度範圍之 傾斜角,每次變更2度,並使用白色光時,VA-LCD在黑 狀態下的色變化模擬結果。 &lt;實施例6 &gt;Two polarizing plates 1 00, 1 1 〇 In addition, J replaces TAC 18 1274207 with COP (cycloolenn) as a protective film. Fig. 10 shows the simulation results of the contrast ratio when white light is used for the tilt angle of any azimuth angle in the range of 0 to 80 degrees. Fig. 11 shows the simulation results of the color change of the VA-LCD in the black state at a 45-degree azimuth angle with a tilt angle in the range of 0 to 80 degrees, each time 2 degrees is changed, and white light is used. &lt;Example 6 &gt;

本例係使用二A-板及一 -C-板而實現VA-LCD者。第6 圖所示之VA-LCD含有一垂直配向面板,其具有3//m之 間隙。且使用一預傾角為89度,介電率異方性為Δε = -4.9、 折射率異方性A η = 0 · 0 9 9、波長分散特性A η 4 g 〇 / Δ η 5 5 〇 = 1 · 0 5 的 VA-LCD。因此,垂直配向面板之厚度方向的相位差值 為 Rva ( 5 5〇 ) = 2 9 7nm。 該-C-板使用厚度方向之相位差值 R_c(550nm) = -390nm 的T A C而成的聚合物相位差膜。該-C -板之波長分散特性 R-C(450nm)/R-C(550nm)=l.〇l。該二A-板各使用平面内相位差 值Ra( 5 5〇n m) = -8 Onm之苯乙烯樹脂(polystyrene)製作而成 的聚合物相位差膜。該 A-板之波長分散特性為 RA(4 5 0 nm)/RA( 5 5 0 nm) = 〇-82。In this example, a VA-LCD is realized using two A-plates and one-C-plate. The VA-LCD shown in Figure 6 contains a vertical alignment panel with a gap of 3/m. And a pretilt angle of 89 degrees is used, the dielectric anisotropy is Δε = -4.9, the refractive index anisotropy A η = 0 · 0 9 9 , the wavelength dispersion characteristic A η 4 g 〇 / Δ η 5 5 〇 = 1 · 0 5 VA-LCD. Therefore, the phase difference in the thickness direction of the vertical alignment panel is Rva ( 5 5 〇 ) = 2 9 7 nm. The -C-plate was a polymer retardation film having a phase difference R_c (550 nm) in the thickness direction = T A C of -390 nm. The wavelength dispersion characteristic of the -C-plate R-C (450 nm) / R-C (550 nm) = l. Each of the two A-plates was made of a polymer retardation film made of a styrene resin having an in-plane phase difference Ra (5 5 〇 n m) = -8 Onm. The wavelength dispersion of the A-plate is RA (450 nm) / RA (550 nm) = 〇-82.

二偏光板 100、110 分別以 COP(cycloolefin)取代 TAC 作為保護膜。 第10圖中顯示出對於任何方位角(azimuth angle)之 0 〜8 0度範圍的傾斜角使用白色光時之對比比值的模擬結 果。第11圖中顯示出在45度方位角下,0〜80度範圍之 19 1274207 傾斜角,每次變更2度,並使用白色光時,VA-LCD在黑 狀態下的色變化模擬結果。 &lt;實施例7 &gt;The two polarizing plates 100 and 110 respectively replace TAC with COP (cycloolefin) as a protective film. Fig. 10 shows the simulation results of the contrast ratio when white light is used for the tilt angle of any azimuth angle in the range of 0 to 80 degrees. Fig. 11 shows the simulation results of the color change of the VA-LCD in the black state at a 45 degree azimuth angle of 19 1274207 tilt angle in the range of 0 to 80 degrees, each time 2 degrees is changed, and white light is used. &lt;Example 7 &gt;

本例係使用二A-板及二-C-板而實現VA-LCD者。第7 圖所示之VA-LCD含有一垂直配向面板200,其具有3//m 之間隙。且使用一預傾角為89度,介電率異方性為Δε = -4.9、折射率異方性Δη = 0.099、波長分散特性 Δη4 0 0 /Δη5 5 0= 1.0 5的VA-LCD。因此,垂直配向面板之厚度 方向的相位差值為RVA ( 55〇) = 297nm。 該VA-LCD補償膜所使用之二-C-板分別使用厚度方向 之相位差值R_c(55()nm)=-212nm的聚合物相位差膜。各-C-板之波長分散特性R-c(45〇nm)/R-c(55〇nm)=l.〇l。二A-板使用 平面内相位差值RA(55Gnm)= 436nm的聚合物相位差膜。該 A-板各別之波長分散特性為RA(45Gnm)/RA(55Gnm) = 0 82。 二偏光板100、11〇分別以&lt;:0?(〇7(:1〇〇16^11)取代丁八0 作為保護膜。 弟10圖中顯示出對於任何方位角(azimuth angle)之0 〜8 0度範圍的傾斜角使用白色光時之對比比值的模擬結 果。第11圖中顯示出在45度方位角下,〇〜80度範圍之 傾斜角,每次變更2度,並使用白色光時,VA-LCD在黑 狀態下的色變化模擬結果。 &lt;實施例8 &gt; 本例係使用二A-板及二-C-板而實現VA-LCD者。第7 圖所示之VA-LCD含有一垂直配向面板200,其具有3/zm 20 1274207 之間隙。且使用一預傾角為89度,介電率異方性為Δε = -4·9、折射率異方性Δη = 0.099、 波長分散特性 Aiuoo/Ansso^l.OS的VA-LCD。因此,垂直配向面板之厚度 方向的相位差值為Rva(55〇) = 297nm。 該二片-C-板分別使用其厚度方向之相位差值R-C(550nm) =-195nm之TAC的聚合物相位差膜。-C-板之波長分散特 性 ° 二 A·板分別使用其平面内相 位差值 RA(550nrr〇 = -80ηΠ1之苯乙細樹脂的聚合物相位差In this example, a VA-LCD is realized using two A-plates and a two-C-plate. The VA-LCD shown in Fig. 7 contains a vertical alignment panel 200 having a gap of 3/m. Further, a VA-LCD having a pretilt angle of 89 degrees and a dielectric anisotropy of Δ ε = -4.9, an index of anisotropy Δη = 0.099, and a wavelength dispersion characteristic Δη4 0 0 / Δη 5 5 0 = 1.0 5 was used. Therefore, the phase difference in the thickness direction of the vertical alignment panel is RVA ( 55 〇) = 297 nm. The two-C-plates used in the VA-LCD compensation film were each a polymer retardation film having a retardation value R_c (55 () nm) = -212 nm in the thickness direction. The wavelength dispersion characteristic of each -C-plate is R-c (45 〇 nm) / R-c (55 〇 nm) = 1. 〇l. The two A-plates used a polymer retardation film having an in-plane phase difference RA (55 Gnm) = 436 nm. The wavelength dispersion characteristics of the A-plate are RA (45Gnm) / RA (55Gnm) = 0 82. The two polarizing plates 100 and 11 are respectively replaced by D:8? (〇7(:1〇〇16^11) as the protective film. The figure 10 shows the zero for any azimuth angle. The simulation result of the contrast ratio when using the white light at a tilt angle of ~80 degrees. In Fig. 11, the tilt angle of the range of 〇~80 degrees at a 45-degree azimuth angle is changed by 2 degrees each time, and white is used. In the case of light, the color change simulation result of the VA-LCD in the black state. <Example 8> In this example, the VA-LCD is realized by using two A-plates and two-C-plates. The VA-LCD includes a vertical alignment panel 200 having a gap of 3/zm 20 1274207 and using a pretilt angle of 89 degrees, a dielectric anisotropy of Δε = -4·9, and an index anisotropy Δη = 0.099, VA-LCD with wavelength dispersion characteristics Aiuoo/Ansso^l.OS. Therefore, the phase difference in the thickness direction of the vertical alignment panel is Rva(55〇) = 297nm. The two-C-plates are respectively used in their thickness direction. Phase retardation RC (550 nm) = TCR polymer retardation film of -195 nm. Wavelength dispersion characteristics of -C-plate ° Two A·plates use their in-plane retardation values RA (5, respectively) Polymer phase difference of phenethyl fine resin of 50nrr〇 = -80ηΠ1

膜。該A-板之波長分散特性為RA(450nm)/RA(550nm) = 〇.82。 二偏光板 100、110 分另1J 以 COP(cycloolefin)取代 TAC 作為保護膜。 第10圖中顯示出對於任何方位角(azimuth angle)之0 〜8 0度範圍的傾斜角使用白色光時之對比比值的模擬結 果。第11圖中顯示出在45度方位角下,0〜80度範圍之 傾斜角,每次變更2度,並使用白色光時,VA-LCD在黑 狀態下的色變化模擬結果。 根據第8圖及第1 〇圖,可確認在本發明之液晶顯示裝 置中,在任何方位角下都具有高對比特性;又根據該第9 圖及第1 1圖,可確認本發明之液晶顯示裝置中,傾角中之 黑狀態的色變化係最小化。 如上所述,本發明之液晶顯示裝置可達成傾斜角下的完 全黑狀態補償,並可使黑狀態、明狀態及RGB狀態中之色 變化情形最小化而提高視角特性。 本發明雖己就所記載之具體例為中心作詳細說明,但在 21 1274207 本發明之範疇及技術思想範圍内,理所當然可以為熟於此 技人士作多樣之變形與修改,這些變形與修改亦當然都在 所附申請專利範圍内。membrane. The wavelength dispersion characteristic of the A-plate is RA (450 nm) / RA (550 nm) = 〇.82. The two polarizing plates 100 and 110 are replaced by COP (cycloolefin) as a protective film. Fig. 10 shows the simulation results of the contrast ratio when white light is used for the tilt angle of any azimuth angle in the range of 0 to 80 degrees. Fig. 11 shows the simulation results of the color change of the VA-LCD in the black state at a 45-degree azimuth angle with a tilt angle in the range of 0 to 80 degrees, each time 2 degrees is changed, and white light is used. According to Fig. 8 and Fig. 1, it can be confirmed that the liquid crystal display device of the present invention has high contrast characteristics at any azimuth angle; and according to the ninth and eleventh drawings, the liquid crystal of the present invention can be confirmed. In the display device, the color change of the black state in the dip angle is minimized. As described above, the liquid crystal display device of the present invention can achieve full black state compensation at a tilt angle, and can minimize the color change in the black state, the bright state, and the RGB state to improve the viewing angle characteristics. The present invention has been described in detail with reference to the specific embodiments of the present invention. However, it is a matter of course that various modifications and changes can be made by those skilled in the art within the scope and technical scope of the present invention. Of course, all of them are within the scope of the attached patent application.

22twenty two

1274207 【圖式簡單說明】 第1圖為含有本發明實施例1之薄膜層之VA-LCD 胞之立體圖。 第2圖為含有本發明實施例2之薄膜層之VA-LCD 胞之立體圖。 第3圖為含有本發明實施例3之薄膜層之VA-LCD 胞之立體圖。 第4圖為含有本發明實施例4之薄膜層之VA-LCD 胞之立體圖。 第5圖為含有本發明實施例5之薄膜層之VA-LCD 胞之立體圖。 第6圖為含有本發明實施例6之薄膜層之VA-LCD 胞之立體圖。 第7圖為含有本發明實施例7和8之薄膜層之VA 液晶胞之立體圖。 第 8圖為含有本發明之實施例 1至 4所揭薄膜 VA-LCD液晶胞中,對於任何方位角之0〜80度範圍 傾斜角使用白色光時之對比比值的模擬結果。 第 9圖為含有本發明之實施例 1至 4所揭薄膜 VA-LCD液晶胞中,對於45度方位角下之0〜80度範 之傾斜角,每次變更2度,並使用白色光時之黑狀態 色變化模擬結果。 第10圖為含有本發明之實施例 5至 8所揭薄膜 VA-LCD液晶胞中,對於任何方位角之 0〜80度範圍 液晶 液晶 液晶 液晶 液晶 液晶 LCD 層之 内之 層之 圍内 下的 層之 内之 23 1274207 傾斜角使用白色光時之對比比值的模擬結果。 第11圖為含有本發明之實施例5至8所揭薄膜層之 VA-LCD液晶胞中,對於45度方位角下之0〜80度範圍内 之傾斜角,每次變更2度,並使用白色光時之黑狀態下的 色變化模擬結果。 【主要元件符號說明】 101 偏光板1274207 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a VA-LCD cell containing a film layer of Example 1 of the present invention. Fig. 2 is a perspective view of a VA-LCD cell containing the film layer of Example 2 of the present invention. Fig. 3 is a perspective view of a VA-LCD cell containing the film layer of Example 3 of the present invention. Fig. 4 is a perspective view of a VA-LCD cell containing the film layer of Example 4 of the present invention. Fig. 5 is a perspective view of a VA-LCD cell containing the film layer of Example 5 of the present invention. Fig. 6 is a perspective view of a VA-LCD cell containing the film layer of Example 6 of the present invention. Figure 7 is a perspective view of a VA liquid crystal cell containing the film layers of Examples 7 and 8 of the present invention. Fig. 8 is a graph showing the results of comparison of the contrast ratios when white light was used for the tilt angle of any azimuth angle in the range of 0 to 80 degrees in the film of the VA-LCD liquid crystals disclosed in Examples 1 to 4 of the present invention. Figure 9 is a view showing a tilt angle of 0 to 80 degrees in a 45-degree azimuth angle in a film VA-LCD liquid crystal cell according to Embodiments 1 to 4 of the present invention, which is changed by 2 degrees each time and white light is used. Black state color change simulation results. Figure 10 is a view showing the film of the liquid crystal liquid crystal liquid crystal liquid crystal (LCD) liquid crystal liquid crystal LCD layer of any range of 0 to 80 degrees in any of the azimuth angles of the VA-LCD liquid crystal cell disclosed in Embodiments 5 to 8 of the present invention. 23 within the layer 1274207 Tilt angle The simulation result of the contrast ratio when using white light. Figure 11 is a view showing the inclination angle in the range of 0 to 80 degrees at an azimuth angle of 45 degrees in a VA-LCD liquid crystal cell containing the film layers disclosed in Examples 5 to 8 of the present invention, and used in each case. The color change simulation result in the black state of white light. [Main component symbol description] 101 Polarizer

111 吸收軸與偏光板1 00垂直之偏光板 201 垂直配向面板 301 + A-板 311 -A-板 4 0 1 - C -板111 Absorber and polarizer 1 00 vertical polarizer 201 Vertical alignment panel 301 + A-board 311 -A-board 4 0 1 - C - board

24twenty four

Claims (1)

1274207 十、申請專利範圍: 1 . 一種液晶顯不裝置’其特徵在於包含有· 二片上下方玻璃基板; 位於該二片玻璃基板間,且光吸收軸相互垂直的二 片偏光板; 位於該二片偏光板之間,且具有介電率異方性為負 或正值的一垂直配向面板;以及 一薄膜層,其至少選自以下三者之一:1274207 X. Patent application scope: 1. A liquid crystal display device characterized by comprising two upper and lower glass substrates; two polarizing plates located between the two glass substrates and having optical absorption axes perpendicular to each other; a vertical alignment panel between the two polarizing plates and having a negative or positive dielectric anisotropy; and a film layer selected from at least one of the following three: 一 -C -板,係滿足下述數學式5、6及7之條件; 一 +A-板,其光軸與相鄰偏光板之吸收軸垂 直,在可見光範圍内波長增加,則相位差值因具有 逆波長分散特性而增加,並滿足下述數學式1及2 之條件;以及 一 -A-板,係滿足下述數學式3及4之條件, 該薄膜層位於該二片偏光板之間,具有負值之相位 差補償特性,滿足下述數學式8之條件,而該垂直配向 面板之液晶分子的方向子在該二片玻璃基板之間未施 加電壓之狀態下,具有75〜90度之預傾角; [數學式1] nx&gt;ny&gt;nz 該nx為膜之平面内X軸方向的折射率, 該ny為膜之平面内的y軸方向的折射率, 該nz為膜之厚度方向的折射率; [數學式2] 25 1274207 250nm&lt;RA(55〇)^500nm 該Ra(55〇)為550nm波長下+ A-板的平面内相位 差值; [數學式3] nx &lt; ny = nz 該nx為膜之平面内x軸方向的折射率, 該ny為膜之平面内的y軸方向的折射率, 該nz為膜之厚度方向的折射率;The one-C-plate satisfies the conditions of the following mathematical formulas 5, 6 and 7; a +A-plate whose optical axis is perpendicular to the absorption axis of the adjacent polarizing plate, and the wavelength increases in the visible light range, and the phase difference value It is increased by the reverse wavelength dispersion characteristic and satisfies the conditions of the following mathematical formulas 1 and 2; and the one-A-plate satisfies the conditions of the following mathematical formulas 3 and 4, and the thin film layer is located in the two polarizing plates. The phase difference compensation characteristic having a negative value satisfies the condition of the following mathematical formula 8, and the direction of the liquid crystal molecules of the vertical alignment panel has a voltage of 75 to 90 in a state where no voltage is applied between the two glass substrates. Pretilt angle; [Math 1] nx> ny> nz The nx is the refractive index in the X-axis direction in the plane of the film, and the ny is the refractive index in the y-axis direction in the plane of the film, and the nz is the thickness of the film. The refractive index of the direction; [Math 2] 25 1274207 250 nm &lt; RA (55 〇) ^ 500 nm The Ra (55 〇) is the in-plane phase difference value of the + A-plate at a wavelength of 550 nm; [Math 3] nx &lt; Ny = nz The nx is the refractive index in the x-axis direction of the plane of the film, which is the y-axis direction in the plane of the film Refractive index, and nz is the refractive index of the thickness direction of the film; [數學式4] R-a(55〇) &lt; 250nm 該R-a(55〇)為550nm波長下-A-板的平面内相位差 值; [數學式5] nx=ny&gt;nz 該nx為膜之平面内X軸方向的折射率, 該ny為膜之平面内的y軸方向的折射率, 該nz為膜之厚度方向的折射率;[Math 4] Ra (55 〇) &lt; 250 nm The Ra (55 〇) is the in-plane phase difference value of the -A-plate at a wavelength of 550 nm; [Math 5] nx = ny &gt; nz The nx is the plane of the film The refractive index in the X-axis direction, the ny is the refractive index in the y-axis direction in the plane of the film, and the nz is the refractive index in the thickness direction of the film; [數學式6] -500nm&lt;R_c(55〇)^-l 80nm 該R-c(55〇)為550nm波長下-C-板之厚度方向的相 位差值; [數學式7] I R-C( 5 5 0 ) I &gt; I R VA( 5 5 0 ) I 該|r_c(55〇)I為550nm波長下-C-板之厚度方向的 26 1274207 相位差絕對值, 該 | RvA( 5 5 0 ) |為550nm波長下垂直配向面板之厚度 方向的相位差絕對值; [數學式8] -180nm&lt;R.c+ RvA^-l〇nm 該R - c為-C -板之相位差值’ 該Rva為垂直配向面板之相位差值。[Math 6] -500 nm &lt; R_c (55 〇) ^ - l 80 nm The Rc (55 〇) is the phase difference in the thickness direction of the -C-plate at a wavelength of 550 nm; [Formula 7] I RC ( 5 5 0 I &gt; IR VA( 5 5 0 ) I The |r_c(55〇)I is the absolute value of the phase difference of 26 1274207 in the thickness direction of the -C-plate at a wavelength of 550 nm, and the |RvA( 5 5 0 ) | is 550 nm The absolute value of the phase difference in the thickness direction of the vertical alignment panel at the wavelength; [Math 8] -180 nm &lt; R.c+ RvA^-l〇nm The R - c is the phase difference of the -C - plate 'The Rva is the vertical alignment The phase difference of the panel. 2.如申請專利範圍第1項所述之液晶顯示裝置,其中該預 傾角為87〜90度。 3 .如申請專利範圍第1項所述之液晶顯示裝置,其中該預 傾角為89〜90度。 4.如申請專利範圍第1項所述之液晶顯示裝置,其中該垂 直配向面板之液晶層的相位差值在 5 5 0 n m波長時為 80nm〜400nm 〇2. The liquid crystal display device of claim 1, wherein the pretilt angle is 87 to 90 degrees. 3. The liquid crystal display device of claim 1, wherein the pretilt angle is 89 to 90 degrees. 4. The liquid crystal display device of claim 1, wherein the liquid crystal layer of the vertical alignment panel has a phase difference of 80 nm to 400 nm at a wavelength of 550 nm. 5 .如申請專利範圍第4項所述之液晶顯示裝置,其中該垂 直配向面板之液晶層的相位差值在 5 50nm波長時為 8 Onm〜3 0 Onm 〇 6.如申請專利範圍第1項所述之液晶顯示裝置,其中施加 電壓時,該垂直配向面板之液晶分子的方向子(director) 27 1274207 與該偏光板之吸收軸呈4 5度。 7 ·如申請專利範圍第1項所述之液晶顯示裝置,其中在 4 5 0nm、5 50nm、6 50nm之波長下,該板之各別厚度 方向上之相位差值r_c(45〇)、R-c(55())、R_c(65〇M足下述 數學式9及數學式10之條件; [數學式9] (R.C(4 5 0)/R-C( 5 5 0 ) ) &lt; ( RvA(4 5 0)/RvA( 5 5 0 ))5. The liquid crystal display device of claim 4, wherein the liquid crystal layer of the vertical alignment panel has a phase difference of 8 Onm to 3 0 Onm 〇6 at a wavelength of 5 50 nm. In the liquid crystal display device, when a voltage is applied, a director 27 1274207 of the liquid crystal molecules of the vertical alignment panel and the absorption axis of the polarizing plate are at 45 degrees. 7. The liquid crystal display device of claim 1, wherein the phase difference r_c (45 〇), Rc in the respective thickness directions of the plates at wavelengths of 450 nm, 550 nm, and 650 nm (55()), R_c(65〇M is the condition of Mathematical Formula 9 and Mathematical Formula 10 below; [Math. 9] (RC(4 5 0)/RC( 5 5 0 ) ) &lt; ( RvA(4 5 0)/RvA( 5 5 0 )) 該 Rva(45G)及 Rva(55G)分別為 450nm、550nm 波長下 垂直配向面板之厚度方向的相位差值; [數學式10] (R-C(6 5 0)/R-C( 5 5 0 ) ) &gt; ( R VA(6 5 0)/RvA( 5 5 0 )) 該 Rva(65〇)及 Rva(55〇)分別為 650nm、550nm 波長下 垂直配向面板之厚度方向的相位差值。The Rva (45G) and Rva (55G) are phase difference values in the thickness direction of the vertical alignment panel at 450 nm and 550 nm, respectively; [Formula 10] (RC(6 5 0)/RC( 5 5 0 ) ) &gt; (R VA(6 5 0)/RvA( 5 5 0 )) The Rva (65 〇) and Rva (55 〇) are phase difference values in the thickness direction of the vertical alignment panel at 650 nm and 550 nm, respectively. 8 ·如申請專利範圍第1項所述之液晶顯示裝置,其中在 450nm、550nm、650nm之波長下,該A -板之各別平面 相位差值Ra(45G)、Ra(550)、Ra(65G)滿足下述數學式11 及數學式1 2之條件; [數學式11] 〇.6&lt; ( Ra(450)/Ra(550)) ^0.9 ; [數學式12] 1. 1幺(Ra(6 5 0)/Ra( 5 5 0 )) 。 28 1274207 置,其中在 之各別厚度 足下述數學 9.如申請專利範圍第1項所述之液晶顯示裝 450nm、550nm、650nm 之波長下,該-C-板 方向相位差值 R-C(450)、R-C(55G)、R-C(650)滿 式1 3及數學式1 4之條件; [數學式13] 0.9&lt; ( R-C(4 5 0 )/R-C( 5 5 0 ) ) ^1.2 ; [數學式14] 0.9S ( R-C( 6 5 0 )/R-C( 5 5 0 )) S1.2 〇8. The liquid crystal display device according to claim 1, wherein the phase difference Ra (45G), Ra (550), and Ra of the respective planes of the A-plate are at wavelengths of 450 nm, 550 nm, and 650 nm. 65G) satisfies the conditions of Mathematical Formula 11 and Mathematical Formula 1 below; [Math 11] 〇.6 &lt; (Ra(450)/Ra(550)) ^0.9 ; [Math 12] 1. 1幺 (Ra (6 5 0) / Ra ( 5 5 0 )). 28 1274207, wherein each of the thicknesses is sufficient for the following mathematics. 9. The liquid crystal display according to claim 1 of the invention has a wavelength of 450 nm, 550 nm, and 650 nm, and the phase difference C of the -C-plate direction is RC (450). , RC (55G), RC (650) full formula 1 3 and the condition of mathematical formula 14; [Math 13] 0.9 &lt; ( RC (4 5 0 ) / RC ( 5 5 0 ) ) ^ 1.2 ; [Mathematics Equation 14] 0.9S ( RC( 6 5 0 )/RC( 5 5 0 )) S1.2 〇
TW094130397A 2005-08-30 2005-09-05 Liquid-crystal display TWI274207B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050080292A KR20070024784A (en) 2005-08-30 2005-08-30 Liquid-crystal display

Publications (2)

Publication Number Publication Date
TWI274207B true TWI274207B (en) 2007-02-21
TW200708822A TW200708822A (en) 2007-03-01

Family

ID=38099125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094130397A TWI274207B (en) 2005-08-30 2005-09-05 Liquid-crystal display

Country Status (2)

Country Link
KR (1) KR20070024784A (en)
TW (1) TWI274207B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108071B1 (en) * 2009-01-16 2012-01-31 동아대학교 산학협력단 Optical structure for vertical alignment liquid crystal cell with wide viewing angle
KR102581897B1 (en) 2015-11-27 2023-09-22 삼성전자주식회사 Optical film and liquid crystal display
US10989954B2 (en) * 2018-09-28 2021-04-27 Sharp Kabushiki Kaisha Liquid crystal display device

Also Published As

Publication number Publication date
TW200708822A (en) 2007-03-01
KR20070024784A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP6238912B2 (en) IPS liquid crystal display device including viewing angle compensation film using negative biaxial retardation film and + C-plate
JP4430015B2 (en) Vertical alignment liquid crystal display device having negative compensation film
JP4597953B2 (en) IPS liquid crystal display device including viewing angle compensation film using + A-plate and + C-plate
JP4476293B2 (en) Liquid crystal display
JP4753882B2 (en) IPS liquid crystal display device including compensation film for viewing angle using A-plate
US9019451B2 (en) Liquid-crystal display device
JP3998897B2 (en) Liquid crystal display
TW200528875A (en) Complex light-compensation c plate with two or more of c plates different in dispersion ratio value and liquid crystal display using the same
CN101960343A (en) Polarizing plate with built-in viewing angle compensation film and IPS-LCD comprising same
JP2006515686A (en) Biaxial retardation compensation film and vertical alignment liquid crystal display device manufactured using the same
JP5508427B2 (en) Liquid crystal display
TWI270699B (en) Liquid-crystal display
US20120327342A1 (en) Optical compensation film and liquid crystal display including the same
JP2010055087A (en) Liquid crystal display device and method for manufacturing the same
TWI274207B (en) Liquid-crystal display
US6888598B2 (en) Optical film and liquid crystal display device having optical film
JP4459229B2 (en) Vertical alignment liquid crystal display device
TWI270700B (en) Liquid-crystal display
KR20110037211A (en) Retardation film and liquid crystal display device having the same
JP2009288525A (en) Liquid crystal display
WO2012133141A1 (en) Liquid crystal display device
JP2006184811A (en) Liquid crystal display