TWI261008B - Conveying apparatus, method of determining conveying acceleration therefor and recording medium - Google Patents

Conveying apparatus, method of determining conveying acceleration therefor and recording medium Download PDF

Info

Publication number
TWI261008B
TWI261008B TW94102038A TW94102038A TWI261008B TW I261008 B TWI261008 B TW I261008B TW 94102038 A TW94102038 A TW 94102038A TW 94102038 A TW94102038 A TW 94102038A TW I261008 B TWI261008 B TW I261008B
Authority
TW
Taiwan
Prior art keywords
acceleration
tool
inertia
maximum
conveyance
Prior art date
Application number
TW94102038A
Other languages
Chinese (zh)
Other versions
TW200534952A (en
Inventor
Osamu Tanigawa
Original Assignee
Brother Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Ind Ltd filed Critical Brother Ind Ltd
Publication of TW200534952A publication Critical patent/TW200534952A/en
Application granted granted Critical
Publication of TWI261008B publication Critical patent/TWI261008B/en

Links

Landscapes

  • Numerical Control (AREA)
  • Automatic Tool Replacement In Machine Tools (AREA)

Abstract

To provide a conveying device properly setting the revolving action of a target on the basis of states of the target to be conveyed by a conveying part. A master CPU estimates inertia of a tool magazine, which is driven by a magazine motor and conveys a tool to a prescribed position by revolving it, and decides the maximum revolving angular acceleration Amax of the tool magazine on the basis of the estimated inertia and the maximum output torque Tmax of the magazine motor.

Description

1261008 (1) 九、發明說明 【發明所屬之技術領域】 本發明,是關於:所具備的搬連部是利用迴轉運動來 對搬運對象物進行搬運的搬運裝置;該搬運裝置之搬運加 速度判定方法;及,已記錄有控制對象爲上述搬運裝置之 電腦執行程式的記錄媒體。 B 【先前技術】 於日本特開平3 -6094 1號公報中,所揭示的技術是針 對透過工具機利用迴轉運動來對所使用的刀具進行搬運的 裝置,其搬運速度是因應刀具的重量力矩做適度變化。 然而’因重量力矩本來就會對加速度造成影響,所以 當因應重量力矩來判定加速度時,即使是有某種程度的有 ' 效性,但並不表示一定可獲得最佳的搬運速度。 此外’若搬運速度是要設定成高速時,爲獲得在達到 # 該速度爲止前所要賦予的加速度,馬達的輸出扭矩會比在 維持該速度時來得更大(參照第7圖)。因此,在裝置的 設計階段中要選定馬達時,所選定的馬達其具備的輸出扭 矩特性是’針對搬蓮部假定的最大慣性,能夠獲得所要求 的迴轉加速度。其結果,所選定的馬達有時對一般的使用 封犬丨兄$ 變成太大,導致成本增加的同時成爲裝置整體 大型化的主要原因。 【發明內容】 -4 - (2) 1261008 本發明是有鑑於上述事態狀況而爲的發明,其目的是 ,提供一種根據搬運部所要搬運的對象物的狀態,能夠適 當設疋其迴轉動作的搬連裝置及該搬運裝置的搬運加速度 判定方法以及已記錄有控制對象爲上述搬運裝置之電腦執 行程式的記錄媒體。 本發明的搬運裝置’其特徵爲,具備有:爲馬達所驅 動,使搬運對象物形成迴轉運動朝指定位置搬運的搬運部 ;對該搬運部的慣性進行估算的慣性估算手段;及,根據 該慣性估算手段所估算的慣性和上述馬達的最大輸出扭矩 ,對上述搬運部的最大迴轉角加速度進行判定的加速度判 定手段。 成爲如此的構成時’因搬運部的最大迴轉角加速度, 是因應搬運部實際進行搬運的對象物狀態和馬達規格被判 定成最適當,所以根據該加速度能夠使搬運部的搬運速度 達到指定値爲止的時間更爲縮短,能夠使包括馬達及搬運 部在內的驅動系統控制反應性提昇成最大。 【實施方式】 〔發明之最佳實施形態〕 (第1實施例) 以下,是參照第1圖至第3圖來對本發明被應用在具 備有轉塔式刀座的換刀裝置時的第1實施例進行說明。另 ,本實施例中換刀裝置的構造,例如是與日本特公平7-8 0 1 0 9號公報所揭示的構造相同,於以下,僅對本發明主 -5 - (3) 1261008 旨相關的部份進行說明。 第2(a)圖,是表示從換刀裝置上拆下後的多刀刀座 (搬運部)1的透視圖。多刀刀座1,其複數支夾緊臂3 是形成爲放射狀安裝在大致圓盤型的刀座底座2的外周部 。如第4圖所示,保持部5,是於夾緊臂3的前端部,形 成爲U字形可夾持著要在下端側裝接刀具的刀具柄4 (搬 運對象物)上端側,支撐銷,是於保持部5的內側前端部 B 兩側,由內藏的螺旋彈簧使配置成朝內側施附彈力的狀態 。接著,支撐銷,是形成爲***在刀具柄4所設置的溝( 未圖示)內來保持刀具柄4。 刀座底座2,雖是形成爲其中心結合於刀座馬達2 7 ( 參照第3圖)的旋轉軸成旋轉驅動,但該旋轉軸,如第2 (b )圖所示’對水平是於仰角側傾斜成18。。另,因刀 ^ 具和刀具柄實質上是視爲一體,所以於下述中是將它們倂 稱成刀具4。 # 第3圖,是表示包括換刀裝置在內的工具機數値控制 用的數値控制裝置(慣性估算手段、加速度判定手段)i 〇 電性構成的功能方塊圖。數値控制裝置1 〇,是形成爲以掌 管控制全體的主c p U 1 1和掌管工件加工或換刀的從屬 CPU12爲中心的構成。 於主c P U 1 1 ’連接著主邰R 〇 Μ 1 3和主部R Α Μ 1 5,於 主部R Ο Μ 1 3谷納有可使控制裝置本身起動的程式或常數 等,於主d R Α Μ 1 5暫時性記憶著工件加工程式(數値控 制程式、電腦程式)1 4或控制執行中的可變數或圖形等。 (4) 1261008 於從屬CPU12,連接著從屬部ROM16和從屬部RAM17, 於從屬部ROM 1 6容納有工件加工用的馬達驅動程式或常 數等,於從屬部RAM 1 7暫時性記憶著加工控制中的可變 數或圖形等。 在主CPU11和從屬CPU12之間,連接有C( Common )RAM18,於C RAM18,載入或參照來自於主CPU1 1和 從屬CPU12雙方的資訊,容納有主CPU11對從屬CPU12 B 的指令或該反方向的資訊等。 此外,於主CPU 1 1,連接有:能夠使加工程式等製作 、輸入用的鍵,或一連貫加工處理開始用的起動開關,或 確認加工程式各步驟的處理等個別實施的手動用開關等的 開關部1 9 ;鍵盤2 0 ;及,顯示加工程式等以做爲參照用 的 CRT ( Cathode Ray Tube ) 21。 ‘ 從屬CPU12,是連接於X軸馬達22、Y軸馬達23及 使工作台進行旋轉的工作台旋轉馬達2 4,從屬C P U 1 2是 Φ 對這些馬達送出控制訊號來變更工件的被加工面等。再加 上,從屬CPU12,是連接於上下動(Ζ軸)馬達25及主 軸馬達26,從屬CPU1 2是對這些馬達送出控制訊號來使 指定的刀具4對已決定被加工面、被加工位置的工件執行 加工。 此外’從屬C P U 1 2,於加工作業中是因應需求來對刀 座馬達27及換刀馬達28送出控制訊號以執行換刀作業。 如上述,從屬C P U 1 2所執行的工件加工控制、換刀控制 ,是根據出自於主CPU1 1的指示來執行。 (5) 1261008 主CPU 1 1,是針對鍵盤20每1個動作的輸入來讀取 主部R Α Μ 1 5容納的加工程式1 4,所讀取的內容若是爲工 件加工相關資訊則載入CRAM18。從屬CPU12,是對該載 入資訊進行讀出然後執行加工控制。另外,於主部RAM 1 5 中,也記憶著由使用者來輸入的多刀刀座1相關資料及配 設在該多刀刀座1上的各刀具4相關資料。 於主 CPU1 1,也連接著軟式磁碟驅動機(FDD ) 40。 B 接著,主CPU1 1,是將記憶在主部RAM1 5內的加工程式 1 4轉送記憶在軟磁碟(記錄媒體)4 1,或者,也可是在另 外的個人電腦等進行製作,將記憶在軟磁碟4 1的加工程 式14中介著FDD讀出後,轉送至主部RAM15側。 第1圖,是由主CPU11來執行的多刀刀座1最大迴 轉角加速度算出處理流程表。另,該處理,是已安裝有工 件加工程式1 4 一部份的處理。主CPU 1 1,首先,是由主 部RAM15讀出多刀刀座1上配設的各刀具4的質量m及 Φ 刀具長度L的資料(步驟S 1 ),接著算出刀具4的重心 位置(步驟S2 )。於此,重心的算出,雖是根據刀具長 度L來估算重心的公轉半徑R ’但於該估算是使用近似式 。例如:當以r0來表示自刀座底座的旋轉中心起至夾緊 臂3的刀具保持位置爲止的半徑時,刀具4的重心公轉半 徑r,是能夠近似成例如: (6) 1261008 其次,主CPU Π,是對刀座1的總慣性I進 步驟s 3,慣性估算手段)。即,以I 〇來表示未 時的刀座慣性,以Π來表示刀具重心周圍慣性 性I是形成爲如下式。 I—IO+Il+m· r2 · · · (2) p 於此,針對「刀具重心周圍慣性11」是使用适 例如:[1] [Technical Field] The present invention relates to a transport device that transports an object to be transported by a swing motion, and a method for determining a transport acceleration of the transport device And, a recording medium on which the program to be controlled is the computer of the above-mentioned transport device has been recorded. B. [Prior Art] The technique disclosed in Japanese Laid-Open Patent Publication No. Hei-3-6094 No. 1 is directed to a device for carrying a tool to be conveyed by a turning machine using a turning motion, and the conveying speed is made in accordance with the weight torque of the tool. Moderate change. However, since the weight moment originally affects the acceleration, when the acceleration is determined in response to the weight moment, even if it has a certain degree of effectiveness, it does not mean that the optimum conveyance speed is obtained. Further, if the conveyance speed is to be set to a high speed, the output torque of the motor is larger than when the speed is reached before the speed is reached (see Fig. 7). Therefore, when a motor is selected in the design stage of the apparatus, the selected motor has an output torque characteristic of 'the maximum inertia assumed for the moving lotus portion, and the required rotational acceleration can be obtained. As a result, the selected motor sometimes becomes too large for the general use of the dog, and the cost is increased, which is a major cause of the overall size of the device. [4] (2) In the present invention, it is an object of the present invention to provide an object of the object to be transported by the transport unit, and it is possible to appropriately set the swing operation. The apparatus and the transport acceleration determination method of the transport apparatus and the recording medium on which the program to be controlled is the computer of the transport apparatus is recorded. The conveying device of the present invention is characterized in that: a conveying unit that is driven by a motor to convey a conveying object to a predetermined position, and an inertia estimating means for estimating the inertia of the conveying unit; An acceleration determining means for determining the maximum swing angular acceleration of the transport unit by the inertia estimated by the inertia estimating means and the maximum output torque of the motor. In the case of the configuration, the maximum angular acceleration of the transport unit is determined to be the most appropriate for the object state and the motor standard that are actually transported by the transport unit. Therefore, the transport speed of the transport unit can be set to the designated speed based on the acceleration. The time is even shorter, and the drive system control reactivity including the motor and the transport unit can be maximized. [Embodiment] BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) Hereinafter, the first aspect of the present invention is applied to a tool changer having a turret type tool holder, with reference to Figs. 1 to 3 The examples are described. In addition, the structure of the tool changer in the present embodiment is the same as that disclosed in Japanese Patent Publication No. Hei 7-8 0 0 0, and is only related to the main subject of the present invention - 5 - 1261008. Partial explanation. Fig. 2(a) is a perspective view showing the multi-tool holder (transport portion) 1 removed from the tool changer. The multi-tool holder 1 has a plurality of clamp arms 3 formed to be radially attached to the outer peripheral portion of the substantially disk-shaped holder base 2. As shown in Fig. 4, the holding portion 5 is formed in a U-shape at the distal end portion of the clamp arm 3 so as to be able to sandwich the upper end side of the tool holder 4 (transporting object) to be attached to the lower end side, and the support pin The both sides of the inner front end portion B of the holding portion 5 are placed in a state in which the elastic force is applied to the inner side by the built-in coil spring. Next, the support pin is formed to be inserted into a groove (not shown) provided in the tool shank 4 to hold the tool shank 4. The holder base 2 is formed to be rotationally driven by a rotation shaft whose center is coupled to the holder motor 2 7 (refer to FIG. 3), but the rotation axis is as shown in FIG. 2(b). The elevation side is inclined to 18. . Further, since the tool and the tool shank are substantially regarded as one body, they are nicknamed the tool 4 in the following. #Fig. 3 is a functional block diagram showing a digital control device (inertial estimation means, acceleration determining means) i for electrical machine tool number control including a tool changer. The number control device 1 is configured to be centered on the master c p U 1 1 that controls the entire body and the slave CPU 12 that handles the workpiece machining or tool change. The main c PU 1 1 ' is connected to the main 邰R 〇Μ 1 3 and the main part R Α Μ 1 5, and in the main part R Ο Μ 1 3, there are programs or constants for starting the control device itself, etc. d R Α Μ 1 5 Temporarily memorizes the workpiece machining program (number control program, computer program) 14 or control variables or graphics during execution. (4) 1261008 The slave CPU 12 is connected to the slave unit ROM 16 and the slave unit RAM 17, and the slave unit ROM 16 accommodates a motor driver program or a constant for workpiece machining, and temporarily stores the machining control in the slave unit RAM 17 Variable numbers or graphics, etc. Between the main CPU 11 and the slave CPU 12, a C (Common) RAM 18 is connected, and in the C RAM 18, information from both the main CPU 1 1 and the slave CPU 12 is loaded or referred to, and the command of the slave CPU 12 B to the slave CPU 12 B or the counter is accommodated. Directional information, etc. In addition, the main CPU 1 1 is connected to a starter switch that can be used to create and input a machining program, or a start switch for starting a continuous machining process, or a manual switch that confirms the processing of each step of the machining program. The switch unit 19; the keyboard 20; and the CRT (Cathode Ray Tube) 21 for displaying a machining program or the like. The slave CPU 12 is connected to the X-axis motor 22, the Y-axis motor 23, and the table rotation motor 24 that rotates the table. The slave CPU 1 2 is Φ. The control signal is sent to these motors to change the processed surface of the workpiece. . Further, the slave CPU 12 is connected to the up and down (spindle) motor 25 and the spindle motor 26, and the slave CPU 12 sends a control signal to the motors to determine the planned surface and the processed position of the designated tool 4. The workpiece is machined. Further, the subordinate C P U 1 2 sends a control signal to the holder motor 27 and the tool change motor 28 to perform the tool change operation in response to the demand. As described above, the workpiece machining control and the tool change control executed by the slave C P U 1 2 are executed in accordance with an instruction from the main CPU 11. (5) 1261008 The main CPU 1 1 reads the machining program 1 4 accommodated in the main part R Α Μ 15 for the input of each operation of the keyboard 20, and the read content is loaded for the workpiece processing related information. CRAM18. The slave CPU 12 reads the load information and executes the machining control. Further, in the main RAM 1 5, the information on the multi-tool holder 1 input by the user and the information on the respective cutters 4 disposed on the multi-tool holder 1 are also stored. A floppy disk drive (FDD) 40 is also connected to the main CPU1. B. Next, the main CPU 1 1 transfers the processing program 14 stored in the main RAM 15 to the floppy disk (recording medium) 4 1, or may be created in another personal computer or the like, and may be memorized in soft magnetic The processing program 14 of the disc 41 is transferred to the main RAM 15 side by interleaving the FDD. Fig. 1 is a flow chart for calculating the maximum rotational angular acceleration of the multi-tool holder 1 executed by the main CPU 11. In addition, the processing is a process in which a part of the workpiece processing program 14 is installed. The main CPU 1 1 first reads out the data of the mass m and the Φ tool length L of each of the tools 4 disposed on the multi-tool holder 1 from the main RAM 15 (step S 1 ), and then calculates the position of the center of gravity of the tool 4 ( Step S2). Here, the calculation of the center of gravity is based on the tool length L to estimate the revolution radius R ′ of the center of gravity, but the estimation is based on the approximate expression. For example, when the radius from the rotation center of the holder base to the tool holding position of the clamp arm 3 is represented by r0, the center of gravity revolution r of the tool 4 can be approximated as follows: (6) 1261008 Next, the main The CPU Π is the total inertia I of the tool holder 1 into the step s 3, the inertia estimation means). That is, the inertia of the tool holder is indicated by I , , and the inertia I around the center of gravity of the tool is expressed by the following equation. I—IO+Il+m· r2 · · · (2) p Here, the “Inertia 11 around the center of the tool” is used. For example:

Il=m(D2/16+L2/12) · · · ( 3 ) * 另,D’是表示刀具爲圓筒時的直徑。於實際上, ^ 會因各刀具而有所不同,但也可以說是會因代表倡 :D = 0 _ 3 m )而形成近似。 Φ 接著,主CPU1 1,是在主部RAM15讀出刀座 規格所定出的最大扭矩Tmax資料時(步驟S4 ), 座1的最大角加速度A m a X (步驟S 5 )。於此,侧 Tmax是爲非驅動軸換算的扭矩,具體而言,是爲 座2迴轉軸可能產生的扭矩。此外,最大角加速E 是由下式(4 )算出。 A m a X = T m a X / I · . . ( 4 ) 估算( 有刀具 ,總慣 似式等 D的値 :(例如 馬達27 算出刀 :大扭矩 刀座底 ί A m ax -9- (7) 1261008 接著,主CPU1 1,是由主部RAM15來讀出多刀刀座 1機構性的極限角加速度 Alimit,對該極限角力α速度 Alimit和步驟S5所算出的最大角加速度Amax進行比較 (步驟S6 )。然後,當Amax $ Alimit時(「NO」),是 將最大角加速度Amax判定爲多刀刀座1的最大加速度, 使其載入記憶在主部RAM 1 5內(步驟S 8 )。 如此一來,在以後要進行的被加工物的加工處理中當 B 執行主軸換刀時,從屬CPU12,是以最大角加速度 Amax 來使刀座馬達2 7旋轉,即旋轉刀座底座2,藉此從夾緊臂 3所保持的刀具4當中選出更換對象。 另一方面,於步驟 S 6中,當 Amax>Alimit時(「 YES」),是將極限角加速度Alimit判定爲多刀刀座1的 最大角加速度,使其載入記憶在主部RAM 1 5內(步驟S 7 ' )。即,當刀座底座2迴轉超過極限角加速度Alimit時恐 怕會造成機構部損傷,極限角加速度Alimit的判定是爲要 Φ 避免這樣的狀況產生。另,步驟S 5〜S 8是對應成加速度 判定手段。 此外,第1圖的流程表,例如:對數値控制裝置1 〇 ’ 是在多刀刀座1所搭載配置的刀具4登錄資料有所改變時 執行,或者,是在登錄資料變更後’最初對工具機進行數 値控制時執行即可。 如以上所述,根據本實施例時,主CPU 1 1,是對由刀 座馬達2 7來驅動的使刀具4成迴轉運動搬運往指定位置 上的多刀刀座1的總慣性1進行估算’根據所估算的總慣 >10- (8) 1261008 f生I和刀座馬達2 7的最大輸出扭矩來判定多刀刀座1的 最大迴轉角加速度A max。 因此,該最大迴轉角加速度 Amax,因是根據多刀刀 座1實際進行搬運的刀具4的配置狀態和刀座馬達2 7的 規格來做出適當的判定,所以根據該加速度能夠使多刀刀 座1的搬運速度達到指定値爲止的時間更爲縮短,能夠使 多刀刀座1的控制反應性提昇成最大。接著,因能夠使刀 II 座馬達2 7的輸出特性發揮成最大,所以於設計階段能夠 避免選定不必要形成爲大型的馬達。 此外,主CPU 1 1,在多刀刀座1進行迴轉時,因是用 近似式來估算刀具4自轉對慣性賦予的份量,所以能夠以 現實性不造成影響的範圍來簡單估算多刀刀座1的總慣性 I。再加上,主 C P U 1 1,對於加速度的判定是最大迴轉角 " 加速度Amax要低於多刀刀座1於構造上所能容許的最大 値 Alimit,所以能夠避免力卩速度被設定成超過驅動系統的 # 機構極限。 (第2實施例) 第4圖至第6圖爲表示本發明的第2實施例,對於第 1實施例相同的部份是標有相同圖號,於此省略說明,以 下僅對不同的部份進行說明。於第2實施例中,數値控制 裝置1 〇的主CPU 1 1,對於最大迴轉角加速度的判定是加 以考慮到多刀刀座1上所配置的刀具4分佈狀態。 第4圖,是說明刀座底座2進行迴轉時刀具4的分佈 -11 - (9) 1261008 平衡所涉及的影響◦於第4圖中,下方是重力作用的方^ 。如第4(a)圖所示’當要對在刀座底座2上位於 位置的刀具4進行換刀使其移動至(B )位置時,位置(a )附近是爲迴轉運動的加速區,位置(B )附近是爲迴_寧 運動的減速區。然後,兩者之間是爲定速區。 此外’當刀具4位於位置(A )時,如第4 ( b )圖所 示,若刀座底座2上產生的失衡位置(即,刀具4分佈平 衡變化較大的位置)是在(C )時,則當刀具4移動至位 置(B )時,如第4 ( b )圖所示的失衡位置會移動至(D )。接著,因是迴轉刀座底座2,所以加速時需要的扭矩 和減速時需要的扭矩是不一樣。此外,所需要的扭矩,也 會因移動對象刀具4的初期位置和移動目標位置各別應對 時的失衡位置是在何處而有所不同。另,於第4圖中,失 衡產生的現象並未以視覺性來表現。 因此’在第2實施例中是執行以下的處理。於圖示流 程表的第5圖中,當主CPU 1 1執行與第1實施例相同的 步驟S1〜S4時,是算出刀座底座2上刀具4的不平衡量 及失衡位置(步驟S 1 1 )。 即,主CPU1 1,是根據主RAM1 5內記憶的刀具4的 資訊及該時間點刀座底座2的旋轉位置,以及現在安裝在 主軸上所使用的刀具4等的資訊來掌握各刀具4的重量及 刀座底座2上刀具4的配置分佈狀態。接著,主CPU Π 也會加入刀座底座2的旋轉軸的傾斜角等資訊,然後根據 這些資訊算出不平衡量及失衡位置。 -12- (10) 1261008 接著’主CPUl 1,是算出不平衡扭矩TO (步驟S12 ) 。不平衡扭矩τ 0的算出,是根據步驟S π所算出的不平 衡量和失衡位置,刀座底座2的旋轉方向及移動對象刀具 的移動量等。然後,判斷該不平衡扭矩T0是否在事先所 訂定的容許範圍內(步驟S 1 3 )。 於步驟S13中,若不平衡扭矩T0是在容許範圍內( 「YES」),則主CPUl 1會算出有效驅動扭矩T (步驟 S 14 )。另一方面,若不平衡扭矩T0超過容許範圍(「 NO」),則主C P U 1 1例如是於C RT 2 1顯示「失衡異常」 停止處理(步驟S 1 5 ),以催促作業員修正刀具配置。 於步驟S14中,主CPUl 1,是根據下式(5 )算出有 效驅動扭矩T。Il=m(D2/16+L2/12) · · · (3) * In addition, D' is the diameter when the tool is a cylinder. In fact, ^ will vary from tool to tool, but it can be said that it will be approximated by the representative: D = 0 _ 3 m ). Φ Next, the main CPU 1 1 is the maximum angular acceleration A m a X of the seat 1 when the main portion RAM 15 reads the maximum torque Tmax data determined by the blade size (step S4) (step S5). Here, the side Tmax is the torque converted for the non-drive shaft, specifically, the torque that can be generated for the rotary shaft of the seat 2. Further, the maximum angular acceleration E is calculated by the following formula (4). A ma X = T ma X / I · . . ( 4 ) Estimate (with tool, total inertia, etc. D: (eg motor 27 calculation knife: high torque knife base ί A m ax -9- (7 1261008 Next, the main CPU 1 1 reads out the limit angular acceleration Alimit of the multi-tool holder 1 from the main portion RAM 15, and compares the limit angular force α speed Alimit with the maximum angular acceleration Amax calculated in step S5 (steps). S6) Then, when Amax $ Alimit ("NO"), the maximum angular acceleration Amax is determined as the maximum acceleration of the multi-tool holder 1, so that it is loaded and stored in the main RAM 15 (step S8). In this way, when the spindle tool change is performed in the processing of the workpiece to be performed later, the slave CPU 12 rotates the seat motor 27 by the maximum angular acceleration Amax, that is, rotates the seat base 2, Thereby, the replacement object is selected from among the tools 4 held by the clamp arm 3. On the other hand, in step S6, when Amax > Alimit ("YES"), the limit angular acceleration Alimit is determined as a multi-tool holder. The maximum angular acceleration of 1 is loaded into the memory in the main RAM 15 (step S7) That is, when the tool holder base 2 is rotated beyond the limit angular acceleration Alimit, the mechanism portion may be damaged. The limit angular acceleration Alimit is determined to be Φ to avoid such a situation. In addition, steps S 5 to S 8 are corresponding. In addition, in the flow chart of Fig. 1, for example, the logarithmic control device 1 〇' is executed when the registration data of the tool 4 mounted on the multi-tool holder 1 is changed, or the registration data is After the change, it is only necessary to perform the numerical control of the machine tool. As described above, according to the present embodiment, the main CPU 1 1 is driven by the tool holder motor 27 to rotate the tool 4 in a moving motion. Estimate the total inertia 1 of the multi-tool holder 1 at the specified position 'According to the estimated total habits>10- (8) 1261008 f I and the maximum output torque of the holder motor 27 to determine the multi-tool holder The maximum angular acceleration A max of 1 is therefore determined based on the arrangement state of the tool 4 actually transported by the multi-tool holder 1 and the specification of the seat motor 27, So according to the The acceleration can shorten the time until the conveyance speed of the multi-tool holder 1 reaches the designated 値, and the control reactivity of the multi-tool holder 1 can be maximized. Then, the output characteristics of the knives II motor 27 can be improved. In the design stage, it is possible to avoid selecting a motor that is not necessarily formed into a large size. In addition, when the multi-tool holder 1 is rotated, the main CPU 1 1 estimates the rotation of the tool 4 by inertia. The amount of weight, so the total inertia I of the multi-tool holder 1 can be simply estimated in the range where the reality does not affect. In addition, the main CPU 1 1 determines that the acceleration is the maximum yaw angle " The acceleration Amax is lower than the maximum 値Alimit that can be tolerated by the multi-tool holder 1, so that the force 卩 speed can be prevented from being set to exceed The # institutional limit of the drive system. (Second Embodiment) Figs. 4 to 6 show a second embodiment of the present invention, and the same portions as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Instructions are given. In the second embodiment, the main CPU 1 of the digital control unit 1 is judged for the maximum angular acceleration in consideration of the distribution state of the tool 4 disposed on the multi-tool holder 1. Figure 4 is a diagram showing the distribution of the tool 4 when the tool holder base 2 is rotated. -11 - (9) 1261008 The influence of the balance is shown in Fig. 4, and the lower side is the square of gravity. As shown in Fig. 4(a), when the tool 4 located at the seat base 2 is to be changed to move to the (B) position, the vicinity of the position (a) is the acceleration zone for the rotary motion. Near the position (B) is the deceleration zone for the back movement. Then, there is a constant speed zone between the two. In addition, when the tool 4 is at the position (A), as shown in the figure 4 (b), if the unbalanced position generated on the base 2 of the blade (that is, the position where the distribution of the tool 4 changes greatly) is (C) At the time, when the tool 4 moves to the position (B), the unbalanced position as shown in Fig. 4(b) moves to (D). Then, since the base 2 is rotated, the torque required for acceleration is different from the torque required for deceleration. In addition, the required torque differs depending on where the unbalanced position when the initial position of the moving object tool 4 and the moving target position are handled separately. In addition, in Fig. 4, the phenomenon caused by the imbalance is not visually expressed. Therefore, in the second embodiment, the following processing is executed. In the fifth diagram of the flowchart shown in the figure, when the main CPU 11 executes the same steps S1 to S4 as in the first embodiment, the unbalance amount and the unbalanced position of the tool 4 on the seat base 2 are calculated (step S1 1). ). That is, the main CPU 1 1 grasps the information of each tool 4 based on the information of the tool 4 stored in the main RAM 15 and the rotational position of the holder base 2 at that time, and the information of the tool 4 or the like currently used for mounting on the spindle. The weight and the configuration distribution state of the cutter 4 on the base 2 of the holder. Next, the main CPU 也会 also adds information such as the tilt angle of the rotary axis of the holder base 2, and then calculates the unbalance amount and the unbalance position based on these pieces of information. -12- (10) 1261008 Next, the main CPU 1 1 calculates the unbalance torque TO (step S12). The calculation of the unbalanced torque τ 0 is based on the unevenness and the unbalanced position calculated in the step S π , the rotational direction of the seat base 2, and the amount of movement of the moving tool. Then, it is judged whether or not the unbalanced torque T0 is within the allowable range set in advance (step S 13 3 ). In step S13, if the unbalanced torque T0 is within the allowable range ("YES"), the main CPU 11 calculates the effective drive torque T (step S14). On the other hand, if the unbalanced torque T0 exceeds the allowable range ("NO"), the main CPU 1 1 displays the "unbalance abnormality" stop processing (step S1 5), for example, to prompt the operator to correct the tool. Configuration. In step S14, the main CPU 11 calculates the effective drive torque T based on the following equation (5).

T 二 Tmax土T0 φ 於上式(5 )中,針對不平衡扭矩TO是加或是減,是 根據不平衡扭矩T0作用方向是否相同於刀座底座2起動 時或停止時的驅動扭矩方向(迴轉方向)來決定,其作用 的方向若是相同則是加,反之則爲減。即,其理由是,爲 前者時是成爲能夠輸出更大迴轉角加速度的狀態,爲後者 時是需要將迴轉角加速度設定成更小。以後’是與第1實 施例相同執行步驟S 5〜S 8。另’這些步驟S 5〜S 8加上步 驟S 1 1、S 1 2、S 1 3是對應於加速度決定手段。 於第6圖中,是圖示著根據上式(5 )決定有效驅動 -13- (11)1261008 扭矩T時的具體例。於初期狀態中,多刀刀 分佈狀態是爲第6 ( a )圖所示狀態。於該狀 量W的重心位置,是在第6 ( a )圖符號W 近。接著,重心的公轉半徑以R來表示時, 衡所產生的扭矩T0,是爲T0 = W · R。 於此,假定刀具的狀況是從第6 ( a )圖 降移動2節距形成爲如第6 ( b )圖所示的狀 時,多刀刀座1驅動系統所產生的最大鈕矩 衡扭矩T0是形成爲同方向。因此,多刀刀! 上能夠使用的的有效驅動扭矩T,是爲 座1上刀具的 態,刀具總重 所示位置的附 刀具分佈不平 的狀態開始下 態。於該狀況 T m a X和不平 g 1實際驅動 T= Tmax + T0 — Tmax + W · R 〇 此外,假定刀具的狀況是從第6 ( a )圖 昇移動2節距形成爲如第6 ( c )圖所示的狀 ® 時,多刀刀座1驅動系統所產生的最大鈕矩 衡扭矩TO是形成爲不同方向。因此,多刀: 動上能夠使用的的有效驅動扭矩T,是爲 的狀態開始上 態。於該狀況 T m a X和不平 3座1實際驅 T= Tmax-T0 = Tmax —W· R。 如上述根據第2實施例時,針對具有對 ί頃斜的旋轉軸,使複數刀具4迴轉來進行搬 1,主C P U 1 1,是對多刀刀座1所保持的複 垂直方向是成 運的多刀刀座 I女刀具4的分 -14- (12) 1261008 佈狀態進行檢測,因應著該分佈狀態算出刀座底 動或停止時作用的不平衡扭矩 T0,根據最大 Tmax加減不平衡扭矩T0後的結果來決定最大迴 度Amax。因此,能夠在顧及到實際使用的刀具 態對刀座底座2迴轉運動是造成影響的狀況下, 迴轉角加速度Amax。 此外,主CPU1 1,在其所算出的不平衡扭矩 • 容許範圍時,是於CRT21顯示「失衡異常」傳 知動作,所以能夠防止在失衡異常的狀態下持續 動作,能夠督促實施刀具4分佈平衡矯正作業。 本發明並不限定於上述及圖面所記載的實施 ^ 明也可變形或擴張成如下述。 於步驟S 3中,在估算多刀刀座1的總慣性 可忽略刀具4自轉所賦予的份量,或者,是將該 視爲一定値來進行估算。於該狀況也是相同,能 ® 性不造成影響的範圍簡單估算出總慣性I。 在超過機構極限的最大迴轉角加速度Amax 不可能算出時,也可省略步驟S6、S7,通常也 步驟S 5算出的角加速度A m a X。 如第2實施例,也可將不平衡扭矩TO的算 ’例如:在以第1實施例的方式算出最大迴轉 Amax的過程中,也可是以具有事先所訂定的指 判定最大迴轉角加速度Amax。即,如第2實施 (5 )所示,因有時是要對最大輸出扭矩Tm ax減 莖2在起 输出扭矩 轉角加速 4配置狀 決定最大 T0超過 訊執行通 進行搬運 例,本發 I時,也 賦予份量 夠在現實 被假定成 可採用以 出取代成 角加速度 定差數來 例的上式 去不平衡 -15- (13) 1261008 扭矩τ ο,所以是將指定値訂定成相當於該不平衡扭矩T 0 ’最大迴轉角加速度Amax的算出是根據減去該指定値後 的扭矩,或者,是由所算出的最大迴轉角加速度A m a X減 去指定値。於該狀況時,同樣地,也是能夠顧及到重力的 影響來設定最大迴轉角加速度Amax。 刀座底座2的旋轉軸,可以是水平也可以是垂直。 接著,因發明是應用在,構成爲可將保持在多刀刀座 • 1上的複數刀具4當中任何1個刀具迴轉成換裝在工具機 主軸的前端部,於多刀刀座1和主軸之間形成配置的換刀 裝置上,所以能夠縮短刀具更換時間。 記錄媒體,並不限於軟磁碟4 1,也可以是爲C D - R 〇 Μ 、DVD-ROM、DVD-ROM、記憶卡等。 此外,本發明的應用並不限於刀具搬運的裝置,只要 ' 是利用迴轉運動來搬運對象物的裝置都能夠廣泛應用本發 明。 【圖式簡單說明】 第1圖爲本發明應用在轉塔式多刀刀座時的第1實施 例,是表示由數値控制裝置的主c P U來執行的多刀刀座 最大迴轉角加速度算出處理流程表。 第2(a)圖爲多刀刀座拆下後的透視圖,第2(b) 匱|爲第2 ( a )圖的側面圖。 第3圖爲表示工具機數値控制用的數値控制裝置電性 構成的功能方塊圖。 -16- (14) 1261008 第4圖爲表示本發明的第2實施例,(〇圖爲表示 刀座底座使搬運對象刀具移動的狀悲圖,(b )圖爲表示 隨著(a )圖移動形成變化的刀座底座的失衡位置圖。 第5圖爲相當於第1圖的圖面。 第6 ( a )圖爲表示多刀刀座的初期狀態圖,第6 ( b )圖爲表示刀具從(a )圖狀態下降2節距後的狀態圖, 第6 ( c )圖爲表示刀具從(a )圖狀態上昇2節距後的狀 φ 態圖。 第7圖爲表不馬達的速度變化和因應該變化的輸出扭 矩之間的關係圖。 [主要元件符號說明】 1 :多刀刀座 ' 2 :刀座底座 3 :夾緊臂 • 4 ··刀具柄T 2 Tmax soil T0 φ is in the above formula (5), which is added or subtracted for the unbalanced torque TO, and is based on whether the direction of the unbalanced torque T0 is the same as the driving torque direction when the seat base 2 is started or stopped ( The direction of rotation is determined to be the same if the direction of action is the same, and vice versa. That is, the reason is that the former is in a state in which a larger angular acceleration can be output, and in the latter case, the angular acceleration is required to be smaller. In the following, steps S 5 to S 8 are executed in the same manner as in the first embodiment. The other steps S 5 to S 8 plus steps S 1 1 , S 1 2, and S 1 3 correspond to the acceleration determining means. In Fig. 6, a specific example in which the effective drive -13-(11)1261008 torque T is determined according to the above formula (5) is shown. In the initial state, the multi-blade distribution state is the state shown in the sixth (a) diagram. The position of the center of gravity of the shape W is near the symbol W of the sixth (a) figure. Next, when the revolution radius of the center of gravity is expressed by R, the torque T0 generated by the balance is T0 = W · R. Here, it is assumed that the maximum torque of the multi-tool holder 1 drive system is T0 when the condition of the tool is changed from the 6th (a) diagram and the 2 pitch is formed as shown in Fig. 6(b). Formed in the same direction. Therefore, multi-knife! The effective driving torque T that can be used is the state of the tool on the seat 1, and the state in which the attached tool is unevenly distributed at the position indicated by the total weight of the tool starts. In this case, T ma X and the uneven g 1 actually drive T=Tmax + T0 — Tmax + W · R 〇 In addition, it is assumed that the condition of the tool is moved from the 6th (a) diagram by 2 pitches to form as the sixth (c In the case of the shape shown in the figure, the maximum torsion torque TO produced by the multi-tool holder 1 drive system is formed in different directions. Therefore, the multi-knife: the effective driving torque T that can be used dynamically, is in the state of starting. In this case, T m a X and the uneven 3 seat 1 actual drive T = Tmax - T0 = Tmax - W · R. According to the second embodiment, the multi-tool 4 is rotated for the rotation axis having the inclination of the tilt, and the main CPU 1 1 is the vertical direction of the multi-tool holder 1 The multi-tool holder I female tool 4 is divided into -14- (12) 1261008. The cloth state is detected. According to the distribution state, the unbalance torque T0 acting at the bottom movement or stop of the tool holder is calculated, and the unbalance torque is added and subtracted according to the maximum Tmax. The result after T0 determines the maximum return Amax. Therefore, it is possible to rotate the angular acceleration Amax in consideration of the influence of the tool state actually used on the rotary motion of the holder base 2. In addition, the main CPU 1 1 displays the "unbalanced abnormality" transmission operation on the CRT 21 when the unbalanced torque and the allowable range are calculated. Therefore, it is possible to prevent the operation from being unbalanced and the operation of the tool 4 can be promoted. Corrective work. The present invention is not limited to the embodiments described above and the drawings, and may be modified or expanded as follows. In step S3, it is estimated that the total inertia of the multi-tool holder 1 can be ignored by the amount of weight imparted by the rotation of the cutter 4, or it can be regarded as a certain 値 to estimate. In this case, the same is true, and the total inertia I is simply estimated for the range in which the influence of the property is not affected. When it is impossible to calculate the maximum yaw angular acceleration Amax exceeding the mechanism limit, steps S6 and S7 may be omitted, and the angular acceleration A m a X which is usually calculated in step S 5 may be omitted. In the second embodiment, the calculation of the unbalanced torque TO may be performed, for example, in the process of calculating the maximum revolution Amax in the first embodiment, or by determining the maximum swing angular acceleration Amax with the predetermined index. . In other words, as shown in the second embodiment (5), the maximum output torque Tm ax is reduced in the case where the output torque angle is accelerated by 4, and the maximum T0 is exceeded. Also, the above formula is assumed to be unbalanced -15- (13) 1261008 Torque τ ο, which is assumed to be a substitute for the angular acceleration difference, so the specified 値 is set to be equivalent The unbalanced torque T 0 'maximum rotational angular acceleration Amax is calculated based on the torque obtained by subtracting the designated enthalpy, or the specified enthalpy is subtracted from the calculated maximum yaw angular acceleration A ma X . In this case as well, the maximum angular acceleration Amax can be set in consideration of the influence of gravity. The rotation axis of the holder base 2 can be horizontal or vertical. Then, as the invention is applied, it is configured to be able to rotate any one of the plurality of tools 4 held on the multi-tool holder 1 to be mounted on the front end of the machine tool spindle, in the multi-tool holder 1 and the spindle The configuration of the tool changer is formed between, so that the tool change time can be shortened. The recording medium is not limited to the floppy disk 4 1, and may be a CD-R 〇 Μ, a DVD-ROM, a DVD-ROM, a memory card, or the like. Further, the application of the present invention is not limited to the apparatus for conveying a tool, and the present invention can be widely applied as long as it is a device that conveys an object by a rotary motion. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a first embodiment of the present invention applied to a turret type multi-tool holder, showing the maximum angular acceleration of a multi-tool holder executed by the main c PU of the number control device. Calculate the processing flow chart. Figure 2(a) is a perspective view of the multi-tool holder removed, and 2(b) 匮| is a side view of the second (a) diagram. Fig. 3 is a functional block diagram showing the electrical configuration of the number control device for controlling the number of tools. -16- (14) 1261008 Fig. 4 is a view showing a second embodiment of the present invention (the figure shows a state in which the tool holder base moves the tool to be transported, and (b) shows a figure in (a) Figure 5 is a diagram showing the initial state of a multi-tool holder, and Figure 6 (b) shows the unbalanced position of the holder base. Figure 6 (a) shows the initial state of the multi-tool holder. The state diagram of the tool descending from the state of (a) is 2 pitches, and the figure 6 (c) is a state diagram showing the state of the tool rising from the state of (a) by 2 pitches. Figure 7 is a diagram showing the motor. Diagram of the relationship between the speed change and the output torque due to change. [Main component symbol description] 1 : Multi-tool holder ' 2 : Seat base 3 : Clamping arm • 4 · · Tool handle

1 0 :數値控制裝置 1 1 :主 CPU u :從屬CPU 1 3 :主部R ο Μ 1 4 :加工程式 1 5 ··主部 RAM 16 :從屬部ROM U :從屬部RAM -17- (15) 12610081 0 : Number control device 1 1 : Main CPU u : Slave CPU 1 3 : Main part R ο Μ 1 4 : Machining program 1 5 · Main RAM 16 : Slave part ROM U : Slave part RAM -17- ( 15) 1261008

18 : CRAM 1 9 :開關部18 : CRAM 1 9 : Switch section

2 0 :鍵盤 21 : CRT 2 2 : X軸馬達 2 3 : Y軸馬達 24 :工作台迴轉馬達 p 2 5 :上下動馬達 2 :主軸馬達 2 7 :刀座馬達 2 8 :換刀馬達 40 :軟式磁碟驅動機 41 :軟磁碟(記錄媒體) -18-2 0 : Keyboard 21 : CRT 2 2 : X-axis motor 2 3 : Y-axis motor 24 : Table swing motor p 2 5 : Up and down motor 2 : Spindle motor 2 7 : Seat motor 2 8 : Tool change motor 40 : Soft Disk Drive 41: Soft Disk (Recording Medium) -18-

Claims (1)

1261008 ⑴ 十、申請專利範圍 1 · 一種搬運裝置,具備有爲馬達所驅動,使搬運對 象物形成迴轉運動朝指定位置搬運的搬運部,其特徵爲, 具備有:對上述搬運部的慣性進行估算的慣性估算手段; 及根據該慣性估算手段所估算的慣性和上述馬達的最大輸 出扭矩’對上述搬運部的最大迴轉角加速度進行判定的加 速度判定手段。 # 2 ·如申請專利範圍第1項所記載的搬運裝置,其中 ’上述慣性估算手段,在估算時忽略迴轉運動中上述搬運 對象物自轉對慣性賦予的份量。 3 ·如申請專利範圍第1項所記載的搬運裝置,其中 ,上述慣性估算手段,是將迴轉運動中上述搬運對象物自 轉對慣性賦予的份量視爲一定値來進行估算。 ' 4 ·如申請專利範圍第1項所記載的搬運裝置,其中 ,上述慣性估算手段,是使用近似式來估算迴轉運動中上 • 述搬運對象物自轉對慣性賦予的份量。 5 ·如申請專利範圍第1項所記載的搬運裝置,其中 ’上述加速度判定手段,是使最大迴轉角加速度判定成低 於上述搬運部在構造上所能容許的最大値。 6 .如申請專利範圍第1項至第5項任一項所記載的 搬運裝置,其中,上述搬運部,是以刀具爲上述搬運對象 物,可使保持在多刀刀座上的複數刀具當中任何1個刀具 迴轉成換裝在工具機主軸的前端部,並且,構成爲配置在 上述多刀刀座和上述主軸之間的換刀裝置。 -19- (2) 1261008 …7·如申請專利範圍第丨項至第4項任一項所記載的 I衣置,其中,上述搬運邰,是構成以刀具爲上述搬運 封象物,具有對垂直方向呈傾斜的旋轉軸是以迴轉複數的 刀具來進行搬運。 8 ·如申請專利範圍第7項所記載的搬運裝置,其中 ,上述加速度判定手段,是使根據上述慣性和上述最大輸 出扭矩算出的値具有指定差數,然後對最大迴轉角加速度 | 進行判定。 9 ·如申請專利範圍第7項所記載的搬運裝置,其中 ’上述加速度判定手段,是對上述搬運部所保持的複數刀 具分佈狀態進行檢測,接著因應著上述分佈狀態,算出上 述搬運邰在起動或停止時作用的不平衡扭矩,然後根據上 述最大輸出扭矩加減上述不平衡扭矩後的結果來判定最大 - 迴轉角加速度。 10·如申請專利範圍第9項所記載的搬運裝置,其中 φ ,上述加速度判定手段所算出的不平衡扭矩若超過容許範 圍時,執行通知動作。 1 1 . 一種搬運裝置之搬運加速度判定方法,是針對具 備爲馬達所驅動,使搬運對象物形成迴轉運動朝著指定位 置搬運的搬運部之搬運裝置之搬運加速度判定方法,其特 徵爲:對上述搬連部的慣性進行估算,根據所估算的慣性 和上述馬達的最大輸出扭矩,對上述搬運部的最大加速度 進行判定。 12·如申請專利範圍第Π項所記載的搬運裝置之搬 -20- (3) 1261008 運加速度判定方法,其中,上述搬運部的慣性估算,是忽 略迴轉運動中上述搬運對象物自轉所賦予的份量。 1 3 ·如申請專利範圍第Π項所記載的搬運裝置之搬 .運加速度判定方法,其中,上述搬運部的慣性估算,是將 迴轉運動中上述搬運對象物自轉所賦予的份量視爲一定値 〇 14·如申請專利範圍第1 1項所記載的搬運裝置之搬 Φ 運加速度判定方法,其中,上述搬運部的慣性估算,是使 用近似式來估算迴轉運動中上述搬運對象物自轉所賦予的 份量。 15·如申請專利範圍第1 1項所記載的搬運裝置之搬 〜 運加速度判定方法,其中,上述最大加速度,是被判定成 低於上述搬運部在構造上所能容許的最大値。 1 6 ·如申請專利範圍第1 1項至第1 5項任一項所記載 的搬運裝置之搬運加速度判定方法,其中,上述搬運部, ® 是以刀具爲上述搬運對象物,可使保持在多刀刀座上的複 數刀具當中任何1個刀具迴轉成換裝在工具機主軸的前端 ,邰’並且,是構成爲配置在上述多刀刀座和上述主軸之間 的換刀裝置。 17·如申請專利範圍第1 1項至第〗5項任一項所記載 的搬運裝置之搬運加速度判定方法,其中,上述搬運部, 疋以刀具爲上述搬連對象物,具有對垂直方向呈傾斜的旋 轉軸是以迴轉複數的刀具來進行搬運。 1 8 .如申請專利範圍第1 7項所記載的搬運裝置之搬 -21 - (4) 1261008 運加速度判定方法,其中,是使根據上述慣性和上述最大 輸出扭矩算出的値具有指定差數,然後對最大迴轉角加速 度進行判定。 19.如申請專利範圍第1 7項所記載的搬運裝置之搬 運加速度判定方法,其中,是對上述搬運部所保持的複數 刀具分佈狀態進行檢測,接著因應上述分佈狀態,算出上 述搬運部在起動或停止時作用的不平衡扭矩,然後根據上 述最大輸出扭矩加減上述不平衡扭矩後的結果來判定最大 迴轉角加速度。 2〇·如申請專利範圍第1 9項所記載的搬運裝置之搬 運加速度判定方法,其中,於算出的不平衡扭矩超過容許 範圍時’執行通知動作。 2 1 · 一種記錄媒體,其記錄有電腦執行程式是要對具 備爲馬達所驅動,使搬運對象物形成迴轉運動朝指定位置 搬運的搬運部之搬運裝置進行控制的電腦執行程式記錄媒 體,其特徵爲,是對上述搬運部的慣性進行估算,根據所 估算的慣性和上述馬達的最大輸出扭矩,對上述搬運部的 最大加速度進行判定。 2 2 ·如申請專利範圍第2 1項所記載的記錄媒體,其 中’上述程式,是忽略迴轉運動中上述搬運對象物自轉所 賦予的份量。 2 3 .如申請專利範圍第2 1項所記載的記錄媒體,其 中’上述程式,是將迴轉運動中上述搬運對象物自轉所賦 予的份量視爲一定値來判定上述搬運部的慣性。 - 22- (5) 1261008 2 4 .如申請專利範圍第2 1項所記載的記錄媒體,其 中’上述程式,是使用近似式來估算迴轉運動中上述搬運 對象物自轉所賦予的份量來判定上述搬運部的慣性。 2 5·如申請專利範圍第2 1項所記載的記錄媒體,其 中’上述程式,是使上述最大加速度判定成低於上述搬運 部在構造上所能容許的最大値。 2 6·如申請專利範圍第2 1項至第2 5項任一項所記載 φ 的記錄媒體,其中,上述程式,是在上述搬運部形成以刀 具爲上述搬運對象物,具有對垂直方向呈傾斜的旋轉軸是 以迴轉複數的刀具來進行搬運的裝置時,使根據上述慣性 和上述最大輸出扭矩算出的値具有指定差數,然後對最大 迴轉角加速度進行判定。 2 7·如申請專利範圍第2 1項至第2 5項任一項所記載 — 的記錄媒體,其中,上述程式,是在上述搬運部形成以刀 具爲上述搬運對象物,具有對垂直方向呈傾斜的旋轉軸是 φ 以迴轉複數的刀具來進行搬運的裝置時,對上述搬運部所 保持的複數刀具分佈狀態進行檢測,接著因應著上述分佈 狀態,算出上述搬運部在起動或停止時作用的不平衡扭矩 ,然後根據上述最大輸出扭矩加減上述不平衡扭矩後的結 果來判定最大迴轉角加速度。 28.如申請專利範圍第27項所記載的記錄媒體,其 中,上述程式,是在算出的不平衡扭矩超過容許範圍時, 執行通知動作。 -23-1261008 (1) X. Patent Application No. 1 A transporting device including a transport unit that is driven by a motor to transport a transport object to a predetermined position, and is characterized in that the inertia of the transport unit is estimated. The inertia estimating means; and an acceleration determining means for determining the maximum angular acceleration of the transporting portion based on the inertia estimated by the inertia estimating means and the maximum output torque of the motor. The transporting device according to the first aspect of the invention, wherein the inertia estimating means ignores the amount of inertia imparted by the rotation of the object to be conveyed during the turning motion during the estimation. The carrier device according to the first aspect of the invention, wherein the inertia estimating means estimates the amount of the inertial object imparted by the rotation of the object to be conveyed in the turning motion as a constant value. In the above-described inertia estimating means, the inertia estimating means estimates the amount of the inertia imparted by the rotation of the object to be conveyed during the turning motion. The transport device according to the first aspect of the invention, wherein the acceleration determining means determines that the maximum angular acceleration is lower than a maximum allowable structure of the transport portion. The transporting device according to any one of the first to fifth aspects of the present invention, wherein the transporting unit is configured to hold the tool as the object to be transported, and to hold the plurality of tools held on the multi-tool holder Any one of the tools is rotated to be mounted on the front end portion of the machine tool main shaft, and is configured as a tool change device disposed between the multi-tool holder and the main shaft. In the case of the above-mentioned transporting magazine, the above-mentioned transporting weir is configured to carry the image by the cutter as the above-mentioned transporting object, and has a pair of The rotating shaft that is inclined in the vertical direction is transported by a multi-turn tool. The transport device according to the seventh aspect of the invention, wherein the acceleration determining means determines that the 回转 calculated based on the inertia and the maximum output torque has a predetermined difference, and then determines the maximum yaw acceleration. The transport device according to claim 7, wherein the acceleration determining means detects a plurality of tool distribution states held by the transporting unit, and then calculates the transporting raft in response to the distribution state. Or the unbalanced torque acting at the stop, and then determining the maximum-swing angular acceleration based on the result of adding or subtracting the above-described unbalanced torque from the maximum output torque described above. 10. The transporting device according to claim 9, wherein if φ and the unbalance torque calculated by the acceleration determining means exceed the allowable range, the notifying operation is performed. 1 . A method for determining a conveyance acceleration of a conveyance device, which is a method for determining a conveyance acceleration of a conveyance device including a conveyance unit that is driven by a motor and that conveys a conveyed object to a predetermined position, and is characterized in that The inertia of the moving portion is estimated, and the maximum acceleration of the conveying portion is determined based on the estimated inertia and the maximum output torque of the motor. 12. The method of determining the acceleration of the conveyance device as described in the ninth aspect of the invention, wherein the inertia estimation of the conveyance unit is to ignore the rotation of the object to be conveyed during the revolving motion. Serving amount. In the method of determining the movement acceleration of the conveyance device according to the invention, the inertia estimation of the conveyance unit is to determine the amount of the conveyance object to be rotated in the revolving motion. The method of determining the Φ acceleration of the conveyance device according to the first aspect of the invention, wherein the inertia estimation of the conveyance unit is to estimate the rotation of the object to be conveyed during the slewing motion using an approximate equation. Serving amount. The method of determining the transport acceleration of the transport apparatus according to the first aspect of the invention, wherein the maximum acceleration is determined to be lower than a maximum allowable structure of the transport unit. The method of determining the conveyance acceleration of the conveyance device according to any one of the above-mentioned items, wherein the conveyance unit, the cutter is the object to be conveyed, and can be held at Any one of the plurality of cutters on the multi-tool holder is rotated to be mounted on the front end of the machine tool spindle, and is configured as a tool changer disposed between the multi-tool holder and the spindle. The method for determining the conveyance acceleration of the conveyance device according to any one of the above-mentioned items, wherein the conveyance unit has a cutter as the object to be conveyed, and has a vertical direction. The tilting rotary axis is transported by a multi-turn tool. (1) The method for determining the acceleration of the conveyance device according to the first aspect of the invention, wherein the enthalpy calculated based on the inertia and the maximum output torque has a predetermined difference, The maximum angular acceleration is then determined. The method for determining a conveyance acceleration of a conveyance device according to the above-mentioned aspect of the invention, wherein the plurality of tool distribution states held by the conveyance unit are detected, and then the conveyance unit is started in response to the distribution state. Or the unbalanced torque acting at the stop, and then determining the maximum angular acceleration based on the result of adding or subtracting the above-described unbalanced torque from the maximum output torque. (2) The method for determining the transport acceleration of the transport device according to the ninth aspect of the invention, wherein the notification operation is performed when the calculated unbalanced torque exceeds the allowable range. 2 1 . A recording medium in which a computer executable program is recorded, and a computer-executable program recording medium that controls a transport device that is driven by a motor and that transports an object to be transported to a designated position is formed. The inertia of the transport unit is estimated, and the maximum acceleration of the transport unit is determined based on the estimated inertia and the maximum output torque of the motor. In the recording medium described in the second aspect of the patent application, the above-mentioned program is a component that ignores the rotation of the object to be conveyed during the turning motion. In the above-mentioned program, the above-described program is used to determine the inertia of the transport unit by considering the amount of the transfer object to be rotated in the swing motion as a constant amount. In the above-mentioned program, the above-mentioned program is used to estimate the amount of the object to be transported by the rotation of the object to be conveyed in the revolving motion, and the above-mentioned program is used to determine the above-mentioned program. The inertia of the transport department. The recording medium according to the second aspect of the invention, wherein the program is such that the maximum acceleration is determined to be lower than a maximum allowable structure of the transport unit. The φ recording medium according to any one of the above-mentioned items, wherein the trajectory is formed by the tool as the object to be transported, and has a vertical direction. When the tilting rotary shaft is a device that transports a plurality of rotary cutters, the enthalpy calculated based on the inertia and the maximum output torque has a predetermined difference, and then the maximum swing angular acceleration is determined. The recording medium according to any one of the above-mentioned items of the present invention, wherein the tool is formed by the tool as the object to be transported, and has a vertical direction. When the tilting rotary shaft is a device that transports a plurality of tools by rotating the plurality of tools, the plurality of tool distribution states held by the transport unit are detected, and then the distribution unit is activated to start or stop according to the distribution state. The unbalanced torque is then determined based on the result of adding or subtracting the above-described unbalanced torque from the maximum output torque described above to determine the maximum angular acceleration. 28. The recording medium according to claim 27, wherein the program performs a notification operation when the calculated unbalanced torque exceeds an allowable range. -twenty three-
TW94102038A 2004-02-13 2005-01-24 Conveying apparatus, method of determining conveying acceleration therefor and recording medium TWI261008B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036541A JP4655485B2 (en) 2004-02-13 2004-02-13 Conveying apparatus, conveying acceleration determining method for the conveying apparatus, and computer program

Publications (2)

Publication Number Publication Date
TW200534952A TW200534952A (en) 2005-11-01
TWI261008B true TWI261008B (en) 2006-09-01

Family

ID=34908362

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94102038A TWI261008B (en) 2004-02-13 2005-01-24 Conveying apparatus, method of determining conveying acceleration therefor and recording medium

Country Status (3)

Country Link
JP (1) JP4655485B2 (en)
CN (1) CN100453262C (en)
TW (1) TWI261008B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090403A (en) * 2007-10-05 2009-04-30 Fanuc Ltd Robot action range-setting device
JP5739496B2 (en) 2013-09-10 2015-06-24 ファナック株式会社 Tool changer for machine tools
JP5752229B2 (en) * 2013-12-27 2015-07-22 ファナック株式会社 Tool center of gravity position estimation device and machine tool
JP6487165B2 (en) 2014-08-27 2019-03-20 ファナック株式会社 Machine tool with tool information read / write device
US10324449B2 (en) 2015-02-27 2019-06-18 Makino Milling Machine Co., Ltd. Motor controlling method, control device and machine tool
JP6267243B2 (en) 2016-01-20 2018-01-24 ファナック株式会社 Machine tool having an abnormality diagnosis function of a reducer of a tool changer
CN111360572B (en) * 2020-03-31 2021-11-19 新代科技(苏州)有限公司 Tool magazine control system and control method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1003807B (en) * 1986-10-15 1989-04-05 北京工业学院 Device and method for measuring moment of inertia of rigid bodies
JPH0780109B2 (en) * 1988-06-30 1995-08-30 ブラザー工業株式会社 Automatic tool changer for machine tools
JP2722004B2 (en) * 1989-10-28 1998-03-04 オ−クマ株式会社 Adaptive control method of turret turning speed
JPH0729259B2 (en) * 1990-05-22 1995-04-05 日立精機株式会社 Indexing turret for machine tools
JPH04294990A (en) * 1991-03-20 1992-10-19 Fujitsu Ltd Control method for robot
JP2717747B2 (en) * 1992-05-22 1998-02-25 オークマ株式会社 Tool changer
JPH06187045A (en) * 1992-09-02 1994-07-08 Fuji Electric Co Ltd Positioning device
JPH08278821A (en) * 1995-04-06 1996-10-22 Kobe Steel Ltd Damping method for servo control system
JPH10263971A (en) * 1997-03-25 1998-10-06 Brother Ind Ltd Tool replacement device for machine tool
JP3883027B2 (en) * 1998-10-23 2007-02-21 株式会社ジェイテクト Automatic tool changer
JP2002046042A (en) * 2000-08-02 2002-02-12 Murata Mach Ltd Machine tool

Also Published As

Publication number Publication date
JP2005224896A (en) 2005-08-25
JP4655485B2 (en) 2011-03-23
CN1654163A (en) 2005-08-17
TW200534952A (en) 2005-11-01
CN100453262C (en) 2009-01-21

Similar Documents

Publication Publication Date Title
TWI261008B (en) Conveying apparatus, method of determining conveying acceleration therefor and recording medium
US10324449B2 (en) Motor controlling method, control device and machine tool
JP2002137070A (en) Composite machining device and friction stir welding method
JP2013006264A (en) Oscillation controller for oscillating body having function of adjusting acceleration
EP3321755B1 (en) Machine tool and parameter adjustment method therefor
WO2012042991A1 (en) Shot treatment device
JP5265274B2 (en) Positioning control method and positioning control device for numerically controlled machine tool
JP5534189B2 (en) Machining robot and its machining control method
TWI246447B (en) Tool carrying apparatus and method of determining operating speed thereof
JP3821909B2 (en) Automatic cutting equipment and automatic cutting / polishing equipment
JP6058497B2 (en) Machine tool and control method thereof
JP2016093851A (en) Grinding device
US11828671B2 (en) Method for determining the mass and the position of the centre of gravity of an additional load of a movement system, in particular in the case of a machine tool
JP2897957B2 (en) Multi-tasking machine tool and its control method
TW202322966A (en) Machine tool control device, and machine tool
JP6975195B2 (en) Machine Tools
JPS6248416A (en) Rotary cutter for bar stock
CN116250172A (en) Rotation speed determination device
KR102371475B1 (en) Control method and control appratus for tool machine inlcuding rotary table
WO2024127624A1 (en) Misalignment detection method, misalignment detection device, and machine tool equipped with misalignment detection device
JPH09136785A (en) Workpiece inserting device and workpiece inserting method
JP2001062672A (en) Numerical control device
JPH1148097A (en) Method of discriminating number of revolution of spindle of tool or tool jig
JP2003039201A (en) Cutting working system and cutting working method
JP6964684B2 (en) Polishing equipment