TWI253510B - Biological tissue scanning system and its method - Google Patents

Biological tissue scanning system and its method Download PDF

Info

Publication number
TWI253510B
TWI253510B TW93124205A TW93124205A TWI253510B TW I253510 B TWI253510 B TW I253510B TW 93124205 A TW93124205 A TW 93124205A TW 93124205 A TW93124205 A TW 93124205A TW I253510 B TWI253510 B TW I253510B
Authority
TW
Taiwan
Prior art keywords
image
optical
tissue
projection
light
Prior art date
Application number
TW93124205A
Other languages
Chinese (zh)
Other versions
TW200606458A (en
Inventor
Liang-Chia Chen
Hsin-Hsun Huang
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW93124205A priority Critical patent/TWI253510B/en
Publication of TW200606458A publication Critical patent/TW200606458A/en
Application granted granted Critical
Publication of TWI253510B publication Critical patent/TWI253510B/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention is in related to a biological tissue scanning system and its method, especially to an innovative portable miniaturized three-dimensional surface contour and sub-surface biological tissue scanning probe and its system for applying an optical coherence tomography (OCT) of biological tissues by way of a digital optical measurement method. The system of the present invention comprises: an optical projection unit, a portable miniaturized biological tissue scanning probe unit and a main control unit; further, the method of the present invention comprises: an optical projection step, an image capturing step, a main control step and an image displaying step.

Description

!253510 九、發明說明: 【發明所屬之技術領域】 本發明係一種組織斷層掃描系統與方法,乃關於一種 創新型可移動式之精密三維表面輪廓及次表面量測探頭與 系統’並以數位光學方法來進行活體組織之光學同調斷層 掃描。在光學同调斷層掃描中使用數位方式投射陣列式結 構光來掃描里測結構的内部組織為本發明之特色,單次掃 描可獲全域性量測,不同於傳統光學同調斷層掃描限於單 點量測’本發明將可有效提昇量測之速度與範圍。 【先前技術】 光學同調斷層掃描(OCT : Optical Coherence253510 IX. Description of the Invention: [Technical Field] The present invention relates to a tissue tomography system and method, and relates to an innovative movable precision three-dimensional surface contour and subsurface measurement probe and system 'and digitally Optical methods for optical coherence tomography of living tissue. In the optical coherence tomography, the digital structure of the array structure is used to scan the internal structure of the structure. The single scan can obtain the global measurement, which is different from the traditional optical coherence tomography. 'The invention will effectively increase the speed and range of measurement. [Prior Art] Optical Coherence Tomography (OCT: Optical Coherence)

Tomography)為 析度、高靈敏j 3於活體組織掃描的光學造影探頭, 心和目艮、耳、鼻的人體内部組織掃Tomography) is an optical contrast probe for the analysis of high-sensitivity j 3 in living tissue scanning, and the internal tissue of the heart and eyes, ears and nose

點,另外OCT不但適用於活骨 也可做為牙酿内部的掃描和目艮 描。能提供微米等級解析度影 1253510 大小。由於OCT受限於光源性質的影響,使用光源的低 同調特性並以光學干涉的方法,擷取分辨出組織中不同深 度所回傳的反射光訊號,因此稱之為光學同調斷層掃描 術。然而,目前現存OCT技術以點量測(point measurement) 方式為主,量測速度因而較受到限制。 【發明内容】 本發明係一種組織斷層掃描系統與方法,其主要目的 在於利用數位微鏡裝置(DMD ·· Digital Micro-mirror Device) 之數位投影方法產生陣列式面結構光並使用光學同調斷層 技術,開發一套微型三維組織次表面結構掃描器與量測系 統。DMD為一數位式投影可投射更精確陣列式面結構光條 紋,量測系統可依需求任意產生點、面陣列式結構光光源 來進行人體口、耳、鼻等活體組織之表面及次表面的量測, 由於使用紅外光,其光源的中心波長為680〜1250毫微米, 可以穿透結構組織的次表面,並且紅外線有很好的準直 性,所以非常適用於光學同調斷層技術的研究。 本發明係一種組織斷層掃描系統與方法,其次要目的 在於提出一套創新型可移動式之精密三維表面輪廓及次表 面量測探頭與系統,並以數位光學方法來進行活體組織之 全域性光學同調斷層掃描。主要可應用於生醫之自動化光 學精密檢測需求上,進一步適用於狹小空間内組織次表面 結構的次表面量測,探頭可微小化,就可適用於人體耳、 鼻之内視組織斷層之精密掃描量測,或傳統量測儀器無法 1253510 進行置測狹窄空間内之組織斷層掃描量測。 本發明運用數位微鏡裝置(DMD)配合影像光纖、光學鏡組及 學同調斷層掃描術,開發一種創新型可移動式組織 苗 本發明具下列創新:⑴是以單次量測整個面的光學同調 畊η知^田,亚以數位投光方式來進行面量測,不同於習用之點量 =。(2)為可移動式微型組織斷層掃描探頭單元,探頭體積小 j ()此為創新型探頭’亦可做物體外型表面及次 她式結構光_錢行光學_斷層雜,料隹之里 刖尚恶相同的論文或專利發表。 目 要由,馳:織斷層掃描系統包括:一光學投影單元,主 ’、衣置 弟一光學透鏡組、一數位微鐘和旦/曰ρ 光纖ΐ . ^;透鏡’ __式結構細譜輕合至-影像 弁i、Li _微型組織斷層掃描探頭單^,主要由-第_ 構光圖譜的傳輸,再由=1斤弁且^經由該影像光纖對陣列式結 影像光纖科,並投射到—待、WH鏡組將物式結構光圖譜從 办像’该全域性干涉圖譜影像並經 干 轉合透鏡、第-分光鏡、—讀齡=先予透鏡組、影像光纖、 影像感測元件並可將全龜干:=—影像_元件,該 制單元,連接於該絲投科元=价貝_輪出·與-主控 〃 ^可移動式微型組織斷層掃描 1253510 探頭單元,用以調控與輸出光學投影單元產 譜,及擷取與分析由可移動 生土平力八、、、口構光圖 全域性干涉圖譜影像資訊。工*型組織斷層掃描探頭單元所得之 另一方面,本發明 列步驟:一光學投影步驟種組織斷層掃描方法,包括下 該投射光經過一第一光战^藉由一光源裝置產生投射光, 該數位微鏡投影晶片可鏡組至一數位微鏡投影晶片, 第一分光鏡與一 I馬合透於生陣列式結構光圖譜,並利用一 影像光纖中;一影偾、兄將該陣列式結構光圖譜耦合至一 結構光圖譜的傳輪, 知’經由該影像光纖對陣列式 , 丹由—μ _ 光圖譜從影像光纖導出,、,乐一光學透鏡組將陣列式結構 位移器的位移進行該待$並投射到一待測物上,以一精密 性干涉圖譜影像,該全=物之深度斷層掃描,並擷取全域 透鏡組、影像光纖、性干涉圖譜影像並經由第二光學 出至影像感測元件,誃=透‘、第一分光鏡、成像物鏡輸 譜影像資訊再輪出;像感測元件並可將全域性干涉圖 投影步驟產生之陣列式=控制步驟,用以調控與輪出光學 取步驟所得之全域性^井構光圖譜和擷取與分析由影像擷 用以輪出該主控制+ ,囝"曰衫像資訊;與一顯示步驟, /使熟悉該項心Τ影像處理結果。 效,茲藉由下述具體蘇a士瞭解本發明之目的、特徵及功 明詳力Π說明如后:、^例’並配合所附之圖式,對本發 【貫施方式】 1253510 本發明係一種組織斷層掃描系統與方法,乃關於一種 創新型可移動式之精密三維表面輪廓及次表面量測探頭與 系統,並以數位光學方法來進行活體組織之光學同調斷層 掃描。在光學同調斷層掃描中使用數位方式投射陣列式結 構光來掃描s測結構的内部組織為此發明的特色’早次掃 描可以進行全域性量測,不同於傳統光學同調斷層掃描每 次只能量測單點,將可提昇量測之速度與範圍。 本發明利用數位光源處理器(DLP ·· Digital LightIn addition, OCT is not only suitable for living bones but also for scanning and visual inspection inside the tooth. Can provide micron resolution resolution 1253510 size. Since the OCT is limited by the nature of the light source, the low-coherence characteristics of the light source and the optical interference method are used to distinguish the reflected light signals returned by different depths in the tissue, so it is called optical coherence tomography. However, the existing OCT technology is mainly based on point measurement, and the measurement speed is thus limited. SUMMARY OF THE INVENTION The present invention is a tissue tomography system and method, the main purpose of which is to generate array surface light by using a digital projection method of a digital micro-mirror device (DMD) and use optical coherence tomography Developed a miniature three-dimensional tissue subsurface structure scanner and measurement system. DMD is a digital projection that can project more precise array surface structure light stripe. The measurement system can generate point and surface array structure light source according to requirements to carry out the surface and subsurface of living tissue such as human mouth, ear and nose. Measurement, due to the use of infrared light, the center wavelength of the light source is 680~1250 nm, can penetrate the subsurface of the structural structure, and the infrared has a good collimation, so it is very suitable for the study of optical coherence tomography. The invention relates to a tissue tomography system and method, and the second object is to propose an innovative movable movable three-dimensional surface contour and subsurface measuring probe and system, and digital optical method for performing global optical organization of living tissue. Coherent tomography. It can be applied to the requirements of automated optical precision inspection of biomedical doctors. It is further suitable for subsurface measurement of subsurface structure in small space. The probe can be miniaturized, which can be applied to the precision of human ear and nasal endoscopic tissue fault. Scanning measurements, or conventional metrology instruments, are not capable of 1253510 for tissue tomography measurements in a narrow space. The invention utilizes a digital micromirror device (DMD) with an image fiber, an optical lens group and a homology tomography to develop an innovative movable tissue seedling. The invention has the following innovations: (1) measuring the entire surface optically in a single measurement The same cultivating η knows the field, and the sub-photometer is used for surface measurement, which is different from the conventional point =. (2) is a movable micro-tissue tomography probe unit, the probe volume is small j () This is an innovative probe 'can also be used as an object surface and sub-structure light _ money line optical _ fault layer, material 隹Lie is still the same paper or patent publication. Objective: Chi: The tomographic scanning system includes: an optical projection unit, the main ', Yi Diandi, an optical lens group, a digital micro-clock and a denier / 曰ρ fiber ΐ. ^; lens ' _ _ structure fine spectrum Light-to-image 弁i, Li _ micro-tissue tomography probe single ^, mainly by the - _ constitutive light spectrum transmission, and then by = 1 jin and ^ through the image fiber to the array of junction imaging fiber, and Projection-to-wait, WH mirror group takes the structural structure light spectrum from the image 'the global interferogram image and the dry-translating lens, the first-splitting mirror, the read age = the first lens group, the image fiber, the image sense Measuring component and can dry the whole turtle: = - image_component, the unit is connected to the wire casting unit = price shell _ wheel out · and - master 〃 ^ movable micro tissue tomography 1253510 probe unit, It is used to regulate and output the optical projection unit spectrum, and to extract and analyze the image information of the global interferogram from the movable earth-moving force, and the port structure. In another aspect of the present invention, the present invention provides a step of: an optical projection step of organizing a tomography method, comprising: generating a projection light by a light source device through the first light warfare, The digital micromirror projection wafer can be mirrored to a digital micromirror projection wafer, and the first beam splitter and a horse are combined with the raw array structure light spectrum, and an image fiber is used; The structured light pattern is coupled to the transmission wheel of a structured light spectrum, and is known to be derived from the image fiber via the image fiber, and the optical lens group is derived from the image fiber. The displacement is performed on the object to be tested and projected onto the object to be tested, with a precision interferogram image, the deep tomographic scan of the full object, and the global lens group, the image fiber, the interferometric image and the second optics Out to the image sensing component, 誃 = through ', the first beam splitter, the imaging objective image transmission image information and then round out; like the sensing element and the global interferogram projection step generated by the array = a step of modulating and arranging the global wells obtained by the step of taking out the optical extraction and extracting and analyzing the image by using the image to rotate the main control +, 囝 " 像 像 image information; and a display step , / Make familiar with the results of the heart image processing. The following is a detailed description of the purpose, features, and merits of the present invention. The following is a description of the present invention, and with the accompanying drawings, the present invention is applied to the present invention. A tissue tomography system and method for an innovative mobile, precise three-dimensional surface contour and subsurface measurement probe and system, and digital optical method for optical coherence tomography of living tissue. In the optical coherence tomography, the digital structure is used to project the array structure light to scan the internal structure of the s-measurement structure. The feature of the invention is that the early scan can perform global measurement, which is different from the traditional optical coherence tomography. Measuring a single point will increase the speed and range of the measurement. The invention utilizes a digital light source processor (DLP · · Digital Light

Processing )是以美國德州儀器(ΤΙ)所開發的數位微鏡裝 置(DMD : Digital Micro-mirror Device )為關鍵性核心元件 所構成的投影機。DMD是美國德州儀器的專利技術,本發 明是利用數位微鏡裝置之數位投影方法產生陣列式面結構 光並使用光學同調斷層技術,開發一套微型三維組織次表 面結構掃描器與量測系統。DMD為一數位式投影可投射更 精確陣列式面結構光條紋,量測系統可依需求任意產生 點、面陣列式面結構光條紋來進行人體口、耳、鼻等活體 組織之表面及次表面的量測,由於使用紅外光,其光源的 中心波長為680〜1350毫微米,可以穿透結構組織的次表 面,並且紅外線有良好的準直性,所以非常適用於光學同 調斷層技術的研究。 另一方面,本發明提出一套可移動式微型人體内視三 維組織次表面結構掃描探頭與系統,主要是用來做體内或 於狹小空間内之組織次表面結構掃描,由於本系統所用的 光源可以穿透表面達到次表面的掃描,故可進行體内之組 1253510 織次表面結構掃描’提供臨床醫學檢查與治療使用。系統 也同日寸亦可彳又得、組織之表面輪廓資訊。由於m组織次表 面結構#描’組織内各種結構的特性會影響投射光源之被 及收一反射u ’兄。以口腔為例,口腔内各種不同的組織和 4 寸f生如下·口月工黏膜可分為三類,分別為口且舊、内襯與特 化黏膜,而三種黏膜大致上的差異,包括了上皮(epithdium) 的尽度上皮的角化程度、固有層(lamina pr〇pria)的厚度、 乳突(papillae)的形狀及有無黏膜下層等的差別,均為可量 測之對象。 請參閱第-圖所示,係本發明利用麥克遜干涉術的原 理圖式。本發明利用麥克遜干涉術(Michelson 她伽⑽吻)的原'理來完成全域性縱向的深度掃描。面 結構光源由-光源產生器丨⑽產生並投㈣—分光鏡ιι〇 (Beamsplitter),然後分成兩道光路,分別傳送至一反射 鏡12〇(茶考端)和-待測物13〇,分別經前述反射鏡及待測 物(表面或:欠表面)反射後,該二道光路在分光鏡ιι〇產生 干涉現象,干涉光可由光感測元件14〇接收。由於0CT使 用的光源為低同調性光源’光行經到反射鏡和待測物會有 光程差,絲差在極小的狀況T方可產生光干涉。本發明 是利用DMD產生式結構光,所以只要移動來考 端的反射鏡,改變參考端的絲差,即可以進行待測物深 度方向之組織斷層掃描。不同於其它OCT方式所採用單里占 式量測:如在量測速度上將可顯注提昇。 Μ茶閱第一圖與第二圖所示,係本發明之系統示意圖 10 l2535l〇 一本毛明之一可移動式微型組織斷層掃描探頭單元圖式。 切明是i«實朗,线主要包括·^縣源部份使用 。。、工外、’泉光源卜由熱官2負責散熱,紅外線經由光學投影 包括紅外線光源卜第—光學透鏡組(即光學聚焦透 ,3、光欄孔鏡4、第—光學準直鏡5)、數位微鏡投影晶片^ 產生陣列式結構光圖譜,詳細說明如下:紅外線經過光學 聚焦透鏡3聚焦後,經過光欄孔鏡饿空間濾波,以遽掉一 些不要的波長’再經過第—光學準直鏡5將光準直後平行的 投射到數位微鏡投影晶片6上,該數位微鏡投影晶片6依量 測巧解析之要求,進行投射結構錢像之空間編碼(此可 決定量=之空間解析度),再將編碼後之㈣式平行結構光 經由一第-分光鏡7及-耗合透鏡1G將投射結構光輛合至 1像光纖11中’並輸出至可移動式微型組織斷層掃描探 頭早tgB,該可移動式微型組織斷層掃描探頭單元b包括 二光學透鏡組(即第二光學準直鏡13、45。反射仙、第二 分光鏡15與參考鏡16)與ρζτ精密位移器17,詳細說明如 下:該陣列式平行結構光經第—分光鏡7投射到辆合透鏡 1〇再將光耗合到影像光纖^裡面,經由可移動式微型组 織斷層掃描探頭單元时測量待測物18。圖二中,在該可移 動式微型組織斷層掃描探頭單灿之設計上,結構光由該影 像光纖11通過第二光學準直鏡13投射到45。反射鏡Μ上,使 光90反射到第二分光鏡15,如此結構光可分成兩道光路, -道光路投㈣待測物18±,另―道投射到參考如上, 由ΡΖΤ精名位私為17來控制位移’並進行快速垂直斷層掃 1253510 描。在量測的過程中需由參考支撐架19來支撐可移動式微 型組織斷層掃描探頭單元B以避免晃動;另外,本發明亦可 藉360°旋轉機構12進行360°全場掃描。量測所獲之全域性 干涉圖譜影像,並由影像光纖11將影像回傳,經由耦合透 鏡10及第一分光鏡7並通過成像物鏡8,在CCD 9成像並傳 回影像至一主控制單元C,該主控制單元C係包括一影像處 理單元20,用以影像擷取控制、影像處理與次表面組織分 析之操作;與一數位微鏡控制單元21,係透過一運算器對 該數位微鏡投影晶片6進行調控,以產生陣列式結構光圖 譜,因此,經過調控與輸出光學投影單元A產生之陣列式 結構光圖譜,及擷取與分析由可移動式微型組織斷層掃描 探頭單元B所得之全域性干涉圖譜影像資訊後,可經由一顯 示裝置22輸出主控制單元之影像處理結果。然後,可以進 行進一步之斷層影像處理與分析。 本發明之可移動式微型組織斷層掃描探頭單元B係可 為一種可適於狹小空間之組織斷層掃描探頭,乃以麥克遜 干涉架構原理來設計,主要運用陣列式低同調特性之紅外 線結構光,投射到被測組織表面,同時配合參考端之反射 鏡作深度之垂直斷層掃描,以光學干涉方式擷取分辨出組 織中不同深度所回傳之反射光訊號,以進行全域性次表面 組織之斷層掃描,同時被測組織之表面三維輪廓資訊亦可 同時獲得量測結果。 請參閱第四圖所示,係本發明之主要方法步驟圖式, 其步驟包括: 1253510 si :光學投影步驟,藉由一光源裝置產生投射光,該投射 光經過一第一光學透鏡組至一數位微鏡投影晶片,該 數位微鏡投影晶片可產生陣列式結構光圖譜,並利用 一第一分光鏡與一耦合透鏡,將該陣列式結構光圖譜 耦合至一影像光纖中; 52 :影像擷取步驟,經由該影像光纖對陣列式結構光圖譜 的傳輸,再由一第二光學透鏡組將陣列式結構光圖譜 從影像光纖導出,並投射到一待測物上,以一精密位 移器的位移進行該待測物之深度斷層掃描,並擷取全 域性干涉圖譜影像,該全域性干涉圖譜影像並經由第 二光學透鏡組、影像光纖、耦合透鏡、第一分光鏡、 成像物鏡輸出至影像感測元件,該影像感測元件並可 將全域性干涉圖譜影像資訊再輸出; 53 :主控制步驟,用以調控與輸出光學投影步驟產生之陣 列式結構光圖譜,及擷取與分析由影像擷取步驟所得 之全域性干涉圖譜影像資訊;包括一影像處理流程, 進行影像擷取控制、影像處理與次表面組織分析之操 作,與一數位微鏡控制流程,係透過一運算器對該數 位微鏡投影晶片進行調控,以產生陣列式結構光圖 譜;與 S4: —顯示步驟,用以輸出該主控制步驟之影像處理結果。 在本發明之實施例中,數位微鏡裝置係採用數位微鏡 投影晶片(Digital Micromirror Device chip, DMD chip )為 結構光條紋投射器,運用dmd之四項特性如下: 13 1253510 ι·方瓜4型晶片易整合於微型之掃描器中。 Ϊ有t: : f (線條解析、直線度)優於液晶顯示界, 可有效提升掃描H之量_度。 - 3.投影圖形可由程式立 列4θ> 忍砥疋,意即可自由投射任意陣 〜f光圖错’因此可增加掃描量測之彈性。 ♦ ::: 3.33x10—3秒完成單個投射灰階陣列式结 不苒无園舌晋,二έ鱼έ日^Φ a 士 可達3_;Γ _人表面斷層掃描量測速度理論上 以上已將本發明作_詳細說明,惟以上所述者,僅為 本發明之—較,當不能限定本發明實施之範 圍艮ρ凡依本發明申請範圍所作之均等變化與修飾等,皆 應仍屬本發明之專利涵蓋範圍内。 【圖式簡單說明】 第-圖係本發明糊麥克遜干涉術的顧圖式; 第二圖係本發明之系統示意圖; 第王圖係本發明之—可軸式微型_斷層掃描探頭單元圖式; 第四圖係本發明之主要方法步驟圖式。 【主要元件符號說明】 100光源產生器 110分光鏡 120反射鏡 130待測物 14 1253510 140光感測元件 A光學投影單元 B可移動式微型組織斷層掃描探頭單元 C主控制單元 1紅外線光源 2熱管 3光學聚焦透鏡 4光欄孔鏡 5第一光學準直鏡 6數位微鏡投影晶片 7第一分光鏡 8成像物鏡 9 CCD 10耗合透鏡 11影像光纖 12 360°旋轉機構 13第二光學準直鏡 14 45°反射鏡 15第二分光鏡 16參考鏡 17PZT精密位移器 18待測物 19參考支撐架 20影像處理單元 15 1253510 21數位微鏡控制單元 22顯示裝置 S1〜S4步驟編號Processing) is a projector composed of a digital micro-mirror device (DMD) developed by Texas Instruments (Digital Instruments). DMD is a patented technology of Texas Instruments. The present invention uses a digital projection method of a digital micromirror device to generate array surface light and develops a microscopic three-dimensional tissue subsurface structure scanner and measurement system using optical coherence tomography. DMD is a digital projection that can project more precise array surface structure light stripe. The measurement system can generate point and surface array surface structure light strips according to requirements to carry out the surface and subsurface of living tissue such as human mouth, ear and nose. The measurement, due to the use of infrared light, the center wavelength of the light source is 680~1350 nm, can penetrate the subsurface of the structural structure, and the infrared has good collimation, so it is very suitable for the study of optical coherence tomography. In another aspect, the present invention provides a movable micro-human stereoscopic three-dimensional tissue subsurface structure scanning probe and system, which is mainly used for scanning subsurface structure of tissues in a body or in a small space, which is used by the system. The light source can penetrate the surface to scan the subsurface, so the in vivo 1253510 weave surface structure scan can be used to provide clinical medical examination and treatment. The system also has the same surface profile information as the day. Because of the characteristics of the various structures in the organization, the characteristics of the various structures in the tissue will affect the projection of the source and the reflection of the u' brother. Taking the oral cavity as an example, the various tissues in the mouth and the 4 inch f-born are as follows. The oral mucosa can be divided into three types, namely the mouth and the old, the inner lining and the specialized mucosa, and the three mucosa are roughly different, including The extent of the epithelial keratinization of the epithium, the thickness of the lamina propria (prina pr〇pria), the shape of the papillae, and the presence or absence of the submucosa are all measurable objects. Referring to Fig. 1, the present invention utilizes the rationale of McKinson interferometry. The present invention utilizes the original 'Lieson's interference (Michelson's gamma (10) kiss) to complete a global longitudinal depth scan. The surface structure light source is generated by the light source generator 丨 (10) and cast (four) - the beam splitter ιι〇 (Beamsplitter), and then divided into two light paths, which are respectively transmitted to a mirror 12 (tea test end) and - a test object 13 〇, After being reflected by the mirror and the object to be tested (surface or: undersurface) respectively, the two optical paths generate an interference phenomenon in the beam splitter ιι, and the interference light can be received by the light sensing element 14〇. Since the light source used by the 0CT is a low-coherence light source, the optical path difference between the light passing through the mirror and the object to be tested may cause optical interference in a very small condition T. The present invention utilizes DMD to generate structured light, so that as long as the mirror of the test end is moved and the difference in the reference end is changed, tissue tomography scanning in the depth direction of the object to be tested can be performed. Unlike other OCT methods, single-in-one measurement is used: if the measurement speed is increased, it can be increased. See the first and second figures of the tea, which is a schematic diagram of the system of the present invention. 10 l2535l〇 A movable micro-organic tomography probe unit diagram of Maoming. It is clear that it is i «real, and the line mainly includes the use of the source of the county. . , outside the work, 'spring source Bu is responsible for heat dissipation by the hot official 2, infrared light including optical source through the optical projection - optical lens group (ie optical focusing, 3, optical aperture mirror 4, first - optical collimation mirror 5) Digital micro-mirror projection wafer ^ Generates an array structure light spectrum, which is described in detail as follows: After the infrared light is focused by the optical focusing lens 3, it is spatially filtered by the aperture mirror to remove some unnecessary wavelengths. The straight mirror 5 collimates the light and parallelizes it onto the digital micromirror projection wafer 6. The digital micromirror projection wafer 6 performs spatial encoding of the projected structure money image according to the requirements of the analytical analysis (this can determine the amount of space = spatial resolution) Then, the encoded parallel structure light is coupled to the image-like optical fiber 11 through a first-splitting mirror 7 and a consumable lens 1G and output to the movable micro-organism tomography probe. Early tgB, the movable micro-tissue tomography probe unit b includes two optical lens groups (ie, second optical collimating mirrors 13, 45. Reflective, second beam splitter 15 and reference mirror 16) and ρζτ precise displacement The detailed description of the device 17 is as follows: the array of parallel structure light is projected through the first beam splitter 7 to the lens 1 and then the light is absorbed into the image fiber ^, and is measured by the movable micro tissue tomography probe unit. Test object 18. In Fig. 2, in the design of the movable micro-tissue tomography probe, structured light is projected from the image fiber 11 through the second optical collimator 13 to 45. The mirror is turned on, so that the light 90 is reflected to the second beam splitter 15, so that the structured light can be divided into two light paths, the light path is cast (four) the object to be tested is 18±, and the other road is projected to the reference as above, For 17 to control the displacement 'and perform a fast vertical tomography scan 1253510. The movable micro-structured tomography probe unit B is supported by the reference support frame 19 during the measurement to avoid sloshing; in addition, the present invention can also perform a 360° full-field scan by the 360° rotation mechanism 12. The obtained global interferogram image is measured, and the image is returned by the image fiber 11 through the coupling lens 10 and the first beam splitter 7 and through the imaging objective lens 8, and the image is imaged and returned to a main control unit. C. The main control unit C includes an image processing unit 20 for performing image capture control, image processing, and subsurface analysis; and a digital micromirror control unit 21 for transmitting the digital micro through an operator. The mirror projection wafer 6 is adjusted to generate an array structure light spectrum. Therefore, the array structure light pattern generated by the control and output optical projection unit A, and the extraction and analysis are obtained by the movable micro tissue tomography probe unit B. After the global interferometric image information, the image processing result of the main control unit can be output via a display device 22. Further tomographic image processing and analysis can then be performed. The movable micro-tissue tomography probe unit B of the present invention can be a tissue tomography probe which can be adapted to a narrow space, and is designed by the principle of the McKesson interference architecture, mainly using an array of low-coherence infrared structure light. Projected onto the surface of the measured tissue, and simultaneously with the mirror of the reference end for vertical depth tomography scanning, optically interfering to distinguish the reflected light signals returned at different depths in the tissue for the fault of the global subsurface structure Scanning, at the same time, the surface 3D contour information of the measured tissue can also obtain the measurement results at the same time. Please refer to the fourth figure, which is a main method step diagram of the present invention. The steps include: 1253510 si: an optical projection step of generating projection light by a light source device, the projection light passing through a first optical lens group to a a digital micromirror projection wafer, the digital micromirror projection wafer can generate an array structure optical spectrum, and couple the array structure optical spectrum into an image fiber by using a first beam splitter and a coupling lens; 52: image 撷Taking the step of transmitting the optical spectrum of the array structure through the image fiber, and then extracting the array structure light spectrum from the image fiber by a second optical lens group, and projecting onto the object to be tested, with a precision shifter Displacement performs a deep tomographic scan of the object to be tested, and captures a global interferogram image, and the global interferogram image is output to the image via a second optical lens group, an image fiber, a coupling lens, a first beam splitter, and an imaging objective lens. a sensing component, the image sensing component can re-output the global interferogram image information; 53: a main control step for regulating and outputting Learning the array structure light pattern generated by the projection step, and extracting and analyzing the global interferogram image information obtained by the image capturing step; including an image processing flow, performing image capturing control, image processing and subsurface tissue analysis Operation, and a digital micromirror control process, the digital micromirror projection wafer is controlled by an operator to generate an array structure light spectrum; and S4: - display step for outputting image processing of the main control step result. In the embodiment of the present invention, the digital micromirror device adopts a digital micromirror device chip (DMD chip) as a structured light stripe projector, and the four characteristics of the dmd are as follows: 13 1253510 ι·方瓜4 The wafer is easy to integrate into a miniature scanner. ΪT: : f (line analysis, straightness) is better than the liquid crystal display, which can effectively increase the amount of scanning H. - 3. The projected graphics can be programmed by the program 4θ> 砥疋 砥疋, meaning that you can freely project an arbitrary array of ~f light map errors, thus increasing the elasticity of the scanning measurement. ♦ ::: 3.33x10—3 seconds to complete a single projection gray-scale array type knots without a garden tongue, two squid ^ day ^Φ a 士 up to 3_; Γ _ human surface tomography measurement speed theoretically above The present invention will be described in detail, but the above is only the scope of the present invention, and the scope of the present invention should not be limited. The patents of the present invention are covered. BRIEF DESCRIPTION OF THE DRAWINGS The first diagram is a schematic diagram of the pastemaxon interferometry of the present invention; the second diagram is a schematic diagram of the system of the present invention; the second diagram is a schematic diagram of the axial micro-tomographic probe unit of the present invention. The fourth figure is the main method step diagram of the present invention. [Main component symbol description] 100 light source generator 110 beam splitter 120 mirror 130 object to be tested 14 1253510 140 light sensing element A optical projection unit B movable micro tissue tomography probe unit C main control unit 1 infrared light source 2 heat pipe 3 optical focusing lens 4 diaphragm lens 5 first optical collimating mirror 6 digital micro mirror projection wafer 7 first beam splitter 8 imaging objective lens 9 CCD 10 consumable lens 11 image fiber 12 360 ° rotating mechanism 13 second optical collimation Mirror 14 45° mirror 15 second beam splitter 16 reference mirror 17PZT precision shifter 18 object to be tested 19 reference support frame 20 image processing unit 15 1253510 21 digital micromirror control unit 22 display device S1 ~ S4 step number

Claims (1)

1253510 十、申請專利範圍: 1. 一種組織斷層掃描系統,係包含下列構件: 一光學投影單元,主要由一光源裝置、一第一光學透 鏡組、一數位微鏡投影晶片所組成,藉由該數位微鏡 投影晶片產生陣列式結構光圖譜,並利用一第一分光 鏡與一耦合透鏡將該陣列式結構光圖譜耦合至一影像 光纖中; 一可移動式微型組織斷層掃描探頭單元,主要由一第 二光學透鏡組、一精密位移器所組成,經由該影像光 纖對陣列式結構光圖譜的傳輸,再由該第二光學透鏡 組將陣列式結構光圖譜從影像光纖導出,並投射到一 待測物上,以該精密位移器的位移進行該待測物之深 度斷層掃描,並可得到待測物之全域性干涉圖譜影 像,該全域性干涉圖譜影像並經由第二光學透鏡組、 影像光纖、耦合透鏡、第一分光鏡、一成像物鏡輸出 至一影像感測元件,該影像感測元件並可將全域性干 涉圖譜影像資訊再輸出;與 一主控制單元,連接於該光學投影單元與該可移動式 微型組織斷層掃描探頭單元,用以調控與輸出光學投 影單元產生之陣列式結構光圖譜,及擷取與分析由可 移動式微型組織斷層掃描探頭單元所得之全域性干涉 圖諸影像資訊。 2. 如申請專利範圍第1項所述之一種組織斷層掃描系統, 其中,更包含一顯示裝置,係用以輸出主控制單元之影 17 1253510 像處理結果。 3. 如申請專利範圍第1項所述之一種組織斷層掃描系統, 其中,該光源裝置係為紅外線光源。 4. 如申請專利範圍第1項所述之一種組織斷層掃描系統, 其中,主控制單元係包含·· 一影像處理單元,用以影像擷取控制、影像處理與次 表面組織分析之操作;與 一數位微鏡控制單元,係透過一運算器對該數位微鏡 / 投影晶片進行調控,以產生陣列式結構光圖譜。 5. 如申請專利範圍第1項所述之一種組織斷層掃描系統, 其中,該影像感測元件係為CCD顯像感測元件。 6. 如申請專利範圍第1項所述之一種組織斷層掃描系統, 其中,該第一光學透鏡組包括一光學聚焦透鏡、一光攔 孔鏡、一第一光學準直鏡。 7. 如申請專利範圍第6項所述之一種組織斷層掃描系統, 其中,光學投影單元之光源裝置射出之光依序通過光學 聚焦透鏡、光欄孔鏡、第一光學準直鏡、數位微鏡投影 晶片、第一分光鏡、耦合透鏡、影像光纖。 8. 如申請專利範圍第1項所述之一種組織斷層掃描系統, 其中,該第二光學透鏡組包括一第二光學準直鏡、一 45 反射鏡、一第二分光鏡與一參考鏡。 9. 如申請專利範圍第8項所述之一種組織斷層掃描系統, 其中,影像光纖傳輸至可移動式微型組織斷層掃描探頭 單元之陣列式結構光圖譜依序通過第二光學準直鏡、 18 J2535l〇 jo f申反^鏡、第二分光鏡,再分別至參考鏡與待測物。 其7 圍第1項所述之-種組織斷層掃描系統, 熱量。已含一散熱元件’用以冷卻光源裝置所產生之 ==二第10項所述之-種組織斷層掃描系 /、中该放熱元件係為埶管。 12. =請專=範圍第1項所述之—種組織斷層掃描系統, 古、二亥陣列式結構光圖譜係為光點陣列、正弦週期 波、光束和同心圓之任一種。 13. —種組織斷層掃描方法,係包含下列步驟: 2學投影步驟,藉由一光源裝置產生投射光,該投 身= 過-第—光學透鏡組至一數位微鏡投影晶片, 投影晶片可產生陣列式結構光圖譜,並利 耦合至一影像光纖中; 口 譜影像光纖_列式結構光圖 古並;T旦4·再由—第二光學透鏡組將陣列式結構光圖 :二鐵纖導出,並投射到一待測物上,以一精密 入=的位移進行該待測物之深度斷層掃描,並操取 二::涉圖譜影像’該全域性干涉圖譜影像並經由 一一光予透鏡組、影像光纖、耦合透鏡、第一分光鏡、 並至一影像感測元件’該影像感測元件 將王域性干涉圖譜影像資訊再輪出;與 一主控制步驟,㈣雛與輸^學投影㈣產生之 19 1253510 陣列式結構光圖譜和擷取* 之全域性干涉圖譜影像資訊。办像摘取步驟所得 14.如申請專利範圍第13項所述之 法’其中’更包含—顯示步驟,用::::斷層掃描方 之影像處理結果。 則出邊主控制步驟 15:申:專利範圍第13 法^中,主控制步驟係包含:種、、且相層掃描方 办像處理流程’進行影像擷取控制 表面組織分析之操作;與 〜像處理與次 投ίΓ片程,係透過-運算器對該數位微鏡 16.如申請專利=3’=^^ 17:7中,該影像感測元件 17·如申請專利範圍第13項所述之—種 利:第:光學準直鏡。… 法,a中,靶圍第13項所述之-種組織斷層掃描方 —45反:第4學透鏡組包括—第二光學準直鏡、 19.如申許真刹:广分光鏡與-參考鏡。 法,盆月中^圍弟13項所述之—種組織斷層掃摇方 20如申1專=用—散熱元件冷卻光源裝置所產生之熱量。 法j利乾圍第19項所述之一種組織斷層掃描方 /、中’该散熱元件係為熱管。 21·如申請專利範圍帛13項所述之一種組織斷層掃描方 20 1253510 法,其中,該陣列式結構光圖譜係為光點陣列、正弦週 期波、光束和同心圓之任一種。1253510 X. Patent application scope: 1. A tissue tomography system comprising the following components: an optical projection unit, mainly composed of a light source device, a first optical lens group and a digital micromirror projection chip. The digital micromirror projection wafer generates an array structure light spectrum, and couples the array structure light spectrum into an image fiber by using a first beam splitter and a coupling lens; a movable micro tissue tomography probe unit is mainly composed of a second optical lens group and a precision shifter are configured to transmit the optical spectrum of the array structure through the image optical fiber, and then the array optical light spectrum is extracted from the image optical fiber by the second optical lens group, and projected to the optical fiber A deep tomographic scan of the object to be tested is performed on the object to be tested, and a global interferogram image of the object to be tested is obtained, and the global interferogram image is transmitted through the second optical lens group and the image. An optical fiber, a coupling lens, a first beam splitter, and an imaging objective are output to an image sensing component, and the image sensing component The global interferogram image information can be re-outputted; and a main control unit is connected to the optical projection unit and the movable micro-organism tomography probe unit for regulating and outputting the array structure light spectrum generated by the optical projection unit And extracting and analyzing the image information of the global interferogram obtained by the movable micro-tissue tomography probe unit. 2. The tissue tomography system of claim 1, further comprising a display device for outputting a shadow of the main control unit 17 1253510. 3. A tissue tomography system according to claim 1, wherein the light source device is an infrared light source. 4. A tissue tomography system according to claim 1, wherein the main control unit comprises an image processing unit for image capture control, image processing and subsurface tissue analysis; A digital micromirror control unit controls the digital micromirror/projection wafer through an operator to generate an array structure light spectrum. 5. The tissue tomography system of claim 1, wherein the image sensing element is a CCD imaging sensing element. 6. The tissue tomography system of claim 1, wherein the first optical lens group comprises an optical focusing lens, a light blocking mirror, and a first optical collimating mirror. 7. The tissue tomography system of claim 6, wherein the light emitted by the light source device of the optical projection unit sequentially passes through the optical focusing lens, the aperture mirror, the first optical collimating mirror, and the digital micro Mirror projection wafer, first beam splitter, coupling lens, image fiber. 8. The tissue tomography system of claim 1, wherein the second optical lens group comprises a second optical collimating mirror, a 45 mirror, a second beam splitter and a reference mirror. 9. A tissue tomography system according to claim 8, wherein the array structure light pattern transmitted by the image fiber to the movable micro-organism tomography probe unit is sequentially passed through the second optical collimator, 18 J2535l〇jo f applies the inverse mirror, the second beam splitter, and then to the reference mirror and the object to be tested. It consists of a tissue tomography system described in item 1 above, heat. A heat dissipating component is included to cool the light source device, and the tissue thermal tomography system is a manifold. 12. = Please refer to the tissue tomography system described in item 1 of the scope. The ancient and Erhai array structure light patterns are any one of a light spot array, a sinusoidal periodic wave, a light beam and a concentric circle. 13. A method of tissue tomography, comprising the steps of: 2 learning a projection step, generating a projection light by a light source device, the projection-passing-first optical lens group to a digital micromirror projection wafer, the projection wafer can be generated Array structure light spectrum, and is coupled to an image fiber; Molecular image fiber _ column structure light map ancient; T Dan 4 · again by - second optical lens group array structure light map: two iron fiber Deriving and projecting onto a test object, performing a deep tomographic scan of the object to be tested with a precision input==, and taking two:: a map image of the global interferogram image and passing through the light a lens group, an image fiber, a coupling lens, a first beam splitter, and an image sensing element. The image sensing element rotates the king domain interference image information; and a main control step, (4) chicks and loses ^ The projection (4) produces 19 1253510 array structure light spectrum and capture * global interference map image information. The method of extracting steps is as follows. 14. As described in claim 13 of the patent application, wherein the method includes the display step, the image processing result is performed by using the :::: tomographic image. Then, the main control step 15: Shen: Patent scope 13th method, the main control step includes: the species, and the phase layer scanning method processing process 'image capturing control surface tissue analysis operation; and ~ For example, in the case of processing and sub-projection, the digital micromirror is transmitted through a - operator. For example, in the patent application = 3'=^^ 17:7, the image sensing element 17 is as claimed in claim 13 Said - kind of profit: the first: optical collimation mirror. ... method, a, target-type tissue tomography scanning - 45 reverse: the fourth lens group includes - second optical collimating mirror, 19. such as Shen Zhenzhen: wide-spectrum mirror and - Reference mirror. The law, the basin in the middle of the ^ brothers 13 said - the organization of the fault sweeping side 20, such as Shen 1 special = use - cooling elements to cool the heat generated by the light source device. A type of tissue tomography scanning method according to Item 19 of the method of the present invention is a heat pipe. 21. A tissue tomography method according to claim 13 wherein the array structure light pattern is any one of a light spot array, a sinusoidal periodic wave, a light beam, and a concentric circle.
TW93124205A 2004-08-12 2004-08-12 Biological tissue scanning system and its method TWI253510B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93124205A TWI253510B (en) 2004-08-12 2004-08-12 Biological tissue scanning system and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93124205A TWI253510B (en) 2004-08-12 2004-08-12 Biological tissue scanning system and its method

Publications (2)

Publication Number Publication Date
TW200606458A TW200606458A (en) 2006-02-16
TWI253510B true TWI253510B (en) 2006-04-21

Family

ID=37586630

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93124205A TWI253510B (en) 2004-08-12 2004-08-12 Biological tissue scanning system and its method

Country Status (1)

Country Link
TW (1) TWI253510B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561209B (en) * 2014-04-15 2016-12-11 Tsu Wang Shen Optical system and measurement method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770951B (en) * 2021-04-21 2022-07-11 芯聖科技股份有限公司 Parallel optical scanning inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561209B (en) * 2014-04-15 2016-12-11 Tsu Wang Shen Optical system and measurement method thereof

Also Published As

Publication number Publication date
TW200606458A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US11779219B2 (en) Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors
Hosseinaee et al. Towards non-contact photoacoustic imaging
US7474407B2 (en) Optical coherence tomography with 3d coherence scanning
JP5623028B2 (en) Imaging method and apparatus for taking optical coherence tomographic image
US7859682B2 (en) Optical interference apparatus
US8115934B2 (en) Device and method for imaging the ear using optical coherence tomography
US20240065552A1 (en) Intraoral oct with color texture
JP5725697B2 (en) Information processing apparatus and information processing method
Trasischker et al. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography
US7965392B2 (en) Optical coherence tomography device and measuring head
JP6968775B2 (en) Calibration of OCT-NIRAF multi-modality probe
US20160040978A1 (en) Smart Phone Attachment for 3-D Optical Coherence Tomography Imaging
CN111164373B (en) Surface mapping using an intraoral scanner with penetration capability
TW201100053A (en) Method and apparatus for quantitative imaging of blood perfusion in living tissue
Mazdeyasna et al. Noncontact speckle contrast diffuse correlation tomography of blood flow distributions in tissues with arbitrary geometries
CN106510644B (en) Medical optical coherence chromatographic imaging two dimension scan forward probe based on fiber optic bundle
JP6405037B2 (en) Instantaneous time-domain optical coherence tomography
JP4688094B2 (en) Optical coherence tomography device
TWI253510B (en) Biological tissue scanning system and its method
Kishen et al. Fundamentals and applications of biophotonics in dentistry
WO2010113459A1 (en) Ophthalmological observation device
Dsouza Towards low cost multiple reference optical coherence tomography for in vivo and NDT applications
Jing et al. Optical coherence tomography
KR20240000584A (en) Intraoral optical coherence tomography scanner with fiber optic adapter
CN117529272A (en) Intraoral scanner using common path optical coherence tomography

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees