TWI252839B - Method of manufacturing microchip and product made by same - Google Patents

Method of manufacturing microchip and product made by same Download PDF

Info

Publication number
TWI252839B
TWI252839B TW93104270A TW93104270A TWI252839B TW I252839 B TWI252839 B TW I252839B TW 93104270 A TW93104270 A TW 93104270A TW 93104270 A TW93104270 A TW 93104270A TW I252839 B TWI252839 B TW I252839B
Authority
TW
Taiwan
Prior art keywords
substrate
unit
manufacturing
microchip
photoresist layer
Prior art date
Application number
TW93104270A
Other languages
Chinese (zh)
Other versions
TW200528389A (en
Inventor
Ray-Hua Horng
Hung-Yu Chen
Jr-Ming Tzeng
Dung-Meng Tsai
Guan-Wen Lin
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW93104270A priority Critical patent/TWI252839B/en
Publication of TW200528389A publication Critical patent/TW200528389A/en
Application granted granted Critical
Publication of TWI252839B publication Critical patent/TWI252839B/en

Links

Landscapes

  • Micromachines (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A method of manufacturing microchip, microchip made by the same method and inspection method using the same chip. The method applies a conductive adhesive over a substrate by means of halftone printing to serve as electrodes. A photoresist layer with one or more micro-channels is then formed on the substrate and the electrodes by means of lithography process. Another panel is then pressed against the photoresist layer to complete the manufacturing of the microchip. This invention implements lithography process to precisely form micro-channels of any desired configuration and distribution. Heat bonding process is then implemented to bond the panel to the substrate via the photo-resist layer so as to obtain microchips having such inspection features as high sensitivity and selectivity, compactness, low-cost, low power consumption and high coordination in a quick, cheap and precise manner. The microchips can be implemented in the fields of optical inspection and electrical inspection.

Description

I252839 &、發明說明: 【發明所屬之技術領域】 本發明是有關於一種生物晶片,特別是指一種具有複 5 數微流道之微晶片的製造方法、產品,及應用此產品的檢 測方法。 "" 【先前技術】 微晶片的應用相當的廣泛,像是分析系統、生物元件 '化學與生物化學的研究工具、基礎的研究等等。同時參-1〇 閱圖1、2,一般適用於進行檢測,例如尿液等待檢測試劑· 的微晶片1包含一基板11、一形成在該基板u上之電極單 元12,及一連結於該基板u上的覆板13。 ^ 該基板11 一般是玻璃板、壓克力板或是Pc板等。 該電極單元12具有複數電極121,在此以七電極為例 說明,是以預定金屬例如銅、銀當靶材,以濺鍍方式將其 15 鑛膜於基板11之一上表面上形成,每一電極121具有一接, 觸部122與一相反於該接觸部122之控制部123。 " 該覆板13 —般是選用聚合材料,如聚二甲基矽氧烷(_ PDMS polydimethyl siloxane)製成,具有一與基板 η 之上 表面連結之下表面131、一槽孔單元132,及一與槽孔單元 20 132連通之槽道單元133。該槽孔單元132具有複數自該下 表面131向上凹陷形成的槽孔13 4,在此以四槽孔1 3 4為例 說明’該四槽孔134與該基板11之上表面共同形成第一、 二、三、四貯液槽141、142、143、144。該槽道單元133 具有複數自該下表面131向上凹陷形成的槽道135,在此以 5 1252839 二槽道135為例說明,該二槽道135成十字形交錯分佈, 且每一槽道135的二端分別連通二相反設置的槽孔134,同 時該二槽道135分別與該基板11之上表面共同形成第一、 二微流道151、152。 5 該電極單元12其中之三電極121,是分別以其接觸部 122設置於成三角分佈之第一、二、三貯液槽141、142、· 143中,另四電極121則是分別以接觸部122間隔地設置於· 該第二微流道152中,且相對靠近該第四貯液槽144,而使 得當第二微流道152中有液體通過時可以依序接觸到該複 10 數電極121之接觸部122。 #貫際使用此毛細微晶片1進行檢測樣品時,是在第 一、二、四、貯液槽142、143、144中滴置緩衝溶液,並 利用毛細現象使第一、二微流道丨5丨、丨52填滿緩衝溶液, 再將待檢測樣品,例如尿液滴置於第一貯液槽141中,接 15 料於複數電極以預定模式施力口分別施加電壓而形成電場 藉以驅動待檢測樣品分段間隔地流入第二微流道1Μ中 ,待其依序經過設置於第二微流道152中的複數電極i2i 的接觸# 122之後,即可紀錄該些電極122的變化,進而 2〇 依據此些變化分析檢測該待檢測樣品所含的不同物質。 ^乡閱圖3,上述習知的毛細微晶片1,是先以步驟3 i, ^用例如石夬板切晶片以㈣方法來製作母模Η,使其 、面211具有複數對應該槽孔單元與槽道單元Η]之凸 塊 212 〇 著進行步驟32,選用液態的聚二甲基矽氧烷為覆材 1252839 I模於母膜21之具有凸塊212的表面211。 再以步驟33靜置一段時間,待聚二甲基矽氧烷硬 與母权21分離,即完成上述具有槽孔單元132及槽道單-133之覆板13的製備。 兀 5 在進行上述步驟31至步驟%製備覆板13的同時進行 步驟34,選用—玻璃或是壓克力基板u,並以财金屬例、 如銅、銀當乾材,以錢鍍方式將其鍍膜於基板U之上表面 上形成該電極單元12 〇 ^ - 最後進行步驟35’分別以電漿處理鍵附有電極單元12 1〇 <基板11以及覆板13,並將其貼合成一體,即完成上述微、 晶片1之製備。 〜 士以上的方法雖然可以製造目前所使用的微晶Μ】,且同 時製備完成的微晶片1亦可用於分析系統、生物元件、化 學與生物化學的研究等等領域,但是上述的微晶片ι及其 15 製造方法仍然有以下的缺點: 、 1·成本高昂一由於使用於基板u之石英或矽晶片具/ 有-定程度的高價位;同時,母模21本身也是消耗品,因鲁 此造成微晶片1的製作成本居高不下。 2·製程複雜-由於上述製程中必須同時應用到製模、壓 1〇 杈、蝕刻以及電鍍等等不同領域的製程,因此製作上極為 複雜,也因此需要較長的製造時間,也因此造成製作成本 的高昂。 3.该測誤錄大-以上述製程完成的毛細微晶# ι,由 於電極單元Ϊ2本身具有10/zm左右的厚度,所以覆板13 7 1252839 在與基板11貼合時,鄰近電極單元12的周圍會出現空隙 16,而使知雄合度較差,因而造成待檢測溶液或是緩衝液 會渗進入該些空隙16中,使得檢測時通過電極121的樣本 體積不一’因而造成檢測的誤差。 5 10 15 20 4.無法進行光學檢測—目前毛細微日日日片}的覆板^通 常是以聚二甲基梦氧烧(pDMS)為材f製成,但此材質在· 固化的過程中-直進行聚合反應,也就是說其材質在硬化 成型之後仍然不斷地在改變,因而不具有穩定的光學性質 ’因此並不適用於光學檢測。 丨 因此如何以較低的製作成本,簡易的製作過程,製[Technical Field] The present invention relates to a biochip, and more particularly to a method and a product for manufacturing a microchip having a complex number of microchannels, and a detection method using the same . "" [Prior Art] The application of microchips is quite extensive, such as analytical systems, biological components, research tools for chemistry and biochemistry, basic research, and so on. Referring to Figures 1 and 2, generally applicable to the detection, for example, the urine waiting for detection reagent, the microchip 1 comprises a substrate 11, an electrode unit 12 formed on the substrate u, and a connection thereto a cover plate 13 on the substrate u. ^ The substrate 11 is generally a glass plate, an acrylic plate or a Pc plate. The electrode unit 12 has a plurality of electrodes 121. Here, a seven-electrode is taken as an example. A predetermined metal, such as copper or silver, is used as a target to form a 15 ore film on the upper surface of the substrate 11 by sputtering. An electrode 121 has a connection, and the contact portion 122 is opposite to the control portion 123 of the contact portion 122. " The cover plate 13 is generally made of a polymeric material, such as _PDMS polydimethyl siloxane, having a surface 131 joined to the upper surface of the substrate η, and a slot unit 132. And a channel unit 133 that communicates with the slot unit 20 132. The slot unit 132 has a plurality of slots 13 4 recessed upwardly from the lower surface 131. Here, the four slots 134 are taken as an example to illustrate that the four slots 134 form a first surface with the upper surface of the substrate 11. , two, three, four reservoirs 141, 142, 143, 144. The channel unit 133 has a plurality of channels 135 formed by recessing from the lower surface 131. Here, the 5 1252839 two channels 135 are exemplified. The two channels 135 are alternately staggered, and each channel 135 The two ends are respectively connected to the oppositely disposed slots 134, and the two channels 135 respectively form the first and second microchannels 151, 152 together with the upper surface of the substrate 11. 5 The three electrodes 121 of the electrode unit 12 are respectively disposed with the contact portion 122 in the triangular, first, second and third reservoirs 141, 142, 143, and the other four electrodes 121 are respectively in contact. The portions 122 are spaced apart from the second microchannel 152 and are relatively close to the fourth reservoir 144 so that the liquid can be sequentially accessed when the liquid in the second microchannel 152 passes. Contact portion 122 of electrode 121. When the sample is tested using the capillary microchip 1, the buffer solution is dripped in the first, second, and fourth reservoirs 142, 143, and 144, and the first and second microchannels are caused by capillary action. 5丨,丨52 fills up the buffer solution, and then the sample to be tested, for example, urine droplets are placed in the first reservoir 141, and the plurality of electrodes are applied to the plurality of electrodes in a predetermined mode to apply voltages respectively to form an electric field to drive The sample to be detected is intermittently flowed into the second microchannel 1Μ, and after the contact #122 of the plurality of electrodes i2i disposed in the second microchannel 152 is sequentially passed, the changes of the electrodes 122 can be recorded. Further, according to the change analysis, the different substances contained in the sample to be detected are detected. 3, the above-mentioned conventional capillary microchip 1 is first made by step (3), cutting the wafer with, for example, a stone slab to produce a mother mold Η, such that the surface 211 has a plurality of corresponding slots. The bump 212 of the unit and the channel unit 〇 is next to step 32, and the liquid polydimethyl siloxane is used as the cladding material 1252839 to mold the surface 211 of the mother film 21 having the bumps 212. Further, in step 33, the mixture is allowed to stand for a period of time, and the polydimethylsiloxane is hardly separated from the matrix 21 to complete the preparation of the above-mentioned cladding sheet 13 having the cell unit 132 and the channel mono-133.兀5 Perform step 34 in the above step 31 to step % to prepare the superimposed plate 13, and select - glass or acrylic substrate u, and use a metal such as copper or silver as a dry material to be deposited by money. The coating film forms the electrode unit 12 on the upper surface of the substrate U. Finally, the step 35' is respectively attached with the electrode unit 12 1 〇 < the substrate 11 and the covering plate 13 with a plasma processing key, and is integrated into one body. That is, the preparation of the above micro, wafer 1 is completed. The above method can be used to manufacture the microcrystalline wafers currently used, and the prepared microchip 1 can also be used in the fields of analysis systems, biological components, chemical and biochemical research, etc., but the above microchips ι And its 15 manufacturing methods still have the following disadvantages: 1. High cost because of the high price of quartz or tantalum wafers used in the substrate u; at the same time, the master mold 21 itself is also a consumable item, because of this The manufacturing cost of the microchip 1 is high. 2. The process is complicated - since the above processes must be applied to processes in different fields such as molding, pressing, etching, and electroplating, the fabrication is extremely complicated, and thus requires a long manufacturing time, which results in fabrication. The cost is high. 3. The error recording is large - the capillary microcrystals completed by the above process, since the electrode unit 本身2 itself has a thickness of about 10/zm, the cover plate 13 7 1252839 is adjacent to the electrode unit 12 when it is bonded to the substrate 11. The void 16 is formed around the gap, and the combinedness of the male and female is poor, so that the solution to be detected or the buffer can penetrate into the gaps 16 so that the sample volume passing through the electrode 121 during the detection is different, thus causing a detection error. 5 10 15 20 4. It is impossible to carry out optical inspection—the current superficial micro-day and day film} is usually made of polydimethyl epoxiconate (pDMS), but this material is in the process of curing. The polymerization is carried out in a medium-to-straight manner, that is to say, the material is constantly changing after hardening molding, and thus has no stable optical properties' and thus is not suitable for optical detection.丨 So how to make a simple production process with a low production cost

Xe出可以精確檢測出待檢測樣品的微晶片1,是學界、業界 不斷努力的目標。 1 【發明内容】 、因此’本發明之目的,是在提供一種簡易、低成本 製造方法’以製造出微晶片。Xe is a microchip 1 that can accurately detect the sample to be tested, which is an ongoing goal of the academic community and the industry. 1 SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a simple, low-cost manufacturing method to manufacture a microchip.

此外,本發明之另—目的,是在提供—種以簡易、 成本的裝造方法製造出可進行精確檢測的微晶片。 於是,本發明一種微晶片之製造方法,是製造具有 ΓΙ放Γ液體的貯液槽單元、—與該貯液槽單神連通 楗流f皁元’及-對應該貯液槽單元、微流道單元設置 =早元的微電用生物晶片,該電極單元之部分電極可 =,加電壓而形成使該貯液槽單元内貯放之液體在該」 L k早7G中沿預定方向移動的電場。 "亥製造方法包含以下步驟: 8 1252839 (a )在一基板上形成該電極單元。 (b)在該基板上形成_光阻層。 5 ⑷以微影製程在該光阻層上向該基板方向凹陷形成 -槽孔單元,及-與該槽孔單元相連通之槽道單元。,u)將一面板貼合於該光阻層上,使該面板表面與該 光阻層凹陷形成之該槽孔單元及該槽道單元共同形成該貯 液槽單元與該微流道單元。 10 15 而,本發明一種以上述製造方法所製成的微晶片,包 含一基板、一光阻層、一電極單元,及一面板。 該光阻層自該基板之表面向上形成,包括一槽孔單元 ,及一槽料元,該槽孔單元具有複數自該纽層表面向 基板方向形成之槽孔’該槽道單元具有複數自該光阻層表 面向基板方向形成之槽道,每一槽道是可選擇地與其他槽 道相連通’且每-槽道之相反兩端分別與二槽孔相連通。Further, another object of the present invention is to provide a microchip which can be accurately detected by a simple and costly manufacturing method. Therefore, a method for manufacturing a microchip according to the present invention is to manufacture a sump unit having a sputum liquid, a singular flow of the sputum with the sump, and a corresponding sump unit and a microfluid The channel unit is set to the early micro-electro-micro wafer, and the electrode of the electrode unit can be replaced by a voltage to form a liquid for storing the liquid in the sump unit in the predetermined direction in the LK 7G. electric field. The "Hai manufacturing method comprises the following steps: 8 1252839 (a) The electrode unit is formed on a substrate. (b) Forming a _photoresist layer on the substrate. 5 (4) forming a slot unit in the direction of the substrate on the photoresist layer by a lithography process, and a channel unit communicating with the slot unit. And u) bonding a panel to the photoresist layer such that the surface of the panel and the slot unit formed by recessing the photoresist layer and the channel unit together form the reservoir unit and the microchannel unit. Further, a microchip produced by the above manufacturing method comprises a substrate, a photoresist layer, an electrode unit, and a panel. The photoresist layer is formed upward from the surface of the substrate, and includes a slot unit, and a slot unit having a plurality of slots formed from the surface of the layer toward the substrate. The channel unit has a plurality of The surface of the photoresist layer is formed in the direction of the substrate, and each channel is selectively connected to the other channels, and the opposite ends of each channel are respectively connected to the two slots.

20 該電極單元包括複數電極,每一電極具有一形成在該 基板與該絲層之間的接觸部,及—自該接觸部向基板周 緣,伸而裸露出該光阻層外的控㈣,該部分電極之接觸 =疋分別對應地裸露於該—槽道中,該其餘電極的接觸部 疋分別對應於該-貯液槽,該每—電極之控制部可分別地 、《*加電壓而开》成一作用於該槽孔單元與槽道單元的電 場。 該面板貼合於該光阻層上,與該槽孔單元之每一槽孔 形成一可容置液體的貯液槽,並與該槽道單元之每一槽道 形成一可供液體移動之微流道。 曰20 The electrode unit comprises a plurality of electrodes, each electrode having a contact portion formed between the substrate and the wire layer, and a control from the contact portion extending toward the periphery of the substrate to expose the photoresist layer (4), The contact of the partial electrodes=疋 is correspondingly exposed in the channel, and the contact portions 该 of the remaining electrodes respectively correspond to the liquid reservoir, and the control portion of each electrode can be separately opened by “*. The electric field acts on the slot unit and the channel unit. The panel is attached to the photoresist layer, and each of the slots of the slot unit forms a liquid reservoir for accommodating liquid, and forms a liquid for movement with each channel of the channel unit. Micro flow channel.曰

9 I252839 當該一預定電極被施加一電壓而形成一電場時,該一 對應於該電極之貯液槽中的液體可被該電場作用經由該一 對應之微流道移動至另一預定的貯液槽中,且當液體在該 微流道中移動時是可接觸該對應於該微流道之電極的接觸 部。 本發明之功效在於利用低成本的製程方式來製作毛細· 微晶片,且依此製造方法製成的毛細微晶片具有高靈敏度· 、選擇比、微小化、低成本、低功率,以及高協調性的偵 測特點。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一較佳實施例的詳細說明中,將可清 楚的明白。 參閱圖4,本發明一種微晶片之製造方法4的一較佳實 施例,是可製造如圖5所示之微晶片5。該微晶片5包含一 基板51、一光阻層52、一電極單元53,及一面板54。 該基板51是一壓克力板(PMMA),而其他高分子材料 ,例如PC、PC之衍生物、PVC、PVC之衍生物、pE、pE 之衍生物、ABS、ABS之衍生物等,或是例如矽晶圓、玻 璃等均可以當作基板使用。 同時參閱圖6’該光阻層52自基板51之表面向上开彡成 ,包括一槽孔單元521,及一槽道單元522,該槽孔單元 521具有複數自光阻層52表面向基板51方向形成之槽孔 523,在此以四槽孔523為例說明,該槽道單元522具有複 10 1252839 5 10 15 數自光阻層52表面向基板51方向形成之槽道524,每—样 道524是可選擇地與其他槽道似相料,且每一槽道^ 之相反兩端分別與二槽孔523相連通,同時,每一槽道… 的的寬度範圍是介力^〜刚❹帅,深度範圍是介於 5〜HKKHun,而以10〜200,為較佳寬度範圍,ι〇〜ι〇〇_為 較佳深度範圍;在此,則以每—㈣524之寬度為 ^5〇卿,深度20〜75释,且二槽道似成十字形交錯分佈 並與邊四槽孔523相連通為例說明。 該電極單元53包括複數電極531,在此以七電極53ι ’例說明’且為使以下說明清楚起見,分別依順時針方向 以第一至第七電極531命名順序說明。每一電極531是以 各有奴、銀、銅、金、鉑、鈀可導電之元素,或化合物、 σ 1,或是例如導電高分子材料、導電氧化物材料、導電 氮化物材料、矽金屬化合物等等材料形成。具有一形成在 基板51與光阻層52之間的接觸部532,及一自接觸部532 向基板51周緣延伸而裸露出光阻層52外的控制部533。第 一、二、三電極531的接觸部532是分別對應設置於其中 二呈三角分佈之槽孔523中,第四、五、六、七電極531 之接觸部532是分別間隔地設置於該一第二槽道524中, 並相對靠近該另一個槽孔523,使得當有液體通過時可以依 序接觸到該四電極531之接觸部532。該每一電極531之控 制部533可分別地被施加一電壓而形成一作用於槽孔單元 521與槽道單元522的電場。 該面板54是一壓克力板(pmmA ),當然,其他高分子 20 1252839 材料,例如PMMA、ΡΜΜΑ PVC、PVC之f仏 订生物、pc、PC之衍生物、9 I252839 When a predetermined electrode is applied with a voltage to form an electric field, the liquid in the reservoir corresponding to the electrode can be moved by the electric field to the other predetermined reservoir via the corresponding microchannel. In the liquid bath, and when the liquid moves in the micro flow path, the contact portion corresponding to the electrode of the micro flow path can be contacted. The effect of the present invention is to produce a capillary microchip by a low-cost process, and the capillary microchip produced by the manufacturing method has high sensitivity, selection ratio, miniaturization, low cost, low power, and high coordination. Detection characteristics. The above and other technical contents, features, and advantages of the present invention will become apparent from the following detailed description of the preferred embodiments. Referring to Figure 4, a preferred embodiment of a method of fabricating a microchip of the present invention is such that a microchip 5 as shown in Figure 5 can be fabricated. The microchip 5 includes a substrate 51, a photoresist layer 52, an electrode unit 53, and a panel 54. The substrate 51 is an acrylic sheet (PMMA), and other polymer materials such as PC, PC derivatives, PVC, PVC derivatives, pE, derivatives of pE, derivatives of ABS, ABS, etc., or For example, wafers, glass, and the like can be used as substrates. Referring to FIG. 6 ′, the photoresist layer 52 is opened upward from the surface of the substrate 51 , and includes a slot unit 521 and a channel unit 522 having a plurality of surfaces from the photoresist layer 52 toward the substrate 51 . The slot 523 formed in the direction is exemplified by a four-hole 523 having a plurality of channels 1 524 839 5 10 15 and a channel 524 formed from the surface of the photoresist layer 52 toward the substrate 51. The channel 524 is selectively similar to the other channels, and the opposite ends of each channel are respectively connected to the two slots 523, and the width of each channel is the dielectric ^~ ❹ handsome, the depth range is between 5~HKKHun, and 10~200 is the preferred width range, ι〇~ι〇〇_ is the preferred depth range; here, the width of each (4) 524 is ^5 Yan Qing, depth 20~75 release, and the two channels seem to be staggered and connected with the four holes 523 as an example. The electrode unit 53 includes a plurality of electrodes 531, which are illustrated by the seven electrodes 53 ι ' and are described in the order of the first to seventh electrodes 531 in the clockwise direction for clarity of the following description. Each electrode 531 is an element capable of conducting electricity, such as slave, silver, copper, gold, platinum, or palladium, or a compound, σ 1, or, for example, a conductive polymer material, a conductive oxide material, a conductive nitride material, or a base metal. Compounds and the like are formed. There is provided a contact portion 532 formed between the substrate 51 and the photoresist layer 52, and a control portion 533 extending from the contact portion 532 toward the periphery of the substrate 51 to expose the photoresist layer 52. The contact portions 532 of the first, second, and third electrodes 531 are respectively disposed in the slots 523 in which the two electrodes are triangularly distributed. The contact portions 532 of the fourth, fifth, sixth, and seventh electrodes 531 are respectively disposed at intervals. The second channel 524 is relatively close to the other slot 523 so that the contact portion 532 of the four electrode 531 can be sequentially contacted when liquid passes therethrough. The control portion 533 of each of the electrodes 531 can be respectively applied with a voltage to form an electric field acting on the slot unit 521 and the channel unit 522. The panel 54 is an acrylic sheet (pmmA), of course, other polymer 20 1252839 materials, such as PMMA, ΡΜΜΑPVC, PVC, bio-, pc, PC derivatives,

FVL 之何生物、PE、PE 吐你莖汔H 叮生物、AB S、AB S之衍 生物專,或疋例如矽晶圓、破 ,以埶壓貼人X & 1 寺也均可以當作面板使用 5 10 15 20 …1貼。方式與光阻層53連結,而 1Z3#?L 523 ^ ^ 叻興槽孔早兀521之 四槽孔523形成四可分別容置液體的第_、二、 液槽61、62、《、64,該第―、二、 —四貝丁 并八口丨息虚 一貝丁液槽61、62、63 並分別對應設置有該第一、二、二 54並與槽道單元522之二電極531 ’同時’面板 —曰 形成二可供液體移動之 弟一U机道65、66,第四、五、六、七電極⑶ 觸部533則間隔地設置於第二 1双机迢66中,且由於槽道 5二之寬度為20〜5〇μιη,深度2〇〜75叫,因此,第一、二微 流道65、66是分別形成縱深父寬度為2〇_〜7一 j 20μιη〜50μιη的長條形通道態樣。 必須同時 故請容後 由於上述毛細微晶片5各構造的詳細說明 配合實際檢測樣品時一併解釋方可清楚的明白 再詳述。 ▲配合參閱圖四,以本發明一種微晶片之製造方法4的 較佳貫施例製造如圖5所示之微晶片5時,是先進行㈣ 41,先以酒精擦拭以壓克力(ΡΜΜΑ)為材質的基板5ι, 使其表面無雜物附著。 接著以步驟42將導電膠以對應該些電極之形狀、位置 Ρ席]至基板5 1表面,然後進行烘烤,即在基板5丨上形成 忒電極單疋53。在本實施例中,是將碳膠加上稀释劑均勻 混合成液態後,利用網版印刷將此液態混合物以對應該七 12 1252839 電極531之形狀、位置印刷至基板51表面,然後進行供烤 ,即在基板51上形成該電極單元53。當然,也可以選用其 他例如銀谬、銅膠等導電膠取代碳膠而應用於形成電極單 兀53。此外’也可以選用其他如上述可導電之材質,以物 5 理㈣、化學鍍膜,或混用此些方式形成該電極單元^, 由於此等形成方式並非本發明重點所在,故在此不多加— 一詳述。 接著進订步驟43 ’在印刷有電極單元53之基板5ι表 面上塗佈-光阻材料’並使該光阻材料均勻覆遮基板W表參 10 面及電極單元53,並使光阻材料之-相反於基板51的_表 面成一水平面,經過軟烤後即形成一光阻層7。 - 再進行步驟44,應用預先製備之具有對應於槽孔單元 Ml與槽道單元522之圖像的光罩,對光阻$ 7進行例如曝 1 光顯衫、蝕刻、清洗等過程的微影製程,而在光阻層71 15 上向基板51方向凹陷形成槽孔單元521及與槽孔單元521 \ 相連通之槽道單元522,即完成微晶片5上的光阻層52。-最後進行步驟45,以熱壓貼合方式,直接利用光阻本鲁 身的特性,將面板54、光阻層52、基板51連結成一體, 即完成如圖4、圖5所示之微晶片5。 20 配a參閱圖4,以上述本發明一種微晶片之製造方法4 所製成之微晶片5實際進行電化學檢測,例如分離檢測尿 液時,是先用純水與磷酸缓衝液清洗微晶片5十分鐘。然 後將混合尿酸和維他命c的標準試劑滴入第二貯液槽62中 ’純水和緩衝液滴入第三、四貯液槽63、64中,同時將待 13 5 10 15 20 Ϊ252839 測的尿液樣品滴製入第一貯液槽6 毛細現象把第-、二微流道65、66=。叫,使緩衝液因 先對第一電極施加loov/cm高電遷,第 =成=場可將待檢測之尿液樣品由第_貯液槽61經由 k弟一微流道65流至第三貯液槽63中。 再將第一、二電極之電位移除,將第七電極通入⑺ ::電屋,以第五電極接收回授訊號,第六 的參考電位。 ▲然後對第二電極依序間隔地施加5 〇、1 〇 〇、 V /⑽的 =電=1四電極接地,即可驅動待檢測樣品分段間隔地 :入=-微錢66中,待其依序㈣設置於第二微流道μ 之五、六、七等三電極後,即可紀錄該三電極的變化 :進而,據此些變化分析檢測該待檢測樣品所含的不同物 貝該第四貝丁液槽64可容存檢測過或多餘的待測樣品。上 述說明是將本發明微晶片5應用於電化學檢驗中,其他例 如先學檢測、電學檢測,或其他光電檢測等等,當然也都_ 可以適用,因其屬於應用方法之區域,並非本發明重點所i 在’在此不再多加贅述。 參閱圖7,由掃描式電子顯微鏡所拍攝的照片,可以看 出,以本發明—種微晶片之製造方法4所製造的微晶片$, 其微流道65、66具有相當的垂直性、平整性,同時,由於 光阻層52與基板51及雷托留_ ^ 败:Η及電極皁兀53間的密合度極高,而使 得溶液在微流道65、66 t移動時不會產生滲㈣問題,因 此,可以極為精確地驅動待檢測樣品分段間隔地流入微流 14 1252839 道65、 66中’而得到如圖8所示之更精準的檢測分 離結果 5 10 15 20 綜所上述’本發明微晶片之製造方法 成本的製葙古斗 主要疋利用低 u备方式,以網版印刷方式形成電 由光阻利用微影製程精確加工成型的特:再藉 細微晶片5中m 一 行注來製作成型毛 _ 頁具備極尚的平整性與垂直性的微法、曾 65、66,最後再簡易的以熱 "牧 井阳® 〇 八建、·、口壓克力面板54與 先戶層52,而完成毛細微晶片5; _ m 細微晶片5’由於基板51、光阻層&、面板54間;〜< =而無間隙產生’因此,使得溶液在微流道65、的中^ =會產生滲漏的問題,而可以更為精確地驅動待檢測樣 4段間隔地流入微流道中,而得到較習知之微電用生物 晶片1更精準的電化_檢測結果,此外,由於面板54 與光阻層52間的結合方式是採用熱貼壓合,藉由光阻層52 本身的特性來連結面板54,因此面板54除了可採用適合光- 學檢測的壓克力材質之外’亦可以簡單轉換為玻璃、石夕晶. 圓或其他高分子材料等材質,而符合其他各項分析檢測的· 需求,而仍舊保有高靈敏度和選擇比、微小化、低成本、 低功率、高協調性的檢測特性,確實達到本發明之創作目 的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明書内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 15 1252839 【圖式簡單說明】 圖1是-上視示意圖,說明習知之微晶片的構造; 圖2疋一側視示意圖,輔助說明圖1之微晶片的構造 5 圖3是一流程圖,說明圖1之微晶片的一製程; 圖4是一流程圖,說明本發明一種微晶片之製造方法-的一較佳實施例; 圖5是一上視示意圖,說明以圖4之製造方法所製造 的微晶片; 10 圖6是一側視示意圖,輔助說明圖5之微晶片的構造 圖7是一 SEM相片,說明以圖4之製造方法所製造的 微晶片,其一微流道具有相當高的平整性與垂直性;及 圖8是一檢測結果,說明以圖4之製造方法所製造的 15 微晶片在不同電壓下檢測尿液的結果。 16 1252839 【圖式之主要元件代表符號說明】 1 微晶片 32 步驟 11 基板 33 步驟 12 電極單元 34 步驟 121 電極 35 步驟 122 接觸部 4 製造方法 123 控制部 41 步驟 13 覆板 42 步驟 131 下表面 43 步驟 132 槽孔單元 44 步驟 133 槽道單元 45 步驟 134 槽孔 5 微晶片 135 槽道 51 基板 141 第一貯液槽 52 光阻層 142 第二貯液槽 521 槽孔單元 143 第三貯液槽 522 槽道單元 144 第四貯液槽 523 槽孔 151 第一微流道 524 槽道 152 第二微流道 53 電極單元 16 空隙 531 電極 21 母模 532 接觸部 211 表面 533 控制部 212 凸塊 54 面板 31 步驟 61 第一貯液槽 17 1252839 62 第二貯液槽 66 第二微流道 63 第三貯液槽 7 光阻層 64 第四貯液槽 65 第一微流道 18FVL organisms, PE, PE spit your stems, 叮H 叮 creatures, AB S, AB S derivatives, or 疋 矽 矽 矽 、 、 、 、 、 、 矽 X X X X X X X X X X X X X The panel uses 5 10 15 20 ... 1 stickers. The method is connected to the photoresist layer 53, and the first slot 523 of the 1Z3#?L 523 ^ ^ 叻 槽 slot early 521 forms four _, 2, and liquid tanks 61, 62, respectively, which can accommodate the liquid respectively. The first, second, and fourth bedding and eight suffocation imaginary bedding liquid tanks 61, 62, 63 are respectively provided with the first, second, and second 54 and the two electrodes 531 of the channel unit 522. 'At the same time' panel—曰 forms two U-channels 65, 66 for the liquid to move, and the fourth, fifth, sixth, and seventh electrodes (3) the contact portions 533 are spaced apart from each other in the second 1-bin 迢 66, and Since the width of the channel 5 is 20~5〇μιη, the depth is 2〇~75, so the first and second microchannels 65 and 66 are respectively formed with a depth of the parent width of 2〇_~7-j 20μιη~50μιη. Long strip channel pattern. It must be explained at the same time. Since the detailed description of each structure of the above-mentioned capillary microchip 5 is explained together with the actual detection of the sample, it can be clearly understood. ▲ Referring to FIG. 4, when the microchip 5 shown in FIG. 5 is manufactured by a preferred embodiment of the manufacturing method 4 of the microchip of the present invention, (4) 41 is first performed, and the acrylic is first wiped with alcohol (ΡΜΜΑ). ) is a substrate 5 of the material, so that no impurities are attached to the surface. Next, in step 42, the conductive paste is applied to the surface of the substrate 51 by corresponding shapes and positions of the electrodes, and then baked, that is, a tantalum electrode unit 53 is formed on the substrate 5A. In this embodiment, after the carbon glue and the diluent are uniformly mixed into a liquid state, the liquid mixture is printed on the surface of the substrate 51 by screen printing in the shape and position corresponding to the electrode 531 of the 127, and then baked. That is, the electrode unit 53 is formed on the substrate 51. Of course, other conductive pastes such as silver enamel and copper glue may be used instead of the carbon glue to form the electrode unit 兀53. In addition, other materials such as the above-mentioned conductive materials can be selected, and the electrode unit can be formed by using the materials (4), electroless plating, or mixed in such a manner. Since the formation manner is not the focus of the present invention, it is not added here- A detailed description. Subsequent to the ordering step 43 'applying a photoresist material on the surface of the substrate 5 i on which the electrode unit 53 is printed, and uniformly covering the surface of the substrate W and the electrode unit 53 with the photoresist material, and making the photoresist material - Conversely, the surface of the substrate 51 is in a horizontal plane, and after being soft baked, a photoresist layer 7 is formed. - proceeding to step 44, applying a pre-prepared photomask having an image corresponding to the slot unit M1 and the channel unit 522, and performing lithography on the photoresist $7, such as exposure, etching, cleaning, etc. The process is performed, and the slot unit 521 and the channel unit 522 communicating with the slot unit 521 are recessed in the direction of the substrate 51 on the photoresist layer 71 15 to complete the photoresist layer 52 on the microchip 5. - Finally, in step 45, the panel 54, the photoresist layer 52, and the substrate 51 are integrally connected by using the characteristics of the photoresist in a hot press bonding manner, that is, the micro as shown in FIG. 4 and FIG. 5 is completed. Wafer 5. Referring to FIG. 4, the microchip 5 produced by the above method 4 for manufacturing a microchip of the present invention is actually subjected to electrochemical detection. For example, when separating and detecting urine, the microchip is cleaned with pure water and phosphate buffer. 5 minutes. The standard reagent for mixing uric acid and vitamin C is then dropped into the second reservoir 62 'pure water and buffer droplets into the third and fourth reservoirs 63, 64 while being tested by 13 5 10 15 20 Ϊ252839 The urine sample is dripped into the first sump 6 and the capillary phenomenon is the first and second microchannels 65, 66 =. In order to make the buffer first apply a loov/cm high electromigration to the first electrode, the urine sample to be detected can be flowed from the first reservoir 66 through the k-microchannel 65 to the first In the three reservoirs 63. Then, the potentials of the first and second electrodes are removed, and the seventh electrode is connected to the (7)::Electrical house, and the fifth electrode receives the feedback signal, and the sixth reference potential. ▲ Then, the second electrode is applied with 5 〇, 1 〇〇, V / (10) = electricity = 4 electrodes grounded in sequence, which can drive the sample to be detected to be separated by interval: into = - micro money 66, waiting After the fourth electrode is disposed in the fifth, sixth, seventh and third electrodes of the second microchannel μ, the change of the three electrodes can be recorded: further, the different samples contained in the sample to be detected are detected according to the change analysis. The fourth Beiding tank 64 can hold the sample to be tested that is detected or redundant. The above description is to apply the microchip 5 of the present invention to an electrochemical test, and other examples such as prior detection, electrical detection, or other photoelectric detection, etc., of course, may be applicable, because it belongs to the application method area, not the present invention. The focus of i is not repeated here. Referring to Fig. 7, a photograph taken by a scanning electron microscope, it can be seen that the microchannels $65, 66 manufactured by the manufacturing method 4 of the present invention have considerable verticality and flatness. At the same time, since the adhesion between the photoresist layer 52 and the substrate 51 and the retort Η Η Η Η and the electrode saponin 53 is extremely high, the solution does not ooze when the micro flow channels 65, 66 t move. (4) The problem, therefore, can drive the sample to be detected into the microfluid 14 1252839, 65, 66 in an extremely precise manner, and obtain a more accurate detection separation result as shown in Fig. 8 5 10 15 20 The manufacturing method of the microchip of the present invention is mainly based on the low-preparation method, and the screen printing method is used to form an electric wire by the photoresist using the lithography process to precisely process the shape: To make the forming hair _ The micro-method with excellent flatness and verticality, used to be 65, 66, and finally the simple one with heat "mujingyang® 〇八建,·,口压克力面板54 and The layer 52, and complete the capillary microchip 5; _ m fine crystal 5' due to the substrate 51, the photoresist layer & the panel 54; ~ < = without gap generation ' Therefore, the solution in the micro-flow channel 65, will cause leakage problems, and may be more Accurately driving the sample to be tested into the microchannel at intervals, thereby obtaining a more accurate electrochemical_detection result of the conventional micro-electric biochip 1, and further, since the combination between the panel 54 and the photoresist layer 52 is adopted The heat-bonding is combined with the characteristics of the photoresist layer 52 to bond the panel 54. Therefore, the panel 54 can be simply converted into glass or stone enamel in addition to an acrylic material suitable for optical-study detection. Or other materials such as polymer materials, and meet the requirements of other analysis and testing, while still maintaining high sensitivity and selection ratio, miniaturization, low cost, low power, high coordination of detection characteristics, indeed achieve the creation of the present invention purpose. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All should remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top plan view showing the structure of a conventional microchip; FIG. 2 is a side view showing the configuration of the microchip of FIG. 1 FIG. 3 is a flow chart illustrating Figure 1 is a flow chart illustrating a preferred embodiment of a method of fabricating a microchip of the present invention; and Figure 5 is a top plan view showing the manufacturing method of Figure 4 FIG. 6 is a side view showing the structure of the microchip of FIG. 5. FIG. 7 is a SEM photograph illustrating the microchip fabricated by the manufacturing method of FIG. 4, wherein a micro flow path has a relatively high height. The flatness and the perpendicularity; and Fig. 8 is a test result showing the results of detecting the urine of the 15 microchips manufactured by the manufacturing method of Fig. 4 at different voltages. 16 1252839 [Description of main components and symbols] 1 Microchip 32 Step 11 Substrate 33 Step 12 Electrode unit 34 Step 121 Electrode 35 Step 122 Contact part 4 Manufacturing method 123 Control part 41 Step 13 Covering plate 42 Step 131 Lower surface 43 Step 132 Slot unit 44 Step 133 Channel unit 45 Step 134 Slot 5 Microchip 135 Channel 51 Substrate 141 First reservoir 92 Photoresist layer 142 Second reservoir 521 Slot unit 143 Third reservoir 522 channel unit 144 fourth reservoir 523 slot 151 first microchannel 524 channel 152 second microchannel 53 electrode unit 16 gap 531 electrode 21 female mold 532 contact portion 211 surface 533 control portion 212 bump 54 Panel 31 Step 61 First reservoir 17 1252839 62 Second reservoir 66 Second microchannel 63 Third reservoir 7 Photoresist layer 64 Fourth reservoir 65 First microchannel 18

Claims (1)

1252839 拾、申請專利範圍: 1 · 一種微晶片之製造方法,該微晶片具有一可貯放〆液體 的貝T液槽皁元、一與该貯液槽单元相連通的微流道早元 及一對應該貯液槽單元、微流道單元設置之電換單元 ’該電極單元之部分電極可分別被施加電壓而形成使該 貝丁液槽早元内了放之液體在該微流道單元中沿預定方向 移動的電場,該製造方法包含: (a )在一基板上形成該電極單元; (b )在該基板上形成一光阻層; (c )以微影製程在該光阻層上向該基板方向凹陷形成 一槽孔單元,及一與該槽孔單元相連通之槽道單 元;及 (d)將一面板貼合於該光阻層上,使該面板表面與該 光阻層凹陷形成之該槽孔單元及該槽道單元共同 形成該貯液槽單元與該微流道單元。 2.依據申請專利範圍第丨項所述微晶片之製造方法,其中 ,該電極單元是以含有選自於由下列所構成之群紕中的 元素所形成:碳、銀、銅、金、链、把,及此等之一組 合0 3 ·依據申請專利範圍第1項所述微晶片之製造方法,其中 ,該電極單元是選自於由下列所構成之群組中的物所形 成· V電鬲分子、導電氧化物、導電氣化物、石夕金屬化 合物,及此等之一組合。 4·依據申請專利範圍第1項所述微晶片之製造方法,其中 19 1252839 ,該步驟(a )是先清潔該基板表面後,再以印刷方式 形成該電極單元。 5. 依據申請專利範圍第!項所述微晶片之製造方法,其中 ,該步驟U)是先清潔該基板表面後,再以物理鐘膜 方式形成該電極單元。 6. 依據申請專利範圍第i項所述微晶片之製造方法,其中 ,該步驟U)是先清潔該基板表面後,再以化學鍍膜 方式形成該電極單元。 7. 依據中請專利範圍第!項所述微晶片之製造方法,其中 ,該基板是選自高分子材料。 8·依财請專利範圍第7項所述微晶片之製造方法,其中 該冋刀子材料疋遠自於由下列之物所構成群組·· pc、 PC之衍生物、PVC ' Pvc之衍生物、PE、之衍生物 、ABS、ABS之衍生物,及此等之—組合。 9.依據申請專利範圍第】項所述微晶片之製造方法,其中 “ 土板是匕自於由下列之物所構成群組:玻璃、矽晶 圓’及此等之一組合。 1 〇·依據申請專利範圚筐!工百&、上 固弟1員所述微晶片之製造方法,其中 ,該光阻層是選用可感光之高分子材料形成。 依據申W專利|&圍第i項所述微晶片之製造方法,其中 忒步驟(b)所形成之光阻層厚度是對應於該微流道 單元之深度。 12.依據申請專利範圍第10項所述微晶片之製造方法,其 ~ ^驟(b )所形成之光阻層厚度是介於 20 1252839 〇· 1 〜1 ΟΟΟμηι 〇 13·依據申請專利範圍第1、10、U或ΐ2項所述微晶片之 製造方法,其中,該步驟(b )更具有以下次步驟: (bl )在該基板上塗佈一光阻材料,並使該光阻材料均 勻覆遮該基板表面及該電極單元,且該光阻材料 之一相反於該基板之表面成一水平面;及 (b2)軟烤經過該次步驟(Μ)之產品,使該光阻材料 形成該光阻層。 14·依據申請專利範圍第1項所述微晶片之製造方法,其中 ,該步驟(c )更具有以下次步驟: (cl )製備一具有對應於該槽孔單元與該槽道單元之圖 像的光罩; (c2 應用該光罩對該步驟(b)所形成之光阻層成像 ;及 (c3) 移除成像後之該光阻層對應於該槽孔單元與該槽 道單元的區域,使該被移除的區域形成該槽孔單 元與槽道單元。 15·依據申請專利範圍第1頊所 固乐1貝所述微晶片之製造方法,其中 ’該面板是選自高分子材料。 1 6·依據申請專利範圍第14 項所述微晶片之製造方法,其 中’該高分子材料是選自於由 %由下列之物所構成群組: PMMA、PMMA之衍生物、p 〜、PC之衍生物、PE、PE 之衍生物、PVC、PVC之衍在札 丁生物、ABS、ABS之衍生物 ’及此等之一組合。 21 1252839 i7·依據申請專利範圍第丨項所述微晶片之製造方法, ’該面板是選自於由下列之物所構成群組、:夕曰 圓,及此等之一組合。 /日日 1 8 ·依據申凊專利範圍第1項所述 y 月岍述倣日日片之製造方法,並 ,該步驟(d )是以埶壓人方彳 /、 ”、、& σ方式使該面板與該光阻層連 結0 19.:,以!:專利範圍第1項所述之製造方法所製成的微 曰曰月’包含: 一基板; 一自該基板之表面向上形戒 0 一 小成之先阻層,包括一槽孔 單儿,及一槽道單元,兮播π xm - Q 矣早7"具有複數自該光阻層 表面向基板方向形成之槽孔,該槽道單元具有複數自該 光阻層表面向基板方向形赤嫵 形成之槽道,每一槽道是可選擇 地與其他槽道相連通,且备一播^ 槽孔相連通; 以肖道之相反兩端分別與二 一包括複數電極的電極單元,每一電極具有一形成 =基板與該纽層之間的接觸部,及—自該接觸部向 基板周緣延伸而裸露出該光阻層外的控制部,該部分電 極之接觸部是分別對應地裸露於該—槽道中,該盆餘電 極的接觸部是分別對應於該一貯液槽,該每一電極之接 :部可分別地被施加一電壓而形成_作用於該槽孔單元 與槽道單元的電場;及 占口於Μ光阻層上的面板,與該槽孔單元之每一 胃孔幵4彳谷置液體的貯液槽,並與該槽道單元之每 22 1252839 一槽道形成一可供液體移動之微流道; 當該-預定電極被施加—電壓而形成一電場時,該 一對應於該電極之貯液槽中的液體可被該電場作用經由 該一對應之微流道移動至另_ — 】 $ 預定的貯液槽中,且當液 體在該微流道中移動時是可垃 疋了接觸該對應於該微流道之電 極的接觸部。 2〇·依據申請專利範圍第19項所述微晶片,其中,該基板 是選自高分子材料。 21. 依據申請專利範圍第20項所述微晶片,其中,該高分 子材料是選自於由下列之物所構成群組:PC、PC之衍 生物、啊、潰之衍生物,、PE之衍生物、ABS、 ABS之衍生物,及此等之一組合。 22. 依據申請專利範圍第19 θ ^ 述姑晶片,其中,該基板 等之一組合。 毒成群,、且.玻璃、石夕晶圓,及此 2 3 ·依據肀睛專利範圍第 述微晶片,其中,該光 ,、,Μ Α 双 層是選用可感光之高分子材料形成^ 24. 依據申請專利範圍帛19項所述 是選自高分子材料。 ,、T 3亥面相 25. 依據申請專利範圍第% ;姑祖Η、路Α Μ日日月’其中,該高分 子材U於由下列之物所 ΡΜΜΑ之衍生物、pc、ρ ,且ΡΜΜΑ 、PVC、PVC 之物、ΡΕ、ΡΕ2衍生物 rVL之何生物、ABS 之一組合。 S之诉生物,及此等 23 1252839 晶片 破螭 其中,該面板 石夕晶圓,及此 26.依據申請專利範圍第19項所述微 是選自於由下列之物所構成群組·· 等之一組合。 27. 依據申請專利範圍f 19所述微晶片 極是以含有選自於由下列所構 ::…電 .奴、銀、銅、金、始、絶,及此等之一組合。成 28. 依據申請專利範圍第19項所述微晶片,其中,續每一 電極是選自於由下列所構成之群組中的物所形成I電 高分子、導電氧化物、導電氮化物、矽金屬化合物,及 此等之一組合。 29.依據申請專利範圍第 微流道之寬度是介於 /z m 〇 19項所述微晶片,其中,該每一 深度是介於〇卜⑺㈧ 241252839 Pickup, patent application scope: 1 · A microchip manufacturing method, the microchip has a shell T liquid tank soap element capable of storing liquid, and a microchannel early phase connected with the liquid storage tank unit a pair of electric discharge units provided by the liquid storage tank unit and the micro flow channel unit, wherein a part of the electrodes of the electrode unit can be respectively applied with a voltage to form a liquid in which the bead liquid tank is discharged in the early flow unit. An electric field moving in a predetermined direction, the manufacturing method comprising: (a) forming the electrode unit on a substrate; (b) forming a photoresist layer on the substrate; (c) performing a lithography process on the photoresist layer Forming a slot unit in the direction of the substrate, and a channel unit communicating with the slot unit; and (d) attaching a panel to the photoresist layer to make the panel surface and the photoresist The slot unit formed by the layer recess and the channel unit together form the sump unit and the micro runner unit. 2. The method of manufacturing a microchip according to the above application, wherein the electrode unit is formed of an element selected from the group consisting of carbon, silver, copper, gold, and chain. The method of manufacturing a microchip according to claim 1, wherein the electrode unit is formed from a group consisting of the following: An electrophoretic molecule, a conductive oxide, a conductive vapor, a metal compound, and a combination thereof. 4. The method of manufacturing a microchip according to claim 1, wherein the step (a) is to clean the surface of the substrate and then form the electrode unit by printing. 5. According to the scope of the patent application! The method for manufacturing a microchip according to the invention, wherein the step U) is to first clean the surface of the substrate, and then form the electrode unit by a physical clock. 6. The method of manufacturing a microchip according to the invention of claim 1, wherein the step U) is to clean the surface of the substrate and then form the electrode unit by electroless plating. 7. According to the patent scope of the request! The method for producing a microchip according to the invention, wherein the substrate is selected from a polymer material. 8. The method for manufacturing a microchip according to item 7 of the patent scope, wherein the 冋 knife material is far from a group consisting of: pc, a derivative of PC, a derivative of PVC 'Pvc , PE, derivatives, derivatives of ABS, ABS, and combinations of these. 9. The method of manufacturing a microchip according to the scope of the patent application, wherein the earth plate is a group consisting of the following: glass, germanium wafer, and the like. 1 〇· According to the method for manufacturing a microchip according to the patent application model basket, the work of the micro-chip, the photoresist layer is formed by using a photosensitive polymer material. According to the patent of W & The method for manufacturing a microchip according to item i, wherein the thickness of the photoresist layer formed by the step (b) is a depth corresponding to the micro flow channel unit. 12. The method for manufacturing a microchip according to claim 10 The thickness of the photoresist layer formed by the method (b) is between 20 1252839 〇·1 〜1 ΟΟΟμηι 〇13. According to the manufacturing method of the microchip according to the scope of claim 1, 10, U or , 2, Wherein, the step (b) further has the following steps: (bl) coating a photoresist material on the substrate, and uniformly covering the surface of the substrate and the electrode unit, and the photoresist material a surface opposite to the surface of the substrate; and B2) soft baking the product of the step (Μ) to form the photoresist layer. The method for manufacturing a microchip according to claim 1, wherein the step (c) is further The method has the following steps: (cl) preparing a photomask having an image corresponding to the slot unit and the channel unit; (c2 applying the photomask to image the photoresist layer formed in the step (b); and (c3) removing the imaged photoresist layer corresponding to the area of the slot unit and the channel unit, so that the removed area forms the slot unit and the channel unit. 1) A method for manufacturing a microchip according to the present invention, wherein the panel is selected from a polymer material. The method for manufacturing a microchip according to claim 14 of the patent application, wherein the polymer material It is selected from the group consisting of the following: PMMA, a derivative of PMMA, a derivative of PC~, a derivative of PC, a derivative of PE, PE, a PVC, a derivative of PVC in Zhadin, ABS, ABS Derivatives' and one of these combinations. 21 1252839 i7·Based on the application The method for manufacturing a microchip according to the above aspect of the invention, wherein the panel is selected from the group consisting of: Xi Xi Yuan, and one of the combinations. / Day 1 8 · According to application The manufacturing method of the imitation Japanese film is described in the first paragraph of the patent scope, and the step (d) is to press the panel and the photoresist layer in a manner of pressing the 彳/, 、, & σ. CONNECTION 0 19.:, by the manufacturing method described in the first aspect of the patent range, the micro-details include: a substrate; a surface from the surface of the substrate upwards or a small resistance layer , comprising a slot single, and a channel unit, 兮 π xm - Q 矣 7 7" having a plurality of slots formed from the surface of the photoresist layer toward the substrate, the channel unit having a plurality of photoresists The surface of the layer is formed in the direction of the substrate to form a channel formed by the red raft, each channel is selectively connected to the other channel, and is provided with a slotted hole; and the opposite ends of the channel are respectively included with the two Electrode units of a plurality of electrodes, each electrode having a formation = between the substrate and the layer a contact portion, and a control portion extending from the contact portion toward the periphery of the substrate to expose the photoresist layer, wherein the contact portions of the partial electrodes are correspondingly exposed in the channel, and the contact portion of the remaining electrode of the basin is Corresponding to the one of the liquid storage tanks, each of the electrodes may be respectively applied with a voltage to form an electric field acting on the slot unit and the channel unit; and occupying the photoresist layer on the photoresist layer a sump with a liquid in each of the stomach holes of the slot unit, and a microchannel for each liquid to be moved with a channel of each of the channel units of 22 1252839; When a predetermined electrode is applied with a voltage to form an electric field, the liquid in the reservoir corresponding to the electrode can be moved by the electric field through the corresponding microchannel to another _ _ $ predetermined sump And, when the liquid moves in the microchannel, the contact portion corresponding to the electrode corresponding to the microchannel can be removed. 2. The microchip according to claim 19, wherein the substrate is selected from a polymer material. 21. The microchip according to claim 20, wherein the polymer material is selected from the group consisting of: a derivative of PC, PC, a derivative of a crush, a PE Derivatives, derivatives of ABS, ABS, and combinations of these. 22. According to the scope of the patent application, the 19th θ ^ nucleus wafer, wherein the substrate or the like is combined. Poisonous group, and glass, Shixi wafer, and 2 3 · According to the scope of the patent, the micro-wafer, wherein the light, ,, Μ 双层 double layer is formed by using a photosensitive polymer material ^ 24. According to the scope of application patent 帛19, it is selected from polymer materials. , T 3hai surface phase 25. According to the scope of patent application No. 5%; Guzu Η, Lu Α Μ 日 ' 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中, a combination of PVC, PVC, ΡΕ, ΡΕ2 derivative rVL and ABS. S sue creatures, and these 23 1252839 wafers are broken, the panel Shi Xi wafer, and 26. According to the scope of claim 19, the micro is selected from the group consisting of: One of the combinations. 27. The microchip electrode according to the scope of patent application f 19 is a combination comprising one selected from the group consisting of: slave, silver, copper, gold, beginning, and the like. The microchip according to claim 19, wherein each of the electrodes is an I-electropolymer, a conductive oxide, a conductive nitride formed from a group consisting of the following, A base metal compound, and a combination of these. 29. According to the scope of the patent application, the width of the microchannel is between /z m 〇 19 of the microchips, wherein each depth is between (7) and (24) 24
TW93104270A 2004-02-20 2004-02-20 Method of manufacturing microchip and product made by same TWI252839B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93104270A TWI252839B (en) 2004-02-20 2004-02-20 Method of manufacturing microchip and product made by same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93104270A TWI252839B (en) 2004-02-20 2004-02-20 Method of manufacturing microchip and product made by same

Publications (2)

Publication Number Publication Date
TW200528389A TW200528389A (en) 2005-09-01
TWI252839B true TWI252839B (en) 2006-04-11

Family

ID=37564907

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93104270A TWI252839B (en) 2004-02-20 2004-02-20 Method of manufacturing microchip and product made by same

Country Status (1)

Country Link
TW (1) TWI252839B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158063B2 (en) 2008-10-20 2012-04-17 National Chip Implementation Center National Applied Research Laboratories Biosensor package structure with micro-fluidic channel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
JP5904958B2 (en) 2013-03-07 2016-04-20 株式会社東芝 Semiconductor micro-analysis chip and manufacturing method thereof
JP6151128B2 (en) 2013-08-12 2017-06-21 株式会社東芝 Semiconductor micro-analysis chip and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158063B2 (en) 2008-10-20 2012-04-17 National Chip Implementation Center National Applied Research Laboratories Biosensor package structure with micro-fluidic channel

Also Published As

Publication number Publication date
TW200528389A (en) 2005-09-01

Similar Documents

Publication Publication Date Title
KR102435604B1 (en) Multi-electrode structures for molecular sensing devices and methods of making them
CA2594483C (en) Apparatuses and methods for manipulating droplets on a printed circuit board
JP2021515693A (en) Directing the movement of droplets using differential wetting
DE102013106596B4 (en) Method of forming biochips with non-organic contact pads for improved heat management
CN104492509B (en) There is the preparation method of the micro-fluidic chip of nanodendrites Raman substrate
US20030024632A1 (en) Process for forming metal micro-patterns on plastic substrate
EP1497458A2 (en) Hydrophobic zone device
BRPI0712082A2 (en) diagnostic test means and means of manufacture
WO2008052358A1 (en) Microfluidic device having an array of spots
JP2004291234A (en) Method for manufacturing molded product
TWI252839B (en) Method of manufacturing microchip and product made by same
WO2006080336A1 (en) Filter and method of manufacturing the same
Li et al. Development of an integrated CMOS-microfluidic instrumentation array for high throughput membrane protein studies
WO2004072642A1 (en) A device for application of micro-sample and reaction of a biochip and its method
KR100811532B1 (en) Micro bio chip for immunoreaction and manufacture method thereof and immunoreaction detecting method using micro bio chip
CN109370891A (en) A kind of biochip and preparation method thereof
TW201031911A (en) A capillary electrophoresis chip with integrated top-bottom opposed electrochemical sensing electrodes and its fabrication methods
JP4966694B2 (en) Manufacturing method of microstructured mold
CN113600252B (en) Micro-fluid chip processing method
JP5076234B2 (en) Apparatus for measuring qualitative distribution of particle concentration in vertical cross section of microchannel and method for manufacturing microchannel structure used in said apparatus
CN114308160B (en) Digital PCR microcavity chip and preparation method
US11913947B2 (en) Digital immunochip and manufacture method of the same
CN212982461U (en) Multilayer MEMS structure
JP2024501106A (en) Precision fluid injection control for point-of-care devices
Gusmaroli Integration of a Custom Designed Microfabricated Sensor Chip into Hanging-Drop Networks for Microtissues Analysis

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees