TWI252393B - A spread spectrum clock generator and method and system of generating a spread spectrum clock - Google Patents

A spread spectrum clock generator and method and system of generating a spread spectrum clock Download PDF

Info

Publication number
TWI252393B
TWI252393B TW093123833A TW93123833A TWI252393B TW I252393 B TWI252393 B TW I252393B TW 093123833 A TW093123833 A TW 093123833A TW 93123833 A TW93123833 A TW 93123833A TW I252393 B TWI252393 B TW I252393B
Authority
TW
Taiwan
Prior art keywords
clock
delay
control code
circuit
signal
Prior art date
Application number
TW093123833A
Other languages
Chinese (zh)
Other versions
TW200516369A (en
Inventor
Kyu-Hyoun Kim
Hoe-Ju Chung
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020030062863A external-priority patent/KR100541548B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200516369A publication Critical patent/TW200516369A/en
Application granted granted Critical
Publication of TWI252393B publication Critical patent/TWI252393B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/08Clock generators with changeable or programmable clock frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/013Modifications of generator to prevent operation by noise or interference
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/156Arrangements in which a continuous pulse train is transformed into a train having a desired pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Pulse Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Noise Elimination (AREA)

Abstract

A spread spectrum clock generator includes a non-volatile memory to store control codes corresponding to a predetermined delay. A delay circuit receives a control code having a predetermined number of bits that determine a delay to apply to a fixed clock signal a period of time. The delay mitigates the electromagnetic interference caused by a periodic clock signal.

Description

1252393 九、發明說明: 先前專利申請案 本專利申㈣主張源自在2GG3年9月8日提交之第2003_ 62863號韓國專利案的㈣權,該專利申請案在此納 入供參酌。 【發明所屬之技術領域】 本發明係關於__種展頻時脈產生器與—種產生展頻時脈 之方法。 【先前技術】 諸如圖1中的丨0所示之時脈產生器一般包括一時脈源1〇〇 與鎖相環路(phase-locked loop PLL)l〇2。此產生器1〇產生 一般為方波且工作週期為50%的系統時脈。該系統時脈則 使用於許多種不同的系統中,譬如包括記憶體模組14和記 憶體控制器12的記憶體系統。 像這樣的糸統時脈是不利的電磁干擾(electr〇magnetk interference EMI)來源。電磁干擾會在電子電路中造成問 題’因為其會干擾信號的傳輸。隨著技術的進步,電路可 以更快的速率運作,也因此需要更快的時脈,從而產生更 多的電磁干擾。減輕電磁干擾的一種技術是使用展頻時脈 產生器(spread spectrum clock generators SSCG)。這此時 脈被稱為展頻的原因是其頻率擴展在不同的頻率上,從而 可避免時脈邊緣處的能量峰值。在某些情況下,展頻時脈 產生係使用下文所述之美國專利中所示的鎖相環路實 施。鎖相環路改變施加給一電壓控制震盪器(v〇ltage 95055.doc 1252393 controlled oscillator VCO)之電壓,從而改變時脈内的延遲 量。 此種方法之範例顯示於1997年5月20日頒發之第 5,631,920號美國專利;2001年9月18日頒發之第5,692,5〇7 號美國專利;與2002年2月26日頒發之第6,351,485號美國 專利。鎖相環路的使用一般是讓一時脈循環在兩個頻率極 限之間切換,在二頻率極限之間往返調整時脈頻率。這種 方法夕y有些限制,因為其僅容許使用兩個固定頻率而不 容許做編程控制。 另一種方法顯示於2002年12月 美國專利。如圖2中所示,此方法有兩個電容器,該二電 容器被使用當做由計數器—序列器2〇切換的負載,該計數 器一序列器由固定時脈(flxed clock fclk)做時脈驅動。計 數器一序列器20驅動第一控制信號CTU到第一負載切換 電晶體22之閘極,並驅動第二控制信號ctl2到第二負載 切換電晶體24之閘極。當CTL1為高電位時,電容器加 須在達到輸出緩衝器3 G的邏輯臨限值之前被輸人緩衝器2 8 充電與放電,從而延遲時脈邊緣。當CTL2為高電位時, 電容器二必須在達到輸出緩衝器3〇的邏輯臨限值之前被輸 入緩衝A 28充電與放電’從而也延遲時脈邊緣。當^⑴ 每CTL2 一者冑為高電位日夺,兩個電容器都必須被充電, 從而進—步延遲時脈邊緣。但是這些負載無法被線性改變 以隨需要調整時脈頻率。 【實施方式】 95055.doc 1252393 圖3顯示未調變時脈信號之問題癥結。 之能量尖波振幅可能超過已調變〜 ”文恰脈 幅2-8 dB。此差異造成了更高程度的磁::時脈信號振 件與諸如記憶體㈣等系、統有負面影響。2而對電子零 係針對記憶體纟統零件與方法 ^之犯例 明,所以咬,*立女π na 仁”目的只在做範例說 所山本务明之應用不揭限於記憶體***。 此種系統的-個範例顯示於圖4中。時脈產生㈣ 一固定頻科脈FCLK,該時脈由展料脈^ 42使用。SSCG 42產生一展 (SC〇) Μ展頻盼脈’該展頻時脈則由電子 電路裝置44a-44n使用。在記憶體系統中,裝置仏·仏可 =㈣區段或記憶體模組或用來儲存資料之記憶 或暫存器。 圖5與6中顯示採用展頻時脈產生器之記憶體系統的替代 實施例。在圖5中,時脈產生㈣包括固定頻率時脈觸與 鎖相環路902。記憶體模組94包括個別的記憶體模組和展 頻時脈產生器904。 圖7以更詳細的實施例顯示展頻時脈產生器。在此種實 施例中’ SSCG 42有控制電路5G、可編程延遲電路52和暫 存器電路54 °暫存器電路54保有可對延遲電路52做編程控 制的控制碼。控制電路5G提供位址給暫存器電路^,而暫 存器電路54則提供控制碼給延遲電路。這使延遲電路可改 變施加給固定時脈FCLK的延遲時段長短,並從而改變時 脈頻率以減輕週期性時脈的電磁干擾程度。 可、、扁耘延遲電路可由許多組延遲構件之一來實施。圖心 95055.doc 1252393 與8b顯示兩種範例,但請注意其僅為延遲構件的範例。本 發明之實施例一般是提供可由暫存器電路提供之控制碼選 擇的之構件,以使能對展頻時脈產生器内之延遲做精確的 控制。在圖8a之範例中,延遲元件是反向安排的電容器, 譬如是NMOS與PMOS電容器。固定頻率時脈FCLK藉將輸 入緩衝器60反相而做緩衝。若FCLK信號為高位準,則反 相信號為低位準。這會使PMOS電容器62a,62b與62c的一 個端點上有一低位準信號。若某一構件之控制碼為低位 準,則該構件之PMOS電容會提供其電容之100%,從而使 延遲時段等於該構件之充電時間。 譬如,若控制碼C01為低位準,則電容器62a提供其電 容的100%,該100%電容在信號可遞交給輸出反相器66之 前必須被充電。若控制碼C01為高位準,則電容器62a提 供其電容的大約1/3,該1/3電容在信號可遞交給輸出反相 器66之前必須被充電。 若時脈信號FCLK為低位準,則反相器60之輸出為高位 準。這會使NMOS電容器64a-64c成為信號到達輸出反相器 66之前的導線負載。依此方法,延遲時間量可連同輸入時 脈信號FCLK由控制碼加以編程控制。 延遲電路的另一種範例顯示於圖8b中。此實施例中的各 延遲構件有諸如72a之存取電晶體和諸如74a之電容器。當 某一構件之控制碼為高位準時,存取電晶體導通且電容器 充電,從而造成一延遲。譬如,若控制碼C01為高位準, 則電晶體72a導通且電容器74a充電。這會造成信號從輸入 95055.doc 1252393 反相緩衝器70傳輸到輸出 出一個導通的電晶體就會 段增長。 反相緩衝器76的傳輸延遲。每多 曰加包4盗充電,藉此使延遲時 圖8a|4 8b之电谷為的電容值 ^辟丄 此都一樣,也可能電容值 都不一樣。譬如,各電容器 炙兄包呤間都可有等於一延遲 早位id。或者,各電容器 兄屯柃間也可加以控制以等 於一二進位等同量。譬如,,a,電定哭 私备裔之充電時間可等於一 延遲單位量d。’b’電容哭之右+ ^士 Ba 、私今°。之充電時間可等於延遲單位量的 兩倍,即2d或d+Ι。,c,電容器之充雪 口口 <元私¥間可等於延遲單位 量的四倍,即4d或d+3。 現在轉而描述SSCG之控制電路5〇,目9中顯示其一種實 施例。控制單元50可包括—分頻器8〇以產生_較低頻率的 時脈DFCLK與一位址產生器82。位址產生器可實施成一狀 態機器,纟中一新位址信號之輸出會造成該機器改變狀態 成為次一個狀態。所需之位址數目可為已知,因為控制碼 數值的組合一或控制字組一之數目是有限的。 吕如,可月b僅使用四個控制”字組來活化延遲電路。可 使用四個位址1000,0100,〇〇1〇與〇〇〇1。圖1〇中顯示產生該 等位址的位址產生器。當施加一重設信號rESEt時,位址 信號A1- A4被產生為1 〇〇〇。產生位址信號a 1之正反器因應 於一重設信號SE產生一高位準信號。一旦產生了位址信號 A1,只要被分頻之時脈DFCLK被觸發,A1信號之高位準 資料就被移位到次一位址信號。如此可形成信號A1-A4 0100, 0010與0001。當一正向致能信號FCON被致能時,這 95055.doc •10- 1252393 些信號以此順序被致能。 當最後一個位址A4(A1-A4 0001)被活化之後,一逆向致 能信號BCON被致能。這使A4信號之高位準資料可以相反 次序輸出’ A3,A2然後A1。所以,位址信號A1-A4被改變 成諸如00 10,01 (^與丨000之次序。切換可為正向切換 FSW1-FSW3或為逆向切換BSW1-BSW3。此種位址產生程 序被連續重複以便因應於被分頻之時脈DFCLK產生位址信 號。延遲負載的值可隨著邊緣變化而改變,這將於下文中 參考圖11討論。 在圖U中顯示用於位址產生之信號的時程圖。重設信號 開始該程序。該圖也顯示兩個時脈信號FCLK與被分頻之 時脈信號DFCLK。在此特定的實施例中,DFCLK之頻率 為固定時脈信號頻率之半。當然也可使用其他的頻率除 法。 正向控制與逆向控制信號FC0N與BC0N如圖1〇中所示般 由B2F與F2B信號產生。其相關計時信號如圖1〇中所示。 其結果之展頻時脈信號SSCLK有與其關聯之延遲。譬如, 時段T是目定㈣信號之週期加—延遲單㈣。力口至時脈信 说之延遲單位數目可被編程控制以根據系統設計者之需要 而改變。在圖11之範例中,時段丁+1之延遲時間為;時 段T+2之延遲時間為d+3,且時段丁+丨之延遲時間為权4。 當位址逆向循環時,延遲時間也逆向循環,如圖u中所示 般。 圖中所示的延遲由駐留在位址A1 - A 4内之控制信號決 95055.doc -11 - 1252393 定。下表以控制”字組,,鱼爱 、/、對應位址顯示控制 C02與C03。回頭看圖7, fiUOH, 图頌不提供給位址電路之位灿 σ上文所述般造成提供給 控制信號 C01 下 位址 0001 0 |〇 0010 ------ 1 0 ——-------- 0100 ---------— 1000 ------ --— 0 〇 ---——— -甘+ ^ 屹遲構件之特定控制碼。下表顯 不某些控制碼的範例。 衣,、、、負 C021252393 IX. STATEMENT OF RELATED APPLICATIONS: This patent application (4) claims to be derived from the (4) right of the Korean Patent No. 2003_62863 filed on September 8, 2, ug. 3, which is hereby incorporated by reference. TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of generating a spread spectrum clock and a type of spread spectrum clock generator. [Prior Art] A clock generator such as 丨0 in Fig. 1 generally includes a clock source 1 〇〇 and a phase-locked loop PLL 〇2. This generator 1 produces a system clock that is typically a square wave with a duty cycle of 50%. The system clock is used in a variety of different systems, such as the memory system including memory module 14 and memory controller 12. A sinusoidal clock like this is a source of unfavorable electromagnetic interference (EMI). Electromagnetic interference can cause problems in electronic circuits because it can interfere with the transmission of signals. As technology advances, circuits can operate at a faster rate, and therefore require faster clocks, resulting in more electromagnetic interference. One technique for mitigating electromagnetic interference is to use spread spectrum clock generators (SSCG). The reason why this time pulse is called spread spectrum is that its frequency is spread at different frequencies, so that the energy peak at the edge of the clock can be avoided. In some cases, the spread spectrum clock generation is performed using a phase locked loop as shown in the U.S. patents described below. The phase-locked loop changes the voltage applied to a voltage-controlled oscillator (v〇ltage 95055.doc 1252393 controlled oscillator VCO), thereby changing the amount of delay in the clock. An example of such a method is shown in U.S. Patent No. 5,631,920 issued May 20, 1997; U.S. Patent No. 5,692,5,7, issued on September 18, 2001; issued on February 26, 2002 U.S. Patent No. 6,351,485. The use of a phase-locked loop typically allows a clock cycle to switch between two frequency limits, adjusting the clock frequency back and forth between the two frequency limits. This method is somewhat limited because it only allows the use of two fixed frequencies and does not allow for program control. Another method is shown in the December 2002 US patent. As shown in Figure 2, this method has two capacitors that are used as a load that is switched by a counter-serializer 2 that is clocked by a fixed clock (fxed clock fclk). The counter-sequencer 20 drives the first control signal CTU to the gate of the first load switching transistor 22 and drives the second control signal ctl2 to the gate of the second load switching transistor 24. When CTL1 is high, the capacitor must be charged and discharged by the input buffer 2 8 before reaching the logic threshold of the output buffer 3 G, thereby delaying the clock edge. When CTL2 is high, Capacitor 2 must be input to Buffer A 28 Charge and Discharge before reaching the logic threshold of Output Buffer 3〇, thereby also delaying the clock edge. When ^(1) is one of the high potentials per CTL2, both capacitors must be charged, thus delaying the edge of the clock. However, these loads cannot be linearly changed to adjust the clock frequency as needed. [Embodiment] 95055.doc 1252393 Figure 3 shows the problem of the unmodulated clock signal. The amplitude of the energy spike may exceed the amplitude of the modulated ~ ” Wencha pulse 2-8 dB. This difference causes a higher degree of magnetic:: the vibration of the clock signal and the system such as memory (4) have a negative impact. 2 For the electronic zero system for the memory system parts and methods ^ sin, so bite, * 立 female π na Ren" purpose is only to do the example that the application of Yamamoto is not limited to the memory system. An example of such a system is shown in Figure 4. The clock generates (4) a fixed frequency branch pulse FCLK, which is used by the material pulse 42. The SSCG 42 produces a display (SC〇), which is used by the electronic circuit devices 44a-44n. In a memory system, the device =·仏 can be (4) a segment or a memory module or a memory or register for storing data. An alternative embodiment of a memory system employing a spread spectrum clock generator is shown in Figures 5 and 6. In Fig. 5, the clock generation (4) includes a fixed frequency clock contact and a phase locked loop 902. The memory module 94 includes individual memory modules and a spread clock generator 904. Figure 7 shows a spread spectrum clock generator in a more detailed embodiment. In this embodiment, the SSCG 42 has a control circuit 5G, a programmable delay circuit 52, and a register circuit 54. The register circuit 54 holds a control code that can program the delay circuit 52. Control circuit 5G provides the address to the scratchpad circuit ^, while register circuit 54 provides the control code to the delay circuit. This allows the delay circuit to change the length of the delay period applied to the fixed clock FCLK and thereby change the clock frequency to mitigate the degree of electromagnetic interference from the periodic clock. The squaring delay circuit can be implemented by one of a plurality of sets of delay members. Figure 95055.doc 1252393 and 8b show two examples, but note that it is only an example of a delay component. Embodiments of the present invention generally provide a means for selection by a control code provided by a scratchpad circuit to enable precise control of delays in the spread spectrum clock generator. In the example of Figure 8a, the delay elements are reverse-arranged capacitors, such as NMOS and PMOS capacitors. The fixed frequency clock FCLK is buffered by inverting the input buffer 60. If the FCLK signal is at a high level, the inverted signal is at a low level. This causes a low level signal at one end of the PMOS capacitors 62a, 62b and 62c. If the control code of a component is low, the PMOS capacitor of the component provides 100% of its capacitance, so that the delay period is equal to the charging time of the component. For example, if control code C01 is low, capacitor 62a provides 100% of its capacitance, which must be charged before the signal can be delivered to output inverter 66. If control code C01 is high, capacitor 62a provides approximately 1/3 of its capacitance, which must be charged before the signal can be delivered to output inverter 66. If the clock signal FCLK is at a low level, the output of the inverter 60 is at a high level. This causes the NMOS capacitors 64a-64c to become the wire load before the signal reaches the output inverter 66. In this way, the amount of delay time can be programmed by the control code in conjunction with the input clock signal FCLK. Another example of a delay circuit is shown in Figure 8b. Each of the delay members in this embodiment has an access transistor such as 72a and a capacitor such as 74a. When the control code of a component is high, the access transistor is turned on and the capacitor is charged, causing a delay. For example, if the control code C01 is at a high level, the transistor 72a is turned on and the capacitor 74a is charged. This causes the signal to travel from the input 95055.doc 1252393 inverting buffer 70 to the output of a conducting transistor. The transmission delay of the inverting buffer 76. Each additional packet is charged with a thief, so that the capacitance value of the electric valley of Fig. 8a|4 8b is delayed. The same is true, and the capacitance values may be different. For example, each capacitor can have a delay equal to the early id. Alternatively, the capacitors can be controlled to wait for a binary equivalent. For example, a, the electric crying private charging time can be equal to a delay unit amount d. 'b' Capacitor Cries Right + ^ Ba Ba, Private Today °. The charging time can be equal to twice the delay unit amount, ie 2d or d+Ι. , c, capacitor snow filling mouth < yuan private ¥ can be equal to four times the delay unit, that is, 4d or d + 3. Turning now to the control circuit 5 of the SSCG, an embodiment thereof is shown in FIG. Control unit 50 may include a divider 〇 to generate _lower frequency clock DFCLK and address generator 82. The address generator can be implemented as a state machine, and the output of a new address signal in the frame causes the machine to change state to the next state. The number of addresses required may be known because the combination of control code values or the number of control blocks one is limited. Lu Ru, can use only four control "words to activate the delay circuit. Four addresses 1000, 0100, 〇〇1〇 and 〇〇〇1 can be used. Figure 1〇 shows the generation of these addresses. Address generator: When a reset signal rESEt is applied, the address signals A1 - A4 are generated as 1 〇〇〇. The flip-flop generating the address signal a 1 generates a high level signal in response to a reset signal SE. The address signal A1 is generated, and as long as the divided frequency clock DFCLK is triggered, the high level data of the A1 signal is shifted to the secondary address signal. Thus, signals A1-A4 0100, 0010 and 0001 can be formed. When the forward enable signal FCON is enabled, these signals are enabled in this order. When the last address A4 (A1-A4 0001) is activated, a reverse enable signal BCON is enabled. This enables the high level data of the A4 signal to output 'A3, A2 and then A1 in reverse order. Therefore, the address signals A1-A4 are changed to such as 00 10, 01 (the order of ^ and 丨000. The switching can be Forward switching FSW1-FSW3 or reverse switching BSW1-BSW3. This address generation procedure is repeated continuously The address signal is generated in response to the divided clock DFCLK. The value of the delayed load may change as the edge changes, as will be discussed below with reference to Figure 11. The signal for address generation is shown in Figure U. Time-history diagram. The reset signal begins the program. The figure also shows two clock signals FCLK and the divided clock signal DFCLK. In this particular embodiment, the frequency of DFCLK is half of the fixed clock signal frequency. Other frequency divisions can of course be used. The forward and reverse control signals FC0N and BC0N are generated by the B2F and F2B signals as shown in Figure 1A. The associated timing signals are shown in Figure 1A. The spread-spectrum clock signal SSCLK has a delay associated with it. For example, the time period T is the period (four) of the signal plus-delay single (four). The number of delay units of the force-to-clock signal can be programmed to be controlled according to the system designer. In the example of Fig. 11, the delay time of the period +1 is: the delay time of the period T+2 is d+3, and the delay time of the period 丨+丨 is the weight 4. When the address is reversed , the delay time is also reversed, as shown in the figure The delay shown in the figure is determined by the control signal residing in addresses A1 - A 4 by 95055.doc -11 - 1252393. The following table controls the "word group, fish love, /, corresponding The address display controls C02 and C03. Looking back at Figure 7, fiUOH, Figure 颂 is not provided to the address circuit. The σ is supplied to the control signal C01 under the address 0001 0 |〇0010 ----- - 1 0 ———————— 0100 ---------— 1000 ------ --- 0 〇---———— - Gan + ^ Specific control code. The table below shows examples of some control codes. Clothing,,,, and negative C02

此特別範例假設如圖8a_b中所示般有三個延遲構件。 但請注意可使用任何數目個延遲構件,也可使用任何數目 個控制碼。此外’控制碼的性質本身也是可改變的。控制 碼可為延遲時間的—& Y t _ 1 進位表不法,其中001的延遲控制碼 曰化成1的延遲,而100的延遲控制碼則造成4的延遲。 或者控制碼也可為等權重的表示法。控制碼i〇〇可為2This particular example assumes that there are three delay members as shown in Figures 8a-b. However, please note that any number of delay components can be used, and any number of control codes can be used. Furthermore, the nature of the 'control code itself is also changeable. The control code can be a delay time -& Y t _ 1 carry table, where the delay control code of 001 is degraded to a delay of 1, and the delay control code of 100 causes a delay of 4. Or the control code can also be an equal weight representation. The control code i〇〇 can be 2

95055.doc 1252393 控制碼均可代表延遲的重 不論是二種情況中的哪一種 複次數。 、 曰存器電路可予以略去, 當做控制碼。但是,铲样奋,站 而使用位址 乂樣會少掉—階的調變 一階調變功能可增加延遲 右有这 暫存器電路可被重新編程戋 “ 狂及以新的暫存器電路取 新的暫存n電路對預定位址可有不同的值。 μ 假設希望與位址〇〇〇丨關聯之延 f+ 1右I*、f π # i 為而非0。則可能容許 I、有上述控制碼之既有暫存器電路做移除或重新編程, 因為暫存Μ路從絲產生器分離。暫存器電路可為任何 類型之非揮發記憶體,像是電子可消除可編程唯讀記憶體 (⑽滅 elect職lcally programmable read only memory eeprom)、保險絲陣列、電子可編程唯讀記憶體 (EPR0M)、唯讀記憶體(ROM)等。 上文已經舉例說明並描述本發明之實施例的原理之後, 熟習本技術領域者可輕易地了解該等實施例可在結構上與 細節上做修改而不悖離這些原理。本發明之申請專利範圍 主張之範圍包括所有在所附申請專利範圍之精神與範疇内 之修改。 【圖式簡單說明】 本發明的前述與其他目的、特徵、和優點可從具體實例 的詳細描述而更輕易地了解,該具體實例引用了下列圖 式0 圖1顯示記憶體系統的一種以前技術實施例。 95055.doc -13 - 1252393 圖2顯+尸 ^、展頻時脈產生器的一種以前技術實施例。 圖3暴畐- μ ♦π不與時脈產生器關聯之能量脈衝的信號圖。 圖4蒸盲- 士 Μ、、不根據本發明之記憶體系統的一種實施例。 圖5昌盲; ·、、、…、使用根據本發明之展頻時脈產生器的記憶體系 統之〜種實施例。 Θ .、、、員示使用根據本發明之展頻時脈產生器的記憶體系 統之—種替代實施例。 圖7頭不根據本發明之展頻時脈產生器的一種實施例。 圖8a-8b顯示根據本發明之延遲電路的替代實施例。 圖9顯示根據本發明之展頻時脈產生器的控制電路之一 種實施例。 圖10顯示根據本發明之位址產生器的一種實施例。 圖11顯示根據本發明之展頻時脈產生器的計時圖。 【主要元件符號說明】 10 時脈產生器 12 記憶體控制器 14 記憶體模組 20 計數器一序列器 22 第一負載切換電晶體 24 弟一負載切換電晶體 26, 32 電容器 28 輸入緩衝器 30 輸出緩衝器 40 固定時脈產生器 95055.doc -14- 1252393 42 展頻時脈產生 器 44a, 44b, ···,44n 電子電路裝置 50 控制電路 52 可編程延遲電 路 54 暫存器電路 60 輸入緩衝器 62a, 62b, 62c PMOS電容器 64a, 64b, 64c NMOS電容器 66 輸出反相器 70 輸入反相緩衝 器 72a, 72b, 72c 存取電晶體 74a, 74b, 74c 電容器 76 輸出反相緩衝 器 80 分頻器 82 位址產生器 90 時脈產生器 92 記憶體控制器 94 記憶體模組 100 時脈源 102 鎖相環路 900 固定頻率時脈 902 鎖相環路 904 展頻時脈產生 器 95055.doc -15-95055.doc 1252393 The control code can represent the weight of the delay, regardless of which of the two cases. The buffer circuit can be omitted as a control code. However, if the shovel is used, the station will use less address. The first-order modulation function can increase the delay. The register circuit can be reprogrammed. "The mad and new register." The circuit takes a new temporary n circuit that can have different values for the predetermined address. μ Suppose that the delay f + 1 right I*, f π # i that is associated with the address 〇〇〇丨 is not 0. The temporary control circuit with the above control code is removed or reprogrammed because the temporary circuit is separated from the wire generator. The register circuit can be any type of non-volatile memory, such as electronically erasable. Programming read-only memory ((10) ecally programmable read only memory eeprom), fuse array, electronically programmable read-only memory (EPR0M), read-only memory (ROM), etc. The invention has been exemplified and described above The principles of the embodiments can be readily understood by those skilled in the art that the embodiments can be modified in structure and details without departing from the principles. Patent application scope BRIEF DESCRIPTION OF THE DRAWINGS [0009] The foregoing and other objects, features, and advantages of the present invention will be more readily understood from the Detailed Description of Description A prior art embodiment of a volume system. 95055.doc -13 - 1252393 Figure 2 shows a prior art embodiment of a sinusoidal, spread-spectrum clock generator. Figure 3 畐 畐 - μ ♦ π not with the clock generator Figure 4 is a diagram of the energy pulse of the associated energy. Figure 4: An example of a memory system not according to the present invention. Figure 5 is a blind; (,,, ..., using a spread spectrum clock according to the present invention) An embodiment of the memory system of the generator. An alternative embodiment of the memory system using the spread spectrum clock generator according to the present invention is shown. Figure 7 is not an exhibition according to the present invention. An embodiment of a frequency clock generator. Figures 8a-8b show an alternate embodiment of a delay circuit in accordance with the present invention.Figure 9 shows an embodiment of a control circuit for a spread spectrum clock generator in accordance with the present invention. According to the invention An embodiment of an address generator. Figure 11 shows a timing diagram of a spread spectrum clock generator according to the present invention. [Key element symbol description] 10 clock generator 12 memory controller 14 memory module 20 counter-sequence The first load switching transistor 24 is a load switching transistor 26, 32 capacitor 28 input buffer 30 output buffer 40 fixed clock generator 95055.doc -14- 1252393 42 spread spectrum clock generator 44a, 44b , ···, 44n electronic circuit device 50 control circuit 52 programmable delay circuit 54 register circuit 60 input buffer 62a, 62b, 62c PMOS capacitor 64a, 64b, 64c NMOS capacitor 66 output inverter 70 input inverting buffer 72a, 72b, 72c access transistor 74a, 74b, 74c capacitor 76 output inverting buffer 80 frequency divider 82 address generator 90 clock generator 92 memory controller 94 memory module 100 clock source 102 phase-locked loop 900 fixed frequency clock 902 phase-locked loop 904 spread spectrum clock production Health 95055.doc -15-

Claims (1)

1252%备123833號專利申請案 / 十、申请專利範圍: 或圖式所揭默_ 1. 一種展頻時脈產生器,包括: 暫存為電路,用以儲存對應於一預定 ^避之控制 l遲私路’用以接收具有預定數目個位元之控制碼並 二固定時脈信號延遲-段時間,錢料間由該 馬決定。 2·如申請專利範圍第丨項之時脈產生器,進—步包括一杵 制電路’該控制電路接收固定時脈信號以產生 電路之定址信號。 ° 3. 如申請專利範圍第2項之時脈產生器,其中該暫存器電 路包括非揮發記憶體。 4. 2請專利範圍第2項之時脈產生器,其中該控制電路 匕括一接收固定時脈作声 1仏唬之刀頻斋,及一接收該分頻器 t輪出時脈信號的位址產生器。 5如申請專利範圍第4項之時脈產峰55 # 哭A 只心于脈屋生态,其中該位址產生 6 ° C括一計數器或一移位暫存器。 6· 2請專利範圍第1項之時脈產生器,其中該延遲電路 件。-將固定時脈信號反相之反相器與一系列的延遲元 汝申睛專利範圍第6 進— 貝炙吋脈產生态,其中該延遲電路 容/0括電乳連接至該反相器之輪出的金氧半導體電 8· 每;電容器接收控制碼 月,轭圍第7項之時脈產生器,其中該電容器包 1252393 9. 10. 11. 12. 13. 14. 15. 16. 17. 括由pm〇s電容器*Νμ〇 σ 、, 六哭 電谷為構成之群組中的一種電 如申請專利範圍第7項 、之時脈產生态,其中該等電容器 包括一 NMOS電容器 做第二負載。 田做弟一負載,與一PMOS電容器當 如申請專利範圍第6項 包括一存取電晶體與_ 器。 之時脈產生器,其中之延遲元件 電氣連接至控制碼各位元之電容 如申請專利範圍第7項之時脈產生器 電容器有相同之電容值。 如申請專利範圍第7項之時脈產生器 電容器的電容值彼此不同。 如申請專利範圍第1項之時脈產生器 一步包括一二進位加權值。 如申請專利範圍第1項之時脈產生器 一步包括一等加權值。 ,其中各位元之各 ’其中各位元之各 •其中該控制碼進 其中該控制碼進 如申請專利範圍第丨項之時脈產生器, -步包括-延遲時ρθ1單位之重複次數表 如申請專利範圍第15項之時脈產生器, 位隨時脈信號之輸入頻率而變。 一種展頻時脈產生器,包括: 其中該控制碼進 示法。 其中延遲時間單 暫存器電路,用以儲存控制碼,每個控制碼對應於 預定延遲; &quot;' 位址產生器 該位址產生器接收一 固定時脈信號以依 95055-941012.doc 1252393 序定址該暫存器電路;及 延遲電路,用以接收控制碼並將該固定時脈信號延遲 一段延遲時間,該延遲時間對應於該控制碼。 18. 如申請專利範圍第17項之展頻時脈產生器,其中該暫存 器電路包括從一群組中選擇出來的一者,該群組包括: 保險、、、糸陣列、唯項記憶體、電子可消除可編程唯讀記憶 體、及可電子編程唯讀記憶體。 19. 如申請專利範圍第17項之展頻時脈產生器,其中該位址 產生器包括計數器或移位暫存器。 20· —種展頻時脈產生器,包括·· 暫存器電路,用以儲存控制碼,每個控制碼對應於一 預定延遲; 位址產生态’用以依序定址該暫存器電路;及 延遲電路,用以接收控制碼並將一固定時脈信號延遲 一段延遲時間,該延遲時間對應於該控制碼; 刀頻时11亥为頻器接收該固定時脈信號並將一第一時 脈#號施加給該位址產生器。 21. ^申請專利範圍第2G項之展頻時脈產生器,其中該第一 時脈信號之頻率低於該固定時脈信號之頻率。 22·如中請專利範圍第2()項之展頻時脈產生器,其中該控制 碼包括對應於不同延遲時段之二進位加權值。 23. 如申請專利範圍第2()項之展頻時脈產生器,其中該控制 馬進乂包括對應於不同延遲時段之等加權值。 24. —種產±一展頻時脈之方法,該丨法包括: 95055-941012.doc 12523931252% of the patent application No. 123833 / X. The scope of the patent application: or the disclosure of the schema _ 1. A spread spectrum clock generator, comprising: a temporary storage circuit for storing a control corresponding to a predetermined control l The late private road 'is used to receive the control code with a predetermined number of bits and the second fixed clock signal is delayed - the time period is determined by the horse. 2. The clock generator of claim </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; ° 3. The clock generator of claim 2, wherein the register circuit comprises non-volatile memory. 4. 2 The clock generator of the second item of the patent scope, wherein the control circuit includes a knife frequency receiving sound that receives a fixed clock pulse, and a clock signal that receives the clock signal of the frequency divider t. Address generator. 5 If the application for patent scope 4th, the pulse peak 55 # 哭 A is only interested in the vein house ecology, where the address produces a 6 ° C including a counter or a shift register. 6.2 The clock generator of the first item of the patent range, wherein the delay circuit. - an inverter that inverts the fixed clock signal with a series of delay elements, the patented range of the sixth-in-the-be-be generated state, wherein the delay circuit capacitor/0 is connected to the inverter The MOS semiconductor power 8· each; the capacitor receives the control code month, the yoke of the seventh clock generator, wherein the capacitor package 1252393 9. 10. 11. 12. 13. 14. 15. 16. 17. Included in the group consisting of pm〇s capacitors*Νμ〇σ, and six crying valleys, such as the clock generation state of claim 7, wherein the capacitors include an NMOS capacitor Second load. Tian is a loader, with a PMOS capacitor as in the scope of claim 6 includes an access transistor and _ device. The clock generator, wherein the delay element is electrically connected to the capacitor of the control code element. The clock generator capacitor of the seventh aspect of the patent application has the same capacitance value. The capacitance values of the clock generator capacitors as in claim 7 of the patent application range are different from each other. The clock generator as in the first application of the patent scope includes a binary weighting value. The clock generator as in item 1 of the patent application scope includes a first-order weighting value. , in which each of the elements of each of the 'members of each element', the control code into which the control code enters the clock generator as in the scope of the patent application, - step includes - the number of repetitions of the unit of ρθ1 delay The clock generator of the fifteenth patent range changes the input frequency of the pulse signal. A spread spectrum clock generator includes: wherein the control code is displayed. The delay time single register circuit is configured to store the control code, and each control code corresponds to a predetermined delay; &quot;' address generator, the address generator receives a fixed clock signal according to 95055-941012.doc 1252393 And sequentially addressing the register circuit; and delay circuit for receiving the control code and delaying the fixed clock signal by a delay time, the delay time corresponding to the control code. 18. The spread spectrum clock generator of claim 17, wherein the register circuit comprises one selected from the group consisting of: insurance, , array, and memory Body and electronics eliminate programmable read-only memory and electronically programmable read-only memory. 19. The spread spectrum clock generator of claim 17, wherein the address generator comprises a counter or a shift register. 20· a spread spectrum clock generator, comprising: a register circuit for storing control codes, each control code corresponding to a predetermined delay; an address generation state 'for sequentially addressing the register circuit And a delay circuit for receiving the control code and delaying a fixed clock signal by a delay time corresponding to the control code; the cutting frequency is 11 Hz for receiving the fixed clock signal and a first The clock # number is applied to the address generator. 21. ^ The spread spectrum clock generator of claim 2G, wherein the frequency of the first clock signal is lower than the frequency of the fixed clock signal. 22. The spread spectrum clock generator of item 2 () of the patent scope, wherein the control code comprises a binary carry weight value corresponding to a different delay period. 23. The spread spectrum clock generator of claim 2, wherein the control comprises a weighting value corresponding to a different delay period. 24. - Method of producing ± one spread frequency clock, the method including: 95055-941012.doc 1252393 定址一暫存器電路存取控制碼; 以該控制碼控制一延遲電 塔以使母個控制碼對應於 一不同程度的延遲;及 將可餐的延遲時間施加給一 因疋日守脈^號,從而產生 一頻率隨時間而改變的展頻時脈信號。 25.如申請專利範圍第24之方 /、甲Θ疋址一暫存器電路 的步驟進一步包括·· 頻率較該固定 對一固定時脈信號施加一分頻以產生一 時脈信號之頻率為低的時脈信號;及 提供該較低頻率的時脈給一位址產生器;及 產生位址,該位址被用來以序列方式定址該暫存器電 26.如中請專利範圍第24項之方法,其中該控制—延遲電路 的步驟進一步包括: 在延遲電路處接收一控制碼;及 活化延遲電路内對應於控制碼中非零位元的元件。 27·如申請專利範圍第24項之方法,其中以控制碼控制延遲 電路以使每個控制碼對應於一不同程度的延遲,其中不 同程度的延遲是一延遲程度單位的倍數。 28. —種產生一展頻時脈之記憶體系統,包括: 記憶體控制器; 記憶體模組,包括: 展頻時脈產生器,包括·· 控制電路,該控制電路接收一固定時脈信號並輸出一 95055-941012.doc 125239:! 聲 正替換頁i 位址信號; 可編程延遲電路,該可編程延遲電路接收該固6 士 信號並輸出一第一時脈信號,該第一時脈信號有::脈 一控制碼的可變延遲時段;及 · α於 暫存器電路,該暫存器電路接收該位址信號以儲存 編程延遲電路之碼並輸出控制碼;及 w 複數個記憶體裝置。 29 一種產生一展頻時脈之記憶體系統,包括: 接收展頻日$脈#號之記憶體控制器; 時脈產生器,包括: 時脈源’該時脈源輸出—具有怪定時脈週期 脈信號; ^ —鎖:環路’該鎖相環路接收該第一時脈信號並輸出一 弟一時脈信號,該第二時脈信號之頻率高於該第-時脈 信號之頻率; 于脈 展頻時脈產生哭,# p 本 一、, 时该展頻時脈產生器接收該第二時脈 乜唬亚輸出展頻時脈信號,且包括·· 控制電路,該控制電路接收該第二時脈信號並輸出一 位址信號; 可編程延遲電路, 4可編程延遲電路接收該第二時脈 k 5虎亚輸出該展頻瞎 、、化唬,該展頻時脈信號有對應於 一控制碼之可變時脈週期;及 暫存裔電路,該射六σσ 可編程延遲電路的,路接收該位址信號以儲存該 之遲電路的碼並輸出該控制碼;及 95055-94I0I2.doc 1252393 記憶體模組,該記憶體模組接收該展頻時脈信號且包 括複數個記憶體裝置。 95055-941012.doc 1252393 第093123833號專利申請案 中文圖式替換頁(94年10月) a8aAddressing a register circuit access control code; controlling a delay tower with the control code to cause the parent control code to correspond to a different degree of delay; and applying the delay time of the meal to a day due to the pulse Number, thereby producing a spread-spectrum clock signal whose frequency changes with time. 25. The method of claim 24, wherein the step of registering a register circuit further comprises: • frequency is lower than a frequency applied by the fixed pair of fixed clock signals to generate a clock signal. a clock signal; and providing the lower frequency clock to the address generator; and generating an address, the address is used to address the register memory in a serial manner. 26 The method of claim, wherein the step of the control-delay circuit further comprises: receiving a control code at the delay circuit; and activating an element in the delay circuit corresponding to a non-zero bit in the control code. 27. The method of claim 24, wherein the delay circuit is controlled by a control code such that each control code corresponds to a different degree of delay, wherein the different degrees of delay are a multiple of a unit of delay. 28. A memory system for generating a spread spectrum clock, comprising: a memory controller; a memory module comprising: a spread spectrum clock generator, comprising: a control circuit, the control circuit receiving a fixed clock The signal outputs a 95055-941012.doc 125239:! The sound is replacing the page i address signal; the programmable delay circuit receives the solid signal and outputs a first clock signal, the first time The pulse signal has: a variable delay period of the pulse-control code; and · α is in the register circuit, the register circuit receives the address signal to store the code of the programming delay circuit and outputs the control code; and w plural Memory device. 29 A memory system for generating a spread spectrum clock, comprising: a memory controller that receives a spread frequency day #脉#; a clock generator, comprising: a clock source 'the clock source output—having a strange timing pulse a periodic pulse signal; ^ - lock: loop 'the phase locked loop receives the first clock signal and outputs a clock-one clock signal, the frequency of the second clock signal being higher than the frequency of the first-clock signal; When the pulse spread frequency clock generates a cry, #p本一,, the spread spectrum clock generator receives the second clock pulse outputting the spread spectrum clock signal, and includes a control circuit, and the control circuit receives The second clock signal outputs an address signal; a programmable delay circuit, wherein the programmable delay circuit receives the second clock, and the boosted frequency signal is Corresponding to a variable clock period of a control code; and a temporary circuit of the sixth σσ programmable delay circuit, the path receives the address signal to store the code of the late circuit and output the control code; and 95055 -94I0I2.doc 1252393 Memory module, Memory module receives the clock signal and the exhibition includes a plurality of memory devices when frequency. 95055-941012.doc 1252393 Patent Application No. 093123833 Chinese Graphic Replacement Page (October 94) a8a 95055.doc -4-95055.doc -4-
TW093123833A 2003-09-08 2004-08-09 A spread spectrum clock generator and method and system of generating a spread spectrum clock TWI252393B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030062863A KR100541548B1 (en) 2003-09-08 2003-09-08 Spread spectrum clock generator and method thereof
US10/837,391 US7573932B2 (en) 2003-09-08 2004-04-29 Spread spectrum clock generator

Publications (2)

Publication Number Publication Date
TW200516369A TW200516369A (en) 2005-05-16
TWI252393B true TWI252393B (en) 2006-04-01

Family

ID=34277806

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093123833A TWI252393B (en) 2003-09-08 2004-08-09 A spread spectrum clock generator and method and system of generating a spread spectrum clock

Country Status (4)

Country Link
JP (1) JP2005085273A (en)
CN (1) CN1327612C (en)
DE (1) DE102004044099B4 (en)
TW (1) TWI252393B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712527B1 (en) 2005-08-18 2007-04-27 삼성전자주식회사 Spread spectrum clock generator reducing jitter problem
EP1762862A1 (en) * 2005-09-09 2007-03-14 IEE INTERNATIONAL ELECTRONICS &amp; ENGINEERING S.A. Method and device for 3D imaging
KR100856123B1 (en) * 2006-03-20 2008-09-03 삼성전자주식회사 Data processing apparatus and method for reducing electromagnetic interference emission
CN101131873B (en) * 2006-08-25 2010-05-12 瑞昱半导体股份有限公司 Storing card access control chip with spread spectrum clock
CN101257305B (en) * 2007-02-26 2010-12-08 明基电通股份有限公司 Method and apparatus for reducing electromagnetic interference
US20080315927A1 (en) * 2007-06-11 2008-12-25 Hynix Semiconductor Inc. Frequency adjusting apparatus and dll circuit including the same
CN101867356B (en) * 2009-04-15 2012-07-18 瑞鼎科技股份有限公司 Spread spectrum clock generating circuit with power-saving control
KR101145784B1 (en) * 2010-10-11 2012-05-17 에스케이하이닉스 주식회사 Semiconductor memory device and memory system having the same
JP2013012917A (en) * 2011-06-29 2013-01-17 Fujitsu Semiconductor Ltd Clock generating circuit, clock generation method, and semiconductor integrated circuit
CN105656455A (en) * 2015-12-30 2016-06-08 深圳市韬略科技有限公司 Integrated package structure for generating low electromagnetic interference clock signal
CN106205535B (en) * 2016-08-30 2019-02-22 深圳市华星光电技术有限公司 A method of reducing liquid crystal display device data-signal electromagnetic interference
US10594309B2 (en) * 2018-07-02 2020-03-17 Apple Inc. Phase modulation systems and methods
CN109039319B (en) * 2018-08-13 2022-05-31 中科芯集成电路有限公司 Anti-interference capacitive touch key controller and implementation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69129008T2 (en) * 1990-07-02 1998-08-20 Varian Associates X-RAY RAY THERAPY SIMULATOR
US5631920A (en) * 1993-11-29 1997-05-20 Lexmark International, Inc. Spread spectrum clock generator
US7295594B1 (en) * 1997-12-31 2007-11-13 Schleifring Und Apparatebau Gmbh Device for low-interfernce signal transmission
US6351485B1 (en) * 1998-09-08 2002-02-26 Fairchild Semiconductor Corporation Spread spectrum modulation technique for frequency synthesizers
US6518813B1 (en) * 1999-01-29 2003-02-11 Seiko Epson Corporation Clock generating circuit and semiconductor integrated circuit using the same
US6292507B1 (en) * 1999-09-01 2001-09-18 Lexmark International, Inc. Method and apparatus for compensating a spread spectrum clock generator
DE60012299T2 (en) * 2000-03-20 2005-06-30 Motorola, Inc., Schaumburg Adjustable spectral dispersion clock generator and method therefor
US6501307B1 (en) * 2001-11-12 2002-12-31 Pericom Semiconductor Corp. Spread-spectrum clock buffer/driver that modulates clock period by switching loads

Also Published As

Publication number Publication date
CN1599246A (en) 2005-03-23
DE102004044099B4 (en) 2011-03-10
DE102004044099A1 (en) 2005-04-07
TW200516369A (en) 2005-05-16
JP2005085273A (en) 2005-03-31
CN1327612C (en) 2007-07-18

Similar Documents

Publication Publication Date Title
TWI252393B (en) A spread spectrum clock generator and method and system of generating a spread spectrum clock
US7969802B2 (en) Apparatus and method of generating output enable signal for semiconductor memory apparatus
US6212127B1 (en) Semiconductor device and timing control circuit
US9735787B2 (en) Frequency synthesizer with dynamic phase and pulse-width control
US7409005B2 (en) High speed data transmitter and transmitting method thereof
CN101867357B (en) Circuit for changing frequency of a signal and frequency change method thereof
TWI320880B (en) Spread spectrum clock generating apparatus
US8023553B2 (en) Circuits for generating delayed high frequency clock signals used in spread-spectrum clocking
US6259283B1 (en) Clock doubler circuit and method
JP3335537B2 (en) Semiconductor integrated circuit
JP2004242317A (en) Frequency multiplier and multiplication method for adjusting duty cycle of clock
US20090273382A1 (en) Circuit and method for correcting duty cycle
US7750713B2 (en) Spread spectrum clock generator
KR100319499B1 (en) Method and apparatus for controlling clock signals
US7573932B2 (en) Spread spectrum clock generator
US20070185670A1 (en) Methods of Measuring Frequencies Including Charging Electrical Circuits
CN103955256A (en) Clock frequency modulation method and clock frequency modulation device
US6967512B2 (en) Multiphase-clock processing circuit and clock multiplying circuit
US6707399B1 (en) Data realignment techniques for serial-to-parallel conversion
US20230386547A1 (en) Refresh address generation circuit
TW202347331A (en) Refresh address generation circuit
WO2002069495A2 (en) Circuit and method for generating a varying frequency clock signal
JP4771961B2 (en) Synchronous storage device and control method thereof
CN114629468B (en) Pulse width adjustable pulse voltage generating device
US6182234B1 (en) Clock control circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees