TWI251841B - Magnetic nanoparticles, method for producing the same, and methods for separating and delivering substances by using the same - Google Patents

Magnetic nanoparticles, method for producing the same, and methods for separating and delivering substances by using the same Download PDF

Info

Publication number
TWI251841B
TWI251841B TW93132221A TW93132221A TWI251841B TW I251841 B TWI251841 B TW I251841B TW 93132221 A TW93132221 A TW 93132221A TW 93132221 A TW93132221 A TW 93132221A TW I251841 B TWI251841 B TW I251841B
Authority
TW
Taiwan
Prior art keywords
magnetic
glycan
coated
magnetic nanoparticle
carboxylated
Prior art date
Application number
TW93132221A
Other languages
Chinese (zh)
Other versions
TW200614283A (en
Inventor
Dong-Hwang Chen
Yang-Chuang Chang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW93132221A priority Critical patent/TWI251841B/en
Application granted granted Critical
Publication of TWI251841B publication Critical patent/TWI251841B/en
Publication of TW200614283A publication Critical patent/TW200614283A/en

Links

Abstract

Magnetic nanoparticles and a method for producing the same are disclosed. A carboxylated polysaccharide with various functions such as chelating and ion exchange is covalently bound on the surfaces of magnetic nanoparticles. The polysaccharide-bound magnetic nanoparticles are highly stable, well dispersed, and have many advantages of high adsorption capacity, fast adsorption rate and easy magnetically manipulation. Hence, the polysaccharide-bound magnetic nanoparticles are applied to adsorb many ionic substances, and further act as an adsorbent for wastewater treatment or biochemical separation, a carrier for drugs or gene site-directed delivery, and a magnetic resonance imaging (MRI) contrast agent.

Description

1251841 先、發明說明 【發明所屬之技術領域】 本發明係有關於一種磁性奈米微粒及其製造方法,特別 是有關於聚醣被覆的磁性奈米微粒及其製造方法與利用磁 性奈米載體分離及輸送物質之方法。 【先前技術】 磁性奈米粒子已廣泛地應用在高密度資料儲存、磁性流 體、核磁共振造影之顯影劑、分離程序和生物醫學等用途 上。在磁性奈米粒子表面以天然或合成的高分子修飾,除了 有助於磁性粒子的分散性與穩定性外,也可以創造出兼具磁 性與高分子功能性的複合奈米粒子。幾丁聚醣(chitosan)為 天然生物高分子,可與多價之重金屬離子螯合,亦可藉離子 又換吸附陰離子物質。除了一般的吸附分離外,幾丁聚醣又 可與藥物、酵素、蛋白質' DNA等形成錯合物,在生醫上 亦頗具應用潛力。 本田等人(H· Honda etal_)在1 998年於醱酵生物工程 7第86卷第191頁中,揭露在共沉法製造氧化鐵奈米粒 程序中加人幾丁聚醣,並利用連接劑與架橋劑將氧化鐵太 ,子與幾丁聚醣結合在一起,以製得幾丁聚聽被覆的磁: 然而,因架橋反應或物理吸附會導致微粒的凝集或不 ^ ’故所得複合粒子之粒徑大於100 |米(nm),甚至超 〇〇〇奈米’無法得到粒徑小於100奈米又單分 驗、氧化鐵複合奈米粒子。 、 1251841 本案發明人於本國專利申請號第9 2 1 〇 8 1 7 8號中,揭露 將聚丙烯酸共價鍵結於氧化鐵磁性奈米粒子表面,生產出陽 離子型磁性奈米吸附劑,具有吸附容量大、吸附速率快、及 磁〖生可插控的優點,但此產品對陰離子物質及多價重金屬離 子並不適用。 簡吕之,以往幾丁聚醣或其複合體粒子應用時多為微米 或次微米級,雖然也可以微乳化法製成粒徑數十奈米的粒 子,但不易分離純化。 緣此,貫有必要開發一種磁性奈米微粒及其製造方法, 以克服習知製程技術粒徑較大、微粒凝集或不穩定、不易分 離純化以及適用範圍受限等問題。 【發明内容】 本發明的目的之一就是揭露一種磁性奈米微粒及其製 造方法,其係將具有螯合、離子交換等多種功能之羧基化聚 醣共價鍵結於磁性奈米微粒之表面。此聚醣被覆的磁性奈来 微粒之穩定性高且分散性佳,並具有螯合、離子交換等多種 功能,因此不僅可吸附多種離子型物質,例如金屬陽離子、 二離子里物貝、樂物分子或生物分子,更可應用於廢水處理 < 離之吸附劑、藥物或基因定位傳輸(Slte-DlrectedBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic nanoparticle and a method for producing the same, and particularly to a nanoparticle coated with a nanoparticle and a method for producing the same, which are separated from a magnetic nanocarrier. And methods of transporting substances. [Prior Art] Magnetic nanoparticles have been widely used in high-density data storage, magnetic fluids, NMR imaging developers, separation procedures, and biomedical applications. Modification of the surface of the magnetic nanoparticles with natural or synthetic polymers not only contributes to the dispersibility and stability of the magnetic particles, but also creates composite nanoparticles having both magnetic and polymer functionality. Chitosan is a natural biopolymer that can chelate with multivalent heavy metal ions, and can also exchange anions with ions. In addition to the general adsorption separation, chitosan can form a complex with drugs, enzymes, protein 'DNA, etc., and has potential application in biomedicine. Honda H. et al. (H. Honda et al.) in 1986, Fermentation Bioengineering, Vol. 86, p. 191, discloses the addition of chitosan to the process of co-precipitation of iron oxide nanoparticles and the use of a linker. And the bridging agent combines the iron oxide, the chitosan and the chitosan to produce a chitin-coated magnetic: However, the bridging reaction or the physical adsorption may cause the agglomeration of the particles or the composite particles obtained. The particle size is larger than 100 | m (nm), and even the super-nano-negative particle size is less than 100 nm and the single-spectrum, iron oxide composite nanoparticle can not be obtained. 1251841 The inventor of the present invention discloses that a polyacrylic acid is covalently bonded to the surface of iron oxide magnetic nanoparticles to produce a cationic magnetic nano adsorbent, which has a covalent bond of polyacrylic acid to the surface of the patent application No. 9 2 1 〇 8 1 8 8 The adsorption capacity is large, the adsorption rate is fast, and the magnetic can be inserted and controlled, but this product is not suitable for anionic substances and multivalent heavy metal ions. In the past, the chitosan or its composite particles were mostly micron or submicron. Although microparticles could be used to make particles with a particle size of several tens of nanometers, it was difficult to separate and purify. Therefore, it is necessary to develop a magnetic nanoparticle and a manufacturing method thereof to overcome the problems of large particle size, agglomeration or instability of particles, difficulty in separation and purification, and limited application range. SUMMARY OF THE INVENTION One object of the present invention is to disclose a magnetic nanoparticle and a method for producing the same, which are characterized in that a carboxylated glycan having various functions such as chelation and ion exchange is covalently bonded to the surface of magnetic nanoparticle. . The nano-coated magnetic nano-particles have high stability and good dispersibility, and have various functions such as chelation and ion exchange, so that not only various ionic substances such as metal cations, diionic ribs, and music can be adsorbed. Molecular or biomolecules, more applicable to wastewater treatment & sorbent, drug or gene mapping transmission (Slte-Dlrected

DellVery)之載體、以及核磁共振造影(Magnetic ReSOnance Image ; MRI)之顯影劑等。 μ ,根據本&明上返之目的,提出一種聚醣被覆的磁性奈米 U粒此I醣被覆的磁性奈米微粒係於磁性奈米微粒之表面 1251841 共價鍵結羧基化聚醣,其中磁性奈米微粒之材質為四氧化三 鐵(^3〇4) ’而羧基化聚醣為羧基化幾丁聚醣(CMt〇san)或其 何生物,且其中羧基化幾丁聚醣之衍生物可例如羧基化幾丁 質(Chltln) ’用以吸附離子型物質,例如金 子型物質、藥物分子或生物分子。 離 ,依…、本發明一較佳實施例,上述聚醣被覆之磁性奈米微 粒之粒徑可例如介於1奈米i 10〇奈米之間,然以介於10 奈米至30奈米之間為較佳。 根據本發明上述之目的,另提出一種聚醣被覆之磁性夺 綠粒之製造方法。首先,形成磁性奈米微粒。此磁性奈米 U粒可利用化學共沉法或其他方式,自含有氯化鐵與氯化亞 鐵之含鐵混合溶液中,製得四氧化三鐵(Fe3Q4)之磁性奈米 微粒。然後,藉由碳二醯胺活化,使羧基化聚醣共價鍵:於 磁性奈米微粒之表面。此缓基化聚醋為叛基化幾丁聚聽或其 衍生物中叛基化幾丁聚醣之冑生物可例如缓基化幾^ ^據本發明上述之目的,又提出—種利用聚酿被覆的磁 2不未微粒分離離子型物質的方法。首先,使含有離子型物 質之極性溶液通過聚醣被覆的磁性奈米微粒,其中此聚酿被 覆的磁性奈米微粒係於磁性奈米微粒之表面共價鍵結羧基 化聚酿,用以吸附上述之離子型物質。接著,施加磁場於二 醣被设的磁性奈米微粒,藉以分離出吸附離子型物質之 被覆的磁性奈米微粒。 + 根據本發明上述之目的’再提出一種利用聚醣被覆的磁 1251841 性奈米載體輸送藥物分子或生物分子之方法。首先,使含有 樂物分子及/或生物分子之極性溶液通過聚醣被覆的磁性奈 米微粒,其中聚醣被覆的磁性奈米微粒係於磁性奈米微粒之 表面共價鍵結羧基化聚醣,且此羧基化聚醣為羧基化幾丁聚 醣或其衍生物,用以吸附藥物分子及/或該生物分子。然後, 施加磁場於聚醣被覆的磁性奈米微粒,藉以於體内(in 或體外(In Vltro)輸送吸附藥物分子及/或生物分子之聚醣被 覆的磁性奈米微粒至預定位置。 應用上述聚醣被覆的磁性奈米微粒,由於不僅克服習知 技㈣徑較大之缺點,且穩定性高及分散性佳,更具有吸附 容量高、吸附速率快、又可利用磁性操控等優點。因此,本 發明之聚醣被覆的磁性奈米微粒可應用於廢水處理或生化 分離之吸附劑、藥物或基因定位傳輸⑶㈣⑽―〇心㈣ 之載體及核磁共振之顯影劑等。 【實施方式】 本發明之磁性奈米微粒及其製造方法,係將具有整合 離子交㈣多種功能之羧基化㈣共價鍵結制性奈米德 =之表面。此聚酷被覆的磁性奈米微粒之穩定性高且分散拍 錄、、、有螯σ @子父換等多種功能,因此可用於吸附多 ,:子型物質,例如金屬陽離子、陰離子型物質、藥物分号 =物分子。以下詳細說明本發明之磁性奈米微粒及其製缝 首先’可利用化學共沉法或其他方式,自含有氯化鐵與 1251841 氯化亞鐵之含鐵混合 ''/ /久α羊匕化三鐵( 性奈米微粒。以化學共沉法為例, 3 4之石、 」无^供含鐵混人咬、、右, ,、中含鐵混合溶液中可例如含有莫耳比值係介於二’ 之間的氣化鐵與氯化亞鐵,然而上 · ·5 虻社拉一各 这之莫耳比值以約2.0為 車广接者’在室温下利用驗液’例如29.6%之氨水,調整 。上述含鐵混合溶液之酸鹼值(ρΗ)達8至1〇之間後 °C至約崎之間恆溫熱處理上述之含鐵混合溶液^至⑼分 鐘,以共沉澱成磁性奈米微粒,其中所得之磁性奈米微粒: 材^為四氧化三鐵(Fe3〇4)。然後,可利用例如去離子水將 所侍之磁性奈米微粒清洗數次,再經乾燥後即可備用。 接下來,進行聚_之魏基化製程。首先,進行膨潤及驗 化步驟,係將聚醣,例如幾丁聚醣或幾丁質,加入鹼性混人 ^ 55^C^ 65r^rBm,t 0.5 述鹼性混合溶液係混合有機溶劑與水後,加入例如氫氧化鈉 而形成鹼性混合溶液。在本發明的一個例子中,有機溶劑可 為異丙醇,而異丙醇與水可利用例如4之體積比值予以混 合。然後,進行羧基化步驟,係將含氯醋酸鈉之有機溶劑, 例如含氯醋酸鈉之異丙醇,逐滴加入含聚醣之鹼性混合溶劑 後,於55 c至65 c之間進行3小時至5小時,以於聚醣上 形成羧基及/或羧甲基,而獲得羧基化聚醣,例如羧基化幾 丁聚醣(Carboxymethylated Chitosan ; CMCH)或其衍生物如 竣基化幾丁質。在羧基化步驟後,可利用約7〇體積百分比 之酒精中止羧基化步驟。隨後,利用約99體積百分比之酒 精去除護基化聚聽之鹽分及水分。爾後,於約5〇艺下乾燥 1251841 幾基化聚醣,以備後續製程使用。 之後’將磁性奈米微粒、碳二酿胺(Carb〇diimide)以及 羧基化聚醣依序加入緩衝溶液中,此緩衝溶液可例如磷酸緩 衝〉谷液(Phosphate-Buffered Saline ; PBS),其中 PBS 含有 0.003M,其酸鹼值係介於6至7之間,藉由碳二醯胺活化 上述羧基化聚醣之魏基(―COOH)與磁性奈米微粒表面之氨 基(一 NH2),使羧基化聚醣得以共價鍵結於磁性奈米微粒之 表面。一般而言,為使磁性奈米微粒之表面佈滿羧基化聚 _因此在共彳貝鍵結之步驟中,磁性奈米載體與魏基化聚醣 之重量比值以例如介於10至1〇〇之間為較佳。隨後,施加 磁場,例如以磁力約6000高斯之磁鐵,以進行固液分離之 y V藉此獲得聚醣被覆的磁性奈米微粒。在本發明的一個 例子中,所得到之聚醣被覆的磁性奈米微粒的粒徑介於i 奈米至100奈米之間,然以介於10奈米至3〇奈米之間為較 佳。 、值得一提的是,本發明之特徵係在於將羧基化幾丁聚醣 或其衍生物藉由碳二醯胺活化而共價鍵結於四氧化三鐵 jFe3〇4)磁性奈米微粒之表面,所得之聚醣被覆的磁性奈米 U粒不僅克服習知技術粒徑較大之缺點,而且穩定性高又分 散2佳,加上羧基化幾丁聚醣或其衍生物具有螯合、離子交 ,,多種功能,因此不僅可吸附多種離子型物質,例如金屬 3雊子陰離子型物質、樂物分子或生物分子,更可應用於 尾X處理或生化分離之吸附劑、藥物或基因定位傳輸之載 體及核磁共振之顯影劑等。以下列舉數個較佳實施例並配 10 1251841 合第1圖至第9圖’藉此更詳盡闡述本發明之磁性奈米微粒 及其製造方法與其應用’然其並非用以限定本發明,因此本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 實施例一 首先,配製莫耳比值約2的氯化鐵與氯化亞鐵之水溶液 作為含鐵混合溶液,在室溫下利用29_6%之氨水滴定調整含 鐵混合溶液的酸鹼值達約10。在滴定完成後,於約8〇。匚之 恆溫下熱處理上述之含鐵混合溶液3〇分鐘,以共沉澱成四 氧化三鐵(FegO4)磁性奈米微粒。然後,利用去離子水將所 付之磁性奈米微粒清洗數次,再經乾燥後即可備用。 一接下來,先將15克之氫氧化鈉溶於8〇毫升之異丙醇與 20毫升之水混合液中,再加入3克之幾丁聚醣,於約⑼。c 下進行膨潤及驗化步驟約i小時。另外,將15克之氯醋酸 鈉溶在20毫升之異丙醇溶液中,並且逐滴加入含幾丁聚醣 之混合液中,持續在6(TC下反應4小時。加入2〇〇毫升、 70%的酒***溶液中止反應,再以99%的酒精去除鹽類與脫 水,亚於5(TC的烘箱中乾燥後,即可得到羧基化幾丁聚醣。 之後,將羧基化幾丁聚醣共價鍵結在磁性奈米微粒表 面。百先,取100毫克(mg)的磁性奈米粒子於試管中,並 加入2毫升之緩衝溶液A,其中緩衝溶液A含有0.003 M 的磷酸緩衝溶液及〇」Μ氯化鈉(NaC1),其pH值為6。將 此試官置於超音波下振盪10分鐘後,再於試管中加入〇 5 毫升之碳二醯胺(以0·025 g/ml之濃度溶於緩衝溶液A中), 旅再振盪10分鐘。隨後,在試管中加入25毫升之羧基化 11 1251841 幾丁聚醣溶液(以50 mg/ml之濃度溶於緩衝溶液A中卜於 超音波下再振盪60分鐘。爾後,利用磁力6〇〇〇高斯的磁鐵, 2固液分離的方式分離出羧基化幾丁聚醣被覆的磁性奈米 微粒’並將所得之微粒以水和酒精反覆清洗數次。 此後’利用穿透式電子顯微鏡(Transmissi〇n則“汀⑽ M1Cr〇scope; TEM)以及 χ 射線繞射(X-Ray Diff^c如 系統,針對所得之羧基化幾丁聚醣被覆的磁性奈米微粒進行 粒徑及結晶結構之分析。本發明使用χ射線繞射系統進行 磁性奈米微粒的結晶結構分析時,其掃瞄速率為每分鐘4 。,而掃目苗角度(2Θ。)範圍為20。至7〇。,並以銅革巴之l 射線測定磁性奈米微粒之結晶結構。 請參閱第1圖,其係顯示根據本發明實施例一之羧基化 幾丁聚醣被覆的磁性奈米微粒的穿透式電子顯微照片。由第 1圖得知,所得之羧基化幾丁聚醣被覆的磁性奈米微粒呈單 分散且粒徑均勻,其粒徑皆落於丨奈米至1〇〇奈米之奈米尺 度範圍内,且其平均粒徑為約1 3奈米。 其次,請參閱第2圖,其係顯示根據本發明實施例一之 羧基化幾丁聚醣被覆的磁性奈米微粒的χ射線繞射圖譜, 其中縱軸表示讀數值(Counts),橫軸則表示掃瞄角度(2 0 ),曲線201表示磁性奈米微粒,而曲線2〇3表示羧基化 幾丁聚醣被覆的磁性奈米微粒。由第2圖之結晶結構分析結 果顯示,實施例之羧基化幾丁聚醣被覆的磁性奈米微粒證實 為四氧化三鐵(Fe3〇4)結構,其六個特性峰出現在2 0。 = 3〇·1。、35.5。、43」。、53·4。、57 〇。以及 62 6。處,分 12 1251841 別代表其(220)、(311)、(400)、(422)、(5 11)以及(440)晶面。 接著,利用超導量干涉磁量儀(Superc〇nductingThe carrier of DellVery), and the developer of Magnetic Resonance Image (MRI). μ, according to the purpose of this & Ming, the proposed nano-coated magnetic nano-particles of the sugar-coated magnetic nano-particles on the surface of the magnetic nano-particles 1251841 covalently bonded carboxylated glycans, The magnetic nanoparticle is made of triiron tetroxide (^3〇4)' and the carboxylated glycan is a carboxylated chitosan (CMt〇san) or any organism thereof, and wherein the carboxylated chitosan is The derivative may, for example, carboxylate chitin (Chltln) to adsorb an ionic species such as a gold-type substance, a drug molecule or a biomolecule. According to a preferred embodiment of the present invention, the particle diameter of the above-mentioned polysaccharide-coated magnetic nanoparticle may be, for example, between 1 nanometer and 10 nanometers, and then between 10 nanometers and 30 nanometers. It is better between meters. In accordance with the above objects of the present invention, a method of producing a polysaccharide-coated magnetic granule is also provided. First, magnetic nanoparticles are formed. The magnetic nano-particles can be obtained by chemical co-precipitation or other means from the iron-containing mixed solution containing ferric chloride and ferrous chloride to prepare magnetic nanoparticles of Fe3Q4. The carboxylated glycan is then covalently bonded to the surface of the magnetic nanoparticle by activation with carbon diamine. The slow-based polyglycol is a tick-like chitosan or a derivative thereof, and the ticked glycosidic organism can be, for example, slow-activated. According to the above object of the present invention, A method in which the coated magnetic 2 is not free of particles to separate the ionic substance. First, a polar solution containing an ionic substance is passed through a polysaccharide-coated magnetic nanoparticle, wherein the coated magnetic nanoparticle is covalently bonded to a carboxylated surface of the magnetic nanoparticle for adsorption The above ionic substance. Next, a magnetic field is applied to the magnetic nanoparticles in which the disaccharide is placed, thereby separating the coated magnetic nanoparticles which adsorb the ion-type substance. + According to the above object of the present invention', a method of transporting a drug molecule or a biomolecule using a glycan-coated magnetic 1251841 nanocarrier is proposed. First, a polar solution containing a musical substance molecule and/or a biomolecule is passed through a polysaccharide-coated magnetic nanoparticle, wherein the glycan-coated magnetic nanoparticle is covalently bonded to a carboxylated glycan on the surface of the magnetic nanoparticle. And the carboxylated glycan is a carboxylated chitosan or a derivative thereof for adsorbing a drug molecule and/or the biomolecule. Then, a magnetic field is applied to the glycan-coated magnetic nanoparticles, whereby the magnetic nanoparticles coated with the adsorbed drug molecules and/or the biomolecules of the biomolecules are transported in vivo (In Vltro) to a predetermined position. The polysaccharide-coated magnetic nanoparticle not only overcomes the disadvantages of the conventional technique (4), but also has high stability and good dispersibility, and has the advantages of high adsorption capacity, fast adsorption rate, and magnetic manipulation. The polysaccharide-coated magnetic nanoparticle of the present invention can be applied to an adsorbent for treating wastewater or biochemical separation, a drug or gene-localized transport (3), (4) (10), a carrier of a core (4), a developer for nuclear magnetic resonance, and the like. The magnetic nanoparticle and the method for producing the same are the surface of the carboxylated (tetra) covalently bonded nimetide having integrated functions of the ion exchange (four). The stability of the nano-coated magnetic nanoparticle is high and Disperse recording, and, with a variety of functions such as chelation σ @子父, so it can be used for adsorption, sub-type substances, such as metal cations, anionic substances, drugs No. = molecular molecule. The following describes in detail the magnetic nanoparticle of the present invention and its seam first 'could by chemical co-precipitation method or other means, from iron-containing iron containing 1251841 ferrous chloride mixed '' / / For a long time, the α-ammonia tri-iron (negative nano-particles. Take the chemical co-precipitation method as an example, the stone of 3 4, "nothing for the iron-containing mixed bite, right, and the medium iron-containing mixed solution may, for example, contain The molar ratio is between the two's between the gasified iron and the ferrous chloride, but the upper 5 · 虻 拉 各 这 这 这 各 各 莫 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约 约' For example, 29.6% of ammonia water, adjusted. The acid-base value (ρΗ) of the above iron-containing mixed solution is between 8 and 1 后, and the above-mentioned iron-containing mixed solution is heated at a constant temperature from °C to about saki for (9) minutes to Co-precipitated into magnetic nanoparticles, wherein the obtained magnetic nanoparticle: material ^ is ferric oxide (Fe3〇4). Then, the magnetic nano particles can be washed several times with, for example, deionized water, and then After drying, it can be used for further use. Next, the process of poly-based Wei-based is carried out. First, swelling and testing are carried out. In the step of adding a polysaccharide such as chitosan or chitin to a basic mixed solution, the alkaline mixed solution is mixed with an organic solvent and water, and then added, for example, to oxidize. Sodium forms an alkaline mixed solution. In one example of the present invention, the organic solvent may be isopropanol, and isopropanol and water may be mixed using a volume ratio of, for example, 4. Then, the carboxylation step is carried out. An organic solvent of sodium chloroacetate, such as isopropanol containing sodium chloroacetate, is added dropwise to an alkaline mixed solvent containing a polysaccharide, and is carried out between 55 c and 65 c for 3 hours to 5 hours on the polysaccharide. A carboxyl group and/or a carboxymethyl group is formed to obtain a carboxylated glycan, such as Carboxymethylated Chitosan (CMCH) or a derivative thereof such as guanidinated chitin. After the carboxylation step, the carboxylation step can be stopped with about 7 volume percent alcohol. Subsequently, about 99% by volume of alcohol is used to remove the salt and moisture from the base. Thereafter, the 1251841 chitosan was dried at about 5 liters for use in subsequent processes. Then, magnetic nanoparticle, Carb〇diimide and carboxylated glycan are sequentially added to the buffer solution, such as Phosphate-Buffered Saline (PBS), wherein PBS Containing 0.003M and having a pH of between 6 and 7, the carbaryl (-COOH) of the carboxylated glycan and the amino group (mono NH2) on the surface of the magnetic nanoparticle are activated by carbon diamine. The carboxylated glycan is covalently bonded to the surface of the magnetic nanoparticle. In general, in order to make the surface of the magnetic nanoparticles full of carboxylation polymerization, the weight ratio of the magnetic nanocarrier to the deuterated glycan is, for example, between 10 and 1 in the step of co-mussel bonding. It is better between 〇. Subsequently, a magnetic field is applied, for example, a magnet having a magnetic force of about 6000 gauss to perform solid-liquid separation y V to thereby obtain glycan-coated magnetic nanoparticle. In one example of the present invention, the particle diameter of the obtained polysaccharide-coated magnetic nanoparticle is between i nanometer and 100 nanometers, and is preferably between 10 nanometers and 3 nanometers. good. It is worth mentioning that the present invention is characterized in that the carboxylated chitosan or its derivative is covalently bonded to the ferroferric oxide jFe3〇4) magnetic nanoparticle by activation of carbonic acid. On the surface, the obtained polysaccharide-coated magnetic nano-particles not only overcome the disadvantages of the prior art, but also have high stability and dispersion, and the carboxylated chitosan or its derivatives have chelation, Ion exchange, a variety of functions, therefore not only can adsorb a variety of ionic substances, such as metal 3 scorpion anionic substances, music molecules or biomolecules, but also can be applied to tail X treatment or biochemical separation of adsorbents, drugs or gene mapping Carrier for transmission, developer for nuclear magnetic resonance, and the like. Several preferred embodiments are listed below with 10 1251841 and FIGS. 1 to 9 ' to thereby explain in more detail the magnetic nanoparticle of the present invention, a method for producing the same, and its application'. However, it is not intended to limit the present invention. The scope of the invention is defined by the scope of the appended claims. Firstly, firstly, an aqueous solution of ferric chloride and ferrous chloride having a molar ratio of about 2 is prepared as an iron-containing mixed solution, and the acid-base value of the iron-containing mixed solution is adjusted to about 10 at room temperature by using 29-6% ammonia titration. . After the titration is completed, it is about 8 inches. The above iron-containing mixed solution was heat-treated at a constant temperature for 3 minutes to coprecipitate into ferric tetraoxide (FegO4) magnetic nanoparticles. Then, the magnetic nanoparticles to be treated are washed several times with deionized water, and then dried for use. Next, 15 g of sodium hydroxide was first dissolved in a mixture of 8 ml of isopropanol and 20 ml of water, and then 3 g of chitosan was added to about (9). The swelling and testing steps were carried out for about i hours. Separately, 15 g of sodium chloroacetate was dissolved in 20 ml of isopropyl alcohol solution, and dropwise added to the mixture containing chitosan, and the reaction was continued at 6 (TC for 4 hours). 2 ml ml, 70 was added. % of the aqueous alcohol solution is stopped, and then the salt is removed with 99% alcohol and dehydrated. After drying in an oven of 5 (TC), the carboxylated chitosan can be obtained. After that, the carboxylated chitosan is obtained. The valence bond is on the surface of the magnetic nanoparticle. First, take 100 mg (mg) of magnetic nanoparticles into a test tube, and add 2 ml of buffer solution A, wherein buffer solution A contains 0.003 M phosphate buffer solution and hydrazine. ΜSodium chloride (NaC1), its pH value is 6. After shaking the tester for 10 minutes under ultrasonic wave, add 5 ml of carbonic acid to the test tube (0.025 g/ml). The concentration is dissolved in buffer solution A), and the brigade is shaken for another 10 minutes. Subsequently, 25 ml of carboxylated 11 1251841 chitosan solution (dissolved in buffer solution A at a concentration of 50 mg/ml) is added to the test tube. After shaking for 60 minutes under the ultrasonic wave, then use a magnetic 6 〇〇〇 Gauss magnet, 2 solid solution The carboxylated chitosan-coated magnetic nanoparticles were separated in a separate manner and the resulting microparticles were washed several times with water and alcohol. Thereafter, using a transmission electron microscope (Transmissi〇n, "Ting (10) M1Cr〇 Scope; TEM) and χ ray diffraction (X-Ray Diff^c as system, for the analysis of the particle size and crystal structure of the obtained carboxylated chitosan-coated magnetic nanoparticles. The present invention uses χ ray diffraction When the system performs the crystal structure analysis of magnetic nanoparticles, the scanning rate is 4 per minute, while the angle of the sweeping seed (2Θ.) ranges from 20 to 7〇, and the magnetic properties are measured by the l-ray of copper. The crystal structure of the nanoparticles. Please refer to Fig. 1, which is a transmission electron micrograph showing the carboxylated chitosan-coated magnetic nanoparticles according to the embodiment of the present invention. The obtained carboxylated chitosan-coated magnetic nano-particles are monodisperse and uniform in particle size, and the particle diameters thereof fall within the nanometer scale range of 丨 nanometer to 1 〇〇 nanometer, and the average particle diameter thereof It is about 13 nm. Secondly, please refer to 2 is a ray diffraction pattern of a carboxylated chitosan-coated magnetic nanoparticle according to a first embodiment of the present invention, wherein the vertical axis represents the reading value (Counts) and the horizontal axis represents the scanning angle ( 2 0 ), curve 201 represents magnetic nanoparticle, and curve 2〇3 represents carboxylated chitosan-coated magnetic nanoparticle. The crystal structure analysis shown in Fig. 2 shows that the carboxylated chitosan of the example The sugar-coated magnetic nanoparticle was confirmed to be a ferroferric oxide (Fe3〇4) structure, and its six characteristic peaks appeared at 20. = 3〇·1, 35.5, 43”, 53·4, 57 〇. And 62 6. At 12 1251841, it does not represent its (220), (311), (400), (422), (5 11) and (440) crystal faces. Next, using a superconducting interference magnetic meter (Superc〇nducting)

Quantum Interference Device ; SQUID),針對所得之羧基化 幾丁聚醣被覆的磁性奈米微粒進行磁性分析。所使用的磁場 k - 3萬同斯至3萬咼斯,以分析上述所得微粒之飽和磁化 量(Ms)、殘留磁化量(Mr)、保磁力(Hj以及角形比 (Squareness ; Sr= Mr / Ms)等磁性特性。經由分析得知,所 知之羧基化幾丁聚醣被覆的磁性奈米微粒具有超順磁的特 性,其飽和磁化量為61·7 emu/g,殘留磁化量為〇·82 emu/g, 保磁力為8.50e,而角形比為0.013。 再者,利用傅立葉轉換紅外線光譜儀(F〇urier Transf^mQuantum Interference Device; SQUID), magnetic analysis of the obtained carboxylated chitosan-coated magnetic nanoparticles. The magnetic field used is k - 3 million oz to 30,000 咼 to analyze the saturation magnetization (Ms), residual magnetization (Mr), coercive force (Hj, and angular ratio (Squareness; Sr = Mr / Magnetic properties such as Ms). It is known by analysis that the known carboxylated chitosan coated magnetic nanoparticles have superparamagnetic properties, and the saturation magnetization is 61·7 emu/g, and the residual magnetization is 〇. · 82 emu / g, the coercive force is 8.50e, and the angular ratio is 0.013. In addition, using Fourier transform infrared spectrometer (F〇urier Transf^m

InfraRed Spectrometer; FT-IR Spectr〇meter),針對所得之 羧基化幾丁聚醣被覆的磁性奈米微粒進行分析。請參閱第3 圖,其係顯示根據本發明實施例一之羧基化幾丁聚醣被覆的 磁性奈米微粒的傅立葉轉換紅外線光譜圖,其中縱軸表示穿 透率(%),橫軸則表示波數(cnrl),曲線3〇1表示幾丁聚釀, 曲線303表示羧基化幾丁聚醣,曲線3〇5表示磁性奈米微 粒,而曲線307表示羧基化幾丁聚醣被覆的磁性奈米微粒。 由第3圖得知,從幾丁聚醣的FT-IR圖譜曲線3〇1顯示 在1601 cur1處有—Nh2與1651 cm-i處有—NH/之特性峰 存在,而當進行羧基化反應後,羧基化幾丁聚醣的 圖譜曲線303之一NH2特性峰會則偏移到1 598 、, ’並且 產生1741 cm 1之—C00H特性峰,表示幾丁聚醣已被改巧 成魏基化幾丁聚醣。另外,磁性奈米微粒的FT-IR圖n二 码瑨曲線 13 1251841 305並未顯示有任何特性峰存在,但磁性奈米微粒經碳二酿 胺活化再肖CMCH反應後,羧基化幾丁聚醣被覆的磁性奈 米微粒之FT-m圖譜曲線307則顯示16〇2 cnrl處有一 N出 與㈣cm-丨處有—C00H之特性峰存在,這表示羧基化幾 丁聚醣已被覆且共價鍵結於磁性奈米微粒的表面。 而符號(〇)表示羧基化幾丁聚醣被覆的磁性奈米微粒。由第 4圖得知,磁性奈米微粒的等電點(pI)在約6·8,但羧基化幾 丁聚醣被覆的磁性奈米微粒的等電點則偏移到5 ·95,這表 示魏基化幾丁聚醣已被覆在磁性奈米微粒的表面,導致其表 面電荷的改變,可佐證羧基化幾丁聚醣確實已被覆在磁性2 米微粒的表面。 此外,針對所得之羧基化幾丁聚醣被覆的磁性奈米微 粒,進行界面電位(zetapotentlal)分析。請參閱第4圖,其 係顯不根據本發明實施例一之羧基化幾丁聚醣被覆的磁性 奈米微粒的界面電位分析結果,其中縱軸表示界面電位(毫 伏),橫軸則表示酸鹼值(pH),符號(△)表示磁性奈米微粒, 另,由磁性奈米微粒與羧基化幾丁聚醣反應前後之重量 變化,可得知每100毫克之Fe3〇4磁性奈米微粒表面鍵結之 羧基化幾丁聚醣為5.25毫克。又,羧基化幾丁聚醣的鍵結 量亦可利用光學分析法,測得一 NH2的數量,進而估算出幾 基化幾丁聚醣鍵結在磁性奈米微粒表面的重量。此法是先將 魏基化幾丁聚醣被覆之磁性奈米微粒表面與過量的鄰苯二 甲輕(〇 -Phthaldialdehyde ; OPA)反應,剩餘的鄰苯二甲酸 再與甘胺酸(Glycine)反應,進而分析出每1〇〇毫克之Fe〇 14 1251841 磁性奈米微粒表面鍵結之羧基化幾丁聚醣的鍵結量為5 _ 毫克,與秤重法是相符合的,且羧基化幾丁聚醣之平均值為 5.17亳克/ 100毫克FhCU。此外,光學分析法也證明羧基 化幾丁聚St上的胺基大都還存在,並未因羧基化幾丁聚瞎與 磁性奈米微粒之鍵結而減損。 利用實施例一所得之羧基化幾丁聚醣被覆的磁性奈米 微粒,可於後續分離離子型物質,例如金屬陽離子' 陰離子 型物質等。 _ 實施例二 2就金屬陽離子方面,本實施例以鈷離子(c〇2 + )與銅離子 (Cu )進订吸附測試。首先,於恆溫例如約25艽下且酸鹼值 介於3至5之間,使含有金屬陽離子之極性溶液,例如含有 金屬陽離子之水溶液,通過羧基化幾丁聚醣被覆的磁性奈米 微粒,其中被覆於磁性奈米微粒表面之羧基化幾丁聚醣係用 乂吸附上述之金屬陽離子。接著,施加磁場於羧基化幾丁聚 醣被覆的磁性奈米微粒,藉以分離出吸附金屬陽離子之叛基春 化幾丁聚醣被覆的磁性奈米微粒。 么么、θ ▲閱第5圖,其係顯示根據本發明實施例二之緩基化 醣被復的磁性奈米微粒吸附金屬陽離子的怪溫吸附 二線’其中古縱軸表示吸附量(q;毫克/克),橫軸則表示平衡 (e,毛克/升),符號(〇)表示銅離子,而符號(△)表示 5 * 圖所不’吸附量隨著初濃度的增加而增加, :離子最大飽和吸附量為21·5毫克/克吸附劑,而銘離子最 飽和吸附虿為27.46毫克/克吸附劑。此外,羧基化幾丁 15 I251841 k醣被後的磁性奈米微粒在pH值介於3至5之間均具有吸 月匕力仁pH值為2時則完全不吸附,因此可在此環境下 =行脫附值侍庄意的是,由於本發明之羧基化幾丁聚醣被 覆的磁性奈米微粒並無孔内擴散阻力,因此銅離子盥鈷離子 的吸附均可在1分鐘内完成。 其久’以其它金屬陽離子諸如Ag+、、Zn2+、Cd2+、 C Gd等進行吸附測試,而測試結果請參閱第i表,其 係顯示根據本發明實施例二之羧基化幾丁聚醣被覆的磁性 奈米微粒吸附各種金屬陽離子的結果: 第1表 金屬陽離子 ------- 起始酸鹼值 回收率(%) 5.0 96.8 _ Ni2+ 5.2 97.8 Zn2 + 4.3 ------ _ 98.7 Cd2 + 6.3 — ------- 99.0 Fe3 + 2.8 99.1 L Gd3 + 2.0 > 99.5 如第1表所示,本發明之羧基化幾丁聚醣被覆的磁性奈 米微粒相當適用吸附其他金屬陽離子。 實施土(三 就陰離子型物質方面,本實施例先以Acld 0range 12(A012)與Acid Green 25(AG25)兩種酸性染料進行吸附測 試。首先,於恆溫例如約25t:下且酸鹼值介於3至5之間, 16 1251841 使3有酸性染料之極性溶液,例如含有酸性染料之水溶液, t過幾基化幾丁聚醣被覆的磁性奈米微粒,其中被覆於磁性 示米彳政粒表面之羧基化幾丁聚醣係用以吸附上述之酸性染 料。接著’施加磁場於羧基化幾丁聚醣被覆的磁性奈米微 粒,藉以分離出吸附酸性染料之羧基化幾丁聚醣被覆的磁性 奈米微粒。 明蒼閱第6圖,其係顯示根據本發明實施例三之羧基化 成丁來酶被覆的磁性奈米微粒吸附酸性染料的恆溫吸附曲 線’其中縱軸表示吸附量(q ;毫克/克),橫軸則表示平衡濃 度(Ce ;毫克/升),符號(〇)表示A012,而符號(△)表示 AG25。如第6圖所示,吸附量隨著初濃度的增加而增加, A012最大飽和吸附量為1883毫克/克吸附劑,而ag25最 大飽和吸附I為1 47 1毫克/克吸附劑。此外,羧基化幾丁聚 醣被覆的磁性奈米微粒在pH值介於3至5之間均具有吸附 能力,但pH值為6時則幾乎不吸附,因此可在此環境下進 行脫附。 再者’以AuCU—與Pdch2-兩種金屬陰離子團進行吸附 測試,其測試方法同上,故不另贅述,而測試結果請參閱第 2表,其係顯示根據本發明實施例三之羧基化幾丁聚醣被覆 的磁性奈米微粒吸附金屬陰離子團的結果: 第2表 金屬陰離子團 起始酸驗值 回收率(%) AuC14~ ' —- 3.1 99.4 PdCl42- 2.8 99.5 17 1251841 實施例四 利用實施例一所得之羧基化幾丁聚醣被覆的磁性奈米 微粒,可於本實施例中作為藥物分子及/或生物分子的載體。 首先,於恆溫例如約25它下且酸鹼值介於3至8之間 使含有藥物分子之極性溶液,例如含有俗稱小紅莓 (DoxoruMcin; DOX)之抗癌藥物水溶液,通過羧基化幾丁聚 醣被覆的磁性奈米微粒,其中磁性奈米微粒之表面共價鍵結 之羧基化幾丁聚醣係用以吸附藥物分子,而形成穩定的錯合 物。請芩閱第7圖,其係顯示根據本發明實施例四之羧基化 幾丁聚醣被覆的磁性奈米微粒在不同酸鹼值下吸附藥物分 子之吸附百分比,其中縱軸表示吸附百分比(%),橫軸則表 示酸鹼值(pH),而抗癌藥物D〇x水溶液的起始濃度為約ι〇〇 毫克/升。由第7圖得知,抗癌藥物D〇x與羧基化幾丁聚醣 被覆的磁性奈米微粒在酸鹼值介於3至8之間可形成穩定的 錯合物。 接著,請參閱第8圖,其係顯示根據本發明實施例四之 羧基化幾丁聚醣被覆的磁性奈米微粒在不同溫度下吸附藥 物分子之吸附百分比,其中縱轴表示吸附百分比(%),橫轴 則表,溫度(°C ) ’⑥抗癌藥物D〇x水溶液的起始濃度為約 100晃克/升。由第8圖得知,抗癌藥物D〇x與羧基化幾丁 聚醣被覆的磁性奈米微粒在溫度介於25。0至4(rc之間可形 成穩定的錯合物。 再者,請參閱第9圖,其係顯示根據本發明實施例四之 18 1251841 羧基化幾丁聚醣被覆的磁性奈米微粒吸附不同起始濃度的 藥物分子之吸附量,其中縱軸表示吸附量(毫克),橫軸則表 示藥物分子之起始濃度(毫克/升)。由第9圖得知,抗癌藥 物DOX的負載置係隨著起始濃度的增加而增加,因此可藉 由高起始濃度達成高負載量。InfraRed Spectrometer; FT-IR Spectr〇meter) was analyzed for the obtained carboxylated chitosan-coated magnetic nanoparticle. Referring to FIG. 3, there is shown a Fourier transform infrared spectrum of a carboxylated chitosan-coated magnetic nanoparticle according to Embodiment 1 of the present invention, wherein the vertical axis represents the transmittance (%), and the horizontal axis represents Wavenumber (cnrl), curve 3〇1 indicates chitosan, curve 303 indicates carboxylated chitosan, curve 3〇5 indicates magnetic nanoparticle, and curve 307 indicates carboxylated chitosan coated magnetic naphthalene Rice particles. It can be seen from Fig. 3 that the FT-IR spectrum curve from chitosan 3〇1 shows that there is a characteristic peak of -NH/ at -1h2 and 1651 cm-i at 1601 cur1, and when carboxylation reaction is carried out After that, the NH2 characteristic peak of one of the carboxylated chitosan maps 303 is shifted to 1 598 , ' and produces a 1741 cm 1 - C00H characteristic peak, indicating that the chitosan has been modified to be Wei-based. Chitosan. In addition, the FT-IR diagram of the magnetic nanoparticles does not show any characteristic peaks, but the magnetic nanoparticles are activated by the carbon diamine and then the CMCH reaction. The FT-m spectrum curve 307 of the sugar-coated magnetic nanoparticle shows that there is an N-out at 16〇2 cnrl and a characteristic peak of C00H at (4) cm-丨, which indicates that the carboxylated chitosan has been coated and covalently. Bonded to the surface of the magnetic nanoparticle. The symbol (〇) denotes a carboxylated chitosan-coated magnetic nanoparticle. It can be seen from Fig. 4 that the isoelectric point (pI) of the magnetic nanoparticle is about 6.8, but the isoelectric point of the carboxylated chitosan-coated magnetic nanoparticle is shifted to 5.95. It is indicated that the Weigelylated chitosan has been coated on the surface of the magnetic nanoparticle, resulting in a change in its surface charge, which proves that the carboxylated chitosan has indeed been coated on the surface of the magnetic 2 meter particle. Further, an interfacial potential (Zetapotentlal) analysis was performed on the obtained carboxylated chitosan-coated magnetic nanoparticle. Referring to FIG. 4, there is shown an interface potential analysis result of a carboxylated chitosan-coated magnetic nanoparticle which is not according to the embodiment of the present invention, wherein the vertical axis represents the interface potential (millivolt) and the horizontal axis represents The pH value, the symbol (Δ) indicates magnetic nanoparticle, and the weight change before and after the reaction between the magnetic nanoparticle and the carboxylated chitosan, it can be known that every 100 mg of Fe3〇4 magnetic nanometer The carboxylated chitosan bonded to the surface of the microparticles was 5.25 mg. Further, the amount of carboxylated chitosan can also be measured by optical analysis to determine the amount of a certain amount of NH2, and the weight of the chitosan bonded to the surface of the magnetic nanoparticles can be estimated. The method firstly reacts the surface of the Weigenylated chitosan-coated magnetic nanoparticle with an excess of phthalic acid (Opto-Phthaldialdehyde; OPA), and the remaining phthalic acid and Glycine The reaction further analyzed that the bond amount of the carboxylated chitosan bonded to the surface of the Fe 〇 14 1251841 magnetic nanoparticle per 1 〇〇 is 5 _ mg, which is consistent with the weighing method and is carboxylated. The average value of chitosan was 5.17 g / 100 mg FhCU. In addition, the optical analysis method also confirmed that most of the amine groups on the carboxylated chitosan st were present, and were not degraded by the bonding of the carboxylated chitosan and the magnetic nanoparticle. The carboxylated chitosan-coated magnetic nanoparticles obtained in Example 1 can be used to subsequently separate an ionic substance such as a metal cation 'anionic substance. _ Example 2 In terms of metal cations, this example was tested by cobalt ion (c 〇 2 + ) and copper ion (Cu ). First, a polar solution containing a metal cation, such as an aqueous solution containing a metal cation, is passed through a carboxylated chitosan-coated magnetic nanoparticle at a constant temperature of, for example, about 25 Torr and a pH of between 3 and 5. The carboxylated chitosan coated on the surface of the magnetic nanoparticle is used to adsorb the metal cation described above. Next, a magnetic field is applied to the carboxylated chitin-coated magnetic nanoparticles to separate the magnetic nanoparticles coated with the thioglycanized chitosan-coated metal cation. θ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ;mg/g), the horizontal axis represents equilibrium (e, gross/liter), the symbol (〇) represents copper ions, and the symbol (△) represents 5 * Figure does not increase the amount of adsorption with increasing initial concentration , : The maximum saturated adsorption capacity of ions is 21.5 mg / gram of adsorbent, while the most saturated adsorption enthalpy of Ming ions is 27.46 mg / gram of adsorbent. In addition, after the carboxylated chitin 15 I251841 k sugar is used, the magnetic nanoparticles have a pH value of 2 at the pH between 3 and 5, so they do not adsorb at all, so they can be used in this environment. = Desorption value The intention is that since the carboxylated chitosan-coated magnetic nanoparticles of the present invention have no intra-pore diffusion resistance, the adsorption of copper-ion samarium-cobalt ions can be completed in one minute. For the long time, the adsorption test is carried out with other metal cations such as Ag+, Zn2+, Cd2+, C Gd, etc., and the test results are referred to the i-th table, which shows the magnetic properties of the carboxylated chitosan coated according to the second embodiment of the present invention. Results of adsorption of various metal cations by nanoparticles: Group 1 metal cations ------- Initial pH recovery (%) 5.0 96.8 _ Ni2+ 5.2 97.8 Zn2 + 4.3 ------ _ 98.7 Cd2 + 6.3 — ------- 99.0 Fe3 + 2.8 99.1 L Gd3 + 2.0 > 99.5 As shown in Table 1, the carboxylated chitosan-coated magnetic nanoparticles of the present invention are quite suitable for adsorbing other metal cations. . For the implementation of soil (three for anionic substances, this example first uses Acld 0range 12 (A012) and Acid Green 25 (AG25) two acid dyes for adsorption test. First, at a constant temperature, for example, about 25t: and the pH value Between 3 and 5, 16 1251841 makes 3 polar solutions of acid dyes, such as aqueous solutions containing acid dyes, t-based chitosan coated magnetic nanoparticles, which are coated with magnetic rice The carboxylated chitosan on the surface is used to adsorb the above acid dye. Then, a magnetic field is applied to the carboxylated chitosan-coated magnetic nanoparticle to separate the carboxylated chitosan coated with the acid dye. Magnetic Nanoparticles. Fig. 6 shows a constant temperature adsorption curve of an acid dye adsorbed by a magnetic nanoparticle coated with a carboxylated butylene enzyme according to Example 3 of the present invention, wherein the vertical axis represents the adsorption amount (q; Mg/g), the horizontal axis represents the equilibrium concentration (Ce; mg/L), the symbol (〇) represents A012, and the symbol (△) represents AG25. As shown in Figure 6, the adsorption amount increases with the initial concentration. increase The maximum saturated adsorption capacity of A012 is 1883 mg/g adsorbent, while the maximum saturated adsorption I of ag25 is 1 47 1 mg/g adsorbent. In addition, carboxylated chitosan coated magnetic nanoparticles are at pH 3 It has adsorption capacity between 5 and 5, but it does not adsorb at pH 6. Therefore, desorption can be carried out in this environment. Further, the adsorption test is carried out by using AuCU- and Pdch2-metal anion groups. The method is the same as above, so it will not be further described. For the test results, please refer to Table 2, which shows the results of adsorption of metal anion groups by carboxylated chitosan-coated magnetic nanoparticles according to Example 3 of the present invention: Anion group initial acid recovery (%) AuC14~ '-- 3.1 99.4 PdCl42- 2.8 99.5 17 1251841 Example 4 using the carboxylated chitosan-coated magnetic nanoparticles obtained in Example 1, can be used in this In the embodiment, as a carrier of a drug molecule and/or a biomolecule. First, a polar solution containing a drug molecule, for example, containing a common name called cranberry (DoxoruMcin), at a constant temperature of, for example, about 25 and a pH of between 3 and 8. ; DOX) an anticancer drug aqueous solution, which is a carboxylated chitosan-coated magnetic nanoparticle, wherein a carboxylated chitosan covalently bonded to the surface of the magnetic nanoparticle is used to adsorb a drug molecule to form a stable For the complex composition, please refer to Fig. 7, which shows the adsorption percentage of the adsorbed drug molecules of the carboxylated chitosan-coated magnetic nanoparticles according to the fourth embodiment of the present invention at different pH values, wherein the vertical axis Indicates the percent adsorption (%), the horizontal axis represents the pH value, and the initial concentration of the anticancer drug D〇x aqueous solution is about ι〇〇mg/L. It is understood from Fig. 7 that the anticancer drug D〇x and the carboxylated chitosan-coated magnetic nanoparticle form a stable complex at a pH of between 3 and 8. Next, referring to Fig. 8, which shows the percentage of adsorption of the drug-molecule adsorbed by the carboxylated chitosan-coated magnetic nanoparticle according to the fourth embodiment of the present invention, wherein the vertical axis represents the percentage of adsorption (%). On the horizontal axis, the temperature (°C) of the 6 anticancer drug D〇x aqueous solution is about 100 gram/liter. It can be seen from Fig. 8 that the anti-cancer drug D〇x and the carboxylated chitosan-coated magnetic nanoparticle form a stable complex at a temperature between 25.0 and 4 (r. Please refer to FIG. 9 which shows the adsorption amount of the drug molecules adsorbed by the carboxylated chitosan-coated magnetic nanoparticle according to the embodiment of the present invention, wherein the vertical axis represents the adsorption amount (mg). ), the horizontal axis represents the initial concentration of the drug molecule (mg / liter). From Figure 9, it is known that the loading of the anticancer drug DOX increases with the increase of the initial concentration, so it can be started by high The concentration reaches a high load.

此外,本實施例更以生物分子,例如脂解酶(Llpase)、 小牛血清白蛋白(Bovine Serun Albumin ; BS A)以及去氧核 釀核酸(Deoxyribonucleic Acid ; DNA)等生物巨分子進行測 5式,其測試方法同上,故不另贅述,而測試結果請參閱第3 表,其係顯示根據本發明實施例四之羧基化幾丁聚醣被覆的 磁性奈米微粒吸附生物分子的結果: 第3表 生物分子 起始酸鹼值 回收率(%) 脂解酶 3.0 98.8 BSA 3.0 75.5 DNA 5.0 19.8In addition, the present embodiment is further measured by biological molecules such as lipolysis enzyme (Llpase), bovine serum albumin (Bovine Serun Albumin; BS A), and deoxyribonucleic acid (DNA). The test method is the same as above, so it will not be further described. For the test results, please refer to Table 3, which shows the results of adsorbing biomolecules by the carboxylated chitosan-coated magnetic nanoparticles coated according to the fourth embodiment of the present invention: 3 table biomolecule initial pH recovery (%) lipolytic enzyme 3.0 98.8 BSA 3.0 75.5 DNA 5.0 19.8

、,由第3表得知,脂解酶以及BSA可與羧基化幾丁聚醣 被覆的磁性奈米微粒形成穩定的錯合物,而DNA之吸附效 π車又差^亦可行。結果顯示本發明之羧基化幾丁聚醣被覆的 磁性奈米微粒4實可作為生醫用磁性奈米載體。在應用時, :施加磁場於缓基化幾丁聚醣被覆的磁性奈米微粒,藉以於 :内或體外輸送吸附藥物分子及/或生物分子之羧基化幾丁 ♦醣破覆的磁性奈米微粒至預定位置。 19 1251841 彡字 f~ 戶斤、十、 Γ 由於本發明之聚醣被覆的磁性奈米微粒之穩 疋陡河且分散性佳,更具有吸附容量高、吸附速率快、又可 利用磁性操控擎俱# 寺叙點,因此不僅可吸附多種離子型物質, 如金屬陽離子、险雜工 、 哈離子型物質(例如金屬陰離子團或酸 f)、藥物分子或生物分子,更可應用於廢水處理或生化: 、 条物或基因定位傳輸(Site_Directed DeHve 之載體、及核磁共振造影之顯影劑等。 由上述本發明較佳實施例可知,應用本發明之磁性夺米 微粒,其製造方法’其優點在於將具有螯合、離子交換等多 種力此之羧基化聚醣共價鍵結於磁性奈米微粒之表面。由 =膽被覆的磁性奈米微粒之穩定性高且分散性佳,並具有 所°、離子父換等多種功能,因此不僅可吸附多種離子型物 貝’例如金屬陽離子、陰離子型物質、藥物分子或生物分子, ::應用於廢水處理或生化分離之吸附劑、藥物或基因定位 傳輪之載體、以及核磁共振之顯影劑等。 、雖,、、':本毛明已以數個較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此蓺 … 又衣有在不脫離本發明之精祌 和乾圍内,當可作各種之更動 ra L ^ ^ 又動14潤飾,因此本發明之保護範 圍虽視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 聚醣 聚醣 第1圖係、顯示根據本發明實施例_之㈣化幾 被覆的磁性奈米微粒的穿透式電子顯微照片; 第2圖係顯不根據本發明實施例一之羧基化幾 20 1251841 被覆的磁性奈米微粒的x射線繞射圖譜; 第3圖係緣示根據本發明實施例一之魏基化幾丁聚醣 被覆的磁性奈来微粒的傅立葉轉換紅外線光譜圖; 弟4圖係顯示根據本發明實施例一之羧基化幾丁聚醣 被復的磁性奈米微粒的界面電位分析結果; 第5圖係顯示根據本發明實施例二之羧基化幾丁聚醣 被復的磁性奈米微粒吸附金屬陽離子的恆溫吸附曲線; 第6圖係顯示根據本發明實施例三之羧基化幾丁聚醣 被復的磁性奈米微粒吸附酸性染料的恆溫吸附曲線; 第7圖係顯示根據本發明實施例四之羧基化幾丁聚醣 被覆的磁性奈米微粒在不同酸鹼值下吸附藥物分子之吸附 百分比; 第8圖係顯示根據本發明實施例四之竣基化幾丁聚醣 被覆的磁性奈米微粒在不同溫度下吸附藥物分子之吸附百 分比;以及 第9圖係顯示根據本發明實施例四之魏基化幾丁聚醣 被覆的磁性奈米微粒吸附不同起始濃度的藥物分子之吸附 量0 主要元件符號說明】 201 : 曲線 203 :曲線 301 : 曲線 303 :曲線 305 : 曲線 307 :曲線From the third table, it is known that lipolytic enzymes and BSA can form stable complexes with carboxylated chitosan-coated magnetic nanoparticles, and the adsorption efficiency of DNA is also poor. As a result, it was revealed that the carboxylated chitosan-coated magnetic nanoparticle 4 of the present invention can be used as a biomedical magnetic nanocarrier. In application, a magnetic field is applied to the slow-formed chitosan-coated magnetic nanoparticle, thereby: transporting the magnetic nanoparticle which adsorbs the drug molecule and/or the biomolecule to the carboxylated chitin-glucose-cracked inner or outer body. The particles are at a predetermined position. 19 1251841 彡字 f~ 斤,十、 Γ The magnetic nano-particles coated with the polysaccharide of the invention have stable and steep rivers and good dispersibility, and have high adsorption capacity, fast adsorption rate, and magnetic manipulation engine The ##寺, so it can not only absorb a variety of ionic substances, such as metal cations, dangerous handymen, ionic substances (such as metal anion or acid f), drug molecules or biomolecules, but also can be applied to wastewater treatment or biochemistry. :, strip or gene localization transmission (Site_Directed DeHve carrier, and nuclear magnetic resonance imaging developer, etc. According to the preferred embodiment of the present invention described above, the magnetic rice particle of the present invention is applied, and the manufacturing method thereof has the advantage that The carboxylated glycan having a plurality of forces such as chelation and ion exchange is covalently bonded to the surface of the magnetic nanoparticle. The magnetic nanoparticle composed of the gallbladder has high stability and good dispersibility, and has a °, The ion parent has many functions, so it can adsorb not only a variety of ionic species, such as metal cations, anionic substances, drug molecules or biomolecules, ::Applications An adsorbent for wastewater treatment or biochemical separation, a carrier for drug or gene mapping, and a developer for nuclear magnetic resonance, etc., though, ': The present invention has been disclosed in several preferred embodiments as above, but it is not In order to define the present invention, any of the above-mentioned clothes can be made without departing from the fine and dry circumference of the present invention, and when various modifications can be made, the protection range of the present invention is The scope of the patent application is defined as follows. [Simplified Schematic] Glycans are shown in Fig. 1 and show the transmissive electronic display of (4) coated magnetic nanoparticles according to the embodiment of the present invention. Micrograph; Figure 2 shows an x-ray diffraction pattern of a magnetic nanoparticle not coated with a carboxylated number 20 1251841 according to the first embodiment of the present invention; and Fig. 3 shows a Wei-based diffraction according to the first embodiment of the present invention Fourier transform infrared spectrum of chitosan-coated magnetic nanoparticle; FIG. 4 shows the result of interface potential analysis of carboxylated chitosan-coated magnetic nanoparticle according to Example 1 of the present invention; Graph display According to the second embodiment of the present invention, the carboxylated chitosan-coated magnetic nanoparticle adsorbs the constant temperature adsorption curve of the metal cation; FIG. 6 shows the magnetic property of the carboxylated chitosan according to the third embodiment of the present invention. The nanoparticle adsorbs the constant temperature adsorption curve of the acid dye; FIG. 7 shows the adsorption percentage of the adsorbed drug molecule of the carboxylated chitosan-coated magnetic nanoparticle according to the fourth embodiment of the present invention at different pH values; The figure shows the adsorption percentage of the thiolated chitosan-coated magnetic nanoparticles coated with the drug molecules at different temperatures according to the fourth embodiment of the present invention; and the ninth figure shows the Wei-basedization according to the fourth embodiment of the present invention. The adsorption amount of the chitosan-coated magnetic nanoparticle adsorbing drug molecules of different initial concentrations 0 Main component symbol description 201: Curve 203: Curve 301: Curve 303: Curve 305: Curve 307: Curve

Claims (1)

1251841 十、申請專利範圍 1. 一種聚醣被覆的磁性奈米微粒,至少包含: 一磁性奈米微粒;以及 一魏基化聚si共價鍵結於該磁性奈米微粒之一表面。 2. 如申請專利範圍第1項所述之聚醣被覆的磁性奈米 微粒,其中該磁性奈米微粒之材質為四氧化三鐵(Fe3〇4)。 3. 如申請專利範圍第1項所述之聚醣被覆的磁性奈米 微粒,其中該魏基化聚醣為魏基化幾丁聚St (Chitosan)或其 衍生物。 4. 如申請專利範圍第3項所述之聚醣被覆的磁性奈米 微粒,其中該羧基化幾丁聚醣衍生物為羧基化幾丁質 (Chitin)。 5. 如申請專利範圍第1項所述之聚醣被覆的磁性奈米 微粒,其中該聚醣被覆之磁性奈米微粒之一粒徑係介於1 奈米至100奈米之間。 6. 如申請專利範圍第1項所述之聚醣被覆的磁性奈米 微粒,其中該聚醣被覆之磁性奈米微粒之一粒徑係介於1 〇 奈米至30奈米之間。 22 1251841 禋聚醣被覆的 材皙i m孤,涊磁性佘米微粒之 —化三離3〇4),其特徵在於該磁性奈米微粒之 離二物;鍵結有繼幾丁聚醣或其衍生物,用以吸附- 8·如申請專利範圍第7項所沭之取酿妯烫从、 吓疋之來聽被覆的磁性冬半 仏;SL,其中該幾丁聚醣衍生物為幾丁質。 y、 /a /·如巾請專利範圍第7項所述之聚醣被覆的磁性奈米 微粒’其中該聚醣被覆之磁性奈米微粒之一粒徑係介:; 奈米至100奈米之間。 、 山、1〇.如申請專利範圍第7項所述之聚醣被覆的磁性奈米 微粒,其中該聚醣被覆之磁性奈米微粒之一粒徑係介於⑺ 奈米至30奈米之間。 11 ·如申請專利範圍第7項所述之聚醣被覆的磁性奈米 微粒,其中該離子型物質係選自於由一金屬陽離子、一陰離 子型物貝、一藥物分子以及一生物分子所組成之一族群。 1 2 _如申請專利範圍第11項所述之聚醣被覆的磁性奈 米微粒’其中該生物分子係選自於由去氧核醣核酸 (Deoxyribonucleic Acid ; DNA)、核醣核酸(Ribonucleic 23 1251841 Acid,RNA)、一蛋白質以及一酵素所組成之^一族群。 1 3 · —種聚醣被覆之磁性奈米微粒之製造方法,至少包 含: 形成一磁性奈米微粒;以及 共價鍵結一魏基化聚_於該磁性奈米微粒之一表面,其 中該羧基化聚醣為羧基化幾丁聚醣或其衍生物。 14·如申請專利範圍第π項所述之聚醣被覆的磁性奈 米微粒之製造方法,其中該羧基化幾丁聚醣衍生物為羧基化 幾丁質。 15.如申請專利範圍第13項所述之聚醣被覆之磁性奈 米微粒之製造方法,其中形成該磁性奈米微粒之步驟更至少 包含: 提供一含鐵混合溶液,其中該含鐵混合溶液中含有氯化 鐵與氯化亞鐵; 调整該含鐵混合溶液之酸鹼值(pH)達8至1 〇之間;以 及 熱處理該含鐵混合溶液,以共沉澱成該磁性奈米微粒。 1 6·如申請專利範圍第15項所述之聚醣被覆的磁性奈 米U粒之製造方法,其中該氯化鐵與該氯化亞鐵之莫 係介於i.5至2.5之間。 值 24 1251841 17. 如申請專利範圍第15項所述之聚醣被覆的磁性奈 米微粒之製造方法,其中熱處理該含鐵混合溶液的步驟係於 溫度介於6(TC至8(TC之間進行i至6〇分鐘。 18. 如”㈣範㈣15項料之㈣被覆的磁性奈 米微粒之製造方法’其中該磁性奈米微粒之材質為四氧化三 鐵(Fe304)。 1 9 ·如申請專利0Ί ς 圍弟1 5項所述之聚醣被覆的磁性奈 求微粒之製造方法,其中太赦考 、在"、、處理该洸合溶液後,更至少包 含清洗及乾燥該磁性奈米微粒。 2 0 ·如申請專利篇固& 圍弟1 3項所述之聚醣被覆的磁性夺 米微粒之製造方法,复由4辟μ α ' ⑩ '、中/、4貝鍵、該聚_之步驟更至少包 含: 將該磁性奈米微教山― 厌一 fc胺(Carbodiimide)以及該緩 基化聚It依序加入一缤為、卜 %衝浴液中,使該羧基化聚醣經由該碳 二醯胺活化而共價鍵姓认外4以士, 、、。於该磁性奈米微粒之該表面;以及 施加一磁場以進杆_ 口液刀離之步驟,藉此獲得該聚醣 被覆的磁性奈米微粒。 1 申月專利範圍第20項所述之聚醣被覆的磁性奈 米微粒之製造方法,复山 、、 /、干该緩衝溶液之酸驗值係介於6至7 25 1251841 之間。 22.如申請專利範圍第20項所述之聚醣被覆的磁性奈 米微粒之製造方法,其中該磁性奈米載體與該羧基化聚醣之 重量比值係介於10至100之間。 23.如申請專利範㈣20項所述之聚聽被覆的磁性奈 米微粒之製造方法,其中該羧基化聚醣係經由一羧基化製程 而形成,且該魏基化製程更至少包含: 進行一膨潤及鹼化步驟,係將該聚醣加入一鹼性混合溶 液中,於55°C至65t之間進行〇5小時至15小時,其中 該驗性混合溶液係混合一有機溶劑與水;以及 進行羧基化步驟’係將含氯醋酸鈉之該有機溶劑滴入含 該聚醣之該鹼性混合溶劑後,於”^至65。〇之間進行3小 時至5小時,以於該聚醣上形成羧基及/或羧甲基。 項所述之聚醣被覆的磁性奈 24·如申請專利範圍第23 米微粒之製造方法,其中該有機溶劑為異丙醇 25 ·如申σ月專利圍第23項所述之聚釀被覆的磁性奈 米微粒之製造方法,其中為^ρ、, 甲在4竣基化步驟後,更至少包含: 利用約7 0體積百分此夕、 刀比之/酉精中止該羧基化步驟; 利用約99體積百分比夕、、 /酉精去除該叛基化聚_之鹽分 及水分;以及 26 1251841 聚釀 於約5(TC之溫度下乾燥該羧基化 26. —種利用聚醣被覆的磁性奈米八 質的方法,至少包含· 、Λ 4刀離離子型物 各有離子型物質之一極性溶液通一 磁性奈米微粒,1中兮取 來醣被復的 太乎❹彳: 覆的磁性奈米微粒係於一磁性 奈未u粒之一表面共價鍵結一羧基化 兹性 型物質;以及 _,用以吸附該離子 施加-磁場於料㈣覆㈣性奈 吸附該離子型物暫夕兮取mt 精以刀離出 亍生物貝之该聚醣被覆的磁性奈米微粒。 27.如申請專利範圍第26項所述之 性奈乎料4%八她协 用來膽被覆的磁 l'生不米U粒分離離子型物質方法, 金屬陽離子。 、中㈣子型物質為一1251841 X. Patent Application Range 1. A polysaccharide-coated magnetic nanoparticle comprising at least: a magnetic nanoparticle; and a Wei-based poly-si covalently bonded to one surface of the magnetic nanoparticle. 2. The polysaccharide-coated magnetic nanoparticle according to claim 1, wherein the magnetic nanoparticle is made of ferroferric oxide (Fe3〇4). 3. The glycan-coated magnetic nanoparticle of the invention of claim 1, wherein the dimerized glycan is a thiolated polystyrene (Chitosan) or a derivative thereof. 4. The glycan-coated magnetic nanoparticle of claim 3, wherein the carboxylated chitosan derivative is a carboxylated chitin. 5. The glycan-coated magnetic nanoparticle of claim 1, wherein one of the polysaccharide-coated magnetic nanoparticles has a particle size of between 1 nm and 100 nm. 6. The glycan-coated magnetic nanoparticle of claim 1, wherein one of the polysaccharide-coated magnetic nanoparticles has a particle size ranging from 1 nanometer to 30 nanometers. 22 1251841 禋 被 被 皙 皙 孤 涊 涊 涊 涊 涊 涊 涊 皙 皙 皙 皙 皙 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 Derivatives for adsorption - 8 · As mentioned in the scope of the patent application, the simmering of the magnetic sorghum, from the scare to listen to the magnetic winter scorpion; SL, wherein the chitosan derivative is a few quality. y, /a /·, such as the corn-coated magnetic nanoparticle described in the seventh paragraph of the patent scope, wherein one of the particle diameters of the polysaccharide-coated magnetic nanoparticle is: nanometer to 100 nm between. The polysaccharide-coated magnetic nanoparticle according to the seventh aspect of the invention, wherein the particle diameter of the polysaccharide-coated magnetic nanoparticle is between (7) nanometer and 30 nanometer. between. The glycan-coated magnetic nanoparticle according to claim 7, wherein the ionic substance is selected from the group consisting of a metal cation, an anionic substance, a drug molecule, and a biomolecule. One group. The polysaccharide-coated magnetic nanoparticle of the invention of claim 11, wherein the biomolecule is selected from the group consisting of deoxyribonucleic acid (DNA) and ribonucleic acid (Ribonucleic 23 1251841 Acid, A group of RNAs, a protein, and an enzyme. a method for producing a polysaccharide-coated magnetic nanoparticle, comprising: forming a magnetic nanoparticle; and covalently bonding a Wei-based poly-polymer onto one surface of the magnetic nanoparticle, wherein The carboxylated glycan is a carboxylated chitosan or a derivative thereof. The method for producing a polysaccharide-coated magnetic nanoparticle according to the above aspect of the invention, wherein the carboxylated chitosan derivative is a carboxylated chitin. The method for producing a nanometer-coated magnetic nanoparticle according to claim 13, wherein the step of forming the magnetic nanoparticle further comprises: providing an iron-containing mixed solution, wherein the iron-containing mixed solution The iron chloride and the ferrous chloride are contained; the acid-base value (pH) of the iron-containing mixed solution is adjusted to be between 8 and 1 Torr; and the iron-containing mixed solution is heat-treated to coprecipitate the magnetic nano particles. The method for producing a polysaccharide-coated magnetic nanoparticle as described in claim 15 wherein the ferric chloride and the ferrous chloride are between i.5 and 2.5. The method for producing a polysaccharide-coated magnetic nanoparticle according to claim 15, wherein the step of heat-treating the iron-containing mixed solution is at a temperature between 6 (TC and 8 (TC) For example, if the material of the magnetic nanoparticle is triiron tetroxide (Fe304), the application method of the magnetic nanoparticles is as follows: (4) Patent No. 5Ί 制造 围 1 1 1 1 1 1 1 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖 聚糖Particles 2 0 · The method for producing the nano-particles of the glycan-coated microparticles described in the patent application 1 &3; The step of collecting _ at least comprises: adding the magnetic nano-Mickey Hill-Carbodiimide (Carbodiimide) and the slow-polymerizing poly-It to a Binqi, Bu% bathing liquid to polymerize the carboxyl group The sugar is activated by the carbon diamine, and the covalent bond is recognized by the outside of the 4th, and The surface of the magnetic nanoparticle; and the step of applying a magnetic field to the rod-liquid knife to obtain the polysaccharide-coated magnetic nanoparticle. 1 For the method for producing the polysaccharide-coated magnetic nanoparticle, the acid value of the buffer solution of Fushan, and/or dry is between 6 and 7 25 1251841. 22. The polymerization according to claim 20 The method for producing a sugar-coated magnetic nanoparticle, wherein the weight ratio of the magnetic nanocarrier to the carboxylated glycan is between 10 and 100. 23. The polyphonic coating according to claim 20 (4) The method for producing a magnetic nanoparticle, wherein the carboxylated glycan is formed by a carboxylation process, and the Wei radicalization process further comprises: performing a swelling and alkalization step, adding the glycan to an alkaline In the mixed solution, the enthalpy is carried out at 55 ° C to 65 t for 5 hours to 15 hours, wherein the test mixture solution is mixed with an organic solvent and water; and the carboxylation step is performed by using the organic solvent containing sodium chloroacetate Instilling the glycan After the alkaline solvent is mixed, it is carried out for 3 hours to 5 hours between ^ and 65 〇 to form a carboxyl group and/or a carboxymethyl group on the glycan. The method for producing a 23-meter particle according to the patent application, wherein the organic solvent is isopropyl alcohol 25, and the method for producing the polymerized magnetic nanoparticle described in claim 23, wherein ρ, A, after the 4 竣 radicalization step, further comprises: using about 70% by volume, the knife ratio / 酉 fine to stop the carboxylation step; using about 99 volume percent eve, / 酉 fine removal The salt and moisture of the ruthenium poly- _; and 26 1251841 condensed at a temperature of about 5 (the temperature of the TC to dry the carboxylated 26. The method of using the polysaccharide-coated magnetic nano-eight, at least ·, Λ 4 knives are separated from the ionic type. One of the ionic substances has a polar solution that passes through a magnetic nanoparticle. The sugar extracted in 1 is too ruthenium: the coated magnetic nanoparticle is attached to a magnetic nanosphere. a surface covalently bonded to a carboxylated species; and _, It is used to adsorb the ions. The application-magnetic field is applied to the material (4). (4) The ionic species is adsorbed. The magnetic nanoparticles coated with the glutinous bio-beads are removed by a knife. 27. As described in claim 26 of the scope of the patent, 4% of the eight acne is used for the bile-coated magnetic l's raw U-particle separation ionic substance method, metal cation. , medium (four) subtype substance is one Μ 申請專利範圍第26項所述之利用聚醣被覆 -未微粒分離離子型物質的方法,其中該離子型 陰離子型物質。 、 利用聚醣被覆的磁 該磁性奈米微杈之 29·如申請專利範圍第26項所述之 性奈米微粒分離離子型物質的方法,其中 材質為四氧化三鐵(Fe3〇4)。 30.如申請專利範圍第 26項所述< 利用聚醣被覆 的磁 27 1251841 14奈米微粒分離離子型物質的方法,复 基化幾丁㈣或其衍生物。 錢基化聚st為竣 <利用聚醣被覆的磁 中該羧基化幾丁聚醣 3 1.如申請專利範圍第30項所迷 性奈米微粒分離離子型物質的方法,其 々亍生物為魏基化幾丁質。方法 A method for separating an ionic substance by using a glycan-coated particle according to claim 26, wherein the ionic anionic substance. A method of separating a ionic substance by a smectic nanoparticle according to the invention of claim 26, wherein the material is triiron tetroxide (Fe3〇4). 30. A method for separating an ionic substance by using a glycan-coated magnetic 27 1251841 14 nm particle as described in claim 26, and complexing the chitin (tetra) or a derivative thereof. The method of separating the ionic substance into a magnetic substance coated with a polysaccharide, and the method of separating the ionic substance by the nanoparticle according to the 30th item of the patent application, the cockroach For Wei Kehua chitin. 32·如申铂專利範圍第26項所 μ太丰叫〜、私 义文利用聚醣被覆的石〗 陡不未破粒为離離子型物質的方法,复 太半外# > , 〃、甲该聚醣被覆之磁七 不未破拉之一粒徑係介於丨奈米至1 〇〇太 a木之間 。 33·如申請專利範圍第26項所 ,... 〈利用聚醣被覆的磁 性示米微粒分離離子型物質的方法,其 ,^ 5亥聚醣被覆之磁性 示米微粒之一粒徑係介於丨〇奈米至3〇奈米之間。 34_如申請專利範圍第26項所述之利用聚酷被覆的磁 性奈米微粒分離離子型物質的方法,其中在施加該磁場之步 驟後’更至少包含進行—脫附步驟,以自吸附該離子型物質 之該聚醣被覆的磁性奈米微粒分離而得該離子型物質。 35· —種利用磁性奈米載體輸送藥物分子或生物分子 之方法,至少包含: 使含有一樂物分子及/或一生物分子之一極性溶液通過 一聚醣被覆的磁性奈米微粒,其中該聚醣被覆的磁性奈米微 28 1251841 粒係於-磁性奈米微粒之一表面共社 該叛基化聚醣為竣基化幾丁聚酷或A行生^竣用基化聚釀,且 物分子及/或該生物分子;以及…物,用以吸附該藥 施加一磁場於該聚醣被 附該藥物分子及/„生物人 性示米微粒,藉以輸送吸 粒至-預定位置。/刀子之该聚醣被覆的磁性奈米微 3 6 ·如申清專利範圍第3 $ 輸送藥物分子或生物分子 、Z Μ磁性奈米載體 子型物質。 法、中該藥物分子為一陰離 幹送誠:月專利犯圍弟35項所述之利用磁性奈米載體 分子或生物分子之方法,其中該生物分子為-陰離 所 貝且5亥生物分子係選自於由DNA、rna、一蛋白 貝以及一酵素所組成之一族群。 队如申請專利範圍第35項所述之利用磁性奈米載體 别达樂物分子或生物分子之方法,其中形成該磁性奈米載體 之步驟更至少包含·· 提供一含鐵混合溶液,其中該含鐵混合溶液中含有氯化 鐵與氯化亞鐵; 调整該含鐵混合溶液之酸鹼值達8至丨〇之間;以及 熱處理該含鐵混合溶液,以共沉澱成該磁性奈米載體。 29 1251841 3 9 ·如申請專利範圍第 於、、…^ 固弟38項所述之利用磁性奈米載體 _ 方法,其中该氯化鐵與該氯化亞 鐵之莫耳比值係介於丨.5至2·5之間。 40·如申请專利範圍第38項所述之利用磁性奈米載體 樂物分子或生物分子之方法,其中熱處理該含鐵混合溶 液的步驟係於溫度介於贼至⑽之間進行u6〇分鐘。 —、^1·如中請專利範圍第38項所述之利用磁性奈米载體 輸乙藥物刀子或生物分子之方法,其中該磁性奈米載體之材 質為四氧化三鐵(Fe3〇4:)。 42,如申請專利範圍第38項所述之利用磁性奈米載體 輸送藥物/刀子或生物分子之方法,其中在熱處理該混合溶液 後,更至少包含清洗及乾燥該磁性奈米载體。 43·如申請專利範圍第35項所述之利用磁性奈米載體 輸送藥物分子或生物分子之方法,其中共價鍵結該羧基化聚 醣之步驟更至少包含: 將该磁性奈米載體、碳二醯胺以及該綾基化聚醣依序加 入一緩衝溶液中,使該羧基化聚醣經由該碳二醯胺活化而共 價鍵結於該磁性奈米載體之該表面;以及 施加另一磁場,以分離出該聚醣被覆的磁性奈米載體。 30 1251841 44. 如申請專利範圍第43項所述之利用磁性奈米载體 ,送藥物分子或生物分子之方法,其中該緩衝溶液 係介於6至7之間。 值 45. 如申請專利範圍第43項所述之利用磁性奈米載體 輪廷藥物分子或生物分子之方法’其中該磁性奈米載體與‘ 幾基化聚醣之重量比值係介於1 0至1 〇〇之間。 46. 如f請專利範圍第43項所述之利用磁性奈 輪送藥物分子或生物分子之方法’其中該羧基化聚畴係經: 一羧基化製程而形成,且該羧基化製程更至少包含: 進行一膨潤及鹼化步驟,係將該聚醣加入一鹼性巧入一 液中,於5代至价之間進行〇_5小時至15小時二: 該鹼性混合溶液係混合一有機溶劑與水;以及 ’、甲 ;進行減化步驟,係將含氣醋酸納之該有機溶劑滴入人 ^ :之錢U〉谷劑後,於55 C至价之間進行3小 日守至5小時,以形成羧基及/或羧甲基於該聚醣上。 A如中請專利範圍第46項所述之利用磁性奈米 輸送藥物分子或生物分子之方法,其中 ^ ,、Y該有機溶劑為異丙 酵。 48·如申凊專利範圍第46項所述 利用磁性奈米載體 輸运樂物分子或生物分子之方法,其中 〃 τ在该羧基化步驟後, 31 1251841 更至少包含: 利用約70體積百分比之酒精中止該羧基化步驟; 利用約99體積百分比之酒精去除該羧基化聚醣之鹽分 及水分;以及 於約50°C之溫度下乾燥該羧基化聚醣。 49.如申請專利範圍第35項所述之利用磁性奈米載體 輸送藥物分子或生物分子之方法,其中該輸送步驟係於體内 (In Vivo)或體外(In Vitro)進行。 3232. For example, the 26th item of the patent scope of Shenbo is called too ~~, the stone that uses the glycan coating in the private text. The steep and not broken grain is the method of ion-type substance, Futai Banwai # > , 〃, A particle size of the magnetic coating of the corn is not between the 丨 nanometer and the 〇〇 too a wood. 33. As claimed in item 26 of the patent application, ... a method for separating an ionic substance by using a manganese-coated magnetic rice particle, wherein the particle size of one of the magnetic rice particles coated with the chitosan Between 丨〇nami and 3〇Nei. The method for separating an ionic substance by using a poly-coated magnetic nanoparticle as described in claim 26, wherein after the step of applying the magnetic field, the method further comprises at least performing a desorption step to self-adsorb the The ionic substance is obtained by separating the glycan-coated magnetic nanoparticle of the ionic substance. 35. A method for transporting a drug molecule or a biomolecule using a magnetic nanocarrier, comprising: at least: magnetic nanoparticle containing a polar solution of a musical substance molecule and/or a biomolecule coated by a polysaccharide, wherein Glycan-coated magnetic nano-28 1251841 granules are one of the surface of the magnetic nanoparticles. The thiolated glycan is a thiolated chitin or an A-line. And the biomolecule; and the substance for adsorbing the drug to apply a magnetic field to the glycan to which the drug molecule and the biological human rice particles are attached, thereby transporting the absorbing particles to a predetermined position. The glycan-coated magnetic nano-micro 3 6 · such as Shen Qing patent range No. 3 $ delivery of drug molecules or biomolecules, Z Μ magnetic nanocarrier carrier type substance. The method, the drug molecule is an overcast dry Cheng: The method of using magnetic nanocarrier molecules or biomolecules as described in 35 patents, wherein the biomolecule is an anion-free and the 5th biomolecule is selected from DNA, rna, and a protein. Shell and an enzyme group A method of using a magnetic nanocarrier, a Baccarat molecule or a biomolecule, as described in claim 35, wherein the step of forming the magnetic nanocarrier further comprises: providing an iron-containing mixture a solution, wherein the iron-containing mixed solution contains ferric chloride and ferrous chloride; adjusting the acid-base value of the iron-containing mixed solution to between 8 and 丨〇; and heat-treating the iron-containing mixed solution to coprecipitate Magnetic nanocarriers. 29 1251841 3 9 · The magnetic nanocarriers according to the application of the patent scope, the use of a magnetic nanocarrier _ method, wherein the ferric chloride and the ferrous chloride molar ratio The method of using a magnetic nanocarrier music molecule or a biomolecule according to claim 38, wherein the step of heat-treating the iron-containing mixed solution is The temperature is between u.. and ^1·. The material of the carrier is A method for transporting a drug/knife or a biomolecule using a magnetic nanocarrier as described in claim 38, wherein after the heat treatment of the mixed solution, at least the cleaning is further included. And drying the magnetic nanocarrier. The method for transporting a drug molecule or a biomolecule by using a magnetic nanocarrier according to claim 35, wherein the step of covalently bonding the carboxylated glycan further comprises at least : the magnetic nanocarrier, the carbon diamine and the thiolated glycan are sequentially added to a buffer solution, and the carboxylated glycan is covalently bonded to the magnetic nano carrier via the carbon diamine activation. The surface; and applying another magnetic field to separate the glycan-coated magnetic nanocarrier. 30 1251841 44. A method of delivering a drug molecule or a biomolecule using a magnetic nanocarrier as described in claim 43 wherein the buffer solution is between 6 and 7. The method of claim 4, wherein the weight ratio of the magnetic nanocarrier to the chitosan is between 10 and 10 1 between 〇〇. 46. The method for using a magnetic nano-drug to deliver a drug molecule or a biomolecule according to claim 43 of the patent range, wherein the carboxylated domain is formed by a carboxylation process, and the carboxylation process further comprises at least : performing a swelling and alkalization step by adding the glycan to an alkaline solution, and performing 〇5 to 15 hours between 5 and valence: the alkaline mixed solution is mixed with an organic Solvent and water; and ', A; for the reduction step, the organic solvent containing sodium acetate is added to the human ^: the money U> gluten, after 55 C to the price between 3 hours to 5 hours to form a carboxyl group and / or carboxymethyl group on the glycan. A method for transporting a drug molecule or a biomolecule using magnetic nanoparticles as described in claim 46 of the patent scope, wherein the organic solvent of ^, Y is isopropyl alcohol. 48. The method of transporting a music molecule or a biomolecule using a magnetic nanocarrier as described in claim 46, wherein the ττ after the carboxylation step, 31 1251841 comprises at least: using about 70 volume percent The carboxylation step is stopped by alcohol; the salt and moisture of the carboxylated glycan are removed using about 99% by volume of alcohol; and the carboxylated glycan is dried at a temperature of about 50 °C. 49. A method of delivering a drug molecule or a biomolecule using a magnetic nanocarrier as described in claim 35, wherein the delivering step is performed in vivo (In Vivo) or in vitro (In Vitro). 32
TW93132221A 2004-10-22 2004-10-22 Magnetic nanoparticles, method for producing the same, and methods for separating and delivering substances by using the same TWI251841B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93132221A TWI251841B (en) 2004-10-22 2004-10-22 Magnetic nanoparticles, method for producing the same, and methods for separating and delivering substances by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93132221A TWI251841B (en) 2004-10-22 2004-10-22 Magnetic nanoparticles, method for producing the same, and methods for separating and delivering substances by using the same

Publications (2)

Publication Number Publication Date
TWI251841B true TWI251841B (en) 2006-03-21
TW200614283A TW200614283A (en) 2006-05-01

Family

ID=37453795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93132221A TWI251841B (en) 2004-10-22 2004-10-22 Magnetic nanoparticles, method for producing the same, and methods for separating and delivering substances by using the same

Country Status (1)

Country Link
TW (1) TWI251841B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763169B2 (en) 2007-07-26 2010-07-27 Industrial Technology Research Institute Magnetic separation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457150B (en) * 2010-10-29 2014-10-21 Univ Nat Cheng Kung Magnetic navigation control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763169B2 (en) 2007-07-26 2010-07-27 Industrial Technology Research Institute Magnetic separation device

Also Published As

Publication number Publication date
TW200614283A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
Li et al. Preparation of core‐shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin
US7547473B2 (en) Magnetic nanoparticles and method for producing the same
Wang et al. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition
Jia et al. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin
Lu et al. Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb (II) from aqueous solution
Zhang et al. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein
Majd et al. Recent advances and applications of cyclodextrins in magnetic solid phase extraction
Dorniani et al. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery
Vasić et al. Structural and magnetic characteristics of carboxymethyl dextran coated magnetic nanoparticles: From characterization to immobilization application
Tai et al. Recent research progress on the preparation and application of magnetic nanospheres
El-Dakdouki et al. A simple method for the synthesis of hyaluronic acid coated magnetic nanoparticles for highly efficient cell labelling and in vivo imaging
Ziegler-Borowska Magnetic nanoparticles coated with aminated starch for HSA immobilization-simple and fast polymer surface functionalization
US20140206822A1 (en) Surface treatment method for magnetic particles, magnetic composite prepared thereby, and magnetic composite for labeling target materials
Khramtsov et al. Conjugation of carbon coated-iron nanoparticles with biomolecules for NMR-based assay
Zhang et al. The role of the OH group in citric acid in the coordination with Fe3O4 nanoparticles
Zhu et al. Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan
Wang et al. Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides
Reddy et al. A simple approach to the design and functionalization of Fe3O4–Au nanoparticles for biomedical applications
Dong et al. Protein adsorption on citrate modified magnetic nanoparticles
Solodov et al. Polyethyleneimine-modified iron oxide nanoparticles: their synthesis and state in water and in solutions of ligands
Zhang et al. Facile synthesis of hyperbranched magnetic nanomaterials for selective adsorption of proteins
Liu et al. Superparamagnetic nano-immunobeads toward food safety insurance
Shirazi et al. Design and fabrication of magnetic Fe3O4-QSM nanoparticles loaded with ciprofloxacin as a potential antibacterial agent
CN111269366B (en) Preparation method of high-selectivity ceftriaxone sodium magnetic molecularly imprinted polymer
TWI251841B (en) Magnetic nanoparticles, method for producing the same, and methods for separating and delivering substances by using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees