TWI244799B - Miniature RF and microwave components and methods for fabricating such components - Google Patents

Miniature RF and microwave components and methods for fabricating such components Download PDF

Info

Publication number
TWI244799B
TWI244799B TW93116127A TW93116127A TWI244799B TW I244799 B TWI244799 B TW I244799B TW 93116127 A TW93116127 A TW 93116127A TW 93116127 A TW93116127 A TW 93116127A TW I244799 B TWI244799 B TW I244799B
Authority
TW
Taiwan
Prior art keywords
conductive
coaxial
layer
component
patent application
Prior art date
Application number
TW93116127A
Other languages
Chinese (zh)
Other versions
TW200511640A (en
Inventor
Elliott R Brown
John D Evans
Christopher A Bang
Adam L Cohen
Michael S Lockard
Original Assignee
Microfabrica Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/607,931 external-priority patent/US7239219B2/en
Application filed by Microfabrica Inc filed Critical Microfabrica Inc
Publication of TW200511640A publication Critical patent/TW200511640A/en
Application granted granted Critical
Publication of TWI244799B publication Critical patent/TWI244799B/en

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, hybrid couplers, antenna arrays and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).

Description

1244799 玖、發明說明: L發明所屬之技術領域3 相關申請案 本申請案請求2003年6月27日提交的美國專利申請案 5 10/607,931號;及2003年6月6曰提交的美國專利申請案 60/476,554號之利益。這兩件申請案以引用方式整體併入本 文中。 發明領域 本發明的實施例係有關電性裝置及其製造方法之領 10 域,而特定實施例有關射頻及微波裝置及其製造方法。本 發明的更特定實施例係有關可至少部份地利用一種公知為 電化學製造的多層電沉積技術加以製造之小型射頻及微波 裝置(譬如濾器、傳輸線、延遲線及類似物)。 L· iltr -iiL Jt 15 發明背景 一種用於從複數個黏附層來形成立體結構(譬如元 件、構件、裝置及類似物)之技術係由孔恩(Adam L. Cohen) 發明並公知為電化學製造。其由加州渤邊克的MEMGen® Corporation以EFAB™名稱購得。此技術描述於20〇〇年2月 20 22日發證的美國專利案6,027,630號中。此電化學沉積技術 可以利用一獨特罩幕技術來選擇性沉積一材料,此罩幕技 術包含使用一罩幕,此罩幕在一與將發生鍍覆的基材呈獨 立之支撐結構上包括有經圖案化的可貼附材料。當需要利 用罩幕進行一電沉積時,在出現一鍍覆溶液的同時帶領罩 1244799 幕的可貼附部分接觸一基材,以使罩幕的可貼附部分對於 基材的接觸作用抑制了選定位置的沉積。為求方便,這些 罩幕可能概括稱為可貼附性接觸罩幕;此罩幕技術可概括 稱為可貼附性接觸罩幕鍍覆程序。更具體言之,在加州渤 5邊克的MEMGen® Corporation用語中,此等罩幕已經公知 為INSTANT MASKS™而此程序公知為INSTANT MASKINGtn^INSTANT MASK™鍍覆。採用可貼附性接觸 罩幕鍍覆之選擇性沉積係可用來形成單層的材料或可用來 形成多層結構。’630號專利案的揭示在此處以引用方式完 10 整地併入本文中。自從上述專利案的專利申請案的提交以 來,已經公開了有關可貼附性接觸罩幕鍍覆(亦即instant MASKING)及電化學製造的多項文件: (1)孔恩、張、曾、曼司菲德、福洛迪及威爾(A· Cohen, G. Zhang,F· Tseng,F· Mansfeld,U· Frodis 及 Ρ· Will), 15 “EFAB :具有小尺寸特性的功能性完全密集的金屬元件之 批次生產”,第9屆固體自由形式製造會議記錄(proc. 9th Solid Freeform Fabrication),德州大學奥斯、;丁分校,pi61, 1998年8月。 (2) 孔恩、張、曾、曼司菲德、福洛迪及威爾(A· Cohen, 20 G. Zhang,F· Tseng, F. Mansfeld,U. Frodis及 Ρ· Will), “EFAB:高尺寸比真實3-D MEMS之快速低成本桌上型微機 械加工”,第12屆IEEE微機電系統研討會會議記錄,IEEE, p244, 1999年1月。 (3) 孔恩(A· Cohen),“藉由電化學製造之3-D微機械加 1244799 二、微機具裝置(Micromachine Devices) ; 1999年3月。 (4) 張、孔恩、福洛迪、曾、曼司菲德及威爾(0,21^1^, A. Cohen,U. Frodis,F· Tseng,F· Mansfeld&Pe Will), “EFAB:真實3-D微結構之快速桌上型製造”,第2屆國際航 5 太應用的積體奈米技術會議之會議記錄(Proc· 2nd International conference on Integrated MicroNanotechnology for Space Applications),The Aerospace Co·,1999年4月。 (5) 曾、福洛迪、張、孔恩、曼司菲德及威爾(F.Tseng,U· Frodis,G· Zhang,A· Cohen,F· Mansfeld及Ρ· Will),“EFAB : 10 使用低成本自動化批次程序之高尺寸比任意3-D金屬微結 構”,第3屆國際高尺寸比微結構技術研討會 (HARMST,99),1999年6月。 (6) 孔恩、福洛迪、曾、張、曼司菲德及威爾(A· Cohen, U. Frodis,F. Tseng,G. Zhang,F. Mansfeld及 Ρ· Will), 15 “EFAB :任意3-D微結構之低成本自動化電化學批次製 造”,微機械加工及微製造程序技術(Micromachining and Microfabrication Process Technology),SPIE 1999微機械加 工及微製造論叢(SPIE 1999 Symposium on Micromachining and Microfabrication),1999年9 月。 20 (7)曾、張、福洛迪、孔恩、曼司菲德及威爾(F. Tseng,G·1244799 发明 Description of the invention: Technical field to which L invention belongs 3 Related applications This application requests US Patent Application No. 5 10 / 607,931 filed on June 27, 2003; and US Patent Application filed on June 6, 2003 Case 60 / 476,554. Both applications are incorporated herein by reference in their entirety. FIELD OF THE INVENTION Embodiments of the present invention relate to the field of electrical devices and manufacturing methods thereof, and specific embodiments relate to radio frequency and microwave devices and manufacturing methods thereof. More specific embodiments of the present invention relate to small radio frequency and microwave devices (such as filters, transmission lines, delay lines, and the like) that can be manufactured at least in part using a multilayer electrodeposition technique known as electrochemical fabrication. L. iltr -iiL Jt 15 BACKGROUND OF THE INVENTION A technology for forming three-dimensional structures (such as elements, components, devices, and the like) from a plurality of adhesive layers was invented by Adam L. Cohen and is known as electrochemistry Manufacturing. It was purchased from MEMGen® Corporation in Bobbock, California under the EFAB ™ name. This technique is described in US Patent No. 6,027,630, issued February 20, 2000. This electrochemical deposition technology can utilize a unique mask technology to selectively deposit a material. The mask technology includes the use of a mask that includes a support structure that is separate from the substrate to be plated. Patterned attachable material. When it is necessary to perform an electrodeposition by using the cover, a cover solution is brought into contact with a substrate while a plating solution is present, so that the contact effect of the attachable portion of the cover to the substrate is suppressed. Deposition at selected locations. For convenience, these masks may be generically referred to as an attachable contact mask; this mask technology may be generically referred to as an attachable contact mask plating process. More specifically, in the language of MEMGen® Corporation in Bogok, California, these masks are known as INSTANT MASKS ™ and this procedure is known as INSTANT MASKINGtn ^ INSTANT MASK ™ plating. Selective deposition systems using adherent contact mask plating can be used to form single layer materials or can be used to form multilayer structures. The disclosure of the '630 patent is incorporated herein by reference in its entirety. Since the submission of the patent application for the above patents, a number of documents regarding attachable contact mask plating (ie, instant MASKING) and electrochemical manufacturing have been disclosed: (1) Kong En, Zhang, Zeng, Man Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis and P. Will, 15 "EFAB: Functionally compact with small size characteristics Batch Production of Metal Components ", Proceedings of the 9th Solid Freeform Fabrication Conference, University of Texas at Austin, Ding, pi61, August 1998. (2) Conn, Zhang, Zeng, Mansfield, Frody, and Will (A. Cohen, 20 G. Zhang, F. Tseng, F. Mansfeld, U. Frodis, and P. Will), "EFAB "Fast and Low-cost Desktop Micro-machining of Real 3-D MEMS with High Size." Proceedings of the 12th IEEE MEMS Symposium, IEEE, p244, January 1999. (3) Cohen, "3-D Micromechanics with Electrochemical Manufacturing 1244799 2. Micromachine Devices; March 1999. (4) Zhang, Kong En, Fuluo Di, Zeng, Mansfield and Will (0,21 ^ 1 ^, A. Cohen, U. Frodis, F. Tseng, F. Mansfeld & Pe Will), "EFAB: The Fast of Real 3-D Microstructures "Desktop Manufacturing", Proc · 2nd International conference on Integrated MicroNanotechnology for Space Applications, Proceedings of the 2nd International Conference on Integrated MicroNanotechnology for Space Applications, The Aerospace Co., April 1999. (5 ) Zeng, Frody, Zhang, Kong En, Mansfield and Will (F.Tseng, U. Frodis, G. Zhang, A. Cohen, F. Mansfeld and P. Will), "EFAB: 10 Use High-size-ratio arbitrary 3-D metal microstructures with low-cost automated batch procedures, "3rd International High-size-ratio Microstructure Technology Symposium (HARMST, 99), June 1999. (6) Korn, Fowler Cohen, U. Frodis, F. Tseng, G. Zhang, F. Mansfeld and P. Will, 15 "EFAB: Any 3- D Low-cost automated electrochemical batch manufacturing of microstructures ", Micromachining and Microfabrication Process Technology, SPIE 1999 Symposium on Micromachining and Microfabrication, 1999 September. 20 (7) Zeng, Zhang, Frody, Conn, Mansfield and Will (F. Tseng, G.

Zhang,U· Frodis,A· Cohen,F. Mansfeld及Ρ· Will),“EFAB : 使用低成本自動化批次程序之高尺寸比任意3-D金屬微結 構”,MEMS論叢(MEMS Symposium),ASME 1999國際機 械工程會議及展覽(ASME 1999 International Mechanical 1244799Zhang, U. Frodis, A. Cohen, F. Mansfeld, and P. Will), "EFAB: High-size-ratio arbitrary 3-D metal microstructures using low-cost automated batch processes", MEMS Symposium, ASME 1999 International Mechanical Engineering Conference and Exhibition (ASME 1999 International Mechanical 1244799

Engineering Congress and Exposition),1999年 11 月。 (8)孔恩(A. Cohen),“電化學製造(EFABTM),,,MEMS 手冊第19章,蓋耶哈克(Mohamed Gad-El-Hak)編集,CRC Press,2002 〇 5 (9)“微製造-快速原型之殺手級應用 (Microfabrication-Rapid Prototyping’s Keller Application)”, 快速原型報告(Rapid Prototyping Report)的第1至5頁, CAD/CAM Publishing,Inc·,1999年6月。 這九件公開文件的揭示以引用方式完整併入本文中。 10 可以上述專利案及公開文件所述之數種不同方式來進 行電化學沉積程序。一形式中,此程序包含在生成待形成 的各層結構期間執行三項分離的操作: 1.在一基材的_或多個所需要區域上藉由電沉積來選 擇性沉積至少一材料。 15 2·然後,藉由電沉積來毯覆沉積至少一額外材料,使 得額外沉積物覆蓋住先前被選擇性沉積之區域以及未接收 任何先如施加的選擇性沉積物之基材區域。 3·最後,將第一及第二操作期間沉積的材料予以平面 一化,以產生第一層所需要厚度之一平坦狀表面且其具有至 20少一包含至少一材料之區域及至少一包含至少一額外材料 之區域。 第層形成之後,一或多個額外層可與緊接的前層相 nM也形成並黏附至該前層的平坦狀表面。這些額外層係藉 由或夕次重覆進行第一至第三操作而形成,其中各後續 1244799 層的形成係以 始基材。 新且增厚的基材來對待先前 %成的層及初 一—所有層皆完成之後,概括藉由-餘刻 5 10 斤-積材料的至少一部分, 私除 成之立體結構。 4擇放預定形 弟—操作所包含之選擇性電沉積的較 ^—翻触解幕鍍覆。在此型鍍覆中,以了方法係藉 夕個可貼附性接觸(CC)罩幕。CC罩幕包括成—或 其上黏附或形成—經圖案化的可貼附性介^構且在 鍍覆材料的蚊橫剖面來將用於各罩幕之可^:依據待 以定型。對於各個彳讀覆的㈣ I材料予 CC罩幕。 而要至少一 - CC罩幕所用的支撐件通常係為由—選 將溶解待鍍覆材料 電鐵且 _ 狀域所形成之一板狀結構。在此业刑 15途徑中,支撐件將在一電鍵程序中作為陽極。—替代^余 徑中’支撐件則可另為-種可在一電鍵操作期間使沉積= 料在從-遠端陽極前往-沉積表面的途中穿過之多孔或其 他穿孔狀材料。不論是何種途徑,cc罩幕皆可能共用二共 同支撑件’亦即用於鑛覆多層材料之可貼附性介電材料的 20圖案可能定位在單一支撐結構的不同區域中。當單一支撐 結構包含多個鍍覆圖案時,整體結構稱acc罩幕而各別的 鍍覆罩幕可稱為“次罩幕,,。在目前的應用中,只有與特定 點相關時才作出此區別。 ' 為了準備進行第一操作的選擇性沉積,將cc罩幕的可 1244799 5 置成為對齊且壓抵住在其上可供發生沉積之基 部八:分(或—先前形成層上或-層的-先前沉積 罩^ 及基㈣壓抵合併之發生方式係使得cc =幕的可_部分中之所錢口包含«溶液。與基材接 罩幕的可_材料係對於以積作為障壁,而充填 ==液之CC罩幕中的開口則作為當供應適當電位及/ 或電心將材·-陽轉如吻幕支撐件)轉移至基材 的非接觸部分(在«操作期間作為陰極)之通路。 10 15 CC罩幕及cc罩幕鑛覆的_範例顯示於第me圖 中°第认圖顯示-由在—陽極12上圖案化的—可貼附或可 變形(譬如彈性體)絕緣體10所組成之cc罩幕8之側視圖。陽 極了有兩種功能。第1A圖亦描纟會—與罩幕8分離之基材6。 口為圖案可具有拓樸複雜性(譬如包含隔離的絕緣體材料 島邛)’其一功能係作為用於經圖案化絕緣體1〇之支撐材 料以維持其整體性及對準。另—功能係作為用於電鑛操作Engineering Congress and Exposition), November 1999. (8) A. Cohen, "Electrochemical Manufacturing (EFABTM)," Chapter 19 of the MEMS Handbook, edited by Mohamed Gad-El-Hak, CRC Press, 2002 〇5 (9) "Microfabrication-Rapid Prototyping's Keller Application", pages 1 to 5 of the Rapid Prototyping Report, CAD / CAM Publishing, Inc., June 1999. These nine The disclosure of one public document is incorporated herein by reference in its entirety. 10 The electrochemical deposition process can be performed in a number of different ways as described in the above patents and publications. In one form, this process is included in the generation of each layer structure to be formed Three separate operations are performed during this period: 1. Selectively deposit at least one material by electrodeposition on one or more required areas of a substrate. 15 2. Then, blanket deposit at least one additional by electrodeposition. Material so that additional deposits cover the area that was previously selectively deposited and the area of the substrate that did not receive any previously applied selective deposits 3. Finally, the material deposited during the first and second operations Flattening to produce a flat surface with the required thickness of the first layer and having at least 20 areas containing at least one material and at least one area containing at least one additional material. After the first layer is formed, one or more An additional layer can also be formed on the immediately preceding layer, nM, and adhere to the flat surface of the previous layer. These additional layers are formed by repeating the first to third operations, or each of them, in which each subsequent 1244799 The formation of the layer is based on the starting material. A new and thicker substrate is used to treat the previously formed layers and the first day. After all the layers are completed, it is summarized by-remaining at least a part of 5 10 kg-product material. Divided into three-dimensional structure. 4 Select the desired shape—selective electrodeposition included in the operation—turn-over solution curtain plating. In this type of plating, the method is based on the applicability. Contact (CC) mask. The CC mask consists of—or is attached to or formed on—a patterned, attachable medium and a mosquito cross-section of the plating material to be used for each mask. : Based on the finalization. CC material is given to the material of each reading. At least one-The support used for the CC cover is usually a plate-like structure formed by selecting the electric iron that will dissolve the material to be plated and the _-shaped domain. In this way, the support will be in a Used as an anode in the keying procedure.-Instead of the 'in-diameter' support, it can be another-a porous or other perforation that allows the deposit to pass through during the operation of a key = the distal anode to the deposition surface Regardless of the approach, the CC screen may share two common supports, that is, the 20 patterns of the attachable dielectric material used for the mineral-clad multilayer material may be positioned in different regions of a single support structure. When a single support structure contains multiple plating patterns, the overall structure is called an acc screen and each plating screen can be called a "second screen." In the current application, it is only made when it is related to a specific point. This difference. 'In order to prepare for the first selective deposition, the cc mask's 1244799 5 can be aligned and pressed against the base on which the deposition can take place. 8: points (or-previously formed layers or -Layer-The previous deposition of the mask ^ and the combination of the substrate pressure occurred in such a way that the cc = part of the curtain can contain «solution. The material which is connected to the substrate curtain is based on the product as Barrier, and the opening in the CC hood filled with == liquid is used as a suitable potential and / or electric core to transfer the material to the non-contact part of the substrate (during operation) As the cathode). 10 15 Examples of CC screens and cc screens are shown in the figure below. The first figure shows-patterned on-anode 12-can be attached or deformable (such as Elastomer) Side view of cc cover 8 composed of insulator 10. The anode has two functions. Section 1A Also described will be-the substrate 6 separated from the mask 8. The mouth can be a pattern with topological complexity (for example, including an island of isolated insulator material). One of its functions is to support the patterned insulator 10. Materials to maintain their integrity and alignment. Another feature is to be used in power mining operations

之陽極。CC罩幕鍍覆係藉由將絕緣體簡單地壓抵住基材然 後將材料經由開孔26a及26b電沉積在絕緣體中以使材料22Of the anode. CC screen plating is performed by simply pressing the insulator against the substrate and then electrodepositing the material into the insulator through the openings 26a and 26b to make the material 22

运擇性沉積在一基材6上,如第1B圖所示。沉積之後,較佳 20 利用非破壞性方式使CC罩幕自基材6分離,如第1C圖所 示cc罩幕鑛覆程序與“貫穿罩幕(thr〇Ugh_mask),,鑛覆程序 之區別在於:貫穿罩幕鍍覆程序中,將以破壞性方式發生 罩幕材料自基材的分離。如同貫穿罩幕鍍覆,CC罩幕鍍覆 係將材料選擇性及同時地沉積在整層上方。鍍覆區域可由 一或多個隔離的鍍覆區域所組成,其中這些隔離的鍍覆區 11 1244799 域可屬於所形成的單一結構或可屬於同時 構。在CC罩幕謝,由於各別罩幕並未在移 刻意破壞,其可在多次鑛覆操作中使用。&序中被 CC罩幕及cc罩幕鐘覆之另1例顯示物⑽圖 中。苐m圖顯示-陽極12,與—罩幕8,分離,罩幕8,包括一 經圖案化的可_材料1G,及—切結齡第_亦描徐 基材6與罩幕8,分離。第1E_示使罩幕8,接觸基材6。第 帽顯不將-電流從陽極12,傳導至基材崎產生之沉積物 10Optionally deposited on a substrate 6 as shown in Figure 1B. After deposition, it is preferred that the CC mask be separated from the substrate 6 in a non-destructive manner. As shown in Figure 1C, the cc mask cladding procedure and the "through-throttle mask (thr0Ugh_mask)" are different. The reason is that in the through-mask plating process, the separation of the mask material from the substrate will occur in a destructive manner. Like the through-mask plating, the CC mask plating selectively and simultaneously deposits the material over the entire layer. The plated area can be composed of one or more isolated plated areas, where these isolated plated areas 11 1244799 domains can belong to a single structure formed or can belong to a simultaneous structure. Thanks to the CC cover, since the individual covers The screen has not been deliberately destroyed, and it can be used in multiple ore cover operations. &Amp; Another example of a display object covered by the CC cover screen and the cc cover clock in the sequence. 苐 m image display-anode 12 Separate from the cover screen 8, the cover screen 8, including a patterned material 1G, and the cut-off age _ also describes the separation of the base material 6 and the cover screen 8. The 1E_ shows the cover screen 8, Contact the substrate 6. The cap does not conduct a current from the anode 12 to the deposit 10 generated by the substrate

22,。㈣圖顯示自罩幕8,分離之後位於基材6上的沉積物 22,。此範例中’將一適當電解質定位在基材6與陽極η,之 間且將-來自溶液與陽極其中—者或兩者之離子流傳導經 過罩幕中的開口月;!往供材料沉積處之基材。此型罩幕可稱 為無陽極mSTANT MASK,娜)或無陽極可貼附性接觸 (ACC)罩幕。 15 不同於貫穿罩幕錢覆,CC罩幕鑛覆可讓cc罩幕形成為twenty two,. The figure shows the sediment 22, which is located on the substrate 6, after separation from the mask 8. In this example, an appropriate electrolyte is positioned between the substrate 6 and the anode η, and the ion current from one or both of the solution and the anode is conducted through the opening in the mask; to the place where the material is deposited Of the substrate. This type of screen can be called an anodized mSTANT MASK (na) or an anodically attachable contact (ACC) screen. 15 Unlike the penetrating cover, the CC cover can cover the cc cover as

與其上發生鍍覆之基材製造呈現完全分離(譬如與一所形 成的立體(3D)結構分離)qCC^幕可以多種不同方式形成, 譬如可使用-光微影程序。可在結構製造之前而非在製造 期間同時地產生所有罩幕。此分離作用可具有簡單、低 成本自動化自我各納且内部潔淨的“桌上型工廠,,且其 可裝設在幾乎任何地方來製造3D結構,而將諸如光微影等 任何所需要的潔淨室程序留給服務當局或類似單位進行。 上述電化予製造程序之一範例顯示於第圖中。之 些圖顯示該程序包含沉積一身為可犧牲材料之第-材m 12 1244799 及一身為結構性材料之第二材料4。CC罩幕8在此範例中包 括一經圖案化的可貼附材料(譬如彈性體介電材料)1〇及一 由沉積材料2製成之支撐件12。cc罩幕的可貼附部分係壓 抵住基材6且有一鍍覆溶液14位於可貼附材料1〇中的開口 5 16内。一來自電源供應器18的電流隨後係經由(a)加倍作為 一陽極之支撐件12及(1))加倍作為一陰極之基材6而穿過鍍 覆洛液14。第2A圖顯示電流的通過將造成鍍覆溶液内的材 ’ 料2及來自陽極12的材料2選擇性轉移且鍍覆在陰極6上。利 用CC罩幕8將第一沉積材料2電鍍在基材6上之後,cc罩幕8 φ 1〇如第2B圖所示加以移除。第2C圖描繪已經毯覆沉積(亦即非 遥擇性沉積)在先前沉積的第一沉積材料2上方及基材6的 八他α卩刀上方之第二沉積材料4。利用從一由第二材料構成 之陽極(未圖示)經過一適當鍍覆溶液(未圖示)電鍍至陰極/ 基材6之作用,藉以發生毯覆沉積。隨後將整體二種材料層 、平面化來達成精岔的厚度及平坦度,如第2d圖所示。 在對於所有層重覆此程序之後,第二材料4(亦即結構性材 料)所形成之多層結構2〇係嵌入第一材料2(亦即可犧牲材料) φ 中,如第2Ε圖所示。將經嵌入結構加以蝕刻以產生所需要 的裝置,亦即結構20,如第2F圖所示。 2〇 一示範性人工電化學製造系統32的各種構件顯示於第 一 3A-3C圖。系統32由數個次系統%、%、38及4〇所組成。基 · 材固持次系統34描繪於第3Α至3〇圖上部中且包括數個構 件:(1)一載具48,(2)—金屬基材6,其上沉積有層,及(3) 線性滑件42,其能夠回應來自致動器44的驅動力而將基 13 ^44799 5 10 15 20 _目對於載具48往上及往下移動。次 夏測基鉍沾+ 士 4亦包括一用如 基材的垂直位置差異之指㈣46, 用於 -層厚度及/或沉積厚度。次系統34進:,-或块 之足物且其可精祕安裝錢“36上。㈣於戴具 數一幕(二二二:::=-精密的v,(4)框架72,其上可安 %亦包括二Γ58^於容納電解f 16 °次系統⑷ 合的電連心纟至—適當電源以驅動CC罩幕程序之立 田的電連接部(未圖示)。 構件毯t積次系統38在圖中位於第3B圖下部並包括㈣ .()-%極62’(2)一電解質貯槽64, Γ’及(3)框架74,其上可坐接有次系〜二 包t用於將陽極連接至—適#的電源供應器以㈣ %復/儿積程序之適當的電連接部(未圖示)。 平面化次系統40在圖中係位於第3C圖下部並包括一办 磨板52及用於將沉積物平面化之相關㈣作及控制系为 (未圖示)。 除了揭露對㈣沉積用途使用CC罩幕之外,,63(m| 利案亦«可將CC罩幕放置抵住—基材且使電壓極= 轉’可糟以從基材選擇性移除材料。顯示出可利用此等移 除程序來選擇性_、雕職拋光-諸如飾板等基材。 另-種從經電錢金屬來形成微結構(亦即使㈣化學It can be completely separated from the manufacturing of the substrate on which it is plated (eg, separated from a three-dimensional (3D) structure formed). The qCC ^ curtain can be formed in many different ways, for example, a photolithography process can be used. All masks can be produced simultaneously before the structure is manufactured, rather than during manufacture. This separation can have a simple, low-cost, self-contained "desktop factory" that is self-contained and clean inside, and it can be installed in almost any place to make 3D structures, and it can clean any required The room procedure is left to the service authority or a similar unit. An example of the above-mentioned electrochemical pre-manufacturing procedure is shown in the figure. Some figures show that the procedure includes the deposition of a material that is a sacrificial material m 12 1244799 and a structure that is structural The second material of the material 4. The CC cover 8 in this example includes a patterned attachable material (such as an elastomeric dielectric material) 10 and a support member 12 made of a deposition material 2. The cc cover The attachable portion is pressed against the substrate 6 and a plating solution 14 is located in the opening 5 16 in the attachable material 10. A current from the power supply 18 is then doubled as an anode via (a) The supporting members 12 and (1)) double as a cathode substrate 6 and pass through the plating solution 14. Figure 2A shows that the passage of current will cause the materials in the plating solution and the materials from the anode 12 2Selective transfer and plating on the overcast 6. After the first deposition material 2 is plated on the substrate 6 using the CC mask 8, the cc mask 8 φ 10 is removed as shown in Figure 2B. Figure 2C depicts the blanket deposition (ie Non-remote selective deposition) A second deposition material 4 above the previously deposited first deposition material 2 and above the alpha trowel of the substrate 6. It is passed through an anode (not shown) made of the second material. An appropriate plating solution (not shown) is applied to the cathode / substrate 6 to perform blanket deposition. Subsequently, the entire two material layers are planarized to achieve the thickness and flatness of the fork, as shown in Figure 2d. After repeating this procedure for all layers, the multilayer structure 20 formed by the second material 4 (ie, the structural material) is embedded in the first material 2 (that is, the sacrificial material) φ, as in Section 2E. As shown in the figure. The embedded structure is etched to produce the required device, that is, structure 20, as shown in Figure 2F. Various components of an exemplary artificial electrochemical manufacturing system 32 are shown in the first 3A-3C. Fig. System 32 consists of several sub-systems%,%, 38 and 40. Basic material The holding system 34 is depicted in the upper part of Figures 3A to 30 and includes several components: (1) a carrier 48, (2) a metal substrate 6, on which a layer is deposited, and (3) a linear slider 42, which can respond to the driving force from the actuator 44 to move the base 13 ^ 44799 5 10 15 20 _ head up and down for the vehicle 48. The next summer measurement base bismuth + + 4 also includes an application such as The difference in the vertical position of the substrate means ㈣46, which is used for-layer thickness and / or deposition thickness. Sub-system 34 :,-or block foot and it can be installed on the money "36." A few scenes of Yu Yu wearing (22 ::: =-precision v, (4) frame 72, which can also include two Γ58 ^ in the electrical connection of the electrolysis f 16 ° secondary system纟 to—appropriate power source to drive the electrical connection (not shown) of Tachida of the CC curtain program. The component blanket system 38 is located in the lower part of Figure 3B and includes ㈣. ()-% Pole 62 '( 2) An electrolyte storage tank 64, Γ ′, and (3) a frame 74 on which sub-systems can be seated. Two packs are used to connect the anode to a suitable power supply unit. Appropriate electrical connection (not shown). The planarization sub-system 40 is located in the lower part of Figure 3C and includes a grinding plate 52 and related operations and controls for planarizing the sediment (not shown). Picture). In addition to exposing the use of CC screens for plutonium deposition applications, 63 (m | the case also «can place the CC screen against the substrate and the voltage pole = turn 'can be used to remove the substrate Selective removal of materials. It has been shown that such removal procedures can be used to selectively polish substrates such as trim panels. Another is to form microstructures from electro-money metals (even if it is chemically modified)

14 1244799 製造技術)之方法係揭露於發是予恭施(Henry Guckel)名稱 為“藉由可犧牲金屬層利用多階層深x光微影術之微結構形 成方法,’之美國專利案5,190,637號中。此專利案揭露利用罩 幕曝光來形成金屬結構。將第一層主要金屬電鍍在一暴露 5 的鍍覆基底上以充填一光阻中的空隙,然後移除光阻且將 一次要金屬電錢在第一層上方及鐘覆基底上方。次要金屬 的暴露表面隨後係機械加工減低至'^可暴露出第一金屬之 高度,以產生一延伸橫越主要及次要金屬之平坦均勻的表 面。隨後首先將一光阻層施加至第一層上方然後重覆用以 10 產生第一層之程序藉以開始第二層的形成作用。隨後重覆 此程序,直到形成整體結構且藉由蝕刻移除次要金屬為 止。光阻藉由鑄造形成於鍍覆基底或前層上方,且經由X 光或紫外線輻射通過一經圖案化罩幕使光阻曝光來形成光 阻中之空隙。 15 電化學製造提供了以合理成本及合理時間來形成原型 及商業數量的小型物體(譬如介尺寸及小尺寸物體)、元件、 結構及類似物之能力。事實上,電化學製造係為能夠形成 許多迄今無法製造出來的結構之致能因素。電化學製造在 許多產業領域中開啟了新的設計及產品系列。即使電化學 2〇製造提供此種新能力且瞭解到電化學製造技術可與各不同 嶺碱内已知的設計及結構合併來產生新的結構,電化學製 造的特定應用在特定應用領域内的先前技術方面係提供了 未知或尚未為人明顯涊知之設計、結構、能力及/或特性。 在電構件及糸統領域且特別在射頻及微波構件及系統 15 1244799 的領域内仍需要具有降低的尺寸、降低的製造成本、增進 的可靠度、不同頻率範圍的應用及/或其他經增強的特性及 類似物之裝置。 【發明内容】 5 發明概要 本發明的多種型態之一目的係提供具有降低的尺寸之 射頻構件。 本發明的多種型態之一目的係提供具有降低的製造成 本之射頻構件。 10 本發明的多種型態之一目的係提供具有增進的可靠度 之射頻構件。 本發明的多種型態之一目的係提供具有可使其適合在 更多頻帶内使用的設計特性之射頻構件。 本發明的多種型態之一目的係提供具有可提供諸如較 15 大賴寬等經增進能力的特性之射頻構件。 熟習該技術者經由本文的揭示可以瞭解本發明的多種 型態之其他目的及優點。此處明示或可由本文揭示以其他 方式確認之本發明的多種型態係可單獨或合併地解決任一 上述目的或者可能未解決上述任何目的而是解決可由本文 20 揭示所確認之部分其他目的。並無意藉由本發明的單一型 態來解決所有這些目的,即便部分型態可能如此。 本發明的第一型態係提供一用於導引或控制輻射之同 軸射頻或微波構件,其包括:一傳導結構中之至少一射頻 或微波輻射進入埠;傳導結構中之至少一射頻或微波離開 1244799 埠;至少-通道,其在側邊上大致被傳導結構所限定,射 頻或微波輻射從至少-進入埠移行到至少一離開蜂時係穿 過傳導結構;-中央導體,其沿著從進入璋到離開璋之一 段長度的至少-通這而延伸;且其中傳導結構包括從通道 5延伸至一外區之一或多個開孔,其中開孔具有不大於波長 的1/10或雙微米其中較大者之尺寸且其預定不使顯著的 射頻輕射通過。 本發明的第二型態係提供—微裝置之製造方法,此方 法包括:沉積複數個黏附層的材料,其中各層材料的沉積 10係包括沉積至少一第—材料;沉積至少一第二材料;及在 沉積複數層之後移除第—或第二材料的至少一部分;复中 藉由沉積及移除所產生之一結構係提供至少一可作為射 〇微波控制、引導、發送或接收構件之結構,並包括1 導結構中之至少-射頻或微波轄射進入埠;傳導結構 15至少-射頻或微波輕射離開埠;至少一通道,其在側 大致被傳導結構所限定,射頻或微波輕射從至少一進 移仃到至少一離開琿時係穿過傳導結構;一中央導體,其 沿著從進入埠到離開埠之一段長度的至少-通道而延伸; 20 =其中傳導結構包括從通道延伸至一外區之一或多個開 、中開孔具有T大料長的1/1()或2()吸#其巾較 之尺寸且其預定不使顯著的射頻轄射通過。 人本毛月的第—型.%提供—種四埠混合搞合器,其包 二有四個微小型同Μ件之複數個黏附層的材料,四個同 疋件的第—者係延伸於四個埠的兩者之間,JL同軸元二 17 1244799 的第二者延伸於四個埠的另兩者之間,其餘兩個同軸元件 延伸於第一及第二同轴元件之間,其中將該段長度的至少 一同軸元件之至少一部分排列成蜿蜒形式。 本發明的第四型態提供一種用於將訊號供應至一被動 5 陣列的N個天線元件以產生複數個束之電路之製造方法,此 方法包括:沉積複數個黏附層的材料以形成(N/2)log2N個四 埠混合耦合器且其各包括四個微小型同軸元件,其中各同 軸元件延伸於混合耦合器之個別一對的埠之間以使一對同 軸元件耦合至各埠;及將至少部分混合耦合器經由相位移 10 構件連接至其他耦合器,以形成一巴特勒矩陣(Butler matrix) 〇 本發明的第五型態係提供一種用以將訊號供應至一被 動陣列的N個天線以產生複數個束之巴特勒矩陣,且其包括 (N/2)log2N四璋混合耦合器而各四埠混合耦合器包括四個 15 微小型同軸元件,四個同軸元件的第一者延伸於混合四個 埠的兩者之間,其餘兩個同軸元件則延伸於第一與第二同 軸元件之間,其中至少一同軸元件的至少一部分長度排列 成蜿蜒形式。 本發明的一型態係提供一微小型射頻或微波同軸構 20 件,其包括一内導體,内導體具有一大致與一外導體軸線 呈同軸之軸線,其中内及外導體彼此分隔一介電間隙,其 中從外導體的一内側壁到外導體的一相對内側壁之最小橫 剖面尺寸係小於約200微米。在本發明的此型態之一特定變 化例中,外導體具有一大致呈長方形的橫剖面組態。 1244799 5 10 15 20 本發明的一型態係提供一種優先使一位於理想頻帶的 幸田射通過之同軸射頻或微波構件,其包括:一傳導結構中 之至J 一射頻或微波輻射進入埠;傳導結構中之至少_射 頻或微波輕射離開埠;至少—通道,其在側邊上大致被傳 構所限定,射頻或微波輻射從至少一進入埠移行到至 夕—離開埠時係穿過傳導結構;-中央導體,其從進入埠 到離開埠沿著至少一通道而延伸;及至少一傳導輪輻,其 在複數個位置各者上延伸於中央導體與傳導結構之間,其 中在忒通道内對於可藉由構件通過之一頻率,沿著該通道 長度的連績位置係分隔近似一傳播波長的一半或其整數倍 ”中滿足一或多種下列條件:(1)中央導體、傳導結構 及傳¥輪輪為單調性(monolith⑹,⑺對於沿著通道的輕射 傳播方向呈垂直之通道的_橫剖面尺寸係小於約丄公厘、更 涌瀆:约0·5公厘且最佳小於約〇·25公厘,(3)大於約50%的 、士:'充填有一氣態媒體、更佳大於約7〇%的通道充填有 孔〜、媒體、取佳大於約9Q%的通道充填有—氣態媒體,⑷ 件之傳導部分的至少—部分係由—電沉積程序所形成, )構件之傳導部分的至少_部分係由複數個連續沉積的層 f成、、(6)通道的至少—部分具有—概呈長方形的形狀, 、首體的至少一部分具有—概呈長方形的形狀,⑻通 二者:二維非線性路徑延伸,⑼通道沿著—三維路徑延14 1244799 (manufacturing technology) method was disclosed to Henry Guckel under the name "Micro-structure formation method using multi-level deep x-ray lithography by sacrificing metal layers," U.S. Patent 5, No. 190,637. This patent discloses the use of mask exposure to form a metal structure. The first layer of main metal is plated on an exposed substrate 5 to fill a gap in a photoresist, and the photoresist is removed and the photoresist is removed once. The metal money is required to be above the first layer and above the clock-covered substrate. The exposed surface of the secondary metal is subsequently reduced by machining to a level where the first metal can be exposed to produce an extension across the primary and secondary metals. A flat and uniform surface. Then a photoresist layer is first applied on top of the first layer and then the process of generating the first layer by 10 is repeated to start the formation of the second layer. This process is then repeated until the overall structure is formed and Until the secondary metal is removed by etching. The photoresist is formed by casting over the plating substrate or front layer, and is formed by exposing the photoresist through a patterned mask through X-ray or ultraviolet radiation. 15 Electrochemical manufacturing provides the ability to form prototypes and commercial quantities of small objects (such as meso- and small-sized objects), components, structures, and the like at reasonable cost and time. In fact, electrochemical Manufacturing is an enabling factor that can form many structures that have not been manufactured so far. Electrochemical manufacturing has opened new designs and product lines in many industrial fields. Even if electrochemical 20 manufacturing provides such new capabilities and understands electrochemical Manufacturing technology can be combined with known designs and structures in different alkaloids to create new structures. The specific applications of electrochemical manufacturing in the prior art aspects of specific application areas provide designs that are unknown or not yet apparently known, Structure, capability, and / or characteristics. In the field of electrical components and systems, and especially in the field of RF and microwave components and systems 15 1244799, there is still a need to have reduced size, reduced manufacturing costs, increased reliability, and different frequency ranges. Application and / or other enhanced features and similar devices. [Summary] 5 Summary of the Invention One of the objects of the various aspects of the present invention is to provide a radio frequency component having a reduced size. One of the objects of the various aspects of the present invention is to provide a radio frequency component having a reduced manufacturing cost. 10 One of the objects of the various aspects of the present invention is To provide a radio frequency component with improved reliability. One object of various aspects of the present invention is to provide a radio frequency element having design characteristics that make it suitable for use in more frequency bands. One object of various aspects of the present invention is to provide Radio frequency components with enhanced capabilities that can provide enhanced capabilities such as greater than 15 Lai wide. Those skilled in the art can understand the other purposes and advantages of the various forms of the present invention through the disclosure of this document. Expressly stated herein or may be disclosed by this document to other The various forms of the invention identified in the manner can solve any of the above-mentioned objectives individually or in combination or may not solve any of the above-mentioned objectives but solve some of the other objectives identified by the disclosure herein. It is not intended to address all of these objectives with a single form of the invention, even though some forms may be so. A first aspect of the present invention provides a coaxial RF or microwave component for guiding or controlling radiation, which includes: at least one RF or microwave radiation in a conductive structure entering a port; at least one RF or microwave in a conductive structure Leaving the 1244799 port; at least-the channel, which is generally defined by the conducting structure on the side, and the radio frequency or microwave radiation passes through the conducting structure when it migrates from the at least-entering port to at least one leaving the bee;-the central conductor, which follows A length of at least one-to-one extending from entering into leaving 璋; and wherein the conductive structure includes one or more openings extending from channel 5 to an outer region, wherein the openings have a wavelength not greater than 1/10 or double The larger of the micrometers is dimensioned and is not intended to pass significant radio frequency light emissions. A second aspect of the present invention provides a method for manufacturing a micro-device, the method comprising: depositing a plurality of adhesive layers of materials, wherein depositing 10 materials of each layer includes depositing at least one first material; depositing at least one second material; And removing at least a portion of the first or second material after depositing a plurality of layers; a structure produced by the deposition and removal in the complex provides at least one structure that can be used as a microwave control, guidance, sending or receiving member And includes at least-radio frequency or microwave radiation entering the port in the 1-conductor structure; conduction structure 15 at least-radio frequency or microwave light exiting the port; at least one channel, which is generally limited by the conductive structure on the side, radio frequency or microwave light radiation When moving from at least one advance to at least one exit, it passes through the conductive structure; a central conductor that extends along at least a channel of a length from the entry port to the exit port; 20 = where the conductive structure includes an extension from the channel One or more of the openings or middle openings in an outer region have a length of 1/1 () or 2 () suction # which is relatively large in size and is not intended to pass significant radio frequency radiation. The first-type.% Of the human hair month provides a four-port hybrid coupler, the package of which has four micro-small pieces with multiple adhesive layers of materials, the first four of the same pieces of extension Between the two ports, the second one of JL coaxial element 17 1244799 extends between the other two of the four ports, and the remaining two coaxial components extend between the first and second coaxial components. At least a part of the at least one coaxial element of the length is arranged in a meandering form. A fourth aspect of the present invention provides a manufacturing method of a circuit for supplying signals to N antenna elements of a passive 5 array to generate a plurality of beams. The method includes: depositing a plurality of adhesive layers to form (N / 2) log2N four-port hybrid couplers, each of which includes four micro-miniature coaxial elements, wherein each coaxial element extends between an individual pair of ports of the hybrid coupler to couple a pair of coaxial elements to each port; and At least a part of the hybrid coupler is connected to other couplers via a phase shift 10 member to form a Butler matrix. The fifth aspect of the present invention provides a N-type for supplying signals to a passive array. The antenna is used to generate a Butler matrix of a plurality of beams, and it includes (N / 2) log2N quadrupole hybrid couplers and each four-port hybrid coupler includes four 15 micro-miniature coaxial elements, the first extension of the four coaxial elements Between the two of the mixed four ports, the remaining two coaxial components extend between the first and second coaxial components, at least a portion of at least one of the coaxial components is arranged in a meandering length. . One aspect of the present invention provides a micro-miniaturized RF or microwave coaxial structure 20 including an inner conductor, the inner conductor having an axis substantially coaxial with an outer conductor axis, wherein the inner and outer conductors are separated from each other by a dielectric. The gap, where the smallest cross-sectional dimension from an inner side wall of the outer conductor to an opposite inner side wall of the outer conductor is less than about 200 microns. In a specific variation of this aspect of the invention, the outer conductor has a substantially rectangular cross-sectional configuration. 1244799 5 10 15 20 A type of the present invention provides a coaxial RF or microwave component that preferentially passes a Koda shot located in an ideal frequency band, including: a conductive structure to J-RF or microwave radiation entering a port; conduction At least _ radio frequency or microwave light exits the port; at least-the channel, which is generally limited by the transmission structure on the side, and the radio frequency or microwave radiation moves from at least one entry port to the evening-when it leaves the port, it passes through the conduction Structure;-a central conductor that extends along at least one channel from the entry port to the exit port; and at least one conductive spoke that extends between the central conductor and the conductive structure at each of a plurality of locations, where in the 忒 channel For a frequency that can pass through a component, successive positions along the length of the channel are separated by approximately one-half of a propagation wavelength or an integer multiple thereof "in one or more of the following conditions: (1) the central conductor, the conductive structure, and the ¥ Round wheels are monolithic (monolith⑹, ⑺ for the channel that is perpendicular to the light emission propagation direction of the channel _ cross-section size is less than about 丄 millimeters, more profuse: about 0.5 Mm and preferably less than about 0.25 mm, (3) greater than about 50%, taxi: 'filled with a gaseous media, more preferably greater than about 70% of the channel is filled with holes ~, media, preferably greater than about 9Q% of the channels are filled with-gaseous media, at least-part of the conductive part of the file is formed by-electrodeposition process,) at least _ part of the conductive part of the component is composed of a plurality of successively deposited layers f ,, ( 6) At least-part of the channel has a substantially rectangular shape, and at least part of the head body has a-almost rectangular shape, which passes through both: a two-dimensional nonlinear path extends, and the channel extends along a three-dimensional path.

申’(10)通道包括至少一 m A 3曲&,且幫曲區中之通道的一側 ^有—比起彎曲區中之通道的—相對側標稱上更小的 從且設有魏個具妹小Μ之表龍I部,(11)傳導結 19 1244799 構在一成多個位置上設有通路,其中傳導結構的一表面上 之電場(妒果有的話)將已經小於其在通道内之最大值的 20%、更律小於其在通道内之最大值的10%、甚至更佳小於 其在通遘内之最大值的5%、最佳其中電場已近似為零,(12) 5傳導結搆在一或多個位置上設有不同傳導材料的補綴部, 其中傳導結構的表面上之電場(如果有的話)將已經小於其 在通道内之最大值的20%、更佳小於其在通道内之最大值 的10%、甚至更佳小於其在通道内之最大值的5%、最佳其 中電場已近似為零,(13)在對於以介於6〇。與12〇。間角度相 ίο遇之通道为^又的至少部分接頭處使用斜接的角落,及/或(14) 傳導輪輻分隔了一半波長之整數倍數而且位於中央導體上 的鼓起部或從傳導結構延伸的鼓起部係在與傳導輪輕分隔 了近似-半波長的整數倍數之—或多個位置上延伸至通道 内。 ^月的型悲係提供一種優先使一位於理想頻帶的 輕射通過之同軸射頻或微波構件,其包括:—傳導結構中 之至少—射頻或微波輕射進人璋;傳導結構中之至少一射 20 :=波_,,埠;至少一通道,其在側邊上大致被傳 、。所限疋’射頻或微波_從至少_進 道之、者至;一通遏而延伸;且在沿著一段長度的通 :之:“固位置上,—對料性根段從沿著-段長度的通 二问位置延伸,其中一根段具有電感性質而另-根容性質’且其各延伸至―自通道_側延伸之關 20 1244799 閉的通路内’其中在該通道内對於可藉由構件通過之一頻 率,沿著該通道長度的連續位置係分隔近似一傳播波長的 四分之-或其整數倍數,其中滿足一或多種下列條件:⑴ 中央導體、傳導結構及傳導根段為單調性,⑺對於沿著通 5這的幸S射傳播方向呈垂直之通道的一橫剖面尺寸係小於約 1公厘、更佳小於約0.5公厘且最佳小於約〇·25公厘,(3)大於 約50%的通道係充填有_氣態媒體、更佳大於約7〇%的通道 充填有一氣態媒體、最佳大於約9〇%的通道充填有一氣態 媒體,(4)構件之傳導部分的至少一部分係由一冑沉積程序 10所形成,(5)構件之傳導部分的至少一部分係由複數個連續 沉積的層所形成,(6)通道的至少一部分具有一概呈長方形 的形狀,⑺中央導體的至少一部分具有一概呈長方形的形 狀’(8)通道沿著一二維非線性路徑延伸,(9)通道沿著一三 維路徑延伸,(10)通道包括至少一彎曲區,且彎曲區中之通 15迢的一側壁係具有一比起彎曲區中之通道的一相對側標稱 上更小的半徑且設有複數個具有較小半徑之表面振盪部, (11)傳導結構在一或多個位置上設有通路,其中傳導結構的 一表面上之電場(如果有的話)將已經小於其在通道内之最 大值的20%、更佳小於其在通道内之最大值的1〇%、甚至更 20佳小於其在通道内之最大值的5%、最佳其中電場已近似為 零,(12)傳導結構在一或多個位置上設有不同傳導材料的補 綴部,其中傳導結構的表面上之電場(如果有的話)將已經小 於其在通道内之最大值的20%、更佳小於其在通道内之最 大值的10%、甚至更佳小於其在通道内之最大值的5%、最 1244799 佳其中電場已近似為零,(13)在對於以介於60°至120°的角 度相遇之通道分段的至少部分接頭處使用斜接的角落,及/ 或(14)傳導根段分隔了四分之一波長的整數倍數而且位於 中央導體上的鼓起部或從傳導結構延伸的鼓起部係在與傳 5 導根段分隔了近似一半波長的整數倍數之一或多個位置上 延伸至通道内。 本發明的一型態係提供一種用於引導或控制輻射之同 軸射頻或微波構件,其包括:一傳導結構中之至少一射頻 或微波輻射進入埠;傳導結構中之至少一射頻或微波輻射 10 離開璋;至少一通道,其在側邊上大致被傳導結構所限定, 射頻或微波輻射從至少一進入埠移行到至少一離開埠時係 穿過傳導結構, 一中央導體,其從進入埠到離開埠沿著一段長度的至 少一通道而延伸;及通道中的一分支,其下可供中央導體 15 的一分支行經且其中中央導體相對於傳導結構呈短路,且 其中滿足至少一項下列條件:(1)中央導體的分支、圍繞該 分支之傳導結構、及中央導體與傳導結構之間的一短路位 置係為單調性,(2)中央導體或傳導結構的至少一部分係包 括由複數個連接沉積層所形成之材料,及/或(3)中央導體或 20 傳導結構的至少一部分係包括由複數個電沉積程序所形成 之材料。 本發明的一型態係提供一種用於引導或控制輻射之同 轴射頻或微波構件,其包括:一傳導金屬結構中之至少一 射頻或微波輻射進入埠;傳導金屬結構中之至少一射頻或 1244799 微波輻射離開埠;至少一通道,其在側邊上大致被傳導金 屬結構所限定,射頻或微波輻射從至少一進入埠移行到至 少一離開埠時係穿過傳導金屬結構;且其中滿足至少一項 下列條件··(1)傳導金屬結構的至少一部分係包括由複數個 5 電沉積操作所形成之一金屬,及/或(2)傳導金屬結構的至少 一部分係包括由複數個連續沉積層所形成之一金屬。 本發明的一型態係提供一種用於引導或控制輻射之同 軸射頻或微波構件,其包括:一傳導金屬結構中之至少一 射頻或微波輻射進入埠;及至少一通道,其在側邊上大致 10 被傳導金屬結構所限定,射頻或微波輻射從至少一進入埠 移行時係穿過傳導金屬結構;且其中金屬結構的至少一部 分係包括由複數個電沉積操作及/或由複數個連續沉積層 所形成之一金屬。 本發明的一型態係提供一種用於引導或控制輻射之同 15 軸射頻或微波構件,其包括:一傳導金屬結構内之至少一 射頻或微波輻射進入埠及至少一離開埠;及至少一通道, 其在側邊上大致被傳導金屬結構所限定,射頻或微波輻射 從至少一進入埠移行時係穿過傳導金屬結構;及沿著至少 一通道之至少一分支通路,其中圍繞於通道之傳導金屬結 20 構以及來自通道緊鄰於通路的一分支區之通路係為單調 性。 本發明的各型態之一特定變化例中,生產過程包括一 或多項下列操作:(1)選擇性電沉積一第一傳導材料及電沉 積一第二傳導材料,其中第一或第二傳導材料的一者為可 1244799 犧牲材料而另一者為結構性材料· 十,(2)電沉積一第一傳導好 料,選擇性钱刻第一結構性材料以 、 生成至少一空隙,a雷 沉積一第二傳導材料以充填該至少—外、· 、电 <隙,(3)電沉稽牵φ 一傳導材料,沉積至少一可流動的介 、 晶層的傳導材料以準備形成下及’儿積一籽 遥擇性電沉積一第一傳導材料,妙 (} 、,、, 4後電沉積一第二傳導材 料,然後選擇性#刻第一或第二值 V材料的一者,狹後雷 沉積一第三傳導材料,其中第一、…、伋电 弟二或第三材料的至少 一者為可犧牲材料且其餘兩材料 10 料0 、至少一者為結構性材 〇 本發明的各型悲之另一特定變 欠化例中,生產過程包括 一或多項下列操作··(1)自至少一处 这 〜構性材料分離至少一可 犧牲材料;(2)自(a)—第二可犧牲技 材枓及(b)至少一結構性材 15Shen '(10) aisle includes at least one m A 3 song & and one side of the aisle in the help zone has — nominally smaller than the opposite side of the aisle in the bend zone — and is provided with Wei Gao Xiaomei ’s Table Dragon Part I, (11) Conduction junction 19 1244799 is constructed in multiple positions with pathways, where the electric field on one surface of the conduction structure (if there is envy) will be less than Its maximum value in the channel is 20%, more law is less than 10% of its maximum value in the channel, even better than less than 5% of its maximum value in the pass, the best of which the electric field is approximately zero, (12) 5 The conductive structure is provided with patches of different conductive materials at one or more locations, where the electric field (if any) on the surface of the conductive structure will already be less than 20% of its maximum value in the channel, More preferably, it is less than 10% of its maximum value in the channel, even more preferably less than 5% of its maximum value in the channel. The optimal electric field is approximately zero, and (13) is between 60 and 60. With 12〇. The angles between the channels are at least part of the joints. Miter corners are used, and / or (14) the conductive spokes are separated by an integral multiple of half the wavelength and located on the central conductor of a bulge or extending from the conductive structure. The bulging portion extends into the channel at a position that is lightly separated from the conductive wheel by approximately-an integer multiple of a half wavelength-or more. The model of the month provides a coaxial RF or microwave component that preferentially passes a light beam located in an ideal frequency band, including:-at least one of the conductive structure-RF or microwave light is emitted into the human body; at least one of the conductive structure Shoot 20: = wave ,, port; at least one channel, which is generally passed on the side. Limited by radio frequency or microwave _ from at least _ into the path, or to; a pass to extend; and in the path along a length of the pass: of: "solid position,-for the material root section from along the-length The extension of the position of the two-pass question, one of the segments has an inductive property and the other-a root-capacity property ', and each of them extends to the "passage 20 1244799 in a closed path extending from the channel_side", where in the channel for the available The component passes through one frequency, and the continuous position along the length of the channel separates approximately a quarter of a propagation wavelength-or an integer multiple thereof, where one or more of the following conditions are met: ⑴ The central conductor, conductive structure, and conductive root segment are monotonic The cross-sectional dimension of a channel that is perpendicular to the direction of the X-ray transmission through Tong 5 is less than about 1 mm, more preferably less than about 0.5 mm, and most preferably less than about 0.25 mm, ( 3) More than about 50% of the channels are filled with _ gaseous media, more preferably more than about 70% of the channels are filled with gaseous media, and most preferably more than about 90% of the channels are filled with gaseous media, (4) the conductive part of the component At least part of the process is performed by a stack of sedimentary processes 1 Formed by 0, (5) at least a part of the conductive part of the member is formed by a plurality of successively deposited layers, (6) at least a part of the channel has a generally rectangular shape, and at least a part of the central conductor has a substantially rectangular shape The shape '(8) channel extends along a two-dimensional non-linear path, (9) channel extends along a three-dimensional path, (10) the channel includes at least one curved region, and a side wall of 15 迢 in the curved region has A nominally smaller radius than one of the opposite sides of the channel in the curved area and a plurality of surface oscillating portions having a smaller radius. (11) The conductive structure is provided with a path at one or more locations, where The electric field (if any) on a surface of the conductive structure will already be less than 20% of its maximum value in the channel, more preferably less than 10% of its maximum value in the channel, and even more preferably less than 20% 5% of the maximum value in the channel, where the electric field is almost zero. (12) The conductive structure is provided with patches of different conductive materials at one or more positions. The electric field on the surface of the conductive structure (if there is if) Will be less than 20% of its maximum value in the channel, more preferably less than 10% of its maximum value in the channel, even more preferably less than 5% of its maximum value in the channel, and up to 1244799. Zero, (13) use miter corners at least part of the joints for channel segments that meet at an angle between 60 ° and 120 °, and / or (14) the quarter roots separate the quarter wavelength The bulge on the central conductor or the bulge extending from the conductive structure is extended into the channel at one or more positions separated from the root of the 5th conductor by an integer multiple of approximately half the wavelength. An aspect of the invention provides a coaxial RF or microwave component for guiding or controlling radiation, comprising: at least one RF or microwave radiation in a conductive structure entering a port; at least one RF or microwave radiation in a conductive structure 10 exiting至少; at least one channel, which is generally defined on the side by a conductive structure, and when radio frequency or microwave radiation moves from at least one entry port to at least one exit port, it passes through the conductive structure, a central conductor The entry port to the exit port extend along at least one channel of a length; and a branch in the channel below which a branch of the central conductor 15 can pass and wherein the central conductor is short-circuited with respect to the conductive structure, and where at least one The following conditions are satisfied: (1) the branch of the central conductor, the conductive structure surrounding the branch, and a short-circuit position between the central conductor and the conductive structure are monotonic; (2) at least a part of the central conductor or conductive structure includes The material formed by the plurality of connected deposition layers and / or (3) at least a portion of the central conductor or the 20 conductive structure includes a material formed by a plurality of electrodeposition processes. A form of the present invention provides a coaxial RF or microwave component for guiding or controlling radiation, which includes: at least one RF or microwave radiation in a conductive metal structure entering a port; at least one RF or RF in a conductive metal structure 1244799 Microwave radiation leaves the port; at least one channel, which is generally defined on the side by a conductive metal structure, and when radio frequency or microwave radiation moves from at least one entry port to at least one exit port, it passes through the conductive metal structure; One of the following conditions: (1) at least a portion of the conductive metal structure includes a metal formed by a plurality of 5 electrodeposition operations, and / or (2) at least a portion of the conductive metal structure includes a plurality of continuous deposited layers One of the metals formed. A form of the present invention provides a coaxial RF or microwave component for guiding or controlling radiation, which includes: at least one RF or microwave radiation in a conductive metal structure entering a port; and at least one channel on a side Approximately 10 is defined by a conductive metal structure, and radio frequency or microwave radiation passes through the conductive metal structure when moving from at least one entry port; and at least a portion of the metal structure includes a plurality of electrodeposition operations and / or a plurality of continuous sinking operations. A metal formed by lamination. A form of the present invention provides a coaxial 15-axis radio frequency or microwave component for guiding or controlling radiation, which includes: at least one radio frequency or microwave radiation entry port and at least one exit port in a conductive metal structure; and at least one A channel, which is generally defined on the side by a conductive metal structure, and that radio frequency or microwave radiation passes through the conductive metal structure as it travels from at least one entry port; and at least one branch path along at least one channel, which surrounds the channel The conductive metal junction structure and the path from a branch region of the channel immediately adjacent to the path are monotonic. In a specific variation of each aspect of the present invention, the production process includes one or more of the following operations: (1) Selective electrodeposition of a first conductive material and electrodeposition of a second conductive material, wherein the first or second conductive material One of the materials is a sacrificable material of 1244799 and the other is a structural material. Ten, (2) Electrodeposited a first conductive material, and selectively carved the first structural material to generate at least one void, a thunder Depositing a second conductive material to fill the at least -outer, gap, and (3) the electro sink sinks a conductive material, deposits at least one flowable dielectric, crystalline layer of conductive material to prepare the formation of the next and 'Electron-Seed Remote Selective Electrodeposition of a First Conductive Material, Miao (} ,,,,, 4] Electrodeposit a Second Conductive Material, and then Selectively Carve One of the First or Second Value V Materials, A narrow conductive mine deposits a third conductive material, wherein at least one of the first, second, or third materials is a sacrificial material and the remaining two materials are 10 materials, and at least one is a structural material. The present invention In another specific variation of various types of sadness, The process includes one or more of the following operations: (1) separating at least one sacrificial material from at least one of the ~ structural materials; (2) from (a)-the second sacrificial technical material and (b) at least one structure Sex material 15

料分離一第—可犧牲材料以生成—空隙,然後以-介電材 料來充填空隙的至少-部分,隨後自結構性材料且自介電 材料分離第二可犧牲材料;及/或(3)藉由嵌置於-可流動的 介電材料中之—磁性或傳導性材料來充填—結構性材料中 的一空隙,隨後使介電材料固體化。 本發明的各型態之另一特定變化例中,該構件包括下 20列或夕者·一微小型同軸構件、一傳輸線、一低通濾器、 一尚通濾器、一帶通濾器、一基於反射式濾器、一基於吸 附式濾器、一漏壁(leaky wall)濾器、一延遲線、一用於連 接其他功能性構件之阻抗匹配結構、一方向性耦合器、一 功率合成器(譬如威金森(Wilkinson))、一功率分割器、一混 24 1244799 合合成器、一魔術TEE、一頻率多工器、或一頻率解多工 器、一棱錐性(亦即平滑壁)饋電器天線、及/或一鱗狀(波褶 壁)饋電器天線。 本發明的一型態係提供一電性裝置,其包括:複數層 5 的連續沉積材料,其中沉積產生的圖案係提供可用來作為 電性裝置之至少一結構。 本發明的一型態係提供一種射頻裝置之製造方法,此 方法包括:沉積複數個黏附層的材料,其中各層材料的沉 積係包含選擇性沉積至少一第一材料;沉積至少一第二材 10 料;及平面化至少一第二材料;及平面化經沉積材料的至 少一部分;在複數層沉積之後移除第一或第二材料的至少 一部分;其中沉積及移除所產生的一結構性圖案係提供可 用來作為電性裝置之至少一結構。 本發明的一型態係提供一種微裝置之製造方法,此方 15 法包括:沉積複數個黏附層的材料,其中各層材料的沉積 係包含沉積至少一第一材料;沉積至少一第二材料;在複 數層沉積之後移除第一或第二材料的至少一部分;其中沉 積及移除所產生的一結構係提供可用來作為下列項目之至 少一結構:(1)一超環面電感器,(2)—開關,(3)—螺旋電感 20 器,或(4)一天線。 本發明的一型態係提供一種用於製造一微裝置之設 備,其包括:用於沉積複數個黏附層的材料之部件,其中 各層材料的沉積係包含利用一用於選擇性沉積至少一第一 材料之部件;一用於沉積至少一第二材料之部件;及用於 25 1244799 5 10 15 在複數層沉積之後移除第一哎 弟一材料的至少—部分之部 件,其令利用用於沉積的 麻在心 料移除㈣相產生之 構件係&供可作為下列項目至 ..e、 sa 、、、ϋ構·(1)一超環面電感 叩’⑺-開關’(3卜螺旋電感器,或 括.本發㈣—型態係提供—種微超環面電感器’其包 括·用以形成一超環面圖案的一 狀一 a 的至^ 一邛分之複數個傳導迴 路兀件,其中超環面圖案 』偁成為具有一内徑及一外徑且 其中複數個迴路的至少一部八 一 刀在緊郇於外徑處比起緊鄰於 内徑處具有更大的橫剖面尺寸。 本發明的-型態係提供—種微天線, 部份地與-基材㈣之天線。 〃 本毛明的-型態係提供—種射頻褒置之製造方法,此 藉=括:沉積複數個黏附層的材料,其中各層材料的沉 含選擇性沉積至少一第一材料;沉積至少一第二材 ㈣2面化4積材料的至少—部分;複數層沉積之後 示:-或第二材料的至少_部分;其中沉積及移除所產 的一結構性圖㈣提供可用來作為射頻裝置之至少一結 構0Material-sacrifice a first-sacrifice material to create a void, and then fill at least a portion of the void with a -dielectric material, and then separate the second sacrificial material from the structural material and the dielectric material; and / or (3) A void in the structural material is filled by a magnetic or conductive material embedded in the flowable dielectric material, and then the dielectric material is solidified. In another specific variation of the various forms of the present invention, the component includes the following 20 columns or a micro coaxial component, a transmission line, a low-pass filter, a Shang-pass filter, a band-pass filter, a reflection-based Filter, a suction-based filter, a leaky wall filter, a delay line, an impedance matching structure for connecting other functional components, a directional coupler, a power combiner (such as Wigginson ( Wilkinson)), a power splitter, a mixed 24 1244799 synthesizer, a magic TEE, a frequency multiplexer, or a frequency demultiplexer, a pyramidal (i.e., smooth wall) feeder antenna, and / Or a scaly (corrugated wall) feeder antenna. An aspect of the present invention provides an electrical device, which includes: a plurality of layers of continuously deposited material, wherein the pattern generated by the deposition provides at least one structure that can be used as an electrical device. One aspect of the present invention provides a method for manufacturing a radio frequency device. The method includes: depositing a plurality of adhesive layers of materials, wherein the deposition of each layer of materials includes selectively depositing at least one first material; depositing at least one second material 10 Material; and planarizing at least a second material; and planarizing at least a portion of the deposited material; removing at least a portion of the first or second material after the plurality of layers are deposited; and depositing and removing a structural pattern produced At least one structure is provided that can be used as an electrical device. One aspect of the present invention provides a method for manufacturing a microdevice. The method 15 includes: depositing a plurality of layers of adhesive material, wherein the deposition of each layer of material includes depositing at least one first material; depositing at least one second material; At least a portion of the first or second material is removed after the plurality of layers are deposited; wherein a structure produced by the deposition and removal provides at least one structure that can be used as: (1) a toroidal inductor, ( 2) —switch, (3) —spiral inductor 20, or (4) an antenna. One aspect of the present invention provides an apparatus for manufacturing a microdevice, comprising: a component for depositing a plurality of materials for an adhesive layer, wherein the deposition of each layer of material includes using a device for selectively depositing at least one first A part of a material; a part for depositing at least a second material; and a part for removing at least one part of a first elder brother material after the deposition of a plurality of layers of 25 1244799 5 10 15 The component system produced by the deposited hemp in the core material removal phase is available for the following items: .e, sa ,,,, and ϋ. (1) a toroidal inductor 叩 '⑺- 开关' (3 卜 helix Inductors, or brackets. The present invention provides a type of micro-toroidal inductor, which includes a plurality of conductive loops from the shape of a to the shape of a to form a toroidal pattern. Element, in which the toroidal pattern has an inner diameter and an outer diameter, and at least a part of the Bayi knife having a plurality of loops has a greater cross-section at the outer diameter than at the inner diameter. Sectional dimensions. The -type system of the present invention provides-a kind of micro Line, part of the antenna with the base material. 毛 This Maoming-type system provides a manufacturing method of radio frequency arrangement, which includes: depositing a plurality of adhesive layer materials, in which the material of each layer is deposited. Contains selective deposition of at least one first material; deposition of at least one second material; at least-part of a surface material; deposition of multiple layers shows:-or at least a part of a second material; and deposition and removal of produced A structural diagram of ㈣ provides at least one structure that can be used as a radio frequency device.

技術者可由此處的揭示瞭解到本發明的進一步 ^、、本^明的其他型態可包含本發明的上述塑態之合併 及/或外力口或多項實施例的各種特性。本發明的其他型態 口 可用來灵行本發明的一或多種上述方法塑態之設 備本^明的沒些其他型態可提供各種不同的結構性、功 能性關係以及上文中尚未具體描述之程序。 26 1244799 圖式簡單說明 第1A-1C圖示意性描繪一CC罩幕鍍覆程序的各種不同 階段的侧視圖,而第1D-1G圖示意性描繪一種使用一不同型 CC罩幕之CC罩幕鍍覆程序的各種不同階段之側視圖; 5 第2A-2F圖示意性描繪一施用形成一特定結構之電化 學製造程序的各種不同階段之側視圖,其中在毯覆沉積一 結構性材料的同時選擇性沉積一可犧牲材料; 第3A-3C圖示意性描繪可用來人工式實行第2A-2F圖 所描繪的電化學製造方法之各種不同範例次總成之側視 10 圖; 第4A-4I圖示意性描繪利用黏附罩幕來形成第一層的 一結構,其中一第二材料的毯覆沉積物係鋪覆於第一材料 的沉積位置之間的開口以及第一材料本身; 第5A圖描繪一包括短路輪輻之同軸濾器元件的立體 15 圖; 第5B圖描繪第4A圖的同軸濾器沿著線5B-5B之平面 圖; 第5C圖描繪第4A圖的同軸濾器沿著線5(c)-5(c)之平面 圖, 20 第5D圖描繪一同軸濾器元件的中央部分之平面圖,其 顯示沿著濾器長度之五組過濾輪輻(每組兩個); 第6A-6C圖分別描繪各使用輪輻組(每組四個輪輻)之 長方形、圓形及橢圓形濾器元件之端視圖; 第7A-7D圖描繪可能使用在過濾構件中之替代性輪輻 1244799 組態之範例; 第8A及8B圖顯示彎曲狀同軸濾器構件之立體圖; 第9A-9C圖描繪沿著内或外導體使用突部來幫助過濾 訊號之替代性同軸濾器構件; 5 第9D圖描繪沿著一 S形二極同軸濾器的長度之中央部 分的平面圖; 第10A-10D圖描繪沿著具有不同斜接程度的馬蹄形同 軸傳輸線之中央部分的平面圖; 第11A及11B圖分別描繪沿著一同軸傳輸線及一同軸 10 濾器構件之中央部分的平面圖,其中在同軸線的較小半徑 側的内側表面上包括波狀振盪部; 第12 A圖描繪沿著利用根段對來形成各極之一線性三 極帶通同軸濾器的長度之中央部分的平面圖(從上方觀看); 第12B圖描繪第12A圖的濾器之端視圖,其中顯示結構 15 的長方形組態; 第12C圖描繪沿著一具有根段支撐件之彎曲狀三極帶 通同軸濾器的長度之中央部分的平面圖(從上方觀看); 第13A圖描繪沿著一具有根段支撐件之S形二極帶通 同軸濾器的長度之中央部分的平面圖(從上方觀看); 20 第13B圖描繪如同利用MEMGen的EFABTM電化學製造 技術所產生且已經移除可犧牲材料後之一略經修改版本的 第13A圖濾器之立體圖; 第13C圖描繪一部份成形的濾器(類似第13B圖所示者 且已經從結構性材料移除可犧牲材料之後)之立體特寫圖; 1244799 第14A及14B圖描繪嵌入可犧牲材料且從可犧牲材料 釋放之同轴;慮器元件之立體圖,其中同轴構件的外導體係 包括有孔(預定的微波進入及離開開口除外); 第15A-15D圖顯示對於各種不同濾器設計根據數學模 5 型之傳輸vs·頻率的繪圖; 第16圖描繪一在製造一所需要的裝置/結構時使用單 一傳導材料及單一介電材料之樣本電化學製造程序的流程 圖; 第17A圖描繪可利用第16圖的程序所產生之一同軸結 10 構的端視圖; 第17B圖描繪第17A圖的同軸結構之立體圖; 第18A-18J圖顯示應用第16圖的程序流程來形成第17八 及17B圖的結構; 第19圖描繪一包括使用三種傳導材料之樣本電化學製 15 造程序的流程圖; 第20A及20B圖描繪包括傳導元件之結構以及可根據 第19圖的程序延伸所形成之介電支撐結構的立體圖; 第21A-21T圖顯示應用第19圖的程序流程來形成一類 似於第20A圖所示者之同軸結構,其中兩種傳導材料係為形 2〇成結構層之後加以移除之可犧牲材料,且其中利用一介電 材料來取代所移除的可犧牲材料之一者; 第22A-22C圖顯示第21R_21T圖的移除及取代程序之 延伸部分; 第23A及23B圖描纷一包含使用兩傳導材料及一介電 29 1244799 材料之樣本電化學製造程序的流程圖; 第24圖顯示一可利用第23A及23B圖的程序延伸所形 成之結構的立體圖; 第25 A-25Z圖顯示根據第23A及B圖的一樣本層形成程 5 序之側視圖,其用以形成一具有一介電材料之同軸結構, 且其中該介電材料只支撐住内導體; 第26A-26F圖顯示當對於第四層結構沉積第一傳導材 料之前需要一籽晶層時之對於第25H-25K圖的程序之一替 代方式; 10 第27圖描繪一同軸傳輸線之立體圖; 第28圖描繪一射頻接觸開關之立體圖; 第29圖描繪一對數週期天線(log-periodic antenna)之立 體圖; 第30A及30B圖描繪一相對於彼此旋轉約180度之樣本 15 超環面電感器的立體圖,第30C圖描繪根據一電化學製造程 序形成之一超環面電感器的立體圖; 第31A及31B圖描繪根據一電化學製造程序所形成之 一螺旋電感器設計及一堆積式螺旋電感器的立體圖; 第31C圖描繪第31A及31B圖的電感器之一變化例; 20 第32A及32B圖以對比方式顯示兩種可能的設計,其中 第32B圖的設計可提供比第32A圖更小的歐姆電阻且可能 改變總電感; 第33A及33B圖描繪盡量減少損失同時在電感器的線 圈之間維持高耦合水準之兩替代性電感器組態之示意圖; 1244799 第34圖描繪一電感器的立體圖; 第35A及35B圖分別描繪一可變電容器112的一範例之 立體圖及側視圖; 第36A-36B圖描繪兩範例同軸結構之端視圖,其中中央 5 導體設有一種可相對於其橫剖面積增加表面積之橫剖面組 態; 第37圖描繪一積體電路之側視圖,其具有用來將内部 訊號(譬如時脈訊號)連接至低散佈傳輸線以與積體電路其 他部分導通之連接墊; 10 第38A及38B圖顯示可用來實行此處所述程序之第一 及第二代電腦控制式電化學製造系統(亦即EFAB™微製造 糸統); 第39圖描繪一習知的四埠混合耦合器之平面圖; 第40圖描繪一同軸線中的一曲線及尺寸之平面圖; 15 第41圖描繪沿著傳輸線部分具有共用的外導體之一段 同軸線的平面圖; 第42圖顯示可使一分支線混合件的各λ/4段製成蜿蜒 段以相較於習知直線版本顯著地降低混合件佔用的整體面 積; 20 第43Α圖顯示來自一四元件線性陣列之一系列的四正 交束; 第43Β圖顯示一巴特勒陣列,其具有包含利用混合分支 線耦合器及兩相位移器藉由一電路產生的訊號之天線元 件; 31 1244799 第43C圖提供一四元件巴特勒矩陣天線陣列之示意 圖,其使用四個蜿蜒狀混合耦合器、兩個延遲線且擁有兩 個跨接部(crossovers)、及四個輸入部及四個天線元件(譬如 補綴天線); 5 第44圖顯示各具有一外導體及一内導體之窄化傳輸線 的一跨接點; 第45圖提供一八輸入部、八天線巴特勒矩陣陣列之示 意圖,其使用12個混合部、16個相位移器(其中八個實際產 生位移)及八個天線; 10 第46圖顯示一補綴天線輻射元件可如何附接至一同軸 饋送元件; 第47圖描繪一其上可供形成一批次四個8x8天線陣列 之基材。 【實施方式3 15 詳細描述 第1A-1G,2A-2F及3A-3C圖顯示一已知形式的電化學 製造之各種不同特性。其他電化學製造技術請見上文提及 的’630號專利案、各種不同的先前引用公開文件、以引用 方式併入本文之各種不同其他專利案及專利申請案,且可 20 從這些公開文件、專利案及申請案所描述之各種途徑的組 合來獲得其他技術,或者熟習該技術者可從本文的揭示以 其他方式得知或確認其他技術。 第4A-4I圖顯示一多層製造程序中形成單層之各種不 同階段,其中將第二金屬沉積在第一金屬上以及第一金屬 1244799 5 10 15 20 的開口中且其沉積物形成該層的一部分。第4A圖顯示一基 材82的側視圖,其上如第4B圖所示鑄造有可圖案化光阻 84。第4C圖顯示經由阻劑固化、曝光及顯影所產生之一圖 案的阻劑。光阻84的圖案化係導致開口或開孔92⑷-92(c) 從光阻的一表面86延伸經過光阻厚度前往基材82的表面 88。第4D圖顯示一金屬94(譬如鎳)已經電鑛至開口 92(a)-92(c)内。第4E圖中,光阻已經從基材移除(亦即化學 剝除)以暴露出未覆有第一金屬94之基材82區域。第4F圖中 顯示一苐二金屬96(譬如銀)已經毯覆電鍵於(具傳導性)義 材82的整體暴露部分上方及(亦具傳導性)第一金屬糾上 方。第4G圖描繪已經藉由將第一及第二金屬平面化至一可 暴露出第一金屬且設定第一層厚度之高度所產生之第一層 結構。第4H圖中顯示了將第4]8_4(}圖所示程序步驟重覆妻 1 次之結果,其中各層由兩種材料組成。對於部分應用,汝 第41圖所示移除這歸料的—者以產生—所需要的立體結 構98(譬如構件或裝置)。 ° 可將此處揭露的各種實施例、替代方式及技術與採 不同類型圖案化罩幕及軍幕技術之電化學製造技術加以合 併使用。譬如’可使用可貼附性接觸罩幕及罩幕操作、: 鄰罩幕及轉操作(亦即制即便未產生接_可利用腎 鄰於基材的仙來至少部份地藝性屏蔽—基材之罩幕“ 操作)、不可貼㈣罩幕及罩幕操作(亦即以具有不可明 附的接觸表面之罩幕為基礎之操作及罩幕)及/或黏附軍暮 及罩幕操作(使用黏附至一其上發生選擇性沉積或钱刻而 33 1244799 非只產生接觸的基材之罩幕之操作及罩幕)。 所有這些技術皆可與本發明各種型態的 以合併以產生經增強的實施例。可由此處日月4例加 例之組合來獲得其他實施例 示的各種實施 5 詈如,部分實施例中 10 15 20 内產生腔穴且其完全地或部二序變二一 取人^ 丨地輯—介電材料(壁如一 ;;=才料或可能為一陶变材料)、嵌置於-介電質:之一 =材料、或-磁性材料(譬如嵌人介電性束縛物中或在放 ,燒結之一粉末狀肥粒鐵材料)。可使用介電材料作 4構來使料元件保持彼此分離及/或其可用來修 的^裝置的微波傳輸或吸附性質。—介電質可藉由結構 ^層累積方式併人結構内、或可在所有層已經形成之後 真至體塊中或選擇性進入結構内。 部分實施例所產生的結構/裝置可由一較佳氣體或真 隙。°从隱藏式密封,或藉由真空來充填結構内的任何空 重其他實施例可利用塑料或玻璃屏蔽物來保冑一結構的 要表面不受到水份或其他有害的環境條件。 〇在身為另一範例之部分實施例中,可能需要具有由不 種傳導材料(譬如鎳及金或銅及金)構成之-結構,因此 可實行裎序變化來達成此結果。Those skilled in the art can understand from the disclosure herein that further embodiments of the present invention and other forms of the present invention may include the combination of the above-mentioned plastic forms of the present invention and / or various characteristics of the external force port or multiple embodiments. The other forms of the present invention can be used to spiritually implement one or more of the above-mentioned methods for shaping the apparatus. The other forms of the present invention can provide a variety of different structural, functional relationships, and those not specifically described above. program. 26 1244799 Schematic illustrations 1A-1C schematically depict side views of the various stages of a CC mask plating process, and FIGS. 1D-1G schematically depict a CC using a different type of CC mask Side views of various stages of the mask plating process; Figures 2A-2F schematically depict side views of various stages of an electrochemical manufacturing process applied to form a specific structure, in which a structural deposit is deposited on the blanket Selective deposition of a sacrificial material at the same time as the material; Figures 3A-3C schematically depict the side view 10 of various different sub-assemblies that can be used to manually implement the electrochemical manufacturing method depicted in Figures 2A-2F; Figures 4A-4I schematically depict a structure using adhesive masks to form a first layer, in which a blanket deposit of a second material is spread over the opening between the deposition locations of the first material and the first material Itself; Figure 5A depicts a three-dimensional view of a coaxial filter element including a shorted spoke; Figure 5B depicts a plan view of the coaxial filter of Figure 4A along lines 5B-5B; Figure 5C depicts the coaxial filter of Figure 4A along Plan of line 5 (c) -5 (c) Figure 5D depicts a plan view of the central portion of a coaxial filter element, showing five sets of filter spokes (two in each group) along the length of the filter; Figures 6A-6C depict each of the spoke groups used (four in each group) Spokes) end views of rectangular, circular and oval filter elements; Figures 7A-7D depict examples of alternative spokes 1244799 configurations that may be used in filter components; Figures 8A and 8B show curved coaxial filter components 3D views; Figures 9A-9C depict alternative coaxial filter members using protrusions along the inner or outer conductor to help filter signals; 5 Figure 9D depicts a plan view of the central portion along the length of an S-shaped two-pole coaxial filter; Figures 10A-10D depict plan views along the central portion of a horseshoe-shaped coaxial transmission line with varying degrees of mitre; Figures 11A and 11B depict plan views along the central portion of a coaxial transmission line and a coaxial 10 filter member, respectively, where the coaxial The wavy oscillating portion is included on the inside surface of the smaller radius side of the line; Figure 12A depicts a linear tripolar bandpass coaxially formed along the root segment pair to form one of the poles Plan view of the central portion of the length of the filter (viewed from above); Figure 12B depicts the end view of the filter of Figure 12A, which shows the rectangular configuration of structure 15; Figure 12C depicts the bend along a rooted support Plan view of the central portion of the length of a three-pole bandpass coaxial filter (viewed from above); Figure 13A depicts a plan view of the central portion of the length along an S-shaped two-pole bandpass coaxial filter with root support (from (Viewed from above); 20 Figure 13B depicts a perspective view of a slightly modified version of the filter of Figure 13A, as produced by the use of MEMAB's EFABTM electrochemical manufacturing technology and after the sacrificial material has been removed; Figure 13C depicts a portion of the shape A close-up view of the filter (similar to that shown in Figure 13B and after the sacrificial material has been removed from the structural material); 1244799 Figures 14A and 14B depict the coaxial embedded in and released from the sacrificial material; A perspective view of the components of the device, in which the outer guide system of the coaxial member includes holes (except the predetermined microwave entrance and exit openings); Figures 15A-15D show The same filter design is based on the mathematical model of the transmission vs. frequency drawing. Figure 16 depicts a flowchart of a sample electrochemical manufacturing process using a single conductive material and a single dielectric material when manufacturing a required device / structure; Figure 17A depicts an end view of a coaxial structure 10 structure that can be generated using the procedure of Figure 16; Figure 17B depicts a perspective view of the coaxial structure of Figure 17A; Figures 18A-18J show the program flow of Figure 16 using Figures 17-8 and 17B are formed; Figure 19 depicts a flow chart that includes a sample electrochemical fabrication process using three conductive materials; Figures 20A and 20B depict a structure that includes conductive elements and can be constructed according to Figure 19 A perspective view of the dielectric support structure formed by the program extension; Figures 21A-21T show the application of the program flow of Figure 19 to form a coaxial structure similar to that shown in Figure 20A, where the two conductive materials are shaped as 2 The sacrificial material that is removed after forming the structure layer, and a dielectric material is used to replace one of the removed sacrificial materials; Figures 22A-22C show the removal of Figure 21R_21T and An extended part of the generation program; Figures 23A and 23B depict a flowchart of a sample electrochemical manufacturing process that uses two conductive materials and a dielectric 29 1244799 material; Figure 24 shows a procedure that can use Figures 23A and 23B A perspective view of the structure formed by extension; Figs. 25A-25Z show a side view of the fifth layer forming process according to Figs. 23A and B, which is used to form a coaxial structure with a dielectric material, and wherein the The dielectric material only supports the inner conductor; Figures 26A-26F show an alternative to the procedure for Figures 25H-25K when a seed layer is needed before the first conductive material is deposited for the fourth layer structure; Figure 28 depicts a perspective view of a coaxial transmission line; Figure 28 depicts a perspective view of a radio frequency contact switch; Figure 29 depicts a perspective view of a log-periodic antenna; Figures 30A and 30B depict a 180 ° rotation relative to each other Sample 15 is a perspective view of a toroidal inductor. Figure 30C depicts a perspective view of a toroidal inductor formed according to an electrochemical manufacturing process. Figures 31A and 31B depict a The program forms a spiral inductor design and a perspective view of a stacked spiral inductor; Figure 31C depicts a variation of the inductors in Figures 31A and 31B; 20 Figures 32A and 32B show two possible ways of comparison Design, where the design of Figure 32B can provide smaller ohmic resistance than Figure 32A and may change the total inductance; Figures 33A and 33B depict the two alternatives of minimizing losses while maintaining a high level of coupling between the coils of the inductor Schematic diagram of inductor configuration; 1244799 Figure 34 depicts a perspective view of an inductor; Figures 35A and 35B depict a perspective view and a side view of an example of a variable capacitor 112; Figures 36A-36B depict the two example coaxial structures End view, in which the central 5 conductor is provided with a cross-sectional configuration that increases surface area relative to its cross-sectional area; Figure 37 depicts a side view of an integrated circuit with internal signals (such as clock signals) Connection pads connected to low-spread transmission lines to conduct conduction to other parts of the integrated circuit; 10 Figures 38A and 38B show the first and second Computer-controlled electrochemical manufacturing system (also known as the EFAB ™ microfabrication system); Figure 39 depicts a plan view of a conventional four-port hybrid coupler; Figure 40 depicts a plan view of a curve and dimensions along an axis; 15 Figure 41 depicts a plan view of a coaxial line having a common outer conductor along the transmission line portion; Figure 42 shows that each λ / 4 segment of a branch line hybrid can be made into a meandering section compared to the conventional straight version Significantly reduces the overall area occupied by the hybrid; 20 Figure 43A shows a quadrature beam from one of a series of four-element linear arrays; Figure 43B shows a Butler array with a hybrid branch line coupler and two Phase shifter antenna elements generated by a circuit; 31 1244799 Figure 43C provides a schematic diagram of a four-element Butler matrix antenna array, which uses four serpentine hybrid couplers, two delay lines and two Crossovers, and four input parts and four antenna elements (such as patch antennas); 5 Figure 44 shows narrowed transmissions each with an outer conductor and an inner conductor Figure 45 provides a schematic diagram of an eight-input section and eight-antenna Butler matrix array, which uses 12 mixing sections, 16 phase shifters (of which eight actually produce displacement), and eight antennas; 10 Figure 46 shows how a patch antenna radiating element can be attached to a coaxial feed element; Figure 47 depicts a substrate upon which a batch of four 8x8 antenna arrays can be formed. [Embodiment 3 15 Detailed Description Figures 1A-1G, 2A-2F and 3A-3C show various characteristics of a known form of electrochemical manufacturing. For other electrochemical manufacturing techniques, see the '630 patent mentioned above, various previously cited publications, various other patents and patent applications incorporated herein by reference, and 20 The combination of various approaches described in patents, patents, and applications to obtain other technologies, or those skilled in the technology can learn or confirm other technologies in other ways from the disclosure herein. Figures 4A-4I show various stages of forming a single layer in a multi-layer manufacturing process in which a second metal is deposited on the first metal and in the openings of the first metal 1244799 5 10 15 20 and its deposits form the layer a part of. Figure 4A shows a side view of a substrate 82 having a patternable photoresist 84 cast thereon as shown in Figure 4B. Figure 4C shows a resist produced by a resist curing, exposure, and development. The patterning of the photoresist 84 results in openings or openings 92⑷-92 (c) extending from one surface 86 of the photoresist through the thickness of the photoresist to the surface 88 of the substrate 82. Figure 4D shows that a metal 94 (e.g., nickel) has been mined into the openings 92 (a) -92 (c). In Figure 4E, the photoresist has been removed from the substrate (i.e., chemically stripped) to expose areas of the substrate 82 that are not covered with the first metal 94. Figure 4F shows that a pair of metals 96 (such as silver) has been blanketed with electrical keys over the entire exposed portion of (conducting) material 82 and (also conductive) above the first metal. Figure 4G depicts a first layer structure that has been generated by planarizing the first and second metals to a height that exposes the first metal and sets the thickness of the first layer. Figure 4H shows the result of repeating the procedure steps shown in Figure 4] 8_4 (} once, in which each layer is composed of two materials. For some applications, this material is removed as shown in Figure 41 —To produce—the three-dimensional structure 98 (such as a component or a device) required. ° Various embodiments, alternative methods, and technologies disclosed here can be used with electrochemical manufacturing techniques that use different types of patterned curtains and military curtains. Combined use. For example, 'Adhesive contact masks and mask operations can be used, adjacent masks and transfer operations (that is, even if the connection is not produced, the kidney can be used at least partially to the fairy of the kidney to at least partially. Artistic Shielding—Masks of the substrate "operation", non-adhesive masks and mask operations (i.e., operations and masks based on masks with invisible contact surfaces) and / or adhesion And mask operations (the use of masks and masks that are adhered to a substrate on which selective deposition or money engraving occurs but 33 1244799 is not just a contact-making substrate). All of these techniques are compatible with various types of the present invention. To merge to produce an enhanced embodiment. A combination of 4 cases plus examples is used to obtain the various implementations shown in other embodiments. 5 For example, in some embodiments, cavities are generated within 10 15 20 and they are completely or partly changed in order. Dielectric material (such as a wall ;; = material or may be a ceramic material), embedded in-dielectric: one = material, or-magnetic material (such as embedded in a dielectric restraint or placed in , A sintered powdered ferrous iron material). Dielectric materials can be used to make the structure to keep the material elements separated from each other and / or the microwave transmission or adsorption properties of the device that can be used for repair.-The dielectric can be borrowed The structure is accumulated in layers and incorporated into the structure, or it can enter the bulk or selectively enter the structure after all the layers have been formed. The structure / device generated by some embodiments can be a better gas or a true gap. ° From concealed sealing, or filling any empty weight in the structure by vacuum, other embodiments may use plastic or glass shields to protect the major surfaces of a structure from moisture or other harmful environmental conditions. In some embodiments of another example, it may be necessary to have Structures made of non-conductive materials, such as nickel and gold or copper and gold, can be changed sequentially to achieve this result.

本發明的部分較佳實施例係提供微小型射頻或微波傳 、、。此等傳輸線可用來作為射頻或微波構件之建造基 〜較佳的傳輪線具有一長方形同軸結構且其包括一長 方艰银 、 〆汽心金屬中央導體及一實心金屬外導體。使用在此處 34 1244799 時,一微小型同軸構件或線將代表從外導體的一内側壁到 外導體的相#内側壁具有小於約200微米的最小橫剖面尺 寸之構件。同軸傳輪線因為可支援橫向電磁(丁 em)基礎模式 所以很適合此微小化作用。從基礎電磁理論,一tem模式 5 Α知具有零截止頻率(eu卜。ff frequeney)。所以不論結構尺 寸有多小’ TEM模式皆繼續以任何實際頻率進行傳播。 微小型同軸線所具有的三種優點係為尺寸、微波頻寬 , 及相位線性。一般而言,被動傳輸線構件的實體長度必須 為處於操作頻率時之_個自由空間波長左右,譬如其在 _ 1〇 1GHz時為30公分。對於習知的同軸傳輸線或波導,這導致 了一種具有此大小左右的線性尺寸之構件。對於微小型同 轴線,可猎由使線以婉蜒方式前後包繞且甚至堆積多個婉 蜒位準的線來將構件製成大幅更短。 15 U ]、型同軸線之第二項優點在於優良的頻寬效能。任 高L轴傳輸線中’藉由通常身為橫向電(te)模式之第一較 基礎抵式的截通頻率(cut-on frequency)予以最大地界定。從 比。電=可得知此截通解係與外導體的最大尺寸纽 鲁 自知的同軸線中’此截通一般發生於1〇至5〇 Γβ] o 2〇 /同車由線中’此截通可容易地延伸至大幅超過100 數=射於其提供了可應付近程類比系統中的最高頻率及 ^ 系統中的最尖銳脈衝之頻寬。 - 其]里同軸線之第二優點係為其相位線性的程度。從 ^播得知:TEM模式是傳輸線上可以零散佈進行 隹—核式°易言之’操作頻寬内的所有頻率具有相 35 1244799 同的相位速度,所以此線上兩任意點之間的相對相位依存 性係與頻率呈完美的線性。因為此性質,諸如尖銳的數位 邊緣或短的數位脈衝等尖銳的非正弦性特性係可無扭曲地 傳播。具有微小㈣軸線的大小尺度(亦即小於細微米)之 5所有其他已知的傳輸線媒體係並未傳播—純τ 是-準酬莫式。一種理想範例係為Si數位ICS中相之^Some preferred embodiments of the present invention provide micro RF or microwave transmission. These transmission lines can be used as the basis for the construction of RF or microwave components. The preferred transmission line has a rectangular coaxial structure and it includes a rectangular hard silver, a rhenium core metal central conductor and a solid metal outer conductor. When used here 34 1244799, a micro-miniature coaxial member or wire will represent a member having a minimum cross-sectional dimension of less than about 200 microns from the inner side wall of the outer conductor to the phase of the outer conductor. The coaxial transmission line is suitable for this miniaturization because it supports the basic mode of lateral electromagnetic (DEM). From basic electromagnetic theory, a tem mode 5A is known to have a zero cut-off frequency (eu f. Frequeney). So no matter how small the structural size is, the TEM mode continues to propagate at any actual frequency. The three advantages of micro coaxial cables are size, microwave bandwidth, and phase linearity. Generally speaking, the physical length of a passive transmission line component must be about one free-space wavelength at the operating frequency, such as 30 cm at -10 GHz. For conventional coaxial transmission lines or waveguides, this results in a member with a linear dimension around this size. For micro-miniature coaxial lines, the members can be made much shorter by making the wires wrap around in a meandering manner and even stacking multiple graceful lines. 15 U], the second advantage of the coaxial cable lies in its excellent bandwidth performance. In any high-L-axis transmission line, ′ is maximally defined by the first, more basic, cut-on frequency of the transverse electric (te) mode. From than. Electricity = It can be known that the maximum size of the interception system and the outer conductor is in the coaxial line known by Nueru. 'This interception generally occurs from 10 to 50 Γ β] o 2 0 / the same vehicle from the line' It can easily be extended to much more than 100 digits = it provides the bandwidth that can cope with the highest frequency in the short-range analog system and the sharpest pulse in the system. -The second advantage of the coaxial line is its degree of phase linearity. From ^ broadcast: TEM mode is that the transmission line can be scattered scattered 隹-nuclear ° easy to say that all frequencies within the operating bandwidth have the same phase speed of 35 1244799, so the relative between two arbitrary points on this line Phase dependence is perfectly linear with frequency. Because of this property, sharp non-sinusoidal characteristics such as sharp digital edges or short digital pulses can propagate without distortion. All other known transmission line media with small chirp axis size scales (ie, smaller than micrometers) have not propagated—pure τ is quasi-remunerative. An ideal example is the phase in Si digital ICS ^

線或為GaAs或inP MMICs(單調性微波積體電路 I 微帶。 ⑺又 除了尺寸外,部分較佳的微小型同轴線之另—特性係 1〇為其長方形橫剖面形狀。因為較容易將中心導體製成圓形 (譬如圓線)且利用巾空管(譬如導管)作為—外導體:習知: 同軸線-般係由圓形中心、及外導體製成。基礎^磁理^ 示,長方形同軸線可提供非常類似於圓形同軸線之效:: 但缺乏分析性之設計方法。所幸,現今可取得用來輔=諸 15如任何形狀或尺寸的長方形微小型同軸線等構件設計之數 值工具(譬如高頻結構模擬器或稱為HFSS軟體)。 部分較佳實施例中,至少部份地藉由利用電化學穿^ 技術且特別是採用接觸罩幕或黏附罩幕來達成選擇性圖= 化之電化學製造技術,可使用微小型同軸線來生產極密實 2〇的微波構件。藉由此製造方式,譬如可利用單一共同尸y 部(亦即外導體)來形成相鄰的傳輪線。具有無法在半^蚊 ICs中實現或只能以很大效能代價加以實現之一士足 元1豕族 的被動微波功能。現今半導體ICs無法實現之—功能範例係 為流通(circulation)-亦即沿著一迴路在鄰埠之 〜间之彳政波功 36 1244799 率的非往復性傳輸。較差的現今ic效能之一功能範例係為 頻率多工(frequency multiplexing>亦即依據頻率從〜輪入 埠進入數個不同輸出埠之微波功率的途程佈設。可利用微 小型同軸線在與電化學製造程序的多元用途合併時形成了 5 特別提供此功能性之構件。 部分較佳實施例中,微波同軸線係與主動半導體裝置 且特別是射頻及高速數位ICs加以整合。此整合解決了 ic產 業中一項日益嚴重的問題,亦即晶片内高頻類比與數位訊 號之互連及途程佈設問題。此整合具有效用之一項明顯範 10例係為高速微處理器中的時脈分佈。因為線上的散佈及損 失等因素,在沿著位於矽上的習知(帶線)傳輸線之很尖銳邊 緣的傳輸將不變地扭曲或分散此邊緣。藉由微小型同軸 線,時脈訊號可立即耦合至一單模式同軸結構内,其中時 脈脈衝的基礎及所有傅立葉組份將以相同速度長距離傳 15播。因此,可減輕時脈脈衝扭曲及相關聯的色彩偏斜。這 些傳輸線可用來形成時脈訊號樹及類似物。 第5A-5C圖顯示本發明的一實施例之一射頻/微波濾器 102。第5A圖描繪一同軸濾器元件之立體圖,其包括第一組 104的輪輻104&-104(1。第56圖描繪濾器102從第5八圖的線 20 5(b)-5(b)觀看之平面圖。第5C圖描繪同軸濾器從第5A圖的 線5(c)-5(c)觀看之平面圖。第5c圖顯示第5A圖的濾器係包 括三組的輪輻且其分開了近似該濾器可通過之頻帶的中心 頻率之波長(;1〇)的一半(1/2)。此組態中,可將濾器視為具 有2極(各鄰對的組係形成一單極)之布萊格式濾器 1244799 (Bragg-type filter)。一範例中,濾器可採用下表1所列之尺 寸0 表1 編號 尺寸 編號 尺寸 編5虎 尺寸 122 520微米 124 400微米 126 520微米 128 棚微米 130 Π6彳敫米 132 116微米 134 180微米 136 168微米 138 40微米 140 158微米 142 40微米 144 180微米 146 60微米 148 60微米 150 40微米 152 40微米 154 40微米 156 λ〇/2 158 λ〇/2 5 其他實施例中,可使這些尺寸變動藉以改變濾器在通 過帶中之***損失(insertion loss)、阻止帶中之衰減、及轉 折區中之特徵。其他實施例中,亦可藉由改變濾器及/或濾 器構件的製造材料來修改各種不同參數。譬如,整體濾器 可由鎳或銅製成,或其可部份地或完全地鍍覆有銀或金。 1〇 第5D圖描繪一替代性實施例之一同軸濾器的中央部分 之平面圖,其中濾器包含五組的輪輻16〇a_16〇e(此圖顯示每 修 組兩個輪輻),且其各分開了通過帶的中央頻率之一半(亦即 162 164、166及168= λ 〇/2)。此圖顯示一項四極實施例。 身代性貫%例中,可使用其他數量的極來形成濾器(嬖 - 15 如三個極或五個或更多個極)。 第6Α圖描繪一長方形濾器的端視圖,其使用多組的輪 輻且各組有四個輪輻。一範例中,濾器可採行下表2所列的 尺寸。 38 1244799 表2 編號 尺寸 編號 尺寸 編號 尺寸 222 920微米 224 800微米 226 320微 f 228 200微米 230 316微米 232 59微^~ 234 80微米 236 88微米 238 40微米 240 168微米 242 76微米 244 362微米 246 60微米 248 60微米 如同第5A-5C圖的正方形同軸濾器,對於長方形同軸濾 器之上述尺寸可以改變。在此長方形濾器的最佳實施例 5 中,成組的輪輻係分隔大約λ〇/2。 第6Β及6C圖顯示對於所顯示類型的同軸濾器之兩替 代性橫剖面組態之範例(亦即分別為一圓形組態及一橢圓 形組態)。其他實施例中,可能具有其他種橫剖面組態,甚 至内導體302及3〇2,的橫剖面組態亦可能與外導體304及 10 304’不同。其他實施例中,輪輻可採行不同的橫剖面組態(正 方形、長方形、圓形、橢圓形及類似物)。 第7 A - 7 D圖描繪可使用於同軸濾器中之一替代性輪輻 組態之範例。第7A圖顯示一只使用兩個輪輻312及314之實 施例,且輪輻312及314在長方形外導體316的較長橫剖面尺 15寸中延伸並維持此組態的對稱性。第7B圖顯示一類似於第 7A圖之二輪輻實施例,唯一差異在於:輪輻322及324係在 外導體326的較小橫剖面尺寸中延伸。第7C圖顯示一實施 例,其中仍如同第7八及7;6圖使用兩輪輻,其中一輪輻332 在水平尺寸(亦即長方形外導體336的主要尺寸)中延伸而一 2〇輪輪334在垂直尺寸(亦即長方形外導體336的次要尺寸)中 39 1244799 延伸。第7D圖中,只有單一輪輻342構成各組。 一範例中,第7A圖的實施例可採行上表2所列的尺寸, 但唯一差異在於:此組態中不存在尺寸242及244。另一範 例中,第7A圖的實施例可採行上下表3所列的尺寸,其中編 5 號已經修改加上一撇(’)。 表3The line is GaAs or inP MMICs (monotonic microwave integrated circuit I microstrip.) In addition to the size, part of the better micro-miniature coaxial line is another-characteristic is 10 its rectangular cross-sectional shape. Because it is easier The center conductor is made into a circle (such as a round wire) and an empty tube (such as a pipe) is used as an outer conductor: known: the same axis-is generally made of a circular center and an outer conductor. Basics ^ Magnetic theory ^ As shown, rectangular coaxial lines can provide effects very similar to circular coaxial lines: :: but lacking analytical design methods. Fortunately, 15 components such as rectangular micro-miniature coaxial lines of any shape or size are available today. Designed numerical tools (such as high-frequency structural simulators or HFSS software). In some preferred embodiments, this is achieved at least in part through the use of electrochemical penetration techniques and, in particular, contact masks or adhesive masks. Selectivity diagram = electrochemical manufacturing technology, which can use micro-coaxial wires to produce extremely dense microwave components. By this manufacturing method, for example, a single common body (ie, outer conductor) can be used to form phases. Neighbourhood The passive microwave function of the Shizuyuan 1 Dai family, which cannot be realized in semi-mosquito ICs or can only be realized at a great cost of performance. Today's semiconductor ICs cannot be achieved-the functional paradigm is circulation-also That is, the non-reciprocal transmission of the rate of 彳 political wave power 36 1244799 between the neighboring ports along a loop. One of the functional examples of poor current ic performance is frequency multiplexing (that is, from frequency to ~ Route the microwave power into several different output ports. Micro-coaxial cables can be used to form 5 components that provide this functionality when combined with the multiple uses of the electrochemical manufacturing process. In some preferred embodiments, The microwave coaxial line is integrated with active semiconductor devices, especially radio frequency and high-speed digital ICs. This integration solves an increasingly serious problem in the ic industry, namely the interconnection and routing of high-frequency analog and digital signals in the chip An obvious example of the usefulness of this integration is the clock distribution in high-speed microprocessors. Due to factors such as distribution and loss on the line Transmission along the very sharp edge of a conventional (stripline) transmission line located on silicon will distort or disperse this edge invariably. With a miniature coaxial cable, the clock signal can be immediately coupled to a single-mode coaxial structure Here, the basis of the clock pulse and all Fourier components will be transmitted at the same speed for a long distance. Therefore, the distortion of the clock pulse and the associated color skew can be reduced. These transmission lines can be used to form a clock signal tree and the like Figures 5A-5C show an RF / microwave filter 102 according to an embodiment of the present invention. Figure 5A depicts a perspective view of a coaxial filter element, which includes spokes 104 & -104 (1. The figure depicts a plan view of the filter 102 viewed from line 20 5 (b) -5 (b) of FIG. Figure 5C depicts a plan view of the coaxial filter viewed from lines 5 (c) -5 (c) of Figure 5A. Fig. 5c shows that the filter of Fig. 5A includes three sets of spokes and separates half (1/2) of the wavelength (; 10) of the center frequency of the band through which the filter can pass. In this configuration, the filter can be viewed as a Bragg-type filter (1244799) with 2 poles (the adjacent pairs form a single pole). In one example, the filter can use the sizes listed in Table 1 below. Table 1 Number Size Number Size 5 Tiger size 122 520 microns 124 400 microns 126 520 microns 128 Shed micrometers 130 Π6 mm 132 116 microns 134 180 microns 136 168 Micron 138 40 micron 140 158 micron 142 40 micron 144 180 micron 146 60 micron 148 60 micron 150 40 micron 152 40 micron 154 40 micron 156 λ〇 / 2 158 λ〇 / 2 5 In other embodiments, these dimensional changes can be made by Change the filter's characteristics of insertion loss in the pass band, attenuation in the stop band, and the transition zone. In other embodiments, various parameters can also be modified by changing the manufacturing materials of the filter and / or filter components. For example, the integral filter may be made of nickel or copper, or it may be partially or completely plated with silver or gold. Fig. 5D depicts a plan view of the central portion of an coaxial filter, one of an alternative embodiment, where the filter contains five sets of spokes 16aa-16e (this figure shows two spokes per repair group), each of which is separated Passes half of the center frequency of the band (ie 162 164, 166, and 168 = λ / 2). This figure shows a four-pole embodiment. For example, other numbers of poles can be used to form the filter (嬖-15 such as three poles or five or more poles). Figure 6A depicts an end view of a rectangular filter using multiple sets of spokes and each set having four spokes. In one example, the filters can be sized as listed in Table 2 below. 38 1244799 Table 2 Number size number size number size 222 920 microns 224 800 microns 226 320 microns f 228 200 microns 230 316 microns 232 59 microns ^ ~ 234 80 microns 236 88 microns 238 40 microns 240 168 microns 242 76 microns 244 362 microns 246 60 microns 248 60 microns is similar to the square coaxial filter in Figures 5A-5C. The above dimensions for rectangular coaxial filters can be changed. In the preferred embodiment 5 of this rectangular filter, the groups of spokes are separated by approximately λ / 2. Figures 6B and 6C show examples of two alternative cross-section configurations (i.e., a circular configuration and an elliptical configuration) for a coaxial filter of the type shown. In other embodiments, there may be other cross-section configurations, and even the cross-section configurations of the inner conductors 302 and 302 may be different from the outer conductors 304 and 10 304 '. In other embodiments, the spokes may have different cross-sectional configurations (square, rectangle, circle, oval, and the like). Figures 7 A-7D depict examples of alternative spoke configurations that can be used in coaxial filters. FIG. 7A shows an embodiment using two spokes 312 and 314, and the spokes 312 and 314 extend in the longer cross-section rule 15 inches of the rectangular outer conductor 316 and maintain the symmetry of this configuration. Fig. 7B shows a two-spoke embodiment similar to that of Fig. 7A. The only difference is that the spokes 322 and 324 extend in the smaller cross-sectional dimensions of the outer conductor 326. Figure 7C shows an embodiment, which is still the same as Figures 7-8 and 7; Figure 6 uses two spokes, of which one spoke 332 extends in a horizontal dimension (ie, the main dimension of the rectangular outer conductor 336) and one 20-wheel 334 39 1244799 extends in the vertical dimension (ie the minor dimension of the rectangular outer conductor 336). In Fig. 7D, only a single spoke 342 constitutes each group. In an example, the embodiment in FIG. 7A can adopt the dimensions listed in Table 2 above, but the only difference is that the dimensions 242 and 244 do not exist in this configuration. In another example, the embodiment of Fig. 7A may adopt the dimensions listed in Table 3 below, in which the number 5 has been modified plus a prime ('). table 3

編號 尺寸 編號 尺寸 編號 尺^~ 222, 720微米 224, 600微米 226, 42〇ί{Γ 228, 300微米 230, 175微米 232, 234, 130微米 236, 125微米 238, 40微米 240, 250微米 242, 60微米 248, 6〇SlP ——-—JNumber size number size number ruler ^ ~ 222, 720 microns 224, 600 microns 226, 42〇 {Γ 228, 300 microns 230, 175 microns 232, 234, 130 microns 236, 125 microns 238, 40 microns 240, 250 microns 242 , 60 microns 248, 6〇SlP ——- J

替代性實施例中,可能存在其他的輪輻數量(譬如三或 五)及組態(譬如多個輪輻從導體的單側延伸,而非所有輪幸高 10 自内導體往外導體徹底地向外延伸)。 第8A及8B圖顯示根據本發明的其他實施例之.非、線性 同軸濾器構件之立體圖。第8A圖描繪一延伸的蜿蜓形狀, 而第8B圖描繪一螺旋形狀。其他替代性實施例中,可使用 自捲繞結構的平面取出一進入及離開埠或甚至造成捲、繞部 15 一般被立體地堆積或延伸之其他組態。此種立體堆積方式 可導致比起先前獲得更為密實之設計。 第9A-9C圖描繪使用輪輻及沿著内或外導體的突部來 幫助過濾射頻或微波訊號之一組合之同軸濾器構件的替代 性實施例。特定言之,第9A圖顯示一實施例,其中輪輕352、 20 354、356及358包括在外導體362的端點上,且外導體突部 372、374、376及378端點中間的部分係包括在外導體的内 40 1244799 表面上並較佳約為四分之一波長(A J4)的長度且分隔約一 半的波長(又〇/2)。替代性實施例中,將外導體362中的凹部 視為與突部相對。第9A圖的實施例中,輪輕彼此不像先前 實施例般地分隔;1〇/2而是分隔λ 〇/2的整數倍數。在所描繪 5 的實施例中,整數倍數為三。 第9Β圖顯示另一替代性實施例,其中輪輻的間隔是入 〇/2之不為一的整數倍數,且在中間的λ〇/2位置處將突部 382、384、386及388(近似λ 〇/2的長度)包括在内導體392上。 第9C圖顯示第三替代性實施例,其中不但將突部包括 10在内導體上而且亦包括一組額外中間的輪輻394及396。各 組連續濾器元件的最佳間隔仍為近似;^0/2。 其他實施例中,可能具有其他組態之輪輻、突部及/或 凹痕。部分實施例中,以λ〇/2的整數倍數來分隔連續的濾 器元件(譬如輪輻、突部及/或凹痕)係為可接受的方式。 15 第5A-9D圖的實施例中,設置於結構中的輪輻可對於 内導體提供足夠支撐,因此不需要介電質或其他支撐媒 體。因此,在最佳實施例中,内導體係與外導體分離一空 氣間隙或其他氣態媒體或者分離一排空空間。其他實施例 中,一固體或甚至液體介電材料可部份地或完全地***内 20與外導體之間隙内。介電質的***作用可能在導體成形後 發生、或可在導體成形的現場形成。下文將描述各種不同 的範例實行程序。 第9D圖描繪一蜿蜒形二極同軸濾器的中央部分沿著長 度之平面圖。此實施例中,並未使用輪輕而是使用内導體 41 1244799 392’上的突部394、 396及398來提供過濾效果。替代性實施In alternative embodiments, there may be other spoke numbers (such as three or five) and configurations (such as multiple spokes extending from one side of the conductor, rather than all the wheels extending from 10 to 100.) ). Figures 8A and 8B show perspective views of non-linear coaxial filter members according to other embodiments of the present invention. Figure 8A depicts an extended meandering shape, and Figure 8B depicts a spiral shape. In other alternative embodiments, other configurations may be used to take out an entry and exit port from the plane of the self-winding structure or even cause the coils, windings 15 to be generally three-dimensionally stacked or extended. This three-dimensional stacking can result in a more compact design than previously obtained. Figures 9A-9C depict alternative embodiments of coaxial filter components that use spokes and protrusions along inner or outer conductors to help filter one of a combination of RF or microwave signals. In particular, FIG. 9A shows an embodiment in which the wheels 352, 20 354, 356, and 358 are included at the end points of the outer conductor 362, and the middle part of the outer conductor projections 372, 374, 376, and 378 is Included on the inner 40 1244799 surface of the outer conductor and preferably about a quarter of a wavelength (A J4) in length and separated by about half a wavelength (again, 0/2). In an alternative embodiment, the recesses in the outer conductor 362 are considered as opposed to the protrusions. In the embodiment of Fig. 9A, the wheels are not separated from each other as in the previous embodiment; 10/2 is an integer multiple of λ / 2. In the depicted embodiment 5, the integer multiple is three. Figure 9B shows another alternative embodiment in which the spokes are spaced at integer multiples of 0/2 and the protrusions 382, 384, 386, and 388 (approximately λ / 2) is included in the inner conductor 392. Figure 9C shows a third alternative embodiment in which not only the protrusions are included on the inner conductor but also a set of additional intermediate spokes 394 and 396. The optimal interval of continuous filter elements in each group is still approximate; ^ 0/2. In other embodiments, there may be spokes, protrusions, and / or dents in other configurations. In some embodiments, it is acceptable to separate continuous filter elements (such as spokes, protrusions, and / or dents) by an integer multiple of λ / 2. 15 In the embodiment shown in Figures 5A-9D, the spokes provided in the structure can provide sufficient support for the inner conductor, so no dielectric or other supporting medium is required. Therefore, in the preferred embodiment, the inner conductor system is separated from the outer conductor by an air gap or other gaseous medium or by an empty space. In other embodiments, a solid or even liquid dielectric material may be partially or completely inserted into the gap between the inner conductor 20 and the outer conductor. The insertion of the dielectric may occur after the conductor is formed, or it may be formed at the site where the conductor is formed. A variety of example implementation procedures are described below. Figure 9D depicts a plan view of the center portion of a meandering, two-pole coaxial filter along its length. In this embodiment, instead of using light wheels, protrusions 394, 396, and 398 on the inner conductor 41 1244799 392 'are used to provide filtering effects. Alternative implementation

一傳導支撐件 一固體介電質 。亦將描述心從㈣累_間所使_-傳導支撑件A conductive support and a solid dielectric. Will also describe the heart from the __ conductive conduction support

之各種不同的其他實施例。 第10A-10D圖描繪沿|同軸元件長度之中央部分的平 1〇面圖,且其包括輻射傳播方向中之尖銳轉折部。根據本發 明的製造方法,可將不同程度的斜接彎折部***同軸構件 及波導構件内而不太需要考慮設計的幾何複雜度或工具抵 達受斜接位置之可近接性(accessibility)。第1〇A圖描繪從一 同軸分段402到另一同軸分段404然後再到另一同軸分段之 15 轉折。此圖中,將轉折部412、414、416、418、422、424、 426及428顯示為90度轉折部且預期會因為這些尖銳的彎轉 而產生顯著的反射。第10B圖顯示利用轉折部412”及414,, 上的經斜接斷面432及434來幫助降低損失(譬如反射)。第 10C圖描繪咸信有助於進一步降低損失之用於轉折部 20 412’、414’、416’、418,、422,、424,、426,及428,之經斜 接斷面。其他實施例中,斷面長度可延伸(譬如412及414之 斷面長度)以確保有更大部分的衝擊輻射以非90度入射角 進行打擊。第10D圖顯示,可將多個斷面施加至各轉折區 412”、414”、416”、418”、422”、424”、426”及428”。根據 1244799 衣二法之斜接效應不但適用於同軸構件(譬如傳輸 :“及細咖且亦制於料(譬如具有低於獅微 未、低於働微米的内部尺寸或甚至具有更小尺寸之波導, 或是傳播路徑呈複絲且需要單雛結構 組裝困難度之較大波導)。 牛人丁及没 第ιιαβ_分別贿沿著―_傳輪線438及一同 軸滅益構件440的中央部分之平面圖,其中將突件概包括 在同軸線之較小半徑側的内側表面上。突件可能為平坦及 綠,或者其可具奴科續的纟讀。突件狀可增加沿 10者具有較小標稱半徑的側之路徑長度,以使此路徑長度比 起如果具有較小標稱半徑的表面是一簡單曲線442之情形 下更加接近沿著外壁的路徑長度。替代性實施例中,中央 導體亦可藉由路徑長度突件加以修改。 第12A-12C圖描繚本發明的一替代性實施例之一同抽 15三極式以根段為基礎㈣器。第UA圖购沿著渡器長度之 中央部分的平面圖(從上方觀看)。第12B圖描繪第i2A圖的 渡器之端視圖,其中顯示結構的長方形組態。第i2c圖描繪 第12A及12B圖的圓形版本之濾器的平面圖。一範例中,第 12A-12C圖的濾器可採行下表4所列的尺寸。 編號 尺寸 編號 尺寸 編號 尺寸 502 300微米 504 300微米 506 25微米 508-S0 245微米 508-S1 165微米 508-S2 25微米 512 λ〇/4(250公厘) 514 λ〇/4(250公厘) 516 λ〇ΑΚ250公厘) 522 ’ 3.00公厘 524 1.64公厘 526 200微米 528 100微米 43 1244799 各對的根段522及524分別提供1容 抗且其合併提供濾㈣-極。各根縣财其側ς感 ^的端點處短路至外側導體556。極的間隔較佳係逼近滤 ^之所需要通過帶的中央頻率之四分— 5 10 ΑΑ Ε ^ 波長U〇/4)。根 匕的長度經過選擇可提供-電容性阻抗(譬如略比^更 長)及-電感性阻抗(略比又。μ更短)。替代性實施例中,咸 2的間隔可能延伸至λΰ/4的整數倍數,可將其他過航 件添加至構件(譬如輪輻、突部及類似物)中。 其他實施例中,可使尺寸變動藉以改變通過帶中之滤 器的***損失'阻止帶中之衰減、以及轉折區中與通過; 區中之特徵。這些其他實施财,材藉由改魏器及/或 濾器構件的製造材料來修改各種不同參數。譬如,整體濾 器可由鎳或細彡成,或者其可部份地或完全地鍍覆有銀或 金。 替代性實施例中,可能從一經短路根段(提供一分路電 感)及用於終結通路端點的短路(譬如進入一介電質中)之 開路的根#又供一分路電容)來形成各極,其中電容性根段 可能能夠由於其開路組態加以縮短。 第13A圖描繪沿著一 S形二極以根段為基礎的帶通同 20轴濾器之長度的中央部分之平面圖(從上方觀看)。進入埠 602及離開埠604係由外導體6〇8中的一通道6〇6加以連接, 且兩對通路612及614係自通道606延伸。在通道606中心下 方有一内導體616延伸且兩對根段622及624自其延伸直到 分別在通路612及614端點處短路至外導體608内為止。 44 1244799 第13B圖描續^一濾器630的立體圖,其具有相較於第 13A圖略經修改之組態。第13B圖的濾器係利用MEMGen的 EFAB™電化學製造技術製成。顯示此濾器具有接地引線 632及用於在可犧牲材料已經移除之後連接至一基材(譬如 5 一電路板、1C或類似物)之訊號引線634。亦顯示濾器在外 導體中具有複數個孔642(開孔)以幫助從内與外導體之間移 除可犧牲材料。此範例中,這些孔各為150微米長及5〇微米 高並延伸80微米以完全延伸過屏蔽導體的壁。Various other embodiments. Figures 10A-10D depict a flat 10 plane view along the central portion of the length of the coaxial element, and it includes sharp turns in the direction of radiation propagation. According to the manufacturing method of the present invention, different degrees of miter bends can be inserted into the coaxial member and the waveguide member without having to consider the geometric complexity of the design or the accessibility of the tool to reach the mitigated position. Figure 10A depicts a fifteenth turn from one coaxial segment 402 to another coaxial segment 404 and then to another coaxial segment. In this figure, the turning portions 412, 414, 416, 418, 422, 424, 426, and 428 are shown as 90-degree turning portions and it is expected that there will be a significant reflection due to these sharp turns. Figure 10B shows the use of the beveled sections 432 and 434 on the turning portions 412 "and 414, to help reduce losses (such as reflections). Figure 10C depicts the letter used in the turning portion 20 to help further reduce losses. 412 ', 414', 416 ', 418, 422 ,, 424 ,, 426, and 428, are miter sections. In other embodiments, the section length can be extended (such as the section lengths of 412 and 414). To ensure that a larger part of the impact radiation strikes at a non-90-degree incident angle. Figure 10D shows that multiple sections can be applied to each of the turning areas 412 ", 414", 416 ", 418", 422 ", 424 ", 426", and 428 ". The miter effect according to the 1244799 clothing method is not only applicable to coaxial components (such as transmission:" and fine coffee but also made of materials (such as having an interior that is lower than Lion Micro, lower than 働 Micron Or even smaller waveguides, or larger waveguides with multi-filament propagation paths that require difficulty in assembling single-cell structures). Niu Ren Ding and Wei Di ιιαβ_ bribe along __pass wheel line 438 and 1 respectively A plan view of the central portion of the coaxial vanishing member 440, which includes the protrusions generally On the inside surface of the smaller radius side of the coaxial line. The protrusion may be flat and green, or it may have a continuous reading. The protrusion shape may increase the path along the side with a smaller nominal radius of 10 Length so that this path length is closer to the path length along the outer wall than if the surface with a smaller nominal radius were a simple curve 442. In alternative embodiments, the central conductor may also be protruded by the path length. Figures 12A-12C depict one of an alternative embodiment of the present invention with a 15-pole three-pole type root-based appliance. Figure UA purchases a plan view of the central portion along the length of the ferrule (from (Viewed above). Figure 12B depicts the end view of the ferrule in Figure i2A, which shows the rectangular configuration of the structure. Figure i2c depicts a plan view of the circular version of the filter in Figures 12A and 12B. In one example, Figure 12A The filter of -12C can adopt the sizes listed in Table 4 below. No. Size No. Size No. Size 502 300 microns 504 300 microns 506 25 microns 508-S0 245 microns 508-S1 165 microns 508-S2 25 microns 512 λ〇 / 4 (250 mm) 514 λ / 4 (250 mm) 516 λ〇ΑΚ250 mm) 522 '3.00 mm 524 1.64 mm 526 200 microns 528 100 microns 43 1244799 Each pair of root segments 522 and 524 provide 1 capacitive reactance and their combination provides filtering -pole. Each end of the county is shorted to the outer conductor 556 at the end of its side. The interval between the poles is preferably a quarter of the center frequency of the band required for the approximation filter-5 10 ΑΑ Ε ^ wavelength U0 / 4). The length of the root can be selected to provide-capacitive impedance (for example, slightly longer than ^) and-inductive impedance (slightly shorter than .μ). In alternative embodiments, the interval of salt 2 may extend to an integer multiple of λΰ / 4, and other passing parts may be added to the components (such as spokes, protrusions, and the like). In other embodiments, the dimensional change can be used to change the insertion loss of the filter in the band 'to prevent the attenuation in the band, and the characteristics in the transition zone and the passage zone. These other implementations modify various parameters by modifying the materials used to manufacture the filters and / or filters. For example, the integral filter may be made of nickel or fine-grained, or it may be partially or completely plated with silver or gold. In an alternative embodiment, it may be provided from a short-circuited root segment (providing a shunt inductance) and an open-circuited root # used to terminate the short-circuit at the end of the path (such as entering a dielectric) for a shunt capacitance) Each pole is formed, where the capacitive root segment may be able to be shortened due to its open configuration. Figure 13A depicts a plan view of the central portion of a band-pass-based 20-axis filter along the root of an S-shaped dipole (viewed from above). The entry port 602 and the exit port 604 are connected by a channel 606 in the outer conductor 608, and two pairs of paths 612 and 614 extend from the channel 606. An inner conductor 616 extends below the center of the channel 606 and two pairs of root segments 622 and 624 extend from it until they are short-circuited into the outer conductor 608 at the ends of the vias 612 and 614, respectively. 44 1244799 FIG. 13B depicts a perspective view of a filter 630, which has a slightly modified configuration compared to FIG. 13A. The filter in Figure 13B is made using MEMGen's EFAB ™ electrochemical manufacturing technology. The filter is shown to have a ground lead 632 and a signal lead 634 for connecting to a substrate (such as a circuit board, 1C, or the like) after the sacrificial material has been removed. The filter is also shown with a plurality of holes 642 (openings) in the outer conductor to help remove sacrificial material from the inner and outer conductors. In this example, the holes are each 150 micrometers long and 50 micrometers high and extend 80 micrometers to extend completely through the walls of the shielded conductor.

第13C圖描繪從結構性材料移除可犧牲材料後之一部 1〇分成形的濾器(類似第13B圖)之立體特寫圖。此圖中,同軸 元件的外壁(屏蔽壁)可被看見652,對於其延伸經過之開孔 654亦同。中央導體656亦可被看見。 此處所述的姓刻孔較佳係設定尺寸且定位於同軸結構 或波導結構中以使其可以增進且完全地移除可犧牲材料, 15而不會顯著地干擾結構的電性質。依此來看,孔較佳具有Figure 13C depicts a close-up view of a 10-shaped filter (similar to Figure 13B) after the sacrificial material is removed from the structural material. In this figure, the outer wall (shield wall) of the coaxial element can be seen 652, as is the opening 654 through which it extends. The central conductor 656 can also be seen. The nicks described herein are preferably sized and positioned in the coaxial structure or waveguide structure so that they can remove the sacrificable material in an improved and complete manner without significantly interfering with the electrical properties of the structure. From this perspective, the hole preferably has

比相關波長顯著更小的尺寸以使其作為具有遠比相關者更 局的截止頻率(下限)之波導,且因而不會顯著地影響結構的 Μ特徵依此來看,結構較佳比相關波長更小〇〇1倍、 甚至o.ooi倍。心著波長增加,此限制值可能導致餘刻孔太 -2而無法有效地移除可犧牲㈣,在料案财,可能需 要更小的降低因數。 弟14Α及14Β圖描繪具有一修改設計之同轴滤器元件 、立體圖,其沿著外導㈣長度包括開口(譬如通路),其中 開口無意提純射進人或離開琿。本發明的部分製造實施 45 1244799 =、_此㈣Π有助於自可能已經沉積在外導體内的小腔 ==内之—可犧牲材料704釋放—結構性材料7⑽。在 即將發生可犧牲材料7〇4的 心關中,此等 及通路内。在藉由融化及流動 =可犧牲材料從-結構性材料分離之其他實施例中可能 10 15 物1'如果位於選擇位置(譬如接近盲通路及類似 描山)上目開口可以具有適當供應的壓力以幫助移除 槿:材料。第14糊鱗藉由可犧牲材Μ人及充填的結 =生材料所形成之構件寫之立體圖。第ΐ4Β圖描繪自可犧 牲材料分離之構件706的立體圖。 第15A-15D圖顯示對於上述各種濾器設計之根據數學 二型的傳輸VS·頻率之繪圖。第m圖描繪對於—具有類似 "圖、且心且由鎳製成之2極濾器(三組輪輕)之模擬傳輸 1圖。構件的尺寸在表5中列出。如第15Α圖所示,滤器的 f通中、係位於28 GHz附近,在通過帶中具有約2〇-22 dB 的***損失且在阻止帶中具有約6177犯的***損失。 表5 特性 外導體的内側寬度 外導體的内側高度 亦即進人頁面的尺寸) 尺寸 600微米 300微米 250微米 75微米 40微米 100微米 〜5-5.5公厘 弟 ® 4田、’曰如第9D圖所示之一 2極濾器(内導體上有 46 1244799 一組突部)之模型傳輸繪圖,其中各突部長度近似為λ〇/4且 突部的中心至中心間隔近似為λ 〇/4而具有一類似第7八圖 的組態且由鎳製成。外導體的内徑約為240微米,中央導體 的直徑在20微米與220微米之間作出轉折且具有約15公厘 長度及約30公厘中心至中心間隔之突部。從第15Β圖可知, 帶通中心係位於5 GHz附近而具有5-6 dB的***損失以及 阻止帶中約13-18 dB之***損失。 第15C及15D圖描繪根據第12A-12C圖的結構及尺寸所 構成之濾器之模型傳輸繪圖,其中對於第15C圖的結構性材 10料為鎳且對於第15D圖為經鍍金的鎳。第15C圖指示出帶通 區中7-8 dB左右之***損失,而第15D圖指示出一對應的 1-2 dB***損失。 第16圖提供一電化學製造程序之流程圖,其從逐層沉 積的單一傳導材料及單一介電材料來累積立體結構。 15 第16圖的程序首先係為方塊702且其中將目前層數η設 定為1的數值。結構/裝置的成形過程首先係以層1開始且以 一最後層Ν結束。 設定目前的層數之後,此程序前進至決策方塊704,其 中詢問基材表面是否完全為傳導性或至少具有充分傳導性 20 而足以讓一傳導材料電沉積至基材的一所需要區域中。如 果材料只將 >儿積在具有傳導性且對於用以接收電力的基材 一部分具有連續性之基材的一區中,可能不需要使基材的 整體表面皆具有傳導性。本實施例中,基材係指其上可供 一層材料沉積用之基底。隨著程序往前進行,藉由連續沉 1244799 積各新層來修改及添加基材。 如果詢問的答案為“是”,此程序前進至方塊708,但如 果答案為“否’’,此程序移至方塊706而將一籽晶層的第一傳 導材料施加至基材上。利用一種選擇性方式(譬如首先來罩 5 幕住基材然後施加籽晶層、隨後移除罩幕及其上沉積的任 何材料)或是一種體塊或毯覆方式來達成籽晶層的施加。嬖 如,可藉由一物理或化學氣相沉積程序來沉積一傳導層。 ^ 或者,其可採取固體化或以其他方式結合至基材之一膏或 者其他可流動材料的形式。另一替代方式中,其可以將被 馨 10黏附或用其他方式結合至基材之一頁片形式加以供應。相 較於用以形成一層結構的體塊之電沉積厚度而言,籽晶層 通常很薄。 籽晶層施加之後,此程序前進至方塊708而沉積第二傳 導材料。最佳的沉積程序係為一種使用一接觸至基材的介 is電cc罩幕之選擇性程序,經由此介電cc罩幕存在有一或多 個開口且傳導材料可經由開口電沉積在基材上(譬如藉由 電錢)。亦可使用-淨選擇性材料沉積物的其他構成形式。 # 2此程序的各種不同替代方式中,第_及第二料材料可 此不同’或者其可為相同的材料。如果其相同,所形成的 2〇結構可具有更為等向性之電性質;如果其不同,可利用— · k擇ϋ移除操作來移除第—材料的暴露區而不損傷第二材 · 料。 序後月ό進至方塊71〇,而移除未被剛沉積的傳導 材枓所覆蓋之籽晶層部分。此作用係為了準備沉積介電材 48 1244799 料。部分實施例中,在鋪覆於一緊位於前的層上所沉積之 傳導材料上之區域中可能不需要移除籽晶層,但為求簡 單,部分環境中,仍偏好採用一體塊移除程序。籽晶層可 藉由一對於籽晶層材料(如果其與第二傳導材料不同)具有 5選擇性之蝕刻操作加以移除。此蝕刻操作中,由於籽晶層 很薄,只要使用合理的蝕刻控制,則對於被第二傳導材料 所鋪覆之籽晶層材料應具有極少損傷或毫無損傷。如果籽 晶層材料(亦即第一傳導材料)與第二傳導材料相同,經控制 的蝕刻參數(譬如時間、溫度、及/或蝕刻溶液的濃度)應可 10使很薄的籽晶層被移除而不對於剛沉積的第二傳導材料造 成任何顯著的損傷。 15 20Significantly smaller size than the relevant wavelength to make it a waveguide with a far more cut-off frequency (lower limit) than the relevant one, and therefore does not significantly affect the M characteristics of the structure. From this point of view, the structure is better than the relevant wavelength 001 times smaller, even o.ooi times. With the increase of the wavelength, this limit value may cause the remaining holes to be too -2 to effectively remove the sacrificable plutonium. As a matter of fact, a smaller reduction factor may be required. Figures 14A and 14B depict a coaxial filter element with a modified design, a perspective view, which includes an opening (such as a passageway) along the length of the outer guide tube, where the opening is not intended to purify and shoot into or leave the puppet. Partial manufacturing implementation of the present invention 45 1244799 =, _ This ㈣Π helps from small cavities that may have been deposited in the outer conductor = = inside-the sacrificial material 704 is released-the structural material 7 ⑽. In the heart of the impending sacrifice of material 704, these and within the pathway. In other embodiments where melting and flowing = separation of sacrificial material from structural material may be possible, the object opening 1 'may be provided with a suitable supply pressure if it is located in a selected position (such as near a blind passage and similar tracing mountains). To help remove Hibiscus: material. The fourteenth paste scale is a three-dimensional view written by a member formed by a sacrificable material and a filling material. Figure 24B depicts a perspective view of the member 706 separated from the sacrificial material. Figures 15A-15D show plots of transmission vs. frequency according to Mathematical Type 2 for the various filter designs described above. Figure m depicts the analog transmission of a 2-pole filter (three sets of wheels light) with a similar " graph and a heart made of nickel. The dimensions of the components are listed in Table 5. As shown in Figure 15A, the filter's f-pass, located near 28 GHz, has an insertion loss of about 20-22 dB in the passband and an insertion loss of about 6177 in the stopband. Table 5 Characteristics of the inner width of the outer conductor The inner height of the outer conductor is the size of the page.) Dimensions 600 microns, 300 microns, 250 microns, 75 microns, 40 microns, 100 microns to 5-5.5 mm. A model transmission drawing of a 2-pole filter (a set of 46 1244799 protrusions on the inner conductor) shown in the figure, where the length of each protrusion is approximately λ〇 / 4 and the center-to-center interval of the protrusion is approximately λ 〇 / 4 Instead, it has a configuration similar to that of Figures 7 and 8 and is made of nickel. The inner diameter of the outer conductor is about 240 micrometers, and the diameter of the central conductor turns between 20 micrometers and 220 micrometers and has a protrusion of about 15 mm in length and about 30 mm center-to-center spacing. From Figure 15B, it can be seen that the center of the bandpass is located near 5 GHz with an insertion loss of 5-6 dB and an insertion loss of about 13-18 dB in the stop band. Figures 15C and 15D depict model transmission drawings of filters constructed according to the structure and dimensions of Figures 12A-12C, where the structural material of Figure 15C is nickel and for the 15D figure is gold-plated nickel. Figure 15C indicates an insertion loss of around 7-8 dB in the band-pass region, while Figure 15D indicates a corresponding 1-2 dB insertion loss. FIG. 16 provides a flowchart of an electrochemical manufacturing process that accumulates a three-dimensional structure from a single conductive material and a single dielectric material deposited layer by layer. 15 The procedure of Figure 16 is first block 702 where the current layer number η is set to a value of one. The forming process of the structure / device starts first with layer 1 and ends with a final layer N. After setting the current number of layers, the process proceeds to decision block 704, which asks if the surface of the substrate is completely conductive or at least sufficiently conductive 20 to allow a conductive material to be electrodeposited into a desired area of the substrate. If the material only accumulates in a region of the substrate that is conductive and has a continuity to a portion of the substrate used to receive power, it may not be necessary to make the entire surface of the substrate conductive. In this embodiment, the substrate refers to a substrate on which a layer of material can be deposited. As the process progresses, the substrate is modified and added by successively depositing new layers. If the answer to the query is "yes", the process proceeds to block 708, but if the answer is "no", the process moves to block 706 to apply a seed layer of the first conductive material to the substrate. Using a Selective methods (such as first covering 5 substrates and then applying a seed layer, then removing the mask and any material deposited thereon) or a bulk or blanket method to achieve the seed layer application. 嬖For example, a conductive layer can be deposited by a physical or chemical vapor deposition process. Alternatively, it can take the form of a paste or other flowable material that is solidified or otherwise bonded to the substrate. Another alternative It can be supplied in the form of a sheet that is adhered or otherwise bonded to the substrate by Xin 10. Compared with the electrodeposition thickness of the bulk used to form a layer structure, the seed layer is usually very thin. After the seed layer is applied, the process proceeds to block 708 to deposit a second conductive material. The optimal deposition process is a selective process using a dielectric cc mask in contact with the substrate through which the dielectric cc Veil In one or more openings, the conductive material can be electrodeposited on the substrate through the openings (such as by electric money). Other forms of net-selective material deposits can also be used. # 2 Different alternatives to this procedure In this case, the materials of the first and second materials may be different from each other, or they may be the same material. If they are the same, the formed 20 structure may have more isotropic electrical properties; if they are different, they can be used-· Select the removal operation to remove the exposed area of the first material without damaging the second material. After the sequence, proceed to block 71, and remove the seed crystals that are not covered by the newly deposited conductive material. This part is to prepare for the deposition of the dielectric material 48 1244799. In some embodiments, it may not be necessary to remove the seed layer in the area overlaid on the conductive material deposited on a layer immediately before, However, for simplicity, in some environments, the one-piece removal process is still preferred. The seed layer can be removed by an etching operation that has a 5 selectivity to the seed layer material (if it is different from the second conductive material). In this etching operation, Because the seed layer is very thin, as long as reasonable etching control is used, there should be little or no damage to the seed layer material covered by the second conductive material. If the seed layer material (that is, the first conductive material) ) Same as the second conductive material, the controlled etching parameters (such as time, temperature, and / or concentration of the etching solution) should be such that a very thin seed layer can be removed without affecting the newly deposited second conductive material. Causes any significant damage. 15 20

接著,此程序前進至方塊712而需要沉積一介電材料。 介電材料的沉積可能以各種不同方式發生,且其可以選擇 ^生方式或者一毯覆或體塊方式發生。由於本實施例的程序 形成了包括不同傳導材料區及不同介電材料區之經平面化 的複合層,且由於將平面化除去任何多餘材料,其不會傷 害到(與潛在廢料相關者除外)介電材料的毯覆沉積且事實 ^將傾向於提供更寬廣的沉積可能性。可藉由噴灑、濺鍍、 分散、噴注或類似方式發生介電材料的沉積。 接著,此程序前進至方塊714而將經沉積材料加以平面 ^以產生具有理想淨厚度之第η層結構。可以包括抛磨及/ 或CMP等各種不同方式發生平面化。 错由方塊714的操作完成此層之後,此程序前進至 方塊716。此決策方塊詢問第η層(亦即目前的層)是否為 49 1244799 的最後層(亦即第N層),如果是,則程序前進至方塊72〇且 結束;如果否,則程序移至方塊718。 方塊718將“n”值加一,然後程序繞回到方塊7〇4並再度 詢問基材(亦即添加剛成形的層之先前基材)是否具有足夠 5 傳導性。 此程序繼續行經方塊704_718直到第1^層的成形作用完 成為止。 第17Α圖描繪一同軸結構722之端視圖,其包括一外傳 導元件724、及内傳導元件726、一嵌置介電區728及一外部 10介電區730。在延伸第16圖程序的部分實施例中,在可對於 内傳導元件726確保適當支撐的方式達成從區728的此移除 作用之假設下,可能使用後處理(亦即所有層沉積後所發生 之處理)操作來從區730移除一部分或全部介電質及從區 728移除一部分或全部介電質。 15 第18A_18J圖顯示應用第16圖的程序流程來形成一類 似於第17A及17B圖所示之結構。第18A_18J圖描繪了顯示 此結構在逐層累積時的一橫剖面之垂直平面圖。第18A圖描 繪程序的啟動材料(亦即一其上將沉積有層之空白基材 732)。第18B圖描繪用於第一層之所產生的經選擇性沉積第 20二傳導材料734_1’。開始此程序時,假設所供應的基材具有 充分傳導性足以進行沉積而不需要施加一籽晶層。第18C 圖顯示介電材料736_Γ的一毯覆沉積(根據操作/方塊712)之 結果,第18D圖顯示由於操作/方塊714的平面化操作之結果 而$致开y成了元成的弟一層L1。第一完成層係具有理想厚 1244799 度及不同區的傳導材料乃扣丨及介電材料736_工。 弟 0 ,、、、員示與弟_層成形相關之初始操作的結果(方 塊706)。由於第-層的_顯著部分由〆介電材料形成而尚 且中心傳導區與兩外傳導區呈現隔離,需要對於第二層施 5加-籽曰曰層738-2。第18F圖顯示對於第二層之第二傳導材 料734-2’的選擇性沉積(操作7〇8)之結果,且進一步顯示籽 晶層738-2有些部分738_2,,未被第二傳導材料734_2,所覆 蓋,第18G圖顯示移除籽晶層738_2未被覆蓋部分(操作71〇) 之結果,其產生了用於第二層738_2之淨抒晶層。第順圖 10顯示對於第二層之介電材料736-2,的毯覆沉積結果(操作 712)。第181圖顯示平面化程序(操作714)產生之完成的第二 層L2且其包括不同區的傳導材料734_2及介電材料736_2。 第18J圖顯*自層L1_L7來形成經完成結構。用於形成 層L 3 - L 7之操作係類似於形成L 2期間所使用之操作。可將第 15 i8J圖的結構裝置實地加以使用或其可經歷額外處理操作 以準備其最終用途。 第16圖的實施例可能具有各種不同的替代方式。一替 代方式中,可能使沉積次序反轉。另一程序中,並不選擇 性,儿積材料,而是可以體塊方式(in bulk)來沉積各材料,且 20利用選擇性蝕刻操作來產生材料的“淨,,選擇性定位作用。 第19圖提供比第16圖的程序更略為複雜之一電化學製 造程序之流程圖。第19圖的程序利用逐層沉積的三種傳導 材料來累積立體結構/裝置。由於此程序中所有材料皆為導 體且初始基材可能是唯一的例外,相較於第16圖的程序簡 51 1244799 化了層成形程序。然而,由於三種材料可能沉積或可能未 沉積在各層上,此程序不但增加了程序的複雜度亦可產生 增強功能性及多元用途之結構。 此程序首先從方塊802開始,其中將一目前的層數設為 5 — 0=1)。此程序然後移至決策方塊804,其中詢問基材表面 是否完全或至少部份地具有充分傳導性。如果此詢問的答 案為“是”,則程序前進至方塊808。另一方面,如果答案為 “否”,則此程序移至方塊806而將一籽晶層的傳導材料施加 至基材上。此程序隨後繞到決策方塊808。 10 方塊8〇8中,詢問第一傳導材料是否沉積在第n層上(亦 即目前的層上)。如果此詢問的答案為“否,,,程序前進至方 塊812。另一方面,如果答案為“是,,,程序移至方塊81〇而 選擇性沉積第一傳導材料。此程序隨後繞到決策方塊812。 方塊812中,詢問第二傳導材料是否沉積在第^層上(亦 15 即目前的層上)。如果此詢問的答案為“否,,,程序前進至方 塊816。另一方面,如果答案為“是”,程序移至方塊814而 沉積第二傳導材料(可選擇性或混合式加以達成)。此程序隨 後繞到決策方塊816。 方塊816中,詢問第三傳導材料是否沉積在第η層上(亦 20 即目前的層上)。如果此询問的答案為“否’’,程序前進至方 塊828。另一方面,如果答案為“是”,程序移至決策方塊 818 ° 方塊818中,詢問第二傳導材料是否沉積在第η層上(亦 即目前的層上)。如果此询問的答案為“否’’,程序前進至方 52 1244799 塊826。另一方面,如果答案為“是”,程序移至方塊822而 以一理想位準將經部分成形的層加以平面化,這可能導致 此層的過渡厚度稍微小於最後層之最後理想層厚度。程序 隨後移至方塊824而選擇性蝕刻至經沉積材料内以形成一 5或多個其内可供沉積第三材料之空隙。此程序隨後完成迴 路而到達方塊826。 方塊826係沉積第三傳導材料。第三材料可選擇性或混 合式發生沉積。此程序隨後繞到方塊828。 方塊828將所沉積材料平面化以獲得一具有理想厚度 10 之最後平坦的第η層。 藉由方塊828的操作完成第η層的成形之後,此程序前 進至決策方塊830。此決策方塊詢問第η層(亦即目前的層) 是否為結構的最後層(亦即第Ν層),如果是,則此程序移至 方塊834並結束;但如果為否,則此程序繞到方塊832。 !5 方塊832將“η”值加一,然後程序繞回到方塊8〇8並再度 詢問第一傳導材料是否沉積在第η層上。此程序隨後繼續行 經方塊808-832直到第Ν層的成形作用完成為止。 第20Α及20Β圖描繪包括可部份地根據第19圖程序所 形成之傳導材料的結構以及介電支撐結構之立體圖。第20Α 20 圖的同軸結構/裝置係包括一外導體842、一内導體844及用 於將兩導體固持在所需要的相對位置之介電支撐結構 846。成形期間,内及外導體由對於第19圖程序所描述的三 種傳導材料的其中一者(一主要材料)形成,且外導體不但形 成有進入及離開埠848及850亦形成有處理埠852。在部份的 53 1244799 這些處理埠内,設有—攻值導妊 _ \要傳¥叫且使其接觸内導體 844。在建造容積的其餘部分中,設有—第三級傳導 结構的所有層成形之後,將次要料材_除且使一介電 材料846充填所生成的1多個线。隨後,將第三級傳導 材料移除而留下第亀圖之中空化的結構沒置。應瞭解在 第20A圖的論述中,提及主要、次要及第三級時係—對一地 有關於第19圖的程序之第_、第二及第三傳導材料,但未 必分別如此。The process then proceeds to block 712 where a dielectric material needs to be deposited. The deposition of the dielectric material can occur in a variety of different ways, and it can be selected to occur either in a blanket or bulk manner. As the procedure of this embodiment forms a planarized composite layer including regions of different conductive materials and regions of different dielectric materials, and it will not hurt (except those related to potential waste) because the planarization removes any excess material The blanket deposition of dielectric materials and the fact that it will tend to provide a wider range of deposition possibilities. Deposition of the dielectric material can occur by spraying, sputtering, dispersion, spraying, or the like. The process then proceeds to block 714 to planarize the deposited material to produce an n-th layer structure with a desired net thickness. Planarization can occur in a variety of different ways including polishing and / or CMP. After completing this layer by the operation of block 714, the process proceeds to block 716. This decision block asks whether the n-th layer (that is, the current layer) is the last layer (that is, the N-th layer) of 49 1244799. If it is, the program proceeds to box 72 and ends; if not, the program moves to the box. 718. Block 718 increments the "n" value by one, and then the program loops back to block 704 and asks again whether the substrate (ie, the previous substrate to which the newly formed layer was added) is sufficiently conductive. This process continues through blocks 704_718 until the forming of layer 1 ^ is complete. Figure 17A depicts an end view of a coaxial structure 722, which includes an outer conductive element 724, and an inner conductive element 726, an embedded dielectric region 728, and an outer 10 dielectric region 730. In some embodiments that extend the procedure of Figure 16, under the assumption that this removal from zone 728 can be achieved in a manner that ensures proper support for the inner conductive element 726, post-processing (i.e., which occurs after all layers have been deposited) may be used. (Processing) operation to remove part or all of the dielectric from region 730 and remove part or all of the dielectric from region 728. 15 Figures 18A_18J show the program flow of Figure 16 to form a structure similar to that shown in Figures 17A and 17B. Figures 18A_18J depict a vertical plan view showing a cross section of the structure as it builds up layer by layer. Figure 18A depicts the starting material of the process (i.e., a blank substrate 732 on which a layer will be deposited). Figure 18B depicts the resulting selectively deposited 222nd conductive material 734_1 'for the first layer. To begin this procedure, it is assumed that the supplied substrate is sufficiently conductive to be deposited without the need to apply a seed layer. Figure 18C shows the results of a blanket deposition of dielectric material 736_Γ (according to operation / block 712), and Figure 18D shows that as a result of the planarization operation of operation / block 714, $ 致 开 y became the first layer of Yuan Cheng L1. The first completed layer has an ideal thickness of 1,244,799 degrees and conductive materials in different regions are made of dielectric materials and dielectric materials. Brother 0 ,,, and indicate the results of the initial operations related to brother layer formation (block 706). Since a significant portion of the first layer is formed of a rhenium dielectric material and the central conductive region is isolated from the two outer conductive regions, a 5 plus-seed layer 738-2 needs to be applied to the second layer. Fig. 18F shows the result of selective deposition (operation 708) of the second conductive material 734-2 'of the second layer, and further shows that some portions of the seed layer 738-2 738_2 are not the second conductive material. 734_2, covered, FIG. 18G shows the result of removing the uncovered portion of the seed layer 738_2 (operation 71), which results in a net crystalline layer for the second layer 738_2. Figure 10 shows the blanket deposition results for the second layer of dielectric material 736-2, (operation 712). Figure 181 shows the completed second layer L2 produced by the planarization procedure (operation 714) and includes conductive material 734_2 and dielectric material 736_2 in different regions. Figure 18J * shows the layer L1_L7 to form the completed structure. The operations for forming the layers L 3-L 7 are similar to those used during the formation of L 2. The structural device of Fig. 15 i8J may be used in the field or it may undergo additional processing operations to prepare its end use. The embodiment of Figure 16 may have various alternatives. In an alternative approach, the order of deposition may be reversed. In another procedure, the materials are not selective, but can be deposited in bulk, and 20 uses a selective etching operation to produce a "clean," selective positioning of the material. Figure 19 provides a flowchart that is slightly more complicated than the procedure in Figure 16. The procedure in Figure 19 uses three conductive materials deposited layer by layer to accumulate three-dimensional structures / devices. Since all materials in this procedure are The conductor and the initial substrate may be the only exception, compared to the procedure in Figure 16 51 1244799 for the layer forming process. However, since three materials may or may not be deposited on each layer, this procedure not only adds to the program's Complexity can also result in a structure that enhances functionality and versatility. The process starts first with block 802, where a current number of layers is set to 5 — 0 = 1). The process then moves to decision block 804, where the query base Whether the surface of the material is fully or at least partially sufficiently conductive. If the answer to this query is "yes", the program proceeds to block 808. On the other hand, if the answer is " No ", the process moves to block 806 to apply a seed layer of conductive material to the substrate. The process then loops to decision block 808. 10 Block 808 asks if the first conductive material is deposited on the first On layer n (that is, on the current layer). If the answer to this query is "No," the program proceeds to block 812. On the other hand, if the answer is "Yes," the program moves to block 810 to selectively deposit the first conductive material. The program then loops to decision block 812. In block 812, it is asked whether the second conductive material is deposited at the first ^ On the level (ie, 15 is the current level). If the answer to this query is "No," the program proceeds to block 816. On the other hand, if the answer is "yes", the process moves to block 814 and a second conductive material is deposited (either selectively or hybridly). This process then proceeds to decision block 816. In block 816, a query is made as to whether the third conductive material is deposited on the nth layer (ie, 20 is the current layer). If the answer to this query is "No", the program proceeds to block 828. On the other hand, if the answer is "Yes", the program moves to decision block 818 ° block 818 and asks whether the second conductive material is deposited on the nth On the level (that is, on the current level). If the answer to this query is "No", the program proceeds to Fang 52 1244799 block 826. On the other hand, if the answer is yes, the program moves to block 822 to planarize the partially formed layer at an ideal level, which may cause the transition thickness of this layer to be slightly smaller than the final ideal layer thickness of the last layer. The process then moves to block 824 and is selectively etched into the deposited material to form 5 or more voids in which a third material can be deposited. This process then completes the return path to block 826. Block 826 deposits a third conductive material. The third material may be deposited selectively or in combination. The process then proceeds to block 828. Block 828 planarizes the deposited material to obtain a final planar n-th layer having a desired thickness 10. After the formation of the n-th layer is completed by the operation of block 828, the process proceeds to decision block 830. This decision block asks whether the n-th layer (that is, the current layer) is the last layer of the structure (that is, the N-th layer). If it is, the procedure moves to block 834 and ends; but if not, the procedure bypasses Go to block 832. ! 5 Block 832 increments the "η" value by one, and then the program loops back to Block 808 and asks again whether the first conductive material is deposited on the η layer. This procedure then continues through blocks 808-832 until the forming of layer N is complete. Figures 20A and 20B depict a perspective view including a structure of a conductive material and a dielectric support structure that can be formed in part according to the procedure of Figure 19. The coaxial structure / device of Figs. 20A-20 includes an outer conductor 842, an inner conductor 844, and a dielectric support structure 846 for holding the two conductors in a desired relative position. During forming, the inner and outer conductors are formed of one of the three conductive materials (a main material) described for the procedure in Figure 19, and the outer conductors are formed not only with entry and exit ports 848 and 850, but also with processing ports 852. In some of these processing ports, 53 1244799, there are-attack value guide _ \ to pass \ call and make it contact the inner conductor 844. In the remainder of the build volume, after all layers of the third-level conductive structure are formed, the secondary material is removed and a dielectric material 846 is filled into the resulting plurality of lines. Subsequently, the third-level conductive material was removed, leaving the cavitation structure in the second figure to be absent. It should be understood that in the discussion of FIG. 20A, reference is made to the primary, secondary, and tertiary time series—for one place, the second, third, and third conductive materials related to the procedure of FIG. 19, but not necessarily separately.

第20B圖描緣-類似於第2〇A圖之結構,唯一差異在於 10藉由經修改的介電結構846,將内導體及外導體位置更穩固 地固持在位置中。 第21A-21T圖顯示應用第19圖的程序流程來形成一類 似於第20A圖所描繪之同轴結構,其中傳導材料的兩者係為 在結構層成形後加以移除之可犧牲材料且其中利用一介電 15 材料來取代被移除的可犧牲材料之一者。Figure 20B traces the structure similar to Figure 20A, the only difference is that the position of the inner and outer conductors is more firmly held in place by a modified dielectric structure 846. Figures 21A-21T show the application of the program flow of Figure 19 to form a coaxial structure similar to that depicted in Figure 20A, where both conductive materials are sacrificial materials that are removed after the structural layer is formed and where A dielectric 15 material was used to replace one of the sacrificial materials that was removed.

第21A圖描繪此程序的啟動材料(亦即一其上將沉積有 層之空白基材852)。行經此程序時,假設供應的基材具有 充分傳導性足以進行沉積而不需要施加一籽晶層(亦即對 於詢問804的答案為“是”),且假設808的詢問之答案亦為 20 “是”。第21B圖描繪有關用以產生對於第一層的一初始沉積 物854-1 ’之第一傳導材料854沉積物之方塊819的操作結 果。接著,假設方塊812的詢問之答案對於第一層為“是”。 亦假設對於第一層來說方塊816的詢問之答案為“否’’。因 此,第21C圖顯示第二材料856的合併沉積(方塊810)及經沉 54 1244799 積的第一及第一傳導材料854_1及856-1之平面化(方塊828) 以完成第一層L1的成形作用。第211)及21£圖代表與施加至 第一層成形作用者相同之程序及操作,其用以形成由不同 區854-2及856-2的第一及第二傳導材料所構成之第二層 5 [2。第21F及21G圖代表與施加至第一及第二層成形作用者 相同之程序及操作,其用以形成由不同區854-3及856-3的第 一及第二傳導材料所構成之第三層L3。 第21H-21K圖顯示有關形成結構/裝置的第四層L4之部 分操作的結果。第21H圖描繪有關用以產生對於第四層的一 10初始沉積物854_4,,之第一傳導材料854沉積物之方塊81〇的 操作結果。接著,假設方塊812的詢問之答案對於第四層為 “是’’。亦假設對於第四層來說方塊816的詢問之答案為 疋。因此,第211圖顯示第二材料856的合併沉積(方塊81〇) 及經沉積的第一及第二傳導材料854-4,及856-4,之平面化 15 (方塊822)以形成一平坦但只部份地成形的第四層。第21j 圖顯示蝕刻一部分經平面化沉積物856-4,之操作824的結 果。第21K圖顯示操作826及828的合併結果,其用以產生由 不同區854-4及856-4及858-4的第一傳導材料854、第二傳導 材料856及第三傳導材料858所構成之完成的第四層L4。Figure 21A depicts the starting material for this procedure (i.e., a blank substrate 852 on which a layer will be deposited). When going through this procedure, it is assumed that the supplied substrate is sufficiently conductive to be deposited without the need to apply a seed layer (ie, the answer to question 804 is "yes"), and the answer to question 808 is also 20 " Yes". Figure 21B depicts the results of the operation of block 819 on generating a first conductive material 854 deposit for an initial deposit 854-1 ' for the first layer. Next, assume that the answer to the query of block 812 is "yes" to the first level. It is also assumed that the answer to the query of block 816 is “No” for the first layer. Therefore, FIG. 21C shows the combined deposition of the second material 856 (block 810) and the first and first conductions of the product 54 1244799 Planarization of materials 854_1 and 855-1 (block 828) to complete the formation of the first layer L1. Figures 211) and 21 £ represent the same procedures and operations as those applied to the formation of the first layer, which are used to form The second layer 5 composed of the first and second conductive materials in different regions 854-2 and 856-2. [2. Figures 21F and 21G represent the same procedures as those applied to the first and second layer forming effects and Operation to form a third layer L3 composed of first and second conductive materials in different regions 854-3 and 856-3. Figures 21H-21K show a portion of the fourth layer L4 that forms the structure / device The results of the operation. Figure 21H depicts the results of the operation of block 81 of the first conductive material 854 deposit to produce a 10 initial deposit 854_4 for the fourth layer. Next, suppose the answer to the query of block 812 "Yes" for the fourth layer. It is also assumed that the answer to the query of block 816 for the fourth layer is 疋. Thus, Figure 211 shows the combined deposition of the second material 856 (Block 810) and the planarization of the deposited first and second conductive materials 854-4, and 856-4, 15 (Block 822) to form a flat surface. But the fourth layer is only partially formed. Figure 21j shows the results of operation 824, which etched a portion of the planarized deposit 856-4. Figure 21K shows the combined results of operations 826 and 828, which are used to generate the first conductive material 854, the second conductive material 856, and the third conductive material 858 in different regions 854-4 and 856-4 and 858-4. The completion of the fourth layer L4.

Ο A 第21L及21M圖、第21N及210圖、及第21P及21Q圖代 表與施加至前三層成形作用者相同之程序及操作,其用以 形成分別由不同區854-5及856-5、854-6及856-6、854-7及 856-7的第一及第二傳導材料所構成之第五至第七層(L5、 L6 及 L7)。 55 1244799 第21R-21TSI代表第19圖的程序流程之延伸。第训圖 代表選擇性移除(譬如藉由飯刻或融化)第三傳導材料之結 果,藉以形成一延伸經過第一傳導材料的一外壁862之空隙 866來接觸第一傳導材料的一隔離的内部結構祕4(譬如一 5同軸傳輸線的内導體)。第21s圖描緣第21R圖的結構且其中 空隙866係被一接觸到外壁862及内部結構祕4之選用介電 材料860所充填。第21T圖描緣第21S圖的結構且其中移除了 第-傳導材料以產生-最後大致充填有空氣之結構且其中 藉由一或多個介電結構使内部結構864相對於外壁受到支 10撐。第21T圖亦描繪結構中之一開口。 第22A-22C圖描!會將第一移除、回填及第二移除操作應 用至如第21R-21T圖所不之相對材料。第22A_22C圖中,將 第-傳導材料854移除以生成—空隙,將此空隙充填一介電 質860’,然後移除第三傳導材料。 15 替代性貫施例中,可將第21R-21T及22A-22C圖的程序 加以延伸以包括第二充填操作來充填由最後移除操作所產 生之空隙。第二充填操作可利用與原先使用者相同或不同 的-介電貝。其他替代方式中,可採用不只三種傳導材料 以使所產生的結構/裝置由兩或更多種傳導材料所構成,及 2〇 /或伴隨有兩、二或更多種固體、液體或氣體介電質。 第23A及23B圖提供一利用兩種傳導材料及一介電材 料來累積立體結構/裝置之電化學製造程序之流程圖。 第23A及23B圖的程序首先從方塊9〇2開始來設定三項 秋序變數·(1)層數設為一,n=1,⑺一主要軒晶層參數設 56 1244799 為零’ PSLP=0 ’及(3)—第二籽晶層參數設為零,ssLP=0。 然後此程序鈾進至決策方塊904而詢問基材表面是否完全 或至少部份地具有充分傳導性?如果“是,,,則程序前進至決 策方塊9〇6 ;如果“否”,程序前進至方塊9〇8。 5 方塊906及9〇8中,對於第一傳導材料(FCM)是否將沉 積在第η層(亦即第一層)上作出相同詢問。如果方塊9〇6的詢 問之答案為“是”’程序前進至方塊914 ;且如果為“否,,,程 序前進至方塊916。如果方塊908的詢問之答案為“是,,,程 序前進至方塊910 ;且如果為“否,,,程序前進至方塊916。 10 方塊910將一傳導材料的一主要籽晶層(PSL)施加至基 材上。此籽晶層可以多種不同方式施加且其中部分已經描 述於前文中。此程序從方塊910前進至方塊912,其中將主 要軒晶層參數設為一,PSLP=1,代表已經將一主要籽晶層 沉積在目前的層上。 15 從方塊912及從方塊906的“是”答案’此程序前進至方 塊914而選擇性沉積FCM。部分替代方式中,經由一CC罩 幕進行優先沉積。從方塊914、從方塊908的“否,,答案且從 方塊906的“否”答案,程序前進至決策方塊916。 決策方塊916中,作出是否將第二傳導材料(SCM)沉積 20 在第η層(在此例中亦即第一層)上之詢問。如果方塊916的詢 問之答案為“是’’,程序前進至方塊924 ;如果答案為“否”, 程序前進至方塊918。 方塊924及918中,作出一主要籽晶層是否已經沉積在 第一層上之相同詢問(亦即DSLP是否=1?)。如果方塊924的 57 1244799 詢問之答案為“是,,,程序前進至方塊926 ;如果答案為 否’’,程序前進至方塊934。如果方塊918的詢問之答案為 “是’’,程序前進至方塊922 ;如果答案為“否,,,程序前進至 方塊966。 5 決策方塊926中,作出對於PSL的存在是否與一將沉積 的SCM相容之詢問。如果方塊924的詢問之答案為“是,,,程 序前進至方塊928;如果答案為“否,,,程序前進至方塊932。 方塊932及922係移除未被FCM所覆蓋之PSL的任何部 分。從方塊932,程序前進至方塊934,如同方塊924中的“否,, 10 回應情形,且此程序從方塊922前進至方塊966。決策方塊 934中,作出基材表面是否具有完全或充分的傳導性之詢 問。雖然先前問過此問題,可能由於沉積不同圖案的傳導 材料或由於一先前供應的籽晶層因為與將沉積的第二傳導 材料不相容故加以移除而使答案改變。如果方塊934的詢問 15 之答案為“是’’,程序前進至方塊928 ;如果答案為“否,,,程 序前進至方塊936。 方塊936施加一次要籽晶層(SSL)藉以能夠在一後續操 作中沉積第二傳導材料。隨後程序前進至方塊938,其中將 SSLP設為一,以指示出本層接收了次要籽晶層,此資訊對 20 於後續操作將具有效用。 藉由對於方塊926或934的“是”回應或經由方塊938而 來到方塊928。方塊928係沉積第二傳導材料(SCM)。此沉積 操作可為一選擇性操作或毯覆操作。 從方塊928,程序前進至決策方塊942而詢問一介電質 58 1244799 是否將沉積在第n層(亦即第一層)上。如果方塊942的詢問之 合案為“是’’,程序前進至方塊944 ;如果答案為“否,,,程序 前進至方塊968。 方塊944將經沉積材料加以平面化以獲得一部分成形 5的第n層且其具有可能與層的最後厚度不同之理想厚度。平 面化之後,程序前進至方塊946而選擇性蝕刻至經沉積傳導 材料的一或兩者中以形成一或多個可在其内設有介電質之 空隙,然後程序前進至方塊948。如果方塊948的詢問之答 案為“是’’,程序前進至方塊952 ;如果答案為“否,,,程序前 10 進至方塊956。 決策方塊952詢問方塊946的蝕刻是否導致所有暴露的 SSL被移除?如果方塊952的詢問之答案為“是”,程序前進至 方塊956 ,如果答案為“否”,程序前進至方塊954。 方塊954係將方塊946中所形成的空隙暴露出來之SSL 15部分加以移除。方塊954的操作之後,程序前進至方塊956。 決策方塊956詢問PSLP是否等於一。如果方塊956的詢 問之答案為“是,,,程序前進至決策方塊%2 :如果答案為 “否”,程序前進至方塊966。 決策方塊962詢問SCM蝕刻是否移除了所有暴露的 2〇 PSL。如果方塊956的詢問之答案為“是,,,程序前進至決策 方塊966,如果答案為“否”,程序前進至方塊。 方塊964將方塊946中生成的空隙所暴露出來之胤部 分加以移除。方塊964的操作之後,程序前進至方塊%6。 方塊966將介電材料加以沉積。沉積程序可能為選擇性 59 1244799 或具有毯覆本質,並可能具有各種不同的程序且其中部分 描述於本文他處。 方塊968將所沉積材料加以平面化以獲得一具有理想 厚度之最後平坦的第η層。 5 藉由方塊968的操作完成第η層的成形之後,程序前進 至決策方塊970且其中將PSLP及SSLP皆設為零,隨後程序 前進至方塊972。此決策方塊詢問第η層(亦即目前的層)是否 為結構的最後層(亦即第Ν層),如果為是則程序前進至方塊 978並結束,但如果為否程序前進至方塊974。 10 方塊974將“η”值加一,然後程序回到方塊904且再度詢 問基材表面(亦即如同藉由緊位於前的層之成形作用加以 修改之基材表面)是否具有充分傳導性。此程序隨後繼續行 經方塊904-974直到完成第ν層的成形為止。 如同第16及19圖的程序,第23Α及23Β圖的程序存在有 15各種不同的替代方式。這些變化可能包含整體改變材料沉 積次序,或以一給定層成形期間已經發生或將要發生何種 其他操作為基礎來改變進行各型材料沉積之操作次序。可 能添加傳導或介電類型的額外材料。可能經由將材料沉積 在空隙中、經由實際控制沉積位置、經由在沉積之後蝕除 2〇材料,藉以發生任何沉積的最終選擇性。可將額外操作添 加至此裎序以移除選定材料或沉積額外的材料。 第24圖描繪一同軸結構之立體圖,其包括分別由材料 製成之外及内傳導元件議及1_以及_由_材料9% 製成的介電支撐結構1〇06。第Μ圖的結構可根據第BA及 1244799 顶圖的程序加以形成’其中添加—用於移除—傳導材料之 後層成形操作。在結構㈣,内及外導體由對 於第m及23B圖程序所描述之兩種傳導材料的—者(亦即 一主要材料)形成。使用-次要傳導材料作為—可犧牲材 料。亦使用—介電材料(亦即第三級材料)作為結構H 分。結構的所有層成形之後,將次要傳導材料移除以產生 由主要傳導材料994及介電材料996構成之最後結構。 10〇 A Figures 21L and 21M, Figures 21N and 210, and Figures 21P and 21Q represent the same procedures and operations as those applied to the first three layers of forming, which are used to form 854-5 and 856- 5. The fifth to seventh layers (L5, L6 and L7) composed of the first and second conductive materials of 854-6 and 856-6, 854-7 and 856-7. 55 1244799 The 21R-21TSI represents the extension of the program flow of Figure 19. The training diagram represents the result of selective removal (eg, by engraving or melting) of the third conductive material, thereby forming an isolated contacting the first conductive material with a gap 866 extending through an outer wall 862 of the first conductive material. Internal structure 4 (such as the inner conductor of a 5 coaxial transmission line). Fig. 21s depicts the structure of Fig. 21R and the gap 866 is filled with a selected dielectric material 860 that contacts the outer wall 862 and the inner structure 4. Figure 21T depicts the structure of Figure 21S and in which the-conductive material is removed to create-a structure that is substantially filled with air and wherein the internal structure 864 is supported relative to the outer wall by one or more dielectric structures 10 support. Figure 21T also depicts an opening in the structure. Figures 22A-22C! The first removal, backfill and second removal operations will be applied to the opposite material as shown in Figure 21R-21T. In FIGS. 22A-22C, the first-conducting material 854 is removed to create a void, and the void is filled with a dielectric 860 ', and then the third conductive material is removed. 15 In alternative embodiments, the procedures of Figures 21R-21T and 22A-22C can be extended to include a second filling operation to fill the voids created by the final removal operation. The second filling operation may use the same or different dielectric dielectrics as the original user. In other alternatives, more than three conductive materials may be used so that the resulting structure / device is composed of two or more conductive materials, and / or is accompanied by two, two or more solid, liquid or gas media. Electrical quality. Figures 23A and 23B provide a flowchart of an electrochemical manufacturing process using two conductive materials and a dielectric material to accumulate a three-dimensional structure / device. The program in Figures 23A and 23B starts with block 902 to set three autumn sequence variables. (1) The number of layers is set to one, n = 1, and the main parameters of the first Xuanjing layer are set to 56 1244799 to zero. 'PSLP = 0 'and (3) —The second seed layer parameter is set to zero and ssLP = 0. The process then proceeds to decision block 904 and asks if the substrate surface is fully or at least partially fully conductive? If "yes," the program proceeds to decision block 906; if "no", the program proceeds to block 908. 5 In blocks 906 and 908, whether the first conductive material (FCM) will be deposited on The same query is made on the nth layer (ie, the first layer). If the answer to the query in block 906 is "Yes", the process proceeds to block 914; If the answer to the query at block 908 is "yes," the program proceeds to block 910; and if "no," the program proceeds to block 916. 10 Block 910 applies a primary seed layer (PSL) of a conductive material to the substrate. This seed layer can be applied in a number of different ways and some of them have been described previously. This procedure proceeds from block 910 to block 912, where the main Xuanjing layer parameter is set to one and PSLP = 1, which means that a main seed layer has been deposited on the current layer. 15 From block 912 and the yes answer from block 906, the process proceeds to block 914 to selectively deposit the FCM. In some alternatives, preferential deposition is performed via a CC mask. From block 914, from the "No," answer of block 908, and from the "No" answer of block 906, the program proceeds to decision block 916. In decision block 916, a decision is made as to whether a second conductive material (SCM) is deposited 20 at the nth If the answer to the query in block 916 is "yes", the program proceeds to block 924; if the answer is "no", the program proceeds to block 918. In blocks 924 and 918, the same query is made as to whether a primary seed layer has been deposited on the first layer (i.e., is DSLP = 1?). If the answer to the 57 1244799 query of block 924 is "yes," the program proceeds to block 926; if the answer is no, the program proceeds to block 934. If the answer to the query of block 918 is "yes", the program proceeds to Block 922; if the answer is "No," the program proceeds to block 966. 5 In decision block 926, a query is made as to whether the existence of the PSL is compatible with the SCM to be deposited. If the answer to the query in block 924 is "YES If the answer is "No," the routine proceeds to block 932. Blocks 932 and 922 remove any part of the PSL that is not covered by the FCM. From block 932, the routine proceeds to block 934. As in "No" in block 924, 10 responds to the situation, and the process proceeds from block 922 to block 966. In decision block 934, an inquiry is made as to whether the surface of the substrate has full or sufficient conductivity. Although this question has been asked before, the answer may be changed by depositing a conductive material of a different pattern or by removing a previously supplied seed layer because it is incompatible with the deposited second conductive material. If the answer to question 15 of block 934 is "Yes", the program proceeds to block 928; if the answer is no, the program proceeds to block 936. Block 936 applies a secondary seed layer (SSL) so that a second conductive material can be deposited in a subsequent operation. The program then proceeds to block 938, where SSLP is set to one to indicate that this layer has received a secondary seed layer, and this information will be useful for subsequent operations. Block 928 is reached by a "yes" response to block 926 or 934 or via block 938. Block 928 deposits a second conductive material (SCM). This deposition operation may be a selective operation or a blanket operation. From block 928, the program proceeds to decision block 942 and asks if a dielectric 58 1244799 is to be deposited on the nth layer (ie, the first layer). If the inquiry at block 942 is "yes", the process proceeds to block 944; if the answer is no, the process proceeds to block 968. Block 944 planarizes the deposited material to obtain a portion of the shaped 5th layer and has an ideal thickness that may differ from the final thickness of the layer. After planarization, the process proceeds to block 946 and is selectively etched into one or both of the deposited conductive materials to form one or more voids in which a dielectric can be placed, and then the process proceeds to block 948. If the answer to the inquiry in block 948 is "Yes", the program proceeds to block 952; if the answer is "No," the first 10 steps of the program proceed to block 956. Decision block 952 asks if the etching of block 946 caused all exposed SSL to be removed? If the answer to the query at block 952 is "YES", the program proceeds to block 956, and if the answer is "No", the program proceeds to block 954. Block 954 removes the portion of SSL 15 exposed by the void formed in block 946. After the operation of block 954, the program proceeds to block 956. Decision block 956 asks if the PSLP is equal to one. If the answer to the query of block 956 is "Yes," the program proceeds to decision block% 2: If the answer is "No", the program proceeds to block 966. Decision block 962 asks whether the SCM etch removes all exposed 2PSL If the answer to the query in block 956 is "Yes," the program proceeds to decision block 966. If the answer is "No," the program proceeds to block. Block 964 removes the portion of the palate exposed by the voids generated in block 946. After the operation of block 964, the program proceeds to block% 6. Block 966 deposits a dielectric material. Deposition procedures may be selective 59 1244799 or have blanket nature, and may have a variety of different procedures, some of which are described elsewhere herein. Block 968 planarizes the deposited material to obtain a final planar n-th layer having a desired thickness. 5 After the formation of the n-th layer is completed by the operation of block 968, the program proceeds to decision block 970 where PSLP and SSLP are both set to zero, and then the program proceeds to block 972. This decision block asks whether the n-th layer (that is, the current layer) is the last layer of the structure (that is, the N-th layer). If yes, the program proceeds to block 978 and ends, but if no, the program proceeds to block 974. 10 Block 974 increments the "η" value by one, and then the program returns to block 904 and asks again whether the substrate surface (that is, the substrate surface as modified by the forming action of the immediately preceding layer) is sufficiently conductive. This procedure then continues through blocks 904-974 until the formation of the v layer is complete. As with the programs of Figures 16 and 19, there are 15 different alternatives to the programs of Figures 23A and 23B. These changes may include changing the order of material deposition as a whole, or changing the order of operations for depositing various types of materials based on what other operations have occurred or will occur during the formation of a given layer. Additional materials of conductive or dielectric type may be added. The final selectivity of any deposition may occur by depositing the material in the void, by physically controlling the deposition location, by etching away the 20 material after deposition. Additional operations can be added to this sequence to remove selected materials or deposit additional materials. Fig. 24 depicts a perspective view of a coaxial structure, which includes outer and inner conductive elements made of a material, and a dielectric support structure 1006 made of 9% material. The structure of FIG. M can be formed according to the procedures of the top drawings of BA and 1244799, in which a subsequent layer forming operation of adding-for removing-conducting material is added. In structure ㈣, the inner and outer conductors are formed of one of the two conductive materials (i.e., one of the main materials) for the m and 23B procedures. Use-secondary conductive materials as-sacrificable materials. A dielectric material (ie, a tertiary material) is also used as the structure H-point. After all layers of the structure are formed, the secondary conductive material is removed to produce a final structure composed of the primary conductive material 994 and the dielectric material 996. 10

第25A-25Z圖顯示用以形成第24圖所示的樣本同轴構 件的層之第23A及23B的各種不同操作之結果。與第 25A-25X及26A-26F圖所示結果有關之操作請見下表6。 表6 第“25”圖 籴“26”圖 層 “L,, 操作 — ---- 附註 25A,C,E,I,P,V 26C 1,2,3,4,6,7 914 /儿積弟一材料992 ------ 25B,D,F,X 26F 1,2,6,7 936&968 25F®K,R 3,4,6 928&944 25G,L,S 3,4,6 946 25H,N,U 3,4,6 966&968 匕用第三材料996以完 25J,Q,W 26E 4,6,7 936 26B 施加一主要籽晶層998 25M,T 4,6 移除次要籽晶層的幕露部分 26D 移除主要籽晶層的暴露部分 0 5 對於層4進行所有操作Figures 25A-25Z show the results of various operations of 23A and 23B to form the layers of the sample coaxial member shown in Figure 24. See Table 6 below for operations related to the results shown in Figures 25A-25X and 26A-26F. Table 6 Figure "25" 籴 "26" Layer "L ,, Operation — ---- Note 25A, C, E, I, P, V 26C 1, 2, 3, 4, 6, 7 914 / child product Yiyi Material 992 ------ 25B, D, F, X 26F 1,2,6,7 936 & 968 25F®K, R 3,4,6 928 & 944 25G, L, S 3,4, 6 946 25H, N, U 3,4,6 966 & 968 Use the third material 996 to finish 25J, Q, W 26E 4,6,7 936 26B Apply a main seed layer 998 25M, T 4,6 shift Remove the exposed part of the secondary seed layer 26D Remove the exposed part of the primary seed layer 0 5 Do all operations for layer 4

弟25 Y圖顯不完成的結構之概況’其中不再出現有層界 61 1244799 線部且植基於第二籽晶層材料與第二材料相同之假設。第 25Z圖顯示用以產生第25圖所示的結構之—後處理第一材 料移除程序(譬如選擇性蝕刻)之結果。 弟26A-26F圖顯示在對於結構的第四層沉積第一傳導 5材料之前需要使用主要籽晶層時對於第25H-25K圖的程序 之一替代方式。 第27圖描繪一同軸傳輸線的立體圖。同軸傳輸線ι〇〇2 包括一圍繞一内導體1004之外傳導性屏蔽部1〇〇6。圖示實 施例中,可將傳輸線1002設定為藉由一間隔件1〇1〇遠離一 10基材1〇〇8。在圖示實施例中,基材可為一介電質,其中將 一適當地極電位經由傳導性間隔件1〇1〇(譬如經由基材底 側)施加至屏蔽部1006且可將一訊號施加至中央導體(譬如 經由來自基材底側之適當連接)。替代性實施例中,屏蔽部 可在中央導體的彎折部周圍彎曲以使屏蔽部在大致其位於 15基材上方的所有位置上提供大致完整之甲央導體屏蔽作用 (例外可能存在於屏蔽部中的一或多個開口,藉以移除一可 已、、$在裝置成形期間使用之可犧牲材料)。其他替代性實 例中,基材可具有傳導性且萬一中央導體及同軸元件的 2〇内=邛分牙透過基材則以一介電材料來提供隔離作用。其 、/施例中,屏蔽部可採取一傳導網目或甚至延伸出基材 ”面之或多個傳導線的形式。其他實施例中,傳輸線可 〇〇An overview of the unfinished structure shown in Figure 25 Y ’, where the layer boundary no longer appears 61 1244799 The line part is based on the assumption that the second seed layer material is the same as the second material. Figure 25Z shows the results of a post-processing first material removal procedure (such as selective etching) used to produce the structure shown in Figure 25. Figures 26A-26F show an alternative to the procedures for Figures 25H-25K when the primary seed layer is needed before depositing the first conductive 5 material for the fourth layer of the structure. Figure 27 depicts a perspective view of a coaxial transmission line. The coaxial transmission line ιo2 includes a conductive shielding portion 1006 surrounding an outer conductor 1004. In the illustrated embodiment, the transmission line 1002 can be set to be separated from a 10 substrate 1008 by a spacer 1010. In the illustrated embodiment, the substrate may be a dielectric, wherein an appropriate pole potential is applied to the shielding portion 1006 via the conductive spacer 1010 (eg, via the bottom side of the substrate) and a signal may be applied. Apply to the central conductor (for example via a suitable connection from the underside of the substrate). In an alternative embodiment, the shield may be bent around the bent portion of the central conductor so that the shield provides a substantially complete central conductor shielding effect at almost all positions above the 15 substrate (exceptions may exist in the shield One or more openings to remove a sacrificable material used during device formation). In other alternative examples, the substrate may be conductive and in the case of the inner conductor of the central conductor and the coaxial element = 20 centigrades through the substrate, a dielectric material is used to provide isolation. In the embodiment, the shielding portion may take the form of a conductive mesh or even a plurality of conductive lines extending out of the surface of the substrate. In other embodiments, the transmission line may be 〇〇

平面(g如平行於基材之平面)中變曲,或其可採行 ,何所需要的三_案。譬如,傳輸線可採行一種很像傳 導線的螺旋迴路之螺旋圖案。同樣地,—類似第12C及13A 62 1244799 圖的濾器元件已經從圖示的較平面性組態轉變至一較立體 形狀,其中譬如濾器(616、_)的主線係採行螺旋形式而分 支622、614及類似物則採行沿著螺旋形中'雄下之-路徑 或採行螺㈣路#本身(譬如,—比主、線採行者具更小直徑 5之路径)。此組態可以高度增加的代價來降低結構的平面性 尺寸,且仍維持一所需要的有效長度。 第28圖描繪一射頻接觸開關的立體圖。射頻開關為一 懸臂開關。開關1022包括-懸臂樑1〇26且其接觸一第二標 1024。當一電壓施加至下方的控制電極川以時,懸臂樑由 10於靜電力而往下撓屈。圖示實施例中,戶斤有開關元件皆以 基座1030a-1030(c)懸吊於基材上方,這咸信將導致對於基 材之寄生電容降低。此途徑將可增加驅動電極與懸臂樑之 間的距離,而增加致動力並降低所需要的驅動電壓,同時 可增大對於基材之距離,因此降低寄生作用。如果兩者皆 15配置於一平面性基材上,將無法使電極尺寸及接觸間隙具 有獨立性。藉由電化學製造的多位準實施例之彈性,可將 開關構件放置在更加最適化的位置中。一實施例中,長懸 臂樑可具有約600微米長度及8微米厚度。可將一圓形接觸 墊定位在樑底下以使接觸部譬如分離約32微米來提供高的 20 隔離作用。下樑可譬如懸吊於基材上方約32微米,同時上 樑可位於基材上方約88微米。當然,其他實施例中,可能 存在其他尺寸關係。使用此開關的一範例中,可將一電壓 施加至控制電極1028與懸臂1026之間以關閉開關,同時一 AC訊號(譬如一射頻或微波訊號)存在於懸臂或另一樑上且 63 1244799 在開關一旦關閉時則能夠進行傳播。部分替代性設計中, 線1026及1024的一或兩者可在其接觸位置上包括突部,或 者接觸位置可由一適當材料製成以加長接觸壽命。其他替 代性設計中,可將整體開關定位在一屏蔽導體内,且其可 5 能降低與沿著線1024及1026長度之訊號傳播相關聯之任何 輻射性損失。其他實施例中,可藉由將一薄層的介電質(譬 如氮化物)定位在一或兩線1024及1026的接觸位置來使用 開關作為一電容性開關,以讓開關可使接觸部移動於低與 高電容值之間。當發生阻抗匹配時可對於此開關發生訊號 10 通過(譬如當電容很低時,較高頻訊號可通過而較低頻訊號 可被阻絕或顯著地衰減)。其他實施例中,控制電極或線 1026與其最接近的部分係可能塗覆有一介電質以降低控制 電極與可撓屈線之間發生短路之可能性。其他實施例中, 可能包括一拉取(pull up)電極來補充超出單獨使用可撓屈 15線1026的黃力時所可能產生之接觸部的分離作用。部分實 施例中’開關電容(假設其為電容性開關)開啟時對於關閉時 之比值較佳係大於約50、更佳大於約100。其他實施例中, 可藉由一介電質將一次要導體附接至及分隔離開基座 1030(c)及線1026的底側。此次要導體可為開關控制電路的 20 一部分,而非使控制電路與訊號共用導體1026。 第29圖描繪一對數週期天線的立體圖。天線1〇32包括 沿著一藉由間隔件1038從一基材(未圖示)所支撐的共同饋 送線1036之數個不同的二極長度1〇34(3)_1〇34〇)。咸信此升 高位置可降低了原本與天線接觸於或緊鄰於損失性基材的 64 1244799 作用相關聯之寄生電容性損失。其他實施例中,可能使用 其他天線組態,譬如線性槽陣列、線性二極陣列、螺線天 線(helix antennas)、螺旋天線、及/或號角天線(h〇rn antennas) 〇 5 第30A-30B圖描繪相對於彼此旋轉約180度之一樣本超 環面電感器設計之立體圖。第30C圖描繪根據一電化學製造 程序所形成的第30A及30B圖之超環面電感器的立體圖。第 20C圖的超環面電感器係根據第2A-2F圖的程序所形成。部 分實施例中,電感器可形成於一介電基材上,其他實施例 10中’電感器則可形成於一傳導基材上且有適當之介電隔離 性饋通作用。一特定實施例中,超環面線圈可包括12個捲 繞部、大約橫越900微米、且使其下表面懸吊於基材上方約 40微米。電感器1〇42包括由上橋接元件及下橋接元件 1050(a)及1050(b)所連接之複數個内傳導柱1〇44及複數個 15外傳導柱1046。電感器亦包括兩個電路連接元件1048(a)及 1048(b)且其由間隔件1〇52(a)& 1〇52(b)所支撐。部分實施例 中’整體電感器可由間隔件1052⑷及1〇52(b)所支撐並與一 基材分隔。咸信此間隔可將原本可能由於下傳導性橋接部 1050(b)與一基材(未圖示)之間接觸或緊鄰所導致之寄生電 〇谷加以降低。雖然在部分實施例中,内及外傳導柱可具有 類似的尺寸,在圖示實施例中,各個内傳導柱的面積係小 於外傳導柱的面積(譬如直徑較小)。同樣地,本實施例中, 傳導性橋接部105〇(a)及1050(b)的寬度亦從電感器中心呈 位白在外&大。咸信此組態將導致降低的歐姆阻抗具有一 65 1244799 所需要的電流沿著電感性路徑移行。亦咸信此組態可導欵 來自电感态之降低的磁通量洩漏而且因此有助於增加電感 或將構件可能輻射至其他電路元件之雜訊加以降低。其他 貝施例中,藉由一傳導壁來屏蔽電感器的外周圍可能是有 5利的方式。同樣地,内周圍亦可由一傳導壁加以屏蔽,且 其他實施例中,上表面及可能甚至下表面亦可由傳導板或 、 網目加以屏蔽。其他替代性實施例中,間隔件1052(a)及 1052(b)及甚至電路連接元件1〇48(a)及1〇48(b)可能至少部 份地由可能有助於盡量減少輻射性損失之傳導元件加以屏 鲁 10蔽。其他實施例中,電感器的迴路可採行一較圓的形狀而 非如圖所示大致呈長方形。 第31A-31B圖分別描繪根據一電化學製造程序所形成 之一螺旋形電感器設計及一堆積式螺旋形電感器之立體 圖。所顯示的電感器1062包括八個線圈1〇64(a)_1〇64(g)、一 15個連接橋接部1066、及兩個間隔件1068(a)及1068(b)。一詳 細貫施例中,線圈可各約為8微米厚,其可具有約2〇〇微米 的外徑,其可分離約8微米,且底線圈可在基材上方升高約 鲁 56微米。如同第27-30C圖的圖示實施例,間隔件不但用來 在電感器與電路其餘部分之間建立電性連接亦用來分隔電 20 感器與一基材(未圖示)。 , 第31C圖描繪第31A及31B圖的電感器之一變化例。第 · 31C圖的電感器1072可形成有所指示出使用23層的設計特 性。如圖所描繪,電感器包括u個線圈階層1〇74(a)_1〇74(k) 及9又1/8彎圈。各線圈階層由一 8微米厚層所形成且與其他 66 1244799 線圈階層分隔4微米厚度之間隙。内徑為180微米而外徑為 300微米。如圖所示,電感器包括一具有6〇微米直徑之核 心,且核心1076與捲繞部1074(a)-1074(k)之間具有一60微米 空間。當忽略核心時,基於均勻磁場的簡單計算對於電感 5器產生20 nH的電感。然而,因為真實的電感器具有比其長 度更大的直徑,且捲繞部並不特別緊密,電感將比此理論 值更低。真實值估計位於理論值之25%至50%的範圍中(亦 即約5-10 nH)。另一方面,可藉由出現核心1〇76來顯著地增 強電感(譬如增強了 100倍或更大的因數)。當然,其他實施 10 例中,可能具有其他組態。 其他實施例中,第31A-31C圖的電感器可採行不同形 式。第32A及32B圖提供兩種可能設計的對比,其中第32B 圖的設計可提供比第32A圖更小之歐姆阻抗而且可能改變 總電感。第32A圖顯示具有N個線圈之單,一電感器;1〇82及一 15 較長的連接器線1084,第32B圖描繪兩個一半尺寸的電感器 1086(a)及1086(b),其中各者的線圈數視為第32A圖之大約 一半且其經由短橋接元件1088加以序列式連接。如圖所 示’因為橋接元件1088比連接器線1〇84更短,咸信第32B 圖的電感器對將具有比第32A圖更小的損失。另一方面,由 20於或許降低了兩電感器之間的耦合,可能具有相關聯的淨 電感損失。藉由包括一以一迴路形式延伸過兩電感器之核 心,可能使電感恢復或甚至超過第32A圖的較高電感器。 第33A及33B圖描繪兩替代性電感器組態之示意圖,其 盡量減少歐姆性損失並在電感器的線圈之間維持高水準的 67 1244799 搞合。圖中,線圈的往上路徑以實線描繪,而線圈的往下 路徑以虛線描繪。第33A圖中,往上延伸的線圈具有一比往 下延伸的線圈更大之邊長。第33B圖中,其具有大致類似的 邊長尺寸。 5 第34圖描繪一包括12個相互錯雜板(兩組1〇94⑷及 1094(b)各有六個板)之電容器1〇92的立體圖。一詳細實施例 中,各板可具有8微米厚度、各板4微米的間隙、各板可在 一側邊上為436微米。基於這些細節,以一理想平行板計算 作為基礎來計算出約5pH時之電容。預期此值將由於邊紋場 10 效應(fringe field effects)而略為不同。如圖所示,電容器係 被一堰部1096圍繞,可利用堰部1096來便利進行一後釋放 介電質回填同時盡量減少介電質溢出至可能在相同基材上 鄰近處所製造之相鄰裝置。藉由一介電質的回填可鉅幅地 增加此等電容器提供之電容。同樣地,藉由降低板之間的 I5 分離距離及或添加額外的板,亦可顯著地增加電容。電容 器在圖中分別具有兩對呈正交定位的結合墊1〇98⑷及 1098(b)。由於平行的結合墊呈傳導性連接,可經由連接至 一個1098(a)墊及一個1098(b)墊來發生對於裝置之電性連 接。如圖所示,結合墊係與電容器的最低板對正,且藉由 20位於來自各群組的延伸區中之柱將上板連接至最低板。其 他實施例中,墊可更直接地連接至譬如各堆積體之中階層 板。電流的μ動可分別自該處往上及往下前進至各堆積體 的其他板。 第35Α及35Β圖分別描繪一可變電容器i 1〇2的範例之 1244799 立體圖及側視圖。電容器板具有一類似於第34圖之組態且 再度分成兩組六個板ll〇4(a)及u〇4(b)。此實施例中,將一 組電容器板1104(a)附接至彈簧元件11〇6且附接至兩組平行 的靜電致動器1108,此等致動器可將板11〇4(a)相對於固定 5的板1104(b)垂直地驅動。使用時,可將一DC電位施加於彈 黃支撑件1110與致動器墊1112之間。致動器墊1112連接至 柱1114 ’柱Π14轉而固持住固定的驅動板1116。當施加此 驅動電壓時’可移式驅動板1118被拉動更靠近固定的驅動 板’且其轉而經由支撐柱1124將可移式電容器板1104(a)拉 1〇動更靠近固定的電容器板1104(a)並藉此改變了裝置的電 容。電容器板1104(b)被支撐柱1126固持在位置中。電容器 可經由彈簧支撐件1110及一個固定的電容器板接觸墊1128 連接於一電路中。 其他貫施例中,可利用增加元件的表面積而未必增加 15其橫剖面尺寸,藉以降低與載有電流的導體諸如第27-31C 圖的間隔件相關聯、與同軸構件的中央導體相關聯、及與 各種其他構件的元件相關聯之電阻性損失。咸信當訊號頻 率相較於構件橫剖面尺寸只佔表皮深度的小比例時,此作 用將特別有用。譬如,一載有電流的導體之橫剖面尺寸(在 2〇與電流流動方向垂直之一平面中)可藉由從圓形改變成正 方形或包含複數個角的其他形狀而增大。第36八及36]8圖顯 示此等同軸元件的另兩項範例,其中同軸元件1132及1142 分別包括中央導體H34及1144且其已經從正方形及圓形組 態修改成具有凹痕以增大表面積之經修改組態。 1244799 第37圖描繪本發明的另一實施例之側視圖,其中一積 體電路1152形成於一基材1154(譬如矽)上且其接觸墊1156 經由一位於積體電路頂上的保護層1158暴露出來。接觸墊 可為用以連接至其他裝置之墊,或可為用以聯結積體電路 5的分離元件之頂側内連接用之墊。譬如,内連件(及互連件) 可為用以經由一諸如同軸纜線或波導等低散佈傳輸線來將 咼頻時脈訊號(譬如10 GHz)分配至積體電路内的不同位置 之墊。兩個同軸傳輸線1162及1172在圖中係將部分的墊彼 此連接。同軸線的外導體係由基台或基座1164及1174所支 10撐且藉由導線1166及1176連接至墊。替代性實施例中,不 但藉由導線亦藉由使至少一部分的同軸屏蔽部接觸到或緊 鄰於積體電路表面來連接至墊。部分實施例中,同軸結構 可能只由中央導線及任何接地連接部所支撐,但其他實施 例中,可能使用基座或類似物。部分實行方式中,同軸結 15構可能預先成形及揀取與放置在積體電路上的所需要位置 上,或者可直接在積體電路上表面上進行EFAB程序。此微 裝置對於1C整合之部分實行方式請見美國臨時專利申請案 60/379,133號,該案簡述於下文且以引用方式整體併入本文 中。當然,其他實施例中,部分的墊可用來連接於ic的構 20件之間,而部分的其他墊則可用來連接至其他構件。部分 實施例中,同軸線可具有特別定製的長度藉以控制抵達一 晶片的不同部分或甚至不同晶片之時脈訊號。 第38A及38B圖顯示MEMGen生產的第一及第二代電 腦控制式電化學製造系統(亦即EFABTM微製造系統)、古此 70 1244799 系統可用來實行本文的程序及形成本文的裝置/結構。目前 的構成方式中,這些系統包括選擇性沉積及毯覆沉積站、 一平面化站、各種不同的清理及表面活化站、檢視站、鐘 覆池流通次系統、大氣控制系統(譬如溫度控制及空氣過濾 5系統)、及一用於將基材相對於各站移動(亦即提供Z、X及Y 動作)之運送階台。其他系統可包括一或多個選擇性蝕刻 站、一或多個毯覆蝕刻站、一或多個籽晶層成形站(譬如 CVD或PVD沉積站)、選擇性大氣控制系統(譬如全面地或在 特定工作區域内供應指定氣體)、且可能甚至包括一或多個 10旋轉階台以對準基材及/或選定的站。 、·,,ιτ^τ I } 卞 ^ 上,其中多個構件可一起使用在該基材上,或其可彼此 割並施加至分離的次級基材以將分離的構件使用在不同 15 20The plane (g is parallel to the plane of the substrate) is deformed, or it can be used. What is needed? For example, a transmission line can adopt a spiral pattern much like a spiral loop of a transmission line. Similarly, the filter elements similar to Figures 12C and 13A 62 1244799 have been changed from the more planar configuration shown in the figure to a more three-dimensional shape, where the main line of the filter (616, , 614, and the like follow the path of the male in the spiral-or take the screw path # itself (for example,-a path with a diameter smaller than 5 for the main and line takers). This configuration can reduce the planar size of the structure at a high added cost, while still maintaining a required effective length. Figure 28 depicts a perspective view of a radio frequency contact switch. The RF switch is a cantilever switch. The switch 1022 includes a cantilever beam 1026 and it contacts a second target 1024. When a voltage is applied to the lower control electrode, the cantilever beam is flexed downward by 10 electrostatic force. In the embodiment shown in the figure, all the switching elements are suspended from the base by the bases 1030a-1030 (c), which will lead to a reduction in parasitic capacitance to the base. This approach will increase the distance between the drive electrode and the cantilever beam, increase the actuation force and reduce the required drive voltage, and increase the distance to the substrate, thus reducing parasitic effects. If both are arranged on a flat substrate, the electrode size and contact gap will not be independent. With the flexibility of the multi-level embodiment of electrochemical fabrication, the switching member can be placed in a more optimized position. In one embodiment, the long cantilever beam may have a length of about 600 microns and a thickness of 8 microns. A circular contact pad can be positioned under the beam to separate the contacts, for example, by about 32 microns to provide high 20 isolation. The lower beam can be suspended, for example, about 32 microns above the substrate, while the upper beam can be positioned about 88 microns above the substrate. Of course, in other embodiments, other dimensional relationships may exist. In an example using this switch, a voltage can be applied between the control electrode 1028 and the cantilever 1026 to close the switch, while an AC signal (such as an RF or microwave signal) is present on the cantilever or another beam and 63 1244799 in Once the switch is closed, it can propagate. In some alternative designs, one or both of the wires 1026 and 1024 may include protrusions at their contact positions, or the contact positions may be made of a suitable material to extend the contact life. In other alternative designs, the overall switch may be positioned within a shielded conductor, and it may reduce any radiative losses associated with signal propagation along the length of lines 1024 and 1026. In other embodiments, the switch can be used as a capacitive switch by positioning a thin layer of dielectric (such as nitride) at the contact position of one or two wires 1024 and 1026, so that the switch can move the contact portion Between low and high capacitance values. When impedance matching occurs, a signal can pass through this switch (for example, when the capacitance is very low, higher frequency signals can pass and lower frequency signals can be blocked or significantly attenuated). In other embodiments, the closest part of the control electrode or wire 1026 may be coated with a dielectric to reduce the possibility of a short circuit between the control electrode and the flexible flexure. In other embodiments, a pull-up electrode may be included to supplement the detachment of the contact portion that may occur when using the yellow force of the pliable 15 wire 1026 alone. In some embodiments, the ratio of the 'switched capacitor (assuming it is a capacitive switch) to when it is turned off is preferably greater than about 50, more preferably greater than about 100. In other embodiments, the secondary conductor may be attached to and separated from the bottom side of the base 1030 (c) and the wire 1026 by a dielectric. This time, the main conductor can be a part of the switch control circuit 20, instead of the control circuit and the signal sharing the conductor 1026. Figure 29 depicts a perspective view of a logarithmic periodic antenna. The antenna 1032 includes several different dipole lengths 1034 (3) -1034) along a common feed line 1036 supported from a substrate (not shown) by a spacer 1038. This increased position reduces the parasitic capacitive losses that were originally associated with the effect of the 64 1244799 that the antenna is in contact with or in close proximity to the lossy substrate. In other embodiments, other antenna configurations may be used, such as linear slot arrays, linear dipole arrays, helix antennas, spiral antennas, and / or horn antennas. 5th 30A-30B The figure depicts a perspective view of a sample toroidal inductor design rotated about 180 degrees relative to each other. Figure 30C depicts a perspective view of the toroidal inductor of Figures 30A and 30B formed according to an electrochemical manufacturing process. The toroidal inductor of Fig. 20C is formed according to the procedure of Figs. 2A-2F. In some embodiments, the inductor may be formed on a dielectric substrate. In other embodiments, the inductor may be formed on a conductive substrate and have a proper dielectric isolation feedthrough effect. In a particular embodiment, the toroidal coil may include 12 winding portions, traverse approximately 900 microns, and have its lower surface suspended approximately 40 microns above the substrate. The inductor 1042 includes a plurality of inner conductive pillars 1044 and a plurality of 15 outer conductive pillars 1046 connected by the upper bridge element and the lower bridge element 1050 (a) and 1050 (b). The inductor also includes two circuit connection elements 1048 (a) and 1048 (b) and is supported by the spacers 1052 (a) & 1052 (b). In some embodiments, the 'integral inductor' may be supported by the spacers 1052 'and 1052 (b) and separated from a substrate. It is believed that this interval can reduce the parasitic current valleys that might otherwise be caused by contact or close contact between the lower conductive bridge 1050 (b) and a substrate (not shown). Although in some embodiments, the inner and outer conductive pillars may have similar dimensions, in the illustrated embodiment, the area of each inner conductive pillar is smaller than the area of the outer conductive pillar (for example, a smaller diameter). Similarly, in this embodiment, the widths of the conductive bridge portions 1050 (a) and 1050 (b) are also white and large from the center of the inductor. It is believed that this configuration will result in a reduced ohmic impedance with a 65 1244799 required for the current to travel along the inductive path. It is also believed that this configuration can lead to reduced magnetic flux leakage from the inductive state and therefore help increase inductance or reduce noise that components may radiate to other circuit components. In other examples, it may be advantageous to shield the outer periphery of the inductor by a conductive wall. Similarly, the inner periphery may be shielded by a conductive wall, and in other embodiments, the upper surface and possibly even the lower surface may be shielded by a conductive plate or mesh. In other alternative embodiments, the spacers 1052 (a) and 1052 (b) and even the circuit connection elements 1048 (a) and 1048 (b) may be at least partly made possible and may help to minimize radiation The missing conductive element is shielded by Ping Lu 10. In other embodiments, the circuit of the inductor may adopt a round shape instead of a substantially rectangular shape as shown in the figure. Figures 31A-31B depict perspective views of a spiral inductor design and a stacked spiral inductor formed according to an electrochemical manufacturing process, respectively. The inductor 1062 shown includes eight coils 1064 (a) -1064 (g), one 15 connection bridge 1066, and two spacers 1068 (a) and 1068 (b). In a detailed embodiment, the coils can each be about 8 microns thick, they can have an outer diameter of about 200 microns, they can be separated by about 8 microns, and the bottom coil can be raised about 56 microns above the substrate. As in the illustrated embodiment of Figures 27-30C, the spacer is used not only to establish an electrical connection between the inductor and the rest of the circuit, but also to separate the inductor from a substrate (not shown). FIG. 31C depicts one variation of the inductors in FIGS. 31A and 31B. Inductor 1072 in Figure 31C can be designed to indicate the use of 23-layer design features. As depicted, the inductor includes u coil layers 1074 (a) _1074 (k) and 9 and 1/8 turns. Each coil layer is formed by an 8 micron thick layer and is separated from the other 66 1244799 coil layers by a gap of 4 micron thickness. The inner diameter is 180 microns and the outer diameter is 300 microns. As shown, the inductor includes a core having a diameter of 60 microns, and a space of 60 microns between the core 1076 and the windings 1074 (a) -1074 (k). When the core is ignored, a simple calculation based on a uniform magnetic field produces an inductance of 20 nH for the inductor 5. However, because a real inductor has a larger diameter than its length and the windings are not particularly tight, the inductance will be lower than this theoretical value. The true value is estimated to be in the range of 25% to 50% of the theoretical value (ie, about 5-10 nH). On the other hand, the presence of core 1076 can significantly increase the inductance (for example, by a factor of 100 or more). Of course, in the other 10 implementations, there may be other configurations. In other embodiments, the inductors of FIGS. 31A-31C may take different forms. Figures 32A and 32B provide a comparison of two possible designs. The design of Figure 32B can provide a smaller ohmic impedance than Figure 32A and may change the total inductance. Figure 32A shows a single, one inductor with N coils; 1082 and 15 long connector wires 1084, and Figure 32B depicts two half-size inductors 1086 (a) and 1086 (b), The number of coils of each of them is regarded as about half of FIG. 32A and they are connected in series via a short bridge element 1088. As shown in the figure ', because the bridge element 1088 is shorter than the connector wire 1084, the inductor pair in Figure 32B will have a smaller loss than that in Figure 32A. On the other hand, the coupling between the two inductors may be reduced by 20 to have an associated net inductance loss. By including a core that extends over two inductors in a loop, it is possible to restore the inductance or even exceed the higher inductor of Figure 32A. Figures 33A and 33B depict schematic diagrams of two alternative inductor configurations that minimize ohmic losses and maintain a high level of 67 1244799 coupling between the inductor coils. In the figure, the upward path of the coil is depicted by a solid line, and the downward path of the coil is depicted by a dashed line. In Fig. 33A, the upwardly extending coil has a larger side length than the downwardly extending coil. In Fig. 33B, it has approximately similar side length dimensions. 5 Figure 34 depicts a perspective view of a capacitor 1092 including twelve intersecting plates (two groups of 1094⑷ and 1094 (b) each having six plates). In a detailed embodiment, each plate may have a thickness of 8 microns, a gap of 4 microns for each plate, and each plate may be 436 microns on one side. Based on these details, an ideal parallel plate calculation is used as the basis to calculate the capacitance at about 5 pH. This value is expected to be slightly different due to fringe field effects. As shown in the figure, the capacitor is surrounded by a weir portion 1096. The weir portion 1096 can be used to facilitate a post-release dielectric backfill while minimizing dielectric overflow to adjacent devices that may be manufactured in adjacent places on the same substrate. . The capacitance provided by these capacitors can be greatly increased by a dielectric backfill. Similarly, the capacitance can be increased significantly by reducing the I5 separation distance between the boards and / or adding additional boards. The capacitor has two pairs of orthogonally positioned bonding pads 109898 and 1098 (b) in the figure. Since the parallel bonding pads are conductively connected, the electrical connection to the device can occur through connection to a 1098 (a) pad and a 1098 (b) pad. As shown in the figure, the bonding pad is aligned with the lowest plate of the capacitor, and the upper plate is connected to the lowest plate by 20 pillars located in extensions from each group. In other embodiments, the pad may be more directly connected to, for example, a middle-level board of each stack. The current movement can be advanced from there to the other plates of each stack. Figures 35A and 35B respectively depict a 1244799 perspective view and a side view of an example of a variable capacitor i 102. The capacitor plate has a configuration similar to that of FIG. 34 and is again divided into two groups of six plates 104 (a) and u04 (b). In this embodiment, a set of capacitor plates 1104 (a) is attached to the spring element 1106 and to two sets of parallel electrostatic actuators 1108. These actuators can attach the plate 1104 (a) The plate 1104 (b) is driven vertically with respect to the fixed plate 5. In use, a DC potential can be applied between the elastic support 1110 and the actuator pad 1112. The actuator pad 1112 is connected to the column 1114 'and the column Π14 in turn holds a fixed drive plate 1116. When this driving voltage is applied, 'the movable drive plate 1118 is pulled closer to the fixed drive plate' and it in turn pulls the movable capacitor plate 1104 (a) through the support post 1124 to move closer to the fixed capacitor plate. 1104 (a) and thus changed the capacitance of the device. The capacitor plate 1104 (b) is held in position by a support post 1126. The capacitor can be connected to a circuit via a spring support 1110 and a fixed capacitor plate contact pad 1128. In other embodiments, it is possible to increase the surface area of the element without necessarily increasing its cross-sectional size by 15 in order to reduce the association with a current-carrying conductor such as the spacer of Figure 27-31C, the association with the central conductor of the coaxial member, And the resistive losses associated with various other components of the component. This is particularly useful when the frequency of the signal is only a small percentage of the skin depth compared to the cross-sectional dimensions of the component. For example, the cross-sectional dimension of a conductor carrying a current (in a plane perpendicular to the direction of current flow) can be increased by changing from a circle to a square or other shape containing a plurality of corners. Figures 36-8 and 36] 8 show two other examples of these coaxial components, where the coaxial components 1132 and 1142 include the central conductors H34 and 1144 respectively and they have been modified from square and circular configurations to have dents to increase Modified configuration of surface area. 1244799 Figure 37 depicts a side view of another embodiment of the present invention, in which a integrated circuit 1152 is formed on a substrate 1154 (such as silicon) and its contact pads 1156 are exposed through a protective layer 1158 on top of the integrated circuit come out. The contact pad may be a pad for connecting to other devices, or may be a pad for internal connection on the top side of a separate element for connecting the integrated circuit 5. For example, interconnects (and interconnects) can be pads used to distribute audio clock signals (such as 10 GHz) to different locations in integrated circuits via a low-dispersion transmission line such as a coaxial cable or waveguide. . The two coaxial transmission lines 1162 and 1172 connect parts of the pads to each other in the figure. The outer guide system with the same axis is supported by the abutments or bases 1164 and 1174 and is connected to the pad by wires 1166 and 1176. In an alternative embodiment, the pad is connected not only by the wires but also by bringing at least a portion of the coaxial shield in contact with or in close proximity to the integrated circuit surface. In some embodiments, the coaxial structure may be supported only by the central wire and any ground connection, but in other embodiments, a base or the like may be used. In some implementation methods, the coaxial structure may be pre-formed, picked and placed in the required position on the integrated circuit, or the EFAB procedure may be performed directly on the upper surface of the integrated circuit. For the implementation of the 1C integration of this microdevice, see US Provisional Patent Application No. 60 / 379,133, which is briefly described below and incorporated herein by reference in its entirety. Of course, in other embodiments, some of the pads may be used to connect between the components of the IC, and some other pads may be used to connect to other components. In some embodiments, the coaxial line may have a specially customized length to control the timing of signals arriving at different parts of a chip or even different chips. Figures 38A and 38B show the first and second-generation computer-controlled electrochemical manufacturing systems (ie, EFABTM microfabrication systems) produced by MEMGen, and the ancient 70 1244799 system can be used to implement the procedures and the devices / structures that form this article. In the current composition, these systems include selective deposition and blanket deposition stations, a planarization station, various cleaning and surface activation stations, inspection stations, clock-cover pond circulation systems, and atmospheric control systems (such as temperature control and 5 air filtration system), and a transport stage for moving the substrate relative to each station (that is, providing Z, X, and Y motions). Other systems may include one or more selective etch stations, one or more blanket etch stations, one or more seed layer forming stations (such as CVD or PVD deposition stations), selective atmosphere control systems (such as comprehensive or Supply a specified gas in a specific work area), and may even include one or more 10-rotation stages to align the substrate and / or selected stations. , ..., ιτ ^ τ I} 卞 ^, where multiple members can be used together on the substrate, or they can be cut from each other and applied to separate secondary substrates to use separate members in different 15 20

構件板上。其他實施例中’可以—般性方式來使用各 =施例的電化學程序在單-基材上同時地形成各不同Component board. In other embodiments, the electrochemical procedures of the embodiments can be used in a general manner to form different shapes on a single substrate at the same time.

’其中可《件顧在其最後位置中且具有其許多或 :=需要互連件。部分實施例中,可將單一或多個相 同構件直接形狀包括預先安裝的構件之積體控制 形及材上。部分實施财,可㈣魏個單調性 疋位的構件來形成整個系統。 其他實施例中,裝置或裝置群組可邀 結槿, /、用來包裝構件 構—起形成。此等包裝結構請見描述於 表中之展阳击 ^下述專利申請 之果國專利申請案60/379,182號。此弓!用的申請案揭 1種形成結構及隱藏式密封包裝體之技術。結 71 1244799 有用來移除一可犧牲材料之孔。可犧牲材料移除之後,可 以多種方式來充填這些孔。譬如,可將一種可流動及密封 住孔然後再固體化之可融化材料設置在這些孔附近或使其 緊鄰。其他實施例中,可藉由將一阻塞材料設置在緊鄰開 5 口但使其分隔處、然後在可犧牲材料移除之後則經由一銲 料狀材料或其他黏劑型材料使阻基材料橋接在與孔相關的 間隙且將其密封,來阻塞這些孔。其他實施例中,可能進 行一沉積來充填這些孔,特別是如果此沉積基本上為直線 沉積程序時及如果孔底下設有一可作為沉積阻止部及可供 10 沉積開始累積阻塞住孔的累積點之結構性元件時尤然。 雖然此申請案的揭示已經大部份針對同軸傳輸線及同 軸濾器,應瞭解這些結構可用來作為其他結構之基本建造 基件。因此,各種不同實施例的射頻及微波構件可包括下 列的一或多者:一微小型同軸構件、一傳輸線、一低通濾 15器、一高通濾器、一帶通濾器、一基於反射式濾器、一基 於吸附式濾器、-漏壁渡器、一延遲線、一用於連接其他 功能性構件之阻抗匹配結構、一方向性耦合器、一功率合 成态(譬如威金森(Wilkinson))、一功率分割器、一混合合成 器、-魔術TEE、-頻率多工器、或一頻率解多工器。天 2〇線j包括稜錐性(亦即平滑壁)饋電器天線、鱗狀(波摺壁)饋 電為天線、補綴天線、及類似物、及線性、平面性、及可 貼附性陣列的此等元件_可有效率地將微波從微小型傳輸 線轉移至自由空間内之構件。EFAB產生的微小型同軸線亦 能夠具有多種功能性之新構件。可將功率合成(或分割)及頻 72 1244799 率多工(或解多工)之組合容易地合併在具有多個輸入及輸 出埠之單一微小型同軸結構中。 藉由應用至一四埠傳輸線混合耦合器來示範說明根據 本發明的一實施例之同軸傳輸線應用的一範例。 5 混合件(Hybrids)係為所有被動微波構件中一種最早且 最有用之構件。兩項功能在於功率分割及相位移。當由波 導、同軸線、或其他寬頻傳輸線構成時,混合件一般係依 據一接合部的電流分割以及線中主導空間模式的建設性與 破壞性干涉之原理進行運作。 10 第39A圖顯示古典的四埠傳輸線混合架構。依其架構稱 為“二分支線,,耦合器,原因在於可將其想成為具有使之耦 合的兩條“垂直分支”1204、1206之“貫穿,,線1200、1202(埠1 至埠2,及埠3至埠4)。這些貫穿線及分支係由被屏蔽導體 1208所圍繞之同軸元件的内導體形成。這些屏蔽傳導元件 15叮相對於内導體大小没定尺寸藉以提供所需要的特徵阻 抗。足些屏蔽導體可屏蔽個別的内導體,以達成較密實的 作用,可利用單一屏蔽元件的一部分來屏蔽多個内導體的 特定部分。對於混合件的進一步描述將依據其如何將一進 入輸入埠1的訊號輸出至輪出埠2、及兩個經耦合的埠3及4 20而定。其目標一般係在於抑制進入經耦合埠3之所有功率 流。最有用的功率分割一般在貫穿璋2與經耦合槔4之間係 為3 dB或50%。如第39圖所示、埠2與4之間的相位差為卯 度。此相位差在l(同相位(in phase))及Q(相位正交 (quadrature))通路的饋送網路中之雷達接收器及同調性通 73 口44799 償中很常見。 依據單核的波干涉原理,可藉由使第丨圖中四個中央線 槔的電性長度等於λΜ來確實地滿足所有三輸出璋之相位 倏件。然後藉由傳輸線電路理論,當垂直(分支)段具有特徵 5降批Ζ〇且分支之間的水平段具有特徵阻抗Zg/(2)1/2時,滿足 了》dB振幅條件。水平段的終點具有特徵阻抗z0,且其依 據射頻產業標準一般係為5〇Ώ。 雖然原理很簡單及實施時很有用,因為電性長度λ/4 的要件,分支線”耦合器必須實體上夠大。譬如,在身為 通信及雷達普遍使用頻帶之S帶(2-4 GHz)的中心處,自由空 間波長為1〇公分或近似4吋。所以,混合件的尺 汴將至少為1x1吋且不計入饋送線及連接器。 相位正父混合件已經在微波網路設計中成為一種標準 媾件。因此其實體尺寸因素,機械加工已經為偏好採用的 製造技術而機械工場技術至今仍舊存在且其用CNC-控制 來取代人工操作之必要的銑製機,特別是在生產作業中尤 β。 從1960年代起,開始利用微帶線(microstripiine)技術來 製造混合件。這就是微波積體電路(MIC)技術時代的開端, 20 藉其可進行批次製造並產生遠為更便宜且更易整合之混合 件。然而,因為微帶混合件的效能不如最佳的波導或同軸 構件一樣好,且微帶線先天上比波導或同軸構件更易損失 亦在一共同基材上的不同線之間具有串擾,所以微帶混合 件存在一種取捨關係。為了減輕_擾,不同的微帶線必須 74 1244799 具有大的實體分離距離,所以最後混合件所佔用的“房地 產”比起波導或同軸件設計來說並未大幅減少。 利用電化學製造,可製造出能夠具有優良混合耦合器 之優良的同軸結構。其中一種結構係為一具有極小曲率半 5 徑之曲線狀彎折部。全波模擬顯示出,如果由不具有橫剖 面變化之單模同軸線加以製造,曲線狀彎折部將具有極低 的***損失及回傳損失。第40圖顯示一範例彎折部及其尺 寸。彎折部周圍的電性長度係為7Γ *RC=*480微米=1.508公 厘,且假設具有80微米的小半徑。因為端點銑刀或其他採 10 用的切割工具之限定尺寸因素,機械加工難以製造此種具 有小曲率半徑的彎折部。因為傾向於發射基材模式,無法 將微帶線彎折部製成小的曲率半徑。此等模式永遠存在於 微帶中,且一旦發射則代表不可逆的損失以及耦合至共用 相同基材之相鄰微帶線。因為外導體以張力被拉取且内導 15 體處於壓縮導致金屬疲勞及金屬裂痕,亦難以著手從一直 線段的圓形同軸線來生成小半徑的彎折部。 由於具有形成小半徑、低損失彎折部之能力,可藉由 如第41圖所示的蜿蜒狀(亦即蛇狀)捲繞部來大幅降低長段 傳輸線的實體範圍。此圖顯示具有内導體1222及外導體 20 1220之一段同軸線的平面圖。各同軸線的一外壁可在各相 鄰平行段之間被共用。由於射頻電流的表皮深度很小(數微 米),此共用壁可製成極薄。事實上在部分構件中,可將線 之間的壁降低至一傳導性網目且其中網目具有上述屬性之 開口0 75 1244799 、、曰在、貫的低損失彎折部係導致電化學(亦即單調性)製成 的此合件之另一項重要優點,亦即微小化。’Which may have pieces in their last position with many of them or: = interconnect required. In some embodiments, the direct shape of a single or multiple identical components may include the integral control shape and material of the pre-installed components. Part of the implementation can be a monotonic building block to form the entire system. In other embodiments, the device or device group may be invited to form a structure. For these packaging structures, please refer to Zhanyang Hit described in the table ^ Guo Guo Patent Application No. 60 / 379,182 of the following patent application. This bow! A used application reveals a technique for forming a structure and a hidden sealed package. Knot 71 1244799 has a hole for removing a sacrificial material. After the sacrificial material is removed, the holes can be filled in a number of ways. For example, a meltable material that can flow and seal the holes and then solidify can be placed near or in close proximity to the holes. In other embodiments, a blocking material can be provided by bridging the resist material with a solder-like material or other adhesive-type material by placing a blocking material immediately adjacent to the opening 5 but separating it, and then removing the sacrificial material through a solder-like material or other adhesive-type material. Holes and seal them to block them. In other embodiments, a deposition may be performed to fill the holes, especially if the deposition is basically a straight-line deposition process and if a hole is provided at the bottom of the hole that can act as a deposition stopper and can be used to accumulate accumulation points that can block the holes. This is especially true for structural elements. Although most of the disclosure in this application has been directed to coaxial transmission lines and coaxial filters, it should be understood that these structures can be used as basic building blocks for other structures. Therefore, the RF and microwave components of various embodiments may include one or more of the following: a micro-miniature coaxial component, a transmission line, a low-pass filter 15, a high-pass filter, a band-pass filter, a reflection-based filter, A suction filter, a leaky wall filter, a delay line, an impedance matching structure for connecting other functional components, a directional coupler, a power synthesis state (such as Wilkinson), a power A splitter, a hybrid synthesizer, -magic TEE, -frequency multiplexer, or a frequency demultiplexer. Sky 20 line j includes a pyramidal (ie, smooth wall) feeder antenna, a scaly (corrugated wall) feeder antenna, patch antenna, and the like, and linear, planar, and attachable arrays. These components can efficiently transfer microwaves from micro transmission lines to components in free space. The miniature coaxial cable produced by EFAB can also be a new component with multiple functions. The combination of power combining (or splitting) and frequency 72 1244799 rate multiplexing (or demultiplexing) can be easily combined into a single miniature coaxial structure with multiple input and output ports. An example of the application of a coaxial transmission line according to an embodiment of the present invention is illustrated by applying to a four-port transmission line hybrid coupler. 5 Hybrids are one of the earliest and most useful components of all passive microwave components. Two functions are power division and phase shift. When composed of waveguides, coaxial lines, or other broadband transmission lines, hybrids generally operate according to the principle of constructive and destructive interference in the current division of a junction and the dominant spatial mode in the line. 10 Figure 39A shows a classic four-port transmission line hybrid architecture. According to its architecture, it is called a "two branch line, a coupler, because it can be thought of as a" penetration "with two" vertical branches "1204, 1206 that make it coupled, lines 1200, 1202 (port 1 to port 2 , And ports 3 to 4). These through wires and branches are formed by the inner conductor of the coaxial element surrounded by the shielded conductor 1208. These shielded conductive elements 15 are sized relative to the size of the inner conductor to provide the required characteristic impedance. Some shielded conductors can shield individual inner conductors to achieve a more compact effect, and a part of a single shielding element can be used to shield specific parts of multiple inner conductors. Further description of the hybrid will depend on how it outputs a signal from input port 1 to wheel output port 2 and two coupled ports 3 and 4 20. The goal is generally to suppress all power flow into coupled port 3. The most useful power split is typically 3 dB or 50% across 璋 2 and coupled 槔 4. As shown in Figure 39, the phase difference between ports 2 and 4 is 卯. This phase difference is common in radar receivers and homology channels in the feed network of the l (in phase) and Q (quadrature) channels. According to the principle of single-core wave interference, all three output phases can be satisfactorily satisfied by making the electrical length of the four central lines 第 in Fig. 丨 equal to λM. Then, using transmission line circuit theory, when the vertical (branch) segment has characteristic 5 ZOO and the horizontal segment between the branches has characteristic impedance Zg / (2) 1/2, the condition of "dB amplitude" is satisfied. The end point of the horizontal segment has a characteristic impedance z0, and it is generally 50 ohms according to the RF industry standard. Although the principle is simple and useful in implementation, because of the electrical length λ / 4, the branch line "coupler must be physically large. For example, in the S-band (2-4 GHz), which is commonly used in communication and radar, In the center of), the free-space wavelength is 10 cm or approximately 4 inches. Therefore, the size of the hybrid part will be at least 1x1 inch and does not include the feed line and connector. The phase-positive parent mix has been designed in the microwave network It has become a standard part. Therefore, due to its physical size, machining has been a preferred manufacturing technology and mechanical workshop technology still exists today. It uses CNC control to replace the necessary milling machine for manual operation, especially in production. Especially in operation. From the 1960s, began to use microstripiine technology to manufacture hybrid parts. This is the beginning of the era of microwave integrated circuit (MIC) technology. 20 It can be used for batch manufacturing and produce far more Cheaper and easier to integrate hybrids. However, because microstrip hybrids are not as effective as the best waveguide or coaxial components, and microstrip lines are inherently more efficient than waveguide or coaxial components Vulnerability also has crosstalk between different lines on a common substrate, so there is a trade-off relationship between microstrip mixed pieces. In order to reduce interference, different microstrip lines must have a large physical separation distance of 74 1244799, so the final mix The "real estate" occupied by the components has not been greatly reduced compared to the design of waveguides or coaxial components. By using electrochemical manufacturing, excellent coaxial structures that can have excellent hybrid couplers can be manufactured. One of these structures is a structure with a very small curvature Half 5 diameter curved bend. Full wave simulation shows that if made from a single-mode coaxial cable without cross-section change, the curved bend will have extremely low insertion loss and return loss. Section 40 The figure shows an example bent portion and its dimensions. The electrical length around the bent portion is 7Γ * RC = * 480 microns = 1.508 mm, and assuming a small radius of 80 microns. Because the end mill or other mining tools 10 Due to the limited size of the cutting tool used, it is difficult to manufacture such a bent portion with a small curvature radius by machining. Because of the tendency to launch the substrate mode, the microstrip line cannot be turned The folds make a small radius of curvature. These patterns always exist in the microstrip, and once emitted represent irreversible losses and coupling to adjacent microstrip lines that share the same substrate. Because the outer conductor is pulled under tension and The inner guide 15 body is compressed due to metal fatigue and metal cracks. It is also difficult to start from a circular coaxial line of a straight line to generate a small radius bend. Due to its ability to form a small radius and low loss bend, it can be used by The meandering (ie, serpentine) winding part shown in Figure 41 greatly reduces the physical range of the long transmission line. This figure shows a plan view of a coaxial line with an inner conductor 1222 and an outer conductor 20 1220. Each coaxial An outer wall of the wire can be shared between adjacent parallel sections. Since the skin depth of the RF current is small (a few microns), this common wall can be made extremely thin. In fact, in some components, the wall between the wires can be reduced to a conductive mesh, and the mesh has the openings of the above properties. Monotonicity) Another important advantage of this assembly is miniaturization.

各 I Η ,、、、片小 J 羽 奴的S支線混合件1212如何由蜿蜒段製成以相較於 白^直線部1210顯著地降低混合件所佔狀整體面積。全 仍:、、、擬、員不出,可藉由一種壓縮至線性長度λ/12(電性長度 ^為^ /4)而產生9倍的面積密實(C〇mpaCti〇n)因數之分支線 “獲得優良效能。亦可能具有進—步密實作用。 10 ,較佳根據前述技術來形成蜿蜒段的分支線耦合器。為 ^了利於在製造期間移除可犧牲材料,同軸it件的外屏蔽部 之空 可包括開孔以利化學姓刻齊丨1進入屏蔽結構或外導體内 間0 素旦車乂佳邊擇開孔的尺寸及位置藉以有效地發生餘刻同時 :里減片冓件或網路之射頻效果的損失或其他擾動。開孔 b ^佳相#乂於波長具有小尺相盡量減少射頻損失。譬如, L」擇尺寸使得開孔對於主導同軸模式似乎就像一具有顯 ^二於拉式頻率(譬如2倍、5倍、1〇倍、5〇倍或更大)的截止 率之波‘。開孔可疋位在構件(譬如傳輸線及類似物)的側 邊上或疋頂部或底部上。其可能沿著一構件的長度均句地 定位,或者其可能以群組定位。 、曾可在層成形程序期間併人介電材料以完整地充填内與 卜‘體之間的間隙或者佔據内與外導體之間較小的選定區 域以ί、機械支撑用。如果介電質較薄⑺,可能將其併用在 曰的E FAB程序中而$需要在介電材料上方產生轩晶層 或類似物。這避免了後續沉積材料的“輩W_hr_ing)” 76 上244799 、在”兒貝上方形成橋接部之問題。 成及可犧崎料完錢部份地完成餘 成體塊或選擇性介電質之併入作用。 或者,可在層成形完 刻之後藉由回填來達 10 第39及42圖所示的分支線麵合器係佈局在-水平平面 中,其他實行方式巾,可㈣蜒狀結構垂直地堆積在基材 上’或可由垂直與水平元件之—組合所構成。此外,可以 成批方式將多減等結構形成於單_基材上,然後在最後 、、、凌之韵加以为離。(吾人是否應在此處進一步說明真實立How the S-branch mixed pieces 1212 of each Η ,,,, and small J slave are made of a meandering section to significantly reduce the overall area occupied by the mixed pieces compared to the white straight portion 1210. All still: ,,, pseudo, members can not be produced, can be compressed to a linear length λ / 12 (electrical length ^ is ^ / 4) to produce a branch of 9 times the area compact (C0mpaCti〇n) factor Line "to obtain excellent performance. It may also have a step-compacting effect. 10, It is better to form a branch line coupler of a meandering section according to the aforementioned technology. In order to facilitate the removal of sacrificable materials during manufacturing, coaxial it parts The space of the outer shield can include openings to facilitate chemical engraving. 1 Enter the shield structure or the inner conductor of the outer conductor. Loss of other radio frequency effects or other perturbations in the network or network. The aperture b ^ 佳 相 # has a small scale phase to minimize the RF loss. For example, the size of L ”makes the aperture appear to be a dominant coaxial mode. A wave having a cutoff frequency that is significantly higher than the pull frequency (for example, 2 times, 5 times, 10 times, 50 times or more). The openings can be located on the sides of the components (such as transmission lines and the like) or on the top or bottom. It may be positioned uniformly along the length of a component, or it may be positioned in groups. During the layer forming process, a dielectric material can be used to completely fill the gap between the inner and outer body or occupy a smaller selected area between the inner and outer conductors for mechanical support. If the dielectric is thin, it may be used in the EFAB program and the $ crystal layer or the like needs to be created on top of the dielectric material. This avoids the problem of subsequent generation of deposited materials "generation W_hr_ing" 76 on 244799 and the formation of bridging portions above the crust. It is possible to partially complete the remaining bulk or selective dielectric materials at the expense of money. Alternatively, it can be backfilled to 10 after the layer formation is completed. The branch line coupler shown in Figures 39 and 42 is laid out in the -horizontal plane. Other implementation methods can be serpentine. Vertically stacked on the substrate 'or it can be composed of a combination of vertical and horizontal elements. In addition, multiple reduction structures can be formed on a single substrate in batches, and then the final (I should further explain here

體結構?Should here?) we say something about truly 3D structures 第39B圖的分支線耦合器或混合件之一種應用係為巴 15特勒矩陣(Butler 巴特勒矩陣係為一種用來作為對 於一天線陣列的饋送件之被動網路。陣列在空間中從一維 或二維陣列的N天線元件來產生正交輻射圖案(亦即束),其 中N為2的冪級數。“正交,,係指束幾乎不重疊以使其共同充 填一大的空間區域。理想案例中,此區包含天線陣列平面 20上方之完整2疋球面度(steradians)的實角(solid angle)。第 43A圖中以概念顯示來自一四元件線性陣列之一系列的4個 正交束。Body structure? Should here?) We say something about truly 3D structures One application of the branch line coupler or hybrid in Figure 39B is the Butler Matrix (Butler Matrix is a feed element for an antenna array The passive network. The array generates orthogonal radiation patterns (ie beams) from N antenna elements of a one-dimensional or two-dimensional array in space, where N is a power series of 2. "Orthogonal" means that the beam is almost Do not overlap so that they together fill a large area of space. In the ideal case, this area contains the solid angle of the complete 2 疋 steradians above the antenna array plane 20. The conceptual display in Figure 43A is from A series of four orthogonal beams in a four-element linear array.

巴特勒矩陣基本上為一輸入傳輸線埠與一正交束之間 的一對一式映象。藉由將輸入訊號途程佈設至所需要的輸 77 1244799 入淳來㈣束的導向。可藉由將—功率放大器定位在各輸 入部上及精此依需要接通及關斷功率放大器來有效地獲得 此駆動控制。第43B圖顯示一使用上述類型的混合分支線輕 合器之電路來對於一巴特勒陣列的天線元件產生訊號之範 5例。電路包括四個90度、3_犯混合輕合器謂、兩個衫度 相位移器1302及精岔長度的傳輸線互連件13〇4。相位移器 通常係由經過選擇可產生所需要的路徑偏移之一段長度: 傳輸線製成。譬如,為了產生冗/4相位移,使用一段長度 1/8又;若為了產生_疋/4相位移,使用一段長度7/8λ。請注 1〇意,第43Β圖所示的跨接部單純係為線跨接而不被耦合之範 例。因此,跨接線可使一者鋪覆於另一者上。可藉由形成 額外層的結構或藉由降低跨接點上或附接之個別線的高度 來達成此鋪覆作用。可藉由調整外導體的内寬度及内導體 的外寬度尺寸來達成跨接點上之線的此種窄化作用同時維 15持不變的特徵阻抗。第44圖顯示在一跨接點1330附近各具 有一外導體1336及一内導體1338之傳輸線1332、1334的窄 化作用。 第43C圖提供一四元件巴特勒矩陣天線陣列131〇之示 意圖,其使用四個蜿蜒狀混合耦合器1312、兩個延遲線 20 1314、兩個跨接部1322、四個輸入部1316及四個天線元件 1318(譬如補綴天線)。 第45圖提供一八輸入部、八天線巴特勒矩陣天線陣列 之示意圖,其使用12個混合件、16個相位移器(其中八者實 際產生位移)。如圖所示,陣列亦包括多個跨接部。 78 1244799 巴特勒矩陣的被動構件數係隨著所需要的束數而增 減,藉以產生N個正交束,所需要的混合件數為(N/2)1〇g2N。 此增減規則係類似於進行一N元件傅立葉轉換所需要之複 雜乘數的判定方式。原始方式需要N2的乘數,快速傅立葉 5轉換(FTT)則將其降低至NlogaN。基於此原因,巴特勒矩陣 有時稱為FFT的束成形類似物(beam-forming analog)。如同 FFT,其大幅降低了製造一束成形天線所需要之構件數,特 別是當N很大及/或陣列為二維時尤然。 習知的巴特勒矩陣天線陣列之效能在束品質與頻寬方 ίο 面並不理想。當混合件的振幅及相位分割分別並非恰為3dB 及90度時’束品質開始變差,特別在側瓣葉尤然。同軸線 將利用E-FAB先天的精確度來產生在兩輸出埠之間的振幅 或相位方面具有很低分散作用之混合件,藉以減輕此問題。 頻寬問題是很根本的問題。從其架構,巴特肋矩陣將 15在一給定設計頻率完美地運作,但隨後其束將在較高或較 低頻率開始‘‘背離(squint)’,。背離係指束在輻射方向中導向 至空間内。雖然產生限制,此缺陷並不是巴特勒矩陣尚未 能滿足微波系統的效能需求之主要原因。主要原因在於上 述精密度問題。 2〇 —如此處所述使用微小型同軸混合件之巴特勒矩陣將 提供數項優點。首先,混合件、相位移器、互連件、及輸 入與輸出埠係皆可利用如上述的製造技術同時地製作在相 同的基材上’且亦可以批次方式製造(亦即同一時間多個複 本)。並且,因為混合件之振幅及相位移的不均勻性造成(不 1244799 需要的)側瓣葉中之功率相對於(所需要的)主瓣葉顯著地增 加,經由此處所述的製造程序的部分實施例達成之高均勻 度將大體消除了不均勻性。結果,可藉由這些實施例來產 生在振幅及相位方面具有〇·1 dB及Γ均勻度之混合件,且其 5大體消除了束品質的問題。 第46圖顯示可如何以一同軸饋送元件藉由E-FAB來單 調性地產生一補綴天線輻射元件。同軸饋送元件1342(譬如 傳輸線)在圖中位於一基材1344上方。部分替代性實施例 中,同軸元件可與基材分隔開來。同輛饋送元件係包括一 !〇 内導體1346,内導體1346位於一具有包括一通孔1352之外 傳導性屏蔽部1348(譬如一具有長方形或正方形橫剖面組 態之屏蔽部)的元件之間。同軸内導體的一延伸部1354係從 通孔伸出到達一平面性補綴天線1356。通孔的垂直延伸部 譬如可為100至500微米。孔的尺寸係取決於中央導體與孔 15 電磁交互作用所造成之寄生阻抗。補竣的長度及寬度較佳 係為3/8至1/2 λ,其中;I為自由空間中的波長。較佳在補綴 天線下方設有一接地層。此接地層不需為完全平面性且不 需完全實心,而是可為一密實陣列的傳導元件之形式。用 於構成混合耦合器及延遲線之同軸元件係可形成此接地層 20 的全部或一部分。 部分實施例中,可利用小區域的介電質(譬如鐵弗龍或 聚苯乙烯)來幫助支撐住補綴(譬如補綴的角落)。 如果第46圖的同軸元件之右側將訊號攜載前往及/或 離開天線’則較佳利用左側之段長度的同軸線來使驅動(或 80 1244799 接收)電子元件對於補綴產生阻抗匹配。 第圖4田~ 一基材且其上形成一批四個天線陣 列:成形之後,可將基材加以分割且將陣列分開並處理然 後完製(完成包裝、打線接合及類似工作)。基材1372可為一 3有積體電路之晶]|],其上彻電化學製造來累積射頻構 件以成-射頻系統的成形作用。天線GW可形成於其他 射頻構件(譬如,需形成一巴特勒陣列之構件)上。 根據部分實施例,可藉由使延遲線的各種不同部分包 繞在屏蔽導體周圍且與其相鄰配置甚至與相鄰線部分共用 10屏敝導體來將延遲線製成極度密實之形式。部分實施例 中,這些線可配置於一共同平面中,但其他實施例中,其 可藉由將線堆積在彼此頂上來採行一立體佈局。其他實施 例中’這些元件可採行螺旋形圖案及類似物。 本發明的其他實施例可包含形成及使用波導及波導構 15件。部分貫施例可包含形成可由人工或自動合併之離散的 構件,並可包含形成諸如訊號分配網路及類似物等之整個 系統。 下述的專利申請案及專利案以引用方式整體併入本文 中。這些併入的申請案之揭示可以許多方式與本申請案的 20揭示加以合併··譬如,經增強的用於產生結構之方法可萨 付生自揭示的部分組合,可獲得增強的結構,可衍生增強 的裝置,以及類似作用。 81 1244799 ♦美國專利申請案,提交日斯s ♦美國申請案公開號碼,公開日 期 發明人,檁題一'' - ―― 1X1 / , 、-------— • 09/493,496-2000年 1 月 28^ 孔忍(Cohen) ’ “用於電化學製造之方法” 參 10/677,556-2003年 10 月 1 日 美f 2繫妾受構件的對準及/或留置附 • 10/830,262-2004 年4 月 21 日—^ 層觀的立體結構中 ,“利用黏附罩幕、且包含介電 微份地移除之籽晶層來電 会爹、i”用承®1高尺寸比微機電結構之矛系 • XX/XX,XXX-2004 年5 月 7 曰 (案號 P-US099-A-MF) • 10/271,574-2002年 10月 15 日 籲 2003-0127336A-2003 年 7 月 1〇 曰 • 10/697,597-2002年 12 月 20 日 粉末塗覆飯 • 10/677,498-2003年 10月 1 日 • 10/724,513-2003年 11 月 26 日 繁祖綠丽於形成立體結蘇 • 10/607,931-2003年6 月 27 日 • XX/XXX,XXX-2004年5 月 7 曰 (案號 P-US093-A-MF) • 10/387,958-2003年3 月 13 日 • 2003-022168A-2003年 12月 4 日 • 10/434,494-2003 年5 月 7 日 • 2004-0000489A-2004年1 月 1 日 ,幕鍍覆操 • 10/434,289-2003年5月 7 日一 鲁 20040065555A-2004 年4月 8 日 溫气陰雛活化之可貼附 • 10/434,294-2003年5 月 7 日 • 2004-0065550A-2004年4 月 8 日 fi,,具有經增強的後沉積處理之電疋畢更逐 • 10/434,295-2003年5月 7 日 • 2004-0004001A-2004年1月 8 曰 • 10/434,315-2003年5月 7 日 • 2003-0234179A-2003 年 12 月 25 曰 裝£·ι”用可犧牲金屬圖案系覆》 籲 10/434,103-2004年5月 7 日 • 2004-0020782A-2004年2月 5 曰 • XX/XXX,XXX-2004年5 月 7 日 (案號 P-US104-A-MF) ilil;溫織聽識 • 10/434,519-2003年5 月 7 日 鲁 2004-0007470A-2004 年 1 月 15 曰 驗產鑛、Sfi f • XX/XXX,XXX-2004年5 月 7 曰 (案號P-US105-A-MF) 談、,“用於經電化學製造結構 • 10/309,521-2002年 12月 3 日The Butler matrix is basically a one-to-one mapping between an input transmission line port and an orthogonal beam. By routing the input signal to the required input 77 1244799 into the guidance of Chunlai. This automatic control can be effectively obtained by positioning the power amplifier on each input section and turning the power amplifier on and off as needed. Fig. 43B shows a sample of a circuit using a hybrid branch line light coupler of the above type to generate a signal for an antenna element of a Butler array. The circuit consists of four 90-degree, 3-in-line hybrid light-closing switches, two shirt-degree phase shifters 1302, and transmission line interconnects 1304 of the precise length. Phase shifters are usually made from a length of transmission line that is selected to produce the required path offset. For example, a length of 1/8 is used to generate redundant / 4-phase displacement; a length of 7 / 8λ is used to generate _ 疋 / 4-phase displacement. Note 10: The jumper shown in Figure 43B is simply an example of a line jumper without being coupled. Therefore, a jumper wire can overlay one on the other. This overlay can be achieved by forming structures of additional layers or by lowering the height of individual lines at or across the junction. This narrowing of the line across the junction can be achieved by adjusting the inner width of the outer conductor and the outer width dimension of the inner conductor while maintaining a constant characteristic impedance. Figure 44 shows the narrowing of transmission lines 1332 and 1334 each having an outer conductor 1336 and an inner conductor 1338 near a crossover point 1330. Figure 43C provides a schematic diagram of a four-element Butler matrix antenna array 1310, which uses four meandering hybrid couplers 1312, two delay lines 20 1314, two jumpers 1322, four input sections 1316, and four Antenna elements 1318 (such as patch antennas). Figure 45 provides a schematic diagram of an eight-input section and eight-antenna Butler matrix antenna array, which uses 12 hybrids and 16 phase shifters (of which eight actually produce displacement). As shown, the array also includes multiple jumpers. 78 1244799 The number of passive components of the Butler matrix increases or decreases with the number of required beams. In order to generate N orthogonal beams, the required number of mixed pieces is (N / 2) 10g2N. This increase / decrease rule is similar to the determination method of the complex multiplier required for performing an N-element Fourier transform. The original method requires a multiplier of N2, which is reduced to NlogaN by a fast Fourier transform (FTT). For this reason, the Butler matrix is sometimes referred to as the beam-forming analog of the FFT. Like FFT, it significantly reduces the number of components required to make a shaped antenna, especially when N is large and / or the array is two-dimensional. The performance of the conventional Butler matrix antenna array is not satisfactory in terms of beam quality and bandwidth. When the amplitude and phase division of the hybrid are not exactly 3dB and 90 degrees, respectively, the beam quality starts to deteriorate, especially on the side leaflets. The same axis will use the innate accuracy of E-FAB to produce a hybrid with low dispersion in amplitude or phase between the two output ports, thereby mitigating this problem. Bandwidth is a fundamental issue. From its architecture, the Bart rib matrix will operate perfectly at a given design frequency, but then its beam will begin to ‘’ squint ’, at higher or lower frequencies. Deviation means that the beam is directed into space in the direction of the radiation. Although limiting, this defect is not the main reason why the Butler matrix has not been able to meet the performance requirements of microwave systems. The main reason is the precision problem mentioned above. 20—The use of a Butler matrix of a miniature coaxial hybrid as described herein will provide several advantages. First of all, hybrid parts, phase shifters, interconnects, and input and output ports can all be manufactured on the same substrate at the same time using the manufacturing techniques described above, and can also be manufactured in batches (i.e. Copies). And, because of the non-uniformity of the amplitude and phase shift of the mixing part, the power in the side lobe (not required by 1244799) is significantly increased relative to the (required) main leaflet. The high uniformity achieved in some embodiments substantially eliminates non-uniformities. As a result, these embodiments can be used to produce a hybrid with a uniformity of 0.1 dB and Γ in terms of amplitude and phase, and the problems of beam quality are largely eliminated. Figure 46 shows how a patch antenna antenna can be generated monotonically with a coaxial feed element by E-FAB. A coaxial feed element 1342 (such as a transmission line) is located above a substrate 1344 in the figure. In some alternative embodiments, the coaxial element may be separated from the substrate. The same feeding element includes an inner conductor 1346, which is located between elements having a conductive shielding portion 1348 including a through hole 1352 (such as a shielding portion having a rectangular or square cross-section configuration). An extension 1354 of the coaxial inner conductor projects from the through hole to a planar patch antenna 1356. The vertical extension of the through hole may be, for example, 100 to 500 m. The size of the hole depends on the parasitic impedance caused by the electromagnetic interaction between the central conductor and the hole 15. The completed length and width are preferably 3/8 to 1/2 λ, where I is the wavelength in free space. A ground layer is preferably provided below the patch antenna. This ground plane need not be completely planar and not completely solid, but may be in the form of a dense array of conductive elements. The coaxial components used to form the hybrid coupler and the delay line may form all or part of this ground layer 20. In some embodiments, a small area of dielectric (such as Teflon or polystyrene) can be used to help support the patch (such as the corners of the patch). If the right side of the coaxial component in FIG. 46 carries the signal to and / or leaves the antenna ', it is preferable to use the length of the left coaxial cable to make the driving (or 80 1244799 receiving) electronic component impedance match for the patch. Figure 4 Tian ~ A substrate and a batch of four antenna arrays formed on it: After forming, the substrate can be divided, the array can be separated and processed, and then completed (complete packaging, wire bonding and similar work). The substrate 1372 may be a crystal with integrated circuits] |], which is fabricated electrochemically to accumulate radio frequency components to form a radio frequency system. The antenna GW may be formed on other radio frequency components (for example, a component that needs to form a Butler array). According to some embodiments, the delay line can be made into an extremely dense form by wrapping various portions of the delay line around the shield conductor and arranging them adjacent to each other, or even sharing 10 screen conductors with adjacent line portions. In some embodiments, the lines may be arranged in a common plane, but in other embodiments, they may adopt a three-dimensional layout by stacking the lines on top of each other. In other embodiments, 'these elements may have a spiral pattern and the like. Other embodiments of the invention may include forming and using waveguides and waveguide structures. Some embodiments may include forming discrete components that may be merged manually or automatically, and may include forming entire systems such as signal distribution networks and the like. The following patent applications and patents are incorporated herein by reference in their entirety. The disclosures of these incorporated applications can be combined with the 20 disclosures of this application in many ways. For example, enhanced methods for generating structures can be combined with parts of the disclosure to obtain enhanced structures. Derive enhanced devices, and similar effects. 81 1244799 ♦ U.S. patent application, filed in Japan s ♦ U.S. application publication number, publication date inventor, title one ''-—— 1X1 /,, ----------- • 09 / 493,496 -January 28, 2000 ^ Cohen '' "Methods for Electrochemical Manufacturing" see 10/677, 556-October 1, 2003. Alignment and / or retention of US f 2 series receiving members • 10/830, 262-April 21, 2004— ^ In the three-dimensional structure of the layer view, "using the seed layer with an adhesive mask and including dielectric micro-removal of the seed layer to call the father, i" 1 Spear system with high size ratio micro-electromechanical structure • XX / XX, XXX-May 7, 2004 (Case No. P-US099-A-MF) • 10/271, 574-October 15, 2002, 2003- 0127336A-July 10, 2003 • 10/697, 597-December 20, 2002 Powder Coated Rice • 10/677, 498-October 1, 2003 • 10/724, 513-November 2003 On the 26th, the emeralds formed a three-dimensional knot • 10/607, 931-June 27, 2003 • XX / XXX, XXX-May 7, 2004 (Case No. P-US093-A-MF) • 10 / 387, 958-March 13, 2003 • 2003-022 168A-December 4, 2003 • 10/434, 494-May 7, 2003 • 2004-0000489A-January 1, 2004, curtain plating operations • 10/434, 289-May 7, 2003 Yilu 20040065555A-Attachable for the activation of warm air female chicks on April 8, 2004 • 10/434, 294-May 7, 2003 • 2004-0065550A- April 8, 2004 fi, with enhanced Post-deposition treatments are more complete • 10/434, 295-May 7, 2003 • 2004-0004001A-January 8, 2004 • 10/434, 315-May 7, 2003 • 2003-0234179A -"December 25, 2003", "Installing with a sacrificial metal pattern" Appeal 10/434, 103-May 7, 2004 • 2004-0020782A-February 5, 2004 • XX / XXX, XXX -May 7, 2004 (Case No. P-US104-A-MF) ilil; Weaving Hearing • 10/434, 519-May 7, 2003 Lu 2004-0007470A-January 15, 2004 Mine, Sfi f • XX / XXX, XXX-May 7, 2004 (Case No. P-US105-A-MF) Talk, "For the manufacture of structures by electrochemical methods • 10/309, 521-December 2002 3 days

82 1244799 存在有本發明之多種其他實施例。部分這些實施例可 利用本文的揭示及引用併入本文的各種揭示之一組合為基 礎。部分實施例可能未使用任何毯覆沉積程序及/或其可能 未使用平面化程序。部分實施例可能包含將複數種不同材 5料選擇性沉積在單層上或不同層上。部分實施例可能使用 並非電沉積程序之毯覆沉積程序。部分實施例可能在部分 層上使用並非可貼附性接觸罩幕程序且甚至並非電沉積程 序之選擇性沉積程序。部分實施例可能使用不可貼附性接 觸罩幕或非接觸性罩幕。 10 部分實施例可使用鎳作為一結構性材料,其他實施例 可使用不同材料,諸如銅、金、銀、或可與可犧牲材料分 離之任何其他的可電沉積性材料。部分實施例可使用銅作 為結構性材料且具有或不具有一可犧牲材料。部分實施例 可能移除一可犧牲材料,其他實施例則可能未加以移除。 15邛刀貫施例中,可利用一化學#刻操作、一電化學操作或 一融化操作來移除可犧牲材料。部分實施例中,陽極可能 與可貼附性接觸罩幕支撐件不同且支撐件可能為一種多孔 結構或其他穿孔狀結構。部分實施例可使用具有不同圖案 的多個可貼附性接觸罩幕來將不同選擇性圖案的材料沉積 20在不同層及/或單層的不同部分上。部分實施例中,當發生 沉積時藉由使可貼附性接觸罩幕拉離基材來增強沉積深度 之方式,將可使得cc罩幕的可貼附部分與基材之間的密封 從可貼附材料面偏移至可貼附材料的内側邊緣。 鑒於此處的揭示,熟習該技術者將瞭解本發明之許多 1244799 其他實施例、替代性設計及使用方式。因此,本發明無意 受限於上述之特定示範性實施例、替代方式及使用方式而 是只由申請專利範圍所界定。 【圖式簡單說明3 5 第1A-1C圖示意性描繪一 CC罩幕鍍覆程序的各種不同 階段的側視圖,而第1D-1G圖示意性描繪一種使用一不同型 CC罩幕之CC罩幕鍍覆程序的各種不同階段之側視圖; 第2A-2F圖示意性描繪一施用形成一特定結構之電化 學製造程序的各種不同階段之側視圖,其中在毯覆沉積一 10 結構性材料的同時選擇性沉積一可犧牲材料; 第3A-3C圖示意性描繪可用來人工式實行第2A-2F圖 所描繪的電化學製造方法之各種不同範例次總成之側視 圖, 第4A-4I圖示意性描繪利用黏附罩幕來形成第一層的 15 一結構,其中一第二材料的毯覆沉積物係鋪覆於第一材料 的沉積位置之間的開口以及第一材料本身; 第5A圖描繪一包括短路輪輻之同軸濾器元件的立體 圖, 第5B圖描繪第4A圖的同軸濾器沿著線5B-5B之平面 20 圖; 第5C圖描繪第4A圖的同軸濾器沿著線5(c)-5(c)之平面 圖; 第5D圖描繪一同軸濾器元件的中央部分之平面圖,其 顯示沿著濾器長度之五組過濾輪輻(每組兩個); 1244799 第6A-6C圖分別描繪各使用輪輻組(每組四個輪輻)之 長方形、圓形及橢圓形濾器元件之端視圖; 第7A-7D圖描繪可能使用在過濾構件中之替代性輪輻 組態之範例; 5 第8A及8B圖顯示彎曲狀同軸濾器構件之立體圖; 第9A-9C圖描繪沿著内或外導體使用突部來幫助過濾 訊號之替代性同軸濾器構件; 第9D圖描繪沿著一 S形二極同軸濾器的長度之中央部 分的平面圖, 10 第10A-10D圖描繪沿著具有不同斜接程度的馬蹄形同 軸傳輸線之中央部分的平面圖; 第11A及11B圖分別描繪沿著一同軸傳輸線及一同軸 濾器構件之中央部分的平面圖,其中在同軸線的較小半徑 側的内側表面上包括波狀振盪部; 15 第12A圖描繪沿著利用根段對來形成各極之一線性三 極帶通同軸濾器的長度之中央部分的平面圖(從上方觀看); 第12B圖描繪第12A圖的濾器之端視圖,其中顯示結構 的長方形組態; 第12 C圖描繪沿著一具有根段支撐件之彎曲狀三極帶 20 通同軸濾器的長度之中央部分的平面圖(從上方觀看); 第13A圖描繪沿著一具有根段支撐件之S形二極帶通 同轴濾器的長度之中央部分的平面圖(從上方觀看); 第13B圖描繪如同利用MEMGen的EFAB™電化學製造 技術所產生且已經移除可犧牲材料後之一略經修改版本的 1244799 第13A圖濾器之立體圖; 弟13 C則田繪—部份成形的遽器(類似第13 B圖所示者 且已經從結構性材料移除可犧牲㈣之後)之立體特 第Μ及⑽圖描纷嵌入可犧牲材料且從可犧牲材料 釋放之同軸h讀之立體圖,其中同軸構件的外導體係 包括有孔(預定的微波進人及離開卜卜 、 第15A-15D圖顯示對於各種 塑之傳輸vs·頻率的繪圖; 不同濾器設計根據數學模 10 15 20 第16圖描繪一在製造— 所舄要的裝置/結構時使用 傳導材料及單一介電材料 • 何枓之樣本電化學製造程序的流 j 第17A圖描繪可利用第16圖的程序所產生之__ 構的端視圖, 第17B圖描繪第17八圖的η ά 圚的同轴結構之立體圖; 第18A-18J圖顯示應用第 _程序餘來形成第1 及17Β圖的結構, 第19圖描繪一包括使用三 、止 稷傳¥材料之樣本電化學 造程序的流程圖; 第20A及20B圖描纷㊅社值 ^ ^ 匕括傳導元件之結構以及可櫂 第19圖的程序延伸所形成之 咕 ^ 免支撐結構的立體圖; 第21Α-21Τ圖顯示應用第丄 用弟圖的程序流程來形成一 似於第20A圖所示者之同軸結構, ^ ,、中兩種傳導材料係J 成、、、。構層之後加以移除之可犧叫料n 材料來取代所移除的可犧牲材料之—者· /、82 1244799 There are many other embodiments of the present invention. Some of these embodiments may be based on a combination of the disclosure herein and one of the various disclosures incorporated herein by reference. Some embodiments may not use any blanket deposition procedures and / or they may not use planarization procedures. Some embodiments may include the selective deposition of a plurality of different materials on a single layer or on different layers. Some embodiments may use blanket deposition procedures that are not electrodeposition procedures. Some embodiments may use selective deposition procedures that are not attachable contact mask procedures and not even electrodeposition procedures on some layers. Some embodiments may use non-attachable contact screens or non-contact screens. 10 Some embodiments may use nickel as a structural material, other embodiments may use different materials such as copper, gold, silver, or any other electrodepositable material that is separable from the sacrificial material. Some embodiments may use copper as a structural material with or without a sacrificial material. Some embodiments may remove a sacrificial material, other embodiments may not remove it. In the 15-knife embodiment, a chemical operation, an electrochemical operation, or a melting operation can be used to remove the sacrificial material. In some embodiments, the anode may be different from the attachable contact mask support and the support may be a porous structure or other perforated structure. Some embodiments may use multiple adherent contact masks with different patterns to deposit 20 materials of different selective patterns on different layers and / or different portions of a single layer. In some embodiments, when the deposition occurs by pulling the attachable contact mask away from the substrate to enhance the deposition depth, the seal between the attachable portion of the cc mask and the substrate can be made from The attachment material face is offset to the inside edge of the attachable material. In view of the disclosure herein, those skilled in the art will understand many other embodiments of the invention, alternative designs, and uses. Therefore, the present invention is not intended to be limited to the specific exemplary embodiments, alternatives, and uses described above, but is only defined by the scope of patent applications. [Schematic description 3 5 Figures 1A-1C schematically depict side views of various stages of a CC mask plating process, and Figures 1D-1G schematically depict a method using a different type of CC mask. Side views of various stages of the CC mask plating process; Figures 2A-2F schematically depict side views of the various stages of an electrochemical manufacturing process applied to form a specific structure, in which a 10 structure is deposited on the blanket Selective deposition of a sacrificial material at the same time as the material; Figures 3A-3C schematically depict side views of various sub-assemblies that can be used to manually implement the electrochemical manufacturing method depicted in Figures 2A-2F. Figures 4A-4I schematically depict a 15-layer structure using the adhesive mask to form the first layer, in which a blanket deposit of a second material is spread over the opening between the deposition locations of the first material and the first material Itself; Figure 5A depicts a perspective view of a coaxial filter element including shorted spokes, Figure 5B depicts a plane 20 diagram of the coaxial filter of Figure 4A along lines 5B-5B; Figure 5C depicts a coaxial filter of Figure 4A along Plan of line 5 (c) -5 (c); Figure 5D depicts a plan view of the central portion of a coaxial filter element, showing five sets of filter spokes (two in each group) along the length of the filter; 1244799 Figures 6A-6C depict separate sets of spokes (four spokes in each group) ) End views of rectangular, circular and oval filter elements; Figures 7A-7D depict examples of alternative spoke configurations that may be used in filter elements; Figures 8A and 8B show perspective views of curved coaxial filter elements Figures 9A-9C depict alternative coaxial filter components that use protrusions along the inner or outer conductor to help filter signals; Figure 9D depicts a plan view of the central portion along the length of an S-shaped two-pole coaxial filter, 10th Figures 10A-10D depict plan views along the central portion of a horseshoe-shaped coaxial transmission line with varying degrees of slanting; Figures 11A and 11B depict plan views along the central portion of a coaxial transmission line and a coaxial filter member, respectively. The wavy oscillating portion is included on the inner surface of the smaller radius side; FIG. 12A depicts a linear tripolar bandpass coaxial filter along the root segment pair to form one of the poles Plan view of the central part of the length (viewed from above); Figure 12B depicts the end view of the filter of Figure 12A, showing the rectangular configuration of the structure; Figure 12C depicts a curved shape with a root support Plan view of the central part of the length of a three-pole band 20-pass coaxial filter (viewed from above); Figure 13A depicts a plan view of the central part of the length along an S-shaped two-pole band-pass coaxial filter with a root support ( (Viewed from above); Figure 13B depicts a perspective view of a slightly modified version of the filter in Figure 13A of 1244799, which is a slightly modified version of MEMAB's EFAB ™ electrochemical manufacturing technology and after the sacrificial material has been removed; brother 13C is field painting -The three-dimensional features of the partially formed sacrificial vessel (similar to that shown in Fig. 13B and after the sacrificial sacrifice has been removed from the structural material) are embedded in the sacrificial material and released from the sacrificial material. Coaxial h-reading three-dimensional view, in which the outer guide system of the coaxial component includes holes (predetermined microwave entry and exit, Figures 15A-15D show plots for various plastic transmission vs. frequency; no Same filter design according to mathematical model 10 15 20 Figure 16 depicts the use of conductive materials and a single dielectric material in the manufacture of the required device / structure. • The flow of Ho's sample electrochemical manufacturing process. Figure 17A depicts Using the end view of the __ structure produced by the program in Fig. 16, Fig. 17B depicts a perspective view of the coaxial structure of Fig. 17 and Fig. 18; Figs. 18A-18J show the application of the _program residue to form the first And the structure of Figure 17B, Figure 19 depicts a flow chart that includes a sample electrochemical fabrication procedure using three and only materials; Figures 20A and 20B depict various structures ^ ^ structure of conductive elements and之 The three-dimensional view of the support-free structure formed by the program extension of Figure 19; Figures 21A-21T show the application of the program flow chart of Figure 2 to form a coaxial structure similar to that shown in Figure 20A, ^, The two types of conductive materials are J,, and. The sacrifice material that is removed after the formation layer replaces the sacrifice material that is removed— / ·,

Figure

86 1244799 第22A-22C圖顯示第21R_21T圖的移除及取代程序之 延伸部分; 第23A及23B圖描繪一包含使用兩傳導材料及一介電 材料之樣本電化學製造程序的流程圖; 5 第24圖顯示一可利用第23A及23B圖的程序延伸所形 成之結構的立體圖; 第25A-25Z圖顯示根據第23八及B圖的一樣本層形成程 序之側視圖,其用以形成一具有一介電材料之同軸結構, 且其中該介電材料只支撐住内導體; · 1〇 第26A_26F圖顯示當對於第四層結構沉積第一傳導材 料之前需要一籽晶層時之對於第25H-25K圖的程序之一替 代方式; 第27圖描繪一同轴傳輸線之立體圖; 第28圖描繪一射頻接觸開關之立體圖; 15 第29圖描繪一對數週期天線(i〇g-peri〇dic antenna)之立 體圖; | 第30A及30B圖描緣一相對於彼此旋轉約180度之樣本 超環面電感器的立體圖,第30C圖描繪根據一電化學製造程 序形成之一超環面電感器的立體圖; 尊 20 第31A及31B圖描繪根據一電化學製造程序所形成之 一螺旋電感器設計及一堆積式螺旋電感器的立體圖; 第31(3圖描繪第31八及31丑圖的電感器之一變化例; 第32A及32B圖以對比方式顯示兩種可能的設計,其中 弟32B圖的設計可提供比第32A圖更小的歐姆電阻且可能 87 1244799 改變總電感; 第33A及33B圖描繪盡量減少損失同時在電感器的線 圈之間維持高耦合水準之兩替代性電感器組態之示意圖; 第34圖描繪一電感器的立體圖; 5 第35A及35B圖分別描繪一可變電容器112的一範例之 立體圖及側視圖; 第36A-36B圖描繪兩範例同軸結構之端視圖,其中中央 導體設有-種可相對於其橫剖面積增加表面積之橫剖面組 態; 10 第37圖描繪一積體電路之側視圖,其具有用來將内部 訊號(譬如時脈訊號)連接至低散佈傳輸線以與積體電路其 他部分導通之連接墊; 第38A及38B圖顯示可用來實行此處所述程序之第一 及第二代電腦控制式電化學製造系統(亦即efabtm微製造 15 系統), 第39圖描繪一習知的四埠混合耦合器之平面圖; 第40圖描繪一同軸線中的一曲線及尺寸之平面圖; 第41圖描繪沿著傳輸線部分具有共用的外導體之一段 同轴線的平面圖; 20 第42圖顯示可使一分支線混合件的各λ /4段製成蜿蜒 段以相較於習知直線版本顯著地降低混合件佔用的整體面 積; 第43Α圖顯示來自一四元件線性陣列之一系列的四正 交束; 88 1244799 第43B圖顯示一巴特勒陣列,其具有包含利用混合分支 線耦合器及兩相位移器藉由一電路產生的訊號之天線元 件; 第43C圖提供一四元件巴特勒矩陣天線陣列之示意 圖,其使用四個蜿蜒狀混合耦合器、兩個延遲線且擁有兩 個跨接部(crossovers)、及四個輸入部及四個天線元件(譬如 補綴天線); 第44圖顯示各具有一外導體及一内導體之窄化傳輸線 的一跨接點; 10 15 第45圖提供一八輸入部、八天線巴特勒矩陣陣列之示 意圖,其使用12個混合部、16個相位移器(其中八個實際產 生位移)及八個天線; 第46圖顯示一補綴天線輻射元件可如何附接至一同軸 饋送元件; 第4 7圖描繪一其上可供形成一批次四個8 X 8天線陣列 之基材。 【圖式之主要元件代表符號表】 2…可犧牲材料(第一材料) 10’…可貼附材料 12…共同支撐件/陽極 12’、62…陽極 14、66…鍵覆溶液 16…開口 18…電源供應器 20…多層結構 4···結構性材料(第二材料) 6、82、1008、1154、1344、1372· 基材 8…CC罩幕 8’…罩幕 10…可貼附或可變形絕緣體 89 1244799 22…材料 22’···沉積物 26a、26b、654···開孑匕 32···示範性人工電化學製造系統 34…基材固持次系統 36…CC罩幕次系統 38…毯覆沉積次系統 40…平面化次系統 42…線性滑件 44···致動器 46…指示器 48…載具 52…拋磨板 54…精密的X-階台 56…精密的Y階台 58…貯槽 64…電解質貯槽 68…足部 72、74…框架 84…可圖案化光阻 86…光阻表面 88…基材表面 92⑻-92(c)· ··開口或開孔 94…第一金屬 96…第二金屬 98…立體結構 102…射頻/微波濾器 104···第一組 104a-104d、312、314、322、 324、332、334、342、352、354、 356、358、394、396…輪輻 242、244…尺寸 316、336…長方形外導體 326、362、362,、608、842、 1220、1336…外導體 372、374、376、378…外導體 突部 382、384、386、388、394、396、 398…突部 392、392’、616、844、1222、 1338、1346···内導體 402、404…同軸分段 412、414、416、418、422、424、 426、428、412,、414,、416,、 418,、422,、424,、426,、428,·.. 轉折部 412”、414”、416”、418”、422”、 424”、426,,、428”…轉折區86 1244799 Figures 22A-22C show an extension of the removal and replacement procedure of Figures 21R_21T; Figures 23A and 23B depict a flow chart of a sample electrochemical manufacturing process using two conductive materials and a dielectric material; Figure 24 shows a perspective view of a structure that can be extended using the procedures of Figures 23A and 23B; Figures 25A-25Z show a side view of the same layer formation procedure according to Figures 23A and B, which is used to form a A coaxial structure of a dielectric material, and wherein the dielectric material only supports the inner conductor; Figures 10A through 26F show that when a seed layer is required before the first conductive material is deposited for the fourth layer structure, the 25H- An alternative to the program of the 25K figure; Figure 27 depicts a perspective view of a coaxial transmission line; Figure 28 depicts a perspective view of a RF contact switch; 15 Figure 29 depicts a pair of periodic antennas (iog-periodic antenna) Figures 30A and 30B depict a perspective view of a sample toroidal inductor rotated about 180 degrees relative to each other, and Figure 30C depicts a toroidal inductor formed according to an electrochemical manufacturing process 3D view; Zun 20 Figures 31A and 31B depict a perspective view of a spiral inductor design and a stacked spiral inductor formed according to an electrochemical manufacturing process; Figure 31 (Figure 3 depicts the 31st and 31st ugly inductors) One variation: Figures 32A and 32B show two possible designs in a comparative way. The design of Figure 32B can provide smaller ohmic resistance than Figure 32A and may change the total inductance 87 1244799. Figures 33A and 33B Schematic depicting two alternative inductor configurations that minimize losses while maintaining a high level of coupling between the coils of the inductor; Figure 34 depicts a perspective view of an inductor; 5 Figures 35A and 35B depict a variable capacitor 112, respectively A perspective view and a side view of an example; Figures 36A-36B depict end views of two example coaxial structures, in which the central conductor is provided with a cross-sectional configuration that increases surface area relative to its cross-sectional area; 10 Figure 37 depicts A side view of an integrated circuit having a connection pad for connecting an internal signal (such as a clock signal) to a low-dispersion transmission line to conduct conduction with other parts of the integrated circuit; section 38A Figure 38B shows the first and second generation computer-controlled electrochemical manufacturing systems (ie, the efabtm microfabrication 15 system) that can be used to implement the procedures described here. Figure 39 depicts a plan view of a conventional four-port hybrid coupler. Figure 40 depicts a plan view of a curve and dimensions in the same axis; Figure 41 depicts a plan view of a coaxial line with a common outer conductor along the transmission line section; 20 Figure 42 shows how a branch line can be mixed Each λ / 4 segment is made into a serpentine segment to significantly reduce the overall area occupied by the hybrid compared to the conventional linear version; Figure 43A shows a quadrature beam from one of a series of four-element linear arrays; 88 1244799 Figure 43B shows a Butler array having an antenna element including a signal generated by a circuit using a hybrid branch line coupler and a two-phase shifter; Figure 43C provides a schematic diagram of a four-element Butler matrix antenna array. Four meandering hybrid couplers, two delay lines with two crossovers, four input sections and four antenna elements (such as patch antennas); Figure 44 shows a crossover point of a narrowed transmission line each having an outer conductor and an inner conductor; 10 15 Figure 45 provides a schematic diagram of an eight-input section and eight-antenna Butler matrix array, which uses 12 mixing sections, 16 Phase shifters (of which eight actually produce a displacement) and eight antennas; Figure 46 shows how a patch antenna radiation element can be attached to a coaxial feed element; Figures 4 and 7 depict one on which a batch can be formed Substrate for four 8 X 8 antenna arrays. [Representative symbol table of the main elements of the figure] 2 ... sacrificial material (first material) 10 '... attachable material 12 ... common support / anode 12', 62 ... anode 14, 66 ... keying solution 16 ... opening 18 ... Power supply 20 ... Multilayer structure 4 ... Structural material (second material) 6, 82, 1008, 1154, 1344, 1372, Substrate 8 ... CC cover 8 '... Cover 10 ... Can be attached Or deformable insulator 89 1244799 22 ... material 22 '... deposits 26a, 26b, 654 ... open dagger 32 ... exemplary artificial electrochemical manufacturing system 34 ... substrate holding sub-system 36 ... CC cover Sub-system 38 ... blanket deposition sub-system 40 ... planarization sub-system 42 ... linear slider 44 ... actuator 46 ... indicator 48 ... carrier 52 ... polishing plate 54 ... precision X-stage 56 ... Precision Y stage 58 ... reservoir 64 ... electrolyte reservoir 68 ... foot 72, 74 ... frame 84 ... patternable photoresist 86 ... photoresist surface 88 ... substrate surface 92⑻-92 (c) ··· open or open Hole 94 ... First metal 96 ... Second metal 98 ... Three-dimensional structure 102 ... RF / microwave filter 104 ... First group 104a-104d, 312, 314, 322, 324, 332, 334, 342, 352, 354, 356, 358, 394, 396 ... spokes 242, 244 ... size 316, 336 ... rectangular outer conductors 326, 362, 362, 608, 842, 1220, 1336 ... outer conductors 372, 374, 376, 378 ... outer conductor protrusions 382, 384, 386, 388, 394, 396, 398 ... protrusions 392, 392 ', 616, 844, 1222, 1338, 1346 ... inner conductors 402, 404 … Coaxial segments 412, 414, 416, 418, 422, 424, 426, 428, 412, 414, 416 ,, 418 ,, 422, 424, 426, 428, .... turning section 412 " , 414 ", 416", 418 ", 422", 424 ", 426 ,, 428" ...

90 1244799 432、434…經斜接斷面 728…嵌置介電區 1162、1172…同軸傳輸線 734-1、734-2…傳導材料 436…突件 438、 440…同軸濾器構件 442···簡單曲線 522、524、622、624···根段 552、554…側通路 556···外側導體 602、848…進入埠 604、850···離開埠 606…通道 612、614…通路 616、606、630···濾、器 632···接地引線 634…訊號引線 642···孔(開孔) 652" 656、 702···結構性材料 704…可犧牲材料 706…構件 722···同軸結構 724…外傳導元件 726···内傳導元件 730…外部介電區 734-1’···經選擇性沉積第二傳 導材料 734-2’、856、856-1···第二傳導 材料(SCM) 736-1、736-1,、736-2、846、 860、996…介電材料 736-2· ··第二層介電材料 738-2、738-2’···籽晶層 738-2”…軒晶層部分 846…介電支撐結構 846’…經修改的介電結構 852···空白基材 854-2、854-3、854-4、854-5、 858-4···區 854…第一傳導材料(FCM) 854-1…第一傳導材料 854-Γ…第一層初始沉積物 854-4”··.第四層初始沉積物 858···第三傳導材料90 1244799 432, 434 ... Via miter section 728 ... Embedded dielectric regions 1162, 1172 ... Coaxial transmission lines 734-1, 734-2 ... Conductive material 436 ... Protrusions 438, 440 ... Coaxial filter member 442 ... Simple Curves 522, 524, 622, 624 ... Root segments 552, 554 ... Side passages 556 ... Outer conductors 602, 848 ... Enter ports 604, 850 ... Exit ports 606 ... Channels 612, 614 ... Paths 616, 606 , 630 ·· Filter, 632 ·· Ground lead 634 ... Signal lead 642 ·· Hole (opening) 652 " 656, 702 ·· Structural material 704 ... Sacrificable material 706 ... Member 722 ... Coaxial structure 724 ... outer conductive element 726 ... internal conductive element 730 ... external dielectric region 734-1 '... selectively deposited second conductive material 734-2', 856,856-1 ... Conductive materials (SCM) 736-1, 736-1, 736-2, 846, 860, 996 ... Dielectric materials 736-2 ··· Second layer dielectric materials 738-2, 738-2 '··· Seed layer 738-2 "... Xuanjing layer portion 846 ... Dielectric support structure 846 '... Modified dielectric structure 852 ... Blank substrate 854-2, 854-3, 854-4, 854-5, 858-4 ··· area 854 ... A conductive material (FCM) 854-1 ... first conductive material 854-Γ ... initial deposit a first layer 854-4 "·· initial deposits the fourth layer 858 third conductive material ?????

•同軸元件的外壁(屏蔽壁)854-6、854-7、856-2、856-3、 1134、1144···中央導體 856-4、856-5、856-6、856-7、 91 1244799 860’…介電質 862…外壁 864…内部結構 866···空隙 994···主要傳導材料 1002…外傳導元件 1004···内傳導元件 1006、1348·.·外傳導性屏蔽部 1010、1038、1052(a)、1052(b)、 1068(a)、1068(b)…間隔件 1022…開關 1024…第二樑 1026…懸臂樑 1028…控制電極 1030a-1030(c)· · ·基座 1032…對數週期天線 1034(a)-1034(j)···二極長度 1036…共同饋送線 1042、1062、1072、1082、 1086(a)、1086(b)…電感器 1044…内傳導柱 1046…外傳導柱 1048⑻、1048(b)…電路連接元件 1050(a)…上橋接元件 1050(b)···下橋接元件 1064(a)-l〇64(g)…線圈 1066…連接橋接部 1074(a)-1074(k)· · ·線圈階層,捲 繞部 1076···核心 1084…較長的連接器線 1088…短橋接元件 1092…電容器 1094(a) > 1094(b) > 1104(a) ' 1104(b)…板組 1096…堰部 1098(a)、l〇98(b)…結合墊 1102…可變電容器 1104⑻…電容器板 1106…彈簧元件 1108…平行靜電致動器 1110…彈簧支撐件 1112…致動器墊 1114…柱 1116…固定的驅動板 1118…可移式驅動板 1124、1126…支撐柱 1128…固定的電容器板接觸墊• The outer wall (shield wall) of the coaxial element 854-6, 854-7, 856-2, 856-3, 1134, 1144 ... · Central conductor 856-4, 856-5, 856-6, 856-7, 91 1244799 860 '... dielectric 862 ... outer wall 864 ... internal structure 866 ... void 994 ... main conductive material 1002 ... outer conductive element 1004 ... internal conductive element 1006, 1348 ... outer conductive shield 1010 , 1038, 1052 (a), 1052 (b), 1068 (a), 1068 (b) ... spacer 1022 ... switch 1024 ... second beam 1026 ... cantilever 1028 ... control electrode 1030a-1030 (c) ... Base 1032 ... Log-periodic antenna 1034 (a) -1034 (j) ... 2-pole length 1036 ... common feed line 1042, 1062, 1072, 1082, 1086 (a), 1086 (b) ... inductor 1044 ... Conducting post 1046 ... Outer conducting post 1048⑻, 1048 (b) ... Circuit connection element 1050 (a) ... Upper bridge element 1050 (b) ... Lower bridge element 1064 (a) -1064 (g) ... coil 1066 ... Connection bridge part 1074 (a) -1074 (k) ·················································· 1094 (a) b) > 1104 (a) '1104 (b) ... board set 1096 ... Weir 1098 (a), 1098 (b) ... Combination pad 1102 ... Variable capacitor 1104⑻ ... Capacitor plate 1106 ... Spring element 1108 ... Parallel electrostatic actuator 1110 ... Spring support 1112 ... Actuator pad 1114 ... post 1116 ... fixed drive plate 1118 ... removable drive plate 1124, 1126 ... support post 1128 ... fixed capacitor plate contact pad

92 1244799 1132、1142···同軸元件 1152…積體電路 1156…接觸墊 1158…保護層 1164、1174…基台或基座 1166、1176···導線 1200、1202···貫穿線 1204、1206···垂直分支 1300…混合耦合器 1302…相位移器 1304· ··精密長度的傳輸線互連件 1310…四元件巴特勒矩陣天線 陣列 1312…蜿蜒狀混合耦合器 1314…延遲線 1316…輸入部 1318…天線元件 1322…跨接部 1330…跨接點 1332 ' 1334···傳輸線 1342···同轴饋送元件 1352···通孔 1354…延伸部 1356···平面性補綴天線 1374···天線 PSL···主要籽晶層 SSL···次要籽晶層 L1…第一層 L2…第二層 L3…第三層 L5…第五層 L6…第六層 L7…第七層 L4…第四層 Z〇…特徵阻抗 λ…自由空間中的波長 λ〇…中心頻率之波長 方塊702、704、706、708、710、 712、714、716、718、720…步驟 方塊802、804、806、808、810、 812、814、816、818、822、824、 826、828、830、832、834…步驟 方塊902、904、906、908、910、 912、914、916、918、922、924、 926、928、934、936、938、942、 944、946、948、952、954、956、 962、964、966、968、970、972、 974、978…步驟92 1244799 1132, 1142 ... Coaxial components 1152 ... Integrated circuit 1156 ... Contact pads 1158 ... Protective layers 1164, 1174 ... Abutment or pedestal 1166, 1176 ... Wires 1200, 1202 ... Passing wires 1204, 1206 ··· Vertical branch 1300 ... Hybrid coupler 1302 ... Phase shifter 1304 ... · Precision length transmission line interconnect 1310 ... Four-element Butler matrix antenna array 1312 ... Serpentine hybrid coupler 1314 ... Delay line 1316 ... Input Section 1318 ... antenna element 1322 ... crossover section 1330 ... crossover point 1332 '1334 ... transmission line 1342 ... coaxial feed element 1352 ... through-hole 1354 ... extension 1356 ... flatness patch antenna 1374 ... ·· antenna PSL · ·· primary seed layer SSL · ·· secondary seed layer L1 ... first layer L2 ... second layer L3 ... third layer L5 ... fifth layer L6 ... sixth layer L7 ... seventh layer L4 ... Fourth layer Z0 ... Characteristic impedance λ ... Wavelength λ0 in free space ... Central frequency wavelength blocks 702, 704, 706, 708, 710, 712, 714, 716, 718, 720 ... Step blocks 802, 804 , 806, 808, 810, 812, 814, 816, 818, 822, 824, 826, 828, 830, 8 32, 834 ... Step blocks 902, 904, 906, 908, 910, 912, 914, 916, 918, 922, 924, 926, 928, 934, 936, 938, 942, 944, 946, 948, 952, 954, 956, 962, 964, 966, 968, 970, 972, 974, 978 ... steps

9393

Claims (1)

1244799 拾、申請專利範圍: 同車由射頻或微波構件,包 1· 一種用於引導或控制輻射之 含: a.傳導結構中之至少—射頻或微波_進入埠. b·該傳導結構中之至少—射頻或微波㈣離開I 離開埠時係穿過該傳導結構;1244799 Scope of patent application: The same car consists of radio frequency or microwave components, including 1. A type for guiding or controlling radiation: a. At least one of the conductive structures—RF or microwave—entering port. B. The conductive structure At least—the RF or microwave chirp passes through the conducting structure when it leaves the port; 10 ^巾央‘體’其沿著從朗人埠職離開埠之一 段長度的該至少一通道而延伸;及 其中該傳導結構包括從該通道延伸至一外區之一 Ζ個開孔’其中該等開孔具有不大於波長的或 0也卡其中較大者之尺寸且其时不使顯著的射_ 射通過。10 ^ The central 'body' extends along the at least one channel that is a length from the Langren port to the port; and wherein the conductive structure includes one of the Z openings extending from the channel to an outer region The openings have a size that is not greater than the wavelength or 0, whichever is larger, and does not allow significant radiation to pass through at the time. 々申π專利乾圍第!項之構件,其中使用至少部分的該 等開孔來移除一可犧牲材料。 3.,申請專利範圍第】項之構件’其中使用至少部分的該 專開孔來接收-有助於留置在該中央導體與該傳導結 構之間的一所需要相對位置中之介電質。 4.如申請專利範圍第】項之構件’其中該料結構及該中 央導體為單調性。 .如申請專利範圍第1項之構件,其t至少一部分的該中 央導體或該傳導結構係含有自複數個連續沉積的層所 形成之材料。 94 5 1244799 6·如申請專利範圍第;!項之構件,其中至少一部分的該中 央導體或該傳導結構係含有自複數項電沉積操作^形 成之材料。 ^ 7.如申請專利範圍第㈣之構件,其中與沿著該通道的輕 射傳播方向呈垂直之該通道的一橫剖面尺寸係小於: 公厘。 10 15 20 8. 如申請專利範圍第旧之構件,其中與沿著該通道的輕 射傳播方向呈垂直之該通道的_橫剖面尺寸係小於贫 0·5公厘。 ' 9. 如申請專利範圍第旧之構件,其中與沿著該通道的賴 射傳播方向呈垂直之該通道的—橫剖面尺寸係小於約 0·2公厘。 10=申請專利範圍第w之構件,其中該通道的至少一部 分具有一概呈長方形的形狀。 申請專利範圍第㈣之構件,其中該中央導體的至少 一部分具有一概呈長方形的形狀。 12·如申請專利範圍第㈣之構件,其切通道沿著一立體 路徑延伸。 丑 13·如申請專利範圍第12項之構件,其中該立體路徑包含一 立體螺旋形。 14·如申請專利範圍第⑽之構件,其中該構件包含一混合 耦合器。 作口 15.如申請專鋪圍第㈣之構件,其巾轉件包含一延遲 線0The construction of the patent claim No.!, Wherein at least some of these openings are used to remove a sacrificial material. 3. The component of the scope of the patent application] wherein at least part of the special opening is used to receive-to help retain the dielectric in a desired relative position between the central conductor and the conductive structure. 4. The component according to item [Scope of the patent application], wherein the material structure and the central conductor are monotonic. As for the component of the scope of the patent application, at least a part of the central conductor or the conductive structure contains a material formed from a plurality of successively deposited layers. 94 5 1244799 6. According to the scope of the application for patent; item of!, At least a part of the central conductor or the conductive structure contains materials formed from plural electrodeposition operations ^. ^ 7. The member of the scope of patent application (1), wherein a cross-sectional dimension of the channel which is perpendicular to the light propagation direction along the channel is less than: mm. 10 15 20 8. As the oldest component in the scope of patent application, the cross-sectional dimension of the channel that is perpendicular to the direction of light propagation along the channel is less than 0.5 mm. '9. As for the oldest component in the scope of the patent application, the cross-sectional dimension of the channel that is perpendicular to the direction of the ray propagation along the channel is less than about 0.2 mm. 10 = The w-th member of the patent application scope, wherein at least a part of the channel has a substantially rectangular shape. The component according to the scope of the patent application, wherein at least a part of the central conductor has a substantially rectangular shape. 12. As for the member in the scope of the patent application, the cut channel extends along a three-dimensional path. Ugly 13. The component according to item 12 of the patent application scope, wherein the three-dimensional path includes a three-dimensional spiral. 14. The component according to the second aspect of the patent application, wherein the component includes a hybrid coupler. As the mouth 15. If you are applying for a shop to surround the second element, the towel transfer includes a delay line 0 95 1244799 16. 如申請專利範圍第1項之構件,其中該構件包含一天線。 17. 如申請專利範圍第16項之構件,其中該天線包含一天線 陣列。 18. 如申請專利範圍第16項之構件,其中該天線係由一巴特 5 勒矩陣(Butler matrix)所饋送或饋送一巴特勒矩陣。 19. 如申請專利範圍第16項之構件,其中該天線陣列包含一 補綴天線陣列。 20. 如申請專利範圍第16項之構件,其中該天線陣列係由傳 播經過一巴特勒矩陣的訊號所饋送且其中對於該巴特 10 勒矩陣的各輸入係由一功率放大器加以控制。 21. 如申請專利範圍第1項之構件,其中將至少一同軸線排 列成一蜿蜒形式。 22. 如申請專利範圍第21項之構件,其中該至少一蜿蜒形式 係包含位於該傳導結構的至少兩不同部分之間之單一 15 共用的傳導性屏蔽結構。 23. 如申請專利範圍第1項之構件,其中將該等兩通道定位 為彼此相鄰,其中該等兩通道係由單一傳導性屏蔽結構 加以分離。 24. 如申請專利範圍第1項之構件,其至少利用一或多項下 20 列操作部份地形成: a.選擇性電沉積一第一傳導材料及電沉積一第二傳 導材料,其中該第一或第二傳導材料的一者為一可犧牲 材料而另一者為一結構性材料; b.電沉積一第一傳導材料,選擇性蝕刻該第一結構 1244799 性材料以生成至少一空隙,及電沉積一第二傳導材料以 充填該至少一空隙; c. 電沉積至少一傳導材料,沉積至少一可流動的介 電材料,及沉積一籽晶層的傳導材料以準備下一層電沉 5 積材料的成形’或 d. 選擇性電沉積一第一傳導材料,然後電沉積一第 二傳導材料,然後選擇性蝕刻該第一或第二傳導材料的 一者,及隨後電沉積一第三傳導材料,其中該第一、第 二及第三傳導材料的至少一者為一可犧牲材料而該等 10 其餘兩傳導材料的至少一者為一結構性材料。 25. 如申請專利範圍第1項之構件,其利用一或多項下列操 作至少部份地形成: a. 將至少一可犧牲材料自至少一結構性材料分離; b. 將一第一可犧牲材料自(a)—第二可犧牲材料及(b) 15 至少一結構性材料分離以生成一空隙,然後以一介電材 料來充填該空隙的至少一部分,隨後將該第二可犧牲材 料自該結構性材料且自該介電材料分離,或 c. 藉由喪置於一可流動的介電材料中之一磁性或傳 導性材料來充填一結構性材料中之一空隙且隨後使該 20 介電材料固體化。 26. 如申請專利範圍第1項之構件,其中該構件包含下列一 或多者:一低通渡器、一高通濾器、一帶通濾器、一基 於反射式濾器、一基於吸附式濾器、一漏壁(leaky wall) 濾器、一延遲線、一用於連接其他功能性構件之阻抗匹 97 1244799 配結構、一天線、一饋電器、一方向性耦合器、或一合 成器(譬如一相位正交混合件、一混合環、一威金森 (Wilkinson)合成器、一魔術TEE)。 27. 如申請專利範圍第1項之構件,其中該構件包含下列一 5 或多者:一微小型同軸構件、一傳輸線、一低通濾器、 一高通濾、器、一帶通滤器、一基於反射式溏器、一基於 吸附式滤器、一漏壁濾器、一延遲線、一用於連接其他 功能性構件之阻抗匹配結構、一方向性耦合器、一功率 合成器(譬如威金森(Wilkinson))、一功率分割器、一混 10 合合成器、一魔術TEE、一頻率多工器、或一頻率解多 工器、一棱錐性(平滑壁)饋電器天線、及/或一鱗狀(波 褶壁)饋電器天線。 28. —種用於製造一微裝置之方法,包含: a. 沉積複數個黏附層的材料,其中該各層材料的沉 15 積係包括, i沉積至少一第一材料; ii.沉積至少一第二材料;及 b. 在該等複數層沉積之後移徐該第一或第二材料的 至少一部分; 20 其中從該沉積及該移除產生之一結構係提供可作 為一射頻或微波控制、引導、傳輸或接收構件之至少一 結構,且包含 a. —傳導結構中之至少一射頻或微波輻射進入埠; b. 該傳導結構中之至少一射頻或微波輻射離開埠; 98 1244799 C.至少一通道,其大致在側邊被該傳導結構所限 定,射頻或微波輻射從該至少一進入埠移行到該至少一 離開埠時係穿過該傳導結構; d.—中央導體,其沿著從該進入埠到該離開埠之一 5 段長度的該至少一通道而延伸;及 其中該傳導結構包括從該通道延伸至一外區之一 或多個開孔,其中該等開孔具有不大於波長的1/10或 200微米其中較大者之尺寸且其預定不使顯著的射頻輻 射通過。 10 29. —種四埠混合耦合器,其包括含有四個微小型同軸元件 之複數個黏附層的材料,該等四個同軸元件的第一者延 伸於四個埤的兩者之間,且該等同軸元件的第二者延伸 於該等四個埠的另兩者之間,同時該等其餘兩個同軸元 件延伸於該第一及第二同軸元件之間,其中至少一該等 15 同軸元件的至少一部分長度排列成一蜿蜒形式。 30. 如申請專利範圍第29項之四埠混合耦合器,其中該蜿蜒 形式包含位於一或多個同軸元件之至少部分的相鄰中 央導體分段之間之單一共用的結構。 31. —種用於將訊號供應至一被動陣列的N天線元件以產生 20 複數個束之電路之製造方法,包含: a.沉積複數個黏附層的材料以形成(N/2)log2N個四 埠混合耦合器,其各包含四個微小型同軸元件,各同軸 元件延伸於該混合耦合器之個別的一對埠之間以使一 對同轴元件耦合至各埠;及 99 1244799 b.經由相位移構件將至少部分的該等混合耦合器連 接至其他混合耦合器以形成一巴特勒矩陣。 32. 如申請專利範圍第31項之方法,其中該各層材料的沉積 係包含: 5 a.選擇性沉積至少一第一材料; b. 沉積至少一第二材料; c. 將該沉積材料的至少一部分加以平面化, 其中將該等複數層加以沉積,及 其中在該等複數層沉積之後將該第一或第二材料 10 的至少一部分加以移除。 33. —種用於將訊號供應至一被動陣列的N天線元件以產生 複數個束之巴特勒矩陣,其包含(N/2)log2N個四埠混合 耦合器,其中各該等四埠混合耦合器包含四個微小型同 軸元件,該等四個同軸元件的第一者延伸於四個埠的兩 15 者之間,而該等同軸元件的第二者延伸於該等四個埠的 另兩者之間,且其餘兩個該等同軸元件延伸於該第一與 第二同軸元件之間,其中至少一該等同軸元件的至少一 部分長度排列成一蜿蜒形式。 34. 如申請專利範圍第33項之巴特勒矩陣,其中該蜿蜒形式 20 係包含位於一或多個同軸元件的至少部分相鄰中央導 體分段之間之單一共用的屏蔽結構。95 1244799 16. The component according to item 1 of the patent application scope, wherein the component includes an antenna. 17. The component as claimed in claim 16, wherein the antenna comprises an antenna array. 18. The component as claimed in claim 16, wherein the antenna is fed by a Butler matrix or a Butler matrix. 19. The component of claim 16 in which the antenna array includes a patch antenna array. 20. The component as claimed in claim 16 wherein the antenna array is fed by a signal transmitted through a Butler matrix and wherein each input to the Butler 10 Le matrix is controlled by a power amplifier. 21. The component according to item 1 of the patent application, wherein at least one axis is arranged in a meandering form. 22. The component of claim 21, wherein the at least one meandering form comprises a single 15 common conductive shielding structure located between at least two different parts of the conductive structure. 23. For the component of the scope of patent application, the two channels are positioned adjacent to each other, where the two channels are separated by a single conductive shielding structure. 24. As for the component of the scope of application for the first item, it is partially formed by using at least one or more of the following 20 rows of operations: a. Selective electrodeposition of a first conductive material and electrodeposition of a second conductive material, wherein the first One of the first or second conductive material is a sacrificial material and the other is a structural material; b. Electrodepositing a first conductive material, selectively etching the first structure 1244799 material to generate at least one void, And electrodepositing a second conductive material to fill the at least one void; c. Electrodepositing at least one conductive material, depositing at least one flowable dielectric material, and depositing a seed layer of conductive material to prepare the next layer of electrosink 5 Formation of a composite material 'or d. Selectively electrodeposit a first conductive material, then electrodeposit a second conductive material, and then selectively etch one of the first or second conductive materials, and then electrodeposit a third A conductive material, wherein at least one of the first, second, and third conductive materials is a sacrificial material and at least one of the remaining two conductive materials is a structural material. 25. If the component of the scope of the patent application is at least partially formed using one or more of the following operations: a. Separate at least one sacrificial material from at least one structural material; b. Separate a first sacrificial material From (a) to the second sacrificial material and (b) 15 at least one structural material is separated to generate a void, and then at least a portion of the void is filled with a dielectric material, and then the second sacrificial material is removed from the A structural material and separated from the dielectric material, or c. Filling a void in a structural material by immersing a magnetic or conductive material in a flowable dielectric material and subsequently causing the 20 dielectric The electric material is solidified. 26. For example, the component of the scope of the patent application, wherein the component includes one or more of the following: a low-pass, a high-pass filter, a band-pass filter, a reflection-based filter, an adsorption-based filter, a leak Leaky wall filter, a delay line, an impedance for connecting other functional components 97 1244799 distribution structure, an antenna, a feeder, a directional coupler, or a synthesizer (such as a phase orthogonal Hybrid, a hybrid ring, a Wilkinson synthesizer, a magic TEE). 27. As for the component of the scope of the patent application, the component includes one or more of the following: a micro-miniature coaxial component, a transmission line, a low-pass filter, a high-pass filter, a device, a band-pass filter, a reflection-based Filter, a suction-based filter, a leaky wall filter, a delay line, an impedance matching structure for connecting other functional components, a directional coupler, and a power combiner (such as Wilkinson) , A power splitter, a mixed 10-combiner, a magic TEE, a frequency multiplexer, or a frequency demultiplexer, a pyramidal (smooth wall) feeder antenna, and / or a scale (wave Pleated wall) feeder antenna. 28. A method for manufacturing a microdevice, comprising: a. Depositing a plurality of layers of material, wherein the deposition system of the materials of each layer includes: i depositing at least one first material; ii. Depositing at least one first material Two materials; and b. Moving at least a portion of the first or second material after the plurality of layers are deposited; 20 wherein a structure generated from the deposition and the removal is provided as a radio frequency or microwave controlled, guided At least one structure of a transmitting or receiving member, including a.-At least one radio frequency or microwave radiation in the conductive structure enters the port; b. At least one radio frequency or microwave radiation in the conductive structure leaves the port; 98 1244799 C. at least one A channel, which is generally defined by the conductive structure on the side, and the radio frequency or microwave radiation passes through the conductive structure when it migrates from the at least one entry port to the at least one exit port; d. A central conductor along the The at least one channel extending from the entry port to one of the exit ports by a length of 5; and wherein the conductive structure includes one or more openings extending from the channel to an outer region, wherein Wherein the hole has a larger size of 200 microns or no greater than 1/10 of the wavelength and which without significant predetermined radio frequency radiation through. 10 29. A four-port hybrid coupler comprising a material including a plurality of adhesive layers of four micro-miniature coaxial elements, the first of the four coaxial elements extending between two of the four ridges, and The second of the coaxial components extends between the other two of the four ports, while the remaining two coaxial components extend between the first and second coaxial components, at least one of which 15 coaxial At least a portion of the elements are arranged in a meandering length. 30. The four-port hybrid coupler of claim 29, wherein the meandering form includes a single common structure between at least part of adjacent central conductor segments of one or more coaxial elements. 31. A method for manufacturing a circuit for supplying signals to N antenna elements of a passive array to generate 20 multiple beams, comprising: a. Depositing a plurality of adhesive layers of materials to form (N / 2) log2N four A port hybrid coupler, each of which includes four micro-miniature coaxial elements, each coaxial element extending between an individual pair of ports of the hybrid coupler to couple a pair of coaxial elements to each port; and 99 1244799 b. A phase shifting member connects at least part of the hybrid couplers to other hybrid couplers to form a Butler matrix. 32. The method of claim 31, wherein the deposition of each layer of material comprises: 5 a. Selective deposition of at least one first material; b. Deposition of at least one second material; c. A portion is planarized, wherein the plurality of layers are deposited, and at least a portion of the first or second material 10 is removed after the plurality of layers are deposited. 33. A Butler matrix for supplying signals to N antenna elements of a passive array to generate a plurality of beams, which includes (N / 2) log2N four-port hybrid couplers, wherein each of the four-port hybrid couplers is coupled The device contains four miniature coaxial components, the first of the four coaxial components extends between two 15 of the four ports, and the second of the coaxial components extends the other two of the four ports. Between them, and the remaining two coaxial elements extend between the first and second coaxial elements, at least a portion of the length of at least one of the coaxial elements is arranged in a meandering form. 34. The Butler matrix of claim 33, wherein the meandering form 20 comprises a single common shielding structure between at least part of adjacent central conductor segments of one or more coaxial elements.
TW93116127A 2003-06-06 2004-06-04 Miniature RF and microwave components and methods for fabricating such components TWI244799B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47655403P 2003-06-06 2003-06-06
US10/607,931 US7239219B2 (en) 2001-12-03 2003-06-27 Miniature RF and microwave components and methods for fabricating such components

Publications (2)

Publication Number Publication Date
TW200511640A TW200511640A (en) 2005-03-16
TWI244799B true TWI244799B (en) 2005-12-01

Family

ID=37154900

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93116127A TWI244799B (en) 2003-06-06 2004-06-04 Miniature RF and microwave components and methods for fabricating such components

Country Status (1)

Country Link
TW (1) TWI244799B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8542079B2 (en) 2007-03-20 2013-09-24 Nuvotronics, Llc Coaxial transmission line microstructure including an enlarged coaxial structure for transitioning to an electrical connector
US8742874B2 (en) 2003-03-04 2014-06-03 Nuvotronics, Llc Coaxial waveguide microstructures having an active device and methods of formation thereof
US8917150B2 (en) 2010-01-22 2014-12-23 Nuvotronics, Llc Waveguide balun having waveguide structures disposed over a ground plane and having probes located in channels
US8933769B2 (en) 2006-12-30 2015-01-13 Nuvotronics, Llc Three-dimensional microstructures having a re-entrant shape aperture and methods of formation
US9024417B2 (en) 2007-03-20 2015-05-05 Nuvotronics, Llc Integrated electronic components and methods of formation thereof
US9306255B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Microstructure including microstructural waveguide elements and/or IC chips that are mechanically interconnected to each other
US9306254B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Substrate-free mechanical interconnection of electronic sub-systems using a spring configuration
US9325044B2 (en) 2013-01-26 2016-04-26 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9505613B2 (en) 2011-06-05 2016-11-29 Nuvotronics, Inc. Devices and methods for solder flow control in three-dimensional microstructures
US9583856B2 (en) 2011-06-06 2017-02-28 Nuvotronics, Inc. Batch fabricated microconnectors
TWI573316B (en) * 2014-07-22 2017-03-01 絡達科技股份有限公司 Wide band directional coupler
US9993982B2 (en) 2011-07-13 2018-06-12 Nuvotronics, Inc. Methods of fabricating electronic and mechanical structures
TWI633712B (en) * 2017-05-16 2018-08-21 財團法人工業技術研究院 Three-dimension butler matrix
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10497511B2 (en) 2009-11-23 2019-12-03 Cubic Corporation Multilayer build processes and devices thereof
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131111B (en) * 2021-04-17 2021-11-12 中国人民解放军国防科技大学 W-band-pass filter

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312589B2 (en) 2003-03-04 2016-04-12 Nuvotronics, Inc. Coaxial waveguide microstructure having center and outer conductors configured in a rectangular cross-section
US8742874B2 (en) 2003-03-04 2014-06-03 Nuvotronics, Llc Coaxial waveguide microstructures having an active device and methods of formation thereof
US10074885B2 (en) 2003-03-04 2018-09-11 Nuvotronics, Inc Coaxial waveguide microstructures having conductors formed by plural conductive layers
US8933769B2 (en) 2006-12-30 2015-01-13 Nuvotronics, Llc Three-dimensional microstructures having a re-entrant shape aperture and methods of formation
US9515364B1 (en) 2006-12-30 2016-12-06 Nuvotronics, Inc. Three-dimensional microstructure having a first dielectric element and a second multi-layer metal element configured to define a non-solid volume
US9000863B2 (en) 2007-03-20 2015-04-07 Nuvotronics, Llc. Coaxial transmission line microstructure with a portion of increased transverse dimension and method of formation thereof
US10431521B2 (en) 2007-03-20 2019-10-01 Cubic Corporation Integrated electronic components and methods of formation thereof
US9024417B2 (en) 2007-03-20 2015-05-05 Nuvotronics, Llc Integrated electronic components and methods of formation thereof
US10002818B2 (en) 2007-03-20 2018-06-19 Nuvotronics, Inc. Integrated electronic components and methods of formation thereof
US9570789B2 (en) 2007-03-20 2017-02-14 Nuvotronics, Inc Transition structure between a rectangular coaxial microstructure and a cylindrical coaxial cable using step changes in center conductors thereof
US8542079B2 (en) 2007-03-20 2013-09-24 Nuvotronics, Llc Coaxial transmission line microstructure including an enlarged coaxial structure for transitioning to an electrical connector
US10497511B2 (en) 2009-11-23 2019-12-03 Cubic Corporation Multilayer build processes and devices thereof
US8917150B2 (en) 2010-01-22 2014-12-23 Nuvotronics, Llc Waveguide balun having waveguide structures disposed over a ground plane and having probes located in channels
US9505613B2 (en) 2011-06-05 2016-11-29 Nuvotronics, Inc. Devices and methods for solder flow control in three-dimensional microstructures
US9583856B2 (en) 2011-06-06 2017-02-28 Nuvotronics, Inc. Batch fabricated microconnectors
US9993982B2 (en) 2011-07-13 2018-06-12 Nuvotronics, Inc. Methods of fabricating electronic and mechanical structures
US9325044B2 (en) 2013-01-26 2016-04-26 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9608303B2 (en) 2013-01-26 2017-03-28 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9888600B2 (en) 2013-03-15 2018-02-06 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US10361471B2 (en) 2013-03-15 2019-07-23 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US9306255B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Microstructure including microstructural waveguide elements and/or IC chips that are mechanically interconnected to each other
US10193203B2 (en) 2013-03-15 2019-01-29 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US10257951B2 (en) 2013-03-15 2019-04-09 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US9306254B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Substrate-free mechanical interconnection of electronic sub-systems using a spring configuration
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
TWI573316B (en) * 2014-07-22 2017-03-01 絡達科技股份有限公司 Wide band directional coupler
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies
TWI633712B (en) * 2017-05-16 2018-08-21 財團法人工業技術研究院 Three-dimension butler matrix
US10566693B2 (en) 2017-05-16 2020-02-18 Industrial Technology Research Institute Three-dimension butler matrix
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10553511B2 (en) 2017-12-01 2020-02-04 Cubic Corporation Integrated chip scale packages

Also Published As

Publication number Publication date
TW200511640A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
TWI244799B (en) Miniature RF and microwave components and methods for fabricating such components
US7239219B2 (en) Miniature RF and microwave components and methods for fabricating such components
US9620834B2 (en) Method for fabricating miniature structures or devices such as RF and microwave components
JP2009038806A (en) Small-sized rf and microwave components, and method for manufacturing same
US11145947B2 (en) Miniature RF and microwave components and methods for fabricating such components
US7252861B2 (en) Methods of and apparatus for electrochemically fabricating structures via interlaced layers or via selective etching and filling of voids
US7303663B2 (en) Multistep release method for electrochemically fabricated structures
EP2395598B1 (en) Coaxial waveguide microstructures and methods of formation
US7250101B2 (en) Electrochemically fabricated structures having dielectric or active bases and methods of and apparatus for producing such structures
US20100051466A1 (en) Method of Forming Electrically Isolated Structures Using Thin Dielectric Coatings
JP3841305B2 (en) Variable resonator and variable phase shifter
Chen et al. A compact low-loss Ka-band filter using 3-dimensional micromachined integrated coax
Chen et al. A compact 30 GHz low loss balanced hybrid coupler fabricated using micromachined integrated coax
TWI601237B (en) Monolithically integrated rf system and method of making same
JP2019096979A (en) Impedance converter
TW201521349A (en) Control circuitry routing configuration for MEMS devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees