TWI244683B - Immersion fluid for immersion lithography, and method of performing immersion lithography - Google Patents

Immersion fluid for immersion lithography, and method of performing immersion lithography Download PDF

Info

Publication number
TWI244683B
TWI244683B TW93123894A TW93123894A TWI244683B TW I244683 B TWI244683 B TW I244683B TW 93123894 A TW93123894 A TW 93123894A TW 93123894 A TW93123894 A TW 93123894A TW I244683 B TWI244683 B TW I244683B
Authority
TW
Taiwan
Prior art keywords
light
material layer
sensitive material
item
patent application
Prior art date
Application number
TW93123894A
Other languages
Chinese (zh)
Other versions
TW200515479A (en
Inventor
Yee-Chia Yeo
Chenming Hu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/826,602 external-priority patent/US7579135B2/en
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW200515479A publication Critical patent/TW200515479A/en
Application granted granted Critical
Publication of TWI244683B publication Critical patent/TWI244683B/en

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

An immersion lithographic system comprises an optical surface, an immersion fluid containing at least a portion of the optical surface, and a semiconductor structure having a topmost photoresist layer having a thickness of less than about 5000 angstroms, wherein a portion of the photoresist is in contact with the immersion fluid. Further, a method for illustrating a semiconductor structure having a topmost photoresist layer with a thickness of less about 5000 angstroms, comprising introducing an immersion fluid into a space between an optical surface and the photoresist layer, and directing light preferably with a wavelength of less than about 450 nm through the immersion fluid and onto the photoresist.

Description

I244683 九、發明說明: 【發明所屬之技術領域】 ‘種於光學鏡片及基 本發明揭露-種半導體元件的製程,特別是關於 板間導入一浸沒流體的浸沒式微影技術系統。 【先前技術】 在黃光微影技術純中,為了解析如影像、線 =黃,咖幘解析度。在1c產業所應用之黃:纖 何糸、,充中,影像光源係被投影在一光阻上 、开▲、有50奈歧其町職的製程。如上所述 =經成為製作高密度和高效率的半導體丄= …對於微影系統’其解析度R係由啤驗公式所決定,其中 料數,λ是影像光源的操作波長,而數值孔徑na是由να‘θ缺 =出’其切肢系統中角的半開孔徑,而n係為在微影系統和欲圖制 基材之間充填空隙之材料的折射率。I244683 IX. Description of the invention: [Technical field to which the invention belongs] ‘A kind of optical lens and the present invention discloses a semiconductor device manufacturing process, especially an immersion lithography system in which an immersion fluid is introduced between plates. [Previous technology] In the yellow light lithography technology, in order to analyze, for example, the image, line = yellow, the resolution of the coffee. In the 1c industry, the yellow light: fiber, light, and charge, the image light source is projected on a photoresistor, and it has a process of 50 nanometers. As mentioned above = become a high-density and high-efficiency semiconductor 丄 = ... For lithography systems, its resolution R is determined by the beer test formula, where the number of materials, λ is the operating wavelength of the image light source, and the numerical aperture na It is determined by να'θ 缺 = 出 'its half-open aperture in the mid-angle of the limb cutting system, and n is the refractive index of the material that fills the gap between the lithography system and the substrate to be patterned.

般來況有二種方法可用來調整微影钱刻的解析度,以改善微影丰 術。首先,係縮減影像光源的操作波長λ,例如··以⑽準分子雷射觀㈣ 奈糾㈣G射_=436奈_賴波長;近來,影像辆補作波長已 可,減到157奈^甚至減小到極短紫外光(EUV)的波長。第二種方法係傾 用提升解析度的技術,例如使帅位移光罩及偏傾射以減少微影常數^ 值,該微影常數h值可從〇·6減小到〇 4。第三種方法則是透過光學設計、 製造技術及計_制的改善,來提昇數值孔徑ΝΑ值,目前數值孔徑⑽ 值已可由0.35增力口至約〇·8。然而,上述改善解析度所慣用的方法已經接近 物理和技術的極限了,例如,ΝΑ值(也就是—Μ)係由η值所限制,假如In general, there are two methods that can be used to adjust the resolution of lithography money engraving to improve lithography. First of all, the operating wavelength λ of the image light source is reduced, for example, by using an excimer laser to observe the wavelength of Gamma _ = 436 nanometers _ Lai wavelength; recently, the supplementary wavelength of image vehicles has been reduced to 157 nanometers ^ or even reduced Wavelengths as small as extremely short ultraviolet (EUV). The second method is to use a technique that improves the resolution, such as shifting the mask and deflection to reduce the lithography constant ^, which can be reduced from 0.6 to 0.4. The third method is to improve the numerical aperture NA value through the improvement of optical design, manufacturing technology and manufacturing systems. At present, the numerical aperture value has been increased from 0.35 to about 0.8. However, the conventional methods for improving the resolution are approaching the physical and technical limits. For example, the NA value (that is, -M) is limited by the value of η.

0503-A30534TWF 5 1244683 使用-具有自由空間(freespace)的光學系統,此時η值係為!,因此ΝΑ的 值的上限也就是1。 相對於-般之微影技術,近年來,浸沒式微純術已經發展到可以允 許進^步增加ΝΑ值(數值孔徑)。在浸沒式微影技術中,—欲被圖形化之基 材系被〜又在種具有㊅折射率的液體或是—種浸沒流體下進行微影製程 以圖案化’如此-來’具有該高折射率(η>1)的赫會填滿 利用此種方法,透鏡可以被設計以具有大於丨之na值。過氟聚鱗(pFp玲、 環辛烧及去軒水仰嫌轉具有高㈣補趙,都可使麟浸沒式微 影技術中。由於NA值不會被侷限於!,所以浸沒式微影技術可較一般微影 技術提供較更為精密的微影製程解析度。 運用於浸沒式微影技術的高折群越應該滿足下列幾項要求··該流 體對於所使用具有特定波長的光線必須有低的吸收係數;此外,該流體必 須修具有適度高的折射率以修正整個系統的折射率;再者,該流體必須與 基板上的絲及光學裝置(綱)具有化學上_雜及良好的接觸性。 以下是一些具體實例的相關參考資料的總整理: ⑴M. Switkes等人所發表之美國專利“隱出德㈣卿迦仍empl〇ying an mdex matchmg med職,,,該申請案之公開號係us 2〇〇2舰3629。 (2) J· S· Batchelder等人所發表之美國專利“胸㈣f〇r叩㈣丨卿ecti〇n and lithography”,該發明之專利號係 US59〇〇354。 (3) K. Takahashi 專人所發表之美國專利“immersi〇n 啡。pr〇jecti〇n exposure apparatus”,該發明之專利號係 US561〇683。 (4) Τ· R· Co le專人所發表之美國專利SyStem empl〇ying a solid immersion lens”,美國專利序號 US5121256。0503-A30534TWF 5 1244683 Use-an optical system with free space, where the value of η is! , So the upper limit of the NA value is 1. Compared with the ordinary lithography technology, in recent years, the immersion micropure technique has been developed to allow a further increase in NA value (numerical aperture). In the immersion lithography technology, the substrate to be patterned is coated with a liquid with a high refractive index or with a immersion fluid to perform the lithography process to pattern 'so-to' with the high refraction. With this method, the lens can be designed to have a value of na greater than. Perfluorinated polyscales (pFp Ling, Huanxin, and Dexuanshui Yangzhao have high tonic supplements, can make Lin immersion lithography technology. Since NA value will not be limited to !, so immersion lithography technology can Provides more precise lithographic process resolution than general lithography technology. The more high-fold group used in immersion lithography technology should meet the following requirements: The fluid must have a low Absorption coefficient; in addition, the fluid must be modified to have a moderately high refractive index to modify the refractive index of the entire system; furthermore, the fluid must be chemically heterogeneous and have good contact with the filaments and optical devices on the substrate The following is a compilation of relevant references for some specific examples: ⑴M. Switkes et al. Issued a US patent "Hidden Deqing Qingjia still employs an mdex matchmg med,", the publication number of the application is us 20002 ship 3629. (2) US patent "chest fór 叩 ㈣ qing ecti on and lithography" published by J.S. Batchelder et al., the patent number of this invention is US5900354. (3) K. Takahashi The United States patent "immersin coffee. PrOjection exposure apparatus", the patent number of this invention is US561〇683. (4) US patent SyStem employing a solid immersion lens ", US Patent No. US5121256.

(5) J_ A. Hoffhagle 寺人於期刊vacuum science and Technology B,, vol· 17, no. 6, pp. 3306-3309,1999 所揭露之文章 Liquid immersion 0503-A30534TWF 6 1244683 deep-ultraviolet interferometric lithography. (6) M. Switkes 專人於期刊 j Vacuum Science and Technology B,vol· 19, no· 6, pp. 2353-2356, 2000 所揭露之文章lithography at 157 nm”。 (7) W. Tabarelli 等人所發表之美國專利“photolithographic method for the manufacture of integrated circuits”,美國專利序號 US4346164。 (8) W. Tabarelli專人所發表之美國專利“Apparatus f〇r the photolithographic manufacture of integrated circuit elements” ’ 美國專利序號為 US4509852。 (9) A· Takanashi 專人所發表之美國專利“pattem f〇rming apparatus,,,美 國專利序號為US4480910。 (10) J· S· Batchelder 等人所發表之美國專利 “Meth〇d f〇r 〇ptical inspection and lithography”,美國專利序號為 US5900354。 (11) K. Takahashi 等人所發表之美國專利“Immersi〇n exposure apparatus”,美國專利序號為 US5610683。 因為浸沒式微影技術涉及到將光阻材料浸沒在浸沒流體中,因此浸沒 流體應被要求完全不會和光阻材料反應或是分解光阻材料。然而,傳統的 浸沒流體的確會和光阻材料反應或是進一步分解光阻材料。 此外,在某些傳統浸沒式微影技術中,一些浸沒流體,例如水,會滲 透於所浸沒的光阻材料巾,導致浸沒於該浸沒趙巾的光阻材料膨服並使 得光阻厚度增加,降低後續製程的準確度。 因此’研發出更佳之浸沒式微影技術及方法,以限制光阻膨脹的程度 及避免光阻材料分解,係半導體技術中一項急待研究之目標。 【發明内容】 本發明係有關於微影技術系統領域並係揭露—種在光學鏡#和美板門 導入-浸沒流體之浸沒式微影技術減。此外,本發縣揭露出—二敎(5) J_ A. Hoffhagle Temple person disclosed in the journal vacuum science and Technology B ,, vol · 17, no. 6, pp. 3306-3309, 1999. Liquid immersion 0503-A30534TWF 6 1244683 deep-ultraviolet interferometric lithography. (6) M. Switkes's article in the journal j Vacuum Science and Technology B, vol · 19, no · 6, pp. 2353-2356, 2000. (7) W. Tabarelli et al. Published US patent "photolithographic method for the manufacture of integrated circuits", US patent serial number US4346164. (8) US patent "Apparatus f〇r the photolithographic manufacture of integrated circuit elements" issued by W. Tabarelli US4509852. (9) US patent "pattem forming apparatus" issued by A. Takanashi, US patent No. US4480910. (10) US patent "MethOd fOrptical inspection and lithography" published by J.S. Batchelder et al., US Patent No. US5900354. (11) K. Takahashi et al., U.S. Patent "Immersion exposure apparatus", U.S. Patent No. US5610683. Because the immersion lithography technique involves immersing the photoresist material in an immersion fluid, the immersion fluid should be required not to react with or decompose the photoresist material at all. However, traditional immersion fluids do react with or break down photoresist materials. In addition, in some traditional immersion lithography techniques, some immersion fluids, such as water, will penetrate the immersed photoresist material towel, causing the photoresist material immersed in the immersion Zhao towel to swell and increase the photoresist thickness. Reduce the accuracy of subsequent processes. Therefore, the development of a better immersion lithography technology and method to limit the extent of photoresist expansion and avoid photoresist material decomposition is an urgent research target in semiconductor technology. [Summary of the Invention] The present invention relates to the field of lithography technology systems and discloses-a kind of immersion lithography technology that introduces-immersed fluid in optical mirror # and US plate door. In addition, Benfa County revealed-Erji

0503-A30534TWF 7 1244683 光感材料被浸沒流體分解之浸沒式微影技術。 根據本發明之一較佳實施例,該浸沒式微影技術系統係由一光學鏡片 表面、-接觸至少-部分光學鏡片表面的浸沒流體以及—具有—厚度小於 5〇〇〇a的光感材料層形成於其上表面之料體結構,其巾絲感材料層之 部分表面係與該浸沒流體之部分表面接觸。 本發明之另-較佳實施例係揭露—浸沒式微影製程,以有效限制欲曝 光之光感材料層膨脹的量。 Μ 本叙月之又較佳實施例係揭露對一具有一光感材料層形成於 /、上表面之半$體結構照光(lllumi⑽㈣的方法,該法係包括以下步驟:首 先在光學元件之表面及一與其相隔之光感材料層之間的空間注入一浸 沒流體’接著提供-光能量直接穿過該浸沒越至該光紐料層上,其中 該光感材料層厚度小於5000人。 再者,本發明之再一較佳實施例係揭露一應用於浸沒式微影技術的半 導體製程,該製程係包括以下步驟··首先,提供―最上層具有厚度小於5_人 的光感材料層之半導·構,接著在—光學元件之表面及與其她之該光 感材料層之間的空間注人水作為—浸沒流體,最後照射—光線直接穿過該 浸沒流體至該域㈣層上,射該光線之波長較佳制、於·奈米。 為使本發明之結構、操作方法及特徵能更鴨紐,下文特舉較佳實 施例,並配合所附圖式,作詳細說明如下: 【實施方式】 以下係本案之具體的較佳實關,係制符合本發明之浸沒式微影系 統及其使用方式。 第1圖係為说綠技術系統1Q之—例的簡單示意圖,該浸沒式微 影技術系、统10包含-影像光源20,而該光源2〇魏一光能量束^,並通 過透鏡22 ’然後足些此置束21通過一遮罩3〇和一光學元件模組,最0503-A30534TWF 7 1244683 Immersion lithography technology for the decomposition of photosensitive materials by immersion fluid. According to a preferred embodiment of the present invention, the immersion lithography system consists of an optical lens surface, an immersion fluid that contacts at least part of the optical lens surface, and a light-sensitive material layer having a thickness of less than 5000a. For the material structure formed on the upper surface, a part of the surface of the silk felt material layer is in contact with a part of the surface of the immersion fluid. Another preferred embodiment of the present invention is a disclosure-immersion lithography process to effectively limit the amount of expansion of the light-sensitive material layer to be exposed. Μ Another preferred embodiment of the present month is to disclose a method for illuminating a half-body structure with a light-sensitive material layer formed on the upper surface, and the method includes the following steps: first, on the surface of the optical element And an immersion fluid is injected into a space between the light-sensitive material layers separated therefrom, and then the light energy is directly passed through the immersion and onto the light button material layer, wherein the thickness of the light-sensitive material layer is less than 5000 people. A further preferred embodiment of the present invention is to disclose a semiconductor process applied to immersion lithography technology. The process includes the following steps. First, the uppermost layer is provided with half of the light-sensitive material layer having a thickness of less than 5 mm. Guide structure, and then inject water into the space between the surface of the optical element and the other light-sensing material layer as an immersion fluid, and finally irradiate the light directly through the immersion fluid to the layer of the domain. The wavelength of the light is preferably made in nanometers. In order to make the structure, operation method, and characteristics of the present invention even better, the preferred embodiments are described below in detail with the accompanying drawings as follows: Embodiment] The following is a specific and preferred practice of the present case, which is to make an immersion lithography system consistent with the present invention and its use mode. Figure 1 is a simple schematic diagram of an example of a green technology system 1Q, the immersion lithography The technology department 10 includes an image light source 20, and the light source 20 is a light energy beam ^, and passes through a lens 22 ', and then the beam 21 passes through a mask 30 and an optical element module.

0503-A30534TWF 8 1244683 後通過具有一光學表面51之最外層透鏡5〇。在-較佳實施例中,透鏡 5〇係由氧化石夕(或3 一含石夕和氧的材料)、熔融的石夕或是氟化舞所形成。在 另一較佳實施例中,該光源之波長較佳於450奈米以下,此外,該光源2〇 之波長較佳係小於或等於193奈米(如157奈米或193奈米)。 在該浸沒式微影技術系統10中,該最外層透鏡50及一半導體基板8〇 之間的抑係以—浸沒流體6G填充。該半導體基板8G之上表面係由一光 感材料層(或是光阻)7〇所覆蓋,以使該浸沒流體直接與光感材料層(光阻 層)7〇接觸’如第1圖所示,此外晶圓支撐台座8S係用來支撐該半導體美 板 80。 一 該浸沒流體60較佳係為包含水的流體。舉例來說,該流體可為純化過 的水或是去離子水。在本發日狀另—實補巾,該浸沒流體6()可例如為環 辛烷或是過氟聚醚(PFPE),亦可以混合其他流體用之。 、 此外,舉例來說,該光感材料層(光阻層)7〇可為由聚分子結構所組成 的正光阻,因此該光阻層係經曝光後係溶解於顯影液中,而未經曝光的部 份則不溶於顯影液。對正光阻而言,適狀顯影液可為氳氧化四甲録 (TMAH)溶液。 在-較佳實施例中,該半導體元板80可以是其上以形成有積體電 路的半導體基板。舉例來說,該半導體元件基板80可以是一具有電晶體之 石夕晶基板(例如:-單㈣基板或是—㈣絕緣板),而該半導體元=基板 80之各單元間可由金屬層相互連接。 土 而該光感材料7〇可以是-光阻層或是其他遮罩材料,在一較佳實施例 中,光感材料70可以被圖形化成十分小的尺寸,該具有十分小的尺寸之圖 形化«材料層可用來作為’例如’形成多祕線(或是其他傳導材 刻罩幕’亦可用來製作長度50奈米以下的金屬氧化半導體_)間道。此 外’金屬導線(例如:銅金屬鑲嵌線)可以在—介電層中的溝槽内形成。 舉例來說,該介電層(未顯示於財)可由氧切(例如··⑽2、舰、挪 0503-A30534TWF 9 1244683 和BPSG)蒸鍍在晶圓80上以形成。利用該光感材料7〇作為遮罩,以在該 介電層内形成溝槽(未顯示於圖中)於,接著填充傳導層,然後平坦之。 第2a圖至第2c圖係說明浸沒流體擴散進入光感材料7〇的示意圖。如 第2a圖所示,該浸沒流體60係具有一上表面61,並藉由介面71和光感材 料層70接觸,該最外層透鏡5(H系以該光學表面M與該浸沒流體6〇接觸。 在本發明五較佳貫施例巾,該浸沒流體係為水,但其他諸如環辛燒以及過 氟聚鱗(PFPE)亦可作為浸沒流體並利用於本發明中。該形成於半導體基 板80之光感材料層70具有一起始厚度在。當部分光感材料層7〇曝光在一 定劑量的光能量下時,一光催化劑會在該光感材料層已曝光區域產生。該 具有產生該光催化劑能力之光感材料層70可例用為化學增幅型(CA)光 阻’其可廣泛的應用於193奈米和157奈米波長的微影技術中。 如第2a圖所示,當浸沒流體60剛導入該光感材料層7〇之上時(也就 是時間等於零時),該光感材料層70的厚度一樣是di,然而當該浸沒流體 60逐漸擴散進入該光感材料層70時,該浸沒流體60擴散進入該光感材料 70的速度則取決於該浸沒流體60及光感材料7〇的種類。 如第2b圖所示,當該浸沒流體60擴散進入該光感材料7〇時,會導致 該光感材料層70膨脹。在第2b圖中,該浸沒流體60的擴散前緣75係由 虛線來表示。該浸沒流體60朝一擴散方向79(箭頭所示)逐漸擴散進入該光 感材料層70中(如第2b圖如示之擴散前緣75),使得該光感材料層70逐漸 膨脹並使得該光感材料層70之厚度增加。如第2b圖所示,該光感材料層 70的厚度已經從原本的在膨脹到d2。膨脹 該浸沒流體60進一步擴散進入光感材料70時,會促使擴散前緣75更 下移,並且隨著該光感材料層70浸潤在該浸沒流體60時間的增加,更多 的浸沒流體60擴散至該光感材料層70使得該光感材料層70更進一步的膨 脹。如第2c圖所示,當擴散前緣75到達位於光感材料層70和基板80間 的介面時,光感材料層70的膨脹厚度會到達一最大值df,當厚度膨脹至df 0503-A30534TWF 10 1244683 時該光感材料層70則無進一步的膨脹。 在纽式統巾’ §絲雜料層%的厚度隨著該感材料層%浸 沒在浸沒顏60的_增加而增厚。不同厚度的光紐料層職厚的光 感材料層7〇a及較薄的光感材料7〇b)其厚度對浸沒在浸沒流體的時間之關 係係如第3圖所示,在浸沒時間為零時,光感材料起始的厚度為$,當浸 沒流體很親滲_光·· 7G並且射擴散至域㈣層與半導體基 板80間的介面時,其厚度隨時間呈線性增加(膨脹)。舉例來說,當擴散前 緣75達到光感材料層70和基板8〇間的介面時,其時間對較厚的光感材料 70a而言接近5(任意時間單位),該較厚的光感材料观會達到最後厚度办。 第3圖中’時間單位係為任意單位,在實際的浸沒式微料、統中,第3圖 中每一時間單位約為60秒。 最後厚度由和起始厚度在之差值係為光感材料層%膨服的量,由第3 圖可知,較厚的光感材料層其膨脹的量也較大。因此,較厚的光感材料術 其被次沒祕6G滲透而膨脹的問題也較為嚴重。根據本發明的實施例中, 較薄,光雜料膨脹較小,並⑽脹至最後厚度df時職的時間也較短, 也就是說’較薄的光缝料層7〇侧較短的浸沒時間到達最後厚度。由於, 浸沒流體60擴散進入光感材料層%會導致光感材料層7〇性質改變,因此 光感材料層70起始厚度愈厚,卿脹至最後厚度山所需的浸沒時間也會增 加,然而較長的浸沒時間將使得光感材料層7〇之性質嚴重改變。 如第4圖所示,一半導體基板(或晶圓)8〇通常被分為複數個區塊 (blocks)86 (例如:晶片區或是晶片組區在本發明一較佳實施例中,每一 區塊86包含一或多個積體電路。當在半導體基板8〇上的積體電路成圖時, 微影技術系統通常會在一區塊86的一定時間裡作一''逐一曝光 (Step_and_expose)〃的步驟。舉例來說,標示i'的區塊首先被曝光,而微影 系統步驟會進行下一步驟到標示2,的區塊作下一次的曝光等等。如第4圖 的箭頭所不,''逐一曝光(step_and-exp〇se)〃的步驟通常係以光栅掃描方式0503-A30534TWF 8 1244683 then passes through the outermost lens 50 with an optical surface 51. In the preferred embodiment, the lens 50 is formed of oxidized stone (or a material containing stone and oxygen), fused stone or fluorinated dance. In another preferred embodiment, the wavelength of the light source is preferably less than 450 nm. In addition, the wavelength of the light source 20 is preferably less than or equal to 193 nm (such as 157 nm or 193 nm). In the immersion lithography system 10, the suppression system between the outermost lens 50 and a semiconductor substrate 80 is filled with an immersion fluid 6G. The upper surface of the semiconductor substrate 8G is covered by a photosensitive material layer (or a photoresist) 70, so that the immersion fluid is in direct contact with the photosensitive material layer (photoresist layer) 70, as shown in FIG. 1 In addition, the wafer support pedestal 8S is used to support the semiconductor board 80. -The immersion fluid 60 is preferably a fluid containing water. For example, the fluid may be purified water or deionized water. In the present state of the art, the immersion fluid 6 () can be, for example, cyclooctane or perfluoropolyether (PFPE), or it can be mixed with other fluids. In addition, for example, the photosensitive material layer (photoresist layer) 70 may be a positive photoresist composed of a polymer molecular structure, so the photoresist layer is dissolved in a developing solution after exposure, without The exposed part is insoluble in the developer. For positive photoresist, the conformable developing solution may be a tetramethylene oxide (TMAH) solution. In a preferred embodiment, the semiconductor element board 80 may be a semiconductor substrate on which an integrated circuit is formed. For example, the semiconductor element substrate 80 may be a stone crystal substrate with an transistor (for example, a -single-㈣ substrate or a -㈣-insulating plate), and each unit of the semiconductor element = the substrate 80 may be connected to each other by a metal layer. connection. The light-sensitive material 70 may be a photoresist layer or other masking material. In a preferred embodiment, the light-sensitive material 70 may be patterned into a very small size, and the pattern having a very small size The material layer can be used as 'for example' to form multiple secret lines (or other conductive material engraved masks) or to make metal oxide semiconductors with a length of less than 50 nm. In addition, a 'metal wire (e.g., copper metal damascene) may be formed in a trench in the dielectric layer. For example, the dielectric layer (not shown in the figure) can be formed by oxygen cutting (eg, ⑽2, Kan, No. 0503-A30534TWF 9 1244683, and BPSG) on the wafer 80 by evaporation. The light-sensitive material 70 is used as a mask to form a trench (not shown) in the dielectric layer, then fill the conductive layer, and then flatten it. Figures 2a to 2c are schematic diagrams illustrating diffusion of the immersion fluid into the light-sensitive material 70. As shown in FIG. 2a, the immersion fluid 60 has an upper surface 61 and is in contact with the photosensitive material layer 70 through an interface 71. The outermost lens 5 (H is in contact with the immersion fluid 60 with the optical surface M). In the fifth preferred embodiment of the present invention, the immersion flow system is water, but other materials such as cyclooctane and perfluoropolyscale (PFPE) can also be used as the immersion fluid and used in the present invention. This is formed on a semiconductor substrate The light-sensitive material layer 70 of 80 has an initial thickness of 50. When a portion of the light-sensitive material layer 70 is exposed to a certain amount of light energy, a photocatalyst will be generated in the exposed area of the light-sensitive material layer. The photocatalyst-capable light-sensing material layer 70 can be used as a chemically amplified (CA) photoresist, which can be widely used in lithography techniques with wavelengths of 193 nm and 157 nm. As shown in FIG. 2a, when When the immersion fluid 60 is introduced above the light-sensing material layer 70 (that is, when the time is equal to zero), the thickness of the light-sensing material layer 70 is also di. However, when the immersion fluid 60 gradually diffuses into the light-sensing material layer 70 When the immersion fluid 60 diffuses into the light The speed of the material 70 depends on the type of the immersion fluid 60 and the light-sensitive material 70. As shown in FIG. 2b, when the immersion fluid 60 diffuses into the light-sensitive material 70, the light-sensitive material layer 70 will be caused. Expansion. In Figure 2b, the diffusion leading edge 75 of the immersion fluid 60 is indicated by a dashed line. The immersion fluid 60 gradually diffuses into the light-sensitive material layer 70 toward a diffusion direction 79 (shown by the arrow) (as in Figure 2b). As shown in the figure, the diffusion leading edge 75) makes the light-sensitive material layer 70 gradually expand and increase the thickness of the light-sensitive material layer 70. As shown in FIG. 2b, the thickness of the light-sensitive material layer 70 has changed from the original When it expands to d2, expanding the immersion fluid 60 to further diffuse into the light-sensitive material 70 will cause the diffusion leading edge 75 to move further downward, and as the time that the light-sensitive material layer 70 infiltrates the immersion fluid 60 increases, more The immersion fluid 60 diffuses to the photosensitive material layer 70 to further expand the photosensitive material layer 70. As shown in FIG. 2c, when the diffusion leading edge 75 reaches the interface between the photosensitive material layer 70 and the substrate 80 , The expansion thickness of the photosensitive material layer 70 will reach a maximum The value df, when the thickness expands to df 0503-A30534TWF 10 1244683, the light-sensitive material layer 70 has no further expansion. In the button-type towel '§ the thickness of the silk material layer% is immersed in the immersion with the sense material layer% Yan 60's _ increases and thickens. The thickness of the light-sensitive material layers of different thicknesses is thicker than the light-sensitive material layer 70a and the thinner light-sensitive material 70b. The relationship between the thickness and the time of immersion in the immersion fluid is as follows As shown in Figure 3, when the immersion time is zero, the initial thickness of the light-sensitive material is $. When the immersion fluid is very infiltrating _light ... 7G and the radiation diffuses to the interface between the domain layer and the semiconductor substrate 80, Its thickness increases linearly (expands) with time. For example, when the diffusion leading edge 75 reaches the interface between the light-sensitive material layer 70 and the substrate 80, its time is close to 5 (any time unit) for the thicker light-sensitive material 70a, and the thicker light-sensitive The material will reach the final thickness. The time unit in Fig. 3 is an arbitrary unit. In an actual immersion type micro-system, each time unit in Fig. 3 is about 60 seconds. The difference between the final thickness and the initial thickness is the amount of% expansion of the photosensitive material layer. As shown in Figure 3, the thicker photosensitive material layer has a larger amount of expansion. Therefore, the problem of thicker photo-sensing materials being infiltrated by 6G is also more serious. According to the embodiment of the present invention, the thinner, the light miscellaneous material swells less, and the time required to swell to the final thickness df is also shorter, that is, the 'thinner side of the thinner light seam material layer 70 is shorter. The immersion time reaches the final thickness. Because the diffusion of the immersion fluid 60 into the light-sensitive material layer% will cause the properties of the light-sensitive material layer 70 to change, the thicker the initial thickness of the light-sensitive material layer 70, the longer the immersion time required to expand to the final thickness, However, a longer immersion time will cause the properties of the light-sensitive material layer 70 to be severely changed. As shown in FIG. 4, a semiconductor substrate (or wafer) 80 is usually divided into a plurality of blocks 86 (for example, a chip area or a chip set area. In a preferred embodiment of the present invention, each A block 86 contains one or more integrated circuits. When the integrated circuits on the semiconductor substrate 80 are patterned, the lithography technology system usually makes a `` one-by-one exposure '' within a certain time of the block 86 ( Step_and_expose). For example, the block labeled i 'is exposed first, and the lithography system step will proceed to the next step to the block labeled 2, for the next exposure, etc. As shown in Figure 4 What the arrow does, `` step_and-expose '' is usually a raster scan

0503-A30534TWF 11 1244683 O^stei· sean mannei·)進行。當''逐一曝光(step_and exp〇se>〃步驟運用在浸沒 式基板(或晶圓)時,標示!,的區塊會在一第一時間心下被曝光,而標示2, 的區塊則會在—第二時心下被曝光。社麟法意味著#魏數區塊86 依序被曝紐,各區塊86其上的光感材料層7G之膨脹程度卻不相同。 而根據本發明之-較佳實施例中,當每個區塊86曝光後,於基板8〇 上的所有區塊86其上之紐材料層7〇會膨脹_同驗度。如此一來可 確保光感材料層7G在同-狀態下進行曝光,可增加其—致性並改善製程的 良率。本發明用以確保所有區塊86上之光感材料7〇具有相同的膨脹程度 之方法,係使用一夠薄的光感材料層7〇,如第3圖所示,該薄的光感材料 7〇 /、而一較短的時間即可達到最後厚度df,且該光感材料膨脹較小。藉由 使用夠薄的光感材料70,即使當基板上第一區塊i,被曝光時,其未曝光前 之厚度亦可達到最後厚度df。 由第3圖可知,該光感材料層7加和7〇b膨脹到最後厚度時,該最後 厚度df約較起始厚度轉上一倍。如第5圖所示,以該較薄的光感材料層 7〇b膨脹的量(也就是补七)為例,其係以“第一材料訄丨,,的線來標示。在 本發明之另-較佳實施例中,-較適用的光感材料,其膨脹的量㈣)係 小於該光感材料之起始厚度在。舉例來說,藉由調整光感材料7〇之聚合物 組成’可改變或進一步減少最後膨脹的程度。 仍請參照第5圖所示,在一固定的起始厚度在下,第二材料M2膨脹 的程度較第-材料麗小,第三材料M3其膨脹的程度則較該第二材料組 來的小。根據本發明之一較佳實施例,該光感材料層的膨脹大小(补在)係 被限制在約1000A之内’疋故遠微影技術系統的聚焦深度仍處於合理的範 圍内。在一較佳實施例中,該光感材料層70之厚度較佳係小於5〇〇〇A,更 佳係小於3000A,最佳則係小於1000A。 依據上述之概念,右β光感材料層70對特定劑量的曝光度(或光子)存 在-敏感度,職光紐料層7G對特賴f曝柄敏感度,亦會隨浸潤在 0503-A30534TWF 12 1244683 /又^體60叫’加而改變(在此先不考慮就感材料層%是否會受浸 ❹· 60 &曰而%脹)。因此,當該光感材料層%之敏感度對於受浸沒流 體1的#树飽和量時,_光紐料層7G對於曝光量的職度則不會 再又/又/閏在棚的¥間延長而受影響。因此,本發明所㈣的較薄光感材 料層其對於曝光戏敏感度則會在_浸潤於紐沒流體⑹—較短時間後 賴飽和,甚至在基板上第-區塊1,曝光之前就已達飽和,如此-來可確 保母/區塊86所f曝光量之—致性。當在該區塊86上的光缝料該%被 曝光後’係以-顯影液,例如為氫氧化四甲銨⑽卿容液,將該光感材料 70被曝光的部份溶解。 請參照第6圖,係顯示符合本發明之另—種用來減少光感材料層膨服 問題的方法,該方法係在該光感材料層70之上表面多加-層阻障層 90(bamer layer)。形成該阻障層9〇之目的是用於限繼浸沒流體⑼擴散進 /光感材料層70内’而劍早阻層9G(barriei>iaya)可為光敏感性的材質, 亦可為非練祕的材質。在本發明—健實補巾,該阻障層%係包含 疏水性之材質,以致於該轉層9G具#_疏水性表面可避免過量的水(作為 浸沒流體60)經由該阻障層9〇滲入該光感材料層7〇中。 在本發明之另-較佳實施例中,該阻障層9()可經由該光感材料層7〇 自身所形成,例如對該光感材料層7G進行_處理或是對該光騎料層7〇 的表面做處理。該處理方式可例如桃學處理,如在電漿環境、氧化環境 或疋任何其他化學環境巾對該域材料的表面進行絲。該處理方式亦可 為-離子植人製程。再者,處理方式也可以是熱處理,如在惰性的環境下 進订加熱。綜合上述,形成該阻障層之目的翻降低該光·料所需的厚 度,進而減少膨脹的程度。 此外’值得注意的是,本發明騎之浸沒式微料統更可包含其它已 知適用於以式微影技術的餘,舉例來說,紐沒式微影线可以在最 外層透鏡和被曝光部分的晶圓之_浸沒流體來浸沒;另—作法則是將整0503-A30534TWF 11 1244683 O ^ stei · sean mannei ·). When the `` step_and expose '' step is applied to an immersed substrate (or wafer), the blocks marked by, are exposed at the first time, and the blocks marked by 2, are It will be exposed in the second time. She Lin method means that # 魏 数 块 86 is sequentially exposed, and the expansion degree of the light-sensitive material layer 7G on each block 86 is different. According to the present invention -In the preferred embodiment, after each block 86 is exposed, the button material layer 70 on all the blocks 86 on the substrate 80 will expand_identity. In this way, the light-sensitive material can be ensured The layer 7G is exposed in the same state, which can increase its consistency and improve the yield of the process. The method used by the present invention to ensure that the light-sensitive material 70 on all blocks 86 has the same degree of expansion, uses a The light-sensitive material layer 70 is thin enough. As shown in FIG. 3, the thin light-sensitive material 70 / can reach the final thickness df in a short time, and the light-sensitive material has less expansion. By using a thin enough light-sensitive material 70, even when the first block i on the substrate is exposed, its thickness before exposure can reach The final thickness df. As can be seen from FIG. 3, when the photosensitive material layer 7 and 70b expand to the final thickness, the final thickness df is approximately doubled from the initial thickness. As shown in FIG. 5, using this The amount of swelling of the thinner light-sensitive material layer 70b (that is, the seventh supplement) is taken as an example, which is indicated by the line of "the first material 訄 ,,." In another-preferred embodiment of the present invention, -For more suitable light-sensitive materials, the amount of expansion ㈣) is less than the initial thickness of the light-sensitive material. For example, by adjusting the polymer composition of the light-sensitive material 70, the final expansion can be changed or further reduced Still referring to FIG. 5, a fixed starting thickness is below, the degree of expansion of the second material M2 is smaller than that of the first material, and the degree of expansion of the third material M3 is smaller than that of the second material group. According to a preferred embodiment of the present invention, the swelling size (compensation) of the light-sensing material layer is limited to about 1000A. Therefore, the focusing depth of the far lithography technology system is still in a reasonable range. In a preferred embodiment, the thickness of the photosensitive material layer 70 is preferably less than 5 〇〇A, more preferably less than 3000A, the best is less than 1000A. According to the above concept, the right β light-sensing material layer 70 has a specific dose of exposure (or photon) presence-sensitivity, and a professional optical layer 7G Sensitivity to the Trai f exposure handle will also change with the infiltration at 0503-A30534TWF 12 1244683 / and the body 60 is called (the first does not consider whether the material layer% will be immersed. 60 & And% expansion). Therefore, when the sensitivity of the light-sensing material layer% is #saturated with the #immersion fluid 1, the role of the 7G optical layer for the exposure amount will not be / again / 闰It is affected by the extension of the window. Therefore, the sensitivity of the thinner light-sensing material layer of the present invention to the exposure scene will be saturated with the fluid in a short time—even after a short time, even on the substrate. On the first block, the saturation is reached before the exposure, so as to ensure the consistency of the exposure amount of the master / block 86. After the% of the light sewing material on the block 86 is exposed, it is a developing solution, for example, tetramethylammonium hydroxide solution, and the exposed portion of the photosensitive material 70 is dissolved. Please refer to FIG. 6, which shows another method for reducing the swelling problem of the light-sensitive material layer in accordance with the present invention. The method is to add a barrier layer 90 (bamer) on the surface of the light-sensitive material layer 70. layer). The purpose of forming the barrier layer 90 is to limit the diffusion of the immersion fluid into the light-sensitive material layer 70. The barrier layer 9G (barriei > iaya) may be a light-sensitive material or a non-sensitive material. The secret material. In the present invention-Jianshi Patch, the barrier layer% is made of a hydrophobic material, so that the transfer layer 9G has a #_ hydrophobic surface to prevent excessive water (as an immersion fluid 60) from passing through the barrier layer 9 〇 penetrates into the photosensitive material layer 70. In another preferred embodiment of the present invention, the barrier layer 9 () may be formed by the light-sensitive material layer 70 itself, such as processing the light-sensitive material layer 7G or the light-riding material. The surface of layer 70 is treated. The treatment may be, for example, a peach treatment, such as silking the surface of the domain material in a plasma environment, an oxidizing environment, or any other chemical environment. This treatment method can also be-ion implantation process. Moreover, the treatment method may also be heat treatment, such as order heating in an inert environment. To sum up, the purpose of forming the barrier layer is to reduce the thickness required for the light and material, thereby reducing the degree of swelling. In addition, it is worth noting that the immersion micro-material system of the present invention may further include other known lithography techniques suitable for use in the Israeli lithography technique. For example, a neutron-type lithography line may be used in the outermost lens and the exposed portion of the crystal. Yuanzhi_ immersion fluid to immerse; another-the practice is to rectify

0503-A30534TWF 13 1244683 片晶圓浸沒在該浸沒流體中;再者,亦可將整個基台都浸沒在該浸沒流體中。 在本發明所述之浸沒式微影技術中,使該光感材料層70具有一致性的 方法係利用一可迅速達到最後膨脹厚度df的光阻材料。該光阻材料在浸潤 在該浸沒流體60,可立刻使膨脹至最大值,然後曝光。 從使該光感材料層70達到最佳之一致性的觀點來看,最適用的光感材 料層70應不受浸沒流體60的影響而膨脹(或膨脹的幅度很小),例如使用阻 障層;或者,該光感材料層70可很快地受浸沒流體6〇影響而膨脹至飽和, 例如使用具有高滲透性或較小厚度之光感材料。 雖然本發明已揭級佳實關揭露如上,财並翻㈣ 任何熟習此技藝者,在不脫離本發明之精神和範圍内,當 x0503-A30534TWF 13 1244683 wafers are immersed in the immersion fluid; furthermore, the entire abutment can be immersed in the immersion fluid. In the immersion lithography technique described in the present invention, a method for making the photosensitive material layer 70 consistent is to use a photoresist material that can quickly reach the final expanded thickness df. When the photoresist material is immersed in the immersion fluid 60, it can be immediately expanded to a maximum value and then exposed. From the viewpoint of achieving the best uniformity of the light-sensitive material layer 70, the most suitable light-sensitive material layer 70 should not be affected by the immersion fluid 60 and expand (or the extent of expansion is small), such as using a barrier Alternatively, the light-sensitive material layer 70 can quickly expand to saturation under the influence of the immersion fluid 60, such as using a light-sensitive material having high permeability or a small thickness. Although the present invention has been disclosed as above, it is well known that anyone who is familiar with this art will not deviate from the spirit and scope of the present invention.

與_,因此本發日㈣細當視後附之懈利範騎界^者為準更動 0503-A30534TWF 14 1244683 【圖式簡單說明】 第1圖係顯示一浸沒式微影技術系統的示意圖。 第2a圖至第2C圖係說明浸沒流體擴散進入光感材料層的示意圖。 第3圖係說明光感材料層之膨脹厚度與浸沒時間的關係圖。 第4圖係說明半導體結構上之每一區塊(blocks)浸潤在浸潤流體中具有 不同之浸潤時間的示意圖。 第5圖係說明不同種類的光感材防止料層之膨脹程度與起始光感材料 層厚度的關係圖。 第6圖係顯於光感材料層上形成一阻障層(barrjerlayer)以防止浸潤流體 擴散至光感材料層中的浸沒式微影系統示意圖。 【主要元件符號說明】 標示〜1、10,; 次沒式微影技術糸統〜1〇 ; 影像光源〜20 ; 光能量束〜21 ; 透鏡〜22 ; 遮罩〜30 ; 光學元件模組〜40 ; 光學表面〜51 ; 最外層透鏡〜50 ; 浸沒流體〜60 ; 浸沒流體之上表面〜61 ; 光感材料〜70 ; 較厚光感材料〜70a ; 較薄光感材料〜70b ; 擴散前緣〜75 ; 擴散方向〜79 ; 半導體元件基板〜80 ; 晶元支撐台座〜85 ; 區塊〜86 ; 阻障層〜9〇 ; 起始厚度〜φ ; 厚度〜d2 ; 最後厚度〜df; 苐一材料〜Ml ; 苐—材料〜M2 ; 弟二材料〜M3。 0503-A30534TWF 15And _, therefore, this issue of the sun should be treated as a follow-up to the reluctant fan riding industry ^ 0503-A30534TWF 14 1244683 [Schematic description] Figure 1 shows a schematic diagram of an immersion lithography technology system. Figures 2a to 2C are schematic diagrams illustrating the diffusion of the immersion fluid into the photosensitive material layer. Fig. 3 is a diagram illustrating the relationship between the expansion thickness of the photosensitive material layer and the immersion time. FIG. 4 is a schematic diagram illustrating that each block on a semiconductor structure is infiltrated in an infiltration fluid and has a different infiltration time. Fig. 5 is a diagram illustrating the relationship between the degree of swelling of different types of photosensitive material preventive layers and the thickness of the initial photosensitive material layer. FIG. 6 is a schematic diagram of an immersion lithography system in which a barrier layer (barrjerlayer) is formed on the photosensitive material layer to prevent the infiltration fluid from diffusing into the photosensitive material layer. [Description of main component symbols] Marking ~ 1, 10 ;; Submerged lithography system ~ 10; image light source ~ 20; light energy beam ~ 21; lens ~ 22; mask ~ 30; optical element module ~ 40 Optical surface ~ 51; outermost lens ~ 50; immersion fluid ~ 60; immersion fluid upper surface ~ 61; light sensitive material ~ 70; thicker light sensitive material ~ 70a; thinner light sensitive material ~ 70b; diffusion front edge ~ 75; Diffusion direction ~ 79; Semiconductor element substrate ~ 80; Wafer support base ~ 85; Block ~ 86; Barrier layer ~ 90; Initial thickness ~ φ; Thickness ~ d2; Final thickness ~ df; Material ~ Ml; 苐 —material ~ M2; younger material ~ M3. 0503-A30534TWF 15

Claims (1)

1244683 十、申請專利範圍·· 1·一種浸沒式微影系統,包含: 一支撐台座; -半導體元件基板,該半導體元件基板係配置於該切台座上,其中 該半導體元件基板之上表面具有-光感材料層,a該光感材^之厚度係 不大於5000A ; 一光學表面;以及 一浸沒流體配置於該光感材料層與該光學表面之間,其中該浸沒流體 係與該光感材料層之上表面接觸。 2.如申請專利範圍第i項所述之浸沒式微影系統,其中該浸沒流體包含 水。 3_如申請專利範圍第1項所述之浸沒式微影系統,其中該浸沒流體係擇 自由過氟聚醚(PFPE)、環辛烷及其所組合之族群中。。 4·如申請專利範圍第1項所述之浸沒式微影系統,其中該光感材料層之 厚度係不大於3000A。 5·如申請專利範圍第1項所述之浸沒式微影系統,其中該光感材料層之 厚度係不大於1〇〇〇人。 6·如申請專利範圍第1項所述之浸沒式微影系統,其中該光學表面包含 氧化石夕。 7·如申請專利範圍第1項所述之浸沒式微影系統,其中該光學表面包含 炼石夕(fUsed silica)。 8·如申請專利範圍第1項所述之浸沒式微影系統,其中該光學表面包含 氟化妈。 9·如申請專利範圍第1項所述之浸沒式微影系統,其中該光感材料層係 包含化學增幅型光阻。 10·如申請專利範圍第1項所述之浸沒式微影系統,其中該半導體元件 0503-A30534TWF 16 1244683 基板係浸沒在該浸沒流體中。 11·如申請專利範圍第1項所述之浸沒式微影系統,其中該支撐△ 浸沒在該浸沒流體中。 $ u上係 12·如申請專利範圍第丨項所述之浸沒式微影系統,更包括一影像光源 用以曝光該光感材料層。 Λ' 13·—種浸沒式微影系統,包含: 一波長小於或等於193nm的影像光源 一具有一光學表面之光學部件,該光學部件配置於該影像光源之下, 使得從影像光源所射出的光照射並穿越該光學部件; 一半導體元件基板,其中該半導體元件基板之上表面具有一光感材料 層,且該光感材料層之厚度係不大於5000人,且穿越該光學部件之光係照 射於該半導體元件基板上;以及 〜 一浸沒流體配置於該光感材料層與該光學表面之間,其中該浸沒流體 係與該光感材料層之上表面接觸及該光學表面之下表面接觸。 14.如申請專利範圍第13項所述之浸沒式微影系統,其中該光感材料層 之厚度係不大於3000A。 15·如申請專利範圍第13項所述之浸沒式微影系統,其中該光感材料層 之厚度係不大於1000A。 16_如申請專利範圍第13項所述之浸沒式微影系統,其中該光學表面包 含氧化石夕。 17.如申請專利範圍第13項所述之浸沒式微影系統,其中該光學表面包 含炼石夕(fUsed silica)。 18·如申請專利範圍第13項所述之浸沒式微影系統,其中該光學表面包 含氟化約。 19.如申請專利範圍第13項所述之浸沒式微影系統,其中該光感材料層 係包含化學增幅型光阻。 0503-A30534TWF 17 1244683 20. 如申請專利範圍第13項所述之浸沒式微影系統,其中該浸沒流體包 含水。 21. 如申請專利綱第13項所述之浸沒式微影系統,其中該浸沒流體係 擇自由過氟聚醚(PFPE)、環辛烧及其所組合之族群中。 22·如申請專利範圍第13項所述之浸沒式微影系統,更包括一支撐台座 用配置於該半導體元件基板之下。 Αλ 23·如申請專利範圍第22項所述之浸沒式微影系統,其中該支樓台座係 浸沒在該浸沒流體中。 μ 24·-種對具有-光感材料層形成於其上之轉體結構照光的方法,勺 含: /匕 提供-半導體元件基板,其中該轉體元件基板之上表面具有一光感 材料層,且該光感材料層之厚度係不大於500〇Α ; " 導入一浸沒流體於一光學表面及該光感材料層之間的空間中;以及 提供一光能量直接穿過該浸沒流體至該光感材料層上。 25. 如申請專利範圍第24項所述之對具有—光感材料層形成於其上之 半導體結構照光的方法,其中該浸沒流體包含水。 26. 如申請專利範圍第24項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光學表面包含氧化石夕。 ^ 27. 如申請專利範圍第24項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光學表面包含氟化鈣。 、/' 28. 如申請專利範圍第24項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光感材料層包含化學增幅型光阻。” 29. 如申請專利範圍第24項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光能量之波長係小於45〇奈米。 30. 如申請專利範圍第24項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法’其中該浸沒流體係與該光感材料層之—部分接觸。 0503-A30534TWF 18 1244683 半導24項所述之對具有—光感材料層料較上之 丰搞妓,其中縣導體元件基㈣浸沒㈣㈣上之 半導圍第24項所述之對具有一光感材料層形成=上之 丰就,、惠、光的枝,射該半導體元件細姆於—切」上之 本=.如巾料纖圍第24賴述之對具有—光細_彡成ϋ上。 構照光的方法,其中該支撐台座係浸沒在該浸沒流體中。、、之 也’二·如申請專利範圍第24項所述之對具有一光感材料層形成於i卜夕 一 w結構照光的方法’包含_統材料層進棚影。、、 Μ.如中請專利範圍第34項所述之對具有—光感材料層形成於 半導體結触光的方法,其中對該光餘料層進行顯影 括二 光感材料層於-氫氧化四甲銨溶液。 又该 、〆36.如巾請專利範圍第24項所述之對具有—光感材料層形成於其上之 半導體結顧光的方法,在提供—光能量直接穿過該浸沒流體至該光感材 料層之岫,更包含形成一阻障層於該光感材料層之上。 、,37•如巾請專利範圍第36項所述之對具有-域材料層形成於其上之 半導體結構照光的方法,其中該阻障層係包含一疏水性的材料。、 38·—種對具有一光感材料層形成於其上之半導體結構照光的方法,包 含: 提供一半導體元件基板; 形成一光感材料層於該半導體元件基板之上,其中該光感材料層之厚 度係不大於5000A ; 導入一浸沒流體於一光學表面及該光感材料層之間的空間中,且該浸 沒流體係與該光感材料層接觸; 藉由提供一光能量直接穿過該浸沒流體至該光感材料層表面以選擇性 曝光該光感材料; 移除部分之該光感材料層以形成一圖形化之該光感材料層;以及 0503-A30534TWF 19 1244683 利用該圖形化之該光感材料層作為一罩幕進行半導體元件之製浐 39.如申請專利範圍第38項所述之對具有一光感材料層形成於^上 半導體結構照光的方法,其中該浸沒流體包含水。 、/、之 4〇.如申請專利範圍第38項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光學表面包含氧化石夕。 、/、之 41·如申請專利範圍第38項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光學表面包含氟化两。 、/、之 …42·如申請專利範圍第38項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光阻層包含化學增幅型光阻。 /、 …43·如申請專利範圍帛38 _述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光能量之波長係小於450奈米。 …44.如申請專利範圍第38項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其巾該半導體元件基板係浸沒於該浸沒流體中。 、45.如申請專利範圍第38項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該半導體元件基板係配置於一支撐台座上。 …46·如申請專利範圍帛45賴述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其巾該支撐台座係浸沒在紐沒流體中。 、47·如申請專利範圍第38項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,包含對該光感材料層進行顯影。 一 48·如申請專利範圍第47項所述之對具有一光感材料層形成於其上之 半導體結顧光的方法,其巾對該光紐料層進行聽之步驟包括浸沒該 光感材料層於一氫氧化四甲銨溶液。 49_如申請專利範圍帛47賴述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該光能量之波長係小於450奈米。 5〇·如申請專利範圍第38項所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,在形成—光感材料層於該半導體元件基板之前, 0503-A30534TWF 20 1244683 =:=:恤齡上’赠_成之先感材料 …51•如中請專利範圍第5()項所述之對具有—光感材料層形成於其 半導體結獅、光的方法,其中該材料層係為—導電層。 …52·如申請專利範圍第51 _述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中該圖形化之該光·料層作為—罩 订半導體7L件之製程之步驟包括,侧該圖形化之該域材料層作 幕蝕刻該導電層以形成一閘極。 …罩 、” S3.如申,月專利圍第52項所述之對具有一光感材料層形成於 半導體結顧光的方法,其巾侧極之尺寸係不大於 50nm。 。、 、从如申請專利範圍第49項所述之對具有一光感材料層形成於 半導體結顧光的方法’射該材料層係為 -介電】。、;,、 半導繼樹—臟咖成於其上之 ―主心 其中利霞圖形化之該光感材料層作為—罩幕進 包括,_職雜種域材卿作為一罩 成溝槽,並以一導電層填滿該溝槽。 料層之前,更包含形成〜轉層_5材4 體至該光感材 半導5體7^!^7^56獅狀對具有—光騎贿形成於其上之 面施行-絲處理。/’其中形成雜障層之方法包括對該光感材料層表 半=6Φ項_具有—編_成於其上之 面施行-表咖。 娜歐_域材料層表 汎如申請專利範圍第56項所述之對具有一光感材料層形成於其上之 0503-A30534TWF 21 1244683 半導體結構照光的方法,其中形成該阻障層之方法包括對該光感材料層表 面施行一化學處理。 6〇·如申請專利範圍第56頊所述之對具有一光感材料層形成於其上之 半導體結構照光的方法,其中形成該阻障層之方法包括對該光感材料層表 面施行一離子植佈製程。 面施行一熱處理 61·如申請專利範圍第56頊所述之對具有一光感材料層形成於其上之 半導體結触光的方法,其巾減該轉層之方法包括龍光感材料層表 62·如巾請專概圍第56項所述之對具有—域材料層 +導體結構照光的方法,其中該阻障層係包含—疏水性的材料成。、上之 0503-A30534TWF 221244683 10. Scope of patent application ... 1. An immersion lithography system, including: a support base;-a semiconductor element substrate, the semiconductor element substrate is arranged on the cutting base, wherein the upper surface of the semiconductor element substrate has-light An optical surface; and an immersion fluid disposed between the optical material layer and the optical surface, wherein the immersion flow system and the optical material layer The upper surface is in contact. 2. The immersion lithography system according to item i of the patent application scope, wherein the immersion fluid comprises water. 3_ The immersion lithography system described in item 1 of the scope of patent application, wherein the immersion flow system is selected from the group consisting of perfluoropolyether (PFPE), cyclooctane, and combinations thereof. . 4. The immersion lithography system according to item 1 of the scope of patent application, wherein the thickness of the light-sensitive material layer is not greater than 3000A. 5. The immersion lithography system described in item 1 of the scope of the patent application, wherein the thickness of the light-sensitive material layer is not more than 1,000 people. 6. The immersion lithography system according to item 1 of the scope of the patent application, wherein the optical surface comprises oxidized stone. 7. The immersion lithography system according to item 1 of the scope of patent application, wherein the optical surface comprises fUsed silica. 8. The immersion lithography system according to item 1 of the scope of the patent application, wherein the optical surface comprises a fluoride fluoride. 9. The immersion lithography system according to item 1 of the scope of the patent application, wherein the photosensitive material layer comprises a chemically amplified photoresist. 10. The immersion lithography system according to item 1 of the scope of the patent application, wherein the semiconductor element 0503-A30534TWF 16 1244683 is immersed in the immersion fluid. 11. The immersion lithography system according to item 1 of the scope of the patent application, wherein the support △ is immersed in the immersion fluid. $ u 上 系 12. The immersion lithography system described in item 丨 of the patent application scope further includes an image light source for exposing the photosensitive material layer. Λ '13 · —An immersion lithography system comprising: an image light source with a wavelength less than or equal to 193 nm; an optical component having an optical surface; the optical component is arranged under the image light source so that light emitted from the image light source Irradiate and pass through the optical component; a semiconductor element substrate, wherein the upper surface of the semiconductor element substrate has a light-sensitive material layer, and the thickness of the light-sensitive material layer is not more than 5000 people, and the light passing through the optical component is irradiated On the semiconductor element substrate; and ~ an immersion fluid is disposed between the light-sensitive material layer and the optical surface, wherein the immersion flow system is in contact with the upper surface of the light-sensitive material layer and the lower surface of the optical surface. 14. The immersion lithography system according to item 13 of the scope of patent application, wherein the thickness of the light-sensitive material layer is not greater than 3000A. 15. The immersion lithography system according to item 13 of the scope of patent application, wherein the thickness of the photosensitive material layer is not greater than 1000A. 16_ The immersion lithography system according to item 13 of the patent application scope, wherein the optical surface contains oxidized stone. 17. The immersion lithography system according to item 13 of the patent application scope, wherein the optical surface includes fUsed silica. 18. The immersion lithography system according to item 13 of the scope of the patent application, wherein the optical surface contains a fluoride. 19. The immersion lithography system according to item 13 of the scope of patent application, wherein the photosensitive material layer comprises a chemically amplified photoresist. 0503-A30534TWF 17 1244683 20. The immersion lithography system according to item 13 of the scope of patent application, wherein the immersion fluid contains water. 21. The immersion lithography system according to item 13 of the patent application, wherein the immersion flow system is selected from the group consisting of free perfluoropolyether (PFPE), cyclooctane, and combinations thereof. 22. The immersion lithography system according to item 13 of the scope of the patent application, further comprising a support pedestal arranged under the semiconductor element substrate. Aλ 23. The immersion lithography system according to item 22 of the scope of the patent application, wherein the supporting platform is immersed in the immersion fluid. μ 24 · -A method of illuminating a rotating structure having a light-sensitive material layer formed thereon, the spoon contains: / Provided by-a semiconductor element substrate, wherein the upper surface of the rotating element substrate has a light-sensitive material layer And the thickness of the light-sensitive material layer is not more than 500 〇; " introducing an immersion fluid into a space between an optical surface and the light-sensitive material layer; and providing a light energy directly through the immersion fluid to On the light-sensitive material layer. 25. The method of illuminating a semiconductor structure having a photo-sensitive material layer formed thereon as described in item 24 of the scope of the patent application, wherein the immersion fluid comprises water. 26. The method of illuminating a semiconductor structure having a photo-sensitive material layer formed thereon as described in item 24 of the scope of the patent application, wherein the optical surface includes oxidized stone. ^ 27. The method of illuminating a semiconductor structure having a photo-sensitive material layer formed thereon as described in item 24 of the scope of the patent application, wherein the optical surface comprises calcium fluoride. / '28. The method for illuminating a semiconductor structure having a light-sensitive material layer formed thereon as described in item 24 of the scope of the patent application, wherein the light-sensitive material layer includes a chemically amplified photoresist. 29. The method of illuminating a semiconductor structure having a light-sensitive material layer formed thereon as described in item 24 of the scope of patent application, wherein the wavelength of the light energy is less than 45 nm. 30. If the scope of patent application is The method of illuminating a semiconductor structure having a light-sensitive material layer formed thereon as described in item 24, wherein the immersion flow system is in partial contact with the light-sensitive material layer. 0503-A30534TWF 18 1244683 It is described that the pair has a photo-sensing material layer compared to the upper one. Among them, the pair of photoconductive material layer formation on the conductor element base ㈣ immersion ㈣㈣ on the semi-conductor in item 24 has a photo-sensing material layer formation = the above. , Benefit, and light, shoot the semiconductor element meticulously on-cut "on the basis =. For example, the pair of towels and fiber circumference 24 said that the pair has-light fine_ 彡 成 ϋ. A method of structuring light, wherein the support base is immersed in the immersion fluid. The method of “2. The method of illuminating a structure with a light-sensitive material layer as described in item 24 of the scope of the patent application” is to include a uniform material layer into the studio. As described in item 34 of the patent application, the method for forming a photo-sensitive material layer on a semiconductor junction to touch light, wherein the photo-resistive material layer is developed to include two photo-sensitive material layers in -hydroxide. Tetramethylammonium solution. Also, 〆36. As described in item 24 of the patent application, a method of concentrating light on a semiconductor having a layer of a light-sensitive material formed thereon is provided, and the light energy is directly passed through the immersion fluid to the light. One of the sensing material layers further includes forming a barrier layer on the photosensitive material layer. 37. The method of illuminating a semiconductor structure having a -domain material layer formed thereon as described in item 36 of the patent application, wherein the barrier layer comprises a hydrophobic material. 38. A method of illuminating a semiconductor structure having a light-sensitive material layer formed thereon, comprising: providing a semiconductor element substrate; forming a light-sensitive material layer on the semiconductor element substrate, wherein the light-sensitive material The thickness of the layer is not greater than 5000A; an immersion fluid is introduced into the space between an optical surface and the light-sensitive material layer, and the immersion flow system is in contact with the light-sensitive material layer; by providing a light energy directly through The immersion fluid to the surface of the photosensitive material layer to selectively expose the photosensitive material; removing a part of the photosensitive material layer to form a patterned photosensitive material layer; and 0503-A30534TWF 19 1244683 using the patterning The light-sensitive material layer is used as a cover for the fabrication of semiconductor elements. 39. The method of illuminating a semiconductor structure having a light-sensitive material layer formed on a substrate as described in item 38 of the patent application scope, wherein the immersion fluid contains water. 40. The method of illuminating a semiconductor structure having a photo-sensitive material layer formed thereon as described in item 38 of the scope of the patent application, wherein the optical surface includes oxidized stone. 41. The method of illuminating a semiconductor structure having a light-sensitive material layer formed thereon as described in item 38 of the scope of the patent application, wherein the optical surface includes two fluorides. … 42. The method of illuminating a semiconductor structure having a photo-sensitive material layer formed thereon as described in item 38 of the scope of the patent application, wherein the photo-resistive layer comprises a chemically amplified photoresist. /,… 43. As described in the scope of application patent 帛 38 _, the method for illuminating a semiconductor structure having a light-sensitive material layer formed thereon, wherein the wavelength of the light energy is less than 450 nm. 44. The method of illuminating a semiconductor structure having a photo-sensitive material layer formed thereon as described in item 38 of the scope of the patent application, wherein the semiconductor element substrate is immersed in the immersion fluid. 45. The method for illuminating a semiconductor structure having a light-sensitive material layer formed thereon as described in item 38 of the scope of the patent application, wherein the semiconductor element substrate is disposed on a support base. ... 46. As described in the scope of application for patent, 45, the method of illuminating a semiconductor structure having a layer of light-sensitive material formed thereon is described, in which the support base is immersed in a immersion fluid. 47. The method of illuminating a semiconductor structure having a photosensitive material layer formed thereon as described in item 38 of the scope of the patent application, which comprises developing the photosensitive material layer. 48. The method for concentrating light on a semiconductor having a light-sensitive material layer formed thereon as described in item 47 of the scope of the patent application, the step of listening to the light button material layer includes immersing the light-sensitive material Layered in tetramethylammonium hydroxide solution. 49_ As described in the patent application scope 47, the method of illuminating a semiconductor structure having a light-sensitive material layer formed thereon is described, wherein the wavelength of the light energy is less than 450 nm. 50. The method of illuminating a semiconductor structure having a light-sensitive material layer formed thereon as described in item 38 of the scope of patent application, before forming a light-sensitive material layer on the semiconductor element substrate, 0503-A30534TWF 20 1244683 =: =: On the shirt age, 'Gift_Successful Presence Material ... 51 • As described in item 5 () of the patent scope, the method of having a -photosensitive material layer formed on its semiconductor junction and light, in which The material layer is a conductive layer. … 52 · As described in the scope of patent application No. 51 _ method for illuminating a semiconductor structure having a layer of light-sensitive material formed thereon, wherein the patterned photo-material layer is used as a process for overlaying a 7L semiconductor The steps include etching the conductive layer to form a gate electrode by using the patterned domain material layer as a curtain. … Cover, ”S3. As mentioned, the method described in item 52 of the monthly patent encloses a method of forming a layer of light-sensitive material formed on the semiconductor junction with light, and the size of the side electrode of the towel is not greater than 50 nm. The method described in item 49 of the scope of the patent application for a method having a photo-sensitive material layer formed on a semiconductor to illuminate the light, 'shooting the material layer is -dielectric].; ,,, semi-conductive tree-dirty coffee formed in it The above- the main idea is that the light-sensitive material layer in which Lixia is patterned is used as a mask. The hybrid material is used as a mask to form a trench, and the trench is filled with a conductive layer. In addition, it includes the formation of ~ layer_5 material 4 body to the light-sensing material semi-conductive 5 body 7 ^! ^ 7 ^ 56 lion-like pair with-the surface on which the light bribe is formed to perform-silk processing. / 'Where The method for forming the hetero-barrier layer includes applying the surface of the light-sensing material layer = 6Φ item_has_edited_formed on the surface on which it is formed. The table of Nao_domain material layer is as listed in item 56 of the scope of patent application. A method for illuminating a semiconductor structure having a layer of a light-sensitive material on which 0503-A30534TWF 21 1244683 is described, wherein the resistance is formed The method of the layer includes performing a chemical treatment on the surface of the photosensitive material layer. 60. The method of illuminating a semiconductor structure having a photosensitive material layer formed thereon as described in the patent application No. 56 顼, wherein the forming The method of the barrier layer includes performing an ion implantation process on the surface of the light-sensitive material layer. The surface is subjected to a heat treatment 61. A semiconductor junction having a light-sensitive material layer formed thereon as described in the patent application scope No. 56 顼. The method of touching the light, the method of reducing the transfer layer of the towel includes the long light-sensitive material layer table 62. If the towel please specifically enumerate the method of irradiating the light with a domain material layer + conductor structure as described in item 56, wherein the barrier Layer system contains-made of hydrophobic materials., 0503-A30534TWF 22
TW93123894A 2003-08-11 2004-08-10 Immersion fluid for immersion lithography, and method of performing immersion lithography TWI244683B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49415403P 2003-08-11 2003-08-11
US10/826,602 US7579135B2 (en) 2003-08-11 2004-04-16 Lithography apparatus for manufacture of integrated circuits

Publications (2)

Publication Number Publication Date
TW200515479A TW200515479A (en) 2005-05-01
TWI244683B true TWI244683B (en) 2005-12-01

Family

ID=34594562

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93123894A TWI244683B (en) 2003-08-11 2004-08-10 Immersion fluid for immersion lithography, and method of performing immersion lithography

Country Status (3)

Country Link
CN (1) CN1624588B (en)
SG (1) SG109614A1 (en)
TW (1) TWI244683B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996145B (en) * 2005-12-31 2010-08-25 上海集成电路研发中心有限公司 Method for reducing water pollution of optical elements in immersion type photoengraving technology
CN114527627B (en) * 2022-03-09 2023-10-10 中国科学院宁波材料技术与工程研究所 Photoetching method for preparing organic semiconductor micro-device without photoresist and micro-device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JP2753930B2 (en) * 1992-11-27 1998-05-20 キヤノン株式会社 Immersion type projection exposure equipment
US5900354A (en) * 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography

Also Published As

Publication number Publication date
CN1624588A (en) 2005-06-08
TW200515479A (en) 2005-05-01
SG109614A1 (en) 2005-03-30
CN1624588B (en) 2011-11-02

Similar Documents

Publication Publication Date Title
US7579135B2 (en) Lithography apparatus for manufacture of integrated circuits
TW556277B (en) Method for manufacturing a semiconductor device
US20050123863A1 (en) Immersion lithography process and mask layer structure applied in the same
US6541182B1 (en) Method for forming fine exposure patterns using dual exposure
US20090219496A1 (en) Methods of Double Patterning, Photo Sensitive Layer Stack for Double Patterning and System for Double Patterning
JP2005519456A (en) Formation of self-aligned pattern using two wavelengths
TWI244683B (en) Immersion fluid for immersion lithography, and method of performing immersion lithography
US20120214103A1 (en) Method for fabricating semiconductor devices with fine patterns
JP2008193076A (en) Lithography method
JP2861642B2 (en) Method for manufacturing semiconductor device
TW548718B (en) Hole forming by cross-shape image exposure
JP3135508B2 (en) Pattern formation method and device production method
TWI222670B (en) Immersion lithography process and mask layer structure applied in the same
JP2693805B2 (en) Reticle and pattern forming method using the same
JP4225544B2 (en) Laminated structure of photosensitive material and method for forming fine pattern
JPH09232428A (en) Manufacturing method for semiconductor device
JPH0936017A (en) Pattern forming method and semiconductor manufacturing method using the pattern forming method
KR930001856B1 (en) Sub-micron patterning method using multi-layer resist
JP5008275B2 (en) Immersion lithography process and its structure
US6514874B1 (en) Method of using controlled resist footing on silicon nitride substrate for smaller spacing of integrated circuit device features
TWI259523B (en) Method for forming photoresist pattern and method for trimming photoresist pattern
KR100220940B1 (en) Method of manufacturing fine pattern of semiconductor device
JPS63304250A (en) Formation of fine resist pattern
JPH0553322A (en) Pattern forming method
JPH0414235A (en) Detecting method of resist film imperfection