TWI226261B - Decomposing agent for sulfur fluorides and decomposing method - Google Patents

Decomposing agent for sulfur fluorides and decomposing method Download PDF

Info

Publication number
TWI226261B
TWI226261B TW091124442A TW91124442A TWI226261B TW I226261 B TWI226261 B TW I226261B TW 091124442 A TW091124442 A TW 091124442A TW 91124442 A TW91124442 A TW 91124442A TW I226261 B TWI226261 B TW I226261B
Authority
TW
Taiwan
Prior art keywords
decomposition treatment
sulfur fluoride
treatment agent
decomposition
sulfur
Prior art date
Application number
TW091124442A
Other languages
Chinese (zh)
Inventor
Kenji Otsuka
Youji Nawa
Tomohisa Ikeda
Koshi Ochi
Original Assignee
Japan Pionics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics filed Critical Japan Pionics
Application granted granted Critical
Publication of TWI226261B publication Critical patent/TWI226261B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided is a decomposing agent and a decomposing method capable of decomposing, at a decomposing ratio of 99.9% or more, the sulfur fluorides such as SF6 and the like contained in the exhaust gas from a process for manufacturing semiconductor devices at a temperature lower than 1000 DEG C. The decomposing agent will not be deactivated in a short time, and no corrosive gases such as sulfur oxide, hydrogen fluoride and the like will be discharged. The decomposing agent comprises as active ingredients an aluminum compound and a lanthanoid compound, or the decomposing agent comprises as active ingredients an aluminum compound, a lanthanoid compound and an alkaline earth metal compound. Moreover, sulfur fluorides-containing gas is contacted with the decomposing agent under the heat, so that the sulfur fluorides are decomposed, or it is contacted with a decomposing agent comprising as active ingredient an aluminum oxide, and then is contacted with a decomposing agent comprising as active ingredients a lanthanoid oxide and an alkaline earth metal oxide.

Description

1226261 五、發明說明(1 ) 技術領域 本發明係有關一種氟化硫之分解處理劑及分解處理方法 。更詳言之,係有關可使自半導體製造程序等排出的排氣 中所含的六氯化硫等之氯化硫在1000C以下之較低溫度下 ,以長時間有效分解處理的分解處理劑及分解處理方法。 先前技術 於半導體製造程序中淸除乾式蝕刻裝置之蝕刻氣體或 CVD裝置之反應室的氣體等,係使用六氟化硫。六氟化硫 爲非常安定的化合物,由於對地球暖化之影響大,於大氣 中放出時對環境會有不良影響。因此,自半導體製造程序 排出的氣體中所含的六氟化硫以可回收或分解,放出於大 氣中者較佳。 在以往所使用的六氟化硫(sf6 )使用作爲蝕刻氣體或反 應室淸除氣體等後之排氣中,通常除氮、氬氣、氦氣等載 體氣體,上述六氟化硫外,大多包含有六氟化硫分解生成 的四氟化硫(SF4)、HF、F2、SiF4等酸性氣體。而且,排氣 中包含的六氟化硫之濃度通常爲10〜50000ppm。由於該排 氣中所含的六氟化硫之濃度較低,此等處理大多試行流動 成本較便宜的分解。 以往使六氟化硫等之氟化硫分解處理的方法例如開發有 藉由導入含有氟化硫之排氣在使用氫、甲烷、丙烷等之燒 結爐的火焰中予以燃燒的方法,或在含有氟化硫之排氣中 添加空氣或氧或空氣或含有氧與水分之混合氣體予以加熱 1226261 五、發明說明(2) 氧化的方法進行氟化硫分解。此外,使氟化硫等之氟化合 物在氧化鋁存在下,與分子狀氧接觸的方法(日本特開平 1 0 - 286434號公報),與在氧化鋁中載負有6A族、8族、 3 B族之金屬及硫酸、磷酸、硼酸等無機酸的分解處理觸媒 接觸的方法(特開平1 1 - 1 6 5 0 7 1號公報),在氧及水共存下 加熱至300〜1 000°C,使氧化鋁系觸媒及含二氧化矽混合 材混合所成的觸媒層通過之方法(特開2000- 1 5060號公報) 等。 發明所欲解決的問穎 然而,藉由燃燒的分解處理方法,由於必須在沒有氟化 硫分解處理下,於待機時必須維持燃燒狀態之能量成本高 ,必須處理生成的硫氧化物,會有大量二氧化碳放出的缺 點。添加空氣或氧予以加熱氧化的方解處理方法,必須加 熱至1000°C以上,且與燃燒法相同地必須處理生成的硫氧 化物。 使用氧化鋁作爲分解觸媒之氟化硫等氟化合物的分解處 理方法具有可在較低溫度下使氟化合物分解的優點。然而 ,於該分解處理方法中藉由氟化合物反應,在氧化鋁表面 上會有氟化鋁生成,且在短時間內分解觸媒失活的缺點產 生。而且,在氧化鋁中添加有金屬、無機酸、或二氧化矽 之分解處理觸媒以開發使分解觸媒之活性可維持長時間爲 目的者,惟分解對象之氟化合物爲氟化硫時,會有因硫氧 化物排出,必須於後段具備爲除去酸性氣體之裝置的缺點 1226261 五、發明說明 (3) 另 外 5 在水共存下進 行 氟 化硫之分解處理時, 可 提 iRj 分 解處 理 量 惟必須 於分 解 處 理後爲使硫氧化物及 氟 化 氫 排 出時 預 先在排氣 放出 大 氣 中、藉由濕式淨化裝 置 等 除 去 該物 外 9 白 分解處 理裝 置 排出的排氣由於高溫且 具 腐 鈾 性 ,會 有無法使用熱 交換 器 的 缺點。 因 此 本 發明爲 解決 該 問 題,一種氟化硫之分 解 處 理 劑 及分 解 處 理 方法, 可使 白 半 導體製造程序等排出的排 氣 中 所含的 SF6 等之氟 化硫 在 1 000°C以下之較低溫 度 下 , 以 99. 9%以上的分解率被分解 ,在短時間內不會使 分 解 處 理 劑失活 5 不 會排出 硫氧 化 物 、氟化氫等腐蝕性氣彳 體 〇 解決 間 題 的 手段 本 發 明 人 等爲解 決此 等 問 題、再三深入硏究的 結 果 發 現分 解 處 理 劑含有 鋁化合物 及鑭系化合物作爲有 效 成分 或者 分 解 處 理劑鋁 化合 物 鑭系化合物中含有鹼 土 類 金 屬 化合 物 作 爲 有效成分, 係 爲 可以解決上述問題之分 解 處 理 劑, 遂 而 達 成本發 明氟 化 硫 之分解處理劑。 而 且 本 發明人 等發 現 藉 由使含有氟化硫在加 熱 下 與 含 有氧 化 鋁 及 鑭系化合物 之 氧 化物作爲有效成分之 處 理 劑 接 觸, 或 與 在 該分解 處理 劑 中 含有鹼土類金屬化合 物 之 氧 化 物作 爲 有 效 成份之分解 處 理 劑接觸,可以解決上述 問 題 0 另外 藉 由 使含有 氟化 硫 在 加熱下與含有氧化鋁 作 爲 有 效 成分 之 處 理 劑接觸 後, 與 含有鑭系氧化物作爲有 -5 - 效 成分 之 1226261 五、發明說明(4) 處理劑接觸’或使含有氟化硫在加熱下與含有氧化鋁作爲 有效成分之處理劑接觸後,與含有鑭系氧化物作爲有效成 分之處理劑’與含有鹼土類金屬氧化物作爲有效成分之處 理劑接觸等’可以解決上述問題,遂而完成本發明之氟化 硫的分解處理方法。 換言之’本發明係有關一種氟化硫之分解處理劑,其特 徵爲含有鋁化合物及鑭系化合物爲有效成分。 而且’有關一種氟化硫之分解處理劑,其特徵爲含有鋁 化合物、鑭系化合物及鹼土類金屬化合物爲有效成分。 另外’本發明係有關一種氟化硫之分解處理方法,其特 徵爲使含有氟化硫之氣體在加熱下,與含有氧化鋁及鑭系 氧化物作爲有效成分之分解處理劑接觸,使氟化硫分解。 此外’本發明係有關一種氟化硫之分解處理方法,其特 徵爲使含有氟化硫之氣體在加熱下,與含有氧化鋁、鑭系 氧化物及鹼土類金屬之氧化物作爲有效成分之分解處理劑 接觸,以使氟化硫分解。 本發明係有關一種氟化硫之分解處理方法,其特徵爲使 含有氟化硫之氣體在加熱下與含有氧化鋁作爲有效成分之 處理劑接觸後,與含有鑭系氧化物作爲有效成分之處理劑 接觸,以使氟化硫分解。 而且,本發明係有關一種氟化硫之分解處理方法,其特 徵爲使含有氟化硫之氣體在加熱下與含有氧化鋁作爲有效 成分之處理劑接觸後’與含有鑭系氧化物作爲有效成分之 1226261 五、發明說明(5) 處理劑及含有鹼土類金屬作爲有效成分之氧化物的處理劑 接觸,以使氟化硫分解。 另外,本發明係有關一種氟化硫之分解處理方法,其特 徵爲使含有氟化硫之氣體在加熱下與含有氧化鋁作爲有效 成分之處理劑接觸後,與含有鑭系氧化物及鹼土類金屬之 氧化物作爲有效成分的處理劑接觸,以使氟化硫分解。 發明之實施形熊 本發明氟化硫之分解處理劑及分解處理方法可使用於氮 、氬氣、氨氣等氣體中所含的氟化硫之分解處理。 於本發明氟化硫之分解處理劑及分解處理方法中,分解 處理對象之氟化硫例如一氟化硫(s2f2)、二氟化硫(SF2)、 四氟化硫(SF4)、五氟化硫(SF5)、六氟化硫(sf6)。 本發明氟化硫之分解處理劑係爲含有以氧化鋁、氫氧化 鋁等之鋁化合物、氧化鑭、氧化鈽、氫氧化鈽、碳酸鈽等 鑭系化合物作爲有效成分的分解處理劑,或含有以上述鋁 化合物、鑭系化合物、與氧化鎂、氧化鈣、氫氧化鈣、碳 酸鈣等之鹼土類金屬化合物作爲有效成分之分解處理劑。 本發明氟化硫之分解處理方法係有使含有氟化硫之氣體 在加熱下,與含有以氧化鋁及鑭系氧化物作爲有效成分的 分解處理劑,或含有以氧化鋁、鑭系氧化物、及鹼土類金 屬化合物之氧化物作爲有效成分的分解處理劑接觸,使氟 化硫分解的分解處理方法。 另外,本發明氟化硫之分解處理方法有使含有氟化硫之 1226261 五、發明說明(6) 氣體在加熱下,與含有以氧化鋁作爲有效成分之處理劑接 觸後’與含有以鑭系氧化物作爲有效成分之處理劑接觸, 使氟化硫分解的分解處理方法。 此外’本發明氟化硫之分解處理方法亦有使含有氟化硫 之氣體在加熱下,與含有以氧化鋁作爲有效成分之處理劑 接觸後’與含有以鑭系氧化物作爲有效成分之處理劑及含 有以鹼土類金屬之氧化物作爲有效成分之處理劑接觸,使 氟化硫分解的分解處理方法。 而且’本發明氟化硫之分解處理方法亦有使含有氟化硫 之氣體在加熱下,與含有以氧化鋁作爲有效成分之處理劑 接觸後’與含有以鑭系氧化物及鹼土類金屬之氧化物作爲 有效成分之處理劑接觸,使氟化硫分解的分解處理方法。 本發明氟化硫之分解處理劑係爲含有以鋁化合物及鑭系 化合物作爲有效成分者,或含有以鋁化合物、鑭系化合物 、及鹼土類金屬化合物作爲有效成分者。惟鋁化合物、鑭 系化合物、鹼土類金屬化合物中除各氧化物外時,使氟化 硫分解處理之溫度或其附近溫度分解,各以使用容易形成 鑭系氧化物、鹼土類金屬之氧化物、氧化鋁的化合物較佳 〇 本發明所使用的鋁化合物例如氧化鋁、氫氧化鋁等。 興化銘以具有錦平均細孔直徑爲5 0〜2 Ο Ο A細孔者較佳 ’其中以γ-氧化鋁更佳。若使用具有平均細孔直徑小於 5〇人細孔之氧化鋁或具有平均細孔直徑大於200人細孔之 1226261 五、發明說明(7) 氧化鋁時,恐會產生氟化硫之分解率降低的問題。而且, 以比表面積爲1 〇〇m2 / g以上之氧化鋁較佳。氧化鋁之純度 以99%以上較佳,更佳者爲99. 9%以上。 而且,氫氧化鋁以勃姆石較佳。 本發明所使用的鑭系氧化物例如氧化鑭、氧化鈽、氧化 鐯、氧化鈸、氧化釤、氧化銪、氧化鎵、氧化铽、氧化鏑 、氧化鈥、氧化餌、氧化錶、氧化鏡、氧化釕。 此外,除上述氧化物外鑭系化合物例如鑭系之氫氧化物 、碳酸鹽、硫酸鹽、硝酸鹽、有機酸鹽等,就可容易轉換 成氧化物而言以氫氧化物、碳酸鹽或硝酸鹽較佳,就不會 排出有害氣體而言以使用氫氧化物或碳酸鹽更佳。 鑭系之氫氧化物例如氫氧化鑭(包含一水合物)、氫氧化 鈽(包含五水合物、八水合物、九水合物)、氫氧化鐯(包 含八水合物)、氫氧化銨(包含八水合物)、氫氧化釤。而 且,鑭系之碳酸鹽例如碳酸鑭、碳酸铈、碳酸鐯、碳酸銨 、碳酸釤。 此等鑭系化合物中就容易得手而言以鑭、姉、鐯、鈸、 釤、或銪之化合物較佳。而且,此等之鑭系化合物可以單 獨使用或2種以上倂用。例如含有2種以上鑭系之金屬的 「米西(譯音)金屬」爲市售品,故使用它可以調製本發明 氟化硫之分解處理劑。 本發明所使用的鹼土類金屬之氧化物例如氧化鈹、氧化 鎂、氧化鈣、氧化緦、氧化鋇,惟氧化鈹之昇華開始溫度 1226261 五、發明說明(8) 爲800°C、氧化鋇具有毒性,故以使用氧化鎂、氧化鈣、 或氧化緦較佳。 另外,除上述外之鹼土類金屬化合物例如鹼土類金屬之 氫氧化物、碳酸鹽、硫酸鹽、硝酸鹽、有機酸鹽等,就可 容易轉換成氧化物而言以氫氧化物、碳酸鹽、或硝酸鹽較 佳,其中就不會排出有害氣體而言以使用氫氧化物或碳酸 鹽更佳。而且,藉由與上述相同的理由,以使用鎂、鈣、 或緦之化合物較佳。 而且,此等之鹼土類金屬化合物可以單獨使用或2種以 上倂用。 本發明氟化硫之分解處理劑,通常藉由使各有效成分混 合後,使該混合物造粒調製,或藉由使各有效成分個別造 粒後,使此等造粒物混合、調製。然而,含有3成分作爲 有效成分之分解處理劑時,例如鋁化合物之造粒物與鑭系 化合物及鹼土類金屬化合物混合,造粒者混合予以調製, 或使鋁化合物與殘留的一種有效成分混合成造粒物,與殘 留的另一種有效成分之造粒物予以調製。 於任一分解處理劑之調製方法中,分解處理劑所含的鋁 之原子數與鑭系之原子數及鹼土類金屬化合物之合計原子 數的原子數比,通常爲1:0.1〜10,較佳爲1:0.2〜5·0 下予以調製。而且,分解處理劑中所含的鑭系之原子數與 鹼土類金屬化合物之原子數係鑭系之原子數愈多時可提高 分解處理能力(對分解處理劑單位量而言氟化硫之分解處 -10- 1226261 五、發明說明(9) 理量)’且其比(鑭系之原子數:鹼土類金屬化合物之原子 數)通常爲(1 : 2以下),較佳爲(2 : 1以下)予以調製。此 外’於上述任一週製方法中,通常直徑爲〇.1〜20mm,較 佳者爲1〜1 0mm之球狀、類似的形狀,或相當大小及形狀 下造粒予以調製。 而且,本發明氟化硫之分解處理劑爲提高造粒時之成型 性或成型強度時,除有效成分外亦可以添加黏合劑。該黏 合劑例如聚乙烯醇、聚乙二醇、聚丙二醇、甲基纖維素、 羧基甲基纖維素等有機系黏合劑、二氧化矽、矽藻土、矽 酸鈉、硫酸氫鈉等之無機系黏合劑。添加此等之黏合劑時 ,於調製淨化劑時添加於有效成分中予以混練。黏合劑之 添加量係視成型條件而不同,沒有特定,若過少時無法得 到作爲黏合劑之效果,若過多時會降低分解處理能力,通 常對分解處理劑全部重量而言爲0.1〜l〇wt%,較佳者爲 0 . 5 〜5 w t % 〇 此外’在分散處理劑中亦可以在不會對氟化硫分解產生 不良影響的雜質、惰性物質。而且,使用前之分散處理劑 可以含有水分,以不含者較佳,通常分散處理劑之水分調 製爲2wt%以下。因此,於使有效成分造粒時以藉由粒料成 型予以造粒較佳。另外,即使含有此等黏合劑、雜質、惰 性物質、水分等,分散處理劑中之有效成分含量通常爲 70wt%以上,較佳者爲90wt%以上。 其次’以第1圖〜第6圖爲基準詳細說明本發明氟化硫 -11- 1226261 五、發明說明(1〇) 之分散處理方法,惟本發明不受此等所限制。 本發明氟化硫之分散處理方法中第1形態係爲使含有氟 化硫之氣體在加熱下,與含有氧化鋁及鑭系之氧化物作爲 有效成分之分散處理劑接觸,使氟化硫分散的方法,第1 圖係爲該分解處理裝置例之截面圖。 本發明氟化硫之分散處理方法中第2形態係爲使含有氟 化硫之氣體在加熱下,與含有氧化鋁、鑭系之氧化物及鹼 土類金屬之氧化物作爲有效成分之分散處理劑接觸,使氟 化硫分散的方法’第2圖係爲該分解處理裝置例之截面圖 〇 藉由第1形態或第2形態實施氟化硫之分解時,通常使 用上述本發明之分散處理劑。而且,氧化鋁化合物、鑭系 化合物、鹼土類金屬化合物各使用除氧化物外者時,使氟 化硫分散處理之溫度或其附近之溫度下分解,各以使用容 易形成鑭系之氧化物、鹼土類金屬之氧化物、氧化鋁之化 合物較佳。 藉由第1形態實施氟化硫之分解處理時,於進行分散處 理前,在分散處理裝置中例如第1 ( A )圖所示塡充由使鋁化 合物及鑭系化合物混合、造粒的造粒物4所成分散處理劑 ,或如第1(B)圖所示塡充由使鋁化合物之造粒物1及鑭系 化合物之造粒物2混合所成的分解處理劑。 藉由第2形態實施氟化硫之分解處理時,於進行分散處 理前,在分散處理裝置中例如第2(A)圖所示塡充由使鋁化 -12- 1226261 五、發明說明(11) 合物、鑭系化合物、及鹼土類金屬化合物混合、造粒的造 粒物5所成分散處理劑,或如第2(B)圖所示塡充由使鋁化 合物之造粒物1、鑭系化合物之造粒物2、及鹼土類金屬 化合物之造粒物3混合所成的分解處理劑,或如第2(C)圖 所示塡充由使鋁化合物之造粒物1、鑭系化合物及鹼土類 金屬化合物之造粒物6混合所成的分解處理劑。 另外,藉由第1形態或第2形態實施氟化硫之分解時’ 除使用如第2圖所示分解裝置使分散處理劑固定外,可使 用移動床、流動床。例如,在失活的分散處理劑自設置於 分散處理裝置下部的分散處理劑排出口排出,且自設於分 散處理裝置上部之分散處理劑供應口供應新穎的分散處理 劑給反應系之構成,可以在更長時間下連續實施氟化硫之 分解處理。 本發明氟化硫之分散處理方法中第3形態係爲使含有氟 化硫之氣體在加熱下,與含有氧化鋁作爲有效成分之處理 劑接觸後,與含有鑭系之氧化物作爲有效成分之處理劑接 觸,使氟化硫分散的方法,第3圖係爲該分解處理裝置例 之截面圖。 藉由第3形態實施氟化硫之分解處理時,通常使用鋁化 合物之造粒物及鑭系化合物之造粒物。例如於進行分散處 理前,在分散處理裝置中例如第3圖所示塡充由使鋁化合 物造粒物1所成的處理劑及由鑭系化合物造粒物2所成分 散處理劑積層而成。而且,於本發明中以此等2處理劑層 -13- 1226261 五、發明說明(12) 爲1單位層’可使單數或複數單位層積層進行分解處理。 第3圖係爲積層3單位層所構成者。 本發明氟化硫之分散處理方法中第4形態係爲使含有氟 化硫之氣體在加熱下,與含有氧化鋁作爲有效成分之分散 處理劑接觸後,與含有鑭系氧化物作爲有效成分之處理劑 及含有鹼土類金屬之氧化物作爲有效成分之處理劑接觸, 使氟化硫分散的方法,第4圖係爲該分解處理裝置例之截 面圖。而且,於本發明中有關使處理對象氣體與含有鑭系 之氧化物作爲有效成分之處理劑,含有鹼土類金屬之氧化 物作爲有效成分之處理劑接觸的順序,沒有特別的限制。 藉由第4形態實施氟化硫之分解處理時,通常使用鋁化 合物之造粒物、鑭系化合物之造粒物、及鹼土類金屬化合 物之造粒物。例如於進行分散處理前,在分散處理裝置中 例如第4 ( A )圖所示積層由鋁化合物之造粒物1所成的處理 劑、由鑭系化合物之造粒物2所成的處理劑,及由鹼土類 金屬化合物之造粒物3所成的處理劑。此外,於本發明中 以此等3處理劑層爲1單位層,可使單數或複數單位層積 層以進行分散處理。 本發明氟化硫之分散處理方法中第5形態係爲使含有氟 化硫之氣體在加熱下,與含有氧化鋁作爲有效成分之處理 劑接觸後,與含有鑭系之氧化物及鹼土類金屬之氧化物作 爲有效成分之處理劑接觸,使氟化硫分散的方法,第5圖 係爲該分解處理裝置例之截面圖。 -14- 1226261 五、發明說明(13) 藉由第5形態實施氟化硫之分解處理時,通常使用鋁化 合物之造粒物爲含有鋁化合物作爲有效成分之處理劑,使 鑭系化合物及鹼土類金屬化合物混合、造粒物,或使鑭系 化合物之造粒物與鹼土類金屬化合物之造粒物混合物爲含 有鑭系之氧化物與鹼土類金屬之氧化物作爲有效成分之處 理劑。例如於進行分散處理前,在分散處理裝置中例如第 5 ( A )圖所示塡充由使鋁化合物之造粒物1所成的處理劑, 由鑭系化合物及鹼土類金屬化合物之混合造粒物6所成的 處理劑積層,或如第5 ( B )圖所示使由鋁化合物之造粒物1 所成的處理劑,由鑭系化合物之造粒物2與鹼土類金屬化 合物之造粒物3所成的處理劑積層。另外,於本發明中可 以此等2處理劑層爲1單位層,積層單數或複數單位層積 層,進行分散處理。 而且,第3形態、第4形態、第5形態,亦與第1形態 、第2形態時相同各使用除氧化物外之物作爲鋁化合物、 鑭系化合物、鹼土類金屬化合物時,以使用使氟化硫分散 處理之溫度或其附近溫度下分散,各容易形成鑭系之氧化 物、鹼土類金屬之氧化物、氧化鋁所成的化合物較佳。此 等之鋁化合物、鑭系化合物、鹼土類金屬化合物,各與上 述本發明之分散處理劑中之鑭系化合物、鹼土類金屬化合 物、鋁化合物相同者。而且,各造粒物之大小、形狀、調 製方法、有效成分之含量、雜質等亦與本發明之分散處理 劑相同。 -15- 1226261 五、發明說明(14) 於本發明中,分散處理裝置之形狀通常爲圓筒型,大小 通常爲內徑10〜500mm、長度爲20〜2000mm。分散處理裝 置中所塡充的分散處理劑之塡充長度通常爲10〜1 000mm、 較佳者爲50〜500mm。分散處理劑之塡充長度爲10mm以下 時氟化硫之分解不充分,爲1 000mm以上時壓力損失變大 。而且,處理劑之各層厚度通常爲2〜200mm。爲使分散處 理裝置加熱時之手段通常如第1圖〜第5圖所示之分散處 理裝置外側上設置加熱器,藉由外部之控制裝置以控制溫 度。 於本發明氟化硫之分散處理中,進行分散處理時亦可添 加空氣等之含氧氣體、水、水蒸氣、或此等之混合物,即 使沒有添加此等,仍可使氟化硫分解。然而,氟化硫爲 sf6以外時,在沒有添加任何物下,或僅添加水、水蒸氣 進行分散處理時,由於硫氧化物排出或硫析出的問題,以 進行分散處理時添加氧較佳。 本發明使丨?6藉由含有氧化鋁、氧化鑭、及氧化鈣作爲 有效成分之分散處理劑,在沒有氧及水蒸氣共存下進行分 散處理時,推測會引起下述(式1)〜(式5)之反應。而且 ,使除SF6外之氟化硫例如使SF4藉由含有氧化鋁、氧化 鑭、及氧化鈣作爲有效成分之分散處理劑,在氧共存下進 行分散時,推測會引起下述(式6 )〜(式1 0 )之反應。另外 ,使SF6藉由含有氧化鋁、氧化鑭及氧化鈣作爲有效成分 之分散處理劑,在有氧及水蒸氣共存下進行分散處理時, -16- 1226261 五、發明說明(15)推測會引起下述(式1 1 )〜(式2 1 )之反應。【化1】 A I 2 〇 3 + S F 6 — 2 A I F 3 + S Ο 3 (式 1) 2 A I F 3 + L a 2 Ο 3 — AI2〇3+2LaF3 (式 2) 2AIF3+3Ca〇—A I 2 Ο 3 + 3 C a F 2 (式 3) 3 S Ο 3 + L a 2 Ο 3 — L a 2 ( S O 4 ) 3 (式 4) S O 3 + C a O — C a S O 4 (式 5) 【化2】 '4AI2〇3+6SF4+302 一 8AIF3 + 6S〇3 (式 6) 2A I F3+La203 — A I 203+2LaF3 (式 7) 2AI F3+3Ca〇—A I 2 O 3 + 3 C a F 2 (式 8) 3S〇3+La2〇3 ~^ La2 (S04) 3 (式 9) S 6 3 + C a O — CaS〇4 (式 10) 【化3】 A I 2 〇 3 + S F 5 — 2 A I F 3 + S O 3 (式 11) 2 A I F 3 + L a 2 O 3 — A I 2 O 3 + 2 L a F 3 (式 12) 2AlF3+3Ca〇—A I 2 O 3 + 3 C a F 2 (式 13) 2A I F3+3H20 一 A I 2 O 3 + 6 H F (式 14) 3S03+La2〇3 — L a 2 (S04) 3 (式 15) S O 3 + C a O — C a S O 4 (式 16) 5 O 3 + H 2 O — H2S〇4 (式 17) 6 H F + L a 2 O 3 一 2LaF3+3H20 (式 18) 2 H F + C a O — C a F 2 + Η 2 O (式 19) 3H2S04+La203 — La2(S04)3 + 3H2〇(式 2〇) H 2 S O 4 + C a O — CaS〇4 + H2〇 (式 2.1) -17- 1226261 五、發明說明(16) 換言之,藉由本發明進行氟化硫之分解時,在氧化鋁表 面上藉由與氟化硫反應生成氟化鋁,使氟化鋁直接與鑭系 氧化物、鹼土類金屬之氧化物反應,使氧化鋁再生,或氟 固定於鑭系、鹼土類金屬上,藉由氟使氧化鋁之惡化控制 於最小限,故可在長時間內連續使氟化硫分解處理。而且 ,由上述反應式可知,在分解處理劑中含有比鹼土類金屬 化合物較多的鑭系化合物,可提高分解處理能力(對分解 處理劑單位而言氟化硫之分解處理量)。 另外,於氟化硫分解時生成的硫氧化物,與鑭系之氧化 物、鹼土類金屬之氧化物反應,予以固定。此時,與氧共 存時,氟化硫即使爲除sf6外之物,仍可防止硫氧化物排 出及硫析出。此外,與水蒸氣共存時,水蒸氣與氟化鋁反 應,使氧化鋁再生,惟此時由於氧化鋁之活性點再生率較 鑭系之氧化物、鹼土類金屬之氧化物時更佳,且可長時間 下分解處理。此時,產生的腐蝕性氣體之氟化氫,直接與 鑭系氧化物、鹼土類金屬之氧化物反應,被固定爲氟化物 ,故無法自分解處理裝置排出該腐蝕性氣體。而且,本發 明第3形態、第4形態、第5形態之氟化硫的分解處理方 法中使水蒸氣共存時,藉由HF可以防止下層部之氧化鋁 失活。 氟化硫與分解處理劑接觸時之溫度係視氟化硫之種類、 濃度、流量等而不同,無法一槪而論,通常爲300〜 1 000°C。若分解溫度小於300°C時氟化硫之分解率低,而 -18- 1226261 五、發明說明(17) ^ ^:於100(TC時會有要求對分解處理裝置而言耐熱性高的 才才料的問題。而且,使氟化硫分解處理時之壓力,通常亦 可以常壓進行,在lKpa下減壓或0.2MPa(絕對壓力)之加 壓下進行。 本發明中含有氟化硫之氣體流速沒有特別的限制,一般 而言氣體中所含的氟化硫之濃度愈高,流速愈小愈佳。因 此’分解處理裝置係視氟化硫之種類、濃度等而設計,通 常使空筒基準線速度(LV)在50cm/sec以下之範圍內。 第6圖係爲實施本發明氟化硫之分解處理方法時之分解 處理系統例的構成圖。 第6圖之氟化硫分解處理系統中,於含有硫之氣體、氧 及/或水蒸氣各自氟化硫導入管9、氧及/或水蒸氣導入管 1 〇導入氟化硫之分解處理裝置中,使氟化硫分解處理後, 自分解氣體之排出管14排出。而且,藉由本發明之第一 形態進行SF6之分解處理時,在沒有使用氧及/或水蒸氣導 入管1 0下仍可進行分解處理。 於本發明中,由於沒有排出腐蝕性氣體,如第6圖所示 可使含有分解處理前之氟化硫與分解處理後之氣體藉由熱 交換器11予以熱交換。而且,不需設置爲淨化硫氧化物 、氟化氫等之腐蝕性氣體的裝置。 實施例 於下述中藉由實施例等更具體地說明本發明,惟本發明 不受此等所限制。 -19 - 1226261 五、發明說明(18) 實施例1 (分解處理劑之調製) 使市售的氧化鋁觸媒(平均細孔直徑130A,純度99.9%) 粉碎至ΙΟΟμιη以下者,與市售的氧化鑭粉末(純度99%)以 原子數比(A1 : La)爲1 : 2混合。使混合物置於內徑20mm 、高度5mni之模具後,使用油壓套管,以150〜160kg/cm2 之壓力加壓30秒鐘予以成型所得的劑破碎,且藉由篩通 過3 . 36mm目之開口,不通過2.00mm目之開口者作爲分解 處理劑。 (分解處理試驗) 使上述分解處理劑塡充於內徑42mm、長度1000mm之 SUS316L製之分解處理裝置內部,·以第1(A)圖所示之構成 ,塡充長度300mm予以塡充。使分解處理裝置之處理劑溫 度加熱至800°C後,將含有SF6(流量10ml/min)之氮(合計 流量877ml/min)導入分解處理裝置,且使水蒸氣(流量 73ml/min)及氧(流量50ml/min)導入分解處理裝置,使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT_IR(菲力變換紅外線分光光度 計)及GC-TCD(熱傳導度檢測器)進行SF6之分析,測定直 至SF6之分解率爲99.9%以下之時間,求取對1L分解處理 劑而言SF6之分解處理量(L )(分解處理能力),且藉由檢知 管((股)氣體迪克(譯音)製)觀察有無HF排出,有無硫氧 -20- 1226261 五、發明說明(19) 化物排出。結果如表1所示。 實施例2、3 除調製實施例1之分解處理劑中使氧化鋁與氧化鑭之混 合比各以1 : 6、1 : 1混合外,與實施例1相同地調製分 解處理劑。使用此等分解處理劑與實施例1相同地進行氟 化硫之分解處理試驗。結果如表1所示。 實施例4、5 除調製實施例1之分解處理劑中使SF6之濃度各改爲 0.2%、2.0%外,與實施例1相同地進行氟化硫之分解處理 試驗。結果如表1所示。 實施例6 除調製實施例1之分解處理劑中使氟化硫改爲SF4外, 與實施例1相同地進行氟化硫之分解處理試驗。結果如表 1所示。 實施例7、8 除調製實施例1之分解處理劑中使氧化鑭各以氫氧化鑭 、碳酸鑭取代外,與實施例1相同地調製分解處理劑。使 用此等分解處理劑與實施例1相同地進行氟化硫之分解處 理試驗。結果如表1所示。 實施例9 除調製實施例1之分解處理劑中導入分解處理裝置之氣 體由含有SF6(流量lOml/min)之氮(合計流量1000ml/min) 取代外,與實施例1相同地進行氟化硫之分解處理試驗。 -21 - 1226261 五、發明說明(2〇) 結果如表1所示。 實施例10 除調製實施例1之分解處理劑中導入分解處理裝置之氣 體由含有SF6(流量10ml/min)之氮(合計流量950ml/min) 及氧(流量5 Om 1 / m i η取代外,與實施例1相同地進行氟化 硫之分解處理試驗。結果如表1所示。 實施例11 除調製實施例1之分解處理劑中導入分解處理裝置之氣 體由含有SF6(流量10ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量73ml/mi η)取代外,與實施例1相同地進行 氟化硫之分解處理試驗。結果如表1所示。 實施例1 2 (分解處理劑之調製) 使用市售的氧化鋁觸媒(平均細孔直徑1 3 0 A,純度 99 · 9%,粒徑2〜3mm)作爲氧化鋁之造粒物。使市售的氧化 鑭粉末(純度99%)置於內徑20mm、高度5mm之模具後,使 用油壓套管,以150〜160kg/cm2之壓力加壓30秒鐘予以 成型所得的劑破碎,且藉由篩通過3.3 6mm目之開口,不 通過2.00mm目之開口者作爲氧化鑭之造粒物。使此等以 原子數比(A 1 : La )爲1 : 2混合,製得分解處理劑。 (分解處理試驗) 使上述分解處理劑塡充於內徑42mm、長度1000mm之 SUS316L製之分解處理裝置內部,以第1(B)圖所示之構成 -22- 1226261 五、發明說明(21) ,填充長度300mm予以塡充。使分解處理裝置之處理劑溫 度加熱至800°C後,將含有SF6(流量10ml/min)之氮(合計 流量87 7ml/mi η)導入分解處理裝置’且使水蒸氣(流量 73ml/niin)及氧(流量50ml/min)導入分解處理‘置’使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT-IR及GC-TCD進行SF6之分析 ,測定直至SF6之分解率爲99.9%以下之時間’求取對1L 分解處理劑而言SF6之分解處理量(L )(分解處理能力)’且 藉由檢知管觀察有無HF排出’有無硫氧化物排出。結果 如表1所示。 實施例1 3、1 4 除調製實施例1 2之分解處理劑中使氧化鋁之造粒物與 氧化鑭之造粒物的混合比各以1 : 6、1 : 1混合外’與實 施例1 2相同地調製分解處理劑。使用此等分解處理劑與 實施例1 2相同地進行氟化硫之分解處理試驗。結果如表2 所示。 實施例1 5、1 6 除調製實施例1 2之分解處理劑中使SF6之濃度各改爲 0 · 2%、2 · 0%外,與實施例1 2相同地進行氟化硫之分解處 理試驗。結果如表2所示。 實施例17 除調製實施例1 2之分解處理劑中使氟化硫改爲SF4外, -23- 1226261 五、發明說明(22) 與實施例1相同地進行氟化硫之分解處理試驗。結果如表 2所示。 實施例1 8、1 9 除調製實施例1 2之分解處理劑中使氧化鑭各以氫氧化 鑭、碳酸鑭取代外,與實施例1 2相同地調製分解處理劑 。使用此等分解處理劑與實施例1 2相同地進行氟化硫之 分解處理試驗。結果如表2所示。 實施例20 除調製實施例12之分解處理劑中導入分解處理裝置之 氣體由含有 SF6(流量 10ml/min)之氮(合計流量 1 000ml/min)取代外,與實施例12相同地進行氟化硫之分 解處理試驗。結果如表2所示。 實施例21 除調製實施例1 2之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量10ml/min)之氮(合計流量950ml/min) 及氧(流量50ml/min取代外,與實施例12相同地進行氟 化硫之分解處理試驗。結果如表2所示。 實施例22 除調製實施例1 2之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量10ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量7 3 m 1 / m i η )取代外,與實施例1 2相同地進 行氟化硫之分解處理試驗。結果如表2所示。 實施例23 -24- 1226261 五、發明說明(23) (分解處理劑之調製) 使市售的氧化鋁觸媒(平均細孔直徑130A,純度99.9%) 及氧化鈣粒(純度99%)各粉碎至10 Ομπι以下者,與市售的 氧化鑭粉末(純度99%)以原子數比(A1 : La : Ca)爲5 : 9 : 1混合。使混合物置於內徑20mm、高度5mm之模具後,使 用油壓套管,以150〜160kg/cm2之壓力加壓30秒鐘予以 成型所得的劑破碎,且藉由篩通過3 · 36mm目之開□,不 通過2 · 00mm目之開口者作爲分解處理劑。 (分解處理試驗) 使上述分解處理劑塡充於內徑42mm、長度1 000mm之 SUS316L製之分解處理裝置內部,以第2(A)圖所示之構成 ,塡充長度300ππώ予以塡充。使分解處理裝置之處理劑溫 度加熱至800T:後,將含有SF6(流量l〇ml/min)之氮(合計 流量877ml/min)導入分解處理裝置,且使水蒸氣(流量 73ml/min)及氧(流量50ml/min)導入分解處理裝置,使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT-IR及GC-TCD進行SF6之分析 ,測定直至SF6之分解率爲99. 9%以下之時間,求取對1L 分解處理劑而言SF6之分解處理量(L)(分解處理能力),且 藉由檢知管((股)氣體迪克(譯音)製)觀察有無HF排出, 有無硫氧化物排出。結果如表3所示。 實施例24、25 -25 - 1226261 五、發明說明(24) 除調製實施例23之分解處理劑中使氧化鋁與氧化鑭之 混合比各以2 : 9 : 1、10 : 9 : 1混合外,與實施例2 3相 同地調製分解處理劑。使用此等分解處理劑與實施例23 相同地進行氟化硫之分解處理試驗。結果如表3所示。 實施例26、27 除調製實施例23之分解處理劑中使SF6之濃度各改爲 0.2%、2.0%外,與實施例23相同地進行氟化硫之分解處 理試驗。結果如表3所示。 實施例28 除調製實施例23之分解處理劑中使氟化硫改爲SF4外, 與實施例23相同地進行氟化硫之分解處理試驗。結果如 表3所示。 實施例29, 30 除調製實施例2 3之分解處理劑中使氧化鈣各以氧化鎂 、氧化緦取代外’與實施例23相同地調製分解處理劑。 使用此等分解處理劑與實施例23相同地進行氟化硫之分 解處理試驗。結果如表3所示。 實施例31 除調製實施例23之分解處理劑中導入分解處理裝置之 氣體由q有SF6(流量l〇ml/min)之氮(合計流量 1 000ml/min)取代外,與實施例23相同地進行氟化硫之分 解處理試驗。結果如表3所示。 實施例32 -26- 1226261 五、發明說明(25) 除調製實施例23之分解處理劑中導入分解處理裝置之 热體由含有SF6(流里10ml/min)之氣(合計流量950ml/min) 及學< (流重5 0 m 1 / in i η取代外’與貫施例2 3相同地進行氯 化硫之分解處理試驗。結果如表3所示。 實施例33 除調製實施例2 3之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量10ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量7 3 m 1 / m i η )取代外,與實施例2 3相同地進 行氟化硫之分解處理試驗。結果如表3所示。 實施例34 (分解處理劑之調製) 使用市售的氧化鋁觸媒(平均細孔直徑1 30Α,純度 99 . 9%,粒徑2〜3mm )作爲氧化鋁之造粒物。而且使市售的 氧化鑭粉末(純度99%)置於內徑20mm、高度5mm之模具後 ,使用油壓套管,以150〜160kg/cm2之壓力加壓30秒鐘 予以成型所得的劑破碎,且藉由篩通過3 . 36mm目之開口 ,不通過2.00 mm目之開口者作爲氧化鑭之造物粒。另外 ,使市售的氧化鈣(純度99%)粉碎至ΙΟΟμίΏ以下後,與上 述相同地成型、破碎、篩分作爲氧化鈣之造粒物。此等以 原子數比(Al ·· La : Ca)爲5 : 9 : 1混合,製得分解處理劑 〇 (分解處理試驗) 使上述分解處理劑塡充於內徑42mm、長度1 000mm之 -27 - 1226261 五、發明說明(26) SUS 3 16L製之分解處理裝置內部,以第2(B)圖所示之構成 ,塡充長度300mm予以塡充。使分解處理裝置之處理劑溫 度加熱至800°C後,將含有SF6(流量l〇ml/min)之氮(合計 流量877ml/min)導入分解處理裝置,且使水蒸氣(流量 73ml/min)及氧(流量50ml/min)導入分解處理裝置,使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT-IR及GC-TCD進行SF6之分析 ,測定直至SF6之分解率爲99.9%以下之時間,求取對1L 分解處理劑而言SF6之分解處理量(L )(分解處理能力),且 藉由檢知管觀察有無HF排出,有無硫氧化物排出。結果 如表1所示。 實施例35、36 除調製實施例34之分解處理劑中各以原子數比(A1 : La :C a)爲2 : 9 : 1、10 ·· 9 : 1混合外,與實施例3 4相同地 調製分解處理劑。使用此等分解處理劑與實施例34相同 地進行氟化硫之分解處理試驗。結果如表4所示。 實施例37、38 除調製實施例34之分解處理劑中使SF6之濃度各改爲 0.2%、2.0%外,與實施例34相同地進行氟化硫之分解處 理試驗。結果如表4所示。 實施例39 除調製實施例34之分解處理劑中使氟化硫改爲SF4外, -28 - 1226261 五、發明說明(27) 與實施例34相同地進行氟化硫之分解處理試驗。結果如 表4所示。 實施例40,41 除調製實施例34之分解處理劑中使氧化鈣各以氧化鎂 、碳酸緦取代外,與實施例34相同地調製分解處理劑。 使用此等分解處理劑與實施例34相同地進行氟化硫之分 解處理試驗。結果如表4所示。 實施例42 除調製實施例3 4之分解處理劑中導入分解處理裝置之 氣體由含有 SF6(流量 lOml/min)之氮(合計流量 1 000ml/min)取代外,與實施例34相同地進行氟化硫之分 解處理試驗。結果如表4所示。 實施例4 3 除調製實施例34之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量10ml/min)之氮(合計流量950ml/min) 及氧(流量50ml/mi η取代外,與實施例34相同地進行氟 化硫之分解處理試驗。結果如表4所示。 實施例4 4 除調製實施例34之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量10ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量73ml/min)取代外,與實施例34相同地進 行氟化硫之分解處理試驗。結果如表4所示。 實施例45 -29 - 1226261 五、發明說明(28) (分解處理劑之調製) 使用市售的氧化鋁觸媒(平均細孔直徑1 30 A,純度 9 9.9%,粒徑2〜3mm)作爲氧化鋁之造粒物。而且使市售的 氧化鈣(純度99%)粉碎至ΙΟΟμηι以下,與市售的氧化鑭粉 末(純度99%)以原子數比(La : Ca)爲9 : 1混合。使混合物 置於內徑20mm、高度5mm之模具後,使用油壓套管、以 150〜160kg/cm2之壓力加壓30秒鐘予以成型所得的劑破 碎,且藉由篩通過3.3 6mm目之開口,不通過2.00mm目之 開口者作爲混合物之造物粒。另外,使氧化鋁之造粒物, 與氧化鑭及氧化鈣之混合造粒物以原子數比(A1 : La : Ca) 爲5 : 9 : 1混合,製得分解處理劑。 (分解處理試驗) 使上述分解處理劑塡充於內徑42mm、長度1 000mm之 SUS316L製之分解處理裝置內部,以第2(C)圖所示之構成 ,塡充長度300mm予以塡充。使分解處理裝置之處理劑溫 度加熱至800°C後,將含有SF6(流量lOml/min)之氮(合計 流量8 7 7 m 1 / m i η )導入分解處理裝置,且使水蒸氣(流量 73ml/min)及氧(流量50ml/min)導入分解處理裝置,使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT-IR及GC-TCD進行SF6之分析 ,測定直至SF6之分解率爲99 · 9%以下之時間,求取對1L 分解處理劑而言SF6之分解處理量(l )(分解處理能力),且 -30 - 1226261 五、發明說明(29) 藉由檢知管觀察有無HF排出,有無硫氧化物排出。結果 如表5所示。 實施例46、47 除調製實施例45之分解處理劑中各以原子數比(A1 : La :Ca)爲2 ·· 9 : 1、10 : 9 : 1混合外,與實施例45相同地 調製分解處理劑。使用此等分解處理劑與實施例45相同 地進行氟化硫之分解處理試驗。結果如表5所示。 實施例48、49 除調製實施例45之分解處理劑中使SF6之濃度各改爲 0.2%、2.0%外,與實施例45相同地進行氟化硫之分解處 理試驗。結果如表5所示。 實施例50 除調製實施例45之分解處理劑中使氟化硫改爲SF4外, 與實施例45相同地進行氟化硫之分解處理試驗。結果如 表5所示。 實施例5 1、5 2 除調製實施例45之分解處理劑中使氧化鈣各以氧化鎂 、碳酸緦取代外,與實施例45相同地調製分解處理劑。 使用此等分解處理劑與實施例45相同地進行氟化硫之分 解處理§式驗。結果如表5所示。 實施例5 3 除調製實施例45之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量1226261 V. Description of the Invention (1) Technical Field The present invention relates to a decomposition treatment agent and a decomposition treatment method for sulfur fluoride. More specifically, it relates to a decomposition treatment agent capable of efficiently decomposing sulfur chloride such as sulfur hexachloride contained in exhaust gas discharged from a semiconductor manufacturing process and the like at a temperature lower than 1000C for a long time. And decomposition methods. In the prior art, sulfur hexafluoride was used to remove the etching gas of the dry etching device or the gas of the reaction chamber of the CVD device in the semiconductor manufacturing process. Sulfur hexafluoride is a very stable compound. It has a great impact on global warming, and it has an adverse effect on the environment when released in the atmosphere. Therefore, sulfur hexafluoride contained in the gas discharged from the semiconductor manufacturing process can be recovered or decomposed, and it is preferable to release it into the atmosphere. In the conventionally used sulfur hexafluoride (sf6) used as an etching gas or a reaction chamber scavenging gas, the carrier gas such as nitrogen, argon, and helium is usually excluded. Most of the above-mentioned sulfur hexafluoride Contains acid gases such as sulfur tetrafluoride (SF4), HF, F2, and SiF4 produced by the decomposition of sulfur hexafluoride. The concentration of sulfur hexafluoride contained in the exhaust gas is usually 10 to 50000 ppm. Due to the low concentration of sulfur hexafluoride in the exhaust gas, most of these treatments have been tested on the cheaper cost of decomposition. Conventionally, a method for decomposing sulfur fluoride such as sulfur hexafluoride has been developed by introducing a sulfur fluoride-containing exhaust gas and burning it in a flame of a sintering furnace using hydrogen, methane, propane, or the like. Sulfur fluoride is heated by adding air or oxygen or air or a mixed gas containing oxygen and moisture 1226261 5. Description of the invention (2) Oxidation method is used to decompose sulfur fluoride. In addition, a method in which a fluorine compound such as sulfur fluoride is brought into contact with molecular oxygen in the presence of alumina (Japanese Patent Application Laid-Open No. 10-286434), and alumina is loaded with Group 6A, Group 8, and 3 Group B metals and sulfuric acid, phosphoric acid, boric acid and other inorganic acids such as decomposition catalyst treatment method contact (Japanese Unexamined Patent Publication No. 1 1-1 6 5 0 7 1), heated to 300 ~ 1 000 ° in the coexistence of oxygen and water C, a method for passing a catalyst layer formed by mixing an alumina-based catalyst and a silicon dioxide-containing mixed material (Japanese Patent Laid-Open No. 2000-1 5060) and the like. The problem to be solved by the invention However, because of the decomposition method of combustion, since there must be no sulfur fluoride decomposition treatment, the energy cost of maintaining the combustion state during standby is high, and the generated sulfur oxides must be treated. Disadvantages of large amount of carbon dioxide emission. Addition of air or oxygen for heating and oxidizing the calcination treatment method must be heated to more than 1000 ° C, and the generated sulfur oxides must be treated in the same way as the combustion method. The decomposition treatment method of a fluorine compound such as sulfur fluoride using alumina as a decomposition catalyst has an advantage that the fluorine compound can be decomposed at a relatively low temperature. However, in this decomposition treatment method, by the reaction of fluorine compounds, aluminum fluoride is formed on the surface of alumina, and the disadvantages of deactivation of the decomposition catalyst in a short time are caused. In addition, a catalyst for decomposition treatment in which a metal, an inorganic acid, or silicon dioxide is added to alumina to develop a catalyst that can maintain the activity of the decomposition catalyst for a long time, but when the fluorine compound to be decomposed is sulfur fluoride, There will be disadvantages due to the discharge of sulfur oxides. A device for removing acid gases must be provided in the later stage. 1226261 5. Description of the invention (3) In addition, 5 When the sulfur fluoride decomposition treatment is performed in the coexistence of water, the amount of iRj decomposition treatment can be increased. After the decomposition treatment, in order to discharge sulfur oxides and hydrogen fluoride in the exhaust gas beforehand in the atmosphere and remove it by a wet purification device, etc. 9 The exhaust gas discharged from the white decomposition treatment device is high temperature and has rotten uranium. There is a disadvantage that the heat exchanger cannot be used. Therefore, in order to solve the problem, the present invention provides a sulfur fluoride decomposition treatment agent and a decomposition treatment method, which can make the sulfur fluoride of SF6 and the like contained in the exhaust gas discharged from the white semiconductor manufacturing process and the like less than 1 000 ° C. At low temperatures to 99.  A decomposition rate of 9% or more is decomposed, and the decomposition treatment agent is not deactivated in a short period of time. 5 It does not emit corrosive gaseous bodies such as sulfur oxides and hydrogen fluoride. Means to solve the problem The problem and the result of in-depth study revealed that the decomposition treatment agent contains aluminum compounds and lanthanide compounds as effective ingredients, or the decomposition treatment agent aluminum compounds and lanthanide compounds contain alkaline earth metal compounds as effective ingredients, which are decomposition treatments that can solve the above problems. Agent, and then reached the invention of sulfur fluoride decomposition treatment agent. Furthermore, the present inventors have discovered that by contacting sulfur fluoride-containing heat with a treatment agent containing an oxide of alumina and a lanthanide compound as an active ingredient, or by oxidizing an alkaline earth metal compound in the decomposition treatment agent As an effective ingredient, the decomposition treatment agent can be contacted to solve the above problem. 0 In addition, by contacting sulfur fluoride containing a heating agent with a treatment agent containing alumina as an active ingredient under heat, and contacting a lanthanum-based oxide as -5- 1226261 of the effective ingredients V. Description of the invention (4) Treatment agent contacting or contacting a treatment agent containing alumina as an active ingredient containing sulfur fluoride under heating, and a treatment agent containing a lanthanum oxide as an active ingredient ' Contact with a treatment agent containing an alkaline earth metal oxide as an active ingredient can solve the above-mentioned problems, and then complete the sulfur fluoride decomposition treatment method of the present invention. In other words, the present invention relates to a decomposition treatment agent for sulfur fluoride, which is characterized by containing an aluminum compound and a lanthanide compound as active ingredients. Further, a 'sulfur fluoride decomposition treatment agent' is characterized in that it contains an aluminum compound, a lanthanide compound, and an alkaline earth metal compound as active ingredients. In addition, the present invention relates to a method for decomposing and treating sulfur fluoride, which is characterized in that a gas containing sulfur fluoride is brought into contact with a decomposition treatment agent containing alumina and a lanthanum oxide as active ingredients under heating to make the fluoride Sulfur decomposition. In addition, the present invention relates to a method for decomposing and treating sulfur fluoride, which is characterized in that a gas containing sulfur fluoride is decomposed under heating with an oxide containing alumina, a lanthanum oxide, and an alkaline earth metal as an active ingredient. The treating agent is contacted to decompose sulfur fluoride. The present invention relates to a method for decomposing and treating sulfur fluoride, which is characterized by contacting a gas containing sulfur fluoride with a treatment agent containing alumina as an active ingredient under heating, and treating it with a lanthanide-based oxide as an active ingredient. Agent to contact sulfur fluoride. Moreover, the present invention relates to a method for decomposing and treating sulfur fluoride, which is characterized in that a gas containing sulfur fluoride is brought into contact with a treatment agent containing alumina as an active ingredient under heating, and the compound contains lanthanum oxide as an active ingredient. No. 1226261 V. Description of the invention (5) The treating agent and the treating agent containing an oxide of an alkaline earth metal as an active ingredient are contacted to decompose sulfur fluoride. In addition, the present invention relates to a method for decomposing and treating sulfur fluoride, which is characterized in that a gas containing sulfur fluoride is brought into contact with a treatment agent containing alumina as an active ingredient under heating, and is then contacted with a lanthanum-based oxide and alkaline earth. A metal oxide is contacted as a treating agent of an active ingredient to decompose sulfur fluoride. Embodiments of the invention Shape bear The decomposition treatment agent and decomposition treatment method for sulfur fluoride of the present invention can be used for the decomposition treatment of sulfur fluoride contained in nitrogen, argon, ammonia and other gases. In the decomposition treatment agent and decomposition treatment method for sulfur fluoride of the present invention, the sulfur fluoride to be decomposed and treated is, for example, sulfur monofluoride (s2f2), sulfur difluoride (SF2), sulfur tetrafluoride (SF4), pentafluoro Sulfur (SF5), sulfur hexafluoride (sf6). The decomposition treatment agent for sulfur fluoride of the present invention is a decomposition treatment agent containing an aluminum compound such as alumina, aluminum hydroxide, lanthanum oxide, ytterbium oxide, ytterbium hydroxide, ytterbium carbonate, etc. as an effective component, or The above-mentioned aluminum compound, lanthanide-based compound, and alkaline earth metal compounds such as magnesium oxide, calcium oxide, calcium hydroxide, calcium carbonate and the like are used as active ingredient decomposition treatment agents. The method for decomposing and treating sulfur fluoride according to the present invention includes heating a gas containing sulfur fluoride and a decomposition treatment agent containing alumina and lanthanum oxides as active ingredients, or containing alumina and lanthanum oxides. And a decomposition treatment method in which an oxide of an alkaline earth metal compound is contacted with a decomposition treatment agent as an active ingredient to decompose sulfur fluoride. In addition, the method for decomposing and treating sulfur fluoride of the present invention includes the method of making 1226261 containing sulfur fluoride. 5. Description of the invention (6) The gas is heated under contact with a treatment agent containing alumina as an active ingredient. A decomposition treatment method in which an oxide is used as a treatment agent for an active ingredient to decompose sulfur fluoride. In addition, the method for decomposing and treating sulfur fluoride of the present invention also includes a method in which a gas containing sulfur fluoride is brought into contact with a treatment agent containing alumina as an active ingredient under heating, and a treatment containing lanthanide-based oxide as an active ingredient. A decomposition treatment method in which an agent and a treatment agent containing an oxide of an alkaline earth metal as an active ingredient are brought into contact to decompose sulfur fluoride. In addition, the method for decomposing and treating sulfur fluoride of the present invention includes contacting a gas containing sulfur fluoride with a treatment agent containing alumina as an active ingredient under heating, and a method containing a lanthanum-based oxide and an alkaline earth metal. A decomposition treatment method in which an oxide is used as a treatment agent of an active ingredient to decompose sulfur fluoride. The decomposition treatment agent for sulfur fluoride of the present invention is one containing an aluminum compound and a lanthanide compound as an active ingredient, or one containing an aluminum compound, a lanthanide compound, and an alkaline earth metal compound as an active ingredient. However, when aluminum compounds, lanthanide compounds, and alkaline earth metal compounds other than each oxide are decomposed at or near the temperature of the sulfur fluoride decomposition treatment, each is used to easily form lanthanide oxides and alkaline earth metal oxides. Alumina compounds are preferred. The aluminum compounds used in the present invention are, for example, alumina and aluminum hydroxide. In Xinghua Ming, it is better to have pores with a mean pore diameter of 50 to 2 0 0 A. ’Among them, γ-alumina is more preferred. If an alumina with an average pore diameter of less than 50 pores or an average pore diameter of more than 200 pores of 1226261 is used. 5. Description of the invention (7) When alumina is produced, the decomposition rate of sulfur fluoride may be reduced. The problem. In addition, alumina having a specific surface area of 1,000 m 2 / g or more is preferable. The purity of alumina is preferably more than 99%, and more preferably 99.  9% or more. Furthermore, boehmite is preferred as the aluminum hydroxide. The lanthanide oxides used in the present invention include lanthanum oxide, ytterbium oxide, ytterbium oxide, ytterbium oxide, ytterbium oxide, ytterbium oxide, gallium oxide, ytterbium oxide, ytterbium oxide, oxidation, oxide bait, oxidation surface, oxide mirror, and oxide ruthenium. In addition, in addition to the above oxides, lanthanide compounds such as lanthanide hydroxides, carbonates, sulfates, nitrates, organic acid salts, and the like can be easily converted into oxides in the form of hydroxides, carbonates, or nitrates. Salts are preferred, and hydroxides or carbonates are more preferred as they do not emit harmful gases. Lanthanum hydroxides such as lanthanum hydroxide (including monohydrate), thorium hydroxide (including pentahydrate, octahydrate, and nonahydrate), thorium hydroxide (including octahydrate), and ammonium hydroxide (including Octahydrate), thorium hydroxide. In addition, lanthanide carbonates include, for example, lanthanum carbonate, cerium carbonate, thorium carbonate, ammonium carbonate, and thallium carbonate. Among these lanthanoid compounds, lanthanum, palladium, praseodymium, praseodymium, praseodymium, or praseodymium are preferred from the viewpoint of easy availability. These lanthanide compounds can be used alone or in combination of two or more. For example, "Missy metal" containing two or more lanthanoid metals is a commercially available product, and therefore, it can be used to prepare the sulfur fluoride decomposition treatment agent of the present invention. The oxides of alkaline earth metals used in the present invention are, for example, beryllium oxide, magnesium oxide, calcium oxide, hafnium oxide, and barium oxide, but the sublimation start temperature of beryllium oxide is 1226261. 5. Description of the invention (8) is 800 ° C, and barium oxide has Toxicity, it is better to use magnesium oxide, calcium oxide, or hafnium oxide. In addition, alkaline earth metal compounds other than the above, such as hydroxides, carbonates, sulfates, nitrates, organic acid salts, etc. of alkaline earth metals can be easily converted into oxides in terms of hydroxides, carbonates, Or nitrate is preferable, and among them, hydroxide or carbonate is more preferable in that no harmful gas is emitted. Further, for the same reason as above, it is preferable to use a compound of magnesium, calcium, or rhenium. These alkaline earth metal compounds can be used alone or in combination of two or more. The desulfurization treatment agent for sulfur fluoride of the present invention is generally prepared by mixing the active ingredients and granulating the mixture, or by granulating the active ingredients individually and then mixing and preparing the granules. However, when a decomposition treatment agent containing 3 ingredients as an active ingredient is used, for example, a granulated product of an aluminum compound is mixed with a lanthanide compound and an alkaline earth metal compound, and the granulator is mixed to prepare it, or the aluminum compound is mixed with a residual active ingredient The granulated material is prepared with the remaining granulated material of another active ingredient. In any method for preparing a decomposition treatment agent, the atomic ratio of the number of atoms of aluminum contained in the decomposition treatment agent to the number of atoms of the lanthanide series and the total number of atoms of the alkaline earth metal compound is usually 1: 0. 1 ~ 10, preferably 1: 0. Modulation is performed at 2 to 5.0. In addition, the more the number of lanthanide atoms and alkaline earth metal compounds in the decomposition treatment agent, the more the number of atoms in the lanthanide system can increase the decomposition treatment ability (decomposition of sulfur fluoride for the unit amount of the decomposition treatment agent). Division-10- 1226261 V. Explanation of the invention (9) Physical quantity) 'and its ratio (the number of atoms of the lanthanide series: the number of atoms of the alkaline earth metal compound) is usually (1: 2 or less), preferably (2: 1) Below) are modulated. In addition, in any one of the above-mentioned weekly methods, the diameter is usually 0. 1 ~ 20mm, more preferably 1 ~ 10mm spherical, similar shape, or granules of a certain size and shape for modulation. In addition, when the decomposition treatment agent for sulfur fluoride of the present invention is used to improve the moldability or molding strength during granulation, a binder may be added in addition to the active ingredient. Examples of the adhesive include organic adhesives such as polyvinyl alcohol, polyethylene glycol, polypropylene glycol, methyl cellulose, and carboxymethyl cellulose, and inorganic substances such as silica, diatomaceous earth, sodium silicate, and sodium hydrogen sulfate. Department of adhesive. When these adhesives are added, they are added to the active ingredients and kneaded when preparing the detergent. The addition amount of the binder is different depending on the molding conditions. It is not specific. If it is too small, the effect as a binder cannot be obtained. If it is too large, the decomposition treatment ability will be reduced. Usually, the total weight of the decomposition treatment agent is 0. 1 ~ l0wt%, preferably 0.  5 to 5 w t% 〇 In addition, in the dispersing treatment agent, impurities and inert substances that do not adversely affect the decomposition of sulfur fluoride can be used. In addition, the dispersing treatment agent before use may contain water, and it is preferred that the dispersing treatment agent does not contain it. Generally, the water content of the dispersing treatment agent is adjusted to 2% by weight or less. Therefore, when granulating the active ingredient, it is preferable to granulate by granulating. In addition, even if such binders, impurities, inert substances, moisture, etc. are contained, the content of the active ingredient in the dispersion treatment agent is usually 70% by weight or more, preferably 90% by weight or more. Secondly, the sulfur fluoride of the present invention will be described in detail on the basis of FIGS. 1 to 6 -11-12261261 5. Dispersion treatment method of the invention description (1), but the present invention is not limited by these. In the method for dispersing sulfur fluoride according to the present invention, the first aspect is that the sulfur fluoride-containing gas is brought into contact with a dispersing treatment agent containing alumina and lanthanide oxides as active ingredients under heating to disperse the sulfur fluoride. The first method is a sectional view of an example of the decomposition processing device. The second aspect of the sulfur fluoride dispersion treatment method of the present invention is a dispersion treatment agent in which a gas containing sulfur fluoride and an oxide containing alumina, a lanthanum oxide, and an alkaline earth metal oxide are used as active ingredients under heating. Method of contacting and dispersing sulfur fluoride 'The second figure is a cross-sectional view of an example of the decomposition treatment apparatus. When the decomposition of sulfur fluoride is performed in the first form or the second form, the dispersion treatment agent of the present invention is usually used. . In addition, when using alumina compounds, lanthanide compounds, and alkaline earth metal compounds other than oxides, the sulfur fluoride is dispersed at a temperature at or near the dispersion treatment, and each is used to easily form lanthanide oxides, Alkaline earth metal oxides and alumina compounds are preferred. When the decomposition treatment of sulfur fluoride is performed in the first form, before the dispersion treatment is performed, the dispersion treatment device is filled with a mixture of aluminum compound and lanthanide compound and granulated, as shown in FIG. 1 (A), for example. The dispersing treatment agent made of the particulate matter 4, or the decomposition treatment agent made by mixing the granulated matter 1 of the aluminum compound and the granulated matter 2 of the lanthanide compound as shown in FIG. 1 (B). When the decomposition treatment of sulfur fluoride is carried out in the second form, before the dispersion treatment is performed, in the dispersion treatment device, for example, as shown in FIG. 2 (A), the aluminization is performed by 12-1226261. 5. Description of the invention (11 ), Lanthanide-based compounds, and alkaline earth metal compounds are mixed and granulated to form a dispersing treatment agent 5, or as shown in FIG. 2 (B), the aluminum compound-containing granules 1 are filled. Decomposition treatment agent obtained by mixing granules 2 of lanthanide compounds and granules 3 of alkaline earth metal compounds, or as shown in FIG. 2 (C), the granules 1 and lanthanum of aluminum compounds are filled. Decomposition treatment agent made by mixing granules 6 of a basic compound and an alkaline earth metal compound. In addition, when the decomposition of sulfur fluoride is performed in the first form or the second form, a moving bed or a fluidized bed may be used in addition to fixing the dispersing treatment agent using a decomposition device as shown in Fig. 2. For example, the deactivated dispersion treatment agent is discharged from the dispersion treatment agent discharge port provided in the lower part of the dispersion treatment device, and a novel dispersion treatment agent is supplied to the reaction system from the dispersion treatment agent supply port provided in the upper portion of the dispersion treatment device. The decomposition treatment of sulfur fluoride can be performed continuously for a longer time. The third aspect of the method for dispersing sulfur fluoride according to the present invention is to contact a gas containing sulfur fluoride with a treatment agent containing alumina as an active ingredient under heating, and contact the oxide containing lanthanum as an active ingredient under heating. The third method of dispersing sulfur fluoride by contacting a treating agent is a cross-sectional view of an example of the decomposition treatment apparatus. When the sulfur fluoride decomposition treatment is performed in the third aspect, granules of an aluminum compound and granules of a lanthanum-based compound are usually used. For example, before the dispersing treatment, the dispersing treatment device is filled with a dispersing treatment agent made of the granulated aluminum compound 1 and a dispersing treatment agent made of the lanthanoid compound granulated material 2 as shown in FIG. 3. . In addition, in the present invention, these two treatment agent layers -13-1226261 V. Description of the invention (12) is 1 unit layer 'The singular or plural unit laminated layer can be decomposed. Fig. 3 is a structure composed of three unit layers. The fourth aspect of the method for dispersing sulfur fluoride according to the present invention is to contact a gas containing sulfur fluoride with a dispersing treatment agent containing alumina as an active ingredient under heating, and contacting a gas containing lanthanum oxide as an active ingredient under heating. A method for dispersing sulfur fluoride by contacting a treatment agent with a treatment agent containing an oxide of an alkaline earth metal as an active ingredient. FIG. 4 is a cross-sectional view of an example of the decomposition treatment device. Moreover, in the present invention, the order in which the gas to be treated is brought into contact with a treatment agent containing a lanthanum-based oxide as an active ingredient and an treatment agent containing an oxide of an alkaline earth metal as an active ingredient is not particularly limited. When the decomposition treatment of sulfur fluoride is performed in the fourth aspect, granules of aluminum compounds, granules of lanthanide compounds, and granules of alkaline earth metal compounds are usually used. For example, before the dispersing treatment, a dispersing treatment device is formed by laminating a treating agent made of granulated material 1 of an aluminum compound and a treating agent made of granulated material 2 of a lanthanum compound, as shown in FIG. 4 (A). And a treating agent made of granules 3 of alkaline earth metal compounds. In addition, in the present invention, these three treatment agent layers are one unit layer, and singular or plural units may be laminated to perform dispersion processing. The fifth aspect of the dispersion treatment method of sulfur fluoride of the present invention is to contact a gas containing sulfur fluoride with a treatment agent containing alumina as an active ingredient under heating, and then contact the oxide containing lanthanide and alkaline earth metals under heating. Fig. 5 is a cross-sectional view of a method for dissolving sulfur fluoride by contacting an oxide as an active ingredient as a treating agent to disperse sulfur fluoride. -14- 1226261 V. Explanation of the invention (13) When the sulfur fluoride is decomposed in the fifth form, the granulated material of the aluminum compound is usually a treatment agent containing the aluminum compound as an active ingredient, and the lanthanide compound and alkaline earth are used. Mixing and granulating of metal-like compounds or granulating materials of lanthanide-based compounds and alkaline-earth metal compounds is a treatment agent containing lanthanide-based oxides and alkaline-earth metal oxides as active ingredients. For example, before the dispersing treatment, the dispersing treatment device is filled with a treating agent made of the granulated product 1 of the aluminum compound, as shown in FIG. 5 (A), and is made by mixing a lanthanide compound and an alkaline earth metal compound. The treatment agent made of granules 6 is laminated, or the treatment agent made of granules 1 of aluminum compounds is shown in FIG. 5 (B), the granules 2 of lanthanide compounds and the alkaline earth metal compounds are used. The treating agent made of the granules 3 is laminated. In addition, in the present invention, these two treatment agent layers may be a single unit layer, and a singular or plural unit may be laminated to perform a dispersion treatment. In addition, the third aspect, the fourth aspect, and the fifth aspect are also the same as those in the first aspect and the second aspect. When an object other than an oxide is used as an aluminum compound, a lanthanoid compound, or an alkaline earth metal compound, the Sulfur fluoride is dispersed at a temperature near or near the dispersion treatment, and compounds each easily forming a lanthanide oxide, an alkaline earth metal oxide, or alumina are preferable. These aluminum compounds, lanthanide compounds, and alkaline earth metal compounds are each the same as the lanthanide compounds, alkaline earth metal compounds, and aluminum compounds in the dispersion treatment agent of the present invention described above. In addition, the size, shape, adjustment method, content of active ingredients, impurities, and the like of each granulated material are also the same as those of the dispersion treatment agent of the present invention. -15- 1226261 V. Description of the invention (14) In the present invention, the shape of the dispersing processing device is usually cylindrical, and the size is usually 10 to 500 mm in inner diameter and 20 to 2000 mm in length. The filling length of the dispersion treatment agent charged in the dispersion treatment device is usually 10 to 1,000 mm, preferably 50 to 500 mm. When the filling length of the dispersing treatment agent is 10 mm or less, the decomposition of sulfur fluoride is insufficient, and the pressure loss becomes large when it is 1 000 mm or more. The thickness of each layer of the treatment agent is usually 2 to 200 mm. In order to heat the dispersing processing device, a heater is usually provided on the outside of the dispersing processing device as shown in Figs. 1 to 5, and the temperature is controlled by an external control device. In the dispersion treatment of sulfur fluoride of the present invention, oxygen-containing gas such as air, water, water vapor, or a mixture of these can be added during the dispersion treatment, and sulfur fluoride can be decomposed even if these are not added. However, when the sulfur fluoride is other than sf6, it is preferable to add oxygen during the dispersion treatment due to the problem of sulfur oxide emission or sulfur precipitation when the dispersion treatment is performed without adding anything, or only by adding water or water vapor. This invention makes 6 When a dispersing treatment agent containing alumina, lanthanum oxide, and calcium oxide as active ingredients is used in the dispersing treatment without coexistence of oxygen and water vapor, it is estimated that the following reactions of (Formula 1) to (Formula 5) . Furthermore, when sulfur fluoride other than SF6 is used, for example, SF4 is dispersed in a co-presence of a dispersion treatment agent containing alumina, lanthanum oxide, and calcium oxide as active ingredients. It is estimated that the following (Formula 6) ~ (Formula 10). In addition, when SF6 is subjected to a dispersion treatment in the presence of oxygen and water vapor using a dispersion treatment agent containing alumina, lanthanum oxide, and calcium oxide as active ingredients, -16-1226261 V. Description of the invention (15) is expected to cause Reactions of the following (Formula 1 1) to (Formula 2 1). [Chemical formula 1] AI 2 〇3 + SF 6 — 2 AIF 3 + S Ο 3 (formula 1) 2 AIF 3 + L a 2 Ο 3 — AI2 〇3 + 2LaF3 (formula 2) 2AIF3 + 3Ca〇—AI 2 〇 3 + 3 C a F 2 (Formula 3) 3 S Ο 3 + L a 2 Ο 3 — L a 2 (SO 4) 3 (Formula 4) SO 3 + C a O — C a SO 4 (Formula 5) [ 2] '4AI2〇3 + 6SF4 + 302-8AIF3 + 6S〇3 (Equation 6) 2A I F3 + La203 — AI 203 + 2LaF3 (Equation 7) 2AI F3 + 3Ca〇—AI 2 O 3 + 3 C a F 2 (formula 8) 3S〇3 + La2〇3 ~ ^ La2 (S04) 3 (formula 9) S 6 3 + C a O — CaS〇4 (formula 10) AI 2 〇3 + SF 5 — 2 AIF 3 + SO 3 (Equation 11) 2 AIF 3 + L a 2 O 3 — AI 2 O 3 + 2 L a F 3 (Equation 12) 2AlF3 + 3Ca〇—AI 2 O 3 + 3 C a F 2 ( (Formula 13) 2A I F3 + 3H20-AI 2 O 3 + 6 HF (Formula 14) 3S03 + La2〇3 — L a 2 (S04) 3 (Formula 15) SO 3 + C a O — C a SO 4 (Formula 16) 5 O 3 + H 2 O — H2S〇4 (Formula 17) 6 HF + L a 2 O 3-2LaF3 + 3H20 (Formula 18) 2 HF + C a O — C a F 2 + Η 2 O (Formula 19) 3H2S04 + La203 — La2 (S04) 3 + 3H2〇 (Formula 2) H 2 SO 4 + C a O — CaS〇4 + H2〇 (Formula 2. 1) -17- 1226261 V. Explanation of the invention (16) In other words, when the sulfur fluoride is decomposed by the present invention, aluminum fluoride is formed by reacting with sulfur fluoride on the surface of alumina, so that aluminum fluoride directly reacts with lanthanum. Reacts with system oxides and oxides of alkaline earth metals to regenerate alumina, or fixes fluorine to lanthanide and alkaline earth metals, and minimizes the deterioration of alumina by fluorine, so it can be used continuously for a long time. Sulfur fluoride decomposition treatment. In addition, it can be seen from the above reaction formula that the decomposition treatment agent contains more lanthanide-based compounds than the alkaline-earth metal compound, and the decomposition treatment ability (the amount of sulfur fluoride decomposition treatment per unit of the decomposition treatment agent) can be improved. In addition, sulfur oxides generated during the decomposition of sulfur fluoride react with lanthanide oxides and alkaline earth metal oxides to be fixed. In this case, when coexisting with oxygen, sulfur fluoride can prevent the emission of sulfur oxides and sulfur even if it is a substance other than sf6. In addition, when coexisting with water vapor, water vapor reacts with aluminum fluoride to regenerate alumina, but at this time, the regeneration rate of alumina is better than that of lanthanum oxides and alkaline earth metal oxides, and Can be decomposed for a long time. At this time, the hydrogen fluoride of the corrosive gas generated directly reacts with the oxides of the lanthanide series and the oxides of the alkaline earth metals and is fixed to the fluoride. Therefore, the corrosive gas cannot be discharged from the decomposition treatment device. In addition, when coexisting water vapor in the decomposition treatment method of sulfur fluoride of the third aspect, the fourth aspect, and the fifth aspect of the present invention, deactivation of alumina in the lower layer can be prevented by HF. The temperature at which sulfur fluoride comes into contact with the decomposition treatment agent varies depending on the type, concentration, flow rate, etc. of the sulfur fluoride, and it cannot be said in a single sentence, usually 300 to 1 000 ° C. If the decomposition temperature is less than 300 ° C, the decomposition rate of sulfur fluoride is low, and -18-1226261 V. Description of the invention (17) ^ ^: At 100 (TC, there will be a person who requires high heat resistance for the decomposition treatment device. The problem of expectation. In addition, the pressure during the sulfur fluoride decomposition treatment can usually be carried out at normal pressure, reduced pressure or l. 2MPa (absolute pressure) under pressure. The flow rate of the sulfur fluoride-containing gas in the present invention is not particularly limited. Generally speaking, the higher the concentration of sulfur fluoride contained in the gas, the smaller the flow rate is. Therefore, the 'decomposition processing device' is designed depending on the type, concentration, etc. of sulfur fluoride, and usually the empty linear reference linear velocity (LV) is within the range of 50 cm / sec or less. Fig. 6 is a configuration diagram of an example of a decomposition treatment system when the decomposition treatment method for sulfur fluoride of the present invention is implemented. In the sulfur fluoride decomposition treatment system of FIG. 6, each of the sulfur-containing gas, oxygen, and / or water vapor is introduced into a sulfur fluoride introduction pipe 9 and the oxygen and / or water vapor introduction pipe 10 is introduced into the sulfur fluoride decomposition treatment device. After the sulfur fluoride is decomposed, the decomposed gas is discharged from the exhaust pipe 14. Further, when the SF6 is decomposed by the first aspect of the present invention, the decomposed process can be performed without using oxygen and / or water vapor inlet pipe 10. In the present invention, since no corrosive gas is exhausted, as shown in Fig. 6, the sulfur fluoride before the decomposition treatment and the gas after the decomposition treatment can be heat-exchanged by the heat exchanger 11. Moreover, it is not necessary to provide a device for purifying corrosive gases such as sulfur oxides and hydrogen fluoride. Examples The present invention will be described in more detail by examples and the like in the following, but the present invention is not limited thereto. -19-1226261 V. Description of the invention (18) Example 1 (Modulation of decomposition treatment agent) A commercially available alumina catalyst (average pore diameter 130A, purity 99. 9%) pulverized to 100 μm or less, and mixed with a commercially available lanthanum oxide powder (purity 99%) at an atomic ratio (A1: La) of 1: 2. The mixture was placed in a mold with an inner diameter of 20mm and a height of 5mni, and then the resulting agent was crushed by pressing it with an oil pressure sleeve at a pressure of 150 ~ 160kg / cm2 for 30 seconds, and passed through a sieve.  36mm mesh opening, does not pass 2. Those with an opening of 00 mm are used as a decomposition treatment agent. (Decomposition treatment test) The above decomposition treatment agent was filled in a decomposition treatment device made of SUS316L having an inner diameter of 42 mm and a length of 1000 mm. The structure was shown in Fig. 1 (A), and the filling length was 300 mm. After the temperature of the treatment agent of the decomposition treatment device is heated to 800 ° C, nitrogen (total flow rate of 877 ml / min) containing SF6 (flow rate of 10 ml / min) is introduced into the decomposition treatment device, and water vapor (flow rate of 73 ml / min) and oxygen are introduced. (Flow rate: 50 ml / min) was introduced into a decomposition processing device to decompose SF6. In the meantime, the decomposed gas discharged from the discharge port of the decomposition processing device is taken approximately every 20 minutes, and SF6 is analyzed by FT_IR (Philips Transform Infrared Spectrophotometer) and GC-TCD (thermal conductivity detector). The decomposition rate of SF6 is 99. For less than 9% of the time, determine the decomposition treatment amount (L) (decomposition treatment capacity) of SF6 for 1L of decomposition treatment agent, and observe the presence or absence of HF discharge through a detection tube (made by gas dick). With or without sulphur oxygen -20-1226261 V. Description of the invention (19) Chemical compounds are discharged. The results are shown in Table 1. Examples 2 and 3 A decomposition treatment agent was prepared in the same manner as in Example 1 except that the mixing ratio of alumina and lanthanum oxide in the decomposition treatment agent of Example 1 was prepared by mixing 1: 6 and 1: 1. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 1. The results are shown in Table 1. Examples 4 and 5 In addition to the decomposition treatment agent of Preparation Example 1, the concentration of SF6 was changed to 0 each. 2%, 2. Except for 0%, the decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 1. The results are shown in Table 1. Example 6 A decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 1 except that sulfur fluoride was changed to SF4 in the decomposition treatment agent of Example 1. The results are shown in Table 1. Examples 7 and 8 A decomposition treatment agent was prepared in the same manner as in Example 1 except that the lanthanum oxide was replaced with lanthanum hydroxide and lanthanum carbonate in the decomposition treatment agent of Example 1. A decomposition treatment test of sulfur fluoride was carried out in the same manner as in Example 1 using these decomposition treatment agents. The results are shown in Table 1. Example 9 Sulfur fluoride was carried out in the same manner as in Example 1 except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 1 was replaced by nitrogen (total flow rate 1000 ml / min) containing SF6 (flow rate 10 ml / min). Decomposition treatment test. -21-1226261 V. Description of the invention (20) The results are shown in Table 1. Example 10 Except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 1 was replaced by nitrogen (total flow rate 950ml / min) and oxygen (flow rate 5 Om 1 / mi η) containing SF6 (flow rate 10ml / min), The decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 1. The results are shown in Table 1. Example 11 Except for the preparation of the decomposition treatment agent of Example 1, the gas introduced into the decomposition treatment device was composed of SF6 (flow rate 10 ml / min) Except that nitrogen (total flow rate 927ml / min) and water vapor (flow rate 73ml / mi η) were substituted, a sulfur fluoride decomposition treatment test was performed in the same manner as in Example 1. The results are shown in Table 1. Example 1 2 (Decomposition Preparation of treatment agent) A commercially available alumina catalyst (average pore diameter of 130 A, purity of 99 · 9%, particle diameter of 2 to 3 mm) was used as granulated alumina. Commercially available lanthanum oxide powder was used. (Purity: 99%) After placing it in a mold with an inner diameter of 20mm and a height of 5mm, use an oil pressure sleeve to press the pressure of 150 ~ 160kg / cm2 for 30 seconds to crush the formed agent, and pass through a sieve 3. 3 6mm mesh opening, does not pass 2. Those with an opening of 00mm are regarded as granules of lanthanum oxide. These were mixed at an atomic ratio (A 1: La) of 1: 2 to obtain a decomposition treatment agent. (Decomposition treatment test) The above decomposition treatment agent was filled into a decomposition treatment device made of SUS316L with an inner diameter of 42 mm and a length of 1000 mm, and the structure shown in Figure 1 (B) was 22-2226261. 5. Description of the invention (21) The filling length is 300mm. After the temperature of the treatment agent of the decomposition treatment device is heated to 800 ° C, nitrogen (total flow rate of 87 7ml / mi η) containing SF6 (flow rate of 10ml / min) is introduced into the decomposition treatment device 'and water vapor (flow rate of 73ml / niin) is introduced. And oxygen (flow rate 50ml / min) is introduced into the decomposition treatment 'set' to decompose SF6. In the meantime, approximately every 20 minutes, a part of the decomposed gas discharged from the outlet of the decomposition processing device was taken, and SF6 was analyzed by FT-IR and GC-TCD, and the decomposition rate until SF6 was measured to be 99. At a time of 9% or less, 'the amount of decomposition treatment (L) (decomposition treatment capacity) of SF6 for 1L of decomposition treatment agent is calculated' and the presence or absence of HF emission is observed through a detection tube. The results are shown in Table 1. Example 1 3, 1 4 Except that the mixing ratio of the granulated material of alumina and the granulated material of lanthanum oxide in the decomposition treatment agent of Preparation Example 12 was 1: 6 and 1: 1, respectively, and the examples 1 2 A decomposition treatment agent was prepared in the same manner. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 12. The results are shown in Table 2. Example 1 5 and 16 The decomposition treatment of SF6 was performed in the same manner as in Example 12 except that the concentration of SF6 in the decomposition treatment agent of Example 12 was changed to 0 · 2% and 2.0% respectively. test. The results are shown in Table 2. Example 17 Except that the sulfur fluoride was changed to SF4 in the decomposition treatment agent of Example 12, -23-1226261 V. Description of the invention (22) A sulfur fluoride decomposition treatment test was performed in the same manner as in Example 1. The results are shown in Table 2. Examples 1 and 19 A decomposition treatment agent was prepared in the same manner as in Example 12 except that lanthanum oxide was replaced with lanthanum hydroxide and lanthanum carbonate in the decomposition treatment agent of Example 12. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 12. The results are shown in Table 2. Example 20 The fluorination was performed in the same manner as in Example 12, except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 12 was replaced by nitrogen (total flow rate of 1,000 ml / min) containing SF6 (flow rate of 10 ml / min). Sulfur decomposition treatment test. The results are shown in Table 2. Example 21 Except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 12 was replaced by nitrogen (total flow rate 950ml / min) and oxygen (flow rate 50ml / min) containing SF6 (flow rate 10ml / min), Example 12 was subjected to the decomposition treatment test of sulfur fluoride in the same manner. The results are shown in Table 2. Example 22 Except for the preparation of the decomposition treatment agent of Example 12, the gas introduced into the decomposition treatment device was composed of SF6 (flow rate 10ml / min). Except that nitrogen (total flow rate 927 ml / min) and water vapor (flow rate 7 3 m 1 / mi η) were substituted, a sulfur fluoride decomposition treatment test was performed in the same manner as in Example 12. The results are shown in Table 2. Example 23 -24- 1226261 V. Description of the invention (23) (Modulation of decomposition treatment agent) Use commercially available alumina catalyst (average pore diameter 130A, purity 99. 9%) and calcium oxide particles (purity 99%) each crushed to less than 10 μm, and mixed with commercially available lanthanum oxide powder (99% purity) in an atomic ratio (A1: La: Ca) of 5: 9: 1 . The mixture was placed in a mold with an inner diameter of 20 mm and a height of 5 mm. Then, the resulting agent was crushed by pressing it with a hydraulic sleeve at a pressure of 150 to 160 kg / cm2 for 30 seconds, and passed through a 3.36 mm mesh through a sieve. Open the □, do not pass through the opening of 2. 00mm mesh as a decomposition treatment agent. (Decomposition treatment test) The above decomposition treatment agent was filled in a decomposition treatment device made of SUS316L with an inner diameter of 42 mm and a length of 1,000 mm, and was filled with a structure shown in FIG. 2 (A) with a length of 300ππ. The temperature of the treatment agent of the decomposition treatment device is heated to 800T: After that, nitrogen (total flow rate 877ml / min) containing SF6 (flow rate 10ml / min) is introduced into the decomposition treatment device, and water vapor (flowrate 73ml / min) and Oxygen (flow rate: 50 ml / min) is introduced into a decomposition processing device to decompose SF6. In the meantime, approximately every 20 minutes, a part of the decomposed gas discharged from the outlet of the decomposition processing device was taken, and SF6 was analyzed by FT-IR and GC-TCD, and the decomposition rate until SF6 was measured to be 99.  For less than 9% of the time, determine the decomposition treatment volume (L) (decomposition treatment capacity) of SF6 for 1L of decomposition treatment agent, and observe the presence or absence of HF emission through the detection tube ((share) gas Dick (transliteration)) With or without sulfur oxides. The results are shown in Table 3. Examples 24, 25 -25-1226261 V. Explanation of the invention (24) Except that the mixing ratio of alumina and lanthanum oxide in the decomposition treatment agent of Example 23 was prepared, each was mixed with 2: 9: 1, 10: 9: 1 In the same manner as in Example 23, a decomposition treatment agent was prepared. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 23. The results are shown in Table 3. Examples 26 and 27 In addition to the decomposition treatment agent of Preparation Example 23, the concentration of SF6 was changed to 0 each. 2%, 2. Except for 0%, a sulfur fluoride decomposition treatment test was performed in the same manner as in Example 23. The results are shown in Table 3. Example 28 A sulfur fluoride treatment test was carried out in the same manner as in Example 23, except that sulfur fluoride was changed to SF4 in the decomposition treatment agent of Example 23. The results are shown in Table 3. Examples 29 and 30 A decomposition treatment agent was prepared in the same manner as in Example 23, except that calcium oxide was replaced with magnesium oxide and hafnium oxide, respectively, in the decomposition treatment agent of Example 23. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 23. The results are shown in Table 3. Example 31 The same procedure as in Example 23 was performed except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 23 was replaced by nitrogen (total flow rate of 1,000 ml / min) with SF6 (flow rate of 10 ml / min). The decomposition treatment test of sulfur fluoride was performed. The results are shown in Table 3. Example 32 -26- 1226261 V. Description of the invention (25) Except for the decomposition treatment agent prepared in Example 23, the heating body introduced into the decomposition treatment device is a gas containing SF6 (10ml / min in the flow) (total flow rate 950ml / min) Learn < (Flow weight 50 m 1 / in i η instead of the substitution 'was carried out in the same manner as in Example 23, and the decomposition treatment test of sulfur chloride was performed. The results are shown in Table 3. Example 33 The gas introduced into the decomposition treatment device in the decomposition treatment agent was replaced with nitrogen containing SF6 (flow rate 10 ml / min) (total flow rate 927 ml / min) and water vapor (flow rate 7 3 m 1 / mi η), and was the same as in Example 2 3 The decomposition treatment test of sulfur fluoride was performed. The results are shown in Table 3. Example 34 (Preparation of decomposition treatment agent) A commercially available alumina catalyst (average pore diameter 1 30A, purity 99.9%, granules) was used. Diameter 2 ~ 3mm) as granulated alumina. Furthermore, a commercially available lanthanum oxide powder (99% purity) was placed in a mold with an inner diameter of 20mm and a height of 5mm, and then a hydraulic sleeve was used at 150 ~ 160kg / cm2 Pressurized for 30 seconds to crush the molding agent, and pass through a 3.36mm mesh opening through a sieve, and those that do not pass through an opening of 2.00mm mesh are regarded as granules of lanthanum oxide. In addition, commercially available calcium oxide ( (Purity: 99%) After crushing to 100 μL or less, it is shaped, crushed, and sieved in the same manner as described above for oxidation. A granulated product. These were mixed with an atomic ratio (Al · · La: Ca) of 5: 9: 1 to prepare a decomposition treatment agent 0 (decomposition treatment test) The above-mentioned decomposition treatment agent was filled with an inner diameter of 42 mm, -27-1226261 with a length of 1 000mm V. Description of the invention (26) The inside of the decomposition processing device made of SUS 3 16L has the structure shown in Figure 2 (B) and is filled with a length of 300 mm. After the temperature of the treatment agent is heated to 800 ° C, nitrogen (total flow rate 877ml / min) containing SF6 (flow rate 10ml / min) is introduced into the decomposition treatment device, and water vapor (flowrate 73ml / min) and oxygen (flowrate 50ml) / min) Introduce a decomposition processing device to decompose SF6. Meanwhile, take part of the decomposed gas discharged from the outlet of the decomposition processing device about every 20 minutes, and analyze SF6 by FT-IR and GC-TCD, and measure until SF6 When the decomposition rate is 99.9% or less, determine the decomposition treatment amount (L) (decomposition treatment capacity) of SF6 for 1L of the decomposition treatment agent, and observe the presence or absence of HF emission and sulfur oxide emission through the detection tube. The results are shown in Table 1. Example 35, 36 divided by Modification Example 34 The decomposition treatment agents were prepared in the same manner as in Example 34 except that the atomic ratio (A1: La: C a) was 2: 9: 1, 10 ·· 9: 1, and the decomposition treatment agents were prepared. These decomposition treatments were used. The agent was subjected to a decomposition treatment test of sulfur fluoride in the same manner as in Example 34. The results are shown in Table 4. Examples 37 and 38 A sulfur fluoride decomposition treatment test was carried out in the same manner as in Example 34 except that the concentration of SF6 in the decomposition treatment agent of Example 34 was changed to 0.2% and 2.0%, respectively. The results are shown in Table 4. Example 39 Except that sulfur fluoride was changed to SF4 in the decomposition treatment agent of Example 34, -28-1226261 V. Description of the invention (27) The decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 34. The results are shown in Table 4. Examples 40 and 41 A decomposition treatment agent was prepared in the same manner as in Example 34 except that the calcium oxide was replaced by magnesium oxide and rhenium carbonate in the decomposition treatment agent of Example 34. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 34. The results are shown in Table 4. Example 42 Fluorine was carried out in the same manner as in Example 34, except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 3 4 was replaced with nitrogen (total flow rate 1 000 ml / min) containing SF6 (flow rate 10 ml / min). Decomposition treatment test of sulfur. The results are shown in Table 4. Example 4 3 Except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 34 was replaced by nitrogen (total flow rate 950ml / min) and oxygen (flow rate 50ml / mi η) containing SF6 (flow rate 10ml / min), and In Example 34, the decomposition treatment test of sulfur fluoride was performed in the same manner. The results are shown in Table 4. Example 4 4 Except for the preparation of the decomposition treatment agent of Example 34, the gas introduced into the decomposition treatment device was composed of SF6 (flow rate 10ml / min). Except that nitrogen (total flow rate 927 ml / min) and water vapor (flow rate 73 ml / min) were substituted, the sulfur fluoride decomposition treatment test was performed in the same manner as in Example 34. The results are shown in Table 4. Examples 45 -29-1226261 V. Explanation of the invention (28) (Preparation of decomposition treatment agent) A commercially available alumina catalyst (average pore diameter of 1 30 A, purity of 9 9.9%, particle diameter of 2 to 3 mm) was used as granulated alumina. Furthermore, the commercially available calcium oxide (purity: 99%) was pulverized to 100 μm or less and mixed with the commercially available lanthanum oxide powder (99%) with an atomic ratio (La: Ca) of 9: 1. The mixture was placed on the inner diameter. 20mm, 5mm height mold, using hydraulic sleeve, at 150 ~ 160kg / cm2 The pressurized material was crushed for 30 seconds to crush the molding agent, and passed through a sieve through an opening of 3.36 mm mesh, and those that did not pass through an opening of 2.00 mm mesh were used as granules of the mixture. In addition, alumina granules were oxidized and oxidized. The mixed granulated material of lanthanum and calcium oxide was mixed at an atomic ratio (A1: La: Ca) of 5: 9: 1 to obtain a decomposition treatment agent. (Decomposition treatment test) The above-mentioned decomposition treatment agent was filled to an inner diameter of 42 mm. The inside of the decomposition processing device made of SUS316L with a length of 1 000 mm is filled with the structure shown in Figure 2 (C), and the filling length is 300 mm. After the treatment agent temperature of the decomposition processing device is heated to 800 ° C, it contains SF6 (flow rate 10ml / min) nitrogen (total flow rate 8 7 7 m 1 / mi η) is introduced into the decomposition treatment device, and water vapor (flow rate 73ml / min) and oxygen (flow rate 50ml / min) are introduced into the decomposition treatment device, so that SF6 is decomposed. In the meantime, part of the decomposed gas discharged from the outlet of the decomposition processing device is taken approximately every 20 minutes, and SF6 is analyzed by FT-IR and GC-TCD, and the decomposition rate until SF6 is determined to be 99 · 9% or less Time, find the score of SF6 for 1L decomposition treatment agent The processing capacity (l) (decomposition processing capacity), and -30-1226261 V. Description of the invention (29) The presence or absence of HF discharge and sulfur oxide discharge was observed by a detection tube. The results are shown in Table 5. Example 46, 47 A decomposition treatment agent was prepared in the same manner as in Example 45 except that each of the decomposition treatment agents of Example 45 was mixed with an atomic ratio (A1: La: Ca) of 2 ·· 9: 1, 10: 9: 1. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 45. The results are shown in Table 5. Examples 48 and 49 The same procedure as in Example 45 was carried out except that the concentration of SF6 in the decomposition treatment agent of Example 45 was changed to 0.2% and 2.0%, respectively. The results are shown in Table 5. Example 50 A sulfur fluoride treatment test was carried out in the same manner as in Example 45, except that sulfur fluoride was changed to SF4 in the decomposition treatment agent of Example 45. The results are shown in Table 5. Example 5 1, 5 2 A decomposition treatment agent was prepared in the same manner as in Example 45, except that the calcium oxide was replaced by magnesium oxide and thallium carbonate in the decomposition treatment agent of Example 45. Using these decomposition treatment agents, the decomposition treatment of sulfur fluoride was performed in the same manner as in Example 45. The results are shown in Table 5. Example 5 3 In addition to the decomposition treatment agent of Preparation Example 45, the gas introduced into the decomposition treatment device was nitrogen containing SF6 (flow rate 10 ml / min) (total flow rate).

-31 - 1226261 五、發明說明(3〇) l〇GOml/min)取代外,與實施例45相同地進行氟化硫之分 解處理試驗。結果如表5所示。 實施例54 除調製實施例45之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量950ml/min) 及氧(流量50ml/min取代外,與實施例45相同地進行氟 化硫之分解處理試驗。結果如表5所示。 實施例5 5 除調製實施例45之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量73ml/min)取代外,與實施例45相同地進 行氟化硫之分解處理試驗。結果如表5所示。 實施例56 (分解處理劑之調製) 使用市售的氧化鋁觸媒(平均細孔直徑1 30A,純度 99.9%,粒徑2〜3mm)作爲氧化鋁之造粒物。而且使用使市 售的氧化鑭粉末(純度99%)置於內徑20mm、高度5mm之模 具後,使用油壓套管,以150〜160kg/cm2之壓力加壓30 秒鐘予以成型所得的劑破碎,且藉由篩通過3 . 36mm目之 開α,不通過2.00mm目之開口者作爲氧化鑭之造物粒所 成的處理劑。 (分解處理試驗) 使上述處理劑塡充於內徑42mm、長度1 000mm之 -32- 1226261 五、發明說明(31) SUS316L製之分解處理裝置內部,以第3圖所示之構成, 原子數比(Al:La)爲1:2,各相互4層予以塡充(全部塡 充長度600mm)。使分解處理裝置之處理劑溫度加熱至 800 °C後,將含有 SF6(流量10ml/min)之氮(合計流量 8 7 7ml/min)導入分解處理裝置,且使水蒸氣(流量 73ml/min)及氧(流量 50ml/min)導入分解處理裝置,使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT_ IR及GC-TCD進行SF6之分析 ,測定直至SF6之分解率爲99.9%以下之時間,求取對1L 分解處理劑而言SF6之分解處理量(L )(分解處理能力),且 藉由檢知管觀察有無HF排出,有無硫氧化物排出。結果 如表6所示。 實施例57、58 除使實施例56之分解處理劑中以氧化鋁之原子數與氧 化鑭之原子數比(A1 : La)爲1 : 6、1 : 1之處理劑積層外 ’與實施例56相同地進行氟化硫之分解處理試驗。結果 如表6所示。 實施例59、60 除調製實施例56之分解處理劑中使SF6之濃度各改爲 0.2%、2.0%外,與實施例56相同地進行氟化硫之分解處 理試驗。結果如表6所示。 實施例61 -33- 1226261 五、發明說明(32) 除調製實施例56之分解處理劑中使氟化硫改爲SF4外, 與實施例56相同地進行氟化硫之分解處理試驗。結果如 表6所示。 實施例62、63 除調製實施例56之分解處理劑中使氧化鈣各以氧化鎂 、碳酸緦取代外,與實施例56相同地調製分解處理劑。 使用此等分解處理劑與實施例56相同地進行氟化硫之分 解處理試驗。結果如表6所示。 實施例64 除調製實施例56之分解處理劑中導入分解處理裝置之 氣體由含有 SF6(流量 10ml/min)之氮(合計流量 1 000ml/min)取代外,與實施例56相同地進行氟化硫之分 解處理試驗。結果如表6所示。 實施例65 除調製實施例5 6之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量950ml/min) 及氧(流量50ml/min取代外,與實施例56相同地進行氟 化硫之分解處理試驗。結果如表6所示。 實施例6 6 除調製實施例56之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量73ml/min)取代外,與實施例56相同地進 行氟化硫之分解處理試驗。結果如表6所示。 -34- 1226261-31-1226261 V. Description of the invention (3 GO) (10 GOml / min) Substitution was carried out in the same manner as in Example 45 to perform a sulfur fluoride decomposition treatment test. The results are shown in Table 5. Example 54 Except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 45 was replaced by nitrogen (total flow rate 950ml / min) and oxygen (flow rate 50ml / min) containing SF6 (flow rate 10ml / min), and In Example 45, a decomposition treatment test of sulfur fluoride was performed in the same manner. The results are shown in Table 5. Example 5 5 In addition to the decomposition treatment agent prepared in Example 45, the gas introduced into the decomposition treatment device was composed of SF6 (flow rate 10 ml / Min) was replaced by nitrogen (total flow rate 927 ml / min) and water vapor (flow rate 73 ml / min). The sulfur fluoride decomposition treatment test was performed in the same manner as in Example 45. The results are shown in Table 5. Example 56 (Decomposition Preparation of treatment agent) A commercially available alumina catalyst (average pore diameter of 1 30 A, purity of 99.9%, particle diameter of 2 to 3 mm) was used as granulated alumina. Furthermore, commercially available lanthanum oxide powder (purity 99%) After placing it in a mold with an inner diameter of 20mm and a height of 5mm, use a hydraulic sleeve to press the pressure of 150 ~ 160kg / cm2 for 30 seconds to crush the formed agent, and pass through a 3.36mm mesh through a sieve. Open α, and those that do not pass through the opening of 2.00mm mesh are regarded as the granules of lanthanum oxide (Decomposition treatment test) Fill the above-mentioned treatment agent with an inner diameter of 42mm and a length of 12,000mm -32-1226261 V. Description of the invention (31) The inside of the decomposition treatment device made of SUS316L is shown in Figure 3. The structure is such that the atomic ratio (Al: La) is 1: 2, and 4 layers are filled with each other (all the filling length is 600mm). After the temperature of the treatment agent of the decomposition treatment device is heated to 800 ° C, SF6 ( Nitrogen at a flow rate of 10 ml / min) (total flow rate 8 7 7 ml / min) is introduced into the decomposition treatment device, and water vapor (flow rate 73 ml / min) and oxygen (flow rate 50 ml / min) are introduced into the decomposition treatment device to decompose SF6. Meanwhile, Approximately every 20 minutes, the decomposition gas exhausted from the outlet of the decomposition treatment device is taken, and SF6 is analyzed by FT_IR and GC-TCD. The time until the decomposition rate of SF6 is less than 99.9% is determined to determine the decomposition of 1L. For the treatment agent, the decomposition treatment amount (L) (decomposition treatment capacity) of SF6, and the presence or absence of HF discharge and sulfur oxide discharge were observed through a detection tube. The results are shown in Table 6. Examples 57 and 58 In the decomposition treatment agent of Example 56, the atomic number of alumina and The lanthanum chloride atomic ratio (A1: La) was 1: 6, and the treatment agent was laminated outside of 1: 1. The sulfur fluoride decomposition treatment test was performed in the same manner as in Example 56. The results are shown in Table 6. Example 59 , 60 Except that the concentration of SF6 in the decomposition treatment agent of Example 56 was changed to 0.2% and 2.0%, the decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 56. The results are shown in Table 6. Example 61 -33-1226261 V. Description of the invention (32) Except that the sulfur fluoride was changed to SF4 in the decomposition treatment agent of Example 56, the sulfur fluoride decomposition treatment test was performed in the same manner as in Example 56. The results are shown in Table 6. Examples 62 and 63 The decomposition treatment agent of Example 56 was prepared in the same manner as in Example 56 except that calcium oxide was replaced by magnesium oxide and rhenium carbonate. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 56. The results are shown in Table 6. Example 64 The fluorination was performed in the same manner as in Example 56 except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 56 was replaced with nitrogen (total flow rate of 1,000 ml / min) containing SF6 (flow rate of 10 ml / min). Sulfur decomposition treatment test. The results are shown in Table 6. Example 65 Except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 5 and 6 was replaced by nitrogen (total flow rate 950 ml / min) and oxygen (flow rate 50 ml / min) containing SF6 (flow rate 10 ml / min), The decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 56. The results are shown in Table 6. Example 6 6 Except for the preparation of the decomposition treatment agent of Example 56, the gas introduced into the decomposition treatment device was composed of SF6 (flow rate 10 ml) / min) nitrogen (total flow rate 927ml / min) and water vapor (flow rate 73ml / min) were replaced, and sulfur fluoride decomposition treatment test was performed in the same manner as in Example 56. The results are shown in Table 6. -34- 1226261

五、發明說明(33) 實施例67 (分解處理劑之調製) 使用市售的氧化鋁觸媒(平均細孔直徑1 30A,純度 9 9 . 9%,粒徑2〜3 mm )作爲氧化銘之造粒物所成的處理劑。 而且使市售的氧化鑭粉末(純度99%)置於內徑20mm、高度 5mm之模具後,使用油壓套管,以150〜160kg/cm2之壓力 加壓30秒鐘予以成型所得的劑破碎,且藉由篩通過 3.36mm目之開口,不通過2.00mm目之開口者作爲氧化鑭 之造物粒所成的處理劑。另外,使市售的氧化鈣(純度99%) 粉碎至ΙΟΟμιη以下後,與上述相同地成型、破碎、篩分作 爲氧化鈣之造粒物所成的處理劑。 (分解處理試驗) 使上述分解處理劑塡充於內徑42mm、長度1 000mm之 SUS 3 16L製之分解處理裝置內部,以第4(A)圖所示之構成 ,原子數比(Al:La:Ca)爲5:9:1各相互4層塡充(全 部塡充長度600mm)。使分解處理裝置之處理劑溫度加熱至 800 °C後,將含有 SF6(流量10ml/min)之氮(合計流量 8 7 7ml/min)導入分解處理裝置,且使水蒸氣(流量 73ml/min)及氧(流量50ml/min)導入分解處理裝置,使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT-IR及GC-TCD進行SF6之分析 ,測定直至SF6之分解率爲99. 9%以下之時間,求取對1L -35 - 1226261 五、發明說明(34 ) 分解處理劑而言SF6之分解處理量(L )(分解處理能力),且 藉由檢知管觀察有無HF排出,有無硫氧化物排出。結果 如表7所示。 實施例6 8 除調製實施例67之分解處理劑中導入分解處理裝置之 氣體由含有 SF6(流量 10ml/min)之氮(合計流量 1 000ml/min)取代外,與實施例67相同地進行氟化硫之分 解處理試驗。結果如表7所示。 實施例69 除調製實施例67之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量950ml/min) 及氧(流量50m 1/m in取代外,與實施例67相同地進行氟 化硫之分解處理試驗。結果如表7所示。 實施例70 除調製實施例67之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量73ml/min)取代外,與實施例67相同地進 行氟化硫之分解處理試驗。結果如表7所示。 實施例71 使與實施例67相同調製的處理劑塡充於內徑42mm、長 度1 000mm之SUS316L製之分解處理裝置內部,以第4(B) 圖所示之構成,原子數比(Al ·· La : Ca)爲5 ·· 9 ·· 1各相互 4層塡充(全部塡充長度6〇〇mm)。使分解處理裝置之處理 -36- 1226261 五、發明說明(35 ) 劑溫度加熱至80(TC後,將含有SF6(流量lOml/min)之氮( 合計流量877ml/min)導入分解處理裝置,且使水蒸氣(流 量73ml/min)及氧(流量50ml/min)導入分解處理裝置,使 SF6分解。 其間’約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT-IR及GC-TCD進行SF6之分析 ’測定直至SF6之分解率爲99.9%以下之時間,求取對1L 分解處理劑而言SF6之分解處理量(L )(分解處理能力),且 藉由檢知管觀察有無HF排出,有無硫氧化物排出。結果 如表8所示。 實施例72 除調製實施例71之分解處理劑中導入分解處理裝置之 氣體由含有 SF6 (流量 1 0ml/mi η )之氮(合計流量 lOOOml/min)取代外,與實施例71相同地進行氟化硫之分 解處理試驗。結果如表8所示。 實施例7 3 除調製實施例71之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量950ml/min) 及氧(流量50ml/min取代外,與實施例71相同地進行氟 化硫之分解處理試驗。結果如表8所示。 實施例74 除調製實施例71之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量i〇mi/min)之氮(合計流量927ml/min) -37- 1226261 五、發明說明(36) 及水蒸氣(流量7 3 m 1 / m i η )取代外,與實施例7 1相同地進 行氟化硫之分解處理試驗。結果如表8所示。 實施例75 (分解處理劑之調製) 使用市售的氧化鋁觸媒(平均細孔直徑1 3 〇 A,純度 9 9 · 9%,粒徑2〜3mm )作爲氧化鋁之造粒物所成的處理劑。 而且使市售的氧化鈣(純度99%)粉碎至ι〇〇μΐΏ以下,與使 市售的氧化鑭粉末(純度99%)以原子數比(La : Ca)爲9 : 1 混合。使混合物置於內徑20mm、高度5mm之模具後,使用 油壓套管,以1 50〜1 60kg/ cm2之壓力加壓30秒鐘予以成 型所得的劑破碎,且藉由篩通過3 · 36mm目之開口,不通 過2.00mm目之開口者作爲由氧化鑭與氧化鈣所成的處理 劑。 (分解處理試驗) 使上述分解處理劑塡充於內徑42mm、長度1000mm之 SUS316L製之分解處理裝置內部,以第5(A)圖所示之構成 ,以原子數比(A1 : La : Ca)爲5 : 9 : 1各相互4層塡充( 全部塡充長度600mm)。使分解處理裝置之處理劑溫度加熱 至800°C後,將含有SF6(流量10ml/min)之氮(合計流量 877ml/min)導入分解處理裝置,且使水蒸氣(流量 73ml/min)及氧(流量50ml/min)導入分解處理裝置,使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 -38- 1226261 五、發明說明(37) 戶斤#出的分解氣體’藉由?了_1;[^及GC-TCd進行SF6之分析 ’測定道:至SF6之分解率爲99.9%以下之時間,求取對1L 分解處理劑而言SF6之分解處理量(L)(分解處理能力),且 藉由檢知管觀察有無HF排出,有無硫氧化物排出。結果 如表9所示。 實施例76 除調製實施例7 5之分解處理劑中導入分解處理裝置之 氣體由含有 SF6(流量l〇ml/min)之氮(合計流量 1 000ml/min)取代外,與實施例75相同地進行氟化硫之分 解處理試驗。結果如表9所示。 實施例77 除調製實施例7 5之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量950ml/min) 及氧(流量50ml/min取代外,與實施例75相同地進行氟 化硫之分解處理試驗。結果如表9所示。 實施例78 除調製實施例75之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量10ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量73ml/min)取代外,與實施例75相同地進 行氟化硫之分解處理試驗。結果如表9所示。 實施例79 (分解處理劑之調製) 使用市售的氧化鋁觸媒(平均細孔直徑1 3〇人,純度 -39 - 1226261 五、發明說明(38) 99 . 9%,粒徑2〜3mm )作爲氧化鋁之造粒物所成的處理劑。 而且使市售的氧化鑭粉末(純度99%)置於內徑20mm、高度 5mm之模具後,使用油壓套管,以150〜160kg/cm2之壓力 加壓30秒鐘予以成型所得的劑破碎,且藉由篩通過 3 . 36mm目之開口,不通過2 .00mm目之開口者作爲氧化鑭 之造物粒。另外,使市售的氧化鈣(純度99%)粉碎至 ΙΟΟμιη以下後,與上述相同地成型、破碎、篩分作爲氧化 鈣之造粒物。使此等造粒物以原子數比(La : Ca)爲9 : 1 混合,製得由氧化鑭及氧化鈣所成的處理劑。 (分解處理試驗) 使上述分解處理劑塡充於內徑42mm、長度1 000mm之 SUS316L製之分解處理裝置內部,以第5(B)圖所示之構成 ,以原子數比(A1 : La : Ca)爲5 ·· 9 : 1各相互4層塡充( 全部塡充長度600mm)。使分解處理裝置之處理劑溫度加熱 至800°C後,將含有SF6(流量l〇ml/min)之氮(合計流量 8 7 7ml/min)導入分解處理裝置,且使水蒸氣(流量 73ml/min)及氧(流量50ml/min)導入分解處理裝置,使 SF6分解。 其間,約每20分鐘採取部分自分解處理裝置之排出口 所排出的分解氣體,藉由FT-IR及GC-TCD進行SF6之分析 ’測定直至SF6之分解率爲99. 9%以下之時間,求取對1L 分解處理劑而言SF6之分解處理量(L)(分解處理能力),且 藉由檢知管觀察有無HF排出,有無硫氧化物排出。結果 -40 - 1226261 五、發明說明(39) 如表1 〇所示。 實施例80 除調製實施例79之分解處理劑中導入分解處理裝置之 氣體由含有 SF6(流量 10ml/min)之氮(合計流量 1 000ml/min)取代外,與實施例79相同地進行氟化硫之分 解處理試驗。結果如表1 0所示。 實施例81 除調製實施例79之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量l〇ml/min)之氮(合計流量950ml/min) 及氧(流量50ml/min取代外,與實施例79相同地進行氟 化硫之分解處理試驗。結果如表1 〇所示。 實施例82 除調製實施例79之分解處理劑中導入分解處理裝置之 氣體由含有SF6(流量10ml/min)之氮(合計流量927ml/min) 及水蒸氣(流量7 3 m 1 / m i η )取代外,與實施例7 9相同地進 行氟化硫之分解處理試驗。結果如表丨〇所示。 實施例83〜86 除實施例23調製分解處理劑中原子數比(Ai : La : Ca) 各以(5 : 7 ·· 3 )、( 5 : 5 : 5 )、( 5 : 3 : 7 )、( 5 : 1 : 9)混合 外’與實施例23相同地調製分解處理劑。使用此等分解 處理劑’與實施例23相同進行氟化硫之分解處理試驗。 結果如表11所示。 實施例87〜89 -41 - 1226261 五、發明說明(4〇) 除實施例1調製分解處理劑中使具有平均細孔直徑130 人之氧化鋁觸媒各以具有平均細孔直徑30A之氧化鋁觸媒 、具有平均細孔直徑80A之氧化鋁觸媒、具有平均細孔直 徑230A之氧化鋁觸媒外,與實施例1相同地調製分解處 理劑。使用此等分解處理劑,與實施例1相同進行氟化硫 之分解處理試驗。結果如表1 2所示。 實施例90〜92 除實施例1調製分解處理劑中使具有平均細孔直徑 130A之氧化鋁觸媒各以具有平均細孔直徑30A之氧化鋁 觸媒、具有平均細孔直徑80A之氧化鋁觸媒、具有平均細 孔直徑230A之氧化鋁觸媒外,與實施例1相同地調製分 解處理劑。使用此等分解處理劑,與實施例9相同進行氟 化硫之分解處理試驗。結果如表1 2所示。 實施例93〜95 除實施例1調製分解處理劑中使具有平均細孔直徑 130A之氧化鋁觸媒各以具有平均細孔直徑30A之氧化鋁 觸媒、具有平均細孔直徑80A之氧化鋁觸媒、具有平均細 孔直徑2 3 0人之氧化鋁觸媒外,與實施例1相同地調製分 解處理劑。使用此等分解處理劑,與實施例1 0相同進行 氟化硫之分解處理試驗。結果如表1 2所示。 實施例96〜98 除實施例1調製分解處理劑中使具有平均細孔直徑 130A之氧化鋁觸媒各以具有平均細孔直徑30A之氧化鋁 -42- 1226261 五、發明說明(41) 觸媒、具有平均細孔直徑80A之氧化鋁觸媒、具有平均細 孔直徑230A之氧化鋁觸媒外,與實施例1相同地調製分 解處理劑。使用此等分解處理劑,與實施例11相同進行 氟化硫之分解處理試驗。結果如表1 2所示。 比較例1 使用市售的氧化鋁(平均細孔直徑130A,純度99.9%, 粒徑2〜3mm)作爲氧化鋁造粒物所成的分解處理劑。 使該分解處理劑塡充於內徑42mm、長度100Omm之 SUS316L製之分解處理裝置內部,成爲塡充長度爲300mm 狀態。使分解處理裝置之處理劑溫度加熱至800°C後,將 含有SF6(流量10ml/min)之氮(合計流量950ml/min)導入 分解處理裝置,且使氧(流量50ml/min)導入分解處理裝置 ,使SF6分解。 其間,與實施例1相同地測定直至SF6之分解率爲 99. 9%以下之時間,求取對1L分解處理劑而言SF6之分解 處理量(L )(分解處理能力),且藉由檢知管觀察有無HF排 出,有無硫氧化物排出。結果如表1 2所示。 比較例2 使用市售的氧化鋁(平均細孔直徑1 30A,純度99 . 9%, 粒徑2〜3mm )作爲氧化鋁造粒物所成的分解處理劑。 使該分解處理劑塡充於內徑42mm、長度1 000mm之 SUS316L製之分解處理裝置內部,成爲塡充長度爲300mm 狀態。使分解處理裝置之處理劑溫度加熱至800°C後,將 -43- 1226261 五、發明說明(42) 含有SF6(流量10ml/min)之氮(合計流量877ml/min)導入 分解處理裝置,且使水蒸氣(流量7 3 m 1 / m i η )及氧(流量 50ml/nnn)導入分解處理裝置,使SF6分解。 其間,與實施例1相同地測定直至SF6之分解率爲 9 9.9%以下之時間,求取對1L分解處理劑而言SF6之分解 處理量(L )(分解處理能力),且藉由檢知管觀察有無HF排 出,有無硫氧化物排出。結果如表1 2所示。 -44- 1226261 五、發明說明(43)表1 分解處理劑 (原子數之比) (分解處理裝置:第1A圖) 氟化硫 濃度 (%) 共存 氣體 分解處 理溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例1 Al2〇3, La203(l:2) SF6 1.0 o2、h2o 800 99.9 52.2 並 j\\\ Μ 實施例2 Al2〇3,La203(l:6) sf6 1.0 o2、h2o 800 99.9 42.5 並 並 實施例3 Al2〇3,La203(l:l) sf6 1.0 o2、h2o 800 99.9 39.4 並 ^\\\ Μ j\\\ 實施例4 A1203, La203(l:2) sf6 0.2 o2、h2o 800 99.9 53.8 並 JXW Μ /\\\ 實施例5 AI2O3,La2〇3( 1:2) sf6 2.0 o2、h2o 800 99.9 50.7 無 dnt Ws 實施例6 AI2O3,La2〇3( 1:2) sf4 1.0 o2、h2o 800 99.9 72.0 無 M 川\ 實施例7 A1203, La(OH)3(l:2) sf6 1.0 o2、h2o 800 99.9 52.5 並 並 實施例8 A1203, La2(C03)3(l:2) sf6 1.0 o2、h2o 800 99.9 52.1 並 Μ. 實施例9 A1203,La203(l:2) sf6 1.0 _ 800 99.9 49.8 無 並 川、 實施例10 AI2O3,La2〇3( 1:2) sf6 1.0 〇2 800 99.9 49.6 並 無 實施例11 A12〇3,La2〇3( 1:2) sf6 1.0 h2o 800 99.9 52.3 4τττ Μ 並 -45 - 1226261 五、發明說明(44)表2 分解處理劑 (原子數之比)(分解 處理裝置:第1B圖) 氟化硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化物 之排出 實施例12 Al2〇3, La203(l:2) sf6 1.0 o2、h2o 800 99.9 48.8 迦 實施例13 Al2〇3,La203(l:6) sf6 1.0 o2、h2o 800 99.9 39.7 ill! J\\\ Μ j \\\ 實施例14 A12〇3, La2〇3( 1:1) sf6 1.0 o2、h2o 800 99.9 36.8 Μ V 1 ΝΝ 並 j\\\ 實施例15 A12〇3,La2〇3( 1:2) sf6 0.2 o2、h2o 800 99.9 50.5 Μ j \\\ >frrr 無 實施例16 AI2O3,La2〇3( 1:2) sf6 2.0 o2、h2o 800 99.9 47.4 並 j\\\ 無 實施例17 A]_2〇3,La2〇3(l:2) sf4 1.0 02 ' h2o 800 99.9 68.3 辆 J\\\ dfra: 實施例18 Al2〇3, La(OH)3(l:2) sf6 1.0 o2、h2o 800 99.9 49.2 Μ jw\ Μ 實施例19 A1203,La(C03)3(l:2) sf6 1.0 〇2、H20 800 99.9 48.7 Μ 4ml 無 實施例20 A1203, La203(l:2) sf6 1.0 _ 800 99.9 46.5 無 無 實施例21 A12〇3,La2〇3( 1:2) sf6 1.0 〇2 800 99.9 46.4 無 並 實施例22 Al2〇3, La203(l:2) sf6 1.0 h2o 800 99.9 48.8 無 -46- 1226261 五、發明說明(45)表3V. Description of the invention (33) Example 67 (Preparation of decomposition treatment agent) A commercially available alumina catalyst (average pore diameter 1 30A, purity 99.9%, particle size 2 ~ 3 mm) was used as an oxide name Treating agent made of granules. Furthermore, a commercially available lanthanum oxide powder (99% purity) was placed in a mold having an inner diameter of 20 mm and a height of 5 mm, and then the resulting agent was crushed by using an oil pressure sleeve at a pressure of 150 to 160 kg / cm2 for 30 seconds to mold And, through the sieve through the opening of 3.36mm mesh, does not pass through the opening of 2.00mm mesh as a treatment agent formed by the granules of lanthanum oxide. In addition, a commercially available calcium oxide (purity: 99%) was pulverized to 100 µm or less, and then formed, crushed, and sieved in the same manner as described above to be used as a treatment agent for calcium oxide granules. (Decomposition treatment test) The above decomposition treatment agent was filled in a decomposition treatment device made of SUS 3 16L with an inner diameter of 42 mm and a length of 1,000 mm, and the structure shown in Figure 4 (A) was used. The atomic ratio (Al: La : Ca) is 5: 9: 1 each 4 layers of charging (all charging length is 600mm). After the temperature of the treatment agent of the decomposition treatment device is heated to 800 ° C, nitrogen (total flow rate 8 7 7 ml / min) containing SF6 (flow rate 10 ml / min) is introduced into the decomposition treatment device, and water vapor (flow rate 73 ml / min) is introduced. And oxygen (flow rate 50ml / min) is introduced into a decomposition processing device to decompose SF6. 9% 之间 的 时间 , During the SF6 analysis by FT-IR and GC-TCD, the decomposition gas discharged from the outlet of the decomposition processing device is taken approximately every 20 minutes. For 1L -35-1226261 V. Description of the invention (34) Decomposition treatment agent (L) (decomposition treatment capacity) of SF6 for decomposition treatment agent, and observe whether there is HF emission and sulfur oxide emission through the detection tube . The results are shown in Table 7. Example 6 8 Fluorine was carried out in the same manner as in Example 67, except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 67 was replaced by nitrogen containing SF6 (flow rate 10 ml / min) (total flow rate 1 000 ml / min). Decomposition treatment test of sulfur. The results are shown in Table 7. Example 69 The gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 67 was replaced by nitrogen (total flow rate 950ml / min) and oxygen (flow rate 50m 1 / min) containing SF6 (flow rate 10ml / min). The decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 67. The results are shown in Table 7. Example 70 Except for the preparation of the decomposition treatment agent of Example 67, the gas introduced into the decomposition treatment device was composed of SF6 (flow rate 10 ml) / min) nitrogen (total flow rate 927ml / min) and water vapor (flow rate 73ml / min) were replaced, and the sulfur fluoride decomposition treatment test was performed in the same manner as in Example 67. The results are shown in Table 7. Example 71 The treatment agent prepared in the same manner as in Example 67 was filled in a decomposition treatment device made of SUS316L with an inner diameter of 42 mm and a length of 1,000 mm, and had a structure shown in FIG. 4 (B). The atomic ratio (Al · · La: Ca ) Is 5 ·· 9 ·· 1 each with 4 layers of filling (all filling length is 600mm). The processing of the decomposition processing device -36-1226261 V. Description of the invention (35) The temperature of the agent is heated to 80 (TC) After that, nitrogen containing SF6 (flow rate 10 ml / min) (total flow rate 877 ml / min) is introduced into the decomposition processing device In addition, water vapor (flow rate: 73ml / min) and oxygen (flow rate: 50ml / min) are introduced into the decomposition treatment device to decompose SF6. In the meantime, a part of the decomposition gas discharged from the outlet of the decomposition treatment device is taken approximately every 20 minutes. FT-IR and GC-TCD analysis of SF6 'measurement until the decomposition rate of SF6 is less than 99.9%, to determine the decomposition treatment capacity (L) (decomposition treatment capacity) of SF6 for 1L decomposition treatment agent, and borrow The detection tube was used to observe the presence or absence of HF discharge and sulfur oxide discharge. The results are shown in Table 8. Example 72 The gas introduced into the decomposition treatment device in addition to the decomposition treatment agent prepared in Example 71 was composed of SF6 (flow rate 10 ml / mi). η) was replaced by nitrogen (total flow rate 1000 ml / min), and a sulfur fluoride decomposition treatment test was performed in the same manner as in Example 71. The results are shown in Table 8. Example 7 3 Except for the decomposition treatment agent prepared in Example 71 The gas introduced into the decomposition treatment device was replaced with nitrogen (total flow rate: 950 ml / min) and oxygen (flow rate: 50 ml / min) containing SF6 (flow rate: 10 ml / min). The sulfur fluoride decomposition treatment test was performed in the same manner as in Example 71. The results are shown in Table 8. Example 74 In addition to the decomposition treatment agent of Preparation Example 71, the gas introduced into the decomposition treatment device is nitrogen containing SF6 (flow rate iomi / min) (total flow rate 927ml / min) -37-1226261 V. Description of the invention (36) Except replacing with water vapor (flow rate 7 3 m 1 / mi η), the decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 71. The results are shown in Table 8. Example 75 (Preparation of a decomposition treatment agent) A commercially available alumina catalyst (average pore diameter of 13 OA, purity of 9 · 9%, particle diameter of 2 to 3 mm) was used as a granulated alumina. Treatment agent. A commercially available calcium oxide (purity: 99%) was pulverized to less than 100 μΐΏ, and mixed with a commercially available lanthanum oxide powder (purity: 99%) at an atomic ratio (La: Ca) of 9: 1. After the mixture was placed in a mold with an inner diameter of 20 mm and a height of 5 mm, the resulting agent was crushed by pressing it with a hydraulic sleeve at a pressure of 150 to 60 kg / cm2 for 30 seconds, and passed through a 3.36 mm through a sieve. The openings of the eyes, those that do not pass through the openings of 2.00 mm are used as a treatment agent made of lanthanum oxide and calcium oxide. (Decomposition treatment test) The above decomposition treatment agent was filled in a decomposition treatment device made of SUS316L with an inner diameter of 42 mm and a length of 1000 mm. The structure was shown in Fig. 5 (A) and the atomic ratio (A1: La: Ca) ) Is 5: 9: 1 each with 4 layers of charging (all charging length is 600mm). After the temperature of the treatment agent of the decomposition treatment device is heated to 800 ° C, nitrogen (total flow rate of 877 ml / min) containing SF6 (flow rate of 10 ml / min) is introduced into the decomposition treatment device, and water vapor (flow rate of 73 ml / min) and oxygen are introduced. (Flow rate: 50 ml / min) was introduced into a decomposition processing device to decompose SF6. In the meantime, a part of the exhaust port of the self-decomposing treatment device is taken approximately every 20 minutes. -38- 1226261 V. Explanation of the invention (37) Decomposition gas produced by the household pound #? _1; [^ and GC-TCd for analysis of SF6 'Measurement Road: until the decomposition rate of SF6 is 99.9% or less, find the decomposition treatment amount (L) of SF6 for 1L of decomposition treatment agent (decomposition treatment Capacity), and the presence or absence of HF emissions and sulfur oxides is observed through a detection tube. The results are shown in Table 9. Example 76 The same as Example 75, except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 7 5 was replaced by nitrogen containing SF6 (flow rate 10 ml / min) (total flow rate 1 000 ml / min). The decomposition treatment test of sulfur fluoride was performed. The results are shown in Table 9. Example 77 Except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 7 5 was prepared by replacing nitrogen containing SF6 (flow rate 10ml / min) (total flow rate 950ml / min) and oxygen (flow rate 50ml / min), The decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 75. The results are shown in Table 9. Example 78 The gas introduced into the decomposition treatment device except the preparation of the decomposition treatment agent of Example 75 was composed of SF6 (flow rate 10 ml / min) Except that nitrogen (total flow rate 927 ml / min) and water vapor (flow rate 73 ml / min) were substituted, the sulfur fluoride decomposition treatment test was performed in the same manner as in Example 75. The results are shown in Table 9. Example 79 (Decomposition treatment agent) Preparation) Use a commercially available alumina catalyst (average pore diameter 130 people, purity -39-1226261 V. Description of the invention (38) 99.9%, particle size 2 ~ 3mm) as the granulation of alumina A treatment agent made of a substance. Furthermore, a commercially available lanthanum oxide powder (99% purity) was placed in a mold with an inner diameter of 20 mm and a height of 5 mm, and then an oil pressure sleeve was used to press it at a pressure of 150 to 160 kg / cm2 for 30 seconds. The agent formed by the bell is broken and passed through a 3.36mm mesh opening through a sieve, Those that pass through an opening of 2.00 mm mesh are made into lanthanum oxide granules. In addition, commercially available calcium oxide (purity: 99%) is pulverized to 100 μm or less, and then shaped, crushed, and sieved as granules of calcium oxide in the same manner as described above. These granules were mixed at an atomic ratio (La: Ca) of 9: 1 to obtain a treatment agent made of lanthanum oxide and calcium oxide. (Decomposition treatment test) The above decomposition treatment agent was filled with The inside of the decomposition processing device made of SUS316L with an inner diameter of 42 mm and a length of 1,000 mm is structured as shown in Figure 5 (B), and the atomic ratio (A1: La: Ca) is 5 ·· 9: 1 each with 4 layers Refilling (all refilling lengths are 600mm). After the temperature of the treatment agent of the decomposition treatment device is heated to 800 ° C, nitrogen containing SF6 (flow rate 10 ml / min) (total flow rate 8 7 7 ml / min) is introduced into the decomposition treatment. Device, and introduce water vapor (flow rate of 73ml / min) and oxygen (flow rate of 50ml / min) into the decomposition treatment device to decompose SF6. Meanwhile, take part of the decomposition gas discharged from the outlet of the decomposition treatment device about every 20 minutes, Analysis of SF6 by FT-IR and GC-TCD 'Measurement until the decomposition rate of SF6 99. 9% of the time, to determine the decomposition treatment amount (L) (decomposition treatment capacity) of SF6 for 1L decomposition treatment agent, and observe the presence or absence of HF emission and sulfur oxide emission through the detection tube. Results- 40-1226261 V. Explanation of the invention (39) is shown in Table 1. Example 80 The gas introduced into the decomposition treatment device in addition to the decomposition treatment agent prepared in Example 79 was nitrogen containing SF6 (flow rate 10ml / min) (total flow rate) Except 1 000 ml / min), the decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 79. The results are shown in Table 10. Example 81 Except that the gas introduced into the decomposition treatment device in the decomposition treatment agent of Example 79 was replaced by nitrogen (total flow rate 950ml / min) and oxygen (flow rate 50ml / min) containing SF6 (flow rate 10ml / min), and In Example 79, the decomposition treatment test of sulfur fluoride was performed in the same manner. The results are shown in Table 10. Example 82 The gas introduced into the decomposition treatment device in addition to the decomposition treatment agent prepared in Example 79 was composed of SF6 (flow rate 10 ml / min). Except that nitrogen (total flow rate 927 ml / min) and water vapor (flow rate 7 3 m 1 / mi η) were substituted, a sulfur fluoride decomposition treatment test was performed in the same manner as in Example 7.9. The results are shown in Table 丨 〇. Implementation Examples 83 to 86 Except for Example 23, the atomic ratio (Ai: La: Ca) in the preparation and decomposition treatment agent was each (5: 7 ·· 3), (5: 5: 5), (5: 3: 7), (5: 1: 9) Except for mixing, a decomposition treatment agent was prepared in the same manner as in Example 23. Using these decomposition treatment agents, the sulfur fluoride decomposition treatment test was performed in the same manner as in Example 23. The results are shown in Table 11. Implementation Examples 87 ~ 89 -41-1226261 V. Description of the invention (40) Except for the preparation and decomposition treatment agent in Example 1, Alumina catalysts with an average pore diameter of 130 people are each alumina catalysts with an average pore diameter of 30A, alumina catalysts with an average pore diameter of 80A, and alumina catalysts with an average pore diameter of 230A. A decomposition treatment agent was prepared in the same manner as in Example 1. Using these decomposition treatment agents, a sulfur fluoride decomposition treatment test was performed in the same manner as in Example 1. The results are shown in Table 1 and 2. Examples 90 to 92 Except Example 1 In the preparation and decomposition treatment agent, the alumina catalyst having an average pore diameter of 130A is each an alumina catalyst having an average pore diameter of 30A, the alumina catalyst having an average pore diameter of 80A, and the one having an average pore diameter of 230A. Except for the alumina catalyst, a decomposition treatment agent was prepared in the same manner as in Example 1. Using these decomposition treatment agents, a sulfur fluoride decomposition treatment test was performed in the same manner as in Example 9. The results are shown in Table 12 and 2. Examples 93 to 95 In addition to Example 1, the alumina catalyst having an average pore diameter of 130A was prepared by using the alumina catalyst having an average pore diameter of 30A, the alumina catalyst having an average pore diameter of 80A, The decomposition treatment agent was prepared in the same manner as in Example 1 except for the alumina catalyst with an average pore diameter of 230 persons. Using these decomposition treatment agents, the decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 10. The results are as follows Table 1 shows 2. Examples 96 to 98 except that in Example 1, the alumina catalyst having an average pore diameter of 130A was prepared in the decomposition treatment agent, and alumina having an average pore diameter of 30A was -42-1226261. V. Invention Explanation (41) A decomposition treatment agent was prepared in the same manner as in Example 1 except for the catalyst, the alumina catalyst having an average pore diameter of 80A, and the alumina catalyst having an average pore diameter of 230A. Using these decomposition treatment agents, a decomposition treatment test of sulfur fluoride was performed in the same manner as in Example 11. The results are shown in Table 12. Comparative Example 1 A commercially available alumina (average pore diameter 130A, purity 99.9%, particle diameter 2 to 3 mm) was used as a decomposition treatment agent made of alumina granules. The decomposition treatment agent was filled in a decomposition treatment device made of SUS316L having an inner diameter of 42 mm and a length of 100 mm, and the filling length was 300 mm. After the temperature of the treatment agent of the decomposition treatment device is heated to 800 ° C, nitrogen (total flow rate of 950 ml / min) containing SF6 (flow rate of 10 ml / min) is introduced into the decomposition treatment device, and oxygen (flow rate of 50 ml / min) is introduced into the decomposition treatment. Device to decompose SF6. In the meantime, the time until the decomposition rate of SF6 was 99.9% or less was measured in the same manner as in Example 1. The decomposition treatment amount (L) (decomposition treatment capacity) of SF6 for the 1L decomposition treatment agent was determined, and was checked by inspection. The tube was observed for HF emission and sulfur oxide emission. The results are shown in Table 12. Comparative Example 2 A commercially available alumina (average pore diameter of 1 30 A, a purity of 99.9%, and a particle diameter of 2 to 3 mm) was used as a decomposition treatment agent for alumina granules. The decomposition treatment agent was filled into a decomposition treatment device made of SUS316L having an inner diameter of 42 mm and a length of 1,000 mm, and the filling treatment was brought to a state of 300 mm. After the temperature of the treatment agent of the decomposition treatment device is heated to 800 ° C, -43-1226261 V. Description of the Invention (42) Nitrogen containing SF6 (flow 10ml / min) (total flow 877ml / min) is introduced into the decomposition treatment device, and Water vapor (flow rate: 7 3 m 1 / mi η) and oxygen (flow rate: 50 ml / nnn) were introduced into a decomposition treatment device to decompose SF6. In the meantime, the time until the decomposition rate of SF6 was 9 9.9% or less was measured in the same manner as in Example 1. The decomposition treatment amount (L) (decomposition treatment capacity) of SF6 for the 1L decomposition treatment agent was determined, and it was detected by inspection. The tube was observed for HF emission and sulfur oxide emission. The results are shown in Table 12. -44- 1226261 V. Description of the invention (43) Table 1 Decomposition treatment agent (ratio of atomic number) (decomposition treatment device: Figure 1A) Sulfur fluoride concentration (%) Coexisting gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment Capability HF discharge of sulfur oxides Example 1 Al2O3, La203 (l: 2) SF6 1.0 o2, h2o 800 99.9 52.2 and j \\\ Μ Example 2 Al2O3, La203 (l: 6) sf6 1.0 o2, h2o 800 99.9 42.5 and Example 3 Al2O3, La203 (l: l) sf6 1.0 o2, h2o 800 99.9 39.4 and ^ \\\ Μ j \\\ Example 4 A1203, La203 (l: 2 ) sf6 0.2 o2, h2o 800 99.9 53.8 and JXW Μ / \\\ Example 5 AI2O3, La2〇3 (1: 2) sf6 2.0 o2, h2o 800 99.9 50.7 No dnt Ws Example 6 AI2O3, La2〇3 (1 : 2) sf4 1.0 o2, h2o 800 99.9 72.0 without M. Chuan \ Example 7 A1203, La (OH) 3 (l: 2) sf6 1.0 o2, h2o 800 99.9 52.5 and Example 8 A1203, La2 (C03) 3 (l: 2) sf6 1.0 o2, h2o 800 99.9 52.1 and M. Example 9 A1203, La203 (l: 2) sf6 1.0 _ 800 99.9 49.8 Without Bianchuan, Example 10 AI2O3, La2 03 (1: 2) sf6 1.0 〇2 800 99.9 49.6 No Example 11 A12 3, La2〇3 (1: 2) sf6 1.0 h2o 800 99.9 52.3 4τττ Μ and -45-1226261 V. Description of the invention (44) Table 2 Decomposition treatment agent (ratio of atomic number) (decomposition treatment device: Figure 1B) Sulfur fluoride concentration (%) Coexisting gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment capacity HF Emission of sulfur oxides Example 12 Al2O3, La203 (l: 2) sf6 1.0 o2, h2o 800 99.9 48.8 g Example 13 Al2〇3, La203 (l: 6) sf6 1.0 o2, h2o 800 99.9 39.7 ill! J \\\ Μ j \\\ Example 14 A12〇3, La2〇3 (1: 1) sf6 1.0 o2 , H2o 800 99.9 36.8 Μ V 1 ΝΝ and j \\\ Example 15 A12〇3, La2〇3 (1: 2) sf6 0.2 o2, h2o 800 99.9 50.5 Μ j \\\ > frrr No Example 16 AI2O3 , La2〇3 (1: 2) sf6 2.0 o2, h2o 800 99.9 47.4 and j \\\ No embodiment 17 A] _2〇3, La2〇3 (l: 2) sf4 1.0 02 'h2o 800 99.9 68.3 cars J \\\ dfra: Example 18 Al2O3, La (OH) 3 (l: 2) sf6 1.0 o2, h2o 800 99.9 49.2 Μ jw \ Μ Example 19 A1203, La (C03) 3 (1: 2) sf6 1.0 〇2, H20 800 99.9 48.7 M 4ml without Example 20 A1203, La203 (l: 2) sf6 1.0 _ 800 99.9 46.5 No Example 21 A12〇3, La2〇3 (1: 2) sf6 1.0 〇2 800 99.9 46.4 No Example 22 Al2〇3, La203 (1: 2) sf6 1.0 h2o 800 99.9 48.8 No -46 -1226261 V. Description of the invention (45) Table 3

分解處理劑 (原子數之比) (分解處理裝置:第2A圖) 氟化硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例23 A1 2〇3, La203,Ca0(5:9:1) sf6 1.0 o2、h2o 800 99.9 50.6 赫 /\\\ 並 實施例24 Al2〇3, La203,Ca0(2:9:l) sf6 1.0 〇2、H20 800 99.9 49.8 /πτ m Μ j\w 實施例25 Al2〇3, La203,Ca0( 10:9:1) sf6 1.0 o2、h2o 800 99.9 38.2 ^[Jp: 赫 實施例26 A1 2〇3, La203,Ca0(5:9:l) sf6 0.2 o2、h2o 800 99.9 51.1 並 j \ w 钿 實施例27 A1 2〇3, La203,Ca0(5:9:l) sf6 2.0 o2、h2o 800 99.9 48.8 Μ y\\\ fte 實施例28 A1203, La2〇3,CaO(5:9:1) sf4 1.0 o2、h2o 800 99.9 70.1 並 j\\\ 迦 實施例29 A1 2〇3, La203,Mg0(5:9:l) sf6 1.0 o2、h2o 800 99.9 49.8 to j\\\ 並 實施例30 A1 2〇3, La203,Sr0(5:9:1) sf6 1.0 o2、h2o 800 99.9 49.5 ^\\\ 细E J\\\ 實施例31 A1203, La203,Ca0(5:9:1) sf6 1.0 — 800 99.9 48.1 無 無 實施例32 Al2〇3, La203,Ca0(5:9:l) sf6 1.0 〇2 800 99.9 47.9 迦 實施例33 A1 2〇3, La203,Ca0(5:9:1) sf6 1.0 h2o 800 99.9 50.0 >fnr ΊΓΗ 、N -47- 1226261 五、發明說明(46)表4 分解處理劑 (原子數之比) (分解處理裝置:第2B圖) 氟化硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例34 Al2〇3, La203,Ca0(5:9:1) SF6 1.0 o2、h2o 800 99.9 47.5 魅 Μ y inn 實施例35 Al2〇3, La203 ,Ca0(2:9:l) sf6 1.0 o2、h2o 800 99.9 46.3 4fff 並 實施例36 Al2〇3, La2O3,CaO(10:9:l) sf6 1.0 o2、h2o 800 99.9 36.1 並 姐 實施例37 Al2〇3, La203,Ca0(5:9:1) sf6 0.2 o2、h2o 800 99.9 48.7 赫 iffi 實施例38 Al2〇3, La203,Ca0(5:9:1) sf6 2.0 o2、h2〇 800 99.9 45.2 Μ J\S\ 無 實施例39 Al2〇3, La203,Ca0(5:9:1) sf4 1.0 o2、h2o 800 99.9 65.9 無 Μ j\\\ 實施例40 Al2〇3, La203,Mg0(5:9:1) sf6 1.0 〇2、h20 800 99.9 46.8 並 j\\\ Μ 實施例41 Al2〇3,La203,Sr0(5:9:1) sf6 1.0 o2、h2o 800 99.9 46.2 無 Μ 實施例42 Al2〇3,La203,Ca0(5:9:1) sf6 1.0 _ 800 99.9 45.2 無 Μ 實施例43 Al2〇3,La203,Ca0(5:9:1) sf6 1.0 〇2 800 99.9 46.0 並 j\\\ vfnr 實施例44 A1203, La203,Ca〇(5 :9:1) sf6 1.0 h2o 800 99.9 47.2 無 並 / \\\ -48- 1226261 五、發明說明(47)表5 分解處理劑 (原子數之比) (分解處理裝置:第2C圖) 氟化 硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例45 A1 2〇3, La203,Ca0(5:9:1) sf6 1.0 o2、h2o 800 99.9 47.6 Μ jw\ Μ j\\\ 實施例46 A1 2〇3, La203,Ca0(2:9:1) sf6 1.0 o2、h2o 800 99.9 46.3 無 Μ j\\\ 實施例47 A1 2〇3, La2O3,CaO(10:9:1) sf6 1.0 o2、h2o 800 99.9 36.2 Μ y\s\ fte 實施例48 A1A, La203,Ca0(5:9:l) sf6 0.2 o2、h2o 800 99.9 48.5 Μ J \ s\ -frrr 實施例49 A1 2〇3, La203,Ca0(5:9:1) sf6 2.0 o2、h2o 800 99.9 45.3 M j\\\ ^rrr 實施例50 Α1〗03, La203,Ca0(5:9:1) sf4 1.0 o2、h2o 800 99.9 65.6 M J\\\ M 實施例51 A1203, La203,Mg(0H)2(5:9:l) sf6 1.0 o2、h2o 800 99.9 46.6 rlllr 實施例52 Al2〇3, La203,Sr(0H)2(5:9:l) sf6 1.0 o2、h2o 800 99.9 43.3 實施例53 ai2o3, La203,Ca0(5:9:1) sf6 1.0 — 800 99.9 46.2 4τττ 無 實施例54 Al203, La203,Ca0(5:9:1) sf6 1.0 〇2 800 99.9 45.8 M ^ » NN 實施例55 A1203, La203,Ca0(5:9:1) sf6 1.0 h2o 800 99.9 47.3 M jw's -49- 1226261 五、發明說明(48)表6 分解處理劑 (原子數之比) (分解處理裝置:第3圖) 氣化硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解處 理能力 HF之 排出 硫氧化 物之排 出 實施例56 Al2〇3, La203(l:2) SF6 1.0 o2、h2o 800 99.9 46.5 無 實施例57 Α1·2〇3, La203( 1:6) sf6 1.0 o2、h2o 800 99.9 35.3 無 無 實施例58 A1 2〇3, La2〇3(l:l) sf6 1.0 o2、h2o 800 99.9 35.2 無 Μ 實施例59 ΑΙΑ〕, La203( 1:2) sf6 0.2 o2、h2o 800 99.9 47.9 TTtr 無 實施例60 Α1203, La203(l:2) sf6 2.0 o2 、 h2o 800 99.9 45.1 Μ j \\\ 無 實施例61 ΑΙ·2〇3, La203(l:2) sf4 1.0 o2、h2o 800 99.9 64.8 並 J \\\ Μ 實施例62 Α12〇3, La203,(0H)3(l:2) sf6 1.0 o2、h2o 800 99.9 46.6 無 Μ j\\\ 實施例63 Α1 2〇3, La203 ,(C03)3(l:2) sf6 1.0 o2、h2o 800 99.9 46.4 並 實施例64 αι2ο3, La203(l:2) sf6 1.0 一 800 99.9 44.2 M j \\\ Μ 實施例65 αι2ο3, La203(l:2) sf6 1.0 〇2 800 99.9 44.1 M y\\\ 無 實施例66 Α1 2〇3 > La203(l:2) sf6 1.0 h2o 800 99.9 46.3 M JWS 無 -50 - 1226261 五、發明說明(49) 表7 分解處理劑 (原子數之比) (分解處理裝置:第4A圖) 氟化硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例67 Al2〇3,La203,CaO(5 :9:1) sf6 1.0 o2、h2〇 800 99.9 46.4 無 無 實施例68 Al2〇3, La203,Ca0(5:9:1) sf6 1.0 _ 800 99.9 44.0 j\w Μ w 實施例69 Al2〇3,La203,Ca0(5:9:l) sf6 1.0 〇2 800 99.9 43.9 Μ J \ \N 無 實施例70 Al2〇3,La203,Ca0(5:9:l) sf6 0.2 h2o 800 99.9 46.3 無 無 表8 分解處理劑 (原子數之比) (分解處理裝置:第4B圖) 氟化硫 濃度 (%) 共存 熱體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例71 A 12〇3, La203,Ca0(5:9:1) sf6 1.0 02、H20 800 99.9 46.4 盤 j \ \\ 無 實施例72 A 1 2〇3 , La203 ,Ca0(5:9:l) sf6 1.0 _ 800 99.9 43.8 4\\\ 4ffP \\ 實施例73 A1 2〇3, La2〇3,Ca〇(5:9:l) sf6 1.0 〇2 800 99.9 44.0 無 無 實施例74 A 1 2〇3, La203,Ca0(5:9:1) sf6 1.0 h2〇 800 99.9 46.1 無 無 表9 分解處理劑 (原子數之比) (分解處理裝置:第5A圖) 氟化硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例75 Al2〇3,La203,Ca0(5:9:l) SF6 1.0 〇2、h2o 800 99.9 45.9 Μ /\\\ 徘 > »、Ν 實施例76 Al2〇3,La203,Ca0(5:9:l) sf6 1.0 — 800 99.9 44.1 Μ 並 實施例77 Al2〇3,La203,Ca0(5:9:l) sf6 1.0 〇2 800 99.9 45.0 迦 無 實施例78 Al2〇3,La203,Ca0(5:9:l) sf6 1.0 h2o 800 99.9 46.1 無 並 -51 - 1226261 五、發明說明(50)表10 分解處理劑 (原子數之比) (分解處理裝置:第5B圖) 氟化硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例79 Al2〇3, La203,Ca0(5:9:l) sf6 1.0 o2、h2o 800 99.9 46.3 Μ Μ JWS 實施例80 Al2〇3, La203,Ca0(5:9:l) sf6 1.0 — 800 99.9 44.2 無 實施例81 Al2〇3, La203,Ca0(5:9:l) sf6 1.0 〇2 800 99.9 39.8 無 4nL m 實施例82 Al2〇3, La203,Ca0(5:9:1) sf6 1.0 h2o 800 99.9 45.9 Μ ^\\\ M j\w 表11 分解處理劑 (原子數之比) (分解處理裝置:第2A圖) 氟化硫 濃度 (%) 共存 氣體 分解 處理 溫度 分解 率(%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例83 ai2o3, La203,Ca0(5:9:1) sf6 1.0 o2、h2o 800 99.9 48.1 nl卜 j\\\ J\\\ 實施例84 Α12〇3, La203,Ca0(5:9:1) sf6 1.0 o2 、 h2o 800 99.9 43.9 並 實施例85 Α1203, La203,Ca0(5:9:1) sf6 1.0 〇2 800 99.9 39.6 4τττ II 1 1- J \\\ 實施例86 Al2〇3, La203,Ca0(5:9:l) sf6 1.0 h2o 800 99.9 34.8 並 J\\\ 無 -52 - 1226261 五、發明說明(51)表12Decomposition treatment agent (ratio of atomic number) (Decomposition treatment device: Fig. 2A) Sulfur fluoride concentration (%) Coexistence gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment capacity HF Emission of sulfur oxides Example 23 A1 2〇3, La203, Ca0 (5: 9: 1) sf6 1.0 o2, h2o 800 99.9 50.6 Hz / \\\ and Example 24 Al2〇3, La203, Ca0 (2: 9: 1) sf6 1.0 02, H20 800 99.9 49.8 / πτ m Μ j \ w Example 25 Al2O3, La203, Ca0 (10: 9: 1) sf6 1.0 o2, h2o 800 99.9 38.2 ^ [Jp: Example 26 A1 2O3, La203 , Ca0 (5: 9: l) sf6 0.2 o2, h2o 800 99.9 51.1 and j \ w 钿 Example 27 A1 2〇3, La203, Ca0 (5: 9: l) sf6 2.0 o2, h2o 800 99.9 48.8 Μ y \\\ fte Example 28 A1203, La2〇3, CaO (5: 9: 1) sf4 1.0 o2, h2o 800 99.9 70.1 and j \\\ Example 29 A1 2〇3, La203, Mg0 (5: 9 : l) sf6 1.0 o2, h2o 800 99.9 49.8 to j \\\ and Example 30 A1 2〇3, La203, Sr0 (5: 9: 1) sf6 1.0 o2, h2o 800 99.9 49.5 ^ \\\ Fine EJ \ \\ Example 31 A1203, La203, Ca0 (5: 9: 1) sf6 1.0 — 800 99.9 48.1 None None Example 32 Al2〇3, La203, Ca0 (5: 9: l) sf6 1.0 〇2 800 99.9 47.9 Example 33 A1 2〇3, La203, Ca0 (5: 9: 1) sf6 1.0 h2o 800 99.9 50.0 > fnr ΊΓΗ, N -47-1226261 V. Description of the invention (46 ) Table 4 Decomposition treatment agent (ratio of atomic number) (Decomposition treatment device: Figure 2B) Sulfur fluoride concentration (%) Coexistence gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment capacity HF emission Sulfur oxide discharge implementation Example 34 Al2〇3, La203, Ca0 (5: 9: 1) SF6 1.0 o2, h2o 800 99.9 47.5 Charm y inn Example 35 Al2〇3, La203, Ca0 (2: 9: l) sf6 1.0 o2, h2o 800 99.9 46.3 4fff and Example 36 Al2〇3, La2O3, CaO (10: 9: l) sf6 1.0 o2, h2o 800 99.9 36.1 and Example 37 Al2〇3, La203, Ca0 (5: 9: 1) sf6 0.2 o2, h2o 800 99.9 48.7 Hz iffi Example 38 Al2O3, La203, Ca0 (5: 9: 1) sf6 2.0 o2, h2800 800 99.9 45.2 M J \ S \ No Example 39 Al2O3, La203, Ca0 (5: 9: 1) sf4 1.0 o2, h2o 800 99.9 65.9 No M j \\\ Example 40 Al2〇3, La203, Mg0 (5: 9: 1) sf6 1.0 0, h20 800 99.9 46.8 and j \\\ Μ Example 41 Al203, La203, Sr0 (5: 9: 1) sf6 1.0 o2, h2o 800 99 .9 46.2 No M Example 42 Al2O3, La203, Ca0 (5: 9: 1) sf6 1.0 _ 800 99.9 45.2 No M Example 43 Al2O3, La203, Ca0 (5: 9: 1) sf6 1.0 2 800 99.9 46.0 and j \\\ vfnr Example 44 A1203, La203, Ca〇 (5: 9: 1) sf6 1.0 h2o 800 99.9 47.2 No union / \\\ -48- 1226261 V. Description of the invention (47) 5 Decomposition treatment agent (ratio of atomic number) (decomposition treatment device: Fig. 2C) Sulfur fluoride concentration (%) Coexistence gas decomposition treatment temperature decomposition rate (%) Decomposition treatment capacity HF discharge sulfur oxide discharge Example 45 A1 2〇3, La203, Ca0 (5: 9: 1) sf6 1.0 o2, h2o 800 99.9 47.6 Μ jw \ Μ j \\\ Example 46 A1 2〇3, La203, Ca0 (2: 9: 1) sf6 1.0 o2, h2o 800 99.9 46.3 without M j \\\ Example 47 A1 2 03, La2O3, CaO (10: 9: 1) sf6 1.0 o2, h2o 800 99.9 36.2 M y \ s \ fte Example 48 A1A, La203, Ca0 (5: 9: l) sf6 0.2 o2, h2o 800 99.9 48.5 M J \ s \ -frrr Example 49 A1 2〇3, La203, Ca0 (5: 9: 1) sf6 2.0 o2, h2o 800 99.9 45.3 M j \\\ ^ rrr Example 50 Α1〗 03, La203, Ca0 (5: 9: 1) sf4 1.0 o2, h2o 800 99.9 65.6 MJ \\\ M Example 51 A1203, La203, Mg (0H) 2 (5: 9: l) sf6 1.0 o2, h2o 800 99.9 46.6 rlllr Example 52 Al2〇3, La203, Sr (0H) 2 (5: 9: l) sf6 1.0 o2, h2o 800 99.9 43.3 Example 53 ai2o3, La203, Ca0 (5: 9: 1) sf6 1.0 — 800 99.9 46.2 4τττ No Example 54 Al203, La203, Ca0 (5: 9: 1) sf6 1.0 〇2 800 99.9 45.8 M ^ »NN Example 55 A1203, La203, Ca0 (5: 9: 1) sf6 1.0 h2o 800 99.9 47.3 M jw's -49- 1226261 V. Description of the invention (48) Table 6 Decomposition treatment agent (atom number Ratio) (Decomposition treatment device: Fig. 3) Gasification sulfur concentration (%) Coexisting gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment capacity HF Emission of sulfur oxides Example 56 Al203, La203 (l: 2) SF6 1.0 o2, h2o 800 99.9 46.5 No Example 57 A1 · 2 03, La203 (1: 6) sf6 1.0 o2, h2o 800 99.9 35.3 No No Example 58 A1 2 03, La2 03 (1: l) sf6 1.0 o2, h2o 800 99.9 35.2 without M Example 59 ΑΙΑ], La203 (1: 2) sf6 0.2 o2, h2o 800 99.9 47.9 TTtr without Example 60 Α1203, La203 (l: 2) sf6 2.0 o2, h2o 800 99.9 45.1 Μ j \\\ Example 61 AII · 203, La203 (l: 2) sf4 1.0 o2, h2o 800 99.9 64.8 and J \\\ Μ Example 62 Α12〇3, La203, (0H) 3 (l: 2 ) sf6 1.0 o2, h2o 800 99.9 46.6 without M j \\\ Example 63 A1 2 03, La203, (C03) 3 (l: 2) sf6 1.0 o2, h2o 800 99.9 46.4 and Example 64 αι2ο3, La203 ( l: 2) sf6 1.0-800 99.9 44.2 M j \\\ Μ Example 65 αι2ο3, La203 (l: 2) sf6 1.0 〇 800 800 99.9 44.1 M y \\\ No Example 66 Α1 2 03 > La203 (l: 2) sf6 1.0 h2o 800 99.9 46.3 M JWS None-50-1226261 V. Description of the invention (49) Table 7 Decomposition treatment agent (ratio of atomic number) (decomposition treatment device: Figure 4A) Sulfur fluoride concentration ( %) Coexisting gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment capacity HF Exhaust sulfur oxides Exhaust Example 67 Al2〇3, La203, CaO (5: 9: 1) sf6 1.0 o2, h2〇800 99.9 46.4 None No Example 68 Al2O3, La203, Ca0 (5: 9: 1) sf6 1.0 _ 800 99.9 44.0 j \ w Μ w Example 69 Al2O3, La203, Ca0 (5: 9: 1) sf6 1.0 〇2 800 99.9 43.9 M J \ \ N Example 70 Al203, La203, Ca0 (5: 9: l) sf6 0. 2 h2o 800 99.9 46.3 None No Table 8 Decomposition treatment agent (ratio of atomic number) (decomposition treatment device: Figure 4B) Sulfur fluoride concentration (%) Coexisting hot gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment capacity HF Exhaust Example of Sulfur Oxide 71 A 12〇3, La203, Ca0 (5: 9: 1) sf6 1.0 02, H20 800 99.9 46.4 Disk j \ \\ No Example 72 A 1 2 03, La203, Ca0 (5: 9: l) sf6 1.0 _ 800 99.9 43.8 4 \\\ 4ffP \\ Example 73 A1 2〇3, La2〇3, Ca〇 (5: 9: l) sf6 1.0 〇2 800 99.9 44.0 None None Example 74 A 1 2 03, La203, Ca0 (5: 9: 1) sf6 1.0 h 2 0 800 800 99.9 46.1 None No Table 9 Decomposition treatment agent (atom number ratio) (Decomposition treatment device: Fig. 5A) Fluorination Sulfur concentration (%) Coexisting gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment capacity HF Exhaust sulfur oxides Exhaust Example 75 Al2〇3, La203, Ca0 (5: 9: l) SF6 1.0 〇2, h2o 800 99.9 45.9 Μ / \\\\ > », Ν Example 76 Al2〇3, La203, Ca0 (5: 9: l) sf6 1.0-800 99.9 44.1 M and Example 77 Al2O3, La203, Ca0 (5 : 9: l) sf6 1.0 〇2 800 99.9 4 5.0 Gala Example 78 Al2O3, La203, Ca0 (5: 9: l) sf6 1.0 h2o 800 99.9 46.1 None -51-1226261 V. Description of the invention (50) Table 10 Decomposition treatment agent (ratio of atomic number) (Decomposition treatment device: Fig. 5B) Sulfur fluoride concentration (%) Co-existing gas decomposition treatment Temperature decomposition rate (%) Decomposition treatment capacity HF Emission of sulfur oxides Example 79 Al203, La203, Ca0 (5: 9: l) sf6 1.0 o2, h2o 800 99.9 46.3 Μ JWS Example 80 Al2O3, La203, Ca0 (5: 9: l) sf6 1.0-800 99.9 44.2 No Example 81 Al2O3, La203, Ca0 ( 5: 9: l) sf6 1.0 〇2 800 99.9 39.8 without 4nL m Example 82 Al2〇3, La203, Ca0 (5: 9: 1) sf6 1.0 h2o 800 99.9 45.9 Μ \\\\ M j \ w Table 11 Decomposition treatment agent (ratio of atomic number) (decomposition treatment device: Fig. 2A) Sulfur fluoride concentration (%) Coexistence gas decomposition treatment temperature decomposition rate (%) Decomposition treatment capacity HF discharge sulfur oxide discharge Example 83 ai2o3 , La203, Ca0 (5: 9: 1) sf6 1.0 o2, h2o 800 99.9 48.1 nl \\\ J \\\ Example 84 Α12〇3, La203, Ca0 (5: 9: 1) sf6 1.0 o2, h2o 800 99.9 43.9 Example 85 A1203, La203, Ca0 (5: 9: 1) sf6 1.0 〇2 800 99.9 39.6 4τττ II 1 1- J \\\ Example 86 Al2〇3, La203, Ca0 (5: 9: 1) sf6 1.0 h2o 800 99.9 34.8 and J \\\ None -52-1226261 V. Description of the invention (51) Table 12

分解處理劑(原子數 之比)(分解處理裝 置:第1A圖) A1 2〇3 之細孔 氟化硫 共存 氣體 分解處 理溫度 分解率 (%) 分解 處理 能力 HF之 排出 硫氧化 物之排 出 實施例87 A1 2〇3, La203(l:2) 30 SF6 o2、h2o 800 99.9 37.1 Μ Μ 實施例88 A1 2〇3, La203(l:2) 80 sf6 o2、h2o 800 99.9 53.2 4τττ 111ΙΓ 並 實施例89 A1 2〇3, La203(l:2) 230 sf6 o2、h2o 800 99.9 38.3 Μ Μ j\\\ 實施例90 A1 2〇3, La203(l:2) 30 sf6 _ 800 99.9 35.2 並 Μ j\\\ 實施例91 A1203, La203(l:2) 80 sf6 _ 800 99.9 50.6. Μ /\\\ Μ 實施例92 A1203, La203(l:2) 230 sf6 — 800 99.9 36.4 >ίν\ Arm Ws 實施例93 A1203, La203(l:2) 30 sf6 〇2 800 99.9 35.1 並 實施例94 Al2〇3 ’ La203(l:2) 80 sf6 〇2 800 99.9 50.2 Μ 川、 >frrr 無 實施例95 Al2〇3, La203(l:2) 230 sf6 〇2 800 99.9 36.6 4ττΤ Μ M 實施例96 Al2〇3, La203(l:2) 30 sf6 h20 800 99.9 37.0 無 M J \ w 實施例97 A1 2〇3, La203(l:2) 80 sf6 h2o 800 99.9 53.3 >fnr Μ: 並 實施例98 A1 2〇3, La2〇3( 1:2) 230 sf6 h2o 800 99.9 38.3 Μ M 表: 13 分解處理劑 氟化硫 濃度 共存 分解處 分解 分解處理 HF之 硫氧化物 (%) 氣體 理溫度 率(%) 能力 排出 之排出 比較例1 A1 2〇3 sf6 1.0 〇2 800 99.9 14.4 Μ j\ \\ 有 比較例2 ai2o3 sf6 1.0 〇2、h2o 800 99.9 18.5 有 有 -53 - 1226261 五、發明說明(52) 【發明之效果】 藉由本發明氟化硫之分解處理劑及分解處理方法’可使 自半導體製造程序等排出的排氣中所含的SF6等之氟化硫 ,在短時間內不會使分解分解劑失活,不會排出硫氧化物 ,氟化氫等腐触性氣體,在1000°C以下之較低溫度下,以 99 . 9%以上分解率分解。而且,由於自分解處理裝置排出 的分解氣體中不含硫氧化物、氟化氫等腐飩性氣體,故不 僅不需爲淨化此等淨化裝置,且使分解處理前含有氟化硫 之氣體與分解處理後之氣體藉由熱交換處理予以熱交換, 可控制熱能量之損失。 圖式簡單說明 第1(A)圖及第1(B)圖係表示爲實施本發明氟化硫之分 解處理方法(第1形態)的分解處理裝置例之截面圖。 第2圖係表示爲實施本發明氟化硫之分解處理方法(第2 形態)的分解處理裝置例之截面圖。 第3圖係表示爲實施本發明氟化硫之分解處理方法(第3 形態)的分解處理裝置例之截面圖。 第4(A)及4(B)圖係表示爲實施本發明氟化硫之分解處 理方法(第4形態)的分解處理裝置例之截面圖。 第5(A)及5(B)圖係表示爲實施本發明氟化硫之分解處 理方法(第5形態)的分解處理裝置例之截面圖。 第6圖係表示爲實施本發明氟化硫之分解處理方法的分 解處理系統例之構成圖。 -54 - 1226261 五、發明說明(53) 元件符號說明 1 鋁化合物之造粒物 2 鑭系化合物之造粒物 3 鹼土類金屬化合物之造粒物 4 鋁化合物及鑭系化合物混合、造粒所成的造粒物 5 鋁化合物、鑭系化合物、及鹼土類金屬化合物混合、 造粒所成的造粒物 6 鑭系化合物及驗土類金屬化合物混合、造粒所成的造 粒物 7 加熱器 8 溫度感應器 9 氟化硫導入管 10 氧及/或水蒸氣導入管 11 熱交換器 12 氟化硫之分解處理裝置 13 溫度控制器 14 分解氣體之排出管 15 冷卻器 16 吹氣機 -55 -Decomposition treatment agent (ratio of atomic number) (decomposition treatment device: Fig. 1A) A1 203 fine pore sulfur fluoride coexisting gas decomposition treatment temperature decomposition rate (%) Decomposition treatment capacity HF discharge sulfur oxide discharge implementation Example 87 A1 2 03, La203 (1: 2) 30 SF6 o2, h2o 800 99.9 37.1 Μ Example 88 A1 2 03, La203 (1: 2) 80 sf6 o2, h2o 800 99.9 53.2 4τττ 111 1Γ and examples 89 A1 2〇3, La203 (l: 2) 230 sf6 o2, h2o 800 99.9 38.3 μM \\\ Example 90 A1 2〇3, La203 (l: 2) 30 sf6 _ 800 99.9 35.2 and μj \ \\ Example 91 A1203, La203 (l: 2) 80 sf6 _ 800 99.9 50.6. Μ / \\\ Μ Example 92 A1203, La203 (l: 2) 230 sf6 — 800 99.9 36.4 > ίν \ Arm Ws implementation Example 93 A1203, La203 (l: 2) 30 sf6 〇2 800 99.9 35.1 and Example 94 Al2〇3 'La203 (l: 2) 80 sf6 〇2 800 99.9 50.2 MW, > frrr No Example 95 Al2. 3, La203 (l: 2) 230 sf6 〇2 800 99.9 36.6 4ττΤ Μ M Example 96 Al2〇3, La203 (l: 2) 30 sf6 h20 800 99.9 37.0 No MJ \ w Example 97 A1 2〇3, La203 (l: 2) 80 sf6 h2o 800 99.9 53.3 > fnr Μ: and Example 98 A1 2〇3, La2 03 (1: 2) 230 sf6 h2o 800 99.9 38.3 MM Table: 13 decomposition treatment agent sulfur fluoride concentration coexistence decomposition place decomposition decomposition treatment HF Sulfur oxide (%) Gas temperature ratio (%) Emission of capacity Comparative example 1 A1 2〇3 sf6 1.0 〇2 800 99.9 14.4 Μ j \ \\ Comparative example 2 ai2o3 sf6 1.0 〇2, h2o 800 99.9 18.5 Yes-53-1226261 V. Description of the invention (52) [Effects of the invention] The SF6 contained in the exhaust gas discharged from the semiconductor manufacturing process and the like can be decomposed by the decomposition treatment agent and decomposition treatment method of the sulfur fluoride of the present invention. Such as sulfur fluoride, in a short period of time will not deactivate the decomposition of the decomposition agent, will not emit sulfur oxides, hydrogen fluoride and other corrosive gases, at a lower temperature below 1000 ° C, 99.9% or more Decomposition rate decomposition. In addition, since the decomposed gas discharged from the decomposition treatment device does not contain corrosive gases such as sulfur oxides and hydrogen fluoride, it is not only necessary to purify these purification devices, but also to make the gas containing sulfur fluoride and the decomposition treatment before the decomposition treatment. The latter gas is heat-exchanged by heat-exchange treatment, which can control the loss of thermal energy. Brief Description of Drawings Figs. 1 (A) and 1 (B) are cross-sectional views showing an example of a decomposition treatment apparatus for carrying out the decomposition treatment method (first embodiment) of the sulfur fluoride of the present invention. Fig. 2 is a cross-sectional view showing an example of a decomposition treatment apparatus for carrying out the decomposition treatment method (second embodiment) of the sulfur fluoride of the present invention. Fig. 3 is a cross-sectional view showing an example of a decomposition treatment apparatus for carrying out the decomposition treatment method (third aspect) of the sulfur fluoride of the present invention. Figures 4 (A) and 4 (B) are cross-sectional views showing an example of a decomposition treatment apparatus for performing a decomposition treatment method (a fourth aspect) of the sulfur fluoride of the present invention. Figures 5 (A) and 5 (B) are cross-sectional views showing an example of a decomposition treatment apparatus for carrying out the decomposition treatment method (a fifth aspect) of the sulfur fluoride of the present invention. Fig. 6 is a block diagram showing an example of a decomposition processing system for implementing a method for decomposing sulfur fluoride according to the present invention. -54-1226261 V. Description of the invention (53) Element symbol description 1 Granulated product of aluminum compound 2 Granulated product of lanthanide compound 3 Granulated product of alkaline earth metal compound 4 Mixed and granulated compound of aluminum compound and lanthanoid compound Granulated product 5 Granulated product of aluminum compound, lanthanide compound, and alkaline earth metal compound mixed and granulated 6 Granulated product of lanthanide compound and soil test metal compound mixed and granulated 7 Heating 8 Temperature sensor 9 Sulfur fluoride introduction pipe 10 Oxygen and / or water vapor introduction pipe 11 Heat exchanger 12 Sulfur fluoride decomposition treatment device 13 Temperature controller 14 Decomposed gas discharge pipe 15 Cooler 16 Air blower- 55-

Claims (1)

12 12 m ____ 申請i利範圍 第 91124442 號 專利案 氟化硫之分解處理劑及分解處理方法」 (93年3月8日修正本) 六申請專利範圍:12 12 m ____ Application for the scope of patent No. 91124442 Patent case Sulfur fluoride decomposition treatment agent and decomposition treatment method "(Amended on March 8, 1993) Six scope of patent application: 1 · 一種氟化硫之分解處理劑,其包括鋁之氧化物或氫氧化 物,及至少一種選自於鑭系元素之氧化物、氫氧化物、 碳酸鹽及硝酸鹽者當作有效成分,其中鋁之原子數對鑭 系元素之原子數比爲1:0.1〜10,且該有效成分之含量 爲佔70%以上。 2.—種氟化硫之分解處理劑,其包括鋁之氧化物或氫氧化 物,及至少一種選自於鑭系元素之氧化物、氫氧化物、 碳酸鹽及硝酸鹽者,以及至少一種選自於鹼土類金屬之 氧化物、氫氧化物、碳酸鹽及硝酸鹽者當作有效成分, 其中鋁之原子數對鑭系之原子數和鹼土類金屬之原子數 的合計原子數之比爲1:0.1〜10,且該有效成分之含量 爲佔70%以上。1. A decomposition treatment agent for sulfur fluoride, comprising an oxide or hydroxide of aluminum, and at least one oxide, hydroxide, carbonate, and nitrate selected from the group consisting of lanthanoids as an active ingredient, The ratio of the number of atoms of aluminum to the number of atoms of lanthanoids is 1: 0.1 ~ 10, and the content of the active ingredient is more than 70%. 2. A decomposition treatment agent for sulfur fluoride, which includes an oxide or hydroxide of aluminum, and at least one oxide, hydroxide, carbonate, and nitrate selected from the group consisting of lanthanides, and at least one Those selected from the group consisting of oxides, hydroxides, carbonates and nitrates of alkaline earth metals are regarded as effective components. The ratio of the number of atoms of aluminum to the total number of atoms of lanthanide and the number of atoms of alkaline earth metals is 1: 0.1 ~ 10, and the content of the active ingredient is more than 70%. 3 .如申請專利範圍第1項之氟化硫之分解處理劑,其係由 鋁化合物及鑭系化合物之混合、造粒所成。 4 .如申請專利範圍第1項之氟化硫之分解處理劑,其係由 鋁化合物之造粒物及鑭系化合物之造粒物的混合所成。 5 .如申請專利範圍第2項之氟化硫之分解處理劑,其係由 鋁化合物、鑭系化合物及鹼土類金屬化合物之混合、造 粒所成。 1226261 六、申請專利範圍 6 ·如申請專利範圍第2項之氟化硫之分解處理劑,其係由 鋁化合物之造粒物、鑭系化合物之造粒物及鹼土類金屬 化合物之造粒物的混合所成。 7 ·如申請專利範圍第2項之氟化硫之分解處理劑,其係由 鋁化合物之造粒物與鑭系化合物及鹼土類金屬化合物之 混合造粒物的混合所成。 8 .如申請專利範圍第2項之氟化硫之分解處理劑,其中分 解處理劑中所含鑭系之原子數對鹼土類金屬化合物之原 子數比爲1 : 2以下。 9 .如申請專利範圍第1或2項之氟化硫之分解處理劑,其 中鑭系爲至少一種選自於鑭、铈、鐯、鈸、釤、銪。 1 〇 .如申請專利範圍第1或2項之氟化硫之分解處理劑, 其中氧化鋁爲具有平均細孔直徑50〜200A細孔之氧化 1 1 .如申請專利範圍第1或2項之氟化硫之分解處理劑, 其中氟化硫爲六氟化硫。 1 2 . —種氟化硫之分解處理方法,其特徵爲使含有氟化硫 之氣體在300〜1 000°C接觸含有氧化鋁及鑭系元素之氧化 物當作有效成分之分解處理劑’以使氟化硫分解。 1 3 . —種氟化硫之分解處理方法’其特徵爲使含有氟化硫 之氣體在300〜1 000°C接觸含有氧化鋁、鑭系元素之氧化 物及鹼土類金屬之氧化物當作有效成分之分解處理劑, 以使氟化硫分解。 1226261 六、申請專利範圍 1 4 ·如申請專利範圍第 1 2或1 3項之氟化硫之分解處理方 法,其中使含有氟化硫之氣體在氧及/或水蒸氣共存下 接觸分解處理劑,以使氟化硫分解。 1 5 .如申請專利範圍第1 2或1 3項之氟化硫之分解處理方 法,其中使失活的分解處理劑順序自反應系排出,且使 新穎的分解處理劑供應給反應系。 1 6 . —種氟化硫之分解處理方法,其特徵爲使含有氟化硫 之氣體在300〜1 000°C接觸含有氧化鋁作爲有效成分之處 理劑後,與含有鑭系元素之氧化物當作有效成分之處理 劑接觸,以使氟化硫分解。 1 7 · —種氟化硫之分解處理方法,其特徵爲使含有氟化硫 之氣體在300〜1 000°C接觸含有氧化鋁當作有效成分之處 理劑後,與含有鑭系元素之氧化物作爲有效成分之處理劑及 含有鹼土類金屬之氧化物當作有效成分之處理劑接觸,以使氟 化硫分解。 1 8 · —種氟化硫之分解處理方法,其特徵爲使含有氟化硫 之氣體在300〜1 000°C接觸含有氧化鋁當作有效成分之處 理劑後,與含有鑭系元素之氧化物及鹼土類金屬之氧化 物當作有效成分之處理劑接觸,以使氟化硫分解。 1 9 .如申請專利範圍第1 6、1 7或1 8項之氟化硫之分解處 理方法,其中係使含有氟化硫之氣體在氧及/或水蒸氣 共存下接觸處理劑,以使氟化硫分解。 2 0 ·如申請專利範圍第1 2、1 3、1 6、1 7或1 8項之氟化硫3. The desulfurization treatment agent for sulfur fluoride as described in item 1 of the scope of patent application, which is formed by mixing and granulating an aluminum compound and a lanthanum compound. 4. The desulfurization treatment agent for sulfur fluoride according to item 1 of the patent application scope, which is formed by mixing a granulated product of an aluminum compound and a granulated product of a lanthanum-based compound. 5. The desulfurization treatment agent for sulfur fluoride according to item 2 of the scope of patent application, which is formed by mixing and granulating an aluminum compound, a lanthanum compound and an alkaline earth metal compound. 1226261 VI. Scope of patent application 6 · Sulfur fluoride decomposition treatment agent, such as the scope of patent application No. 2, is composed of granules of aluminum compounds, granules of lanthanum compounds, and granules of alkaline earth metal compounds. Made of a mixture. 7 · The sulfur fluoride decomposing and treating agent according to item 2 of the scope of patent application, which is formed by mixing the granulated material of aluminum compound with the mixed granulated material of lanthanide compound and alkaline earth metal compound. 8. The decomposition treatment agent for sulfur fluoride according to item 2 of the scope of patent application, wherein the ratio of the number of atoms of the lanthanide series to the number of atoms of the alkaline earth metal compound contained in the decomposition treatment agent is 1: 2 or less. 9. The decomposition treatment agent for sulfur fluoride according to item 1 or 2 of the patent application scope, wherein the lanthanide is at least one selected from the group consisting of lanthanum, cerium, praseodymium, praseodymium, thallium, and thallium. 1.If the decomposition treatment agent of sulfur fluoride in item 1 or 2 of the patent application scope, wherein alumina is an oxidation having an average pore diameter of 50 ~ 200A pores 1 1. Decomposition treatment agent for sulfur fluoride, wherein sulfur fluoride is sulfur hexafluoride. 1 2. A method for decomposing and treating sulfur fluoride, which is characterized in that a gas containing sulfur fluoride is brought into contact with an oxide containing alumina and lanthanoids as an effective decomposing treatment agent at 300 ~ 1 000 ° C. In order to decompose sulfur fluoride. 1 3. —A method for decomposing and treating sulfur fluoride ', which is characterized in that a gas containing sulfur fluoride is brought into contact with oxides containing alumina, lanthanoids, and oxides of alkaline earth metals at 300 ~ 1 000 ° C as Decomposition treatment agent for active ingredients to decompose sulfur fluoride. 1226261 VI. Application for patent scope 1 4 · Sulfur fluoride decomposition treatment method as described in item No. 12 or 13 of the scope of patent application, wherein a gas containing sulfur fluoride is contacted with a decomposition treatment agent under the coexistence of oxygen and / or water vapor To decompose sulfur fluoride. 15. The method for decomposing and treating sulfur fluoride according to item 12 or 13 of the scope of patent application, wherein the deactivated decomposing treatment agent is sequentially discharged from the reaction system, and a novel decomposing treatment agent is supplied to the reaction system. 16. A method for decomposing and treating sulfur fluoride, which is characterized in that a gas containing sulfur fluoride is brought into contact with a treating agent containing alumina as an active ingredient at 300 to 1 000 ° C, and then is mixed with an oxide containing lanthanoids. Contact the treating agent as an active ingredient to decompose sulfur fluoride. 1 ·· A method for decomposing and treating sulfur fluoride, which is characterized in that a gas containing sulfur fluoride is brought into contact with a treatment agent containing alumina as an active ingredient at 300 ~ 1 000 ° C, and is oxidized with lanthanoids. As a treatment agent for an active ingredient, an oxide containing an alkaline earth metal is used as a treatment agent for an active ingredient so as to decompose sulfur fluoride. 1 ·· A method for decomposing and treating sulfur fluoride, which is characterized in that a gas containing sulfur fluoride is contacted with a treatment agent containing alumina as an active ingredient at 300 ~ 1 000 ° C, and is oxidized with lanthanoids. And alkaline earth metal oxides are contacted as a treating agent of an active ingredient to decompose sulfur fluoride. 19. The method for decomposing and treating sulfur fluoride according to item 16, 16, 17 or 18 of the scope of patent application, wherein the sulfur fluoride-containing gas is brought into contact with the treatment agent under the coexistence of oxygen and / or water vapor, so that Decomposition of sulfur fluoride. 2 0 · Sulfur fluoride such as 1st, 2nd, 3rd, 6th, 17th or 18th in the scope of patent application 1226261 t、申請專利範圍 之分解處理方法,其中使含有處理前之氟化硫的氣體與 分解處理後之氣體熱交換。 2 1 .如申請專利範圍第1 2、1 3、1 6、1 7或1 8項之氟化 硫之分解處理方法,其中氟化硫爲六氟化硫。1226261 t. Decomposition treatment method within the scope of patent application, wherein the gas containing sulfur fluoride before treatment is exchanged with the gas after decomposition treatment. 2 1. The method for decomposing and treating sulfur fluoride according to item 1, 2, 1, 3, 16, 17, 17 or 18 in the scope of patent application, wherein sulfur fluoride is sulfur hexafluoride.
TW091124442A 2001-11-13 2002-10-23 Decomposing agent for sulfur fluorides and decomposing method TWI226261B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001347244A JP4112845B2 (en) 2001-11-13 2001-11-13 Sulfur fluoride decomposition treatment agent and decomposition treatment method

Publications (1)

Publication Number Publication Date
TWI226261B true TWI226261B (en) 2005-01-11

Family

ID=19160277

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091124442A TWI226261B (en) 2001-11-13 2002-10-23 Decomposing agent for sulfur fluorides and decomposing method

Country Status (3)

Country Link
JP (1) JP4112845B2 (en)
TW (1) TWI226261B (en)
WO (1) WO2003041845A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887327B2 (en) * 2008-05-07 2012-02-29 日本パイオニクス株式会社 Fluorine compound decomposition treatment system
JPWO2010101073A1 (en) * 2009-03-04 2012-09-10 昭和電工株式会社 Reaction apparatus and reaction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162957A (en) * 1997-03-24 2000-12-19 Showa Denko K.K. Catalytic decomposition of perfluoro-compound
EP0895801A3 (en) * 1997-08-07 1999-04-14 Showa Denko Kabushiki Kaisha Method for decomposing nitrogen fluoride or sulfur fluoride and decomposing reagent used therefor
JP3994605B2 (en) * 1999-11-26 2007-10-24 株式会社日立製作所 PFC gas processing method and processing apparatus
JP4300258B2 (en) * 1999-12-06 2009-07-22 有限会社大分Tlo Method for catalytic decomposition of global warming gas

Also Published As

Publication number Publication date
JP4112845B2 (en) 2008-07-02
WO2003041845A1 (en) 2003-05-22
JP2003144843A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
Pagkoura et al. Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants
TWI243199B (en) The decomposition method for fluorocarbon
JP3789277B2 (en) Reagent for decomposing fluorine compounds, decomposing method and use thereof
TWI226261B (en) Decomposing agent for sulfur fluorides and decomposing method
RU2397810C2 (en) Catalyst and method of decomposing dinitrogen monoxide and method and device for producing nitric acid
JP2023532004A (en) Method for producing porous alpha-alumina catalyst support
JP2004249285A (en) Method of decomposing fluoride compound
TWI247624B (en) Decompositionally treating agent and decompositionally treating method for fluorocarbons
JP2001219031A (en) Method and device for decomposing perfluorinated compound
JP2002282685A (en) Carbon dioxide absorbent and combustion apparatus
JP5140823B2 (en) Oxidation catalyst, exhaust gas treatment method and exhaust gas treatment device
JP2002370013A (en) Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JP2011200750A (en) Method for removing halogen-based gas
JP4156312B2 (en) Fluorocarbon decomposition treatment agent and decomposition treatment method
JP3701741B2 (en) Hazardous gas purification agent
JP5570122B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
JPH11104491A (en) Oxidation catalyst for co and nitrogen oxides
JP2005199215A (en) Treatment device and treatment method of exhaust gas
JP3328732B2 (en) Acid component adsorbent
ES2224056T3 (en) COMBINATION OF A PROTECTION MILK AND A CATALYSTING MILK.
JPH0673613B2 (en) Exhaust gas purification method
JPH0687943B2 (en) Exhaust gas purification method
JP3630615B2 (en) Hypofluorite removal method
JPH08206445A (en) Purification of exhaust gas
KR100564359B1 (en) Method for preparing adsorbents for removing acid gases and method for removing acid gases with the adsorbent prepared by the same

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent