TW508638B - Method for producing micro-electromechanical component - Google Patents

Method for producing micro-electromechanical component Download PDF

Info

Publication number
TW508638B
TW508638B TW90122546A TW90122546A TW508638B TW 508638 B TW508638 B TW 508638B TW 90122546 A TW90122546 A TW 90122546A TW 90122546 A TW90122546 A TW 90122546A TW 508638 B TW508638 B TW 508638B
Authority
TW
Taiwan
Prior art keywords
nitride
surface coating
tungsten
micro
skeleton
Prior art date
Application number
TW90122546A
Other languages
Chinese (zh)
Inventor
Ding-Jang Jang
Bo-Tsuen Liou
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW90122546A priority Critical patent/TW508638B/en
Application granted granted Critical
Publication of TW508638B publication Critical patent/TW508638B/en

Links

Landscapes

  • Micromachines (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method for producing a micro-electromechanical component comprises, after the production of a polysilicon frame, performing a selective metal tungsten chemical vapor phase deposition to form a tungsten surface film on the polysilicon frame; performing a nitridation process to react the tungsten surface film into a tungsten nitride surface film; and performing an thermal annealing process to densify the tungsten nitride surface film. Since the hardness of the tungsten nitride is higher than that of the polysilicon, the micro-electromechanical component has a higher wear resistance so as to prolong the operation life of the component.

Description

7 9〇9twf ·ά〇ο:/009 A77 9〇9twf · ά〇ο: / 009 A7

五、發明說明(/ ) 本發明是有關於一種微機電系統技術,且特別是有關 於一種微機電零件之製造方法。 微機電系統技術結合了電子、機械、光學、材料、化 學、控制等多領域科技,是繼微電子技術後另一創新的系 統技術。 在微機電應用技術中,微機電元件必須具有穩定的材 料性能、良好的元件電磁致動特性及高的結構強度。因此 結構體必須朝著筒深寬比(High Aspect Ratio)且複雜的三 維(3-D)形狀發展。 然而’習知以矽(多晶矽或非晶矽)爲材料所製作之微 機電元件中,其裸露之表面在操作的時候會因爲互相撞撃 而磨損。這使得微機電元件之使用壽命不易提高。因此, 對於微機電元件中裡需要運作及互相接觸的零件而言,耐 磨損是一個相當重要之考量。 因此,本發明之一目的爲提供一種微機電零件之製造 方法,可以有效的提升微機電零件之耐磨性,解決微機電 元件表面磨損之問題,增長微機電元件之使用壽命。 本發明提供一種微機電零件之製造方法,此方法係製 作多晶矽骨架後,進行選擇性金屬鎢化學氣相沈積製程’ 於多晶矽骨架上形成金屬鎢表面鍍膜。然後,進行一氮化 反應製程,使金屬鎢表面鍍膜反應成氮化鎢表面鍍膜,並 且進行一回火製程,使氮化鎢表面鍍膜密實化。 依照本發明實施例所述,利用現有半導體技術中,選 擇性金屬鎢化學氣相沉積法及氨氣或(氮氣)電槳之後處理 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公f ) --------------裝 i I (請先閱讀背面之注意事項β寫本頁) 訂. 經濟部智慧財產局員工消費合作社印製 508638 7909twf·d〇c/009 A7 B7 五、發明說明(>) ------I------裝 i I (請先閲讀背面之注意事寫本頁) 製程,將氮化鎢層選擇性的鍍在多晶矽層上,由於氮化鎢 的硬度高,相較於習知以多晶矽爲骨架之微機電元件更具 有高耐磨性。 而且,利用選擇性金屬鎢化學氣相沉積法及氨氣或(氮 氣)電漿之後處理製程,將多晶矽結構轉化成高硬度之氮 化鎢結構。此選擇性的金屬鎢化學氣相沉積法具有自我限 制(Self-limited)的特性(當多晶矽的表面都已形成金屬鎢 後,反應就會自我停止不再反應)。由於零件上各處消耗 掉的多晶矽厚度皆相同,所以不論多小之縫細都可以形成 金屬鎢,並產生均与度很高之薄膜。 此外,氮化鎢薄膜之化學穩定性好,也不易發生化學 作用而質變。因此將氮化鎢結構製作方法,應用於微機電 系統製造時,能有效的提升微機電零件的耐磨性,增長使 用壽命。 本發明又提供一種微機電零件之製造方法,此方法係 製作骨架後,於骨架上形成表面鍍膜。其中表面鍍膜之硬 度大於骨架。 經濟部智慧財產局員工消費合作社印製 依照本發明實施例所述,於骨架上形成一層耐火金屬 (Refractory Metal)後,使用氨氣或(氮氣)電槳之後處理製 程,使耐火金屬產生氮化反應形成耐火金屬氮化物,由於 耐火金屬氮化物的硬度高,相較於習知微機電元件之骨架 更具有高耐磨性。 而且,耐火金屬氮化物薄膜之化學穩定性好,也不易 發生化學作用而質變。因此,於微機電元件之骨架上形成 4 本紙張尺度適用中國國家標準(CNS)A4規格(2〗0 X 297公釐) 508638 A7 B7 7909twf.doc/009 五、發明說明(3 ) 一層耐火金屬氮化物表面鍍膜,能有效的提升微機電零件 的耐磨性,增長使用壽命。 爲讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細 說明如下: 圖式之簡單 第1A 1C圖所繪示爲依照本發明第一實施例 之微機電零件流程剖面示意圖。 第2A圖圖所繪示爲依照本發明第二實施例 之微機電零件之流程剖面示意圖。 圖式標號之簡單說明: 100、200 :骨架 102 :金屬鎢表面鍍膜 104、204 :氮化反應製程 106 :氮化鎢表面鍍膜 202 :耐火金屬表面鍍膜 206 :耐火金屬氮化物表面鍍膜 實施例 本發明係在微機電零件之骨架上,形成一層表面鑛 膜’且表面鑛膜之硬度較骨架之硬度高,使微機電元件更 具有高耐磨性,而延長微機電元件之使用壽命。 第一實施例 第ΪΑ圖與第1C圖爲繪示一種微機電零件之製造方 法之流程示意圖,以詳細說明本發明之實施例。 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項寫本頁) 裝 經濟部智慧財產局員工消費合作社印製 508638 7909twf·doc/009 A7 B7 五、發明說明(+ ) 請參照第1A圖,製作一骨架100,此骨架100之材 質例如是多晶矽或非晶矽等。然後利用選擇性金屬鎢化學 氣相沈積法於骨架100上形成一層金屬鎢表面鍍膜102。 其中以選擇性金屬鎢化學氣相沈積法將金屬鎢表面鍍膜 102鍍在多晶矽骨架100上係以六氟化鎢(Timgsten Hexafluonde,WF6)爲反應氣體源,其化學反應式如下: 2 WF6+3Si -> 2W+3SiF4 WF6+3Si ^ W+3SiF2 其反應溫度爲300°C至450°C左右,六氟化鎢氣體壓 力爲 50mTorr 至 400mTorr 左右。 由於選擇性金屬鎢化學氣相沈積反應具有自我限制j (Self-Limited)之特性,亦即當多晶矽骨架之表面都已經形 成金屬鎢後,反應就會自我停止不再繼續反應,且骨架上 各處消耗掉之多晶矽厚度皆相同。因此,不論多小之縫隙 都可以鍍上金屬鎢,並產生均勻度很高之薄膜。 接著請參照第1B圖,進行一氮化反應製程1〇4。例 如是將已經形成金屬鎢表面鍍膜102之多晶矽骨架1〇〇, 置於含有氨氣或氮氣氣體電漿之反應室中,使金屬鎢表面 鍍膜102產生氮化反應形成氮化鎢表面鍍膜106。或者將 已經形成金屬鎢表面鍍膜102之多晶矽骨架100,置於含 有氨氣或氮氣氣體之爐管中,藉由高溫將金屬鎢氮化成氮 化鎢。 接著請參照第1C圖,進f了一熱回火(Thermal annealing) 製程,使氮化鎢薄膜更爲緻密,回火製程之溫度例如是400 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --------------裝· — (請先閱讀背面之注咅?事項ml寫本頁) 訂· 經濟部智慧財產局員工消費合作社印製 508638 7909twf.doc/009 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(y) 。(:至800°C左右。完成於骨架100表面形成一氮化鎢表面 鑛膜106之微型齒輪結構。由於氮化鎢表面鍍膜1〇6之化 學穩定性良好,也不易產生化學反應而變質,因此在微機 電零件之表面形成一層氮化鎢表面鍍膜,能夠有效提升微 機電元件之耐磨性,延長微機電元件之使用壽命。 第二實施例 第2A圖與第2C圖爲繪示一種微機電零件之製造方 法之流程示意圖,以詳細說明本發明之第二實施例。 請參照第2A圖,製作一骨架200,此骨架200之材 質例如是多晶矽、非晶矽、氮化矽、碳化矽、鎢。然後於 骨架200上形成一層表面鍍膜202。表面鍍膜202之材質 例如是耐火金屬包括鎢、鈦、鋁、鈷、鎳、鈾或鈀等。形 成表面鍍膜202之方法例如是化學氣相沈積法。 接著請參照第2B圖,進行一氮化反應製程204。例 如是將已經形成表面鍍膜202之骨架200,置於含有氨氣 或氮氣氣體電漿之反應室中,使例如是鎢、鈦、鋁、鈷、 鎳、鉑或鈀等之耐火金屬表面鍍膜氮化成例如是氮化鎢、 氮化鈦、氮化鋁、氮化鈷、氮化鎳、氮化鉑或氮化鈀等之 耐火金屬氮化物 使材質例如是鎢、鈦、鋁、鈷、鎳、鈾或鈀等之耐火 金屬表面鑛膜202產生氮化反應形成材質例如是氮化鎢、 氮化鈦、氮化鋁、氮化鈷、氮化鎳、氮化鉑或氮化鈀等之 耐火金屬氮化物表面鍍膜206。或者將已經形成表面鍍膜 202之骨架200,置於含有氨氣或氮氣氣體之爐管中,藉 7 本紙張尺度適用中國國家標準(CNS)A4規格(2〗0 X 297公釐) I I I-------· I I (請先閱讀背面之注音?事項本頁) 訂· 508638 7909twf.doc/009 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(G ) 由高溫將耐火金屬氮化成耐火金屬氮化物。 接著請參照第2C圖,進行一熱回火(Thermal annealing) 製程,使耐火金屬氮化物表面鍍膜206更爲緻密,回火製 程之溫度例如是400°C至800°C左右。完成於骨架200上 形成一耐火金屬氮化物表面鍍膜206之微型齒輪結構。由 於耐火金屬氮化物表面鍍膜206之化學穩定性良好,也不 易產生化學反應而變質,而且其硬度較骨架之材質(多晶 矽、非晶矽、氮化矽、碳化矽或鎢)高,因此在微機電零 件之表面形成一層耐火金屬氮化物表面鍍膜,能夠有效提 升微機電元件之耐磨性,延長微機電元件之使用壽命。 於本發明之上述實施例中,骨架是以在微型齒輪結構 爲例做說明。當然骨架之結構也可以例如是馬達、或摯動 器等應用於微機電系統之零件。 本發明之優點係在微機電零件之骨架上,形成一層表 面鍍膜,且表面鍍膜之硬度較骨架之硬度高,使微機電元 件更具有高耐磨性,而延長微機電零件之使用壽命。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍內,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者爲準。 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公f ) (請先閱讀背面之注意* I 裝· — I 事項寫本頁) 訂·· --線·V. Description of the Invention (/) The present invention relates to a micro-electro-mechanical system technology, and more particularly to a method for manufacturing a micro-electro-mechanical part. MEMS technology combines electronics, machinery, optics, materials, chemistry, control and other fields of science and technology. It is another innovative system technology following microelectronics technology. In MEMS application technology, MEMS components must have stable material properties, good component electromagnetic actuation characteristics, and high structural strength. Therefore, the structure must be developed towards a high aspect ratio and a complicated three-dimensional (3-D) shape. However, in the conventional micro-electro-mechanical components made of silicon (polycrystalline silicon or amorphous silicon), the exposed surfaces of the micro-electro-mechanical components will wear out due to collision with each other. This makes it difficult to increase the service life of MEMS components. Therefore, wear resistance is a very important consideration for the parts in MEMS that need to operate and contact each other. Therefore, an object of the present invention is to provide a method for manufacturing a micro-electro-mechanical component, which can effectively improve the wear resistance of the micro-electro-mechanical component, solve the problem of surface wear of the micro-electro-mechanical component, and increase the service life of the micro-electro-mechanical component. The present invention provides a method for manufacturing a micro-electromechanical part. This method is to perform a selective metal tungsten chemical vapor deposition process after forming a polycrystalline silicon framework to form a metal tungsten surface coating on the polycrystalline silicon framework. Then, a nitriding reaction process is performed to react the metal tungsten surface coating to form a tungsten nitride surface coating, and a tempering process is performed to densify the tungsten nitride surface coating. According to the embodiments of the present invention, in the existing semiconductor technology, the selective metal tungsten chemical vapor deposition method and the post-treatment of ammonia or (nitrogen) electric paddles are used. 3 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 male f) -------------- Install i I (please read the precautions on the back β to write this page) Order. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 508638 7909twf · d 〇c / 009 A7 B7 5. Explanation of the invention (>) ------ I ------ install i I (please read the note on the back first to write this page) process, choose the tungsten nitride layer Due to the high hardness of tungsten nitride, compared with the conventional micro-electro-mechanical components with polycrystalline silicon as the skeleton, it has higher wear resistance. In addition, the selective metal tungsten chemical vapor deposition method and an ammonia or (nitrogen) plasma post-treatment process are used to transform the polycrystalline silicon structure into a high hardness tungsten nitride structure. This selective metal tungsten chemical vapor deposition method is self-limited (when metal tungsten has been formed on the surface of polycrystalline silicon, the reaction will stop and no longer react). Since the thickness of the polycrystalline silicon consumed everywhere on the part is the same, no matter how small the slit is, metal tungsten can be formed, and a thin film with high uniformity can be produced. In addition, the tungsten nitride thin film has good chemical stability and is not prone to chemical changes and qualitative changes. Therefore, when the tungsten nitride structure manufacturing method is applied to the manufacture of micro-electromechanical systems, it can effectively improve the wear resistance of MEMS parts and increase the service life. The present invention also provides a method for manufacturing a micro-electromechanical part. This method involves forming a surface coating on the skeleton after fabricating the skeleton. The surface coating is harder than the skeleton. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, according to the embodiment of the present invention, after a layer of refractory metal is formed on the skeleton, ammonia or (nitrogen) electric paddles are used to post-process the process to make the refractory metal nitride. The reaction forms a refractory metal nitride. Due to the high hardness of the refractory metal nitride, it has higher abrasion resistance than the skeleton of the conventional micro-electromechanical component. In addition, the refractory metal nitride film has good chemical stability, and is not prone to chemical changes and qualitative changes. Therefore, 4 paper sizes are formed on the skeleton of the micro-electromechanical component, which are applicable to the Chinese National Standard (CNS) A4 specification (2〗 0 X 297 mm) 508638 A7 B7 7909twf.doc / 009 5. Description of the invention (3) A layer of refractory metal Nitride surface coating can effectively improve the wear resistance of MEMS parts and increase the service life. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below in conjunction with the accompanying drawings, and the detailed description is as follows: Schematic drawing 1A 1C Shown is a schematic sectional view of a flow of a micro-electromechanical component according to the first embodiment of the present invention. FIG. 2A is a schematic flow cross-sectional view of a micro-electromechanical component according to a second embodiment of the present invention. Brief description of drawing numbers: 100, 200: skeleton 102: metal tungsten surface coating 104, 204: nitriding reaction process 106: tungsten nitride surface coating 202: refractory metal surface coating 206: refractory metal nitride surface coating The invention is to form a layer of surface mineral film on the skeleton of the micro-electromechanical component, and the hardness of the surface mineral film is higher than that of the skeleton, so that the micro-electro-mechanical component has higher wear resistance and prolongs the service life of the micro-electro-mechanical component. First Embodiment FIGS. 8A and 1C are schematic diagrams illustrating a method for manufacturing a micro-electromechanical component to explain an embodiment of the present invention in detail. 5 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the notes on the back to write this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and printed by the Consumer Cooperatives 508638 7909twf · doc / 009 A7 B7 V. Description of the Invention (+) Please refer to FIG. 1A to make a skeleton 100. The material of the skeleton 100 is, for example, polycrystalline silicon or amorphous silicon. Then, a selective metal tungsten chemical vapor deposition method is used to form a metal tungsten surface coating film 102 on the framework 100. The selective metal tungsten chemical vapor deposition method is used to deposit the metal tungsten surface coating film 102 on the polycrystalline silicon framework 100 with tungsten hexafluoride (Timgsten Hexafluonde, WF6) as the reaction gas source, and the chemical reaction formula is as follows: 2 WF6 + 3Si -> 2W + 3SiF4 WF6 + 3Si ^ W + 3SiF2 The reaction temperature is about 300 ° C to 450 ° C, and the pressure of tungsten hexafluoride gas is about 50mTorr to 400mTorr. Because the selective metal tungsten chemical vapor deposition reaction has the characteristic of self-limiting (i.e., Self-Limited), that is, when metal tungsten has been formed on the surface of the polycrystalline silicon skeleton, the reaction will stop on its own and no longer continue to react. The thickness of polycrystalline silicon consumed everywhere is the same. Therefore, no matter how small the gap is, it can be coated with metal tungsten, and a thin film with high uniformity can be produced. Next, referring to FIG. 1B, a nitriding reaction process 104 is performed. For example, a polycrystalline silicon skeleton 100 having a metal tungsten surface coating film 102 is placed in a reaction chamber containing an ammonia gas or a nitrogen gas plasma, so that the metal tungsten surface coating film 102 undergoes a nitriding reaction to form a tungsten nitride surface coating film 106. Alternatively, the polycrystalline silicon skeleton 100 on which the metal tungsten surface coating film 102 has been formed is placed in a furnace tube containing ammonia gas or nitrogen gas, and the metal tungsten is nitrided into tungsten nitride by high temperature. Next, please refer to Figure 1C, a thermal annealing process is performed to make the tungsten nitride film denser. The temperature of the tempering process is, for example, 400 paper standards applicable to China National Standard (CNS) A4 specifications ( 210 X 297 mm) -------------- Installation · (Please read the note on the back? Matters ml write this page) Order · Printed by the Consumers' Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 508638 7909twf.doc / 009 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the Invention (y). (: To about 800 ° C. Complete the formation of a micro-gear structure with a tungsten nitride surface ore film 106 on the surface of the skeleton 100. Due to the good chemical stability of the tungsten nitride surface coating 106, it is not easy to cause chemical reactions to deteriorate, Therefore, a tungsten nitride surface coating is formed on the surface of the micro-electromechanical component, which can effectively improve the wear resistance of the micro-electro-mechanical component and prolong the service life of the micro-electro-mechanical component. Figures 2A and 2C of the second embodiment show a micro-electromechanical device. A schematic flow chart of a method for manufacturing an electromechanical part to explain the second embodiment of the present invention in detail. Please refer to FIG. 2A to make a skeleton 200. The material of the skeleton 200 is, for example, polycrystalline silicon, amorphous silicon, silicon nitride, silicon carbide. And tungsten. Then, a surface coating film 202 is formed on the skeleton 200. The material of the surface coating film 202 is, for example, refractory metal including tungsten, titanium, aluminum, cobalt, nickel, uranium, or palladium. The method for forming the surface coating film 202 is, for example, chemical vapor phase Deposition method. Next, referring to FIG. 2B, a nitriding reaction process 204 is performed. For example, the skeleton 200 on which the surface coating film 202 has been formed is placed under a gas containing ammonia or nitrogen. In the reaction chamber of the slurry, the surface coating film of refractory metal such as tungsten, titanium, aluminum, cobalt, nickel, platinum, or palladium is nitrided to, for example, tungsten nitride, titanium nitride, aluminum nitride, cobalt nitride, or nitride. Refractory metal nitrides such as nickel, platinum nitride, or palladium nitride cause a nitriding reaction on the surface mineral film 202 of a refractory metal such as tungsten, titanium, aluminum, cobalt, nickel, uranium, or palladium to form a material such as nitride Refractory metal nitride surface coating film 206 of tungsten, titanium nitride, aluminum nitride, cobalt nitride, nickel nitride, platinum nitride, or palladium nitride, etc. Or, the skeleton 200 having the surface coating film 202 formed thereon, containing ammonia In the furnace tube of gas or nitrogen gas, 7 paper sizes are applicable to China National Standard (CNS) A4 specifications (2〗 0 X 297 mm) II I ------- · II (Please read the note on the back first ? Matters on this page) Order · 508638 7909twf.doc / 009 A7 B7 Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention (G) The refractory metal is nitrided to refractory metal nitride by high temperature. Then refer to Figure 2C For a thermal annealing process to make refractory metal The surface coating 206 of the compound is more dense, and the temperature of the tempering process is, for example, about 400 ° C to 800 ° C. The micro-gear structure of forming a refractory metal nitride surface coating 206 on the skeleton 200 is completed. Due to the refractory metal nitride surface coating The chemical stability of 206 is good, and it is not easy to produce chemical reactions to deteriorate, and its hardness is higher than the material of the skeleton (polycrystalline silicon, amorphous silicon, silicon nitride, silicon carbide or tungsten), so a layer of refractory is formed on the surface of the micro-electromechanical parts Metal nitride surface coating can effectively improve the abrasion resistance of MEMS components and prolong the service life of MEMS components. In the above embodiments of the present invention, the skeleton is described by taking a micro gear structure as an example. Of course, the structure of the skeleton can also be, for example, a motor or an actuator applied to a micro-electromechanical system. The advantage of the present invention is that a surface coating is formed on the skeleton of the micro-electromechanical component, and the hardness of the surface coating is higher than that of the skeleton, which makes the micro-electro-mechanical component have higher wear resistance and prolongs the service life of the micro-electro-mechanical component. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application. 8 This paper size is in accordance with China National Standard (CNS) A4 (210 X 297 male f) (Please read the note on the back first * I install · — I write this page) Order · ·-Line ·

Claims (1)

508638 7909twf.doc/009 A8 B8 C8 D8 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 1. 一種微機電零件之製造方法,該方法包括: 提供一骨架;以及 於該骨架上形成一表面鍍膜,其中該表面鍍膜之材質 的硬度高於該骨架。 2. 如申請專利範圍第1項所述之微機電零件之製造方 法,其中該骨架之材質包括多晶矽。 3. 如申請專利範圍第2項所述之微機電零件之製造方 法,其中該表面鍍膜之材質包括氮化鎢。 4. 如申請專利範圍第3項所述之微機電零件之製造方 法,其中於該骨架上形成該表面鍍膜之步驟包括: 以選擇性金屬鎢化學氣相沈積法於該骨架上形成一金 屬鎢表面鍍膜; 進行一氮化反應製程,使該金屬鎢表面鍍膜反應成一 氮化鎢表面鍍膜;以及 進行一回火製程,使該氮化鎢表面鍍膜密實化。 5. 如申請專利範圍第1項所述之微機電零件之製造方 法,其中該骨架之材質係選自多晶矽、氮化矽、鎢與碳化 矽所組之族群。 6. 如申請專利範圍第1項所述之微機電零件之製造方 法,其中該表面鍍膜之材質包括耐火金屬之氮化物。 7. 如申請專利範圍第6項所述之微機電零件之製造方 法,其中該表面鍍膜之材質係選自氮化鎢、氮化鈦、氮化 鋁、氮化鈷、氮化鎳、氮化鉑與氮化鈀所組之族群。 8. 如申請專利範圍第6項所述之微機電零件之製造方 9 -------------- (請先閱讀背面之注意事項本頁) IT· --線· 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 508638 A8 B8 7909twf.doc/009 C8 六、申請專利範圍 法,其中於該骨架上形成該表面鍍膜之步驟包括: 於該骨架上形成一耐火金屬表面鍍膜; 進行一氮化反應製程,使該耐火金屬表面鍍膜反應成 一耐火金屬之氮化物表面鍍膜;以及 進行一回火製程,使該耐火金屬之氮化物表面鍍膜密 實化。 9. 一種微機電零件之製造方法,該方法包括: 提供一多晶矽骨架; 進行一選擇性鎢金屬化學氣相沈積製程,於該多晶砂 骨架上形成一鎢金屬表面鍍膜; 進行一氮化反應製程,使該鎢金屬鎢表面鍍膜反應成 一氮化鎢表面鑛膜;以及 進行一回火製程,使該氮化鎢表面鍍膜密實化。 10. 如申請專利範圍第9項所述之微機電零件之製造 方法,其中該選擇性鎢金屬化學氣相沈積製程係以六氟化 鎢爲反應氣體源。 經濟部智慧財產局員工消費合作社印製 ------------!裝 il (請先閱讀背面之注意事項本頁) --線· 11. 如申請專利範圍第9項所述之微機電零件之製造方 法,其中該氮化反應製程係在一含有氨氣氣體電漿之反應 室中進行。 12. 如申請專利範圍第9項所述之微機電零件之製造 方法,其中該氮化反應製程係在一含有氮氣氣體電漿之反 應室中進行。 13. —種微機電零件之製造方法,該方法包括: 提供一骨架; 10 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 508638 A8 B8 7909twf.doc/009_g|_ 六、申請專利範圍 於該骨架上形成一耐火金屬表面鍍膜; 進行一氮化反應製程,使該耐火金屬表面鍍膜反應成 一耐火金屬氮化物表面鍍膜;以及 進行一回火製程,使該耐火金屬氮化物表面鍍膜密實 化。 14. 如申請專利範圍第13項所述之微機電零件之製造 方法,其中該骨架之材質係選自多晶矽、氮化矽、鎢與碳 化矽所組之族群。 15. 如申請專利範圍第6項所述之微機電零件之製造 方法,其中該耐火金屬氮化物表面鍍膜之材質係選自氮化 鎢、氮化鈦、氮化銘、氮化姑、氮化鎳、氮化鉛與氮化参巴 所組之族群。 --------------裂 i I (請先閱讀背面之注意事項本頁) tSJ· 線· 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)508638 7909twf.doc / 009 A8 B8 C8 D8 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 6. Application for patent scope 1. A method for manufacturing micro-electromechanical parts, the method includes: providing a skeleton; and forming a skeleton on the skeleton Surface coating, wherein the hardness of the material of the surface coating is higher than that of the skeleton. 2. The method for manufacturing a micro-electromechanical component as described in item 1 of the scope of patent application, wherein the material of the skeleton includes polycrystalline silicon. 3. The method for manufacturing a micro-electromechanical component as described in item 2 of the scope of patent application, wherein the material of the surface coating film includes tungsten nitride. 4. The method for manufacturing a micro-electromechanical component as described in item 3 of the scope of patent application, wherein the step of forming the surface coating on the skeleton comprises: forming a metal tungsten on the skeleton by a selective metal tungsten chemical vapor deposition method Surface coating; performing a nitriding reaction process to make the metal tungsten surface coating react to a tungsten nitride surface coating; and performing a tempering process to densify the tungsten nitride surface coating. 5. The method for manufacturing a micro-electromechanical component as described in item 1 of the scope of patent application, wherein the material of the skeleton is selected from the group consisting of polycrystalline silicon, silicon nitride, tungsten, and silicon carbide. 6. The method for manufacturing a micro-electromechanical component as described in item 1 of the scope of patent application, wherein the material of the surface coating film includes nitride of refractory metal. 7. The method for manufacturing a micro-electromechanical component as described in item 6 of the scope of patent application, wherein the material of the surface coating is selected from the group consisting of tungsten nitride, titanium nitride, aluminum nitride, cobalt nitride, nickel nitride, and nitride. A group of platinum and palladium nitride. 8. Manufacture of micro-electromechanical parts as described in item 6 of the scope of patent application 9 -------------- (Please read the precautions on the back page first) IT · --- line · This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 508638 A8 B8 7909twf.doc / 009 C8 6. Application for Patent Scope Method, wherein the step of forming the surface coating on the skeleton includes: A refractory metal surface coating is formed on the skeleton; a nitriding reaction process is performed to react the refractory metal surface coating to a refractory metal nitride coating; and a tempering process is performed to densify the refractory metal nitride coating. . 9. A method for manufacturing a micro-electromechanical component, the method comprising: providing a polycrystalline silicon skeleton; performing a selective tungsten metal chemical vapor deposition process to form a tungsten metal surface coating on the polycrystalline sand skeleton; and performing a nitriding reaction In the manufacturing process, the tungsten metal tungsten surface coating film is reacted into a tungsten nitride surface mineral film; and a tempering process is performed to make the tungsten nitride surface coating film dense. 10. The method for manufacturing a micro-electromechanical component according to item 9 of the scope of the patent application, wherein the selective tungsten metal chemical vapor deposition process uses tungsten hexafluoride as a reaction gas source. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ------------! Install il (please read the caution page on the back first)-line The manufacturing method of the micro-electromechanical parts described above, wherein the nitriding reaction process is performed in a reaction chamber containing an ammonia gas plasma. 12. The method for manufacturing a micro-electromechanical component as described in item 9 of the scope of the patent application, wherein the nitriding reaction process is performed in a reaction chamber containing a nitrogen gas plasma. 13. —A method of manufacturing micro-electromechanical parts, the method includes: providing a skeleton; 10 paper sizes are applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) 508638 A8 B8 7909twf.doc / 009_g | _ 六The scope of the patent application is to form a refractory metal surface coating on the skeleton; perform a nitriding reaction process to make the refractory metal surface coating react to a refractory metal nitride surface coating; and perform a tempering process to make the refractory metal nitride Surface coating is dense. 14. The method for manufacturing a micro-electromechanical component as described in item 13 of the scope of the patent application, wherein the material of the skeleton is selected from the group consisting of polycrystalline silicon, silicon nitride, tungsten and silicon carbide. 15. The method for manufacturing a micro-electromechanical component as described in item 6 of the scope of patent application, wherein the material of the surface coating of the refractory metal nitride is selected from the group consisting of tungsten nitride, titanium nitride, nitride nitride, nitride nitride, nitride The group consisting of nickel, lead nitride and sambal. -------------- Crack i I (Please read the note on the back page first) tSJ · Line · The Intellectual Property Bureau of the Ministry of Economic Affairs employee consumer cooperatives printed this paper to apply Chinese national standards ( CNS) A4 size (210 X 297 mm)
TW90122546A 2001-09-12 2001-09-12 Method for producing micro-electromechanical component TW508638B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90122546A TW508638B (en) 2001-09-12 2001-09-12 Method for producing micro-electromechanical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90122546A TW508638B (en) 2001-09-12 2001-09-12 Method for producing micro-electromechanical component

Publications (1)

Publication Number Publication Date
TW508638B true TW508638B (en) 2002-11-01

Family

ID=27657043

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90122546A TW508638B (en) 2001-09-12 2001-09-12 Method for producing micro-electromechanical component

Country Status (1)

Country Link
TW (1) TW508638B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601432B1 (en) 2015-11-23 2017-03-21 International Business Machines Corporation Advanced metallization for damage repair
US9773737B2 (en) 2015-11-23 2017-09-26 International Business Machines Corporation Advanced metallization for damage repair

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601432B1 (en) 2015-11-23 2017-03-21 International Business Machines Corporation Advanced metallization for damage repair
US9761529B2 (en) 2015-11-23 2017-09-12 International Business Machines Corporation Advanced metallization for damage repair
US9773737B2 (en) 2015-11-23 2017-09-26 International Business Machines Corporation Advanced metallization for damage repair
US9812391B2 (en) 2015-11-23 2017-11-07 International Business Machines Corporation Advanced metallization for damage repair

Similar Documents

Publication Publication Date Title
Mackus et al. From the bottom-up: toward area-selective atomic layer deposition with high selectivity
Chen et al. Self-assembled monolayer resist for atomic layer deposition of HfO 2 and ZrO 2 high-κ gate dielectrics
Creighton et al. Introduction to chemical vapor deposition (CVD)
TW500820B (en) Method for improving the morphology of refactory metal thin films
TWI698544B (en) Method for selectively depositing material and method for selectively depositing metal oxide film
TW488012B (en) Method of depositing k thick titanium nitride film
Zyulkov et al. Selective Ru ALD as a catalyst for sub-seven-nanometer bottom-up metal interconnects
TWI656575B (en) Nanocrystalline diamond carbon film for 3D NAND hard mask applications
US5571616A (en) Ultrasmooth adherent diamond film coated article and method for making same
TW200303371A (en) Device and process for depositing thin layers by means of ALD/CVD processes in combination with rapid thermal processes
US5254171A (en) Bias ECR plasma CVD apparatus comprising susceptor, clamp, and chamber wall heating and cooling means
EP1702999B1 (en) ALD process for deposition of thin films
JP2003517731A (en) Apparatus and method for minimizing parasitic chemical vapor deposition during atomic layer deposition
US20100127339A1 (en) Micromechanical component having an anti-adhesive layer
US10026887B2 (en) Methods of tailoring the deposition of metals using self-assembled monolayers
Nahar et al. Stress modulation of titanium nitride thin films deposited using atomic layer deposition
TW508638B (en) Method for producing micro-electromechanical component
Song et al. Multimaterial self-aligned nanopatterning by simultaneous adjacent thin film deposition and etching
Mackus Approaches and opportunities for area-selective atomic layer deposition
CN115428130A (en) Method for using ultra-thin etch stop layer in selective atomic layer etching
US5571615A (en) Ultrasmooth adherent diamond film coated article and method for making same
TW502337B (en) Method for reducing WSix grain and its structure
TW483141B (en) Method of forming multilayer titanium nitride film by multiple step chemical vapor deposition process and method of manufacturing semiconductor device using the same
Rontu Atomic layer deposition in fabrication of micro-and nanodevices
TWI847351B (en) Molybdenum precursor compounds

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees