TW496947B - Apparatus and method for interferometric measurements of angular orientation and distance to a plane mirror object - Google Patents

Apparatus and method for interferometric measurements of angular orientation and distance to a plane mirror object Download PDF

Info

Publication number
TW496947B
TW496947B TW090111481A TW90111481A TW496947B TW 496947 B TW496947 B TW 496947B TW 090111481 A TW090111481 A TW 090111481A TW 90111481 A TW90111481 A TW 90111481A TW 496947 B TW496947 B TW 496947B
Authority
TW
Taiwan
Prior art keywords
plane
measurement
signal
mirror
interferometer
Prior art date
Application number
TW090111481A
Other languages
Chinese (zh)
Inventor
Henry Allen Hill
Original Assignee
Zygo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zygo Corp filed Critical Zygo Corp
Application granted granted Critical
Publication of TW496947B publication Critical patent/TW496947B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02003Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/45Multiple detectors for detecting interferometer signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

Apparatus and method for simultaneous interferometric measurements of angular orientation of and distance to a plane mirror measurement object using a multiple beam interferometer system. A first and second groups of the multiple beam interferometer systems have beams that contact the measurement object two times and three times, respectively, for simultaneous measurement of one or more of changes in the distance to and changes of the angular orientation in one plane or in two orthogonal planes of the measurement object.

Description

496947 經濟部智慧財產局員工消費合作社印製 A7 ____^_B7 _五、發明説明(1 ) 發明領域 本發明有關於干涉測量,更特定地,有關於能實施極 準確測量學的干涉測量設備及方法。 發明背景 在極準確測量學中,須瞭解並補償各別光束的傳播的 方向的變化,與在測量下的距離或角的有關的資訊被這樣 的變化編碼。這類光束之傳播的方向的變化或它們相對彼 此或某參考之角關係的變化常起因於強度、偏移及在干涉 測量中的許多光學因素,例如在平面鏡干涉測量中迅速旋 轉的平面側量鏡可能經歷者。 又,干涉測量器有動態元件(控制光束的傳播的方向 )時,需要某裝置以測量光束方向的誤差並測量角的變化 以提供回饋訊號以控制這類元件。 發明槪述 結果,本發明的主要目的是提供一種用多光束干涉測 量系統同步測量平面鏡測量物之角方向及到它的距離之干 涉測量設備及方法。 本發明的設備及方法用多光束干涉測量系統同時干涉 測量平面鏡測量目標之角方向及到它的距離。多光束干涉 測量系統的第一群及第二群的光束分別接觸測量目標兩次 及三次,以同時測量到它的距離的變化及它在一平面或兩 個直角平面中的角方向的變化。 I Γ丨^:^蝗一I (請先閱讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -4- 496947 經濟部智慧財產局員工消費合作社印製 A7 __B7_ —_五、發明説明(2 ) 圖式簡述 圖1 a是本發明的第一實施例,它有雙光束千涉測量 系統以同時測量目標鏡的位置的變化及目標鏡在一平面中 的角方向的變化。 圖1 b顯示圖1 a的實施例的一種變化,它有雙光束 千涉測量系統,此系統有高穩定性平面鏡千涉測量器( H S Ρ Μ I )及角偵測器測量目標鏡的兩個直角平面中的 方向的變化。 圖2 a顯示本發明的第二實施例,在此干涉測量器中 ,參考目標及測量目標是相同平面鏡,參考光束及測量光 束各前往平面鏡一次。 圖2 b顯示圖2 a的實施例的一種變化,它有雙光束 干涉測量系統,以测量在兩個直角平面中的測量目標的方 向的變化。 圖3 a顯示第三實施例,它用三道光束並有 H S Ρ Μ I及第二實施例的干涉測量器以同時測量到目標 的距離的變化及在平面中的角方向的變化,三道光束之一 當作H S Ρ Μ I的若干光束之一並當作第二干涉測量器的 若干光束之一。 圖3 b顯示圖3 a的實施例的一種變化,它是第三實 施例的三光束變化並有H S Ρ Μ I及第二實施例的變化的 雙光束干涉測量器,以同時測量到目標之距離之變化及其 在兩個直角平面中的直角方向的變化。 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公釐) -5- 496947 at B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(3 主要元件對照表 10 12 2 0 2 2 2 4 3 4 5 0 5 2 7 0 7 2 7 6 8 0 8 2 8 4 8 5 8 6 8 7 9 0 9 0 A 112 116 118 1 2 0 來源 輸入光束 非極化分光器 極化分光器 非極化分光器 光束 輸出光束 輸出光束 目標鏡 參考鏡 極化器 偵測器 偵測器 偵測器 電干涉訊號或外差式訊號 訊號 訊號 處理器 處理器 輸入光束 極化分光器 鏡 鏡 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -6 - 496947 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(4 12 2 12 9 13 0 13 3 13 4 13 5 14 0 15 2 15 4 17 0 18 2 18 4 18 6 18 7 1 9 0 A 2 12 2 16 2 18 2 2 0 2 2 2 2 3 0 2 3 3 2 3 4 2 5 0 非極化分光器 半波相位減速板 測量光束 參考光束 光束 光束 極化分光器 輸出光束 第二輸出光束 平面鏡 偵測器 偵測器 電干涉訊號 訊號 處理器 輸入光束 非極化分光器 鏡. 非極化分光器 非極化分光器 光束 光束 光束 光束 —------^---^ -- (請先閱讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS〉A4規格(210X297公釐) 496947 A7 B7 五、發明説明(5 ) 2 5 2 輸出光束 2 7 0 目標鏡 2 7 2 參考鏡 2 8 0 偵測器 2 8 5 電干涉訊號或外差式訊號 2 9 0 處理器 經濟部智慧財產局員工消費合作社印製 發明詳述 本發明是一種設備及方法以干涉測量並監視測量目標 (有一平面鏡)的方向的變化及測量目標的位置的變化之 一或更多。可能同時測量兩種或更多種量的變化。 本發明的一些實施例自然分成兩群。第一群有雙光束 干涉測量系統,第二群有三光束干涉測量系統,光束分別 接觸測量目標兩次及三次。雙光束及三光束干涉測量系統 分別表示有兩道及三道入射在測量目標上的光束的干涉測 量器。 圖1 a顯示本發明的第一實施例。第一實施例來自第 一群,有雙光束干涉測量系統,同時測量目標鏡7 0的位 置的變化及目標鏡7 0在一平面中的方向的變化。本發明 的第一實施例有高穩定性目標鏡干涉測量器(H S Ρ Μ I )及角偵測器,H S Ρ Μ I測量到目標鏡7 0的光學路徑 長度的變化,角偵測器測量目標鏡7 0的方向的變化。 輸入光束1 2有兩個垂直極化的成分而其頻差是f i。 輸入光束1 2的來源1 0 (例如鐳射)能是任何頻率調變 (請先閲讀背面之注意事項再填寫本頁) 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -8 - 496947 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(6 ) 設備及/或鐳射。舉例而言,鐳射能是氣體鐳射,例如以 任何傳統技術穩定的H e N E鐳射,參考T. Baer等人的 Frequency Stabilization of a 0.633 β m He-Ne-Longitudinal Zeeman Laser, ” Applied Optics, 1 9, 3 1 73-3 1 77 ( 1 980 ); Burgwald等人於1 9 7 5年6月1 0日獲准的U. S. Patent No. 3899207 ; Sandstrom 等人於 1 9 7 2 年 5 月 9 日獲准 的U. S. Patent No. 3662279。替代地,鐳射能是以任何傳統 技術穩定的二極體鐳射,例如T. Okoshi and K. Kikuchi的 A Frequency Stabilizaton of Semiconductor Lasers for Heterodyne-type Optical Communication Systems, 〃 Electronic Letters, 16, 179-181 ( 1980 ) and S. Yamagguchi; M. Suzuki 的、、Simu 11aneηous Stabilization of the Frequency and Power of an AlGaAs Semiconductor Laser by use of Optogal vanic Effect of Krypton, 〃 IEEE J. Quantum Electronics, QE- 1 9, 1 5 1 4- 1 5 1 9 ( 1 983 )。 可能用下列技術之一製造兩個光學頻率: (1 )用Zeeman分割鐳射,參考在1 9 6 9年7月 2 9日頒給Bagley等人的第3 4 5 8 2 5 9號美國專利; G. Bouwhuis 的 Interferometric Mit Gaslasers, 〃 Ned. T. Natuurk,34,225-232 ( 1 968 年 8 月);在 1972 年 4 月 1 8曰頒給Bagley等人的第3 6 5 6 8 5 3號美國專利; H. Matumoto 的、、Recent interferometric measurements using stabilized lasers,^ Precision Engineering, 6 ( 2 ) , 87-94 ( 1 984 ); (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -9 - 496947 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(7 ) (2 )用一對聲光Bragg電池,參考Y. Ohtsuka及 K.Itoh 的 '、Two-frequency Laser Interferometer for Small Displacement Measurements in a Low Ferquency Range, ” Applied Optics, 18 ( 2 ) ,2 1 9-224 ( 1 979 ) ; N. Massie 等 人的、、Meaus ring laser Flow Fidlds with a 64-Channel Heterodyne Interferometer, 〃 Applied Optcs. 22 ( 14 ), 2 1 4 1 -2 1 5 1 ( 1983 ) ; Y. Ohtsuka 及 M. Tsubokawa 的、' Dynamic Two-frequency Interferometry for Small Displacement Measurements, 〃 Optics and Laser Technology, 16,25-29 ( 1 984 ) ; H. Matsumoto,ibid;在 1 9 9 6 年 1 月 1 6日頒給P. Dirksen等人的第5 4 8 5 2 7 2號美國專利 ;N. A. Riza 及 Μ· Μ. K. Howlader 的、、Acousto-optic system for the generation and control of tunable low-frequency signals,” Optical Engineering, 35 ( 4 ),920-9 25 (1996 ); (3 )用一個聲光Bragg電池,本案受讓人在1 9 8 7 年8月4日獲准的第4684828號美國專利(G. E. Sommargreri發明)、;本案受讓人在1 9 8 7年8月1 8日 獲准的第4 6 8 7 9 5 8號美國專利(G. E. Sommargren發 明);P. Dirksen 等人的 ibid ; (4 )用隨機極化的H e N e鐳射的兩種縱向模式, 參考 J. B. Ferguson 及 R. H. Morris 的、、Single Mode Collapse in 6328 A HeNe Lasers,〃 applied Optics, 17 ( 18 ),2924-2929 ( 1978 ); (請先閱讀背面之注意事項再填寫本頁) 4496947 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 ____ ^ _ B7 _V. Description of the Invention (1) Field of the Invention The present invention relates to interferometry, and more specifically, to interferometry equipment and methods capable of implementing extremely accurate metrology . BACKGROUND OF THE INVENTION In extremely accurate surveying, it is necessary to understand and compensate for changes in the direction of propagation of individual beams, and information related to the distance or angle under measurement is encoded by such changes. Changes in the direction of propagation of such beams or changes in their angular relationship with respect to each other or a reference often result from intensity, offset, and many optical factors in interferometry, such as the rapidly rotating side of the plane in plane mirror interferometry Mirror may experience. In addition, when the interferometer has a dynamic element (controlling the direction of propagation of the beam), a certain device is required to measure the error in the direction of the beam and measure the change in the angle to provide a feedback signal to control such elements. SUMMARY OF THE INVENTION As a result, the main object of the present invention is to provide an interference measurement device and method for simultaneously measuring the angular direction of a plane mirror and the distance to the object using a multi-beam interference measurement system. The apparatus and method of the present invention use a multi-beam interferometry system to simultaneously interferometry a plane mirror to measure the angular direction of an object and its distance to it. The beams of the first and second groups of the multi-beam interferometry system contact the measurement target twice and three times, respectively, to simultaneously measure the change in its distance and the change in its angular direction in one plane or two right-angle planes. I Γ 丨 ^: ^ Locust I (please read the notes on the back before filling this page) The size of the paper is applicable to China National Standard (CNS) A4 (210X297 mm) -4- 496947 Employees of Intellectual Property Bureau, Ministry of Economic Affairs Printed by the consumer cooperative A7 __B7_ —_ V. Description of the invention (2) Brief description of the drawing Figure 1a is the first embodiment of the present invention, which has a dual-beam interferometric measurement system to simultaneously measure the change in the position of the target lens and the target The change in the angular direction of the mirror in a plane. Fig. 1b shows a variation of the embodiment of Fig. 1a. It has a dual-beam interferometric measurement system. The system has a high-stability plane mirror interferometric measuring device (HS P M I) and an angle detector to measure two target lenses. Changes in direction in right-angle planes. Figure 2a shows a second embodiment of the present invention. In this interferometer, the reference target and the measurement target are the same plane mirror, and the reference beam and the measurement beam each go to the plane mirror once. Fig. 2b shows a variation of the embodiment of Fig. 2a, which has a dual-beam interferometry system to measure changes in the direction of the measurement target in two right-angle planes. Figure 3a shows a third embodiment, which uses three beams with HS P M I and the interferometer of the second embodiment to simultaneously measure changes in the distance to the target and changes in the angular direction in the plane. One of the light beams is regarded as one of several light beams of the HS Pl and as one of several light beams of the second interferometer. Fig. 3b shows a variation of the embodiment of Fig. 3a, which is a three-beam variation of the third embodiment and a dual-beam interferometer with HS P MI and the variation of the second embodiment to simultaneously measure the target The change in distance and its right-angle direction in two right-angle planes. (Please read the precautions on the back before filling this page) This paper size applies Chinese National Standard (CNS) Α4 size (210 × 297 mm) -5- 496947 at B7 Printed by the Consumers ’Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs Explanation (3 Main component comparison table 10 12 2 0 2 2 2 4 3 4 5 0 5 2 7 0 7 2 7 6 8 0 8 2 8 4 8 5 8 6 8 7 9 0 9 0 A 112 116 118 1 2 0 Source input beam non-polarized beam splitter polarized beam splitter non-polarized beam splitter beam output beam output beam target mirror reference mirror polarizer detector detector detector electrical interference signal or heterodyne signal signal processor Processor Input Beam Polarization Beamsplitter Mirror (Please read the precautions on the back before filling this page) This paper size applies to China National Standard (CNS) A4 (210X297 mm) -6-496947 A7 B7 Intellectual Property of the Ministry of Economic Affairs Printed by the Consumer Cooperatives of the Bureau V. Invention Description (4 12 2 12 9 13 0 13 3 13 4 13 5 14 0 15 2 15 4 17 0 18 2 18 4 18 6 18 7 1 9 0 A 2 12 2 16 2 18 2 2 0 2 2 2 2 3 0 2 3 3 2 3 4 2 5 0 Half-wave phase retarder for non-polarized beam splitter Measuring beam Reference beam Beam Beam Polarization beam splitter Output beam Second output beam Plane mirror detector Detector Electrical interference Signal processor Input beam Non-polarizing beam splitter mirror. Non-polarizing beam splitter Non-polarizing beam splitter beam Beam Beam ------- ^ --- ^-(Please read the notes on the back before filling in this page) The size of the paper is applicable to the Chinese national standard (CNS> A4 specification (210X297 mm) 496947 A7 B7 V. Description of the invention (5) 2 5 2 Output beam 2 7 0 Target mirror 2 7 2 Reference mirror 2 8 0 Detector 2 8 5 Electrical interference signal or heterodyne signal 2 9 0 Processor Intellectual Property Bureau, Ministry of Economic Affairs Detailed Description of the Invention Printed by a Consumer Cooperative The present invention is an apparatus and method for interferometric measurement and monitoring of one or more changes in the direction of a measurement target (with a flat mirror) and changes in the position of the measurement target. It is possible to measure two or more simultaneously Variation of the species quantity. Some embodiments of the present invention are naturally divided into two groups. The first group has a two-beam interferometry system, and the second group has a three-beam interferometry system. The target is measured twice and three times. The two-beam and three-beam interferometry systems represent interferometers with two and three beams incident on the measurement target, respectively. Figure 1a shows a first embodiment of the invention. The first embodiment is from the first group and has a two-beam interferometry system, which simultaneously measures changes in the position of the target mirror 70 and changes in the direction of the target mirror 70 in a plane. The first embodiment of the present invention includes a high-stability target mirror interferometer (HS P M I) and an angle detector. The HS P M I measures the change in the optical path length to the target lens 70, and the angle detector measures Changes in the direction of the target mirror 70. The input beam 12 has two vertically polarized components and its frequency difference is f i. The source of the input beam 1 2 (such as laser) can be any frequency modulation (please read the precautions on the back before filling this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm)- 8-496947 A7 B7 printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention (6) Equipment and / or laser. For example, laser energy is gas laser, such as He NE laser stabilized by any conventional technology, see T. Baer et al. Frequency Stabilization of a 0.633 β m He-Ne-Longitudinal Zeeman Laser, "Applied Optics, 1 9 , 3 1 73-3 1 77 (1 980); US Patent No. 3899207, approved by Burgwald et al. On June 10, 1975; Sandstrom et al., Approved on May 9, 1972 US Patent No. 3662279. Alternatively, laser energy is a diode laser stabilized by any conventional technology, such as A Frequency Stabilizaton of Semiconductor Lasers for Heterodyne-type Optical Communication Systems, 〃 Electronic Letters, by T. Okoshi and K. Kikuchi. 16, 179-181 (1980) and S. Yamagguchi; M. Suzuki, Simu 11aneηous Stabilization of the Frequency and Power of an AlGaAs Semiconductor Laser by use of Optogal vanic Effect of Krypton, 〃 IEEE J. Quantum Electronics, QE- 1 9, 1 5 1 4- 1 5 1 9 (1 983). It is possible to make two optical frequencies using one of the following techniques: (1) Divide the laser with Zeeman, referenced July 29, 1989 US Patent No. 3 4 5 8 2 5 9 issued to Bagley et al .; Interferometric Mit Gaslasers by G. Bouwhuis, 〃 Ned. T. Natuurk, 34, 225-232 (August 1968); in April 1972 U.S. Patent No. 3 6 5 6 8 5 3 issued to Bagley et al. On the 18th; H. Matumoto's, Recent interferometric measurements using stabilized lasers, Precision Engineering, 6 (2), 87-94 (1 984 ); (Please read the notes on the back before filling out this page) This paper size applies to Chinese National Standard (CNS) A4 specification (210X297 mm) -9-496947 Printed by A7 B7, Cooperative of Employees, Intellectual Property Bureau, Ministry of Economic Affairs Invention Description (7) (2) Using a pair of acousto-optic Bragg batteries, refer to '. Two-frequency Laser Interferometer for Small Displacement Measurements in a Low Ferquency Range, ”Applied Optics, 18 (2) by Y. Ohtsuka and K. Itoh , 2 1 9-224 (1 979); N. Massie et al., Meaus ring laser Flow Fidlds with a 64-Channel Heterodyne Interferometer, 〃 Applied Optcs. 22 (14), 2 1 4 1 -2 1 5 1 (1983); Y. Ohtsuka and M. Tsu Bokawa's, 'Dynamic Two-frequency Interferometry for Small Displacement Measurements, tics Optics and Laser Technology, 16, 25-29 (1 984); H. Matsumoto, Ibid; awarded to P on January 16, 1996 US Patent No. 5 4 8 5 2 7 2 by Dirksen et al .; by NA Riza and Μ · K. Howlader, Acousto-optic system for the generation and control of tunable low-frequency signals, "Optical Engineering, 35 (4), 920-9 25 (1996); (3) Using an acousto-optic Bragg battery, the assignee of this case was granted US Patent No. 4848828 (invented by GE Sommargreri) on August 4, 1987, ; US Patent No. 4 6 8 7 98 (invented by GE Sommargren) approved by the assignee of this case on August 18, 1987; Ibid of P. Dirksen et al .; (4) using random polarization Two vertical modes of H e N e laser, refer to JB Ferguson and RH Morris, Single Mode Collapse in 6328 A HeNe Lasers, 〃 applied Optics, 17 (18), 2924-2929 (1978); (Please read first (Notes on the back, please fill out this page) 4

、1T 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -10- 496947 經濟部智慧財產局員工消費合作社印製 A7 _B7__五、發明説明(8 ) (5 )用在鐳射內的雙折射元件,參考V. Evtuhov及 A. E. Siegman 的A 〃 Twisted-Mode Technique for Obtaning Axially Unifom Energy Density in a Laser Cavity/7 Applied Optics, 4 ( 1 ), 1 42- 143 ( 1 965 ); (6 )用H. A. Hill在1 9 9 8年4月1 7日送件的 0 9 / 0 6 1 9 2 8號美國專利申請案(名稱是Apparatus to Transform Two Non- Parallel Propagating Optical Beam components into Two Orthogonally Polarized Beam Components )所述的系統,這些元件被用本發明中。 當作光束1 2的來源的特定設備將決定光束1 2的直 徑及擴散。對一些來源(例如二極體鐳射),可能需要傳 統光束造形光學儀器(例如傳統顯微目標鏡)爲後續元件 提供適當直徑及擴散。舉例而言,來源是H e N e鐳射時 ,可能不需要光束造形光學儀器。 在圖1 a的平面中極化的光束1 2的成分射到目標鏡 7 0 —次而形成光束3 4的測量光束成分。直角極化到圖 1 a的平面的光束1 2的成分射到參考鏡7 2 —次而形成 光束3 4的參考光束成分。在光束3 4的第一部分的測量 及參考光束成分各別第二次射向目標鏡7 0及參考鏡7 2 以後,光束3 4的第一部分從非極化分光器2 0射出而形 成輸出光束6 0。光束50的其餘描述與HSPMI的輸 出光束的描述對應部分相同。輸出光束5 0通過極化器 7 6以後被偵測器8 0當作混合光束偵測而產生電干涉訊 號或外差式訊號8 5。極化器7 6產生混合光束。外差訊 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) -11 - 496947 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(9 ) 號的相位被處理器9 0處理以決定對應的測量路徑(含兩 次到目標鏡7 0 )的光學路徑的變化。光束5 0的後續偵 測及訊號處理與H S Ρ Μ I的輸出光束的偵測及處理的描 述的對應部分相同。 光束3 4的第二部分被非極化分光器2 0反射且其測 量光束成分被極化分光器2 2反射成輸出光束5 2。輸出 光束5 2入射到偵測器8 2而被偵測爲訊號8 6。處理器 9 0處理訊號8 6並用已知技術偵測輸出光束5 2的傳播 方向變化,例如成例光學儀器的組合、多個偵測器、多元 件偵測器、相位移動陣列以改變成像光學儀式形成的影像 等特性、干涉測量、干涉測量成像及訊號處理技術。 偵測器8 2及處理器9 0能用本案受讓人在2 0 0 0 年5月4日送件的暫時申請案Ζ — 209 ( Apparatus and Method ( s ) for measuring and/or controlling Differential Paths of Light Beams, Henry A. Hill 發明)所述的幾種干涉 測量技術之一,測量光束5 2入射在一個平行於圖1 a的 平面的平面中偵測器8 2的方向的變化,本案把此暫時申 請案的內容倂入成爲參考。 偵測光束5 2的方向變化所用的設備及方法還能被用 來監視被非極化分光器反射並被極化分光器2 2傳送的光 束3 4的第二部分的參考光束成分的方向。偵測光束3 4 的第二部分的參考光束成分的方向變化的目的是更正輸入 光束1 2的方向變化或在第一實施例的雙光束干涉測量系 統中的變化。 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) 規格(210X297公釐) -12- 496947 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(10 ) 圖1 a所示的逆向反射器7 4可能是角方塊逆向反射 器或極化保留逆向反射器,宜是極化保護逆向反射器,例 如本案受讓人的在1 9 9 9年8月27日送件的 0 9 / 3 8 4 7 4 2號美國專利申請案(Henry A. Hill做 的 Polarization Preserving Optical Systems ,)及本案受讓 人的在1999年8月27日送件的09/ 3 84855 號美國專利申請案(Henry A. Hill及Peter de Groot共同 發明的 Interferometers Utilizing Polarization Preserving Optical Systems ),本案把這些申請案的內容供入成爲參考 。用干涉測量技術測量並監視目標鏡的方向變化時,可能 用外插或內插技術決定電干涉訊號8 6的相位。 本發明的第一實施例的描述提到含圖1 a所示的干涉 測量系統的干涉測量器的構造被稱爲H S Ρ Μ I 。與在積 體電路的微平版印刷製造中一起遇到的stages合作時,還 能把其他平面鏡干涉測量器及其他干涉測量器倂入本發明 的第一實施例而不背離本發明的範圍,例如差値平面鏡干 涉測重、角補償干涉測量器及” Differential interferometer arrangements for distance and angle measurements: Principles,advantages and applicationsby C. Zanoni , VDI Bedchte Nr· 749, 93- 106 ( 1989 )所述的類似設備。 圖1 b顯示本發明的第一實施例的變化。第一實施例 的變化來自第一群干涉測量系統(包含雙光束干涉測量系 統)。第一實施例的變化的設備及方法有H S Ρ Μ I及角 偵測器以測量目標鏡7 0在兩個直角平面中的方向變化。 .I I;— - - - - It· I 晷:: I (請先閲讀背面之注意事項再填寫本頁)、 1T This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -10- 496947 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _B7__ V. Description of the invention (8) (5) Used in the laser Birefringent element, refer to A. Twisted-Mode Technique for Obtaning Axially Unifom Energy Density in a Laser Cavity / 7 Applied Optics, 4 (1), 1 42- 143 (1 965); (6 ) U.S. Patent Application No. 0 9/0 6 1 9 2 8 delivered by HA Hill on April 17, 1989 (named Apparatus to Transform Two Non- Parallel Propagating Optical Beam components into Two Orthogonally Polarized Beam Components), these elements are used in the present invention. The particular device used as the source of beam 12 will determine the diameter and spread of beam 12. For some sources (such as diode lasers), traditional beam-shaping optics (such as traditional microscopic objective lenses) may be required to provide the appropriate diameter and spread for subsequent components. For example, when the source is H e N e laser, beam shaping optics may not be needed. The components of the light beam 12 polarized in the plane of FIG. 1 a are incident on the target mirror 70 0 to form a measurement beam component of the light beam 34. The components of the light beam 12 polarized at right angles to the plane of FIG. 1a are incident on the reference mirror 7 2 to form the reference beam component of the light beam 3 4. After the measurement of the first part of the beam 34 and the reference beam components are shot for the second time to the target mirror 70 and the reference mirror 7 2 respectively, the first part of the beam 34 is emitted from the non-polarized beam splitter 20 to form an output beam. 6 0. The rest of the description of the light beam 50 is the same as the corresponding description of the output beam of the HSPMI. The output beam 50 passes through the polarizer 76 and is detected by the detector 80 as a mixed beam to generate an electric interference signal or heterodyne signal 85. The polarizer 76 produces a mixed light beam. External messenger (please read the notes on the back before filling this page) This paper size applies to Chinese National Standard (CNS) A4 specification (210 × 297 mm) -11-496947 A7 B7 2. The phase of the invention description (9) is processed by the processor 90 to determine the change in the optical path of the corresponding measurement path (including twice to the target mirror 70). The subsequent detection and signal processing of the beam 50 is the same as the corresponding part of the description of the detection and processing of the output beam of the HS P M I. The second part of the light beam 34 is reflected by the non-polarized beam splitter 20 and its measured beam component is reflected by the polarization beam splitter 22 into an output beam 52. The output beam 52 is incident on the detector 8 2 and is detected as a signal 8 6. The processor 90 processes the signal 8 6 and detects the propagation direction change of the output beam 5 2 using known techniques, such as a combination of an example optical instrument, multiple detectors, multi-element detectors, and a phase shift array to change the imaging optics. The characteristics of the image formed by the ceremony, interferometry, interferometry imaging and signal processing technology. Detector 8 2 and processor 90 can use the temporary application Z—209 (Apparatus and Method (s) for measuring and / or controlling Differential Paths) that the assignee of this case sent on May 4, 2000. of Light Beams, invented by Henry A. Hill) is one of several interferometry techniques, measuring the change in the direction of the detector 8 2 incident on a plane parallel to the plane of Fig. 1 a. The contents of this provisional application are incorporated by reference. The device and method used to detect the change in direction of the beam 52 can also be used to monitor the direction of the reference beam component of the second portion of the beam 34, which is reflected by the non-polarized beam splitter and transmitted by the polarized beam splitter 22. The purpose of detecting the change in the direction of the reference beam component of the second part of the beam 3 4 is to correct the change in the direction of the input beam 12 or the change in the two-beam interferometry system of the first embodiment. (Please read the precautions on the back before filling this page) This paper size applies Chinese National Standard (CNS) specifications (210X297 mm) -12- 496947 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 10) The retro-reflector 7 4 shown in FIG. 1 a may be a corner cube retro-reflector or a polarization-retained retro-reflector, preferably a polar-protected retro-reflector. US Patent Application No. 0 9/3 8 4 7 4 (filed on August 27) (Polarization Preserving Optical Systems by Henry A. Hill) and the assignee of this case on 09, filed on August 27, 1999 / 3 84855 US patent application (Interferometers Utilizing Polarization Preserving Optical Systems co-invented by Henry A. Hill and Peter de Groot), the contents of these applications are incorporated herein by reference. When interferometry is used to measure and monitor the direction of the target mirror, it is possible to use extrapolation or interpolation to determine the phase of the electrical interference signal 86. The description of the first embodiment of the present invention mentions that the configuration of the interferometer including the interferometry system shown in FIG. 1 a is called H S P M I. When cooperating with the stages encountered in the microlithography manufacturing of integrated circuits, other plane mirror interferometers and other interferometers can be incorporated into the first embodiment of the invention without departing from the scope of the invention, such as Differential interferometry, angle-compensated interferometers, and similar equipment described in Differential interferometer arrangements for distance and angle measurements: Principles, advantages and applications by C. Zanoni, VDI Bedchte Nr. 749, 93-106 (1989). Figure 1b shows a variation of the first embodiment of the present invention. The variation of the first embodiment comes from the first group of interferometry systems (including the two-beam interferometry system). The equipment and method of the variation of the first embodiment are HS P M I and angle detector to measure the change of the direction of the target lens 70 in two right-angle planes. II; —----It · I I :: I (Please read the precautions on the back before filling this page)

、1T 本紙張尺度適财S ϋ家鮮(CNS ) 規格(2 Η) X 297公董) -13- 496947 A7 B7 經濟部智慧財4局員工消費合作社印製 五、發明説明(11 ) 本發明的第一實施例的變化同時測量到一目標的光學路徑 的變化及目標在兩個直角平面中的方向的變化。 被非極化分光器2 0反射的光束3 4的測量光束成分 被極化分光器2 2反射,且其第一、二部分被非極化分光 器2 4各別反射成第二、三輸出光束5 2及5 4。光束 \ 5 2被偵測器8 2偵測爲訊號8 6且處理器9 Ο A處理訊 號8 6以測量目標鏡7 0在一個平行於圖1 b的平面的平 面中的方向變化。光束5 4被偵測器8 4偵測爲訊號8 7 且處理器9 Ο A處理訊號8 7以測量目標鏡7 0在一個垂 直於圖1 b的平面的平面中的方向變化。 偵測器8 2及8 4及處理器9 Ο A的描述與本發明的 第一實施例的偵測器8 2及處理器9 0的描述的對應的部 分相同。 圖2 a顯示本發明的第二實施例。第二實施例來自第 一群干涉測量器,第二群含雙光束干涉測量器(測量一測 量目標在一面中的方向變化)。本發明的第二實施例的設 備及方法包括一個干涉測量器,其中,參考及測量目標是 相同平面鏡1 7 0。每道參考光束及測量光束射到平面鏡 1 7 0 —次。 輸入光束1 1 2的描述與第一實施例的輸入光束1 2 的描述相同。對第二實施例,輸入光束1 1 2的兩個頻率 成分的傳播方向相同。然而,依最終應用,輸入光束 1 1 2的兩個頻率成分的傳播方向可能不同。輸入光束 1 1 2射在極化分光器1 1 6且其部分當作測量光束' I 「II I I I 1 —If - - -y II - I — (請先閲讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -14- 496947 經濟部智慧財產局員工消費合作社印製 A7 _ B7 _五、發明説明(12 ) 1 3 0被發射。測量光束1 3 0在圖2 a的平面中的被極 化。輸入光束1 1 2的第二部分被極化分光器1 1 6反射 ,被鏡1 1 8反射,接著被半波相位減速板1 2 9發射成 爲參考光束1 3 3。減速板1 2 9轉動光束1 3 3的極化 平面而平行於圖2 a的平面。 極化分光器1 1 6及鏡1 1 8平行並以距離d i分開, 如圖2 a所示。輸入光束1 1 2在極化分光器1 1 6的入 射角是0 !。 光束1 3 0及1 3 3射在極化分光器1 4 0並分別成 爲光束1 3 4及1 3 5離開。測量及參考光束都被測量/ 參考目標1 70反射一次。測量/參考目標1 70的平面 鏡。光束1 3 4及1 3 5被極化成垂直於圖2 a的平面。 光束1 3 4被鏡1 2 0反射並用極化分光器1 2 2把 它的一部分反射成輸出光束1 5 2的測量光束成分。光束 1 3 5的一部分被非極化分光器1 2 2當作輸出光束 1 5 2的參考光束成分發明。輸出光束1 5 2的混合光束 〇 分光器1 2 2及鏡1 2 0平行並以距離d 2分開,如圖 2 a所示。光束1 3 4在鏡1 2 0的入射角是02。 偵測器1 8 2宜用光電偵測偵測輸出光束1 5 2成爲 電干涉訊號1 8 6。 訊號1 8 6是外差訊號,它有頻率f 1及外差相位好。 外差相位0可能被表示成: 11 .1 I I I Iff —I— —if I (請先閱讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) _ » 496947 Α7 Β7 五、發明説明(13 ) 2nk[d2 cos02 - dx cosQj (1) 其中,k是輸入光束1 1 2的波收且n是干涉測量系統中 的媒介的折射率。鏡1 7 0的方向變化一個角0,將使0 2 相對0 i變化2 0,對應的變化△ 0被表示成: Δφ = 2/;A:rf2[cos(02 +20)-cos θ2]. (2) 用Δ0表示對應的0: Θ cos_1 C〇s02 + Δφ 2nkdn - 對d 2 = 1 · 〇公分且波長是6 3 3 /(2nkd2)〕的値是: 5.04x10" ml- —^n I HI *- I — 1»m , (請先閱讀背面之注意事項再填寫本頁) (3) m的例中,係數〔1 ⑷ 2nkd。 經濟部智慧財產局員工消費合作社印製 角的測量是基於光差技術,其中,在測量及參考光束 之間的相差位,對輸入光束1 1 2的兩個成分的共同模式 頻率變化的效應不敏感。舉例而言,共同模式頻率變化可 能是鏡170的移動所造成的都卜勒變化。 以在測量及參考光束之間的低頻分割運作,能改善測 量/參考目標的方向的測量的精確度。在本發明中用低頻 分割,是因在用以測量並監視器1 7 0的方向變化的電參 考訊號的相位中無第一級頻率變化效應。 可用用外差或內差技術,決定用以測量並監視測量/ 本紙張尺度適用中國國家標準(CNS ) A4規格(210Χ297公釐) 496947 A7 B7 五、發明説明(14 參考目標的方向變化的電參考訊號的相位。 圖2 b顯示第二實施例的變化。第二實施例的變化來 自第一群干涉測量器,第一群今雙光束干涉測量系統,以 同時測量一個測量目標在兩個直角平面中的方向的變化。 第二實施例的變化的設備及方法有第二實施例的干涉測量 器及偵測器8 4及訊號1 9 Ο A。鏡1 2 0反射的光束 1 3 4的一部分被非極化分光器1 2 2傳送成爲第二輸出 光束1 5 4的測量光束成分,光束1 3 5的一剖分被非極 化分光器1 2 2反射成爲光束1 5 4的參考光束成分。光 束1 5 4被偵測器1 8 4偵測而當作訊號1 8 7,且處理 器1 9 0A處理光束1 8 7而測量鏡1 7 0在一個垂直於 圖2 b的平面的平面中的方向變化。 偵測器1 8 4及處理器1 9 Ο A用已知技術偵測測量 及參考光束的傳播方向變化,例如成像光學儀器的組合、 多個偵測器、多元件偵測器、相位移動陣列以改變成像光 學儀式形成的影像的特性、干涉測量、干涉測量成像及訊 號處理技術。能規畫偵測器1 8 4及處理器1 9 0 A,以 美國暫時申請案z - 2 0 9所述的多種干涉測量技術之一 ,測量入射在偵測器1 8 4上的光束在一個垂直於圖2 b 的平面的平面中的方向變化。 本發明的第二實施例的變化的其餘描述與本發明的第 二實施例的描述的對應的部分相同。 圖3 a顯示本發明的第三實施例。第三實施例來自第 二群干涉測量器,第二群含三光束干涉測量器。第二實施 (請先閲讀背面之注意事項再填寫本頁) +、1Τ 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X 297公釐) 17- 經濟部智慧財產局員工消費合作社印製 496947 Α7 _ Β7 五、發明説明(15 ) 例的設備及方法有一個H S Ρ Μ I及第二實施例的第二干 涉測量器,以同時測量到目標的距離變化及目標在一平面 中的方向變化。三道光束之一同時成爲H S PM I的幾道 光束之一及第二干涉測量器的幾道光束之一。 輸入光束2 1 2的描述與第一實施例的輸入光束1 2 的描述的對應部分相同。光束2 1 2入射在非極化分光器 2 1 6且其第一部分被發射成爲光束230。光束2 1 2 的第二部分被非極化分光器2 1 6反射,被鏡2 1 8反射 ’然後被半波相位輻射板發射成爲光束2 3 3。半波相位 輻射板的方向使光束2 3 0及2 3 3的頻率變化的成分的 極化互相垂直,並使光束2 3 0及2 3 3的非頻率變化的 成分極化互相垂直。 在圖3 a的平面中極化的光束2 3 0的成分射到目標 鏡2 7 0 —次而形成光束2 3 4的測量光束成分。垂直極 化到圖1 A的平面的光束2 3 0的成分到參考鏡2 7 2 — 次而形成光束2 3 4的參考光束成分。在光束2 3 4的第 一部分的測量及參考光束成分分別第二次射到目標鏡 2 7 0及參考鏡2 7 2以後,光束2 3 4的第一部分被非 極化分光器2 2 0發射而形成輸出光束。光束2 5 0的其 餘描述與H S Ρ Μ I的輸出光束的描述的對應部分相同。 輸出光束2 5 0如混合光束通過極化器2 7 2以後被偵測 器2 8 0偵測而產生電參考訊號或外差訊號2 8 5。外差 訊號2 8 5的相位被處理器2 9 0處理而決定對應的測量 路徑(含射到目標鏡2 7 0兩次)的光學路徑長度的變化 本纸張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)、 1T This paper size is suitable for financial use S. Domestic food (CNS) specifications (2.) X 297 public directors -13- 496947 A7 B7 Printed by the staff consumer cooperative of the 4th Bureau of Smart Finance of the Ministry of Economic Affairs 5. Description of the invention (11) The invention The variation of the first embodiment of the method simultaneously measures a change in the optical path of a target and a change in the direction of the target in two right-angle planes. The measurement beam component of the light beam 3 4 reflected by the non-polarizing beam splitter 20 is reflected by the polarization beam splitter 22, and the first and second parts thereof are respectively reflected by the non-polarizing beam splitter 2 4 into the second and third outputs. Beams 5 2 and 54. The light beam \ 5 2 is detected by the detector 8 2 as a signal 8 6 and the processor 9 0 A processes the signal 8 6 to measure the direction change of the target mirror 70 in a plane parallel to the plane of FIG. 1 b. The beam 5 4 is detected by the detector 8 4 as a signal 8 7 and the processor 9 0 A processes the signal 8 7 to measure the direction change of the target mirror 70 in a plane perpendicular to the plane of FIG. 1 b. The descriptions of the detectors 82 and 84 and the processor 90A are the same as those of the description of the detectors 82 and the processor 90 according to the first embodiment of the present invention. Figure 2a shows a second embodiment of the invention. The second embodiment is from the first group of interferometers, and the second group contains two-beam interferometers (to measure the change in direction of a measurement target in one side). The apparatus and method of the second embodiment of the present invention include an interferometer in which the reference and measurement targets are the same plane mirror 170. Each reference beam and measurement beam hit the plane mirror 170 times. The description of the input beam 1 1 2 is the same as that of the input beam 1 2 of the first embodiment. For the second embodiment, the propagation directions of the two frequency components of the input beam 1 12 are the same. However, depending on the end application, the two frequency components of the input beam 1 1 2 may have different propagation directions. The input beam 1 1 2 hits the polarizing beam splitter 1 1 6 and its part is used as the measurement beam 'I 「II III 1 —If---y II-I — (Please read the precautions on the back before filling this page) The paper size of the edition applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -14- 496947 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _ B7 _ V. Description of the invention (12) 1 3 0 was launched. Measurement The light beam 1 3 0 is polarized in the plane of FIG. 2 a. The second part of the input light beam 1 1 2 is reflected by the polarization beam splitter 1 1 6, reflected by the mirror 1 1 8, and then by the half-wave phase retarder 1 The 2 9 emission becomes the reference beam 1 3 3. The reduction plate 1 2 9 rotates the polarization plane of the beam 1 3 3 and is parallel to the plane of FIG. 2 a. The polarization beam splitter 1 1 6 and the mirror 1 1 8 are parallel and separated by a distance di Separate, as shown in Figure 2a. The incident angle of the input beam 1 1 2 at the polarization beam splitter 1 1 6 is 0! The beams 1 3 0 and 1 3 3 hit the polarization beam splitter 1 4 0 and become beams respectively. 1 3 4 and 1 3 5 leave. Both the measurement and reference beams are reflected once by the measurement / reference target 1 70. The plane mirror of the measurement / reference target 1 70. The light beam 1 3 4 and 1 3 5 is polarized into a plane perpendicular to FIG. 2 a. The light beam 1 3 4 is reflected by a mirror 1 2 0 and a part of it is reflected by a polarization beam splitter 1 2 2 into an output beam 1 5 2 as a measurement beam component. Beam 1 A part of 3 5 is invented by the non-polarizing beam splitter 1 2 2 as the reference beam component of the output beam 1 5 2. The mixed beam of the output beam 1 5 2 The beam splitter 1 2 2 and the mirror 1 2 0 are parallel and separated by a distance d 2 separate, as shown in Figure 2 a. The incident angle of the light beam 1 3 4 in the mirror 1 2 0 is 02. The detector 1 8 2 should use photoelectric detection to detect the output beam 1 5 2 as an electrical interference signal 1 8 6 The signal 1 8 6 is a heterodyne signal, which has a frequency f 1 and a good heterodyne phase. The heterodyne phase 0 may be expressed as: 11 .1 III Iff —I— —if I (Please read the precautions on the back before (Fill in this page) The size of the paper is applicable to the Chinese National Standard (CNS) A4 (210X297mm) _ »496947 Α7 Β7 V. Description of the invention (13) 2nk [d2 cos02-dx cosQj (1) where k is the input beam The wave reception of 1 1 2 and n is the refractive index of the medium in the interferometry system. Changing the direction of the mirror 1 7 0 by an angle 0 will change 0 2 relative to 0 i 2 0, the corresponding change Δ 0 is expressed as: Δφ = 2 /; A: rf2 [cos (02 +20) -cos θ2]. (2) Represent the corresponding 0 by Δ0: Θ cos_1 C〇s02 + Δφ 2nkdn-for d 2 = 1 · 〇 cm and the wavelength is 6 3 3 / (2nkd2)] is: 5.04x10 " ml- — ^ n I HI *-I — 1 »m, (Please read the note on the back first (Fill in this page again) (3) In the example of m, the coefficient is [1 ⑷ 2nkd. The measurement of the printed angle of the consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs is based on optical difference technology, in which the phase difference between the measured and reference beams has no effect on the common mode frequency change of the two components of the input beam 1 1 2 sensitive. For example, the common mode frequency change may be a Doppler change caused by the movement of the mirror 170. It operates with low frequency division between the measurement and reference beams, which can improve the accuracy of the measurement / reference target direction measurement. The use of low frequency division in the present invention is because there is no first-order frequency change effect in the phase of the electrical reference signal used to measure and monitor the direction change of 170. Can use heterodyne or internal difference technology to decide to measure and monitor the measurement. / This paper size applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 496947 A7 B7 V. Description of the invention (14 Refer to the direction of the target. The phase of the reference signal. Figure 2b shows the variation of the second embodiment. The variation of the second embodiment comes from the first group of interferometers and the first group of two-beam interferometry systems to measure a measurement target at two right angles simultaneously The change in direction in the plane. The device and method for the change of the second embodiment include the interferometer and detector 8 4 and the signal 1 9 0 A of the second embodiment. The reflected light beam 1 2 4 of the mirror 1 2 0 Part of it is transmitted by the non-polarized beam splitter 1 2 2 to become the measurement beam component of the second output beam 1 5 4. A split of the beam 1 3 5 is reflected by the non-polarized beam splitter 1 2 2 to become the reference beam of the beam 1 5 4 The component 1 5 4 is detected by the detector 1 8 4 as a signal 1 8 7 and the processor 1 0 0A processes the beam 1 8 7 and the measuring mirror 1 7 0 is in a plane perpendicular to the plane of FIG. 2 b Orientation change in the plane Detector 1 8 4 and processor 1 9 Ο A uses known techniques to detect changes in the propagation direction of the measurement and reference beams, such as a combination of imaging optics, multiple detectors, multi-element detectors, and phase shift arrays to change the characteristics of the image formed by the imaging optical ritual , Interferometry, interferometry imaging and signal processing technology. It can plan the detector 1 84 and the processor 1 900 A. It is one of the various interferometry technologies described in the US provisional application z-2 0 9 to measure The direction of the light beam incident on the detector 1 84 is changed in a plane perpendicular to the plane of Fig. 2b. The rest of the description of the variation of the second embodiment of the present invention is the same as that of the second embodiment of the present invention. The corresponding parts are the same. Figure 3a shows a third embodiment of the present invention. The third embodiment comes from the second group of interferometers, and the second group contains a three-beam interferometer. The second implementation (please read the precautions on the back first) Please fill in this page again) +, 1T The printed paper size of the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy applies the Chinese National Standard (CNS) A4 specification (2 丨 0X 297 mm) 17- Cooperative printed 496947 Α7 _ Β7 V. Equipment and method of the invention description (15) Example There is an HS P M I and the second interferometer of the second embodiment to simultaneously measure the distance change to the target and the target is in a plane The direction changes in the middle. One of the three beams simultaneously becomes one of the beams of the HS PM I and one of the several beams of the second interferometer. The description of the input beam 2 1 2 and the input beam 1 of the first embodiment The corresponding part of the description of 2 is the same. The light beam 2 1 2 is incident on the non-polarized beam splitter 2 1 6 and the first part thereof is emitted as the light beam 230. The second part of the light beam 2 1 2 is reflected by the non-polarizing beam splitter 2 1 6 and is reflected by the mirror 2 1 8 ′ and then emitted by the half-wave phase radiation plate into a light beam 2 3 3. The direction of the half-wave phase radiating plate makes the polarizations of the frequency changing components of the light beams 2 0 and 2 3 3 perpendicular to each other, and makes the non-frequency changing component polarizations of the light beams 2 3 0 and 2 3 3 perpendicular to each other. The component of the polarized light beam 2 3 0 in the plane of FIG. 3 a is incident on the target mirror 27 0 to form the measurement beam component of the light beam 2 3 4. The component of the light beam 2 3 0 polarized vertically to the plane of FIG. 1A is passed to the reference mirror 2 7 2 to form the reference beam component of the light beam 2 3 4. After the measurement of the first part of the beam 2 3 4 and the reference beam components are shot for the second time to the target mirror 2 70 and the reference mirror 2 7 2 respectively, the first part of the beam 2 3 4 is emitted by the non-polarizing beam splitter 2 2 0 An output beam is formed. The rest of the description of the beam 2 50 is the same as the corresponding part of the description of the output beam of HS P M I. The output beam 2 50, such as the mixed beam, is detected by the detector 2 8 0 after passing through the polarizer 2 7 2 to generate an electrical reference signal or heterodyne signal 2 8 5. The phase of the heterodyne signal 2 8 5 is processed by the processor 2 9 0 to determine the change in the optical path length of the corresponding measurement path (including two shots to the target mirror 2 70). The paper dimensions are subject to the Chinese National Standard (CNS) Α4 specification (210X297 mm) (Please read the precautions on the back before filling this page)

-18- 496947 A 7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(16 ) °光束2 5 0的後續偵測及訊號處理的描述與H S Ρ Μ I @ _出光束的偵測及處理的描述的對應部分相同。 非極化分光器2 2 0反射的光束2 3 4的第二部分被 非極化分光器2 2 2發射成爲輸出光束2 5 2的測量光束 成分。光束2 3 5的第二部分被非極化分光器2 2 2發射 成爲輸出光束2 5 2的參考光束成分。垂直極化到圖3 a 的平面的光束2 5 2的成分被偵測器2 5 2偵測,以決定 在圖3 a中的光束2 5 2的成分的方向變化,並因此決定 在圖3 a的平面中的目標鏡2 7 0的方向變化。光束 2 5 2的參考及測量光束成分及後續偵測及訊號處理的描 述與本發明的第二實施例的輸出光束1 5 2的描述的對應 部分相同。 第三實施例的其餘描述與第一、二實施例的描述的對 應部分相同。 圖3 b顯示本發明的第三實施例的變化。第三實施例 的變化來自第二群干涉測量器,第二群含三光束干涉測量 器。第三實施例的變化的設備及方法有一個H S Ρ Μ I及 第二實施例的變化的雙光束干涉測量器。本發明的第三實 施例的變化同時測量到目標的距離變化及在兩個直角平面 中的目標的方向變化。 第三實施例的變化的其餘描述與第二實施例的變化及 第三實施例的描述的對應部分相同。 在第一、二、三實施例及其變化中做的干涉測量的循 環誤差,能用後述之資料所述之方法及設備,減少並/或 (請先閲讀背面之注意事項再填寫本頁) 、τ 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 496947 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(17 ) 測量及部分或全部補償(依最終應用的要求):在 1 9 94年7月1 9曰准的第533 1400號美國專利 (G. Wilkening 及 W. Hou 共同發明的 Heterodyne Interferometer Arrangement );在 1998 年 10 月 6 日送 件的0 9 / 1 6 8 2 0 0號美國專利申請案(s. R. Paterson、 V. G· Bagdami 及 C· A. Zanoni 共同發明並讓與本 申請人之 Interferometry System Having Reduced Cyclic Errors );在1 9 9 9年3月1 5日送件的 〇9 / 2 6 8 6 1 9號美國專利申請案(H. A. Hill發明並 讓與本申請人之 Systems and methods for Characterizing Cyclic Errors in Distance Measuring and Dispersion Interferometry );在 1 9 99 年 1 1 月 1 9 曰送件的 6 0 / 1 6 6 6 3 9號美國專利申請案(H. A. Hill發明並 讓與本申請人之 Systems and Methods for Quantifying Cycilc Errors in Interferomey Systems )。上述之三件專利申請案 的內容被倂入本案而成爲參考。 在第一、二群實施例及其變化中的角及線性位移計算 取決於在測量路徑中的氣體的折射率。折射率的變化(例 如沿測量路徑的空氣滑流所造成)能改變角及位移測量。 爲補償這類效應,上述之幾種干涉測量系統之任何一個能 涉及含至少兩個分開的波長成分的測量及參考光束。在每 個波長的參考及測量光束成分彼此結合而形成一對重疊的 輸出光束。然後,從每對重疊的輸出光束導出在每個波長 的干涉訊號,例如0 i 。後述之文件描述如何規畫上述之 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -20- 496947 經濟部智慧財產局員工消費合作社印製 ^ A7 __ B7_五、發明説明(18 ) 以多波長進行測量的干涉測量系統:在1 9 9 9年5月5 曰送件的0 9 / 3 0 5 8 7 6號美國專利申請案(Henry. A. Hill及Peter de Groot共同發明並讓與本申請人之3丨1121^ Pass and Multi-Pass Interferometry Systems Having a Dynamic Beam-Steering Assembly for Measuring Distance, Angle, and Dispersion );在1999年2月18日送件的 0 9/2 5 2 2 6 6號美國專利申請案(Peter de Groot、 Henry A. Hill及Frnak C. Demarest共同發明並讓與本申請人 之 Interferometer and Method for measuring the Refractive Index and Optical Path Length Effects of Air );在 1 9 9 9 年2月1 8日送件的0 9 / 2 5 2 4 4 0號美國專利申請 案(Peter de Groot、 Henry A. Hill 及 Frank C· Demarest 共 同發明並讓與本申請人之 Apparatus and Method for measuring the Refractive Index and Optical Path Length Effects of Air Using Multiple Pass Interferometry );其內容 被倂入本案而成爲參考。 在這類實施例中,在上述之實施例中的處理系統及/ 或角測量系統將處理在兩個或更多波長的相位0 i,換言之 ,相位與波長發生後述之關係:0 j二0 i ( λ〗),其中 ,久』表示特定成分的波長,處理系統及/或角測量系統隨 後計算氣體對後述之角位移測量造成的折射效應。 用本發明第一、二、三實施例及其變化測量的角方向 ,可能須對在測量路徑中的氣體的折射效應(取決於最終 應用)予以校正。對第一、二、三實施例及其變化的Θ t的 本紙張尺度適用中國國家標準(CNS〉A4規格(210X297公釐) 一 21 _ (請先閱讀背面之注意事項再填寫本頁) 496947 A7 B7 五、發明説明(19 ) 校正A 0 t表示如下 (5) 校正値△ 0 i能被重寫成氣體的擴散率,及擴散功率Γ 的逼近値。散射功率Γ是氣體固有的光學特性並被定義如下-18- 496947 A 7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention (16) ° Description of subsequent detection and signal processing of beam 2 5 0 and detection of HS ΡΜ I @ _ out beam And the corresponding parts of the description of processing are the same. The second part of the light beam 2 3 4 reflected by the non-polarized beam splitter 2 2 0 is emitted by the non-polarized beam splitter 2 2 2 into a measurement beam component of the output beam 2 5 2. The second part of the beam 2 3 5 is emitted by the non-polarized beam splitter 2 2 2 to become the reference beam component of the output beam 2 5 2. The component of the light beam 2 5 2 vertically polarized to the plane of FIG. 3 a is detected by the detector 2 5 2 to determine the change in the direction of the component of the light beam 2 5 2 in FIG. 3 a, and therefore determined in FIG. 3. The direction of the target mirror 270 in the plane of a changes. The descriptions of the reference and measurement beam components and subsequent detection and signal processing of the light beam 2 5 2 are the same as the corresponding parts of the description of the output light beam 15 2 of the second embodiment of the present invention. The rest of the description of the third embodiment is the same as the corresponding part of the description of the first and second embodiments. Figure 3b shows a variation of the third embodiment of the invention. The variation of the third embodiment comes from a second group of interferometers, and the second group contains a three-beam interferometer. The modified apparatus and method of the third embodiment have an HS P M I and a modified two-beam interferometer of the second embodiment. The variation of the third embodiment of the present invention measures the change in the distance to the target and the change in the direction of the target in two right-angle planes simultaneously. The remaining description of the variation of the third embodiment is the same as the variation of the second embodiment and the corresponding parts of the description of the third embodiment. The cyclic error of the interferometric measurement made in the first, second, and third embodiments and their variations can be reduced and / or reduced by using the methods and equipment described in the data below (please read the precautions on the back before filling this page) , Τ This paper size applies Chinese National Standard (CNS) A4 specification (210 × 297 mm) 496947 A7 B7 Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (17) Measurement and partial or full compensation (according to the final application (Requirements): U.S. Patent No. 533 1400 (G. Wilkening and W. Hou jointly invented Heterodyne Interferometer Arrangement) dated July 19, 1994; 0 9 / US Patent Application No. 1 6 8 2 0 (s. R. Paterson, V. G. Bagdami and C. A. Zanoni jointly invented and let the applicant's Interferometry System Having Reduced Cyclic Errors); in 1 9 9 US Patent Application No. 9/2 6 8 6 1 9 (filed on March 15, 2009) (HA Hill invented and assigned the applicant's Systems and methods for Characterizing Cyclic Errors in Distance Measuring and Dispersion Interferometry); US Patent Application No. 6 0/1 6 6 6 3 9 (November 19, 1999) (Ha Hill invented and assigned the applicant's Systems and Methods for Quantifying Cycilc Errors in Interferomey Systems). The contents of the three patent applications mentioned above are incorporated into this case for reference. The calculation of the angular and linear displacements in the first and second group embodiments and their variations depends on the refractive index of the gas in the measurement path. Changes in refractive index (such as caused by air slip along the measurement path) can change angle and displacement measurements. To compensate for such effects, any of the several interferometric systems described above can involve measurement and reference beams containing at least two separate wavelength components. The reference and measurement beam components at each wavelength are combined with each other to form a pair of overlapping output beams. Then, an interference signal at each wavelength, such as 0 i, is derived from each pair of overlapping output beams. The document described below describes how to plan the above (please read the precautions on the back before filling this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -20- 496947 Employees of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the cooperative ^ A7 __ B7_ V. Description of the invention (18) Interferometry system for measuring at multiple wavelengths: US Patent No. 0 9/3 0 5 8 7 6 sent on May 5, 1999 Application (Henry. A. Hill and Peter de Groot co-invented and gave 3,1121 ^ Pass and Multi-Pass Interferometry Systems Having a Dynamic Beam-Steering Assembly for Measuring Distance, Angle, and Dispersion) to the applicant; in US Patent Application No. 0 9/2 5 2 2 6 6 (February 18, 1999) (Peter de Groot, Henry A. Hill, and Frnak C. Demarest co-invented and assigned the applicant's Interferometer and Method for measuring the Refractive Index and Optical Path Length Effects of Air); U.S. Patent Application No. 0 9/2 5 2 4 4 0 (February de Groot, Henry A. Hill) And Frank C. Demarest The present invention allows the same applicant and Apparatus and Method for measuring the Refractive Index and Optical Path Length Effects of Air Using Multiple Pass Interferometry); Merger of the content of which is to become the reference case. In such embodiments, the processing system and / or the angle measurement system in the above-mentioned embodiment will process the phase 0 i at two or more wavelengths, in other words, the phase and wavelength will have a relationship described later: 0 j 2 0 i (λ), where Jiu represents the wavelength of a specific component, and the processing system and / or angle measurement system then calculates the refraction effect of the gas on the angular displacement measurement described below. The angular directions measured with the first, second, and third embodiments of the present invention and their variations may require correction of the refraction effect of the gas in the measurement path (depending on the end application). For the first, second, and third embodiments and their variations, the paper size of Θ t applies the Chinese national standard (CNS> A4 specification (210X297 mm)) 21 _ (Please read the precautions on the back before filling this page) 496947 A7 B7 V. Explanation of the invention (19) The correction A 0 t is expressed as follows (5) The correction 値 △ 0 i can be rewritten as the diffusion rate of the gas and the approximation 扩散 of the diffusion power Γ. The scattering power Γ is the inherent optical characteristics of the gas and Is defined as

Ua-nu (6) 在此,1、Q及U是對應波長λΐ、 Aq及、λυ的下標。 對沒有重要成分在測量路徑中的氣體的組成中的氣體而言 ,式(5 )及式(6 )能結合成: ds (7) (請先閱讀背面之注意事項再填寫本頁) dr 或 △Θ,· = —「Ua-nu (6) Here, 1, Q and U are subscripts corresponding to the wavelengths λΐ, Aq, and λυ. For the gas in the composition of the gas that does not have an important component in the measurement path, equations (5) and (6) can be combined into: ds (7) (Please read the precautions on the back before filling this page) dr or △ Θ, · = — 「

dnq "aT 1ί dr (8) 經濟部智慧財產局員工消費合作社印製 從在若干波長測量的0 i的差異獲得折射率的成分的差 異,在此,0 ;未經過氣體的折射效應校正。特定地,處理 系統及/或角測量系統能依下式計算校正値·· - Γ{θ,々-㊀…}, (9) 在此,0 U及0 ^ U分別對應後第一、二、三實施例及其變 化在波長λ ,及λ U測量的角(丨表示對應的實施例)。測 量的角θ i Π及Θ i U當然不包括在其他情況中出現在第一、 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -22- 496947 ^ A7 _B7 五、發明説明(20 ) 二、三實施例及其變化的Θ i的上述之等式中的折射率成分 校正。注意對氣體在角及線性位移測量上的氣體的折射效 應的更正都用氣體的相同特性:相互擴散功率Γ。因此,在 兩種或更多種長度做干涉測量及非干涉測量並應用等式( 9 ),就能用相互擴散功率r,爲空氣渦流及類似現象,校 正角的干涉及非干涉測量。r的測量及決定方法見於在 1 999年1月1 9日送件的09/2325 1 5號美國 專利申請案(Henry A. Hill發明並讓與本申請人的 Apparatus and Methods for Measuring Intrinsic Optical Properties of a Gas ),其內容被倂入本案而成爲參考。 熟悉此技術者將明瞭角方向變化的一些干涉測量對目 標鏡的移動不敏感,亦即都卜勒效應不出現在電干涉訊號 的相位中。這有利於做電干涉訊號的相位的準確測量。 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -23- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)dnq " aT 1ί dr (8) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. The difference in refractive index components is obtained from the differences of 0 i measured at several wavelengths. Here, 0; has not been corrected for the refraction effect of gas. Specifically, the processing system and / or the angle measurement system can calculate the correction 依 ··--Γ {θ, 々-㊀…}, (9) Here, 0 U and 0 ^ U correspond to the first and second, respectively And three embodiments and their variations are measured at the wavelengths λ and λ U (where 丨 indicates the corresponding embodiment). The measured angles θ i Π and Θ i U are of course not included in other cases. Appear in the first case. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -22- 496947 ^ A7 _B7 V. Invention The correction of the refractive index component in the above-mentioned equation of θ i which illustrates (20) the second and third embodiments and their variations. Note that the correction of the gas's refraction effect on angular and linear displacement measurements uses the same characteristic of the gas: the interdiffusion power Γ. Therefore, interferometric and non-interferometric measurements at two or more lengths and applying equation (9) can use the interdiffusion power r for air eddy currents and similar phenomena. The interference of the correction angle involves non-interferometric measurements. The measurement and determination method of r can be found in U.S. Patent Application No. 09/2325 1 (filed on Jan. 19, 999) (Apparatus and Methods for Measuring Intrinsic Optical Properties invented by Henry A. Hill and assigned by the applicant) of a Gas), the content of which was incorporated into this case for reference. Those skilled in the art will understand that some interferometric measurements of angular changes are not sensitive to the movement of the objective lens, that is, the Doppler effect does not appear in the phase of the electrical interference signal. This facilitates accurate measurement of the phase of the electrical interference signal. (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -23- This paper size applies to China National Standard (CNS) A4 (210X297 mm)

Claims (1)

經濟部智慧財產局員工消費合作社印製 496947 A8 B8 ' C8 _ _ D8 六、申請專利範圍 1 · 一種干涉測量設備,其干涉測量一平面目標鏡的 位置及角方向之至少一個,其包括: 一個干涉測量器,其有參考及測量路徑,並有一平面 鏡在測量路徑中,干涉測量器產生參考及測量光束分別沿 參考及測量路徑移動,測量光束射到平面目標鏡至少兩次 ’在過程中在兩個分開的位置接觸它,並因此與參考光束 混合’以提供訊號,訊號有一特性隨平面目標鏡的位置變 化而變化,以致訊號無關於平面鏡繞至少一條垂直於測量 路徑的軸線的角變化; 光學裝置,其在測量光束射到平面目標鏡一次以後橫 斷測量光束,以產生光學訊號,光學訊號有資訊在至少一 個平面中,依平面目標鏡的角方向而變化;及 處理裝置,其接收光學訊號,把它轉變爲電訊號,決 定從它而來的資訊,並把資訊轉變爲平面目標鏡的角方向 〇 2 ·如申請專利範圍第1項所述之設備,其中,光學 裝置產生第二光學訊號,第二光學訊號有額外資訊在一個 垂直平面中依平面目標鏡在垂直平面中的角方向而變化, 垂直平面垂直於上述之至少一個平面。 3 · —種干涉測量設備,其干涉測量一平面目標鏡的 角方向,其包括: 一個干涉測量器,其包括平面目標鏡; 一個來源,其產生至少一道光束; 一個光學裝置’其橫斷至少一道光束,並把它分成兩 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -24 - 7-----------^--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 496947 A8 B8 C8 D8 六、申請專利範圍 道光束,兩道光束相隔第一預定距離,並當作測量光束而 射到平面目標鏡,從平面目標鏡反射,當作輸出光束而從 干涉測量器射出,兩道輸出光束相隔第二預定距離; 結合兩道輸出光束以提供輸出訊號的裝置,輸出訊號 的相位依在上述之至少一個平面中的平面目標鏡的角方向 變化而變化;及 從訊號的相位決定角方向的裝置。^ 4 .如申請專利範圍第3項所述之設備,其中,結合 兩道輸出光束以提供輸出訊號的裝置產生第二輸出訊號, 第二輸出訊號有另一個相位在一個垂直平面中,依平面目 標鏡在垂直平面中的角方向而變化,垂直平面垂直於上述 之至少一個平面。 5 . —種干涉測量設備,其干涉測量一平面目標鏡的 位置及角方向之至少一個,其包括: 第一干涉測量器,其有參考及測量路徑,並有一平面 鏡在測量路徑中,干涉測量器產生參考及測量光束分別沿 參考及測量路徑移動,測量光束射到平面目標鏡至少兩次 ,在過程中在兩個分開的位置接觸它,並因此與參考光束 混合,以提供訊號,訊號有一特性隨平面目標鏡的位置變 化而變化,以致訊號無關於平面鏡繞至少一條垂直於測量 路徑的軸線的角變化; 第二干涉測量器,其有一測量腳,平面目標鏡在第二 干涉測量器的測量腳中; 產生並使第二測量光束沿第二干涉測量器的測量腳射 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -25 - —— —— — — II ·11111111 ^^^^1 ' (請先閱讀背面之注意事項再填寫本頁) 496947 A8 B8 C8 D8 六、申請專利範圍 到平面目標鏡第一次的裝置; 光學裝置,其在第一測量光束射到平面目標鏡一次以 後’橫斷第一測量光束及從第二干涉器而來的測量光束, 以產生光學訊號,光學訊號有資訊在至少一個平面中,依 平面目標鏡的角方向而變化;及 處理裝置,其接收光學訊號,把它轉變爲電訊號,決 定從它而來的資訊,並把資訊轉變爲平面目標鏡的角方向 0 6 ·如申請專利範圍第5項所述之設備,其中,光學 裝置產生第二光學訊號,第二光學訊號有額外資訊在一個 垂直平面中依平面目標鏡在垂直平面中的角方向而變化, 垂直平面垂直於上述之至少一個平面。 1111 I J ? ---11---訂-- ----11 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -26- 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐)Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 496947 A8 B8 'C8 _ _ D8 VI. Patent Application Scope 1 · An interferometric measuring device that interferometrically measures at least one of the position and angular direction of a flat target mirror, including: The interferometer has a reference and measurement path, and a plane mirror in the measurement path. The interferometer generates the reference and measurement beams to move along the reference and measurement paths, respectively. The measurement beam is shot to the plane target mirror at least twice. Two separate locations contact it and are therefore 'mixed with the reference beam' to provide a signal. The signal has a characteristic that varies with the position of the plane target mirror, so that the signal has no relation to the angle change of the plane mirror around at least one axis perpendicular to the measurement path; An optical device that traverses the measurement beam after the measurement beam is incident on the plane target mirror once to generate an optical signal, the optical signal has information in at least one plane that varies according to the angular direction of the plane target mirror; and a processing device that receives Optical signal, turn it into a signal, decided to go from it The information from the source, and transform the information into the angular direction of the flat target lens. 02 · The device as described in the first patent application scope, wherein the optical device generates a second optical signal, and the second optical signal has additional information in a vertical direction. The plane changes according to the angular direction of the plane target mirror in a vertical plane, and the vertical plane is perpendicular to at least one of the planes. 3. An interferometry device that interferometrically measures the angular direction of a flat target mirror, including: an interferometer, which includes a flat target mirror; a source, which generates at least one beam; an optical device, which crosses at least A beam of light, which is divided into two papers. Applicable to China National Standard (CNS) A4 (210 X 297 mm) -24-7 ----------- ^ ------- -(Please read the notes on the back before filling out this page) Printed by the Employees' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 496947 A8 B8 C8 D8 VI. Patent application scope Beam, two beams separated by the first predetermined distance, and treated as Measure the light beam and shoot it to the plane target mirror, reflect it from the plane target mirror, and output it as an output beam from the interferometer. The two output beams are separated by a second predetermined distance. The device that combines the two output beams to provide an output signal outputs the signal. The phase of the planar target mirror changes in at least one of the planes, and the device determines the angular direction from the phase of the signal. ^ 4. The device according to item 3 of the scope of patent application, wherein the device that combines two output beams to provide an output signal generates a second output signal, and the second output signal has another phase in a vertical plane, according to the plane The angular direction of the target mirror in a vertical plane varies, and the vertical plane is perpendicular to at least one of the above planes. 5. An interferometric measuring device which interferometrically measures at least one of the position and the angular direction of a plane target mirror, and includes: a first interferometer, which has a reference and measurement path, and a plane mirror in the measurement path, interferometry The reference and measurement beams generated by the transmitter are moved along the reference and measurement path respectively. The measurement beam hits the planar target mirror at least twice. In the process, it touches it at two separate positions and mixes with the reference beam to provide a signal. The signal has a The characteristics change with the change of the position of the plane target mirror, so that the signal has no relation to the angle of the plane mirror around at least one axis perpendicular to the measurement path; the second interferometer has a measuring foot, and the plane target mirror is at the second interferometer. In the measuring foot; generating and causing the second measuring beam to be emitted along the measuring foot of the second interferometer The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) -25-—— —— — — II · 11111111 ^^^^ 1 '(Please read the notes on the back before filling this page) 496947 A8 B8 C8 D8 The first device that surrounds a flat target lens; an optical device that 'crosses the first measurement light beam and the measurement light beam from the second interferometer after the first measurement light beam hits the flat target lens once to generate an optical signal , The optical signal has information in at least one plane that changes according to the angular direction of the plane target mirror; and a processing device that receives the optical signal, converts it into a telecommunication signal, determines the information from it, and converts the information into Angular direction of the plane target lens 0 6 · The device as described in item 5 of the scope of patent application, wherein the optical device generates a second optical signal, and the second optical signal has additional information in a vertical plane according to the plane target lens in the vertical plane The angular direction varies with the vertical plane, and the vertical plane is perpendicular to at least one of the above planes. 1111 IJ? --- 11 --- Order----- 11 (Please read the precautions on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs-26- This paper size applies to China Standard (CNS) A4 size (210 x 297 mm)
TW090111481A 2000-05-17 2001-05-14 Apparatus and method for interferometric measurements of angular orientation and distance to a plane mirror object TW496947B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20489100P 2000-05-17 2000-05-17

Publications (1)

Publication Number Publication Date
TW496947B true TW496947B (en) 2002-08-01

Family

ID=22759906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090111481A TW496947B (en) 2000-05-17 2001-05-14 Apparatus and method for interferometric measurements of angular orientation and distance to a plane mirror object

Country Status (3)

Country Link
US (1) US6552804B2 (en)
TW (1) TW496947B (en)
WO (1) WO2001088468A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403124B1 (en) * 1997-04-16 2002-06-11 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Storage and maintenance of blood products including red blood cells and platelets
DE19924755A1 (en) * 1999-05-29 2000-11-30 Bosch Gmbh Robert Distance detection device
JP2002340538A (en) * 2001-05-14 2002-11-27 Matsushita Electric Ind Co Ltd Instrument and method for measuring flatness of thin plate material
US6762845B2 (en) 2001-08-23 2004-07-13 Zygo Corporation Multiple-pass interferometry
US6987569B2 (en) * 2001-08-23 2006-01-17 Zygo Corporation Dynamic interferometer controlling direction of input beam
US7193726B2 (en) * 2001-08-23 2007-03-20 Zygo Corporation Optical interferometry
US6819434B2 (en) * 2002-01-28 2004-11-16 Zygo Corporation Multi-axis interferometer
US6757066B2 (en) 2002-01-28 2004-06-29 Zygo Corporation Multiple degree of freedom interferometer
TWI278599B (en) * 2002-01-28 2007-04-11 Zygo Corp Multi-axis interferometer
US7030993B2 (en) * 2002-04-24 2006-04-18 Zygo Corporation Athermal zero-shear interferometer
US7274462B2 (en) * 2002-09-09 2007-09-25 Zygo Corporation In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems
JP2006516763A (en) 2003-01-27 2006-07-06 ゼテテック インスティテュート Apparatus and method for simultaneous measurement of reflected / scattered and transmitted beams by interferometric objects in a quadrangular field of view.
US7310152B2 (en) * 2004-03-03 2007-12-18 Zygo Corporation Interferometer assemblies having reduced cyclic errors and system using the interferometer assemblies
US7193721B2 (en) * 2004-05-28 2007-03-20 Agilent Technologies, Inc. Systems using polarization-manipulating retroreflectors
WO2006014406A2 (en) 2004-06-30 2006-02-09 Zygo Corporation Interferometric optical assemblies and systems including interferometric optical assemblies
US7027162B2 (en) * 2004-08-16 2006-04-11 Lau Kam C System and method for three-dimensional measurement
WO2007008265A2 (en) * 2005-04-11 2007-01-18 Zetetic Institute Apparatus and method for in situ and ex situ measurement of spatial impulse response of an optical system using phase-shifting point-diffraction interferometry
EP1883783A2 (en) * 2005-05-18 2008-02-06 Zetetic Institute Apparatus and method for in situ and ex situ measurements of optical system flare
US7528962B2 (en) * 2005-06-29 2009-05-05 Zygo Corporation Apparatus and methods for reducing non-cyclic non-linear errors in interferometry
US7405832B2 (en) * 2005-08-08 2008-07-29 Zetetic Institute Apparatus and methods for reduction and compensation of effects of vibrations and of environmental effects in wavefront interferometry
EP1917496A4 (en) * 2005-08-26 2010-07-28 Zetetic Inst Apparatus and method for measurement and compensation of atmospheric turbulence effects in wavefront interferometry
WO2007059249A2 (en) * 2005-11-15 2007-05-24 Zetetic Institute Interferometer with coherent artifact reduction plus vibration and enviromental compensation
TWI411761B (en) * 2010-12-29 2013-10-11 Metal Ind Res & Dev Ct Combined angle measurement system
US8595682B2 (en) * 2011-12-19 2013-11-26 International Business Machines Corporation Phase compensation in a differential pair of transmission lines
DE102013201611A1 (en) * 2012-12-20 2014-07-10 Dr. Johannes Heidenhain Gmbh interferometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714339B2 (en) * 1986-02-28 2000-05-23 Us Commerce Three and five axis laser tracking systems
US4746216A (en) * 1986-03-28 1988-05-24 Zygo Corporation Angle measuring interferometer
US4883357A (en) * 1989-03-01 1989-11-28 Zygo Corporation Dual high stability interferometer

Also Published As

Publication number Publication date
WO2001088468A1 (en) 2001-11-22
US20020001087A1 (en) 2002-01-03
US6552804B2 (en) 2003-04-22

Similar Documents

Publication Publication Date Title
TW496947B (en) Apparatus and method for interferometric measurements of angular orientation and distance to a plane mirror object
US6541759B1 (en) Interferometry system having a dynamic beam-steering assembly for measuring angle and distance and employing optical fibers for remote photoelectric detection
TW382652B (en) Interferometer and method for measuring the refractive index and optical path length effects of air
US6407816B1 (en) Interferometer and method for measuring the refractive index and optical path length effects of air
JP4939765B2 (en) Displacement measuring method and apparatus
US6219144B1 (en) Apparatus and method for measuring the refractive index and optical path length effects of air using multiple-pass interferometry
US6757066B2 (en) Multiple degree of freedom interferometer
US6271923B1 (en) Interferometry system having a dynamic beam steering assembly for measuring angle and distance
JP4681179B2 (en) Interferometer with reduced ghost beam effect
US20030043384A1 (en) Dynamic interferometer controlling direction of input beam
CN107664482B (en) Grating measuring device
US6512588B1 (en) Method and system for correcting an interferometric angle measurement for the effects of dispersion
EP1066495B1 (en) Apparatus and method for measuring the refractive index and optical path length effects of air using multiple-pass interferometry
US6519042B1 (en) Interferometer system for displacement and straightness measurements
JP5348224B2 (en) Displacement measuring method and apparatus
JPS62233704A (en) Differential plane-mirror interferometer system
JP3626907B2 (en) Interferometry method and apparatus
JP2003042710A (en) Optical heterodyne interferometer
Kimbrough et al. Dynamic Fizeau Interferometers
JP2010096767A (en) Displacement measuring method and device therefor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees