TW483204B - Optical fiber with absorbing overclad glass layer - Google Patents

Optical fiber with absorbing overclad glass layer Download PDF

Info

Publication number
TW483204B
TW483204B TW090105887A TW90105887A TW483204B TW 483204 B TW483204 B TW 483204B TW 090105887 A TW090105887 A TW 090105887A TW 90105887 A TW90105887 A TW 90105887A TW 483204 B TW483204 B TW 483204B
Authority
TW
Taiwan
Prior art keywords
optical fiber
cladding
patent application
glass
scope
Prior art date
Application number
TW090105887A
Other languages
Chinese (zh)
Inventor
Adam James Gillmar Ellison
John Douglas Minelly
Jackson Phelps Trentelman
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Application granted granted Critical
Publication of TW483204B publication Critical patent/TW483204B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/08045Single-mode emission

Abstract

The disclosed invention includes an amplifier fiber and methods of making the amplifier fiber. One embodiment of the inventive fiber include glass layer and a glass cladding layer surrounding the glass core. The cladding glass layer has a refractive index which is less than a refractive index of the glass core. The fiber also includes a glass overclad layer surrounding the cladding layer. The overclad layer has a refractive index which is greater than the refractive index of the cladding layer. In another embodiment of the inventive fiber, the overclad layer is doped with an absorber. The absorber strips a mode of light propagating in the cladding from the cladding layer.

Description

483204 A7483204 A7

五、發明説明(f ) 發明領域: 本發明大致上是關於光纖,特別是關於包含吸收外· 玻璃層,來將包層掇傳輸降到最低的·反太器朵鑣。 發明背景: 放大為光纖10的典型幾何形狀,顯示在圖1中,其中的 光纖包含在光纖中心的圓形心蕊U,圍繞心蕊的圓柱恥包 層14,圍繞包層的主要或内'聚合物塗層,以及圍繞主要塗 層的次要或外聚合物塗廣48。通常,用來準備光纖之各種 物質的折射率如下··心蕊12具有相當高的折射率,包層14的 折射率比心蕊的折射率低,而主要塗層16的折射率接近或 大於包層的折射率。一般來說,次要塗層18的折射率可以 跟其他物質的折射率無關。 經濟部中央標準局員工消費合作杜印製 — 1 i_^ (請先閱讀背面之注意事項再填寫本頁)V. Description of the Invention (f) Field of the Invention: The present invention relates generally to optical fibers, and particularly to an inverter device that includes an absorption outer glass layer to minimize transmission of the cladding layer. BACKGROUND OF THE INVENTION: The typical geometric shape of an optical fiber 10 is shown enlarged in FIG. 1, where the optical fiber includes a circular core U in the center of the fiber, a cylindrical cladding 14 surrounding the core, and a main or inner cladding. Polymer coatings, and secondary or outer polymer coatings surrounding the primary coating. In general, the refractive indices of various substances used to prepare optical fibers are as follows: The core 12 has a relatively high refractive index, the refractive index of the cladding 14 is lower than the refractive index of the core, and the refractive index of the main coating 16 is close to or greater than Refractive index of the cladding. In general, the refractive index of the secondary coating 18 may be independent of the refractive index of other materials. Printed by the Consumer Standards Department of the Central Bureau of Standards of the Ministry of Economic Affairs — 1 i_ ^ (Please read the precautions on the back before filling this page)

、1T 較咼心蕊折射率的目的,是要使得注入光纖的光線沿 著心蕊,而不是沿著包層傳播。在感興趣的波長下,聚合物 塗層的折射率接近包層的折射率。如果聚合物塗層的逝射 率小於包層的折射率,那麼包層本身可能像波導一樣作用, 很像在一個塑膠包層内的巨大心蕊。當光從心蕊逸出而沿 著包層(而不是心蕊)傳播時,稱為包層模。這種現象會對 心蕊的信號造成不利的干擾和扭曲τ舀此,我們需要_鍾 玻璃光纖結構,可以降低包層模的傳播。 在電信應用中,聚合物塗層在紅外線區通常是高度吸 收的。這大部分是由於C—H鍵的支配,這些鍵具有高振動頻 率,並且它們的諧波在非常短的路徑長度上會造成幾乎不 透明。結果,當沿著纖維長度傳播時,在包層外面的折射率 本紙張尺度適财_ @iT^TA4規格(21GX297公羡) 483204 A7 B7 五、發明説明(i ) 經濟部中央標準局員工消費合作祍印製 匹配聚合物層,會消除包層模。然而,有一些情形,我們很 難設計可利用的聚合物塗層來匹配破璃的折射率。例如, 當包層折射率超過1. 6時,那麼就必須合併鹵素族或芳香族 的石反氫化合物,這可能會引起健康的危險,而且可能對水敏 感。至於更高的折射率,>1_8,要準備具有適當折射率的任 何塑膠I合物,可能非常困難,很少聚合物可以在使用條件 下存在。同樣地,我們需要光學放大器光纖,可以利用玻璃 光纖結構,來達到包層模傳播的降低,同時可以使用傳統的 主要和次要塗層。 本發明就是用來克服先前技術的這些缺陷。 發明大要: +本發明的一方面是關餐玫大器光孅。該光纖包含玻璃 心蕊,和圍繞玻璃心蕊的玻璃包層。此玻璃包層的折射率 小於玻璃^蕊的折射率。此光纖也包含了圍繞包層的玻璃 外包層。此外包層的折射率大於包層的折射率。或者,此外包層可以摻雜吸收劑,縣將在光纖包層巾傳播的光模 式,從包層去除。 、 一本發明的進一方面,是關於製造上面所描述之放大萎 光纖的方法。將具有^蕊玻璃㈣,^邊圍繞著包層玻璃 物質,以及外包層玻璃物f的賴件加熱。外包層的折射 率大於包層的折料,或者,外包層可以摻雜魏物質。在 有利於配製光纖的條件下,抽拉丨該受熱預製件。 /本發明另一方面包含製造放大器光纖的方法:在有利 於形成光纖的料下,㈤時贿融^蕊賴物_體拉出 丨____________,^w-------IT f * (請先閱讀背面之注意事項再填寫本¾) I__ 顧t關緖準(CN] S ) A4規格(21 Οχ297公釐) 4483204 A7 B7五、發明説明(3 ) 經濟部中央標準局員工消費合作社印製 破璃心蕊,從包層物質物體拉出包層,並且從外包層物質物 體拉出外包層。 本發明的其他方面是關於放大器光纖,它包含了本發 明明的光纖,和一個或多個密封玻璃光纖的聚合物塗層;以 及包含本發明之光纖的光學放大器或雷射,其中的玻璃心 蕊包含了加入有效含量之摻雜劑的玻璃,可以在預定的光 纖長度上,產生足夠的信號增益。 本發明的光纖,以及由此光纖形成的放大器或雷射,可 以將沿著光纖包層傳播的光模式去除。本發明的另一個優 點是,去除包層模所需要的放大器光纖長度,可以相當短。 本奄明的光纖還有一個優點是,外包層的吸收量,可以被處 理到預定之光纖應用的預選量。 本發明的光纖也具有低衰減i的優點。此外,本發明的 優點在於它可以應用於玻璃合成物,在先前玻璃合成物並 不適用於光纖應用中。 本發明的其他特色及優點將會在底下的詳細描述中說 明。對於熟悉此技術的人,將可以從此敘述中,或者根據底 下的詳細說明、申請專利範圍及附圖所描述的本發明,來 做實際操作,而清楚地了解到這些特色及優點。 必須要明白的是,前面的一般描述和底下的詳細描述 都只是本發明的範例,是用來作為在申請專利範圍中所定 義的本發明的本質及特色提供一個全盤了解或架構。附圖 是用來對本發明提供更進一步的了解,在此加以併入而構 成本說明書的一部分。這些附圖說明了本發明的各種實施 本紙張尺度適用中國國家標準(CNS ) A4規格(210x297公慶) —1 1 I !氟 I I 1, |__----#1 9 (請先閱讀背面之注意事項再填寫本頁) 訂 483204The purpose of the 1T refractive index is to make the light injected into the fiber propagate along the core, not along the cladding. At the wavelength of interest, the refractive index of the polymer coating is close to that of the cladding. If the emissivity of the polymer coating is less than the refractive index of the cladding, the cladding itself may act like a waveguide, much like a giant heart in a plastic cladding. When light escapes from the core and travels along the cladding (not the core), it is called the cladding mode. This phenomenon will cause undesired interference and distortion of the signal of the heart core. Therefore, we need a glass fiber structure, which can reduce the propagation of the cladding mode. In telecommunications applications, polymer coatings are often highly absorbent in the infrared region. This is largely due to the domination of C-H bonds, which have high vibration frequencies, and their harmonics can cause almost opacity over very short path lengths. As a result, the refractive index outside the cladding is suitable for this paper when propagating along the length of the fiber _ @ iT ^ TA4 specifications (21GX297 public envy) 483204 A7 B7 V. Description of the invention (i) Staff consumption of the Central Standards Bureau of the Ministry of Economic Affairs Cooperative printing of matched polymer layers eliminates the cladding mold. However, there are situations where it is difficult to design an available polymer coating to match the refractive index of the broken glass. For example, when the refractive index of the cladding exceeds 1.6, then halogen or aromatic stone antihydrogen compounds must be incorporated, which may cause health risks and may be sensitive to water. As for the higher refractive index, > 1-8, it may be very difficult to prepare any plastic I compound having an appropriate refractive index, and very few polymers may exist under the conditions of use. Similarly, we need optical amplifier fibers, which can use glass fiber structures to achieve reduced cladding mode propagation, while using traditional primary and secondary coatings. The present invention is to overcome these shortcomings of the prior art. The main points of the invention: + One aspect of the present invention is to turn off the meal. The fiber contains a glass core and a glass cladding surrounding the glass core. The refractive index of this glass cladding is smaller than that of glass. This fiber also contains a glass cladding around the cladding. In addition, the refractive index of the cladding is greater than that of the cladding. Alternatively, this cladding can be doped with an absorbent, and the optical mode of the fiber cladding towel will be removed from the cladding. A further aspect of the present invention relates to a method for manufacturing the amplifying optical fiber described above. A heating element having a glass core and a glass edge surrounding the cladding glass material and the cladding glass object f is heated. The refractive index of the cladding is greater than that of the cladding, or the cladding can be doped with Wei material. Under conditions favorable to the preparation of the optical fiber, the heated preform is pulled. / Another aspect of the present invention includes a method for manufacturing an optical fiber of an amplifier: under a material that is favorable for forming an optical fiber, it can be melted in time ^ Ruilaiwu _ body pulled out ____________, ^ w ------- IT f * (Please read the notes on the back before filling in this ¾) I__ Gu t Guan Xuzhun (CN) S) A4 specification (21 0 × 297 mm) 4483204 A7 B7 V. Description of the invention (3) Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Print broken glass core, pull the cladding from the cladding material object, and pull the cladding from the cladding material object. Other aspects of the present invention relate to amplifier optical fibers, comprising the optical fiber of the present invention and one or more polymer coatings of sealed glass optical fibers; and an optical amplifier or laser comprising the optical fiber of the present invention, wherein the glass core The core contains glass with an effective content of dopants, which can generate sufficient signal gain over a predetermined fiber length. The optical fiber of the present invention, and the amplifier or laser formed from the optical fiber, can remove the light mode propagating along the optical fiber cladding. Another advantage of the present invention is that the length of the amplifier fiber required to remove the cladding mode can be relatively short. Another advantage of the optical fiber of the present invention is that the absorption amount of the outer cover can be processed to a preselected amount for a predetermined optical fiber application. The optical fiber of the present invention also has the advantage of low attenuation i. In addition, the present invention has the advantage that it can be applied to glass composites, which previously were not suitable for optical fiber applications. Other features and advantages of the present invention will be described in the detailed description below. For those who are familiar with this technology, they can clearly understand these features and advantages from this description, or according to the detailed description, the scope of the patent application, and the invention described in the accompanying drawings. It must be understood that the foregoing general description and the detailed description below are merely examples of the present invention, and are used to provide a comprehensive understanding or structure of the nature and characteristics of the present invention as defined in the scope of the patent application. The drawings are provided to provide a further understanding of the present invention and are incorporated herein to form a part of this specification. These drawings illustrate the various implementations of the present invention. The paper size applies to the Chinese National Standard (CNS) A4 specification (210x297). —1 1 I! Fluorine II 1, | __---- # 1 9 (Please read the back first (Notes to fill out this page) Order 483204

、發明説明(+) :,加^上對它們的描述,共同地解釋本發明的原理及運作。 p付圖間要說明: 第-圖(圖1)是先前技術之光纖的斷面圖。 圖(_是本發明之放大器光纖的斷面圖。 ,第二圖(圖3)顯示本發明之光纖各層的差變值圖 形,其中包層的折射率作為基準線,被設定為〇。 第四圖(圖4)是本發明之光纖在帶狀電纜格式下的斷 面圖。 第五圖(圖5)是本發明之放大器、光纖的斷面圖。 第六圖(圖6)是包含本發明光纖之光學放大器。 第七圖(圖7)顯示出頻譜,對本發明之各種長度光纖所 作的Photon Kinetics工作台之衰減測量圖。光纖長度從8 公尺到1/2公尺不等。每個測試光纖在大約1〇5〇毫微米和 大約1300毫微米之間的寬頻帶上,顯示了相似的衰減,說明 了本發明的光纖在大約1/2公尺的光纖長度内,就可以將衰 減降到最低。 附圖元件符號說明: 經濟部中央標準局員工消費合作社印製 外 基 光 (請先閲讀背面之注意事項再填寫本頁) 、?! 放大器光纖10;心蕊12;包層14;主要塗層16;次要 塗層18;光纖20,心淡22;心為的外表面23;包層24 包層26;主要塗層28;次要塗層30;光纖帶狀電纜4〇 體42;信號光源51;激勵雷射光源52;光纖耦合器53, 學頻譜分析器55;濾波器56;油57;光纖58a,58b,59a 59b;光纖60;吸收區段62;外表面64。 時'細說明: 木纸張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 4832U4 五、發明説明(尸) 濟 部 中 央 標 準 員 工 消 費 合 作 社 印 製 ^現在我們將詳細參考本發明的目前優先實施例,這些 顯不在附圖中。在所有附圖中,相同的參考數字將盡 :能地參考到相同或相似的部分。例如,本發明之光纖的 貫施例,顯示在圖2中,從頭到尾都被表示為參考數字20。 本發明的光纖2〇優先地為放大器光纖,意指著它能夠 在^290到1650毫微米,優先地為到腿毫微米,更優先 地$在1520到1640毫微米的延伸操作波長範圍内,加強光 線信號的強度。光纖20含有玻璃^蕊22,以及圍繞心蕊22 的玻璃包層24。通常,心蕊22摻雜有放大之摻雜劑。稀土 族(週期表中的元素57-71)是放大摻雜劑之範例。更優先 地,稀土摻雜劑是铒。然而本發明並不局限於前面提到的 放大摻雜劑。心蕊22沿著光纖20的長度傳播感感興趣的光 線之模。在電信業中,感興趣的模包括12〇〇毫微米到17〇〇 毫微米範圍内的波長,特別是在155〇毫微米作業頻窗内的 波長。感興趣的模式包括基本模式。 包層24的折射率一般小於玻璃心蕊22的折射率。光纖 20也包含了玻璃外包層26,圍繞著包層24。外包層26的折 射率大於包層24的折射率。外包層的折射率,優先地比包 層24的折射率,大至少大約〇· 001,而且最好比包層24的折 射率,大不超過0. 1。 在一個實施例中,光纖2〇的心蕊22、包層24、和上包 層26之間折射率的差異顯示在圖3中。在心蕊22和包層24 和外包層26之間折射率的差異,以差變(△)的形式來表示: Δ〇 = (n〇2 - η〇2) / 2(n〇2) 本紙張尺度適用中國國家標準(CNS) a4規格(210><297公釐) (請先閲讀背面之注意事項再填寫本頁) 、\兵 ^----------- 其中△。是任何特定區域相對於包層折射率的△。队是光 、截4二疋區域的折射率,*ne則是包層的折射率。如圖3所示 ,心說22之折射率的△大約是〇 〇15。外包層%相對於包層 24的△,大到大約〇· 〇3或更多。 再次參考圖2,密封玻璃光纖今包層26是主要塗層物質 28,和次要塗層30。雖然在一些範例中,我們可能只需要提 供主要塗層物質28,但是大部分傳統的光纖都包含至少兩 個龛層。主_要塗層直接施加在玻璃光纖上,當固化時,會形 成一個柔軟的、彈性的、和順從的物f來密封此玻璃光纖 主要塗層的作用為緩衝,當光纖被彎曲、電纜化、或製 成卷盤時,用來襯墊並保護玻璃光纖。任何適當的主要塗 層物質都可以用在本發明的光纖巾。次要塗層被施加在主 要塗層上,作為緊固的保護外層,用來在處理和使用期間, 避免對玻璃光纖的損害。任何適當的次要塗層物質都可以 用在本發·光纖巾。好主要和次要塗層合成物可以由 市場取得,例如由DSM Desotech (Elgin, IL)取得。 在光纖20的優先實施例中,外包層2β摻雜至少吸收劑 。吸收劑是在外包層26中的一種材料,用來抑制光在包層 24中傳播。此物質會嗥收在包層24中傳播的光線,而不會 將光線發射到包層24中。吸收劑一方面可以包括,將從包 層24吸收的至少一部分光線轉換成熱或振動能量。吸收劑 另一方面是該吸收劑可以由包層24去除的光線而加以衰減 。在包層24傳播的光線可以稱為包層模式。 過度金屬離子、稀土離子、金屬、準金屬、有機染料 483204 Α7 Β7 五、發明説明(1 ) 經濟部中央標準局員工消費合作社印裝 、和它們的組合,都是吸收痢的範例。較好的過渡金屬吸 收劑包括飢離子(例如V3+)、斜離子(例如Er3+)、欽離子( 例如Ti3+)、鐵離子(例如Fe2+)、銅離子(例如cu2+)、镨 離子(例如Pr3+)、和钂離子(例如Yb3+)、以及其組合物。 較好的金屬或準金屬吸收劑包括,鉑、碳、和它們的組合 物。最好的吸收劑可以包括,铒離子、鐵離子、銅離子、 镨離子、和鎳離子、以及它們的組合物。本發明並不局限 於上面提到的吸收劑。在光纖2〇的一個實施例中,這群最 好的吸收劑中的每一個,在外包層26中,都以至少大約5〇 ppm岣濃度存在,優先地為至少大約i〇〇〇ppm,更好的是至少 大約1500ppm,而又更好的是至少大約2〇〇〇ppm。 在實施例中,包層旁邊圍繞著玻璃外包層,它含有稍微 高的nD折射率1.637。此層摻雜了Ni2+,Cu2+,Fe3+,Pr3+,和. Er'每一種大約是2000ppm,集中起來在〇· 8和1· 7微米之間 ,產生了幾乎均勻,而且非常強烈的吸收。 心蕊22、包層24、和外包層26可以由任何適合用來製 造光波導光纖的玻璃來製造。心蕊22、包層24和上包層26 中至少一種建構物質,優先地為銻—氧化物玻璃。更優先地 心蕊22、包層24和外包層26均由銻-氧化物玻璃來製造。 較優先地録-氧化物玻璃,在Dickinson等人的PCT Publication No· W0 99/51537中,以及Dickinson等人在2000年2月 4 日 提出的美國專利申請序號G9/4S1 &中有描述,此處將它們 合併進來作為參考文件。 當玻璃心蕊22和包層24由相同的玻璃系統製造時,我 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 1〇 (請先閱讀背面之注意事項再填寫本頁) 、τ 48J204 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(f) 們可以經由加入稍微不同的玻璃系統成分,以及加入其他 折射率修正成分以獲得適當的折射率差異 。例如,經由修 改Sb2〇3和Si〇2的比例,我們可以調整銻—氧化物玻璃的折 射率。 同樣地,當外包層26和包層24都由銻-氧化物玻璃製造 時,我們可以經由加入稍微不同的玻璃系統成分,以及加入 其他折射率修正成分以包層24和26之間的折射率差異。 外包層26應該能夠在大約1〇〇公尺的光纖長度上,大致 上消除包層模,較優先地是不超過大約3〇公尺,更優先是不 超過大約1/2公尺,而最好的是不超過大約5公分。去除包 層模所需要的光纖20長度,可以由增加或降低外包層26中 吸收劑的含量來控制。外包層26中吸收劑的濃度越大,包 層模可以越快從包層24去除,而實行本發明所使用的光纖 20長度就越短。 在優先實施例中,外包層26的吸收係數比玻璃心蕊a 的吸收係數,大至少大約1〇倍。外包層26的吸收係數是由 外包層物質的吸收係數,乘以外包層面積和光纖面積的比 值來計算。外包層26的内半徑,最好比心蕊22的外半徑大 至少3倍,更優先地是大5到8倍,這兩個半徑是從光纖的中 線來測量。 外包層—26的厚|法定於特定的應用。一般來說,我們 需要避免沿著心蕊之傳播模衰減,因此,必須將外包層放在 離心㈣有成倍心說直徑运的地方。例如,直徑125微米之光 纖,匕的心說、直徑是5微米,而位於最外部分的微米厚外 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ---- (( I!·---r----Φ-------IT------ (請先閱讀背面之注意事項再填寫本頁) A7 B7 五'發明説明(q) 經濟部中央標準局員工消費合作社印製 包層,將由厚度大約5〇微米的包層所分開。 光纖20優先地為低衰減光纖。光纖2〇優先地顯現出小 於〇· 3分貝/公尺的衰減,更優先地小於大約〇· 2分貝/公尺 。最優先地,光纖20顯現不超過〇_ 15分貝/公尺的衰減。 在光纖20另一實施例中,外包層26的折射率跟包層24 的折射率大約相同。外包層26的折射率是在包層24折射率 的至少大約± 〇·;[之内,外包層26的折射率優先地為在包層 折射率的大約± 〇 〇2之内,更優先地,外包層邡的折射率 是在包層24折醉的± 〇·謝之内,錢優先地,外包層沈 的折射率跟包層24的折射率相同。在這個實施例中,外包 =6也摻雜了至少一種前面提到的吸收劑。光纖2〇的這個 貝%例k先地由上面提到的娣一氧化物玻璃來製造出。 製造本發明光纖20的適合方法包括非限制性之三坩堝 方法、棒在官中處理 '和摻雜的沉積矽石處理,通常也稱 為化$汽相沉積或汽相氧化。當然,三坩堝方法是最好的, 因為它不需要抽拉出玻璃光纖的預製件。此三掛禍方法是 雙職方法的-種變化,在例如Midwinter,咐㈣仙㈣ for Transmission, New York, John Wiley, 166-1781( 1979)中;Mimura等人的美國專利序號4, 729, 777;以及Titch_ marsh的美國專利序號4, 217,123中都有描述,此處將它們 合併進來作為參考文件。 提供分別包含心蕊玻璃物質、包層麵物質、和上 包層玻璃物質的三個_,使得其中的孔或噴口大約同 心地在彼此上面對齊。例如,#心蕊玻璃物f的溶融從掛2. Description of the invention (+): Add a description of them to jointly explain the principle and operation of the present invention. It should be explained between p figures: Figure-(Figure 1) is a sectional view of the optical fiber of the prior art. Figure (_ is a cross-sectional view of the amplifier fiber of the present invention. The second figure (Figure 3) shows the difference value graph of each layer of the optical fiber of the present invention, in which the refractive index of the cladding is used as the reference line and is set to 0. The fourth figure (Figure 4) is a cross-sectional view of the optical fiber of the present invention in a ribbon cable format. The fifth figure (Figure 5) is a cross-sectional view of the amplifier and optical fiber of the present invention. The sixth figure (Figure 6) contains The optical amplifier of the optical fiber of the present invention. The seventh diagram (FIG. 7) shows the frequency spectrum, and the attenuation measurement diagrams of the Photon Kinetics table for various optical fibers of the present invention. The optical fiber length ranges from 8 meters to 1/2 meter. Each test fiber showed similar attenuation over a wide frequency band between approximately 1050 nm and approximately 1300 nm, indicating that the optical fiber of the present invention can be used within approximately 1/2 meter of fiber length Minimize the attenuation. Symbol description of the components: Printed base light by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling this page),?! Amplifier fiber 10; Heart core 12; Package Layer 14; primary coating 16; secondary coating 18; light Fiber 20, light heart 22; heart-shaped outer surface 23; cladding 24 cladding 26; primary coating 28; secondary coating 30; optical fiber ribbon cable 40 body 42; signal light source 51; excitation laser light source 52 Optical fiber coupler 53, spectrum analyzer 55; filter 56; oil 57; optical fiber 58a, 58b, 59a 59b; optical fiber 60; absorption section 62; outer surface 64. Detailed description: Wood paper scale applies to China National Standard (CNS) A4 Specification (210x297 mm) 4832U4 V. Description of the Invention (Body) Printed by the Central Standard Employees Consumer Cooperative of the Ministry of Economic Affairs ^ Now we will refer to the presently preferred embodiment of the present invention in detail, these are not shown in the drawings. In all the drawings, the same reference numerals will be used as far as possible: reference can be made to the same or similar parts. For example, the embodiment of the optical fiber of the present invention is shown in FIG. 2 and is denoted by the reference numeral 20 from beginning to end. The optical fiber 20 of the present invention is preferably an amplifier fiber, which means that it can be in the range of ^ 290 to 1650 nm, preferably to the leg nanometer, and more preferably in the extended operating wavelength range of 1520 to 1640 nm. To enhance the intensity of the light signal. The optical fiber 20 contains glass ^ Core 22, and the glass cladding 24 surrounding the core 22. Usually, the core 22 is doped with an amplified dopant. The rare earth group (elements 57-71 in the periodic table) is an example of an amplified dopant. More preferred Ground, the rare earth dopant is thallium. However, the present invention is not limited to the aforementioned amplification dopant. The core 22 spreads the mode of the light of interest along the length of the optical fiber 20. In the telecommunications industry, it is of interest The modes include wavelengths in the range of 12000 nm to 1700 nm, especially in the 1550 nm operating frequency window. The modes of interest include the basic mode. The refractive index of the cladding layer 24 is generally smaller than the refractive index of the glass core 22. The optical fiber 20 also includes a glass cladding layer 26 surrounding the cladding layer 24. The refractive index of the cladding layer 26 is greater than the refractive index of the cladding layer 24. The refractive index of the cladding layer is preferably larger than the refractive index of the cladding layer 24 by at least about 0.001, and is preferably larger than the refractive index of the cladding layer 24 by not more than 0.1. In one embodiment, the difference in refractive index between the core 22, the cladding 24, and the upper cladding 26 of the optical fiber 20 is shown in FIG. The difference in refractive index between the core 22 and the cladding 24 and the cladding 26 is expressed as a difference (Δ): Δ〇 = (n〇2-η〇2) / 2 (n〇2) paper The scale is applicable to the Chinese National Standard (CNS) a4 specification (210 > < 297 mm) (please read the precautions on the back before filling this page), \ bing ^ ----------- which △. Is the Δ of the refractive index of any particular region with respect to the cladding. Is the refractive index of the light and truncated regions, and * ne is the refractive index of the cladding. As shown in FIG. 3, the refractive index Δ of Xinshuo 22 is about 0.015. The Δ of the cladding layer% with respect to the cladding layer 24 is as large as about 0.03 or more. Referring again to FIG. 2, the cladding 26 of the sealed glass fiber is the primary coating substance 28, and the secondary coating 30. Although in some examples we may only need to provide the primary coating substance28, most conventional optical fibers contain at least two chirped layers. The main coating is applied directly to the glass fiber. When cured, it will form a soft, elastic, and compliant object f to seal the glass fiber. The main coating functions as a buffer when the fiber is bent and cabled. When used as a reel, it is used to cushion and protect glass optical fibers. Any suitable primary coating material can be used in the optical fiber towel of the present invention. The secondary coating is applied to the primary coating as a tight protective outer layer to prevent damage to glass fibers during handling and use. Any appropriate secondary coating material can be used in the hair and fiber towel. Good primary and secondary coating compositions are available on the market, such as DSM Desotech (Elgin, IL). In a preferred embodiment of the optical fiber 20, the cladding 2β is doped with at least an absorber. An absorbent is a material in the outer cover 26 to suppress the propagation of light in the cover 24. This substance absorbs light propagating in the cladding 24 without emitting light into the cladding 24. The absorbent may include, on the one hand, converting at least a portion of the light absorbed from the cladding 24 into thermal or vibrational energy. Absorbent On the other hand, the absorbent can be attenuated by the light removed by the cladding 24. The light propagating in the cladding 24 may be referred to as a cladding mode. Excess metal ions, rare earth ions, metals, metalloids, organic dyes 483204 Α7 Β7 V. Description of the invention (1) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs, and their combinations, are examples of radon absorption. Preferred transition metal absorbers include ions (such as V3 +), oblique ions (such as Er3 +), chimium ions (such as Ti3 +), iron ions (such as Fe2 +), copper ions (such as cu2 +), thallium ions (such as Pr3 +), And europium ions (such as Yb3 +), and compositions thereof. Preferred metal or metalloid absorbents include platinum, carbon, and combinations thereof. The preferred absorbents may include rhenium, iron, copper, erbium, and nickel ions, and combinations thereof. The present invention is not limited to the above-mentioned absorbent. In one embodiment of the optical fiber 20, each of the group of the best absorbents is present in the cladding 26 at a concentration of at least about 50 ppm, and preferably at least about 1000 ppm, It is more preferably at least about 1500 ppm, and still more preferably at least about 2000 ppm. In the example, the cladding is surrounded by a glass cladding which contains a slightly higher nD refractive index of 1.637. This layer is doped with Ni2 +, Cu2 +, Fe3 +, Pr3 +, and .Er ', each of which is about 2000 ppm, concentrated between 0.8 and 1.7 microns, resulting in almost uniform and very strong absorption. The core 22, the cladding 24, and the outer cladding 26 may be made of any glass suitable for use in making optical waveguide fibers. At least one of the core 22, the cladding 24, and the upper cladding 26 is an antimony-oxide glass. More preferably, the core 22, the cladding 24 and the outer cladding 26 are made of antimony-oxide glass. Preferentially recorded-oxide glass, as described in PCT Publication No. W0 99/51537 by Dickinson et al., And U.S. patent application serial number G9 / 4S1 & filed by Dickinson et al. On February 4, 2000, They are incorporated here for reference. When the glass core 22 and the cladding 24 are made of the same glass system, our paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 1〇 (Please read the precautions on the back before filling this page) Τ 48J204 A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. 5. Description of the Invention (f) We can obtain the appropriate refractive index difference by adding slightly different glass system components and other refractive index correction components. For example, by modifying the ratio of Sb203 and Si02, we can adjust the refractive index of antimony-oxide glass. Similarly, when the outer cladding 26 and the cladding 24 are made of antimony-oxide glass, we can add the refractive index between the claddings 24 and 26 by adding slightly different glass system components and adding other refractive index correction components difference. The cladding layer 26 should be able to substantially eliminate the cladding mode over a fiber length of about 100 meters, more preferably no more than about 30 meters, more preferably no more than about 1/2 meter, and most Good is no more than about 5 cm. The length of the optical fiber 20 required to remove the cladding mold can be controlled by increasing or decreasing the amount of the absorbent in the outer cladding 26. The greater the concentration of the absorbent in the outer cladding 26, the faster the cladding mode can be removed from the cladding 24, and the shorter the length of the optical fiber 20 used in the practice of the present invention. In the preferred embodiment, the absorption coefficient of the outer cover 26 is at least about 10 times greater than the absorption coefficient of the glass core a. The absorption coefficient of the outer cladding layer 26 is calculated by multiplying the absorption coefficient of the outer cladding material by the ratio of the outer cladding area to the fiber area. The inner radius of the outer cladding 26 is preferably at least 3 times larger than the outer radius of the core 22, and more preferably 5 to 8 times larger. These two radii are measured from the centerline of the optical fiber. Outer layer—thickness of 26 | legal for specific applications. In general, we need to avoid attenuation of the propagation mode along the core. Therefore, we must place the outer cover where the centrifugal core has a multiple of the core diameter. For example, for a fiber with a diameter of 125 micrometers, the diameter of the dagger is 5 micrometers, and the outer micron thickness is 5 micrometers. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) ---- ( (I! · --- r ---- Φ ------- IT ------ (Please read the notes on the back before filling out this page) A7 B7 Five 'Invention Explanation (q) Economy The Ministry of Central Standards Bureau ’s consumer cooperative prints the cladding, which will be separated by a cladding with a thickness of about 50 microns. The optical fiber 20 is preferentially a low-attenuation fiber. The optical fiber 20 preferentially exhibits an attenuation of less than 0.3 dB / m More preferably, it is less than about 0.2 dB / m. Most preferably, the optical fiber 20 exhibits an attenuation of not more than 0.15 dB / m. In another embodiment of the optical fiber 20, the refractive index of the outer cladding layer 26 and the package The refractive index of the layer 24 is about the same. The refractive index of the cladding layer 26 is at least about ± 〇 · of the refractive index of the cladding layer 24; [within the refractive index of the cladding layer 26 is preferably about ± 〇 of the refractive index of the cladding layer. Within 〇2, more preferably, the refractive index of the outer layer 邡 is within ± 20% of the cladding 24. Thanks to money, priority is given to outsourcing The refractive index of the layer sink is the same as the refractive index of the cladding layer 24. In this embodiment, the outer sheath = 6 is also doped with at least one of the previously mentioned absorbents. This shell% of the optical fiber 20 is first raised from above A suitable method for manufacturing the optical fiber 20 of the present invention includes a non-limiting three crucible method, a rod-in-process treatment, and a doped deposited silica treatment, also commonly referred to as chemical vapor. Phase deposition or vapor phase oxidation. Of course, the three crucible method is the best, because it does not need to pull out the preform of the glass fiber. This three hanging method is a dual-purpose method-a variation, such as in Midwinter, ask Fairy for Transmission, New York, John Wiley, 166-1781 (1979); U.S. Patent No. 4,729,777 by Mimura et al .; and U.S. Patent No. 4,217,123 by Titch Marsh, both described here. They are incorporated as a reference file. Three _, which contain the core glass material, the cladding material, and the overclad glass material, are provided so that the holes or spouts in them are aligned approximately concentrically above each other. For example, # 心蕊 玻璃Solvent f Rong from hanging

(請先閱讀背面之注意事項再填寫本頁) 訂 483204 A7 B7 11 五、發明説明(丨〇 ) 經濟部中央標準局員工消費合作社印裝 堝的喷口流出時,它會接觸並且被包層物質的熔融圍繞, 使#此結合成的溶融從第二掛渦的喷口流出。同樣地,當 此結合的熔融從第二坩堝的喷口流出時,它們會接觸並且 被外包層物質的熔融圍繞,而這三個熔融從第三坩堝的 喷口匯流出來。然後,從由第三喷口流出的結合熔融中,抽 拉出二層的玻璃光纖。最好,此光纖是在有利於形成光纖 的條件下由三個掛瑪中同時抽拉出。 光纖20也可以由各種化學汽相沉積處理來製造出。適 合的處理包括外化學汽相沉積處理,例如0VD(Blakenship4人的"The Outside Vapor Deposition Method of Fabricating Optical Waveguide Fibers", IEEE J. Quantum Electron,18: 1418-1423 (1982),此處將它合 併進來作為參考文件),或者軸向汽相沉積處理(Inada,"Recent Progress in Fiber Fabrication Techniques by Vapor-phase Axial Deposition,丨,IEEE J. Quantum Electron. 18:1424-1431 (1982),此處將它合併進入作為參考文件),以及改良的化學汽相沉積或内汽相沉積( Nagel et al., "An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance",IEEE J. Quantum Electron. 18:459-476 (1982),此處 將它合併進來作為參考文件)。也可以使用這些或其他已 知方法的任何改良情況。 這些處理的共通點是要形成包含心蕊、包層和外包 層物質的預製件。此預製件優先地為圓柱形,並且沿著 本紙張尺度適用中國國家標準(CNS ) A4規格(2ι〇Χ297公釐)13 (請先閱讀背面之注意事項再填寫本頁) 訂 峰 A7 '^^一 _ B7五、發明説明((() 2 Ίλ 經濟部中央標準局員工消費合作社印製 預形件的軸心對稱。光纖從此預製件中拉出。在從預製件 拉出光纖時,需將此預製件局部並對稱地加熱到大約2〇〇〇 C的溫度。當預製件被加熱,例如經由將預製件送入燃燒 爐中時,從熔融物質中拉出玻璃纖維。此玻璃纖維優先地 快速冷卻,以避免在非晶形玻璃系統内顯著的晶體生長。 本發明的進一方面是關於光纖帶狀電纜或束,其中包 含多個大致上對齊的本發明之光纖,以及密封多個光纖的 基體。 本發明這方面的實施例,顯示在圖4中。如圖所示,本 發明的光纖帶狀電纜4〇包含了一組多條光纖2〇,以大體的 平面關係大致上相對於彼此對齊,並且被基體42密封。大 體的平面意指著光纖20跟共面的位移,不超過大約直徑的 一半。大致上對齊意指著,光纖2〇大致上沿著光纖帶狀電 纜40的長度與其他光纖平行。在圖4中,光纖帶狀電緵40包 含16條光纖20,然而熟悉此技術的人將了解,任何數目的光 纖20(例如2個或更多)都可以使用,以形成光纖帶狀電缆4〇 ,以作為特定的使用。 本發明的光纖帶狀電鏡可以使用傳統製造光纖帶狀電 纜的方法,利用任何已知構造(例如,邊緣接合帶狀電纜、 薄密封帶狀電纜、厚密封帶狀電纜、或多層帶狀電纜)的 基體42來密封。 光纖帶狀電纜可以使用各種方法來配製出。例如,在 對齊多個大體平面的光纖時,本發明的組成份可以根據已 知的配製光纖帶狀電缆的方法加以塗覆並固化;WMayr的 本紙張尺度適用中國國家標準(CNS) M規格(210x297公瘦)If f請先閱讀背面之注意事項再填寫本頁) 訂 483204 A7 B7 3 五、發明説明(丨1) 經濟部中央榡準局員工消費合作社印製 美國專利序號4, 752,112,以及Oestreich等人的美國專利 序號5, 486, 378中所說明;此處將它們合併進來作為參考文 件。或者,次要塗層可以溶解在溶劑中,而且當仍然為潤溼 的時候,在此潤溼塗層再聚合之前,將多條光纖併在一起, 如此就可以將多條光纖以大致上平面且對齊的關係連接在 一起。 雖然沒有顯示,但是熟悉此技術的人將會了解,本發明 的光纖也可以用於光纖束中,例如熔斷光纖次單元,其中包 含了多個大致上對齊的光纖,以及密封多條光纖的基體。 光纖束跟帶狀電纜的差別在於,其中的多條光纖缺乏大致 平面的排列。這種次單元結構的範例,在Cain等人的美國 專利序號5, 046, 815中提出,此處將它合併進來作為參考文 件。光纖束可以用跟光纖帶狀電纜非常相同的方式來配製 出。 熟悉此技術的人將了解到,本發明之光纖所使用的上 包層,並不局限於具有環形外包層和同心包層,或是具有同 心心淡之包層的光纖。在本發明的另一個實施例中,包層 和外包層中至少有一個不是圓柱形,例如包層可能是長方 形的。 本發明的另一個實施例,顯示在圖5中。在圖5中,光纖 60的心:20旁邊圍繞著包層24。包層24包含至少一個吸收 區段62,優先地包層24可以包含多個吸收區段。每個吸 收區段的外表面64,最好配置在離心蕊22的外表面23,至少 3個心蕊直徑遠的地方。更好的是,制固外表面64,離心蕊 (請先閱讀背面之注意事項再填寫本頁) 訂 本紙張尺度適财關家縣(CNS) 公们 A7 B7 發明説明(β ) 22的外表面23至少5到8個心蕊直徑遠。 心蕊22最好位於光纖6〇的中心線。心蕊22最好也跟包 層24同心,但是這並不是必要的。另外,每個吸收區段⑽最 好跟心蕊22等距離,而且每個吸收區段在包層24内對稱 配置。 光纖60可以從光纖預製件來製造。此預製件包含心蕊 和包層,可以用任何上面描述的技術來製造。此預製件可 以是粉塵預製件,或稠密玻璃預製件。此預形件包含至少 個槽至,優先地為多個槽室。將包含吸收物質的玻璃管 ***每個槽室中。將此預製件固化成毛胚,然後拉成光纖 60。 —一般來說,適用於放大器應用之玻璃的特性是,具有有 效含量的摻賴,可以在就的光纖長度上產生足夠的信 號增益。通常,這樣的摻雜劑包括非限制性之有效含量^ 稀土至屬離子,雖然產生適當結果的任何摻雜劑都可以使 用。 經濟部中央檩準局員工消費合作衽印製 對於光學放大器應用,發射之捲積和吸收頻譜最平坦 ^波長區域、就疋傳送^號的最佳頻窗。因為整個發射頻 :的位置,和此鮮内的結構,會根絲f玻翻含量而改 口此具有最佳增益平坦的頻窗也會改變。最理想的人 們希主獲得單—賴巾可能的最寬廣發射,同時將增益平 持在可接&的水準範圍内。平坦的發射頻譜通常被認 二=在大到大約%毫微米寬,優先地為在至少大約35毫微 米見之間的頻帶(或頻窗)上,具有小於10%的增益偏移。(Please read the precautions on the back before filling out this page) Order 483204 A7 B7 11 V. Description of the invention (丨 〇) When the nozzle of the printed pot of the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs comes out, it will contact and be coated The melted surrounding of the vortex causes the combined melt to flow from the nozzle of the second vortex. Similarly, when the combined melts flow out of the nozzle of the second crucible, they will contact and be surrounded by the melt of the cladding material, and these three melts converge from the nozzle of the third crucible. Then, the two-layer glass optical fiber was pulled out from the fusion melt flowing from the third nozzle. Preferably, the optical fiber is drawn out from three hanging fibers at the same time under conditions favorable to the formation of the optical fiber. The optical fiber 20 can also be manufactured by various chemical vapor deposition processes. Suitable processes include external chemical vapor deposition processes, such as 0VD ("The Outside Vapor Deposition Method of Fabricating Optical Waveguide Fibers" by Blakenship 4), IEEE J. Quantum Electron, 18: 1418-1423 (1982), which is here (Incorporated as a reference document), or axial vapor deposition (Inada, " Recent Progress in Fiber Fabrication Techniques by Vapor-phase Axial Deposition, 丨, IEEE J. Quantum Electron. 18: 1424-1431 (1982), this It is incorporated as a reference document), as well as modified chemical vapor deposition or internal vapor deposition (Nagel et al., &Quot; An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance ", IEEE J. Quantum Electron. 18: 459-476 (1982), which is incorporated herein by reference). Any modification of these or other known methods can also be used. The common point of these processes is to form a preform containing the core, cladding and outer cladding materials. This preform is preferentially cylindrical, and applies the Chinese National Standard (CNS) A4 specification (2ι × 297 mm) along the paper scale. 13 (Please read the precautions on the back before filling this page). Peak A7 '^ ^ 一 _ B7 V. Description of the invention ((() 2 Ίλ The axis of the preform printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs is symmetrical about the axis of the preform. The optical fiber is drawn from this preform. When the optical fiber is pulled from the preform, This preform is locally and symmetrically heated to a temperature of about 2000 C. When the preform is heated, for example by feeding the preform into a combustion furnace, the glass fibers are pulled out of the molten mass. This glass fiber takes precedence Ground quickly to avoid significant crystal growth in an amorphous glass system. A further aspect of the invention is an optical fiber ribbon cable or bundle comprising a plurality of substantially aligned optical fibers of the invention, and sealing a plurality of optical fibers An embodiment of this aspect of the present invention is shown in Fig. 4. As shown in the figure, the optical fiber ribbon cable 40 of the present invention includes a group of a plurality of optical fibers 20, which are roughly in a planar relationship. Aligned relative to each other and sealed by the base 42. A generally flat surface means the displacement of the optical fiber 20 from the coplanar surface, not more than about half the diameter. Roughly aligned means that the optical fiber 20 is substantially along the fiber optic ribbon cable The length of 40 is parallel to other fibers. In Figure 4, the fiber optic ribbon coil 40 contains 16 fibers 20, however those skilled in the art will understand that any number of fibers 20 (eg, 2 or more) can be used In order to form the optical fiber ribbon cable 40 for specific use. The optical fiber ribbon electron microscope of the present invention can use a conventional method for manufacturing an optical fiber ribbon cable, using any known configuration (for example, edge-bonded ribbon cable, thin Seal the ribbon cable, thick seal ribbon cable, or multilayer ribbon cable) to seal the base body 42. Fiber ribbon cables can be formulated using a variety of methods. For example, when aligning multiple generally planar optical fibers, the present invention The components can be coated and cured according to the known method of preparing optical fiber ribbon cables; WMayr's paper size applies Chinese National Standard (CNS) M specifications (210x297 male thin) If f Please read the notes on the back before filling in this page) Order 483204 A7 B7 3 V. Description of the invention (丨 1) Printed by U.S. Patent No. 4,752,112 by the Consumer Cooperatives of the Central Government Bureau of the Ministry of Economic Affairs and Oestreich et al. Illustrated in Patent No. 5, 486, 378; they are incorporated herein as a reference. Alternatively, the secondary coating can be dissolved in a solvent and the wet coating is repolymerized while still wet. Previously, multiple optical fibers were brought together, so that multiple optical fibers could be connected in a substantially planar and aligned relationship. Although not shown, those skilled in the art will understand that the optical fibers of the present invention can also be used In a fiber bundle, for example, a fusible optical fiber sub-unit, which contains a plurality of substantially aligned optical fibers, and a substrate that seals the plurality of optical fibers. Fiber bundles differ from ribbon cables in that many of them lack a generally planar arrangement. An example of such a subunit structure is proposed in Cain et al. U.S. Patent No. 5,046,815, which is incorporated herein by reference. Fiber bundles can be formulated in much the same way as fiber ribbon cables. Those skilled in the art will understand that the upper cladding used in the optical fiber of the present invention is not limited to an optical fiber having a ring-shaped outer cladding and concentric cladding, or a concentric light cladding. In another embodiment of the present invention, at least one of the cladding layer and the outer cladding layer is not cylindrical, for example, the cladding layer may be rectangular. Another embodiment of the present invention is shown in FIG. 5. In Figure 5, the core: 20 of fiber 60 surrounds cladding 24 next to it. The cladding 24 contains at least one absorbing section 62, and preferably the cladding 24 may contain multiple absorbing sections. The outer surface 64 of each absorption section is preferably arranged on the outer surface 23 of the centrifugal core 22, at least three core core diameters far away. Even better, the outer surface 64 and the centrifugal core are made (please read the precautions on the back before filling out this page). The paper size is suitable for Guancai County (CNS) A7 B7 Invention Note (β) 22 The surface 23 is at least 5 to 8 stamens far in diameter. The core 22 is preferably located at the centerline of the optical fiber 60. The core 22 is also preferably concentric with the cladding 24, but this is not necessary. In addition, each absorption section ⑽ is preferably equidistant from the core 22, and each absorption section is arranged symmetrically in the cladding 24. The optical fiber 60 may be manufactured from an optical fiber preform. This preform contains the core and cladding and can be made using any of the techniques described above. This preform can be a dust preform or a dense glass preform. This preform contains at least slots, preferably multiple slots. A glass tube containing an absorbent substance was inserted into each tank. This preform is cured into a blank and then drawn into an optical fiber 60. — In general, the characteristics of glass suitable for amplifier applications are that it has an effective amount of doping, which can produce sufficient signal gain over the length of the fiber. Generally, such dopants include non-limiting effective levels of ^ rare earths to metal ions, although any dopant that produces suitable results can be used. For the optical amplifier application, the convolution and absorption spectrum of emission is the flattest ^ wavelength region, and the best frequency window for transmitting ^ number is printed. Because the position of the entire transmission frequency: and the structure inside it, the content of the glass fiber will be changed and the flat frequency window with the best gain will also change. The most ideal people want to get the widest possible launch of Lai-Shan, while keeping the gain within acceptable levels. A flat emission spectrum is generally considered to have a gain offset of less than 10% over a frequency band (or frequency window) between at least about 35 nanometers wide, preferably at least about 35 nanometers wide.

本、氏張尺度適用中國國家標準( CNS ) A4規格(210X297公釐) 483204 A7 B7 五、發明説明((¥) 如圖6所示,本發明之光纖放大器的範例,包含了本發 明的含有摻雜稀土離子之玻璃心蕊的光纖2〇,激勵雷射光 源52,以及光學裝置(53, 58a,58b,59a,和5%)。雷射光源 52產生980毫微米和/或14孤亳·微米波長頻帶的激勵光線。 光學裝置(53, 58a,58b,59a,和59b)將雷射光源52的激勵光 線引導到光纖20。從雷射光源52的激勵光線經由光纖59a 被引導到光纖耦合器53,並且跟從信號光源51發出經由光 纖58a引導到光纖耦合器53的信號光結合。此結合的信號 光源和激勵光,經由光纖58b耦合器到光纖20。信號光源51 可以在1300毫微教或1550毫微米的作業頻窗中運作。 光纖I馬合器53可以是溶融的雙圓錐形漸變搞合器,此 耗合為、由熔融並拉伸兩條光纖58和59來形成。從光纖|馬合 器53延伸的光纖59b終端浸在相匹配的油57中以避免光線 從光纖59b回到光纖耦合器53。 光學頻譜分析器55被放置於光纖2〇的輸出口,中間提 七、個濾波杰加。此濾波器56用來截止從光纖2〇輸出的激 勵光線。結果,只有從光纖2〇輸出的信號光線可以被光學 頻譜分析器55測量到,如此就可以決定光線放大的增益。 範例: 經濟部中央標準局員工消費合作衽印製 底下的範例是用來說明本發明的實施例,但是它們並 非用來限制本發明的範圍。 範例1:具有吸收主要塗層的光纖 (比較的) 經由雙坩堝方法來建構一條玻璃光纖,使用從銻—氧化This scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 483204 A7 B7 V. Description of the invention ((¥) As shown in FIG. 6, the example of the optical fiber amplifier of the present invention includes the content of the present invention. Rare-earth ion-doped glass core fiber 20, exciting laser light source 52, and optical devices (53, 58a, 58b, 59a, and 5%). Laser light source 52 produces 980 nm and / or 14 solitary ions Excitation light in the micrometer wavelength band. Optical devices (53, 58a, 58b, 59a, and 59b) guide the excitation light from the laser light source 52 to the optical fiber 20. The excitation light from the laser light source 52 is guided to the optical fiber via the optical fiber 59a The coupler 53 is combined with the signal light emitted from the signal light source 51 and guided to the fiber coupler 53 through the optical fiber 58a. The combined signal light source and excitation light are coupled to the fiber 20 through the fiber 58b. The signal light source 51 can be at 1300 nanometers Or 1550 nm operating frequency window. The optical fiber I coupler 53 can be a fused double-cone tapered coupling, which is formed by melting and stretching two optical fibers 58 and 59. From Fiber Optic The terminal of the optical fiber 59b is immersed in the matching oil 57 to prevent the light from returning from the optical fiber 59b to the optical fiber coupler 53. The optical spectrum analyzer 55 is placed at the output of the optical fiber 20, with seven or seven filtering jacks in the middle. The detector 56 is used to cut off the excitation light output from the optical fiber 20. As a result, only the signal light output from the optical fiber 20 can be measured by the optical spectrum analyzer 55, so that the gain of the light amplification can be determined. Example: Central Standard of the Ministry of Economic Affairs The examples below are printed by the Bureau ’s consumer cooperation to illustrate embodiments of the present invention, but they are not intended to limit the scope of the present invention. Example 1: Optical fiber with a primary coating that absorbs (comparative) The double crucible method Construct a glass fiber using antimony-oxide

483204 A7 ________B7五、發明説明(\< ) 物玻螭製造出玻璃心蕊,以及銻-氧化物包層,如底下的表工 戶斤示。 纖維之磁心和包覆層玻璃483204 A7 ________ B7 V. Description of the invention (\ <) The glass core and the antimony-oxide cladding are manufactured by the material glass, as shown by the watchmaker below. Fiber core and cladding glass

Si〇2 心蕊玻璃(莫耳 75.5 包層玻璃(莫耳W 77.5 A1203 0.5 1 A12F6 2 1 Sb2〇3 22 20.5 Er2〇3 ----- 0.075 — 6 11 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 主要塗層是多功能的丙稀酸鹽塗層,使用傳統的程序來塗 覆。主要塗層包含黑色染料,來使得主要塗層能夠吸收包 層模。包層相對於主要塗層的數值孔徑大約是0·6,而包 層和心蕊之間的則大約是0.22。 此光纖在Photon Kinetics工作台衰減測量裝置上來 作測試。適合的裝置是Photon Kinetics, Beaverton,OR 公司所製造的Model 2500光纖分析系統。在這裡將此型式 的使用者手冊合併進來作為參考文件。在此說明使用M〇dei 2500進行衰減之測量。 使用後移方法來測量光纖的衰減。此後移方法經由測 里光纖在不同長度的輸出端所接收之功率以計算光學損耗 特性。此方法包括使用光源,經由測試光纖的第一端,發射 相對強度的光信號。此發射光信號的一部分可能在包層中 行進。 此信號在光孅的第二端被檢測到,而且在第二端測量Si〇2 Heart core glass (Mole 75.5 cladding glass (Mole W 77.5 A1203 0.5 1 A12F6 2 1 Sb2〇3 22 20.5 Er2〇3 ----- 0.075 — 6 11 (Fill in this page) The main coating printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs is a multifunctional acrylic coating, which is applied using traditional procedures. The main coating contains a black dye to allow the main coating to absorb Cladding mode. The numerical aperture of the cladding relative to the main coating is approximately 0.6, while the distance between the cladding and the core is approximately 0.22. This fiber is tested on the Photon Kinetics bench attenuation measurement device. Suitable The device is a Model 2500 optical fiber analysis system manufactured by Photon Kinetics, Beaverton, OR. The user manual of this type is incorporated here as a reference file. The attenuation measurement using Modei 2500 is explained here. Using the backward shift method To measure the attenuation of the optical fiber. The back-shift method calculates the optical loss characteristics by measuring the power received by the optical fiber at the output end of different lengths. The first end of the fiber emits a light signal of relative intensity. A portion of this emitted light signal may travel in the cladding. This signal is detected at the second end of the beam and measured at the second end

、11 "+OJZU4 A7 B7 7 五 、發明説明((b ) ,信號的功率。使収學檢_來檢麻錢。檢測器計 异在光纖第二端的財麵,㈣管絲線是在心蕊或包 層中傳播。 此光纖的長度必須使得檢_的㈣量在光纖的第二 端出現。此光纖的長度稱為Ll。 丄將此光纖切割成長度L2,此長度小於Li。再次地將光 線號傳播過此光纖,而在此光纖的第二端檢測信號強度 。光學損耗是根據在長度1^和[2所測得的信號強度之差異 ,決定:光學損耗是101〇gl()(功率(L2)/功率⑹)。衰減 疋由光學損耗除以和L2之間長度的差異來決定。 表2顯示了不同之光纖後移長度的phQt〇n Kineticsx 作台衰減測量值。後移長度用來描述測試光觀紙2的長 度。所引㈣結果是魏後移長度的平均衰減。#後移較 接近來源日寸,衰減會增加,這代表了使用吸收主要塗層並不 足夠來大致上消除在包層傳播的光。 表2:衣減(分貝/公尺)(無外包層) (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局員工消費合作社印製 波長 40-28尺後移28-16公尺後移2-1公尺 1100毫微米 〇· 35 0.4 2.7 1200¾微米Q. 35 1300毫微米〇. 35 0.5 0.5 2.8 2.9 範例2 ~含有外包層的玻璃光纖 使用三坩堝方法,其中玻璃的組成列在底下的表3中;以及 傳統的主要和次要塗層配製出本發明的光纖。 -MW. 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) 483204 A7 ___ ___B7 五、發明説明(〖η ) 8 表3:本發明之光纖的心蕊、包層、和外包層玻璃 心蕊玻璃 包覆層玻璃上包覆層玻 (莫耳%) (莫耳%) 璃(莫耳%) Si〇2 75.5 77.5 77.5 A1203 0. 5 1 1 A12F6 2 1 1 Sb2〇3 22 20.5 20.5 Er2〇3 0.075 0.2 Pr2〇3 0.2 NiO 0.1 FeO 0.2 CuO 0.2 f請先閱讀背面之注意事¾再填寫本頁〕 、π 經濟部中央標準局員工消費合作社印製 摻雜劑(例如,Er2〇3, Pn〇3, NiO, FeO,和CuO)以超過原 料成分的100莫耳%,加入心蕊和外包層玻璃中。 圖7顯示了對於此結構從Photon Kinetics工作台所獲 得的衰減測量。此頻譜顯示了在980毫微米和1530毫微米 不按比例之吸收,其顯示出在本質上所有光線都沿著心蕊 傳播。不管光纖的長度(也就是使用在各種測量中的後移 長度),都可以獲得適當的結果。如圖7所示,從8公尺到1/2 公尺的後移產生了大致相同的結果。此光纖很一致地顯現 了小於〇· 2分貝/公尺的衰減。在1/2公尺的後移長度時,此 衣減不超過〇· 15分貝/公尺。 本發明的光纖在不同的光纖長度上,具有大體上一致 -#· 、'氏張尺度適用中國國家標準(CNS) A4規格(21〇χ297公釐) 叫204 A7 —- ________B7 五、發明説明(作) 之衰減的優點。這代表了在包層傳播的光線已經被外包層 吸收了。熟悉此技術的人將明白,對於此處所描述的本發 明之優先實施例可以有各種的改變但是都不脫離申請專利 範圍所界定出本發明的精神和範圍。因此可以說,本發明 涵蓋了這些修改及變動,只要它們在申請專利範圍及其同 等物的範圍内。11, 11 " + OJZU4 A7 B7 7 V. Description of the invention ((b), the power of the signal. Make the admission test _ to detect numb money. The detector counts on the wealth side of the second end of the fiber, and the sacral filament is in the heart. Or the cladding. The length of this fiber must be such that the amount of detection occurs at the second end of the fiber. The length of this fiber is called Ll. 切割 This fiber is cut to length L2, which is less than Li. The light number travels through this fiber, and the signal strength is detected at the second end of the fiber. The optical loss is determined based on the difference in signal strength measured at the lengths 1 ^ and [2: the optical loss is 101〇gl () ( Power (L2) / Power ⑹). Attenuation 疋 is determined by dividing the optical loss by the difference in length from L2. Table 2 shows the phQton Kineticsx measurements of the different back-shifted lengths of the optical fiber. Back-shifted length It is used to describe the length of the test Guangguan paper 2. The result is the average attenuation of the backward shift length of Wei. #The backward shift is closer to the source, and the attenuation will increase, which means that the use of the main absorption coating is not enough to roughly To eliminate the light transmitted in the cladding. / M) (without outer layer) (Please read the precautions on the back before filling out this page) Order the Central Consumers Bureau of the Ministry of Economic Affairs to print the wavelength of 40-28 feet and 28-16 meters and then 2-1 Meters 1100 nm 0.35 0.4 2.7 1200 ¾ microns Q. 35 1300 nm 0.35 0.5 0.5 2.8 2.9 Example 2 ~ The glass fiber with an outer cover uses the three crucible method, where the glass composition is listed in Table 3 below And traditional primary and secondary coatings to formulate the optical fiber of the present invention. -MW. This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 483204 A7 ___ ___B7 V. Description of the invention (〖η ) 8 Table 3: The core, cladding, and outer cladding glass of the optical fiber of the present invention. The cladding glass (mol%) (mol%) glass (mol%) Si. 2 75.5 77.5 77.5 A1203 0. 5 1 1 A12F6 2 1 1 Sb2〇3 22 20.5 20.5 Er2〇3 0.075 0.2 Pr2〇3 0.2 NiO 0.1 FeO 0.2 CuO 0.2 f Please read the notes on the back first before filling this page], π Printing of dopants from consumer cooperatives of employees of the Central Standards Bureau of the Ministry of Economic Affairs ( For example, Er2O3, PnO3, NiO, FeO, and CuO) are added to the core and outer cladding glass at more than 100 mol% of the raw material composition. Figure 7 shows the structure obtained from the Photon Kinetics workbench for this structure. Attenuation measurement. This spectrum shows out-of-scale absorption at 980 nm and 1530 nm, which shows that essentially all light travels along the stamen. Regardless of the length of the fiber (that is, the back-shift length used in various measurements), proper results can be obtained. As shown in Figure 7, moving backwards from 8 meters to 1/2 meter produced roughly the same results. This fiber consistently exhibits an attenuation of less than 0.2 dB / m. At 1/2 meter backward length, this garment does not exceed 0.15 dB / m. The optical fiber of the present invention has substantially the same-# ·, '' s scale standard applicable to the Chinese National Standard (CNS) A4 specification (21〇χ297 mm) at different optical fiber lengths. It is called 204 A7 —- ________ B7 5. Description of the invention ( The advantages of attenuation). This means that the light traveling through the cladding has been absorbed by the outer cladding. Those skilled in the art will appreciate that various changes can be made to the preferred embodiments of the invention described herein without departing from the spirit and scope of the invention as defined by the scope of the patent application. Therefore, it can be said that the present invention covers these modifications and variations as long as they are within the scope of the patent application and its equivalents.

9 IX (請先閱讀背面之注意事項再填寫本頁) 訂 畢. 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X 297公釐)9 IX (Please read the notes on the back before filling out this page) Ordering. Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs This paper is sized for the Chinese National Standard (CNS) A4 (21〇X 297 mm)

Claims (1)

六、申請專利範圍 1· 一種放大器光纖,其包含: 玻璃心蕊; 玻璃包層,圍繞著玻璃心蕊以及具有折射率小於玻璃心 蕊之折射率,以及 玻璃外包層,圍繞著包層以及具有折射率大於包層之折 射率。 2·依據申請專利範圍第丨項之光纖,其中心蕊折射率具有相 當高折射率以導引光線之基模傳播於光纖中。 3·依據申請專利範圍第1項之光纖,其中外包層至少位於光 纖最外層至少10微米上。 4·依據申請專利範圍第1項之光纖,其中心蕊包含放大摻雜 劑。 5·依據申請專利範圍第丨項之光纖,其中外包層更進一步包 含至少一種吸附劑。 6·依據申請專利範圍第5項之光纖,其中吸附劑由過渡金屬 離子、稀土族金屬離子、金屬、準金屬、有機染料、及其 組合物種類選取出。 經濟部中央標準局員工消費合作社印SI 7·依據申請專利範圍第6項之光纖,其中吸附劑由釩離子、 斜離子、鈦離子、鐵離子、銅離子、镨離子、鐘離子、翻 、碳以及其混合物種類選取出。 8·依據申請專利範圍第6項之光纖,其中吸附劑至少兩種由 斜離子、鐵離子、銅離子、錯離子、和録離子選取出之組 合物所構成。 9·依據申請專利範圍第§項之光纖,其中每一離子濃度大於 各紙浪尺度適用中國國家榡準(CNS ) M规格(2!〇Χ別公釐) 483204 A8 B8 C8 D8 %年 /〇月)¾ ti· -it補克 六、申請專利範圍 50ppm。 (請先閲讀背面之注意事項再填寫本頁) 10·依據申請專利範圍第1項之光纖,其中玻璃心蕊,包層, 外包層至少一種由銻氧化物所構成。 11·依據申請專利範圍第1〇項之光纖,其中玻璃心蕊,包層, 外包層由銻氧化物所構成。 12. 依據申請專利範圍第1項之光纖,其中外包層折射率並 不大於包層折射率之〇. 1。 13. 依據申請專利範圍第5項之光纖,其中外包層吸附係數 大於玻璃心蕊的吸收係數之1〇倍。 14. 依據申請專利範圍第1項之光纖,其中外包層内側半徑 至少大於心蕊半徑之三倍。 15·依據申請專利範圍第丨項之光纖,其中光纖衰減小於 0·3dB/m 〇 16·依據申請專利範圍第丨項之光纖,其中光纖衰減小於 0.15dB/m。 Π· —種放大器光纖,其包含: 玻璃心蕊; 經濟部中央標準局員工消費合作杜印製 玻璃包層,圍繞著玻璃心蕊以及具有折射率小於玻璃心 蕊之折射率,以及 玻璃外包層,摻雜一種吸附劑以去除傳播於包層中光線 之包層模以及外包層圍繞著該包層。 18·依據申请專利範圍第Η項之光纖,其中外包層折射率與 包層折射率相同。 19.依據申請專利範圍第17項之光纖,其中光纖長度並不超 衣紙張中國國家標準(CNS)八4祕〇><297公瘦) 483204 經濟部中央榡準局員工消費合作社印^ A8 B8 C8 D8六、申請專利範圍 過30公尺以實質地去除包層模。 20. 依據申請專利範圍第19項之光纖,其中長度並不超過5 公尺。 21. 依據申請專利範圍第19項之光纖,其中長度並不超過1 公尺。 22·依據申請專利範圍第19項之光纖,其中長度並不超過 0.5公尺。 23·依據申請專利範圍第17項之光纖,其中心蕊折射率相當 高以導引傳播於光纖中光線之基模。 24. 依據申請專利範圍第17項之光纖,其中外包層至少位於 光纖最外層至少10微米上。 25. 依據申請專利範圍第17項之光纖,其中心蕊包含放大摻 雜劑。 26·依據申請專利範圍第17項之光纖,其中吸附劑由過渡金 屬離子、稀土族金屬離子、金屬、準金屬、有機染料、及 其組合物種類選取出。 27·依據申請專利範圍第26項之光纖,其中吸附劑由釩離子 、铒離子、鈦離子、鐵離子、銅離子、錯離子、鏡離子、 鉑、碳以及其混合物種類選取出。 28·依據申請專利範圍第26項之光纖,其中吸附劑至少兩種 由铒離子、鐵離子、銅離子、镨離子、和鎳離子選取出之 組合物所構成。 29.依據申請專利範圍第28項之光纖,其中每一離子濃度大 於50ppm 〇 iJ yl\j 22 (請先閲讀背面之注意事項再填寫本頁) 訂 #1 表紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 483204 經濟部中央標準局員工消費合作社印¾ ?! 口二f正丨_ 一 pg___ . '補贫'} 六、申請專利範圍 30.依據申請專利範圍第罚項之光纖,其中每一離子濃度大 於lOOppm 〇 31·依據申請專利範圍第17項之光纖,其中玻璃心蕊,包層, 外包層至少一種由銻氧化物所構成。 32·依據申請專利範圍第31項之光纖,其中玻璃心蕊,包層, 外包層由銻氧化物所構成。 33·依據申請專利範圍第18項之光纖,其中外包層折射率並 不大於包層折射率之0. 1。 34·依據申請專利範圍第17項之光纖,其中外包層之吸附係 數大於玻璃心,翁的吸收係數之1Q倍。 35·依據申請專利範圍第17項之光纖,其中外包層内側半徑 至少大於心蕊半徑之三倍。 36·依據申請專利範圍第π項之光纖,其中光纖衰減小於 0· 3dB/m 〇 37. 依據申請專利範圍第π項之光纖,其中光纖衰減小於 0· 15dB/m。 38. —種製造申請專利範圍第1項放大器光纖之方法,該方 法包含: 對預製件加熱,該預製件包含心蕊玻璃材料由包層玻璃 材料以及外包層玻璃材料圍繞著以及 對加熱之預製件抽拉以有效地配製出玻璃纖維。 39· —種製造申請專利範圍第1項放大器光纖之方法,該方 法包含: 同時地由嫁融心,滅玻璃材料抽拉玻璃心蕊,由包層材料 尺度適财關家標率(CNS ) A4規格(210X297公釐) 3 2 (請先閲讀背面之注意事項再填寫本頁) 、1T •Γ 24483204 Α8 Β8 C8 D8 終正, 補无I 六、申請專利範圍 經濟部中央標隼局員工消費合作社印製 物體抽拉包層,以及由外包層材料柚拉外包層,進行抽拉條 件將有效地抽拉出光纖。 40· —種製造申請專利範圍第17項放大器光纖之方法,該方 法包含: 同時地由熔融心蕊玻璃材料抽拉玻璃心蕊,由包層材料 物體抽拉包層,以及由外包層材料抽拉外包層,進行抽拉條 件將有效地抽拉出光纖。 41. 一種放大器光纖,其包含: 玻璃心蕊; 玻璃包層,圍繞著玻璃心蕊以及具有折射率小於玻璃心 蕊之折射率,以及 至少一條吸附玻璃區段,由包層包圍著,該區段之折射率 高於包層之折射率。 42·依據申請專利範圍第41項之放大器光纖,其中至少一條 玻璃區段由一組多條吸附玻璃區段所構成。 43·依據申請專利範圍第42項之放大器光纖,其中每一吸附 玻璃區段如同任何其他吸附玻璃區段等距離地與心蕊分隔 著。 ” ^ 44· 一種放大器光纖,其包含: 玻璃心蕊; 玻璃包層,圍繞著玻璃心蕊以及具有折射率小於玻璃心 凝j之折射率,以及 至少一條吸附玻璃區段,由包層包圍著,該區段之折射率 與包層之折射率相同以及具有至少一種吸附摻雜劑。 (請先閱1^5:面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) a4規格(210χ297公釐) 25483204 A8 B8 C8 D8 959年月 >>ΉΪ 卫::補无| 六、申請專利範圍 45·依據申請專利範圍第44項之放大器光纖,其中至少一條 玻璃區段由一組多條吸附玻璃區段所構成。 46·依據申請專利範圍第45項之放大器光纖,其中每一吸附 玻璃區段如同任何其他吸附玻璃區段等距離地與心蕊分隔 著0 (請先閲讀背面之注意事項再填寫本頁) ,ιτ 經濟部中央標準局員工消費合作社印製 木紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)6. Scope of patent application 1. An amplifier optical fiber, comprising: a glass core; a glass cladding surrounding the glass core and having a refractive index lower than that of the glass core; and a glass cladding layer surrounding the cladding and having The refractive index is greater than the refractive index of the cladding. 2. The optical fiber according to item 丨 of the scope of patent application has a refractive index at the center of the core that has a relatively high refractive index to guide the fundamental mode of light to propagate into the optical fiber. 3. The optical fiber according to item 1 of the scope of the patent application, wherein the outer layer is at least 10 microns on the outermost layer of the optical fiber. 4. The optical fiber according to item 1 of the scope of patent application, whose central core contains an amplified dopant. 5. The optical fiber according to item 丨 of the patent application scope, wherein the outer layer further contains at least one adsorbent. 6. The optical fiber according to item 5 of the scope of the patent application, wherein the adsorbent is selected from transition metal ions, rare earth metal ions, metals, metalloids, organic dyes, and combinations thereof. Employees' Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs of the People's Republic of China printed SI 7. The optical fiber according to item 6 of the patent application scope, in which the adsorbent is composed of vanadium ions, oblique ions, titanium ions, iron ions, copper ions, osmium ions, bell ions, iron, carbon And the type of mixture. 8. The optical fiber according to item 6 of the scope of the patent application, wherein at least two kinds of adsorbents are composed of a composition selected from the group consisting of oblique ions, iron ions, copper ions, wrong ions, and recording ions. 9 · The optical fiber according to item § of the scope of the patent application, where each ion concentration is greater than each paper wave standard. The Chinese National Standard (CNS) M specification (2! 〇 × mm) is applied. 483204 A8 B8 C8 D8% year / month ) ¾ ti · -it supplements 6. Apply for a patent range of 50ppm. (Please read the precautions on the back before filling in this page) 10. According to the optical fiber of item 1 of the patent application scope, at least one of the glass core, the cladding, and the outer layer is composed of antimony oxide. 11. The optical fiber according to item 10 of the scope of patent application, wherein the glass core, the cladding, and the outer cladding are composed of antimony oxide. 12. The optical fiber according to item 1 of the scope of patent application, wherein the refractive index of the cladding is not greater than 0.1 of the refractive index of the cladding. 13. The optical fiber according to item 5 of the scope of patent application, wherein the absorption coefficient of the outer cladding is greater than 10 times the absorption coefficient of the glass core. 14. The optical fiber according to item 1 of the patent application scope, wherein the inner radius of the outer cladding is at least three times greater than the radius of the core. 15. The optical fiber according to item 丨 of the scope of patent application, wherein the fiber attenuation is less than 0.3 dB / m. 16 · The optical fiber according to item 丨 of the scope of patent application, where the fiber attenuation is less than 0.15 dB / m. Π · — An amplifier optical fiber, comprising: a glass core; a printed glass cladding produced by the consumer cooperation of the Central Standards Bureau of the Ministry of Economic Affairs; surrounding the glass core and having a refractive index lower than that of the glass core; and a glass outer layer A cladding mold doped with an adsorbent to remove light transmitted in the cladding and an outer cladding surround the cladding. 18. The optical fiber according to item 范围 of the scope of patent application, wherein the refractive index of the cladding is the same as the refractive index of the cladding. 19. The optical fiber according to item 17 of the scope of the patent application, in which the optical fiber length does not exceed the Chinese National Standards (CNS) Paper No. 8 > < 297 male thin) 483204 Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economy A8 B8 C8 D8 6. The scope of patent application is over 30 meters to substantially remove the cladding mold. 20. The optical fiber according to item 19 of the scope of patent application, wherein the length does not exceed 5 meters. 21. The optical fiber according to item 19 of the scope of patent application, wherein the length does not exceed 1 meter. 22. The optical fiber according to item 19 of the scope of patent application, wherein the length does not exceed 0.5 meters. 23. The optical fiber according to item 17 of the scope of the patent application has a relatively high refractive index at the center core to guide the fundamental mode of light propagating in the optical fiber. 24. The optical fiber according to item 17 of the patent application scope, wherein the outer cladding layer is at least 10 micrometers on the outermost layer of the optical fiber. 25. The optical fiber according to item 17 of the scope of the patent application, the central core of which contains an amplifying dopant. 26. The optical fiber according to item 17 of the scope of the patent application, wherein the adsorbent is selected from transition metal ions, rare earth metal ions, metals, metalloids, organic dyes, and combinations thereof. 27. The optical fiber according to item 26 of the patent application, wherein the adsorbent is selected from vanadium ion, europium ion, titanium ion, iron ion, copper ion, mision ion, mirror ion, platinum, carbon, and a mixture thereof. 28. The optical fiber according to item 26 of the scope of the patent application, wherein at least two kinds of adsorbents are composed of a composition selected from the group consisting of europium ion, iron ion, copper ion, europium ion, and nickel ion. 29. The optical fiber according to item 28 of the scope of patent application, in which the concentration of each ion is greater than 50 ppm 〇iJ yl \ j 22 (Please read the precautions on the back before filling this page) Order # 1 The paper size applies to Chinese national standards (CNS ) A4 size (210X297 mm) 483204 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs ¾? 口 二 f 正 丨 _ pg___. 'Poverty Alleviation'} 6. Scope of patent application 30. According to the penalty of the scope of patent application Optical fiber, each ion concentration of which is greater than 100 ppm. 31. The optical fiber according to item 17 of the scope of the patent application, wherein at least one of the glass core, the cladding, and the cladding layer is composed of antimony oxide. 32. The optical fiber according to item 31 of the scope of patent application, wherein the glass core, the cladding, and the outer layer are composed of antimony oxide. 33. The optical fiber according to item 18 of the scope of the patent application, wherein the refractive index of the cladding is not greater than 0.1 of the refractive index of the cladding. 34. The optical fiber according to item 17 of the scope of the patent application, wherein the absorption coefficient of the outer layer is greater than the absorption coefficient of the glass core and 1Q times. 35. The optical fiber according to item 17 of the scope of the patent application, wherein the inner radius of the outer cladding is at least three times greater than the radius of the core. 36. According to the scope of the patent application, the optical fiber is less than 0.3 dB / m. 37. According to the scope of the patent application, the optical fiber is less than 0, 15 dB / m. 38. A method for manufacturing an amplifier optical fiber according to the first patent application scope, the method comprising: heating a preform, the preform comprising a core glass material surrounded by a cladding glass material and an outer cladding glass material, and prefabricating the heating The pieces are drawn to effectively formulate the glass fibers. 39 · —A method for manufacturing amplifier optical fiber of the first item in the scope of patent application, the method includes: simultaneously pulling the glass core from the fused material, extinguishing the glass material, and the cladding material to meet the financial standard (CNS) A4 specification (210X297 mm) 3 2 (Please read the notes on the back before filling out this page), 1T • Γ 24483204 Α8 Β8 C8 D8 Final, supplemented without I 六 、 Application for patents The drawn object cladding and the outer layer made of the outer layer material pomelo are used for drawing conditions to effectively pull out the optical fiber. 40 · —A method for manufacturing an amplifier optical fiber of the 17th scope of the patent application, the method comprises: simultaneously drawing a glass core from a molten core glass material, pulling a cladding from a cladding material object, and a cladding material Pulling the outer layer, drawing conditions will effectively pull out the fiber. 41. An amplifier optical fiber comprising: a glass core; a glass cladding surrounding the glass core and having a refractive index lower than that of the glass core; and at least one adsorption glass section surrounded by the cladding, the region The refractive index of the segment is higher than that of the cladding. 42. The amplifier fiber according to item 41 of the patent application, wherein at least one glass section is composed of a plurality of adsorption glass sections. 43. The amplifier optical fiber according to item 42 of the patent application, wherein each of the adsorption glass sections is equally spaced from the heart core as any other adsorption glass section. ^ 44 · An amplifier optical fiber comprising: a glass core; a glass cladding surrounding the glass core and having a refractive index lower than that of the glass core; and at least one adsorption glass section surrounded by the cladding The refractive index of this section is the same as the refractive index of the cladding and has at least one adsorbed dopant. (Please read 1 ^ 5: Precautions on the surface before filling out this page.) The dimensions of this paper are applicable to Chinese national standards (CNS ) a4 specification (210 × 297 mm) 25483204 A8 B8 C8 D8 959 > > ΉΪ: :: supplementary | VI. Patent application scope 45 · Amplifier fiber according to item 44 of the patent application scope, at least one of which is a glass area The segment is composed of a group of multiple absorption glass sections. 46. According to the amplifier optical fiber of item 45 of the patent application, each of the absorption glass sections is equally spaced from the heart core as any other absorption glass section. 0 ( (Please read the notes on the back before filling this page), ιτ The printed wood paper standard of the staff consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs applies the Chinese National Standard (CNS) A4 specification (210X29 7 mm)
TW090105887A 2000-03-10 2001-03-11 Optical fiber with absorbing overclad glass layer TW483204B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18849200P 2000-03-10 2000-03-10

Publications (1)

Publication Number Publication Date
TW483204B true TW483204B (en) 2002-04-11

Family

ID=22693377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090105887A TW483204B (en) 2000-03-10 2001-03-11 Optical fiber with absorbing overclad glass layer

Country Status (4)

Country Link
US (1) US6556757B2 (en)
AU (1) AU2001234594A1 (en)
TW (1) TW483204B (en)
WO (1) WO2001069734A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502971B1 (en) 2018-07-03 2019-12-10 Gingy Technology Inc. Image capturing module

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352967B1 (en) * 2000-06-21 2008-04-01 Mitsubishi Denki Kabushiki Kaisha Data transmission system
EP1410073A4 (en) 2001-04-12 2005-11-09 Omniguide Comm Inc High index-contrast fiber waveguides and applications
DE10125152A1 (en) * 2001-05-22 2002-12-12 Schott Glas optical fiber
CN100480751C (en) * 2001-12-18 2009-04-22 古河电气工业株式会社 Optical fibre for light amplifier
US6823122B2 (en) * 2002-01-31 2004-11-23 Corning Incorporated P-Si Er fiber profile
AU2003217981A1 (en) * 2002-03-08 2003-09-22 Lightwave Electronics Amplifiers and light sources employing s-band erbium-doped fiber and l-band thulium-doped fiber with distributed suppression of amplified spontaneous emission (ase)
US6995900B2 (en) * 2003-01-21 2006-02-07 Jds Uniphase Corporation Method of making a short-pass fiber with controlled cut-off wavelength
US6909538B2 (en) * 2002-03-08 2005-06-21 Lightwave Electronics Fiber amplifiers with depressed cladding and their uses in Er-doped fiber amplifiers for the S-band
US6970631B2 (en) * 2002-06-05 2005-11-29 Lightwave Electronics Suppression of cladding mode loss in fiber amplifiers with distributed suppression of amplified spontaneous emission (ASE)
US7221835B1 (en) * 2003-11-25 2007-05-22 Schott Corporation Ion-reduction-blackened extra-mural absorbing media adapted for inclusion in image-conducting optical fiber arrays and methods of fabricating the same
US7430354B2 (en) * 2004-08-26 2008-09-30 Avanex Corporation Method and apparatus for reduction of optical coupling between pump lasers and photodetectors in optical amplifiers
US7333263B2 (en) * 2005-01-24 2008-02-19 National Sun Yat-Sen University Transition metal doped fiber amplifier
JP5259096B2 (en) * 2007-02-13 2013-08-07 浜松ホトニクス株式会社 Fiber optic and manufacturing method thereof
TWI435068B (en) 2011-02-23 2014-04-21 Univ Nat Taiwan Crystal fiber, Raman spectrometer with crystal fiber and its detection method
US10222547B2 (en) 2015-11-30 2019-03-05 Corning Incorporated Flame-retardant optical fiber coating
US10167396B2 (en) 2017-05-03 2019-01-01 Corning Incorporated Low smoke fire-resistant optical ribbon
EP4006598A1 (en) * 2020-11-30 2022-06-01 Apple Inc. Optical components for electronic devices

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253500A (en) 1964-05-11 1966-05-31 American Optical Corp Doubly clad light-conducting fibers with the outer cladding being partially light absorbing
US3607322A (en) 1969-05-22 1971-09-21 Owens Corning Fiberglass Corp Light transmitting glass fibers, core and cladding glass compositions
FR2337094A1 (en) 1975-11-20 1977-07-29 Babcock Wire Equipment Wire spooling machine control system - includes pulse circuit controlling dancer arm and reciprocating distributor wheel for constant wire tension
US4217123A (en) 1976-02-03 1980-08-12 International Standard Electric Corporation Double crucible method of optical fiber manufacture
JPS5912587B2 (en) 1979-10-08 1984-03-24 日東紡績株式会社 Traverse device for linear material winding device
GB2067781B (en) * 1979-10-29 1983-09-01 Standard Telephones Cables Ltd Optical fibres
US4519198A (en) 1983-09-12 1985-05-28 Kissel Thomas L Yarn spinner
EP0145343B1 (en) 1983-11-18 1988-05-18 Nippon Telegraph And Telephone Corporation Optical fibre test method and apparatus for performing the method
US4693545A (en) * 1984-09-04 1987-09-15 Westinghouse Electric Corp. Apparatus for the controlled transmission of light
JPS6246934A (en) 1985-08-22 1987-02-28 Kokusai Denshin Denwa Co Ltd <Kdd> Method and apparatus for producing base material for fluoride glass fiber
DE3606617A1 (en) 1986-02-28 1987-09-03 Siemens Ag FLAT TAPE LINE WITH SEVERAL LIGHTWAVE CORE AND METHOD FOR THE PRODUCTION THEREOF
US5046815A (en) 1990-05-17 1991-09-10 Corning Incorporated Optical fiber cabling
US5121460A (en) * 1991-01-31 1992-06-09 The Charles Stark Draper Lab., Inc. High-power mode-selective optical fiber laser
US5277373A (en) 1991-12-18 1994-01-11 Morton Henry H Apparatus and method for controlling tension in a moving material
EP0582944B1 (en) 1992-08-11 1997-05-14 Siemens Aktiengesellschaft Method and device for the fabrication of an optical stripline
EP0650914B1 (en) 1993-05-13 1998-12-30 Toray Engineering Co., Ltd. Filament winding method and filament winding machine
FR2713621B1 (en) 1993-12-14 1996-01-05 Alcatel Fibres Optiques Method for plasma recharging of a preform for optical fiber and optical fiber originating from the preform recharged according to this method.
JP3244579B2 (en) * 1993-12-17 2002-01-07 富士通株式会社 Optical fiber amplifier
US5957402A (en) 1994-01-28 1999-09-28 Ppg Industries Ohio, Inc. Method and apparatus for reducing catenary during winding of a fiber bundle
JP3556026B2 (en) * 1995-10-30 2004-08-18 富士通株式会社 Multi-wavelength optical amplifier that amplifies multiple wavelength signals at once
FR2740563B1 (en) * 1995-10-31 1997-11-21 Alcatel Submarcom FIBER OPTIC COMPRISING A FLUORESCENT DOPANT
JP3773575B2 (en) * 1996-01-12 2006-05-10 富士通株式会社 Doped fiber, splicing method thereof, and optical amplifier
US5892615A (en) * 1997-03-17 1999-04-06 Sdl, Inc. Output power enhancement in optical fiber lasers
US5926600A (en) 1997-05-22 1999-07-20 Litton Systems, Inc. Optical fiber for reducing optical signal reflections
JPH11121839A (en) * 1997-10-17 1999-04-30 Fujitsu Ltd Optical amplification fiber and optical fiber amplifier
EP1077906A4 (en) 1998-04-08 2005-01-12 Corning Inc Antimony oxide glass with optical activity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502971B1 (en) 2018-07-03 2019-12-10 Gingy Technology Inc. Image capturing module

Also Published As

Publication number Publication date
US20010055456A1 (en) 2001-12-27
WO2001069734A1 (en) 2001-09-20
US6556757B2 (en) 2003-04-29
AU2001234594A1 (en) 2001-09-24

Similar Documents

Publication Publication Date Title
TW483204B (en) Optical fiber with absorbing overclad glass layer
EP2541292B1 (en) Multimode optical fibre
US9796618B2 (en) Multi-core optical fiber ribbons and methods for making the same
EP1875284B1 (en) Alkali and fluorine doped optical fiber
CN103217735B (en) Optical fiber and fibre-optical preform
CA2630557C (en) Single mode optical fiber with improved bend performance
JP5409928B2 (en) Polarization-maintaining optical fiber
EP2386067A1 (en) Bend insensitive optical fibers with low refractive index glass rings
WO2017020457A1 (en) Ultra-low attenuation large effective area single-mode optical fiber
JP3783594B2 (en) Optical fiber, nonlinear optical fiber, optical amplifier using the same, wavelength converter, and optical fiber manufacturing method
JPH0214850A (en) Radiation-resistant multiple fiber
US6574406B2 (en) Selectively absorbing optical fibers for optical amplifiers
WO2010035397A1 (en) Optical fiber and method for manufacturing the same
JP5676152B2 (en) Optical fiber and manufacturing method thereof
US10162109B2 (en) Multimode optical fibers for attenuators
JPS62176941A (en) Optical fiber
CN115047559B (en) Multiband attenuation flat optical fiber
KR102375092B1 (en) Optical Fiber for Removing Cladding Mode and Manufacturing Method Thereof
JPH11274613A (en) Optical fiber
JPS60264346A (en) Radiation-resistance optical fiber
JP4030908B2 (en) Dispersion compensating fiber using LP03 mode
JP4073810B2 (en) Dispersion compensating fiber using higher order mode
CN114779394A (en) Normal dispersion thulium-doped single-mode optical fiber, preparation method thereof and laser
JPS6153132A (en) Preform of radiation-resistant optical fiber
JPH1020132A (en) Heat resistant image fiber

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees