TW474071B - Coaxial cable fault locator - Google Patents

Coaxial cable fault locator Download PDF

Info

Publication number
TW474071B
TW474071B TW089105312A TW89105312A TW474071B TW 474071 B TW474071 B TW 474071B TW 089105312 A TW089105312 A TW 089105312A TW 89105312 A TW89105312 A TW 89105312A TW 474071 B TW474071 B TW 474071B
Authority
TW
Taiwan
Prior art keywords
signal
mentioned
scope
patent application
network
Prior art date
Application number
TW089105312A
Other languages
Chinese (zh)
Inventor
Rodney Karl Eastment
Original Assignee
Cable & Amp Wireless Optus Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cable & Amp Wireless Optus Ltd filed Critical Cable & Amp Wireless Optus Ltd
Application granted granted Critical
Publication of TW474071B publication Critical patent/TW474071B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Locating Faults (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

A method and apparatus are disclosed for locating faults in a bi-directional cable network, where separate frequency bands are used for upstream and downstream propogation of signals. The method is particularly suitable for locating common path distortion or passive intermodulation faults. Signals are propogated in the downstream band with defined modulations and at selected frequencies, so that a network fault will return a signal which includes a selected mixing product of the downstream signals. The downstream signals are selected so that the mixing product falls within the upstream band, so that the returned signal can propogate back to the source and be correlated with the downstream signals. An apparatus is also disclosed.

Description

474071 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(f ) 發明領域 本發明係有關偵測一個雙向網路中硬體故障之技術領 域。其具有一個特殊但並非是唯一的應用,可用於一個雙 向電纜網路中之共同路徑失真故障之位置。 發明背景 雙向同軸電纜網路以及光纖同軸電纜混合網路(Hybrid Fibre Coaxial Cable,HFC)提供了例如有線電視與雙向語音 及數據等之服務。這些網路利用頻率多工的基礎來提供雙 向之服務,上述頻率多工利用一個頻道,例如5至65MHz 之頻道作爲上傳訊號傳輸之用-亦即至交換器-以及一個頻 率更高的頻道,例如85至750MHz之頻道則用來作爲下傳 訊號與廣播訊號。於上述之網路中,會利用濾波器來避免 上傳訊號往下傳播,反之亦然。因此,一個具有位於上述 下傳頻道中之頻率的訊號無法傳播至上述網路的末端,並 且返回,因爲位於放大器中之濾波雙工器會避免此情形之 發生。 一種干擾之形式,其係網路經營者最關切的一種問題 ,其係肇於偶然之非線性元件發生於機器設備中。上述機 器設備意指電纜、匣道器、放大器、客戶分接頭,以及其 他網路實體元件等。最常見之非線性元件的型態產生於在 連接器與接合點所發生之碰撞時,其會產生出金屬-金屬氧 化物-金屬接合點,於此訊號整流與中間調變產物會因之產 生。這些不需要的中間調變產物大大地提高系統的雜訊, (請先閱讀背面之注意事項再填寫本頁) 祕. 訂 •線· 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 474071 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明說明(〆) 並且降低了機器設備於提供客戶服務時之效能表現。上述 雜訓不僅會影響其所發生處之網路的分支,亦會因爲降低 訊號雜訊比(signal to noise ratio)而影響到鄰近的網路分支 ’例如於上傳訊號傳輸時。這種型態的雜訊降低被稱爲共 同路徑失真(common path distortion,CPD),或者是被動中 間調變(passive Intermodulation,PIM)。會造成 CPD 之故 障通常因爲網路分支之情形很難去定址,上述之網路分支 意即於一個特定之節點上的電纜總數(其可能是12至15公 里),以及於一個特定之節點上的多重接合點數(通常大於 一千個以上)。 於目前,商用市場上並無相關之裝置或是處理程序可 以正確地定址上述這些故障。於一個網路之分支上所出現 的一些僅有之CPD故障種類可以利用一個頻譜分析儀來偵 測出來,但是,此舉對將上述的故障定址並無直接的幫助 。一般而言,目前最佳的方式爲利用高品質元件與經過仔 細控制下的裝設程序,並且於網路所有的分支上執行一般 例行的維修檢驗來完成。若一個特定的網路分支發生一個 相當明顯的問題時,則目前最先進的解決方案爲派遣工程 師去檢查、鎖緊等等每個位於網路分支中之連接與接合點 ,或者是節點。此舉很明顯地是一個耗時,且無效率的處 理過程。缺少一個較佳的故障定址系統同時亦會潛在地大 大地影響經由上述這樣雙向網路所可能帶來且提供之服務 的品質。 因此本發明的一個目的即爲提供一個裝置,其能夠協 4 (請先閱讀背面之注音?事項再填寫本頁) «474071 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention (f) Field of Invention The present invention relates to the technical field of detecting hardware failure in a two-way network. It has a special, but not unique, application for common path distortion fault locations in a two-way cable network. BACKGROUND OF THE INVENTION Bidirectional coaxial cable networks and Hybrid Fibre Coaxial Cable (HFC) provide services such as cable television and two-way voice and data. These networks use the basis of frequency multiplexing to provide two-way services. The above frequency multiplexing uses a channel, such as a channel of 5 to 65 MHz, for transmission of upload signals-that is, to the switch-and a higher frequency channel. For example, the 85 to 750MHz channel is used as a downlink signal and a broadcast signal. In the above networks, filters are used to prevent the upload signal from propagating downwards and vice versa. Therefore, a signal with a frequency located in the above-mentioned download channel cannot propagate to the end of the above network and return, because the filter duplexer located in the amplifier will avoid this situation. A form of interference, which is a concern of the network operators most, is caused by accidental non-linear components occur in machinery and equipment. The above-mentioned mechanical equipment means cables, cassettes, amplifiers, customer taps, and other network physical components. The most common type of non-linear element is generated when a connector collides with a joint, which will produce a metal-metal oxide-metal joint. Here the signal rectification and intermediate modulation products will be generated. . These unwanted intermediate modulation products greatly improve the noise of the system. (Please read the precautions on the back before filling this page.) Secrets. Threads • This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 474071 Α7 Β7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of Invention (〆) and reduced the performance of machinery and equipment when providing customer service. The above-mentioned miscellaneous training will not only affect the branch of the network where it occurs, but also affect the neighboring network branches due to the reduction of the signal to noise ratio, for example, when uploading a signal for transmission. This type of noise reduction is called common path distortion (CPD), or passive intermediate modulation (PIM). Failures that cause CPD are usually difficult to address due to network branch conditions. The above network branch means the total number of cables on a specific node (which may be 12 to 15 kilometers), and on a specific node. The number of multiple junctions (usually greater than a thousand). At present, there are no related devices or processes in the commercial market to correctly address these faults. Some of the only types of CPD faults that occur on a branch of a network can be detected using a spectrum analyzer, but this does not directly help address the above faults. Generally speaking, the best way at present is to use high-quality components and carefully controlled installation procedures, and perform routine maintenance inspections on all branches of the network. If a fairly obvious problem occurs in a particular network branch, the most advanced solution currently is to send engineers to check, lock, etc. each connection and junction, or node, located in the network branch. This is clearly a time-consuming and inefficient process. The lack of a better fault location system will also potentially greatly affect the quality of the services that can be provided and provided via such a two-way network. It is therefore an object of the present invention to provide a device which can cooperate 4 (please read the note on the back? Matters before filling out this page) «

K 言 τ ί 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公釐) A7 B7 474071 五、發明說明($ ) 助於一個網路中產生CPD之故障的定址工作。 發明槪要 依據本發明的一個方面而言,本發明提供一個方法’ 其用於偵測於一個雙向網路中之一個或多個故障相關聯之 傳輸時間的延遲,其包括: a) 將訊號F1與訊號F2導入上述網路之下傳頻道’訊 號F1與訊號F2每個皆具有一個定義之調變與特別之頻道 ,使得上述訊號會於上述網路中的下傳頻道中傳輸; b) 監視上傳頻道以偵測訊號F3,於其中,訊號F3是 一個選擇之訊號F1與訊號F2之混合產物; c) 以訊號F1與訊號F2來與上述偵測到之訊號F3作相 關聯,以便判斷與一個或多個CPD故障相關之時間延遲。 最好是,上述網路先前已經加以調整,以便於相對於 測試點之一群參考點上判斷與每個節點相關之時間延遲。 於此例中,一個第四個步驟允許問題中之節點的判斷範圍 ,或是以一個合適地複雜應對系統,來判斷上述故障之位 址。 於一個較佳的實施例中,上述上傳頻段佔據較下傳頻 段還低的頻率,頻率F3爲上述頻率F1與F2之間的差異 。雖然本發明可以由一個交換機或電纜頭端處應用’其亦 可以同樣地應用於一個場單元以便於場中偵測出一個錯誤 。最好對於在一個節點可能會有多個錯誤產生的情形並不 常見,並且本發明能夠偵測出分別定址之共同路徑失真來 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) #: 訂---------線 經濟部智慧財產局員工消費合作社印製 474071K language τ ί This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) A7 B7 474071 V. Description of the invention ($) It is helpful for the location of CPD faults in a network. According to one aspect of the present invention, the present invention provides a method for detecting a delay in transmission time associated with one or more failures in a two-way network, including: a) a signal F1 and signal F2 are introduced into the above-mentioned network's download channel. 'Signal F1 and signal F2 each have a defined modulation and special channel, so that the above-mentioned signal will be transmitted in the download channel in the above network; b) Monitor the upload channel to detect signal F3, where signal F3 is a mixed product of selected signal F1 and signal F2; c) use signal F1 and signal F2 to correlate with the detected signal F3 to determine A time delay associated with one or more CPD failures. Preferably, the above network has been adjusted previously to make it possible to judge the time delay associated with each node at a group of reference points relative to the test points. In this example, a fourth step allows the judgment range of the nodes in the problem, or a suitably complex response system to determine the address of the above-mentioned failure. In a preferred embodiment, the upload frequency band occupies a lower frequency than the downstream frequency band, and the frequency F3 is the difference between the frequencies F1 and F2. Although the present invention can be applied at a switch or cable head end, it can also be applied to a field unit in order to detect an error in the field. It is best not to be the case where multiple errors may occur at a node, and the present invention can detect the common path distortion of each address. 5 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297) (Mm) (Please read the precautions on the back before filling out this page) #: Order --------- Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 474071

經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明說明() 源。 本發明的原理在於上述共同路徑失真作爲一個上述傳 輸訊號之混合元件。此將於每一個錯誤處產生一***互調 變產物,其中一些將會落在於上述上傳頻段。於一個較佳 的實施例中,上述第二階程度差異產物F1-F2會於頻率F3 上之上傳頻段中偵測出來。其最好上述選擇出來的頻率是 Μ 位於保留的頻段上,以避免與其他服務產生干擾。 圖式簡單說明 圖1顯示一個示意之雙向資訊網路之圖示。 圖2 爲一個依據本發明較佳實施例製作之錯誤定址 裝置的簡化方塊圖。 圖3顯示圖1中之網路的訊號之光譜設計。 圖4 爲一個使用於圖2中之裝置的向上轉換器之方 塊圖。 圖5 爲一個使用於圖2中之裝置的向下轉換器之方 塊圖。 圖6 爲一個由圖2中之裝置產生之頻率暴衝訊號的 頻率對時間圖。 圖7 爲一個圖6中之暴衝訊號之頻率對時間圖,用 以顯示溫度對於範圍測量之正確度的影響。 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ▼裝---------訂---- -------^9— 474071 A7 B7 經濟部智慧財產局員工消費合作社印製 發明說明( ) 元件符號說明 100 雙向網路 101 交換機 101a 傳送器 101b 接收器 102 終端使用者 103 下傳光纖 104 匣道器 104 電纜 105 複數個栓塞接面 106 多重分接頭接點 106a 接點 107 多重線上放大器 108 回傳光纖 200 故障*** 201 任意波形產生器(AWG) 202 內部電腦匯流排 203 低通濾波器 204 混合轉換器 205 雙重頻率參考値 206 混合轉換器 207 混合轉換器 208 數位取樣卡 209 電腦 (請先閱讀背面之注咅心事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 474071 A7 B7 經濟部智慧財產局員工消費合作社印製 發明說明( ) 211 電腦匯流排 212 延遲線 213 頻率轉換設備 214 下傳轉換輸出訊號 216 計時盒 218 訊號線 219 頻率轉換設備單元 300 分配給下傳訊號的頻寬 301 網路上傳送視訊、電話 的頻寬 302 測試訊號1 303 測試訊號2 304 二階差分乘積 305 保留給上傳訊號的頻寬 400 向上轉換器 401 區域振盪器 402 帶通濾波器 403 區域振盪器 404 輸入 405 輸出 500 向下轉換器 501 區域振盪器 502 區域振盪器 503 區域振盪器 (請先閱讀背面之注音2事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 474071 A7 B7 五、發明說明() 504 輸入 505 輸出 (請先閱讀背面之注意事項再填寫本頁) 較佳實施例之詳細說明 圖1中之雙向網路100可以於一個交換機101與許多 終端使用者102之間提供有線電視與雙向電話語音與數據 之服務。上述網路可以包含數個子網路以適合特殊的用途 。於圖一中的網路,上述網路100包括一個光纖網路(區域 A),以及一個同軸電纜網路(區域B)。上述網路架構稱爲 混合光纖同軸電纜(Hybrid Fibre Coaxial,HFC)網路。當然 此並非本發明實際上的範例之一,其可以應用於任何雙向 網路上,上述雙向網路具有任何子網路的組合,如同精通 於此領域者所熟悉的一般。 上述交換機101包括一個傳送器101a與一個接收器 101b。光學訊號經由匣道器104傳送至光纖103,於該匣 道器104中,訊號係轉換爲射頻訊號,以於同軸電纜網路( 區域B)上傳輸之用。 經濟部智慧財產局員工消費合作社印製 佈設於電纜105上的爲多重分接頭接點106,其由主 要的電纜105將訊號分流以連接至一個終端使用者102。 同時佈設於電纜上的爲多重線上放大器107,其連續地將 傳送的訊號放大以計算上述訊號因爲於其於上述電纜105 上傳輸時發生之能量損耗而造成的訊號衰減程度。 既然其爲一個雙向網路,終端使用者亦可以經由上述 網路100傳送資訊至交換機101。上述返回之訊號會於相 9 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明() 同的電纜105上傳遞,並且於上述匣道器104上分離以返 回光纖電纜108上由上述交換機101上的接收器101b接收 〇 爲了允許於上述相同的電纜105上作訊號的雙向傳輸 ,上述傳送(下傳)訊號會與返回(上傳)訊號以光譜分析的方 式分離。此光譜分離的方式顯示於圖三中,於其中標示爲 300的區域爲分配給下傳訊號的頻寬,而標示爲305的區 域則爲保留給上述上傳訊號的頻寬。圖中之區域301則標 示爲通常用於在網路上傳送之視訊、電話語音與數據訊號 所需的頻寬。上述區域301亦可以散佈於fl與f2之間。 設置於上述線上放大器107之間的濾波器(未顯示於圖 中)亦分散於上述網路1〇〇上,以避免具有下傳頻率之訊號 變成上傳傳輸,或是避免具有上傳頻率的訊號反而下傳傳 輸,以達到雙向放大的效果。 如同以上所討論的,於具有許多連接器或是接點之上 述網路1〇〇的任何一個部分皆可能發生錯誤。若於一個連 接器或是接點上發生一個錯誤,便會產生一個非線性元件 ,上述非線性元件會造成訊號整流與交互調變的產物。上 述交互調變產物將大大地提高系統雜訊的程度,並且會降 低服務表現的品質。因爲網路上實際具有之上千個連接點 106,於一個典型的網路100中,發生於其中一個接點的錯 誤,例如接點l〇6a,可能非常困難定位出來。 使用本發明之方法與裝置,上述發生錯誤的位址之定 位將會便得非常地便利。 10 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 零裝 tr---------^wi. A7 474071 B7___ 五、發明說明() 共同路徑失真(Common Path Distortion,CPD)錯誤位 (請先閱讀背面之注意事項再填寫本頁) 址探測器器200如圖一中所顯示地連結於上述網路loo上 。上述位址探測器200於頻率fl與f2上個別地產生兩個 測試訊號,上述兩個頻率介於分配予上述下傳訊號的頻寬 中。上述兩個測試訊號於圖三中個別地標示爲302與303 。需要注意的是上述頻率fl與f2是由頻寬301中光譜分 離出來,上述頻寬301通常使用於普通的流量上以避免產 生干擾。 上述測試訊號Π與f2經由上述光纖電纜103於上述 網路100上傳輸,並且於上述匣道器104上轉換爲射頻訊 號,且散佈於上述整個電纜網路105上。於到達上述分流 器接點106a時,其因爲一個錯誤而顯現出非線性的特性出 來,訊號fl與f2會產生出不同程度的交互調變產物,包 括一個二階差分乘積f3。上述訊號fl與f2會被選擇以致 於上述二階差分乘積f3會落在於上述分配給上傳訊號之頻 寬中的一個頻率上。上述二階差分乘積f3(返回訊號)於圖 三中標示爲3〇4。由其中可以看出其位於上述上傳頻寬305 之間。 經濟部智慧財產局員工消費合作社印製 返回訊號f3上傳傳輸至交換機101,於其上其藉由錯 誤位址探測器200偵測。上述位址探測器200基本上會測 量上述返回訊號f3之調變與上述原測試訊號fl與f2之調 變之間的時間差異。一個位於上述交換機101與一個發生 於上述接點l〇6a之間的距離可以藉由上述時間差異判斷出 來,因此方便上述錯誤的位址偵測,或是共同路徑失真錯 11 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ' 經濟部智慧財產局員工消費合作社印製 474071 A7 B7 五、發明說明() 誤之位址偵測。 一個實際的位置與距離是藉由比較上述測量出來的時 間差異與一個包含校準之時間連同其相對應之節點位址之 資料庫而獲得的。上述資料庫是利用一個範圍校準器建置 的,上述範圍校準器是用來測量與校準返回延遲至上述 HFC網路100之同軸電纜部分上特殊位址。上述範圍校準 器是一個場移動測試盒’其連接至客戶分流節點,最好是 靠近上述線上放大器之下傳輸出。一個紀錄表會維持以給 上述已知節點上之返回校準延遲的節點使用。此作爲標示 點以產生一個網路的”範圍地圖”,並且將可使得共同路徑 失真錯誤可以合理地、正確地定址於當其被偵測出來時之 同軸電纜上有限的範圍之內。 爲了於上述網路中一個需要的位置可以被”範圍映射” ,上述範圍校準器將會混合兩個範圍訊號(於681.5MHz與 741MHz處)並且注入兩個載波混合產物於59·5ΜΗζ至上述 上傳頻譜中。此返回產物爲一個頻段通過濾波至其頻譜 57-62MHZ中。上述範圍校準器包括一個線上相位計時控 制器,其使得上述返回59.5MHz上傳訊號可以暫停(2.5微 秒),並且調整至位於一個合適的區域於20微秒線上區段 上。藉由上述的操作,其使得上述返回訊號可以由一個實 際發生之共同路徑失真錯誤處以”相位時間”被搬移開來’ 使得上述範圍對每個皆可以獨立的測量,並且得知其是否 位於相同的空間位置。 因爲網路的線路分支架構的型態,一個範圍測量將不 12 @張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) "" -----------裝--------訂—------- (請先閱讀背面之注意事項再填寫本頁) 474071 A7 B7 五、發明說明() 會獨特地定址上述錯誤。上述錯誤分流或是支線將必須藉 由訊號追蹤來定址。但是,上述範圍屬於數公尺之解析度 將會對於共同路徑失真錯誤的定址有所助益,因爲錯誤通 常發生於分流接點106或者是線上放大器107,且並不會 位於中間位置。此正確性使得當錯誤將會被定址於中間位 置之區域上時,候選分支105會被拒絕。 最好是若其僅於適合於此範例當上述返回訊號f3是一 個fl與f2的差異產物。於上述上傳(返回)頻寬是較上述下 傳頻段是位於較高的頻率頻段時之網路架構.,則上述返回 訊號f3可以是fl與f2的和產物,或是其他任何合適之產 物。 上述錯誤位址偵測器200的功能將於以下參考圖二做 更詳細地描述。 上述錯誤位址偵測器200利用一個批次取樣訊號處理 軟體來操作。上述程式經由一個內部電腦匯流排202與一 個任意波形產生器(Arbitrary Waveform generator, AWG)2〇l與一個高速類比至數位訊號取樣卡(A to D)2〇8 互相介接。上述AWG201變成爲訊號產生器,而上述A to D 208則爲接收器。客戶訂製與建造之頻率轉換設備213( 稍後將會參考圖四與圖五作更詳細地描述)則介接於上述 AWG/A to D與上述網路100之間以轉移訊號至正確的頻譜 上。 測量的訊號是藉由軟體產生,並且載入AWG201中, 其設置於頻段3.75MHz至6.25MHz之間產生訊號。 13 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) £ !訂· — !參. 經濟部智慧財產局員工消費合作社印製 474071 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明() 上述錯誤位址偵測的程序牽涉到兩個步驟。有一個必 須先進行的初始步驟,接著是實際的測量步驟。 上述初始步驟使用於判斷觸發訊號至A to D208之時 序,使得其僅於當共同路徑失真錯誤脈衝波出現時取樣。 已經被發現上述共同路徑失真錯誤是一個以供輸線之頻率 進行之振幅調變,脈衝波起,於每一個工作週期或是半個 主要工作週期中維持大約兩微秒。 爲了要執行此初始步驟,一個連續波(Ccmtimious Wave,CW)訊號會於5·35015ΜΗζ之頻率輸出。其會被傳 送爲一序列之184個突衝波,維持大約301.4毫秒。 最好是上述此初始步驟僅於當上述共同路徑失真錯誤 事實上是藉由一個外部訊號調變時才需要。於此情況中, 90伏特交流電,50Hz之電源會供應於整個同軸電纜105 上,其將會調變任何的共同路徑失真錯誤訊號。於其他的 情況下,可能需要一個不同的初始步驟以適用上述共同路 徑失真錯誤脈衝波之特殊的調變型態。然而於其他的情況 中,共同路徑失真錯誤脈衝波可能不會有任何的外部調變 效應,因此完全不需要上述初始步驟。 當執行上述實際的測量步驟,會產生一個線性地暴衝 於3.75MHz至6·25ΜΗζ頻段中之頻率暴衝訊號。此訊號是 合成於頻率2〇ΜΗζ的32789點。一個完整的週期,稱爲一 個突波,將會維持1·6384微秒。多重突波會被加以利用。 上述AWG2〇l訊號會被傳送到向上轉換器500,其將 產生出兩個輸出訊號Π與f2,分離59·5ΜΗζ。其中一個訊 14 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) " (請先閱讀背面之注意事項再填寫本頁) ▼裝--------訂---------· A7 B7 474071 五、發明說明() 號是光譜上地直立,而另一個訊號則是光譜上地倒轉。 上述這些訊號會被注入(218)至上述網路1〇〇中,並且 傳輸至上述網路直至其發現錯誤106a,產生一個交互調變 產物的群組。於其中是一個二階差分乘積fl-f2(圖三中元 件3〇4)。上述第二階產物(f3)將會攜帶fl與f2訊號之雙重 頻率調變,因爲其中一個訊號是光譜上地倒轉。既然訊號 f3具有一個位於分配給上傳訊號之頻寬(305)中的頻率,其 將經由上述整個網路1〇〇傳輸至交換機101,並且進入 (219)頻率轉換設備213。 向下轉換器400會將一個57MHz至62MHz頻段(包含 位於59·5ΜΗζ上的訊號f3)轉換至7.5MHz至12.5MHz,並 且將其傳送至A to D 208。低通濾波器(6.5MHz)203抑制來 自於AWG201之別名時鐘產物。混合轉換器204,206與 207提供訊號分離或是加總。 上述由A to D完成之訊號的取樣動作是藉由轉體控制 的,並且利用一個二脈衝交錯取樣技術(發表於IREE 1998 六月第18卷中),其使用25個十億分之一秒延遲線212。 上述兩個交錯的取樣會下載至一部個人電腦PC 209上,於 其中上述訊號處理器軟體會將取樣之10 MHz訊號轉換爲 一個複合基頻頻譜。 上述A to D取樣是利用來自於計時盒216之觸發訊號 加以啓動的。一個等於一個突波(1.6348微秒)的內部延遲 觸發會使用於以允許網路傳輸延遲。當一個取樣訊號使用 一個5MHz的取樣頻率,此將造成突波1的尾部會接著突 15 $3氏張I度適用中國國家標準(CNS)A4規格(210 X 297公釐) "" -----------裝---I----訂---------^9. (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 474071 A7 B7 五、發明說明() (請先閱讀背面之注意事項再填寫本頁) 波2的第一個部分。因爲所有的突波皆爲相同的,此將等 同於一個時域-包裹別名取樣訊號。若上述延遲之觸發並未 被使用,上述取樣的前端將不會有任何訊號。 當由上述AWG201產生的訊號是一^個CW時,A to D 208會以每秒25000個取樣對取樣上述10.7MHz之CW, 並且上述訊號處理會將其轉換至一個混合基頻且集中於直 流電源具有25KHz頻率頻域展延327微秒。軟體頻率將上 述取樣轉移至3KHz並且隨後將其濾波(2KHz高斯)。3KHz 補償避免於取樣處理過程中產生一個殘餘時鐘別名產物。 上述軟體隨後覆蓋15個20微秒的取樣,由327微秒A to D取樣來計算一個混成20微秒平均等級。於302微秒與 327微秒之間的上述CW訊號會被消除並且於此期間軟體 會測量出殘餘雜訊。軟體會於上述20微秒平均取樣期間更 進一步地判斷上述共同路徑失真相位時間尖峰。此時序會 使用於設定使用於AWG/A to G之上述外部觸發器計時, 以用於上述測量訊號當共同路徑失真脈衝爲最大的時候。 經濟部智慧財產局員工消費合作社印製 當上述由AWG 201產生的訊號爲訊號暴衝時,A to D 208會取樣7.5MHz至12.5MHz向下轉換器214輸出,並 且上述軟體會計算出上述5MHz寬的混合基頻頻譜集中於 直流電源。上述軟體隨後去暴衝上述訊號,其藉由其混合 結合5MHz頻率暴衝將上述訊號多倍化。於圖六中,其顯 示一個斜波暴衝訊號之呈現方式,其方程式爲: W⑴=at + b 上述暴衝訊號可以藉由Rejw(t)t來表現,於其中R表示 16 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A7 B7 474071 五、發明說明() 數値之實數部分。 上述暴衝爲:Rej(atA2+bt) (請先閱讀背面之注意事項再填寫本頁) 考慮一個以延遲f傳輸與接收之暴衝: 接收之暴衝=RejW⑴(t-f) 爲了去暴衝上返回訊號,其會藉由其混合結合多倍化 解調變之暴衝=ejW⑴(t-f)*e-jW⑴t =e-jW(t)f =e-j(aft+bf) 上述於指數的第一部份爲一個頻率轉移,其與上述延 遲f成比例關係。上述指數的第二個部分爲一個固定相位 的轉動,其取決於上述延遲f。 上述去暴衝訊號隨後以快速傅立葉轉換(Fast Fourier Transform,FFT)以顯露出共同路徑失真光譜尖峰,其對應 至上述的範圍延遲。 當存在多重返回訊號,其具有不同的延遲例如rl,r2 ,r3····等,這些可以藉由FFT個別地確認,其於頻率fl, f2,f3等產生頻率尖峰。 經濟部智慧財產局員工消費合作社印製 軟體隨後會將光譜尖峰定址,上述光譜尖峰由FFT推 衍出來,其皆高於一個設定的門檻數値,並且執行窄頻 (2KHz)高斯濾波,接著相位轉動解調變。上述確切的濾波 器頻寬會設定以與上述取樣相稱,例如,上述解析頻寬的 一個整數倍數。上述相位轉動是利用一個最小平方法加以 測量的。此方法提供一個正確的副FFT元件頻率解析度, 17 張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐1 " 經濟部智慧財產局員工消費合作社印製 474071 A7 B7 五、發明說明() 其允許範圍判斷可以較1公尺爲佳’其取決於上述共同路 徑失真返回載波/訊號比率(Carrier to Noise density per hertz,C/No)。 A to D 208會同步地以AWG 201經由一個來自於計時 盒216之外部觸發訊號加以觸發。此同步觸發可以確保當 共同路徑失真訊號是最大時上述暴衝取樣會發生。其亦使 得多重暴衝訊號之相干向量加總在一起,改善上述共同路 徑失真返回之訊號對雜訊比率(Signal to Noise Rario,S/N) 。訊號對雜訊改善是直接地與相干偵測的次數相關聯的。 十個相干偵測會改善訊號對雜訊比率l〇dB,而1〇〇個偵測 則會改善訊號對雜訊比率2〇dB。 於當上述取樣器產生時序跳動與取樣無法同時地開始 於外部觸發進展的情況中,一個由上述AWG訊號中產生 雙重頻率之參考値2〇5(顯示於圖二中)會附加於上述向下轉 換器214輸出訊號。此參考値會等同於一個零延遲共同路 徑失真返回。上述軟體會濾波,相位解調變與測量其相位 轉動。此用來參考整個取樣的絕對時序,並且移除由上述取 樣器產生的外部觸發時序跳動現象。此參考値僅適用於暴 衝範圍偵測的期間。 上述位址偵測器200所使用的上述訊號處理軟體會產 生範圍測試訊號經由AWG 201,並且處理上述返回取樣以 計算上述返回延遲。一旦上述測試訊號產生之後,並且載 入AWG 201之中,訊號傳輸的過程中便不需要進一步地訊 號處理過程了。 18 ^&尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) " ------------4^ 裝-------—訂--------- (請先閱讀背面之注意事項再填寫本頁) 474071 A7 B7 五、發明說明() (請先閱讀背面之注意事項再填寫本頁) 上述返回訊號是由一個數位取樣器加以取樣的’並且 經由匯流排211傳送至上述處理器209,於其中其爲批次 處理過。當處理暴衝範圍訊號時,連續的取樣爲混合電壓 加總的,其產生--個相干加總値,具有改善過之訊號對雜 訊比率,其改善範圍正確度。 上述軟體亦提供製圖與列印、檔案整理以及測量取樣 之取回等功能。 一個距離計算器亦提供於本發明中以幫助操作員轉換 返回校準與共同路徑失真範圍之間的差異,成爲一個經由 線上放大器可容許的延遲之距離。此項功能大大地幫助上 述操作員於數個可選擇之項目中,因爲網路分支選擇最可 能的候選支線。 經濟部智慧財產局員工消費合作社印製 上述頻率轉換設備213的細部敘述將於以下參考圖四 與圖五詳細地加以描述。頻率轉換設備213之向上轉換器 400顯示於圖四中。其設計以用來轉換一個5MHz的訊號 至位於需要的頻率上之一個直立與一個倒轉之光譜訊號對 。於此情形中,上述個別的頻率將會位於681.5MHz與 741MHz的頻率上,其位於上述HFC下傳頻譜300中較高 頻譜的部分。 由訊號分離器204(顯示於圖二)出現於輸入404處的爲 一個位於5MHz之訊號。區域振盪器401爲一個工作於 24·75ΜΗζ,其混合上述輸入訊號至29·75ΜΗζ。旁波帶通 濾波器4〇2會將低頻率的部分濾波掉,並且讓29.75MHz 的訊號傳送至上述區域振盪器403,其工作頻率爲 19 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 474071 1 A7 B7 五、發明說明() 711.25MHz。此與上述29.75MHz訊號混合以產生一個較高 頻段與較低頻段之旁波帶訊號對,上述較低的旁波帶位於 681.5MHz上,而較高的旁波帶工作於741MHz的頻率上。 任何於上述第二個區域振盪器403中之頻率錯誤並不合理 ’因爲上述位於較高頻率與較低頻率旁波帶訊號之差異仍 然維持在59.5MHz。如同以上的敘述一般,此差異頻率將 造成上述共同路徑失真訊號其具有59·5ΜΗζ頻率,允許其 於網路上傳輸成爲返回訊號。 上述較高頻率之旁波帶U(或是先前所參考的f2)可以 表示爲以下的形式: U = Rej【(W102+W101+Win)t】 上述較低頻率之旁波帶L(或是先前所參考的fl)可以 表示爲以下的形式: L = Rej【(W102-W101-Win)t】 fl與f2隨後傳輸至上述電纜,花費了時間r dn以到 達一個共同路徑失真錯誤。上述較高與較低旁波段,U與 L個別地,可以被表示爲上述共同路徑失真錯誤的形式·· U = Rej【(W102+W101+Win)(t-rdn)】 L = Rej【(W102-W101-Win)(t-rdn)】 上述交互調變差異產物D(或是先前所參考的f3)則變 成: D = Rej【(2W101t+2Wint-2W101.rdn-2Win.rdn)】 =Rej【(2W101+2Win)(t-rdn)】於上述共同路徑失真錯 誤處。 20 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------------訂--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印制衣 474071 A7 B7 五、發明說明() 向下轉換器500接收此返回訊號D(或f3)於位於 59.5MHz之上述上傳延遲rup。上述共同路徑失真錯誤之2 載波混合動作造成上述頻率暴衝具有兩倍的原始AWG頻 寬輸入至上述向上轉換器400。向下轉換器500混合訊號 f3與其區域振盪器502,於49.5MHz的頻率。上述振盪器 502是由頻率雙倍於上述向上轉換器400之第一個區域振 盪器401所推導出來的,並且被相干性地鎖著。因此,任 何產生於區域振盪器401的頻率錯誤將會有效地於上述返 回訊號f3中移除,當其頻率加倍成爲相同的量時。此附帶 條件是上述區域振盪器頻率仍維持相位相干至位於一段到 達500微秒之程度上,其爲上述最大雙向返回延遲至上述 共同路徑失真錯誤的程度。此將可容忍程度的限制加諸於 上述區域振盪器401/區域振盪器502之相位雜訊頻譜,其 用於訊號旁波帶頻譜可以不需要高於位在ΙΚΗζ補償之-80dBc/Hz 與位在 ΙΟΚΗζ 補償之-90dBc/Hz。 上述向下轉換器500具有兩個可以選擇之IF濾波器頻 寬,每一個皆用於測量訊號。對於上述CW訊號,上述濾 波器爲25KHz頻寬,其位於1〇·7ΜΗζ上。對於暴衝訊號 ,上述濾波器爲5MHz頻寬位於10.ΟΜΗζ,意即7.5MHz 至 12.5MHz 上。 因此,於向下轉換器500之輸入504上,訊號D(或 f3)會被接收。訊號D已經由上述共同路徑失真傳輸至上述 位址偵測器200上,花費了 rup的時間。 因此位於輸入504處之訊號D爲: 21 ^紙張尺度適用中國國家標準(CNS>A4規格(21〇 X 297公釐) -----------裝---------訂-------1 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員Η消費合作社印製 474071 a7 B7 五、發明說明()Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Α7 Β7 V. Description of Invention () Source. The principle of the present invention is that the above-mentioned common path distortion serves as a hybrid element of the above-mentioned transmission signal. This will produce a group of interactive modulation products at each error, some of which will fall in the upload frequency band mentioned above. In a preferred embodiment, the aforementioned second-order degree difference products F1-F2 are detected in the upload frequency band on the frequency F3. It is better that the frequency selected above is located on the reserved frequency band to avoid interference with other services. Brief description of the figure Figure 1 shows a schematic diagram of a two-way information network. FIG. 2 is a simplified block diagram of an incorrect addressing device made according to a preferred embodiment of the present invention. Figure 3 shows the spectral design of the signal of the network in Figure 1. Figure 4 is a block diagram of an up-converter used in the device of Figure 2. Figure 5 is a block diagram of a downconverter used in the device of Figure 2. Figure 6 is a frequency vs. time diagram of a frequency burst signal generated by the device in Figure 2. Figure 7 is a graph of the frequency versus time of the storm signal in Figure 6 to show the effect of temperature on the accuracy of the range measurement. 6 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) ▼ 装 --------- Order ----- ------ ^ 9— 474071 A7 B7 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, the Consumer Cooperatives printed the invention description () Component symbol description 100 Two-way network 101 Switch 101a Transmitter 101b Receiver 102 End user 103 Downward fiber 104 Box device 104 Cable 105 Multiple plug interfaces 106 Multiple tap contacts 106a Contact 107 Multiple online amplifier 108 Return fiber 200 Fault locator 201 Arbitrary waveform generator (AWG) 202 Internal computer bus 203 Low-pass filter 204 Hybrid Converter 205 Dual Frequency Reference 206 Hybrid Converter 207 Hybrid Converter 208 Digital Sampling Card 209 Computer (Please read the note on the back before filling this page) This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm) 474071 A7 B7 Printed invention description printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy () 211 Computer Bus 212 Delay Line 213 Frequency Turn Device 214 Downstream conversion output signal 216 Timing box 218 Signal line 219 Frequency conversion device unit 300 Bandwidth allocated to the downstream signal 301 Bandwidth for video and telephone transmission on the network 302 Test signal 1 303 Test signal 2 304 Second-order difference product 305 Bandwidth reserved for uploading signals 400 Up-converter 401 Area oscillator 402 Band-pass filter 403 Area oscillator 404 Input 405 Output 500 Down-converter 501 Area oscillator 502 Area oscillator 503 Area oscillator (Please read the back first Note 2 of the note, please fill out this page again) This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 474071 A7 B7 V. Description of the invention () 504 input 505 output (please read the precautions on the back first) (Fill in this page) Detailed description of the preferred embodiment The two-way network 100 in FIG. 1 can provide cable TV and two-way telephone voice and data services between a switch 101 and many end users 102. The above network can contain several subnets for special purposes. In the network shown in FIG. 1, the network 100 includes an optical fiber network (area A) and a coaxial cable network (area B). The above network architecture is called a Hybrid Fibre Coaxial (HFC) network. Of course, this is not one of the actual examples of the present invention, and it can be applied to any two-way network. The above-mentioned two-way network has any combination of subnets, as it is familiar to those skilled in the art. The above-mentioned exchange 101 includes a transmitter 101a and a receiver 101b. The optical signal is transmitted to the optical fiber 103 through the box device 104. In the box device 104, the signal is converted into a radio frequency signal for transmission on a coaxial cable network (area B). Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the multiple tap contacts 106 are arranged on the cable 105, and the main cable 105 splits the signal to connect to an end user 102. Simultaneously arranged on the cable is a multi-line amplifier 107, which continuously amplifies the transmitted signal to calculate the degree of signal attenuation caused by the energy loss that occurs when the signal is transmitted on the cable 105. Since it is a two-way network, the end user can also send information to the switch 101 via the network 100 described above. The above-mentioned return signal will be printed on the 9th paper standard applicable to China National Standard (CNS) A4 (210 X 297 mm) A7 B7 printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Pass, and separate on the box device 104 to return to the fiber optic cable 108 and receive by the receiver 101b on the switch 101 above. In order to allow two-way transmission of signals on the same cable 105, the above transmission (downward) signal It will be separated from the return (upload) signal by spectral analysis. This method of spectral separation is shown in Figure 3. The area marked with 300 is the bandwidth allocated to the downlink signal, and the area marked with 305 is the bandwidth reserved for the upload signal. Area 301 in the figure indicates the bandwidth required for video, telephone voice, and data signals that are typically used for transmission over the network. The above area 301 may also be interspersed between fl and f2. The filters (not shown in the figure) set between the above-mentioned online amplifiers 107 are also scattered on the above-mentioned network 100, so as to avoid the signals with the downlink frequency from becoming the upload transmission, or the signals with the upload frequency instead Download transmission to achieve the effect of two-way amplification. As discussed above, errors may occur in any part of the network 100 that has many connectors or contacts. If an error occurs on a connector or a contact, a non-linear element will be generated. The above non-linear element will cause the product of signal rectification and cross-modulation. The above-mentioned interactive modulation products will greatly increase the level of system noise and reduce the quality of service performance. Because there are actually more than a thousand connection points 106 on a network, in a typical network 100, errors that occur at one of the contacts, such as contact 106a, can be very difficult to locate. Using the method and device of the present invention, the positioning of the above-mentioned error address will be very convenient. 10 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling out this page) Zero loading tr --------- ^ wi. A7 474071 B7___ 5. Description of the invention () Common Path Distortion (CPD) error bit (Please read the precautions on the back before filling this page) The address detector 200 is connected to the above network as shown in Figure 1. on. The above-mentioned address detector 200 generates two test signals individually at the frequencies fl and f2, and the two frequencies are within the bandwidth allocated to the above-mentioned downlink signal. The two test signals are labeled 302 and 303 individually in Figure 3. It should be noted that the above-mentioned frequencies fl and f2 are separated by the spectrum in the bandwidth 301. The above-mentioned bandwidth 301 is usually used for ordinary traffic to avoid interference. The test signals Π and f2 are transmitted on the network 100 through the optical fiber cable 103, and are converted into radio frequency signals on the box router 104, and are distributed on the entire cable network 105. When the shunt contact 106a is reached, it exhibits non-linear characteristics due to an error. The signals fl and f2 will produce different degrees of interactive modulation products, including a second-order difference product f3. The above-mentioned signals fl and f2 will be selected so that the above-mentioned second-order difference product f3 will fall on one of the frequencies allocated to the uploaded signal. The above-mentioned second-order difference product f3 (return signal) is marked as 304 in FIG. It can be seen that it is located between the above upload bandwidth 305. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the return signal f3 is uploaded and transmitted to the switch 101, where it is detected by the wrong address detector 200. The address detector 200 basically measures the time difference between the modulation of the return signal f3 and the modulation of the original test signals fl and f2. The distance between one switch 101 and one contact 106a can be determined by the time difference, so it is convenient to detect the wrong address, or the common path is wrong. 11 National Standard (CNS) A4 Specification (210 X 297 mm) '' Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 474071 A7 B7 V. Description of the invention () Detecting the wrong address. An actual position and distance are obtained by comparing the measured time difference with a database containing the time of calibration and its corresponding node address. The above database is built using a range calibrator, which is used to measure and calibrate the return delay to the special address on the coaxial cable portion of the HFC network 100. The above range calibrator is a field mobile test box, which is connected to the customer shunt node, and is preferably transmitted near the above-mentioned online amplifier. A log table is maintained for use by the nodes with a return calibration delay on the known nodes. This serves as a marker to generate a "range map" of the network, and will allow common path distortion errors to be reasonably and correctly located within a limited range on the coaxial cable when it is detected. In order to "range map" a required position in the above network, the above range calibrator will mix the two range signals (at 681.5MHz and 741MHz) and inject the two carrier mixed products at 59.5MΗζ to the above upload In the spectrum. This returned product is a frequency band filtered into its spectrum 57-62MHZ. The above range calibrator includes an on-line phase timing controller which enables the above-mentioned return 59.5MHz upload signal to be paused (2.5 microseconds) and adjusted to be located in a suitable area on the 20 microsecond line segment. With the above operation, it allows the return signal to be moved away from the actual common path distortion error by “phase time”, so that the above ranges can be measured independently for each, and whether they are located in the same Space location. Because of the type of line branch architecture of the network, a range measurement will not be 12 @ 张 码 量 adapted to China National Standard (CNS) A4 specifications (210 X 297 mm) " " ---------- -Install -------- Order --------- (Please read the precautions on the back before filling out this page) 474071 A7 B7 V. Description of the invention () will uniquely address the above errors. The above-mentioned erroneous shunts or branches will have to be addressed by signal tracking. However, a resolution in the range above several meters will be helpful for the addressing of common path distortion errors, because errors usually occur at the shunt junction 106 or the in-line amplifier 107 and are not located in the middle. This correctness makes it possible for the candidate branch 105 to be rejected when the error will be addressed in the middle position area. It is best if it is only suitable for this example when the above return signal f3 is a difference product of fl and f2. Since the uploading (returning) bandwidth is a network architecture that is located at a higher frequency band than the downloading frequency band, the returning signal f3 may be the sum of fl and f2, or any other suitable product. The function of the above-mentioned error address detector 200 will be described in more detail below with reference to FIG. 2. The above-mentioned error address detector 200 is operated using a batch sampling signal processing software. The above program is interconnected via an internal computer bus 202 and an Arbitrary Waveform generator (AWG) 201 and a high-speed analog to digital signal sampling card (A to D) 208. The above AWG201 becomes a signal generator, and the above A to D 208 is a receiver. The customer-built and constructed frequency conversion equipment 213 (which will be described in more detail later with reference to Figures 4 and 5) is connected between the above-mentioned AWG / A to D and the above-mentioned network 100 to transfer signals to the correct On the spectrum. The measured signal is generated by software and loaded into the AWG201, which is set to generate a signal between the band 3.75MHz and 6.25MHz. 13 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling out this page) £! Order · —! Reference. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 474071 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention () The above procedure for detecting an incorrect address involves two steps. There is an initial step that must be performed first, followed by the actual measurement step. The above initial steps are used to determine the timing of the trigger signal to A to D208, so that it is sampled only when a common path distortion error pulse wave appears. It has been found that the above common path distortion error is an amplitude modulation performed at the frequency of the transmission line. The pulse wave rises for about two microseconds in each duty cycle or half of the main duty cycle. In order to perform this initial step, a continuous wave (Ccmtimious Wave, CW) signal will be output at a frequency of 5.35015MHz. It will be transmitted as a sequence of 184 bursts, lasting approximately 301.4 milliseconds. Preferably, this initial step described above is required only when the common path distortion error is actually modulated by an external signal. In this case, 90 volt AC, 50 Hz power will be supplied to the entire coaxial cable 105, which will modulate any common path distortion error signals. In other cases, a different initial step may be required to apply the special modulation form of the common path distortion error pulse wave described above. However, in other cases, the common path distortion error pulse wave may not have any external modulation effect, so the above initial steps are not needed at all. When the above actual measurement steps are performed, a linear burst signal in the frequency band of 3.75 MHz to 6.25 MHz is generated. This signal is synthesized at 32789 points at a frequency of 20 MHz. A complete cycle, called a surge, will last for 1.6384 microseconds. Multiple surges are used. The above AWG201 signal will be transmitted to the up-converter 500, which will generate two output signals Π and f2, separated by 59.5MΗζ. One of the news 14 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) " (Please read the precautions on the back before filling this page) ▼ 装 -------- Order- -------- · A7 B7 474071 V. Description of the invention () The signal is upright on the spectrum, and the other signal is inverted on the spectrum. These signals will be injected (218) into the network 100 above, and transmitted to the network until it finds the error 106a, resulting in a group of interactive modulation products. Among them is a second-order difference product fl-f2 (element 304 in Fig. 3). The above-mentioned second-order product (f3) will carry dual frequency modulation of the fl and f2 signals, because one of the signals is spectrally inverted. Since the signal f3 has a frequency in the bandwidth (305) allocated to the upload signal, it will be transmitted to the switch 101 via the entire network 100 described above, and enter (219) the frequency conversion device 213. The downconverter 400 converts a 57MHz to 62MHz frequency band (including the signal f3 at 59.5MHz) to 7.5MHz to 12.5MHz and transmits it to A to D 208. A low-pass filter (6.5MHz) 203 rejects aliased clock products from AWG201. The hybrid converters 204, 206 and 207 provide signal separation or summing. The sampling of the signal completed by A to D above is controlled by rotation, and uses a two-pulse interleaved sampling technique (published in June 18, IREE 1998), which uses 25 billionths of a second Delay line 212. The two interleaved samples are downloaded to a personal computer PC 209, where the signal processor software converts the sampled 10 MHz signal into a composite baseband spectrum. The above A to D sampling is initiated by a trigger signal from the timing box 216. An internal delay equal to one surge (1.6348 microseconds) trigger will be used to allow network transmission delay. When a sampling signal uses a 5MHz sampling frequency, this will cause the tail of Burst 1 to burst by 15 $ 3's Zhang I degrees to apply the Chinese National Standard (CNS) A4 specification (210 X 297 mm) " "- --------- Install --- I ---- Order --------- ^ 9. (Please read the notes on the back before filling this page) Printed by the Consumer Cooperative 474071 A7 B7 V. Description of Invention () (Please read the notes on the back before filling this page) The first part of Wave 2. Because all the surges are the same, this will be the same as a time domain-package alias sampling signal. If the delay trigger is not used, the front end of the sampling will not have any signal. When the signal generated by the above AWG201 is one CW, A to D 208 will sample the 10.7MHz CW at 25000 sample pairs per second, and the above signal processing will convert it to a mixed base frequency and focus on DC The power supply has a frequency domain of 25KHz with a spread of 327 microseconds. The software frequency transfers the above sampling to 3KHz and then filters it (2KHz Gauss). 3KHz compensation avoids a residual clock alias product during the sampling process. The software then covered 15 samples of 20 microseconds, and 327 microseconds A to D samples were used to calculate an average level of 20 microseconds. The above CW signal between 302 microseconds and 327 microseconds will be eliminated and the software will measure the residual noise during this period. The software will further judge the common path distortion phase time spike during the 20 microsecond average sampling period. This timing will be used to set the timing of the external trigger used in AWG / A to G for the above measurement signal when the common path distortion pulse is the maximum. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. When the signal generated by the AWG 201 is a signal burst, A to D 208 samples the 7.5MHz to 12.5MHz downconverter 214 output, and the software calculates the 5MHz width. The mixed fundamental frequency spectrum is focused on DC power. The software then deburses the signal, which multiplies the signal by mixing and combining a 5MHz frequency burst. In Figure 6, it shows the presentation of a ramp wave impulse signal. Its equation is: W⑴ = at + b The above impulse signal can be expressed by Rejw (t) t, where R means 16 paper sizes. China National Standard (CNS) A4 specification (210 X 297 mm) A7 B7 474071 V. Description of the invention () The real part of the number. The above impulse is: Rej (atA2 + bt) (Please read the notes on the back before filling in this page) Consider a impulse transmitted and received with a delay of f: Received impulse = RejW⑴ (tf) Return the signal, which will use its mixing and multiplying demodulation burst = ejW⑴ (tf) * e-jW⑴t = e-jW (t) f = ej (aft + bf) in the first part of the index Is a frequency shift, which is proportional to the delay f described above. The second part of the exponent is a fixed-phase rotation, which depends on the delay f. The above-mentioned de-storming signal is then subjected to a Fast Fourier Transform (FFT) to reveal a common path distortion spectrum peak, which corresponds to the above-mentioned range delay. When there are multiple return signals, which have different delays such as rl, r2, r3, etc., these can be confirmed individually by FFT, which generates frequency spikes at frequencies fl, f2, f3, and so on. The software printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs will then address the spectral peaks, which are derived from the FFT, which are all higher than a set threshold 値, and perform narrow-band (2KHz) Gaussian filtering, then phase Turn demodulation. The exact filter bandwidth is set to match the sampling, for example, an integer multiple of the analytical bandwidth. The phase rotation is measured using a least square method. This method provides a correct frequency resolution of the secondary FFT component, 17 scales are applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm 1 " printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 474071 A7 B7 V. Invention Explanation () The allowable range judgment can be better than 1 meter. It depends on the common path distortion return carrier / signal ratio (Carrier to Noise density per hertz, C / No). A to D 208 will synchronously use AWG 201 It is triggered by an external trigger signal from the timing box 216. This synchronous trigger can ensure that the above-mentioned burst sampling will occur when the common path distortion signal is the largest. It also makes the coherent vectors of multiple burst signals sum up to improve The signal-to-noise ratio (S / N) returned by the above common path distortion. The signal-to-noise improvement is directly related to the number of coherent detections. Ten coherent detections will improve the signal-to-noise ratio. The signal ratio is 10dB, and 100 detections will improve the signal-to-noise ratio by 20dB. When the above-mentioned sampler generates timing jitter and sampling cannot be performed at the same time In the case of externally triggered progress, a reference 値 205 (shown in Figure 2) which generates a double frequency from the above AWG signal will be added to the above down converter 214 output signal. This reference 値 will be equivalent to a Zero-delay common path distortion returns. The above software will filter, phase demodulate and measure its phase rotation. This is used to refer to the absolute timing of the entire sample, and removes the externally triggered timing jump caused by the sampler. Only applicable during the period of burst detection. The signal processing software used by the above address detector 200 will generate a range test signal via AWG 201, and process the return sample to calculate the return delay. Once the test signal is generated After that, it is loaded into AWG 201, and no further signal processing is required during the signal transmission. 18 ^ & The standard is applicable to China National Standard (CNS) A4 (210 X 297 mm) "- ---------- 4 ^ Install --------- Order --------- (Please read the precautions on the back before filling this page) 474071 A7 B7 V. Invention Description ) (Please read the notes on the back before filling this page) The above return signal is sampled by a digital sampler 'and transmitted to the above processor 209 via bus 211, where it is batch processed. When processed For burst range signals, continuous sampling is mixed voltage summation, which produces a coherent sum total with an improved signal-to-noise ratio and improved range accuracy. The above software also provides mapping and printing , File organization, and retrieval of measurement samples. A distance calculator is also provided in the present invention to help the operator switch the difference between the return calibration and the common path distortion range to a distance that is tolerable by the online amplifier. This feature greatly assists the above-mentioned operator in several selectable projects because the network branch selects the most likely candidate branch. Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs The detailed description of the above-mentioned frequency conversion device 213 will be described in detail below with reference to FIGS. 4 and 5. The up-converter 400 of the frequency conversion device 213 is shown in FIG. It is designed to convert a 5MHz signal to an upright and an inverted spectral signal pair at the desired frequency. In this case, the individual frequencies mentioned above will be located at frequencies of 681.5 MHz and 741 MHz, which will be located in the higher spectrum portion of the HFC downlink spectrum 300 described above. Appearing at the input 404 by the demultiplexer 204 (shown in Figure 2) is a signal at 5MHz. The regional oscillator 401 is a 24.75 MHz unit which mixes the above input signals to 29.75 MHz. The side-wave band-pass filter 402 will filter out the low-frequency part, and let the signal of 29.75MHz be transmitted to the above-mentioned regional oscillator 403. Its operating frequency is 19. This paper standard is applicable to China National Standard (CNS) A4 specification ( 210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 474071 1 A7 B7 V. Description of the invention () 711.25MHz. This is mixed with the above-mentioned 29.75MHz signal to generate a sideband signal pair of a higher frequency band and a lower frequency band. The lower sideband is located at 681.5MHz, and the higher sideband works at a frequency of 741MHz. Any frequency error in the above-mentioned second area oscillator 403 is unreasonable, because the above-mentioned difference between the sideband signal at the higher frequency and the lower frequency is still maintained at 59.5MHz. As described above, this difference frequency will cause the above common path distortion signal to have a frequency of 59.5 MHz, allowing it to be transmitted on the network as a return signal. The higher frequency sideband U (or f2 previously referred to above) can be expressed as the following form: U = Rej [(W102 + W101 + Win) t] The lower frequency sideband L (or The previously referenced fl) can be expressed in the following form: L = Rej [(W102-W101-Win) t] fl and f2 are then transmitted to the above cable, and it takes time r dn to reach a common path distortion error. The above higher and lower sidebands, U and L individually, can be expressed as the above common path distortion error form. U = Rej [(W102 + W101 + Win) (t-rdn)] L = Rej [( W102-W101-Win) (t-rdn)] The above-mentioned interactive modulation difference product D (or f3 previously referred to) becomes: D = Rej [(2W101t + 2Wint-2W101.rdn-2Win.rdn)] = Rej [(2W101 + 2Win) (t-rdn)] is at the above common path distortion error. 20 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ------------------- Order --------- ( Please read the precautions on the back before filling in this page) Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 474071 A7 B7 V. Description of the invention () The down converter 500 receives this return signal D (or f3) at 59.5MHz The above upload is delayed rup. The 2 carrier mixing operation of the common path distortion error described above causes the frequency burst to have twice the original AWG bandwidth input to the up-converter 400. The down-converter 500 mixes the signal f3 with its regional oscillator 502, at a frequency of 49.5 MHz. The above-mentioned oscillator 502 is derived from the first area oscillator 401 having a frequency doubled by the above-mentioned up-converter 400, and is coherently locked. Therefore, any frequency error generated in the area oscillator 401 will be effectively removed from the above-mentioned return signal f3 when its frequency is doubled to the same amount. This condition is that the above-mentioned regional oscillator frequency still maintains phase coherence to a level of up to 500 microseconds, which is the above-mentioned maximum two-way return delay to the above-mentioned common path distortion error. This puts the limit of the tolerance level on the phase noise spectrum of the above-mentioned regional oscillator 401 / regional oscillator 502, which can be used in the sideband spectrum of the signal. -90dBc / Hz is compensated at 10KΗζ. The above down-converter 500 has two selectable IF filter bandwidths, each of which is used to measure a signal. For the above-mentioned CW signal, the above-mentioned filter has a bandwidth of 25 KHz, which is located at 10.7 MHz. For a burst signal, the above-mentioned filter has a 5MHz bandwidth located at 10.0MHz, meaning 7.5MHz to 12.5MHz. Therefore, at the input 504 of the down converter 500, the signal D (or f3) will be received. The signal D has been transmitted from the common path distortion to the above-mentioned address detector 200, and it takes rup time. Therefore, the signal D at the input 504 is: 21 ^ The paper size applies the Chinese national standard (CNS > A4 specification (21〇X 297 mm)) ----------- install ------- --Order ------- 1 (Please read the notes on the back before filling out this page) Printed by a member of the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 474071 a7 B7 V. Description of Invention

Rej【(2W101+2Win)(t-rdn-rup)】 上述區域振邊器於網路傳輸延遲之後將會有相位轉動 。上述向下轉換器500會減去上述區域振盪器,因此上述 負頻率的部分便會使用到。 = >Rej【(-2W101)(t_rdn-rup)】 上述來自於上述向下轉換器之訊號則變爲:Rej [(2W101 + 2Win) (t-rdn-rup)] The above-mentioned regional edger will have a phase rotation after the network transmission delay. The above down-converter 500 subtracts the above-mentioned area oscillator, so the above-mentioned negative frequency portion is used. = > Rej [(-2W101) (t_rdn-rup)] The above signal from the above downconverter becomes:

Rej 【(2W101+2Win)(t-rdn,rup)】*Rej 【(_2W101)(t-rdn,rup)】Rej [(2W101 + 2Win) (t-rdn, rup)] * Rej [(_2W101) (t-rdn, rup)]

Rej【(2Win)(t-rdn-rup)】 因此上述向下轉換器之輸出爲精確地頻率加倍上述輸 入訊號至上述向上轉換器,其具有上述網路傳輸延遲。 溫度對於上述範圍測量之準確度之影響將於以下參考 圖七加以討論。 學術上對於訊號對雜訊硏究之工作顯示熱雜訊限制或 將正確之範圍至1至2個奈秒(nanoseconds)的範圍中, 其爲一個較可接受之幅度爲佳的程度。一般相信於數米及 在攝氏1〇至30度之溫度變化之下,於光纖與同軸電纜中 之熱擴散因素將會改變路徑的長度並且造成較大的不確定 性。 由上述CSM數位濾波器,上述因爲Cno產生之測量 不確定性顯示如下: f = 1/2【3/CNo.Tspan3】1/2 若將Tspan取代:Rej [(2Win) (t-rdn-rup)] Therefore, the output of the down-converter is to accurately double the input signal to the up-converter, which has the above-mentioned network transmission delay. The effect of temperature on the accuracy of the above range measurements will be discussed below with reference to Figure 7. The academic work on signal-to-noise research shows that the thermal noise limit or the correct range to the range of 1 to 2 nanoseconds is a more acceptable range. It is generally believed that under a few meters and a temperature change of 10 to 30 degrees Celsius, thermal diffusion factors in optical fibers and coaxial cables will change the length of the path and cause greater uncertainty. From the above CSM digital filter, the above measurement uncertainty due to Cno is shown below: f = 1/2 [3 / CNo.Tspan3] 1/2 If Tspan is replaced:

Tspan = N/Fspan,則 22 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -----------裝--------訂-----— (請先閱讀背面之注意事項再填寫本頁) 474071 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明() F= 1/2【3Fspan3/CNo.N3】1/2 如同可以由圖六看出的一般,其顯75—個Fchirp之頻 率轉換維持Tspan,上述轉換的幅度由圖七可得知: Fchirp/Tspan = F/T 因此 T = F.Tspan/Fchirp 其中上述F爲因爲雜訊所產生的頻率測量不確定性, 以及 T爲上述時間測量不確定性。 對於典型的數値,Fspan = 5MHz CNo = 10A6(60dB) N = 8192Tspan = N / Fspan, then 22 paper sizes are applicable to China National Standard (CNS) A4 (210 X 297 mm) ----------- installation -------- order-- ---— (Please read the precautions on the back before filling this page) 474071 A7 B7 Printed by the Consumer Consumption Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs V. Invention Description () F = 1/2 【3Fspan3 / CNo.N3】 1 / 2 As can be seen from Figure 6, it shows that 75-Fchirp frequency conversion maintains Tspan, and the amplitude of the above conversion can be known from Figure 7: Fchirp / Tspan = F / T So T = F.Tspan / Fchirp where The above F is the frequency measurement uncertainty due to noise, and T is the above-mentioned time measurement uncertainty. For a typical number, Fspan = 5MHz CNo = 10A6 (60dB) N = 8192

Tspan = 1.6384 ms 則·· T = 1.36 ns 以及 F = 4.16 Hz 以典型的雙向電纜傳輸於7.5 ns/m,一個1.36ns的T 等同於0.18公尺。 上述對於本發明的描述僅爲本發明的一個較佳的實施 例。其可以用不同的方式與方法改善本發明,如精通於本 領域者所了解的一樣。 23 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁)Tspan = 1.6384 ms then ... T = 1.36 ns and F = 4.16 Hz are transmitted at a typical bidirectional cable at 7.5 ns / m. A T of 1.36ns is equivalent to 0.18 meters. The foregoing description of the present invention is merely a preferred embodiment of the present invention. It can improve the invention in different ways and methods, as understood by those skilled in the art. 23 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page)

▼ · ϋ n ·ϋ ϋ ϋ^*&,、 n -ϋ -ϋ ·ϋ 1_1 ϋ ·1 I▼ · ϋ n · ϋ ϋ ϋ ^ * & ,, n -ϋ -ϋ · ϋ 1_1 ϋ · 1 I

Claims (1)

474071 \Ρ 、丨Β8 | C8 八H D8 六、申請專利範圍 1. 一種用於決定於一個雙向網路中之一個或多個故 障相關聯之傳輸時間的延遲的方法,其包括下列步驟: . a)將訊號F1與訊號F2導入上述網路之下傳頻道,訊 修^爾 系#號F1與訊號F2每個皆具有一個定義之調變與特別之頻道 ,使得上述訊號會於上述網路中的下傳頻道中傳輸; 心 b)監視上傳頻道以偵測訊號F3,於其中,訊號F3是 ~ 一個選擇之訊號F1與訊號F2之混合產物; t [ c)以訊號F1與訊號F2來與上述偵測到之訊號F3相關 7 Μ ^ >聯,以便判斷與一個或多個CPD故障相關之時間延遲。 」,丨:! ϋ 2.如申請專利範圍第1項之方法,於其中,由上述雙 ° ¥向網路已經以一個相對應之範圍數値映射至相關聯一個已 決定之時間延遲。 3·如申請專利範圍第1項或第2項中任一項之方法, 於其中,上述訊號F3是因爲F1與F2於上述雙向網路中 進行一個非線性元件所形成的產物。 4·如申請專利範圍第3項之方法,於其中,上述非線 性元件爲一個於上述雙向網路中所產生之共同路徑失真。 5.如申請專利範圍第4項之方法,於其中,上述上傳 頻段佔據較上述下傳頻段較低的頻率。 6·如申請專利範圍第5項之方法,於其中,上述訊號 F3爲上述訊號F1與F2之二階差分乘積。 7·如申請專利範圍第6項之方法,於其中,至少上述 雙向網路中的一部份爲一個同軸電纜網路。 8·如申請專利範圍第1項之方法,於其中,上述方法 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) _ M·· BMB MB H·· aaiB IBM MB ·· BOB 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 474071 六、申請專利範圍 更包括一個初始步驟以適應上述訊號F3上之外部調變效應 〇 9. 如申請專利範圍第7項之方法,於其中,上述主要 的電源是於上述同軸電纜網路上傳輸的。 10. 如申請專利範圍第8項之方法,於其中,上述初始 步驟提供計時訊號以適應藉由傳輸主要電源之上述訊號F3 的調變效應。 11_一種用於決定一個位於一個具有一個上傳頻寬與一 個下傳頻寬之雙向網路之傳輸延遲的設備,該設備包括: 一個訊號產生器部份,其用於產生訊號F1與F2,其 具有一個已定義之調變與特定的頻率頻段位於上述下傳頻 寬之間; 一個訊號偵測器,其用於偵測訊號F3,於其中,訊號 F3是一個選擇之訊號F1與F2的混合產物;以及 一個用於相關聯上述偵測出之訊號F3與訊號F1及F2 之訊號關聯器,以判斷與上述雙向網路上一個或多個錯誤 相關係之時間延遲。 12. 如申請專利範圍第11項之設備,於其中,上述訊 號產生器包括一個任何形式波前產生器(Arbitrary Waveform generator,AWG)與一個第一個頻率轉移設備以 產生訊號F1與F2。 13. 如申請專利範圍第12項之設備,於其中,上述第 一個頻率轉移設備爲一個向上轉換器。 M·如申請專利範圍第13項之設備,於其中,上述任 2 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) (請先閱讀背面之注意事項再填寫本頁) 1_1 ϋ 1 emmmm ϋ I 1 1 i MMml i474071 \ P 丨 Β8 | C8 Eight H D8 VI. Patent Application Scope 1. A method for determining the transmission time delay associated with one or more faults in a two-way network, which includes the following steps:. a) The signal F1 and the signal F2 are introduced into the above-mentioned network transmission channel, and the signal # 1 F1 and the signal F2 each have a defined modulation and special channel, so that the above signal will be on the above network Transmission in the download channel; heart b) monitor the upload channel to detect the signal F3, where the signal F3 is a mixed product of a selected signal F1 and signal F2; t [c) with signal F1 and signal F2 Corresponds to 7 M ^ > associated with the detected signal F3 above to determine the time delay associated with one or more CPD failures. ", 丨:! ϋ 2. The method according to item 1 of the scope of patent application, in which the above-mentioned double ° ¥ to the network has been mapped with a corresponding range number 至 to an associated time delay that has been determined. 3. The method according to any one of the first or second scope of the patent application, wherein the above-mentioned signal F3 is a product formed by F1 and F2 performing a non-linear element in the bidirectional network. 4. The method according to item 3 of the patent application, wherein the non-linear element is a common path distortion generated in the two-way network. 5. The method according to item 4 of the patent application range, wherein the uploading frequency band occupies a lower frequency than the downloading frequency band. 6. The method according to item 5 of the patent application range, wherein the signal F3 is a second-order difference product of the signals F1 and F2. 7. The method according to item 6 of the patent application scope, wherein at least a part of the two-way network is a coaxial cable network. 8 · If you apply for the method of item 1 of the patent scope, in which, the above method applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm). (Please read the precautions on the back before filling this page) _ M ·· BMB MB H ·· aaiB IBM MB ·· BOB Printed by the Consumer Property Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 474071 6. The scope of patent application includes an initial step to adapt to the external modulation effect on the above signal F3 〇9. If the method of the scope of patent application No. 7 is applied, wherein the above-mentioned main power source is transmitted on the above-mentioned coaxial cable network. 10. For the method of claim 8 in the scope of patent application, in which the above initial step provides a timing signal to accommodate the modulation effect of the above signal F3 by transmitting the main power source. 11_ A device for determining a transmission delay in a two-way network with an upload bandwidth and a downlink bandwidth, the device includes: a signal generator section for generating signals F1 and F2, It has a defined modulation and a specific frequency band located between the above mentioned transmission bandwidths; a signal detector for detecting signal F3, where signal F3 is a selected signal F1 and F2 A mixed product; and a signal correlator for correlating the detected signal F3 with the signals F1 and F2 to determine a time delay associated with one or more errors on the two-way network. 12. As for the device under the scope of patent application No. 11, in which the above signal generator includes an Arbitrary Waveform generator (AWG) and a first frequency shifting device to generate signals F1 and F2. 13. For the device in the scope of patent application No. 12, in which the above-mentioned first frequency transfer device is an up-converter. M · If you apply for the equipment in the 13th scope of the patent application, in which any of the above 2 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) (Please read the precautions on the back before filling this page) 1_1 ϋ 1 emmmm ϋ I 1 1 i MMml i 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 474071 六、申請專利範圍 何形式波前產生器AWG提供一個5MHz訊號至上述向上 轉換器之一個輸入處。 15. 如申請專利範圍第14項之一種設備,於其中,上 述向上轉換器將上述5MHz訊號轉換,以產生出分開 59·5ΜΗζ之訊號F1與F2。 16. 如申請專利範圍第13項至第15項中任一項之設備 ,於其中,上述向上轉換器包括一個第一個區域振盪器與 一個第二個區域振盪器。 17. 如申請專利範圍第16項之設備,於其中,上述第 一個區域振盪器振盪於24.75MHz,並且上述第二個區域振 還器振還於711.25MHz。 18. 如申請專利範圍第17項之設備,於其中,上述訊 號偵測器包括一個第二個頻率轉移設備,以接收訊號F3, 以及一個取樣設備,以取樣接收到之訊號F3。 19. 如申請專利範圍第18項之設備,於其中,上述第 二個頻率轉移設備爲一個向下轉換器。 20. 如申請專利範圍第19項之設備,於其中,上述向 下轉換器包括一個第三個區域振盪器。 21. 如申請專利範圍第20項之設備,於其中,上述第 三個區域振盪器振盪於上述第一個區域之振盪器振盪之兩 倍頻率上,並且相關聯性地鎖住於此頻率上。 22. 如申請專利範圍第21項之設備,於其中,上述第 三個區域振擾器振還於49.5MHz。 23. 如申請專利範圍第22項之設備,於其中,上述訊 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -1 1 I ^1 ^1 ϋ II 一夢口、I 1 .^1 I 1·1 ^1 ^1 ^1 I 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 474071 六、申請專利範圍 號產生器區域產生一個第一個初始訊號,其使用於提供上 述訊號偵測器的一個觸發訊號。 24. 專利範圍第23項之設備,於其中,上述AWG產 生上述第一個初始訊號,作爲一個連續波訊號。 25. 如申請專利範圍第24項之設備,於其中,上述訊 號產生器區域產生一個第二個測量訊號,由其中推導出相 關於一個或多個錯誤之時間延遲。 26. 如申請專利範圍第25項之設備,於其中’上述 AWG產生上述第二個初始訊號作爲一個頻率暴衝訊號。 (請先閱讀背面之注音?事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 474071 6. Scope of patent application What type of wavefront generator AWG provides a 5MHz signal to an input of the up-converter mentioned above. 15. For example, a device in the scope of patent application No. 14 in which the above-mentioned up-converter converts the above-mentioned 5 MHz signal to generate signals F1 and F2 separated by 59.5 MHz. 16. The device as claimed in any one of claims 13 to 15, wherein the up-converter includes a first region oscillator and a second region oscillator. 17. For the device under the scope of application for patent No. 16, in which the above-mentioned first regional oscillator oscillates at 24.75 MHz, and the above-mentioned second regional oscillator oscillates at 711.25 MHz. 18. As for the device under the scope of patent application No. 17, in which the signal detector includes a second frequency shifting device to receive the signal F3, and a sampling device to sample the received signal F3. 19. For the device in the scope of patent application No. 18, wherein the second frequency shifting device is a down converter. 20. The device in accordance with claim 19, wherein the down-converter includes a third area oscillator. 21. For the device in the scope of application for patent No. 20, in which the third region oscillator oscillates at twice the frequency of the oscillator in the first region, and is relatedly locked at this frequency . 22. For the device in the scope of application for patent No. 21, among them, the third zone vibrator mentioned above also vibrates at 49.5 MHz. 23. If you apply for the equipment in the scope of patent application No. 22, among which, the above-mentioned paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) -1 1 I ^ 1 ^ 1 ϋ II Yimenkou, I 1. ^ 1 I 1 · 1 ^ 1 ^ 1 ^ 1 I Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 474071 6. Scope of patent application The signal generator area generates a first initial signal, which is used to provide a trigger signal of the signal detector. 24. The device of the scope of the patent No. 23, in which the above-mentioned AWG generates the above-mentioned first initial signal as a continuous wave signal. 25. For the device in the scope of application for patent No. 24, in which the above-mentioned signal generator area generates a second measurement signal from which a time delay related to one or more errors is derived. 26. For the device in the scope of application for patent No. 25, in which the above-mentioned AWG generates the above-mentioned second initial signal as a frequency burst signal. (Please read the note on the back? Matters before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm)
TW089105312A 1999-03-24 2000-03-23 Coaxial cable fault locator TW474071B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AUPP9410A AUPP941099A0 (en) 1999-03-24 1999-03-24 Coaxial cable fault locator

Publications (1)

Publication Number Publication Date
TW474071B true TW474071B (en) 2002-01-21

Family

ID=3813606

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089105312A TW474071B (en) 1999-03-24 2000-03-23 Coaxial cable fault locator

Country Status (3)

Country Link
AU (1) AUPP941099A0 (en)
TW (1) TW474071B (en)
WO (1) WO2000057571A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928736A (en) * 2012-10-29 2013-02-13 罗森伯格(上海)通信技术有限公司 Signal processing method, unit and device as well as signal transmission system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415367B2 (en) 2003-05-20 2008-08-19 Arcom Digital, Llc System and method to locate common path distortion on cable systems
US7584496B2 (en) 2005-02-22 2009-09-01 Arcom Digital, Llc Method and apparatus for pinpointing common path distortion
US8548760B2 (en) 2008-09-17 2013-10-01 Jds Uniphase Corporation Detecting nonlinearity in a cable plant and determining a cable length to a source of the nonlinearity
DE102010015103A1 (en) * 2010-04-16 2011-10-20 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg A method for locating defective locations in an RF signal transmission path
DE102010015102A1 (en) * 2010-04-16 2011-10-20 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg A method for locating defective locations in an RF signal transmission path
DE102010046099A1 (en) * 2010-09-21 2012-03-22 Rohde & Schwarz Gmbh & Co. Kg Method and system for determining the place of origin of passive intermodulation products
US10897341B2 (en) * 2012-07-18 2021-01-19 Nokia Solutions And Networks Oy Detecting intermodulation in broadband communication affecting receiver sensitivity
US9826263B2 (en) * 2014-10-22 2017-11-21 Arcom Digital, Llc Detecting CPD in HFC network with OFDM signals
US9960842B2 (en) 2015-10-12 2018-05-01 Arcom Digital, Llc Network traffic-compatible time domain reflectometer
GB201704221D0 (en) 2017-03-16 2017-05-03 Ranplan Wireless Network Design Ltd Locating passive intermodulation fault sources
US10616622B2 (en) 2018-06-06 2020-04-07 Arcom Digital Patent, Llc Detection of CPD from signals captured at remote PHY device
US20210389361A1 (en) * 2018-10-22 2021-12-16 Dac System Sa Fault detecting system for coaxial transmission lines
US11082732B2 (en) 2019-08-07 2021-08-03 Arcom Digital Patent, Llc Detection of CPD using leaked forward signal
CN110412427A (en) * 2019-08-21 2019-11-05 成都信息工程大学 A kind of low-voltage power fault detection positioning system and fault detection method
CN112729884B (en) * 2020-12-22 2022-12-13 河北建设投资集团有限责任公司 Equipment fault diagnosis method and device based on big data

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1132265A1 (en) * 1983-05-04 1984-12-30 Предприятие П/Я Г-4335 Method of locating damage of power and communication line
JPS60176336A (en) * 1984-02-21 1985-09-10 Nippon Telegr & Teleph Corp <Ntt> Method for discriminating faulty section of repeating transmission line
US5381348A (en) * 1993-01-11 1995-01-10 Fluke Corporation Token ring local area network testing apparatus using time delay reflectory
US5682100A (en) * 1995-09-06 1997-10-28 Electric Power Research Institute Inc. System and method for locating faults in electric power cables
GB9524485D0 (en) * 1995-11-30 1996-01-31 Bicc Plc Device for interrogating an optical fibre network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928736A (en) * 2012-10-29 2013-02-13 罗森伯格(上海)通信技术有限公司 Signal processing method, unit and device as well as signal transmission system
CN102928736B (en) * 2012-10-29 2018-07-24 罗森伯格(上海)通信技术有限公司 A kind of signal processing method, unit, device and signal transmission system

Also Published As

Publication number Publication date
WO2000057571A1 (en) 2000-09-28
AUPP941099A0 (en) 1999-04-15

Similar Documents

Publication Publication Date Title
TW474071B (en) Coaxial cable fault locator
JP4750805B2 (en) Method and apparatus for high accuracy identification of common path strain source position
US8294469B2 (en) Passive intermodulation (PIM) distance to fault analyzer with selectable harmonic level
US8410786B1 (en) Passive intermodulation (PIM) distance to fault analyzer with selectable harmonic level
US6687632B1 (en) Testing of CATV systems
CN101490970B (en) Estimation of transmission line insertion loss
US9414126B1 (en) Passive time domain reflectometer for HFC network
US6934655B2 (en) Method and apparatus for transmission line analysis
US7460649B2 (en) Method and apparatus for single end loop testing for DSL provisioning and maintenance
US5949236A (en) Frequency domain reflectometer and method of compensating for transmission line attenuation
US8548760B2 (en) Detecting nonlinearity in a cable plant and determining a cable length to a source of the nonlinearity
US7126321B2 (en) Apparatus and method for measuring transmission delay time of a signal propagation path between printed circuit boards
US4275348A (en) Method of and system for measuring the transmission characteristics of four-terminal networks
EP3261343A9 (en) Interference signal recording device, and system and method for locating fault point of cable television network
Artale et al. A line impedance calculator based on a G3 PLC modem platform
CN109728862A (en) Coherent optical heterodyne communicatio measurement method of parameters, device based on double frequency modulation
US10924799B2 (en) Instrument and method for performing a sweep for noise in a cable network system
US20070197169A1 (en) Systems and methods for transmitter and channel characterization
US11362743B1 (en) Systems and methods for TDR using standing waves and an injected test signal
US5555507A (en) Method for detecting non-linear behavior in a digital data transmission path to be examined
Layer et al. Using quadrature modulation for precise fault location over wired communication channels
Cabanillas et al. Automated phase offset correction using reflectometry in fault detection systems
EP1051633A1 (en) Testing of catv systems
US3522391A (en) Transmission measuring method utilizing self-measuring techniques to determine transmission measurement errors due to imperfections of an automatic transmission measuring set
JP3412015B2 (en) Station error compensation method