TW386895B - Method for dusulfurizing Off-gases - Google Patents

Method for dusulfurizing Off-gases Download PDF

Info

Publication number
TW386895B
TW386895B TW087109447A TW87109447A TW386895B TW 386895 B TW386895 B TW 386895B TW 087109447 A TW087109447 A TW 087109447A TW 87109447 A TW87109447 A TW 87109447A TW 386895 B TW386895 B TW 386895B
Authority
TW
Taiwan
Prior art keywords
exhaust gas
item
scope
patent application
sulfur
Prior art date
Application number
TW087109447A
Other languages
Chinese (zh)
Inventor
Jan Adolf Lagas
Original Assignee
Stork Eng & Contractors Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stork Eng & Contractors Bv filed Critical Stork Eng & Contractors Bv
Application granted granted Critical
Publication of TW386895B publication Critical patent/TW386895B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The invention relates to a method for removing H2S from off-gases which contain at least 20% by volume of water vapor, comprising treating the off-gases at a temperature above the water dew point of the off-gases with an aqueous, alkaline solution under absorptin of the H2S, followed by subjecting the sulfide-containing solution formed to a biological oxidation of the sulfide.

Description

---""""" 五、發明説明() 1.85 體積% H2 0.36 體積% CO 2.82 體積% C02 60.28 體積% N2 0.61 mm% Ar 34.06 體積% H20 2 縣㈣。生物設備中生成之 本氣體經由-個補燃備與生物設備中所產 硫量爲156公斤/賴H 氣麟標準,其 生之硫:總量爲4395公斤/小時·^'促 將總去硫效率提高到99.93%。戌於酸鹽。爲了不得到任 在鹼液中有少量的S〇2轉化爲硫 何硫酸鹽的堆積,因而排放85公斤/小寸夕里.B、、 以等量鹼液補充之。 圖式之.牛要元件符號說明 1 管線 2 管線 3 加熱器 4 管線 5 反應器 6 管線 7 冷卻器 8 管線 9 吸收器 ------ 21 本紙適财藏^準(CNS) Α4· (21()><297公瘦~7 A7 B7 _ 五、發明説明(I ) 本發明係關於一種將包含高水蒸氣含量之排出氣體去 硫的方法。更特別的是,本發明包含一種用來降低硫回收 設備排出氣體之總硫含量的方法。 利用氧或含氧氣體,例如空氣,將硫化氫(h2s)部分氧 化,接著在催化劑存在下,將硫化氫生成之二氧化硫與剩 餘的硫化氫反應,而製備元素硫的方法,即爲所熟知的克 勞斯(Claus)製硫法。本方法常用於煉油廠及由天然氣回收 之硫化氫的處理上。傳統的克勞斯設備包括一個具燃燒室 的燃燒爐,即所謂的熱階段,接著是一些,通常二或三個 反應器,其中塡入催化劑。後面這些階段構成所謂的催化 階段。在燃燒室中,以一定量空氣,在約1200°C的溫度下 ,將進入之富含H2S氣流燃燒。空氣量則係根據以下反應 2 H2S + 3 〇2 2 H20 + 2 S02 (1) 而設定使得二分之一的h2s燃燒成so2。 在H2s的這種部份燃燒後,H2S的未反應部分(亦即約 存在量的三分之二)與所生成的so2,根據克勞斯反應: 4 H2S + 2 S〇2 4 HoO + 3 S2 (2) 而進一步大量反應。 因此,在熱階段中,約60%之H2S係轉化成元素硫。 來自燃燒室之氣體係在硫冷凝器中冷卻至約160°C,其中 所生成的硫冷凝下來,然後經由虹吸管流到硫貯槽中。接 著將未冷凝之氣體,其中H2S與S02的莫耳比仍爲2 : 1, 加熱至約250°C,並通過第一催化反應器,其中再次達到 (請先閱讀背面之注意事項再填寫本頁)--- " " " " " V. Description of the invention () 1.85 vol% H2 0.36 vol% CO 2.82 vol% C02 60.28 vol% N2 0.61 mm% Ar 34.06 vol% H20 2 counties. The amount of sulfur produced in the biological equipment through a supplementary combustion device and the biological equipment is 156 kg / L H. The standard sulfur produced is: the total sulfur is 4395 kg / hour. Sulfur efficiency increased to 99.93%. Stir in acid salt. In order to avoid the accumulation of a small amount of SO2 in the lye, which is converted into thiosulfate, it was discharged at 85 kg / sq. Mile. B, was supplemented with an equal amount of lye. Illustration of the symbol of the main components 1 pipeline 2 pipeline 3 heater 4 pipeline 5 reactor 6 pipeline 7 cooler 8 pipeline 9 absorber -------- 21 Paper suitable for storage ^ quasi (CNS) Α4 · ( 21 () < 297 male thin ~ 7 A7 B7 _ V. Description of the invention (I) The present invention relates to a method for desulfurizing an exhaust gas containing a high water vapor content. More particularly, the present invention includes a A method for reducing the total sulfur content of the exhaust gas from sulfur recovery equipment. Using oxygen or an oxygen-containing gas such as air to partially oxidize hydrogen sulfide (h2s), and then in the presence of a catalyst, the sulfur dioxide generated by the hydrogen sulfide and the remaining sulfur The reaction of hydrogen to produce elemental sulfur is known as Claus sulfur production method. This method is often used in refineries and the treatment of hydrogen sulfide recovered from natural gas. Traditional Claus equipment includes a A combustion furnace with a combustion chamber, the so-called hot stage, followed by some, usually two or three reactors, in which catalysts are incorporated. These latter stages constitute the so-called catalytic stage. In the combustion chamber, a certain amount of air At a temperature of about 1200 ° C, the incoming H2S-rich gas stream is burned. The amount of air is set according to the following reaction 2 H2S + 3 〇2 2 H20 + 2 S02 (1) so that one-half of the h2s burns into so2. After this part of H2s burns, the unreacted part of H2S (that is, about two thirds of the amount present) and the generated so2, according to the Claus reaction: 4 H2S + 2 S〇2 4 HoO + 3 S2 (2) and a further large amount of reaction. Therefore, in the hot stage, about 60% of the H2S system is converted into elemental sulfur. The gas system from the combustion chamber is cooled in a sulfur condenser to about 160 ° C, where the generated The sulfur condensed down, and then flowed into the sulfur storage tank through the siphon. Then the uncondensed gas, in which the molar ratio of H2S to S02 is still 2: 1, is heated to about 250 ° C, and passes through the first catalytic reactor, Which reached again (please read the notes on the back before filling this page)

本紙張尺度適用中囤國家標率(CNS ) Λ4規格(210X297公釐) ,經濟部智慧財產局員工消費合作社印製 S/86895This paper size applies to the national standard rate (CNS) Λ4 specification (210X297 mm) of the paper, printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs S / 86895

V ,/ 五、發明説明() 10 管線_ 11 反應器 12 管線 13 管線 14 分離器 15 管線 16 管線 17 管線 18 補燃器 19 煙囪 圖2 10 0 克勞斯設備 10 1 管線 10 2 吸收器 10 3 管線 10 4 反應器 10 5 管線 10 6 管線 1〇 7 泵 10 8 管線 10 9 分離器 . 11 0 管線 11 1 管線 11 2 管線. 22 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) A7 B7_______ 五、發明説明(\ ) 4H2S + 2 S02 ^ 4 H2〇 + 6/n 311的平衡。 接著來自本催化反應器之氣體於硫冷凝器中再次冷卻 ,然後將所生成之液態硫回收,而剩餘氣體則於再加熱之 後,通過第二催化反應器。 根據催化階段的數目’傳統克勞斯設備中的硫回收百 分比總計達94-97¾。因此,仍有一些H:2S與S〇2留下來。 克勞斯法的一項重要限制就是:處理氣體中的水含量 隨著H2S轉化成硫的進行而增加。 由於這種水蒸氣含量的增加,同時H2S與S〇2濃度的 降低,使克勞斯反應(2)的平衡向左移動,因而克勞斯反應 在熱力學上受到限制。爲了盡可能除去這項限制’製程氣 體中水蒸氣的冷凝是有必要的。然而,因爲水露點遠低於 硫的.凝固點,所以在克勞斯法中水蒸氣的冷凝方面遇到無 法克服的困難,例如因硫凝固而引起的阻塞和因生.成症硫 酸而引起的腐蝕。 ^ 過去,克勞斯法的排出氣體係於一個補燃器 (afterburner)中燃燒。然而’考慮到愈來愈嚴可的環保要求 1 ,所以不再准許使用。 ^ 這點引致克勞斯法的改良’和克勞斯排出氣體除去方 I 法的開發。克勞斯法的一項已知改良係超級克勞斯 ^ (SUPERCLAUS®)法,由此克勞斯法的效率從94-97%增加 # 到大於99%。超級克勞斯法係說明於超級克勞斯克 I 斯設備限制的解答(SUPERCLAUS®, the answer to Claus I plant limitation)’,,刊於1988年10月25日於加拿大亞伯 _ _4___________ 本紙张尺度適用中國國家標率(CMS ) A4规格(210X297公釐) -------;------ (請先閲讀背面之注意事項再填寫本頁) ___.___,丁______--------- i - I m · 五、發明説明() 386895 A7 B7 3 4 線線 管管 (請先閱讀背面之注意事項再填莴本頁) --¾ 4 經濟部智慈財產局員工消費合作社印製 23 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇Χ297公釐) A7 B7 五、發明説明(”) 達省愛德蒙頓市的第38屆加拿大化學工程硏討會的會刊° 在SUPERCLAUS®-99法中,熱階段與克勞斯反應器中 的反應(2)係以過量H2S操作’如此來自於最後克勞斯反應 器的氣體中,H2S含量約爲1體積%,而S02含量約〇_〇2 體積%。在接下來的反應器階段’根據以下反應: 2 H2S + 02 2 H20 + 2/n Sn (3) 在一種特殊選擇性氧化催化劑的存在下,將H2S選擇 性地氧化爲元素硫。這些催化劑係說明於例如歐洲專利 0242920 與 0409353 ° 如前述,愈來愈嚴苛的環保要求不只引致克勞斯法的 改良,還有克勞斯尾氣(tailgas)處理方法的開發,這些都是 爲了將硫回收設備之排出氣體進一步除去硫。 .多數克勞斯尾氣處理方法利用到一種氫化反應器,也 稱爲還原反應器,其中以氫(H2)或一種還原氣體,其包含 例如氫與一氧化碳,而將so2、硫化羰(COS)、二硫化碳 (CS2)、硫蒸氣及所有夾帶的硫液滴(硫霧)轉化爲硫化氫。 然後以溶液吸收,或利用催化劑在氣相轉化爲元素硫 ,而除去硫化氫。 目前只有少數尾氣處理方法已開發在克勞斯尾氣燃燒 後’自煙自氣體(chimney gas)吸收S〇2。這些處理方法並未 有進一步的討論。克勞斯尾氣處理方法中,於氫化之後以 溶液吸收H2S產物者,最爲大眾熟知的有3(:0丁、:8811-Stretford、BSR-MDEA、Trencor-M 與 Sulften。這些處理方 法都說明於B. G. Goar出版:“尾氣潔淨方法之回顧(Tail 5 本紙張尺度適刖中國國家標準(CNS ) Λ4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)V, / V. Description of the invention (10) Pipeline 11 reactor 12 pipeline 13 pipeline 14 separator 15 pipeline 16 pipeline 17 pipeline 18 afterburner 19 chimney diagram 2 10 0 Claus equipment 10 1 pipeline 10 2 absorber 10 3 Line 10 4 Reactor 10 5 Line 10 6 Line 1 07 Pump 10 8 Line 10 9 Separator. 11 0 Line 11 1 Line 11 2 Line. 22 (Please read the notes on the back before filling this page) This paper The scale applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) A7 B7_______ V. Description of the invention (\) 4H2S + 2 S02 ^ 4 H2〇 + 6 / n 311 balance. Then, the gas from the catalytic reactor is cooled again in the sulfur condenser, and then the generated liquid sulfur is recovered, and the remaining gas is passed through the second catalytic reactor after being reheated. Depending on the number of catalytic stages, the percentage of sulfur recovery in conventional Claus plants amounts to 94-97¾. Therefore, some H: 2S and S02 remain. An important limitation of the Claus method is that the water content of the process gas increases as H2S is converted to sulfur. Due to this increase in water vapor content and the decrease in H2S and S02 concentrations, the equilibrium of Claus reaction (2) shifts to the left, so the Claus reaction is thermodynamically limited. In order to remove this limitation as much as possible, the condensation of water vapor in the process gas is necessary. However, because the dew point of water is much lower than the freezing point of sulfur, the condensation of water vapor in the Claus process has encountered insurmountable difficulties, such as the blockage caused by sulfur solidification and the cause of sulfuric acid. corrosion. ^ In the past, the exhaust gas system of the Claus process was burned in an afterburner. However, considering the increasingly stringent environmental requirements 1, use is no longer permitted. ^ This has led to the improvement of the Claus method 'and the development of the Claus I exhaust gas removal method I. A known improvement of the Claus method is the SUPERCLAUS® method, whereby the efficiency of the Claus method increases from 94-97% # to greater than 99%. Super Klaus Law is described in SUPERCLAUS®, the answer to Claus I plant limitation ', published on October 25, 1988 in Abel, Canada _ _4___________ This paper size Applicable Chinese National Standard (CMS) A4 specification (210X297 mm) -------; ------ (Please read the notes on the back before filling this page) ___.___ , 丁 ______- -------- i-I m · V. Description of the invention () 386895 A7 B7 3 4 Wire tube (please read the precautions on the back before filling this page) --¾ 4 Ministry of Economy Zhici Printed by the Employees' Cooperative of the Property Bureau. 23 This paper size applies Chinese National Standards (CNS) A4 specifications (21 × 297 mm) A7 B7 V. Description of invention (") The 38th Canadian Chemical Engineering in Edmonton, Dallas刊 The proceedings of the seminar ° In the SUPERCLAUS®-99 method, the reaction between the hot stage and the Claus reactor (2) is operated with an excess of H2S ', so the H2S content in the gas from the last Claus reactor It is about 1% by volume, and the content of S02 is about 0-〇2% by volume. In the following reactor stage, Should: 2 H2S + 02 2 H20 + 2 / n Sn (3) Selective oxidation of H2S to elemental sulfur in the presence of a special selective oxidation catalyst. These catalysts are described, for example, in European patents 0429920 and 0403353 ° such as As mentioned above, the increasingly stringent environmental protection requirements not only lead to the improvement of the Claus method, but also the development of Claus tail gas treatment methods. These are to further remove sulfur from the exhaust gas of the sulfur recovery equipment. The Claus tail gas treatment method utilizes a hydrogenation reactor, also known as a reduction reactor, in which hydrogen (H2) or a reducing gas containing, for example, hydrogen and carbon monoxide, and so2, carbonyl sulfide (COS), carbon disulfide ( CS2), sulfur vapor, and all entrained sulfur droplets (sulfur mist) are converted into hydrogen sulfide. Then it is absorbed in solution or converted to elemental sulfur in the gas phase using a catalyst to remove hydrogen sulfide. Currently only a few exhaust gas treatment methods have been developed After Claus exhaust combustion, 'self-smoke and gas (chimney gas) absorb S02. These treatment methods have not been discussed further. In Claus exhaust treatment methods, hydrogen is used. Later, those who absorb H2S products in solution are the most well-known ones: 3 (: 0 but: 8811-Stretford, BSR-MDEA, Trencor-M, and Sulften. These treatment methods are described in BG Goar Publishing: Review (Tail 5 This paper is suitable for Chinese National Standard (CNS) Λ4 specification (210X297 mm) (Please read the precautions on the back before filling this page)

—I.丨-1丨—Φ----------訂II A7 B7 經浐部中戎樣準而,.只η消於合竹d卬父 五、發明説明(叶) Gas Clean-ιιρ Process, a review)” ,發表於 1983 年 3 月 7-9曰在奧克拉荷馬,諾曼的第33屆年度氣體處理硏討會, 以及1986年2月的碳氫化合物處理方法(Hydrocarbon Processing)中 0 最爲大眾熟知且目前最有效的尾氣去硫處理法,爲說 明於 Maddox “氣體與液體脫硫(Gas and Liquid Sweetening) ”(1977年沖的SCOT法。SCOT法可達到99.8至99.9% 的硫回收率。 這些尾氣處理法中,只有少數方法做到於氫化之後, 利用催化劑轉化氣相之H2s,而爲人所知,例如MODOP、 CLINSULF、BSR-Selectox、Sulfreen、SUPERCLAUS-99.5 。這些方法係說明於上述所提之B. G. Goar出版品、1987 年5月11日的C&EN期刊、1995年1月/2月的硫 (Sulphur)期刊,以及 DE-A 2648190 中。 在這些所有的克勞斯尾氣處理法中,氫化之後,須將 克勞斯反應(2)與選擇性氧化反應(3)中所產生的水冷凝,因 爲水的存在對後續以吸收液體除去H2S,或催化轉化h2S 爲元素硫方面,都有逆效應。用於上述方法之吸收液體係 二級或三級的烷醇胺溶液,例如二異丙醇胺(DIPA)或甲基 二乙醇胺(MDEA)或錯合物的氧化還原溶液。若不除去水, 則吸收程序將完全受到干擾,亦即,不是因溫度過高而沒 有或極少吸收發生,就是水於吸收期間在吸收器中冷凝下 來,而將循環之溶液持續稀釋,因而不再進行吸收。 利用催化劑在氣相HsS轉化中,若沒有除去水,則根 (請先閱讀背面之注意事項再填寫本頁) -•5 €—I. 丨 -1 丨 —Φ ---------- Order II A7 B7 The same as in the Ministry of Economics. Only η disappears in conjunction with d. Father V. Description of the Invention (Leaf) Gas Clean-ιιρρ Process, a review) ", published at the 33rd Annual Gas Treatment Symposium in Norman, Oklahoma, March 7-9, 1983, and the Hydrocarbon Treatment Method in February 1986 (Hydrocarbon Processing) 0 is the most well-known and currently the most effective tail gas desulfurization treatment method, which is described in Maddox "Gas and Liquid Sweetening" (SCOT method in 1977. SCOT method can reach 99.8 to 99.9% sulfur recovery rate. Of these tail gas treatment methods, only a few have been achieved after hydrogenation using catalysts to convert H2s in the gas phase, such as MODOP, CLINSULF, BSR-Selectox, Sulfreen, SUPERCLAUS -99.5. These methods are described in the BG Goar publication mentioned above, the C & EN journal on May 11, 1987, the Sulphur journal in January / February 1995, and DE-A 2648190. In all of these Claus exhaust gas treatments, after hydrogenation, Claus must be reversed. (2) should be condensed with the water produced in the selective oxidation reaction (3), because the presence of water has a reverse effect on the subsequent removal of H2S by absorbing liquid, or the catalytic conversion of h2S to elemental sulfur. Used in the above method Secondary or tertiary alkanolamine solution in the absorbent system, such as diisopropanolamine (DIPA) or methyldiethanolamine (MDEA) or a complex redox solution. If water is not removed, the absorption procedure will be complete Disturbance, that is, either no or very little absorption occurs due to high temperature, or water condenses in the absorber during absorption, and the circulating solution is continuously diluted, so absorption is no longer performed. Using the catalyst in the gas phase HsS During the transformation, if the water is not removed, the root (please read the precautions on the back before filling this page)-• 5 €

本紙張尺度通川中國國家標準(CNS ) Λ4規格(210X297公釐) 部 中 Jk 而 ΪΙ j >Vi fc A 印 A7 B7 五、發明説明(匕) 據克勞斯反應(2)之H2S熱力學轉化將大幅降低’且會得到 相當於克勞斯法最後反應器階段的狀態’因此大於99·5% 的總硫回收率是不可能達到的。 雖然利用例如超級克勞斯法中使用的選擇性氧化催化 劑,可得到較高效率’超級克勞斯-99.5亦然,但發現實際 上不可能達到大於99<5%的硫回收率。 一般而言,論及氫化之後,利用催化劑將H2S在氣相 轉化爲元素硫之克勞斯尾氣處理法的缺點,可說是無法達 到目前所要求大於99.90%的總硫回收率。 氫化後將水冷凝,然後以例如SCOT法之吸收液體來 吸收H2S的克勞斯尾氣處理法,可達大於99.90%的總硫 回收率,但有個主要的缺點,就是投資成本與能量成本非 常高.。較新版本的sc〇T法,例如SUPERSCOT與LS-SCOT,可達99.95%的總硫回收率,但更加昂貴。 這些方法的另一個缺點,就是必須排放與處理含硫化 氫之酸性冷凝液,例如在一個酸水洗器中,由此溶解的酸 氣體可與蒸氣分離。這也很花錢。 環保的要求不僅影響克勞斯法與克勞斯尾氣處理法的 發展,也影響發電廠的煙囪氣體處理法,也稱爲煙管氣體 處理法的發展。已知有各種“煙管氣體去硫”(fhie gas desulphurization,FGD)的處理法,其中以石灰乳將S02轉 化爲石膏(Ca2S04)。因爲生成大量石膏,因此要尋找可將 S02轉化爲元素硫的處理法。說明於A. L. Kohl與F. C. Riesenfeld 所著之氣體純化(Gas Purification),198 5 年第 4 ---------------'----ΐτ------#1 (請先閲讀背面之注意事項再填寫本頁) 本紙烺尺度適Μ屮國國家榇準(CNS ) Λ4規格(210X297公釐) A7 B7 部 中 消 jl· 厶 卬 石、發明説明([?) 版,35 1頁-;356頁中的Wellman Lord法即爲—個例子,其 中S02最後以濃縮氣體釋出。當三分之二的802在氫化歩 驟中轉化爲H2S之後,可在克勞斯設備中將H2S與302氣 體轉化爲元素硫。這種處理路線同樣也很花錢。這領域的 另一種發展則是煙管氣體的生物去硫作用。 煙管氣體的生物去硫作用,係說明於Lucht期刊, 1994年12月第4期。其中所說明之BIO-FGD法,係將 S〇2從發電廠的煙囪氣體中除去,並包含一個吸收器,其 中302係根據下反應式: S〇2 + NaOH NaHS〇3 (4) 而溶解於稀釋的氫氧化鈉溶液。 接著以兩個生物反應器階段來處理此溶液。 在第一生物步驟中,生成的亞硫酸氫鈉(NaHS03)係於 一個厭氧性反應器中,以電子授體轉化爲硫氫化鈉(NaHs) 〇 NaHS03 + 3 H2 ^ NaHS + 3 H20 (5) 適合的電子授體爲,例如,氫、乙醇、氫與葡萄糖。 在第二步驟中,硫氫化鈉係於一個好氧性反應器中氧化成 元素硫,而後將硫分離出來。 NaHS + 1/2 〇2 NaOIi + S (6) 在煤或燃油燃燒之後,煙囪氣體包含少量的水蒸氣。 水含量基本上在2-15體積%之間,其對應於20-55°C的水 露點。 如果BIO-FGD法係用於已補燃之克勞斯排出氣體的去 (請先閲讀背面之注意事項再填疼本頁」 ----Ί •訂------BI. 本紙張尺度適;1]中國國家榇率(〇奶)八4规格(2丨0父297公釐〉 A 7 B7 五、發明説明(1 ) 硫作用,且由此所有的硫成分已轉化爲so2,則因爲克勞 斯排出氣體的高水蒸氣含量,必須將此氣體冷卻。這是爲 了避免水蒸氣在氫氧化鈉水溶液中冷凝,而因此必須持續 排放一部份氫氧化鈉溶液。 所以必定會冷卻克勞斯排出氣體,因此而生成酸的冷 凝液且必須排放之。 將燃煤或燃油發電廠之排出氣體去硫時,並不會發生 這個問題,因爲水露點落在吸收器操作溫度以下。因此該 排出氣體的冷卻可以一種簡單方式完成,而不會發生水的 冷凝。 本發明之第一目的係提供一種將食.有20-40體積%高 水蒸氣含量之排出氣體去硫的方法,其中不需將水冷凝, 因此避免生成必須排放的含硫化氫之酸性冷凝液。 本發明第二目的係提供一種方法,其中氫化反應所生 成的H2S,可在吸收液體中以高於氣體中水露點的溫度被 吸收。如此在H2S的吸收期間也不會發生水的冷凝。 本發明次一目的係提供一種方法,由此可達到大於 99.90%之總硫回收率,而不會發生上述之缺點。1 本發明係根據令人驚訝的觀察,也就是有可能在高於 水露點的溫度下,以鹼性溶液诌含有20-40體積%水含量 的該氣體中吸收H?S,之後將所生成的含硫化.物溶液進行 好氧性生物氧化。 因此’本發明係關於一種將包含至少20體積%水蒸氣 之排出氣體去硫的方法,其包括在高於排出氣體之水露點 —_________9___ 本紙張尺度適刖中阈國家標準(CNS ) Λ4規格(210X297公| > (請先閲讀背面之注意事項再填湾本頁)The size of this paper is Tongchuan Chinese National Standard (CNS) Λ4 specification (210X297mm) Jk and ΪΙ j > Vi fc A and A7 B7 V. Description of the invention (Dagger) H2S thermodynamics according to Claus reaction (2) The conversion will be greatly reduced 'and the state equivalent to the final reactor stage of the Claus process' will be obtained, so a total sulfur recovery of more than 99.5% is impossible to achieve. Although a higher efficiency, 'Super Klaus-99.5' can be obtained by using, for example, a selective oxidation catalyst used in the Super Claus method, it has been found that it is practically impossible to achieve a sulfur recovery of more than 99 < 5%. Generally speaking, when talking about the shortcomings of the Claus tail gas treatment method using H2S to convert H2S into elemental sulfur in the gas phase after hydrogenation, it can be said that the currently required total sulfur recovery rate greater than 99.90% cannot be achieved. After hydrogenation, the water is condensed, and then the Claus exhaust gas treatment method that absorbs H2S with an absorption liquid such as the SCOT method can achieve a total sulfur recovery of greater than 99.90%, but there is a major disadvantage that the investment cost and energy cost are very high. high.. Newer versions of the SCOT method, such as SUPERSCOT and LS-SCOT, can achieve a total sulfur recovery of 99.95%, but are more expensive. Another disadvantage of these methods is that the acidic condensate containing hydrogen sulfide must be discharged and treated, for example in an acid water scrubber, where the dissolved acid gas can be separated from the vapor. It's also expensive. Environmental protection requirements not only affect the development of Claus and Claus exhaust gas treatment methods, but also affect the development of chimney gas treatment methods for power plants, also known as flue gas treatment methods. Various "fhie gas desulphurization" (FGD) treatment methods are known in which S02 is converted into gypsum (Ca2S04) with lime milk. Because a large amount of gypsum is generated, a treatment method is needed to convert S02 to elemental sulfur. Explained in Gas Purification by AL Kohl and FC Riesenfeld, 4th, 1995 ---------------'---- ΐτ ------ # 1 (Please read the precautions on the back before filling this page) The paper is compliant with the National Standards (CNS) Λ4 specification (210X297 mm) A7 B7 Zhongli jl · vermiculite, invention description ([? ) Edition, 35 1 pages-; The Wellman Lord method in page 356 is an example, in which S02 is finally released as a concentrated gas. After two-thirds of 802 is converted to H2S in the hydrogenation step, H2S and 302 gases can be converted to elemental sulfur in a Claus plant. This processing route is also expensive. Another development in this area is the biological desulfurization of flue gas. The biological desulfurization of flue gas is described in the journal Lucht, No. 4, December 1994. The BIO-FGD method described therein removes S〇2 from the chimney gas of the power plant and includes an absorber, where 302 is dissolved according to the following reaction formula: S〇2 + NaOH NaHS〇3 (4) In diluted sodium hydroxide solution. This solution is then processed in two bioreactor stages. In the first biological step, the generated sodium bisulfite (NaHS03) was converted into sodium sulfide (NaHs) by an electron donor in an anaerobic reactor. NaHS03 + 3 H2 ^ NaHS + 3 H20 (5 ) Suitable electron donors are, for example, hydrogen, ethanol, hydrogen and glucose. In the second step, sodium sulfide is oxidized to elemental sulfur in an aerobic reactor and the sulfur is separated. NaHS + 1/2 〇2 NaOIi + S (6) After the combustion of coal or fuel oil, the chimney gas contains a small amount of water vapor. The water content is essentially between 2-15% by volume, which corresponds to a water dew point of 20-55 ° C. If the BIO-FGD method is used for the exhaust gas of Claus after it has been replenished (please read the precautions on the back before filling this page "---- Ί • Order ------ BI. This paper The scale is appropriate; 1] China's national rate (0 milk) 8 4 specifications (2 丨 0 father 297 mm> A 7 B7 V. Description of the invention (1) sulfur action, and thus all sulfur components have been converted to so2, Because of the high water vapor content of Claus ’s exhaust gas, this gas must be cooled. This is to prevent water vapor from condensing in the aqueous sodium hydroxide solution, and therefore it is necessary to continuously discharge a portion of the sodium hydroxide solution. So it must be cooled Claus exhausts gas, so acid condensate is generated and must be discharged. This problem does not occur when desulfurizing exhaust gas from coal or oil-fired power plants, because the water dew point falls below the operating temperature of the absorber. Therefore, the cooling of the exhaust gas can be completed in a simple manner without water condensation. A first object of the present invention is to provide a method for desulfurizing an exhaust gas having a high water vapor content of 20-40% by volume. There is no need to condense water, so Avoid generating acid condensate containing hydrogen sulfide which must be discharged. The second object of the present invention is to provide a method in which H2S produced by the hydrogenation reaction can be absorbed in the absorption liquid at a temperature higher than the dew point of water in the gas. Water condensation does not occur during the absorption of H2S. A secondary object of the present invention is to provide a method whereby a total sulfur recovery rate greater than 99.90% can be achieved without the aforementioned disadvantages. 1 The present invention is based on the Surprising observation, that is, it is possible to absorb H? S in an alkaline solution with a gas content of 20-40% by volume of water at a temperature higher than the dew point of the water, and then the resulting sulfide-containing solution is subjected to Aerobic biological oxidation. Therefore, the invention relates to a method for desulfurizing an exhaust gas containing at least 20% by volume of water vapor, which includes a water dew point higher than the exhaust gas. (CNS) Λ4 specifications (210X297 male | > (Please read the precautions on the back before filling in this page)

A7 —_ B7 五、發明说明(& ) 的溫度下,以P性水溶液吸收HZS,來處理排出氣體,接 著將所生成之含硫化物溶液進行硫l化物的生物氧化反應^ 令人驚訝的是,現在已經發現:可在一個生物好氧性 反應器中,最好在和進行吸收溫度相同的溫度下,以空氣 將溶於鹼性溶液的H2S,較佳爲氫蓋化鈉溶液的h2S,氧化 成元素硫。 這些包含20-40體積%水含量之氣體,有60-80°C的 水露點,其表示實際上生物氧化作用將在至少65。(:的溫度 下發生,更明確的是在70至90°C的溫度。特別令人驚訝 的是,在這樣的高溫下,有可能進行一種有效率且適當的 生物氧化反應。 在根據本發明之方法中,排出氣體之總硫含量的降低 ,係藉由先提高這些排出氣體的溫度至2〇〇°C以上,再讓 它們與一種含氫及/或一氧化碳之氣體,一起通過於無.機_ 氧化載體上的VI族/VIII族金屬够;ft物催化劑,因此硫成 分,例如so2、硫蒸氣與硫霧,係根據以下反應:' S〇2 + 3 H2 H2s + H20 (7) S + H〇 —> H2S (8) 與氫或其他包含如氫與一氧化碳之還原氣體轉化爲硫 化氫 如果氧存在於排出氣體中,則用到上述族之催化劑, 其根據以下反應 〇2 + 2 H2 -> HoO (9) 而進一步有氫化氧的性質。 10 _—__ ^^^^;彳]中囤國家標準(CNS ) Λ4規格(210X297公釐〉 (請先閱讀背面之注意事項再填寫本頁)A7 —_ B7 5. At the temperature of the invention (&), HZS was absorbed in a P-type aqueous solution to treat the exhaust gas, and then the resulting sulfide-containing solution was subjected to a biological oxidation reaction of sulfur compounds ^ Surprising Yes, it has now been found that: in a bioaerobic reactor, it is best to dissolve H2S in alkaline solution with air, preferably h2S in sodium hydrogenated solution, at the same temperature as the absorption temperature. , Oxidation into elemental sulfur. These gases, which have a water content of 20-40% by volume, have a water dew point of 60-80 ° C, which means that the actual biological oxidation will be at least 65. (: Occurs at temperatures of, more specifically, 70 to 90 ° C. It is particularly surprising that at such high temperatures, it is possible to perform an efficient and appropriate bio-oxidation reaction. In accordance with the present invention In the method, the total sulfur content of the exhaust gas is reduced by first raising the temperature of these exhaust gases to above 200 ° C, and then passing them together with a gas containing hydrogen and / or carbon monoxide in the absence. _ Oxidation of Group VI / Group VIII metals on the support; ft catalysts, so sulfur components, such as so2, sulfur vapor and sulfur mist, are based on the following reaction: 'S〇2 + 3 H2 H2s + H20 (7) S + H〇— > H2S (8) and hydrogen or other reducing gas including hydrogen and carbon monoxide are converted into hydrogen sulfide. If oxygen is present in the exhaust gas, a catalyst of the above group is used, which is based on the following reaction: 2 + 2 H2-> HoO (9) and further has the property of oxyhydrogen. 10 ____ ^^^^; 彳] in the national standard (CNS) Λ4 specifications (210X297 mm) (Please read the precautions on the back before (Fill in this page)

A7 B7__ —---------- ^ — C\ 五、發明说明() 較佳的是,用到上述族之催化劑,其根據以下反應 COS + H20 -> H2s + COo (10) CS2 + 2 HoO 2 H2S + C02 (11) 而進一步有水解C0S與CS2的性質。 在根據本發明之方法中’將氫化反應器之排出氣體冷 卻到恰高於氣體中水蒸氣的露點以上’如此就不會發生冷 凝。較佳的是,冷卻進行到高於露點3至5°C。 包含20-4〇體積%水蒸氣含量之排出氣體,尤其是克 勞斯回收設備之排出氣體,有60-80。(:之間的露點。 在一種吸收器中,這些排出氣體接著與PH 8寒9之間 的稀釋鹼性溶液,較佳爲氫氧化鈉溶液,直接接觸,由此 ,存在於氣體中之H2s係根據以下反應: .H2s + NaOH -> NaHS + H20 (12) 而溶解° 提到排出氣體之未吸收部分,於視需要燃燒後排放到 空氣中。 因爲再生之鹼性溶液不包含H2S,所以存在於排出氣 體中之H2s已完全被吸收,而且以這種方式可達到大於 99.9〇%之總硫回收率。在根據本發明之方法中,在相同溫 度,較佳和進行吸收相同的溫度下,將溶液通至生物好氧 性反應器中,如此則不需除去或供應熱量。在好氧性反應 晕-中供應一定量的空氣,如此溶解之h2s係根據以下反應 H2s + Vz〇2-^ S + HoO (13) --- 11 (請先閲讀背面之注意事項再填窍本頁) 乘. 17 € 水入乂適用中闼國家標隼(CNS )八4規格(21 OX 29*7公釐) 經 7¾•部中JAi?^-^m-T消价合竹;^印" A7 B7 五、發明说明(~) 由空氣中的氧將其部分氧化,而形成元素硫。 接下來,在一個硫分離器中,最好再次於相同溫度下 ,將硫與氫氧化鈉溶液分離’之後將溶液再循環至吸收器 中。含有被吸收之H2S的氫氧化鈉溶液,可能在送入生物 好氧性反應器之前,將它冷卻。不過,硫分離之後,溶液 在供入吸收器之前會再加熱。 現在將參考兩附圖來解釋本發明,其中根據本發明之 方法係以方塊圖形式來說明° 圖1代表一般方法的流程圖。硫回收設備的排出氣體 ,未顯示出來,係通過管線1,會同經由管線2加入之氫 或其他還原氣體,以加熱器3調節至所需之氫化溫度’然 後通過管線4進入氫化反應器5。 .在氫化反應器5中,以H2將存在於氣體中之二氧化硫 、硫蒸氣與有機硫化合物轉化爲°如果氧存在於氣體 中,其轉化爲H2〇。如果有COS與CS2存在,其以存在之 水蒸氣轉化爲h2s與co2。 來自氫化反應器5之氣體’經過管線6 ’以冷卻器7 調節至所欲之吸收溫度’然後再通過管線8進入生物設備 之吸收器9。在此吸收器中’以稀釋的氫氧化鈉溶液’將 h2s自氣體中洗出’然後其通過管線至一個好氧性生物 反應器11中’其中以經由管線12加入空氣中的氧’將 H2s轉化成元素硫。氫氧化鈉溶液係經由管線通入硫分 離器14中,由此所生成的硫係經由管線15排放出去。溶 液經由管線16再循環至吸收器。現在只含極低H2S含量之 12 _ (請先閱讀背面之注意事項再填寫本頁) \裝· 訂 4 本紙张尺度適川中國國家標隼(CNS〉A4規格(210X297公釐) A7 B7 五、發明説明(/ 來自吸收器的氣體,通過管線17至補燃器18中,然後經 由煙® 19將氣體排放出去。 圖2代表根據本發明所提洪之設備圖,其中直接吸收 具高HA/ S〇2比的克勞斯設備排出氣體,而沒有中間的 氫化作用。 來自三階段克勞斯設備1〇0之排出氣體,係經由管線 加入吸收器102中。克勞斯設備100係操作使h2s/ S02莫耳比至少爲100。 在吸收器102中,以稀釋的氫氧化鈉溶液將h2S自氣 體中洗出’然後通過管線103至好氧性生物反應器104中 ’其中以經由管線105供應空氣中的氧,將H2S轉化爲元 素硫。一部份氫氧化鈉溶液經由管線106、泵1〇7與管線 108 ’而通入硫分離器1〇9中,由此所生成之硫經由管線 110排放出去。此溶液經由管線111與112再循環至吸收 器,而有小部分經由管線113排放。現在只含極低H2S含 量之來自吸收器氣體,係經由管線114通至一個補燃器, 未顯示出來,然後經由煙囪,亦未顯示出來,將氣體排放 出去。 實施例1 來自氣體純化設備之9700Nm3/小時的酸氣體,在 45°C與1.6絕對巴下有下列組成:A7 B7__ —---------- ^ — C \ V. Description of the invention () Preferably, the catalysts of the above group are used, which are based on the following reactions COS + H20-> H2s + COo (10 ) CS2 + 2 HoO 2 H2S + C02 (11) and further has the property of hydrolyzing COS and CS2. In the method according to the present invention, 'the exhaust gas of the hydrogenation reactor is cooled to just above the dew point of the water vapor in the gas', so that no condensation occurs. Preferably, the cooling is performed to 3 to 5 ° C above the dew point. The exhaust gas containing 20-40% by volume of water vapor content, especially the exhaust gas from Claus recovery equipment, has 60-80. (: Dew point in between. In an absorber, these exhaust gases are then in direct contact with a dilute alkaline solution, preferably a sodium hydroxide solution, between pH 8 and 9, thereby the H2s present in the gas It is based on the following reaction: .H2s + NaOH-> NaHS + H20 (12) and dissolve ° The unabsorbed part of the exhaust gas is mentioned, and it is discharged into the air after burning as necessary. Because the regenerated alkaline solution does not contain H2S, So the H2s present in the exhaust gas has been completely absorbed, and in this way a total sulfur recovery of more than 99.90% can be achieved. In the method according to the invention, it is preferred to carry out the absorption at the same temperature at the same temperature Next, the solution is passed into the biological aerobic reactor, so there is no need to remove or supply heat. In the aerobic reaction halo-a certain amount of air is supplied, and the h2s so dissolved is based on the following reaction H2s + Vz〇2 -^ S + HoO (13) --- 11 (Please read the precautions on the back before filling in this page) Multiply. 17 € Water entry is applicable for China National Standard (CNS) 8 4 size (21 OX 29 * 7mm) JAi? ^-^ MT discounted price in 7¾ ••; " A7 B7 V. Description of the invention (~) Partial oxidation of oxygen from the air to form elemental sulfur. Next, in a sulfur separator, it is best to mix sulfur and sodium hydroxide at the same temperature again. After the solution is separated, the solution is recycled to the absorber. The sodium hydroxide solution containing the absorbed H2S may be cooled before being sent to the bioaerobic reactor. However, after the sulfur is separated, the solution is fed into The absorber will be reheated before. The invention will now be explained with reference to two drawings, in which the method according to the invention is illustrated in the form of a block diagram. Figure 1 represents a flow chart of a general method. Exhaust gas from sulfur recovery equipment, not shown It comes out through line 1, together with hydrogen or other reducing gas added through line 2, is adjusted to the required hydrogenation temperature by heater 3, and then enters hydrogenation reactor 5 through line 4. In hydrogenation reactor 5, H2 converts sulfur dioxide, sulfur vapor, and organic sulfur compounds present in the gas into °. If oxygen is present in the gas, it is converted into H2. If COS and CS2 are present, it is stored as The water vapor is converted into h2s and co2. The gas from the hydrogenation reactor 5 is adjusted to the desired absorption temperature through the cooler 7 through the line 6 and then enters the absorber 9 of the biological equipment through the line 8. Here the absorber "H2s was washed out of the gas with a diluted sodium hydroxide solution" and then passed through a line to an aerobic bioreactor 11 'wherein the oxygen in the air was added via line 12' to convert H2s to elemental sulfur The sodium hydroxide solution is introduced into the sulfur separator 14 through a pipeline, and the sulfur system thus generated is discharged through a pipeline 15. The solution is recycled to the absorber through a pipeline 16. Now contains only 12 of extremely low H2S content _ (Please read the precautions on the back before filling out this page) \ Packing · Order 4 This paper size is suitable for Sichuan China National Standard (CNS> A4 size (210X297mm) A7 B7 5 Description of the invention (/ The gas from the absorber passes through the line 17 to the afterburner 18, and then the gas is discharged through the smoke 19. Figure 2 represents the equipment diagram of the flood according to the present invention, in which the direct absorption of high HA / S〇2 ratio of the Claus equipment exhaust gas without intermediate hydrogenation. The exhaust gas from the three-stage Claus equipment 100 is added to the absorber 102 via the pipeline. Claus equipment 100 series operation The h2s / S02 mole ratio is at least 100. In the absorber 102, the h2S is washed out of the gas with a diluted sodium hydroxide solution, and then passed through the line 103 to the aerobic bioreactor 104. 105 supplies oxygen in the air to convert H2S into elemental sulfur. A part of the sodium hydroxide solution is passed into the sulfur separator 109 through the line 106, the pump 107 and the line 108 ', and the sulfur generated thereby Drained via line 110. This solution is Lines 111 and 112 are recirculated to the absorber, and a small portion is discharged through line 113. The absorber gas, which now contains only very low H2S content, passes through line 114 to a afterburner, which is not shown, and then through the chimney The gas is also not shown. Example 1 The 9700 Nm3 / hour acid gas from the gas purification equipment has the following composition at 45 ° C and 1.6 absolute bar:

60.0 體積% H2S 3.0 體積% NH3 30.0 體積% C02 13 -----ί---「¥---一---17------ (請先閱讀背面之注意事項再填寫本頁) 私紙乐X度通州中國國家標率(CNS ) Λ4規格(210X297公釐) -¾•,部屮头if·^·而:抡合卄枳印繁 Λ7 B7 五、發明説明() 5.0 體積% H20 2.0 體積% CH4 此酸氣體送入一個具兩個克勞斯反應器的克勞斯設備 中。在熱階段與催化反應器階段之後,將硫回收設備中所 生成的硫冷凝並排放。硫量爲7768公斤/小時。以酸氣體 爲標準,本克勞斯設備之硫回收率爲93.3%。 來自克勞斯設備之29749Nm3./小時的排出氣體,在 164°C及1.14絕對巴壓力下有下列組成: 0.47 體積% H2S 0.24 體積% S0260.0% by volume H2S 3.0% by volume NH3 30.0% by volume C02 13 ----- ί --- 「¥ --- 一 --- 17 ------ (Please read the precautions on the back before filling this page ) Private Paper Music X Degree Tongzhou China National Standards (CNS) Λ4 Specification (210X297mm) -¾ •, Ministry of Shipping if · ^ · And: 抡 卄 枳 印 繁 Λ7 B7 5. Invention Description () 5.0 Volume % H20 2.0 vol% CH4 This acid gas is sent to a Claus equipment with two Claus reactors. After the thermal stage and the catalytic reactor stage, the sulfur generated in the sulfur recovery equipment is condensed and discharged. The sulfur content is 7768 kg / hour. Based on acid gas, the sulfur recovery rate of this Claus equipment is 93.3%. The exhaust gas from Claus equipment is 29749Nm3./hour, at 164 ° C and 1.14 absolute bar pressure It has the following composition: 0.47 vol% H2S 0.24 vol% S02

0.03 體積% COS 0.04 體積% CS2 0.01 體積 % S6 0.04 體積% S8 1.38 體積% CO I. 53 體積% H2 II. 37 體積% C02 55.96 體積% N2 0.66 體積% Ar 28.27 體積% H20 將103 Nm3/'小時之氫氣作爲還原氣,洪入本排出氣 體,然後加熱至280°C,將所有二氧化硫(S02)與存在之硫 蒸氣(S6,Ss)氫化成H2S,並在氫化反應器中進一步將硫化 羰(COS)與二硫化碳(CS2)水解成H2S,該反應器包含6族及 14 (請先閱讀背面之注意事項再填湾本頁;一 、--a 本紙张尺度適用中囤國家標準(CNS ) A4规格(210X 297公釐) 部 中 夾 il ϋ .T 消 合 竹 卬 A7 _____ B7 五、發明説明(/ $ ) /或8族金屬硫化物催化劑,在本例中爲Co-Mo催化劑。 來自氫化反應器之排出氣體的量爲31574 Nm3/小時 ,在317°C及1.10絕對巴下有下列組成: 1.24 體積% H2S 28 ppmCOS 2 ppmCS2 2.02 體積% H2 12,64 體積〇/〇 C02 56.62 體積% N2 0.67 體積% Ar 26.80 體積。/〇 H20 之後將此排出氣體冷卻至72°C,此爲比排出氣體之水 蒸氣露點高3°C的溫度。 然後在生物設備中,於72°C處理冷卻的排出氣體,而 沒有發生水從排出氣體中冷凝出來。在生物設備的吸收器 中,以稀釋的氫氧化鈉溶液,將H2S自排出氣體中洗出, 之後將含有被吸收H2S的溶液通入好氧性生物反應器中, 其中H2S轉化成元素硫。 在生物設備中,並無供應或移去熱量,因此H2S的吸 收和轉化成元素硫,都發生在72。(:的相同溫度下。 將945 Nm3/小時的空氣供入好氧性反應器中,以便 將H2S選擇性氧化成硫。來自吸收器之氣體量爲31189 Nm3/小時,在72°C及1.05絕對巴下有下列組成:0.03 vol% COS 0.04 vol% CS2 0.01 vol% S6 0.04 vol% S8 1.38 vol% CO I. 53 vol% H2 II. 37 vol% C02 55.96 vol% N2 0.66 vol% Ar 28.27 vol% H20 103 Nm3 / 'hour The hydrogen gas is used as a reducing gas, flooded into the exhaust gas, and then heated to 280 ° C to hydrogenate all sulfur dioxide (S02) and the existing sulfur vapor (S6, Ss) into H2S, and further carbonyl sulfide ( COS) and carbon disulfide (CS2) are hydrolyzed to H2S. The reactor contains 6 and 14 (please read the precautions on the back before filling in this page; one, --a) This paper is applicable to China National Standard (CNS) A4 Specifications (210X 297 mm) il ϋ .T digested bamboo 卬 A7 _____ B7 V. Description of the invention (/ $) / or Group 8 metal sulfide catalyst, in this case Co-Mo catalyst. From hydrogenation The amount of gas exhausted from the reactor was 31574 Nm3 / hour, and had the following composition at 317 ° C and 1.10 absolute bar: 1.24 vol% H2S 28 ppmCOS 2 ppmCS2 2.02 vol% H2 12,64 vol. 0 / 〇C02 56.62 vol% N2 0.67 vol% Ar 26.80 vol / 〇H20 After this exhaust gas is cooled to 72 ° C, which is 3 ° C higher than the dew point of the water vapor of the exhaust gas. Then in the biological equipment, the cooled exhaust gas is processed at 72 ° C without water. Condensate from the exhaust gas. In the absorber of the biological equipment, wash the H2S from the exhaust gas with the diluted sodium hydroxide solution, and then pass the solution containing the absorbed H2S into the aerobic bioreactor, Among them, H2S is converted into elemental sulfur. In biological equipment, no heat is supplied or removed, so the absorption and conversion of H2S into elemental sulfur occur at 72. (: the same temperature. 945 Nm3 / hour air supply Into an aerobic reactor to selectively oxidize H2S to sulfur. The amount of gas from the absorber is 31189 Nm3 / hour. It has the following composition at 72 ° C and 1.05 absolute bar:

250 ppmH2S 15 本紙張尺度適州中國國家標參(CNS ) Λ4規格(2丨0X297公釐) (請先閱讀背面之注意事項再填ΪΪΤ本頁)250 ppmH2S 15 This paper is a Chinese standard ginseng (CNS) Λ4 specification (2 丨 0X297 mm) (Please read the precautions on the back before filling this page)

A7 B7 五、發明説明(丨f ) 28 ppmCOS 2 ppmCS2 2.04 體積% H2 12.80 體積% C02 57.32 體積% N2 0.68 體積% Ar 27.13 體積% H20 本氣體係經由一個補燃器通至煙囪。在生物設備中生 成之硫量爲551公斤/小時。在硫回收設備與生物設備所 產生之硫總量爲8319公斤/小時,以原始酸氣體爲標準, 其將總去硫效率提高到99.87%。 實施例2 .來自氣體純化設備之6481Nm3/小時的酸氣體,在 45<>C及1.6絕對巴下有下列組成·· 9〇.〇體積% H2S :3·〇 體積% NH3 5.〇體積% H20 2.0 體積% CH4 此酸氣體送入一個具兩個克勞斯反應器與一個選擇性 氧化反應器的超級克勞斯設備中。在熱階段與催化反應器 階段之後,將硫回收設備中所生成的硫冷凝並排放。硫量 爲8227公斤/小時。以酸氣體爲標準,本克勞斯設備之硫 回收率爲98.5%。 來自克勞斯設備之21279Nm3/小時的排出氣體’在 _1〇_____ 张又ZliHiM細家標導(CNS ) Λ4規格(210X297公楚) (請先閱讀背面之注意事項再填寫本頁j 訂 A7 B7 五、發明说明(/ (·) 129°C及丨·14絕對巴壓力下有下列組成:A7 B7 V. Description of the invention (f) 28 ppmCOS 2 ppmCS2 2.04 vol% H2 12.80 vol% C02 57.32 vol% N2 0.68 vol% Ar 27.13 vol% H20 The gas system is passed to the chimney via a afterburner. The amount of sulfur produced in biological equipment is 551 kg / hour. The total amount of sulfur produced in sulfur recovery equipment and biological equipment is 8319 kg / hour. Based on the original acid gas, it improves the total desulfurization efficiency to 99.87%. Example 2. An acid gas of 6481 Nm3 / hour from a gas purification device has the following composition under 45 < > C and 1.6 absolute bar. 99.0 vol% H2S: 3.0 vol% NH3 5. vol % H20 2.0 vol% CH4 This acid gas is fed into a super Claus plant with two Claus reactors and a selective oxidation reactor. After the thermal stage and the catalytic reactor stage, the sulfur generated in the sulfur recovery equipment is condensed and discharged. The sulfur content was 8227 kg / hour. Using acid gas as a standard, the sulfur recovery of this Claus equipment is 98.5%. 21279Nm3 / hour exhaust gas from Claus equipment 'in _1〇 _____ Zhang You ZliHiM fine home standard (CNS) Λ4 specification (210X297). (Please read the precautions on the back before filling in this page. J Order A7 B7 V. Explanation of the invention (/ (·) 129 ° C and 丨 · 14 absolute bar pressure have the following components:

0.03 體積% H2S 0.20 體積% S02 20 ppniCOS 30 ppniCS2 10 ppniS6 0.01 體積 % Ss 0.15 體積% CO 1.72 髎積% H2 1.14 體積% C02 62.45體積%凡 0.74 體積% Ar 33.05 體積% H2〇 0.50 體積% 〇2 將133 Nm3/小時之氫氣作爲還原氣,供入這種排出 氣體,然後加熱至280。(:,將所有二氧化硫(S02)與存在之 硫蒸氣(S6 ’ S8)氫化成h2S與H20,並在氫化反應器中,進 一步將硫化羰(COS)與二硫化碳(CS2)水解成H2S,該反應器 中包含6族及/或8族金屬硫化物催化劑,在本例中爲 Co-Mo催化劑。 來自氫化反應器之排出氣體的量爲22863Nm3/小時, 在367°C及1.10絕對巴下有下列組成:0.03% by volume H2S 0.20% by volume S02 20 ppniCOS 30 ppniCS2 10 ppniS6 0.01% by volume Ss 0.15% by volume CO 1.72 Volume% H2 1.14% by volume C02 62.45% by volume Where 0.74% by volume Ar 33.05% by volume H2 0 0.50% by volume 〇2 133 Nm3 / hour of hydrogen gas is used as a reducing gas, and the exhaust gas is supplied, and then heated to 280. (: Hydrogenation of all sulfur dioxide (S02) and existing sulfur vapor (S6'S8) to h2S and H20, and further hydrolyzing carbonyl sulfide (COS) and carbon disulfide (CS2) to H2S in a hydrogenation reactor, the reaction The reactor contains a Group 6 and / or Group 8 metal sulfide catalyst, in this case a Co-Mo catalyst. The amount of exhaust gas from the hydrogenation reactor is 22863 Nm3 / hour, at 367 ° C and 1.10 absolute bar. composition:

0.37 體積% H2S 2ppmCOS ____ 17 — _ 丨Η,®國家標準(CNS ) Λ4規格(210X297公釐〉 (請先閱讀背面之注意事再填寫本頁) 訂0.37% by volume H2S 2ppmCOS ____ 17 — _Η, ® National Standard (CNS) Λ4 specification (210X297 mm) (Please read the notes on the back before filling this page) Order

Jm 經-¾部屮呔ir.'準Λ,,·^,1··;/ί价合竹私印繁 A7 B7 五、發明説明(d ) 0.82 體積 % H2 1.90 體積% C02 62.89 體積% N2 0-75 體積% Ar 33.27 體積% H20 之後將此排出氣體冷卻至76°C,此爲比排出氣體之水 蒸氣露點高3°C的溫度。 然後在生物設備中,於76°C處理冷卻的排出氣體,而 沒有發生水從排出氣體中冷凝出來。在生物設備的吸收器 中,以稀釋的氫氧化鈉溶液將H2S自排出氣體中洗出,之 後將含有被吸收H2S的溶液通入好氧性生物反應器中,其 中H2s轉化成元素硫。 ,在生物設備中,並無供應或移去熱量,因此H2S的吸 收與轉化成元素硫都發生在76。(:的相同溫度下。將205 Nm3/小時的空氣供入好氧性反應器中,以便將H2S部分 氧化成硫。來自吸收器之氣體量爲22780 Nm3/小時,在 76°C及1.〇5絕對巴下有下列組成: 75 ppmH2S 2 ppmCOS 0.82 體積% H2 1.91 體積 % C02 63.12 體積% N2 0.75 體積% Ar 33.39 體積% H20 _18________ 一^^5_扣中國國家標隼(<:呢)八4規格(210><297公釐) (請先閲讀背面之注意事項再填寫本頁)Jm Jing-¾ 屮 呔 ir. 'Quasi Λ ,, ^, 1 ··; / ί Valence Bamboo Private Printing A7 B7 V. Description of the invention (d) 0.82 vol% H2 1.90 vol% C02 62.89 vol% N2 0-75 vol% Ar 33.27 vol% H20 This exhaust gas is then cooled to 76 ° C, which is a temperature 3 ° C higher than the water vapor dew point of the exhaust gas. Then in the biological equipment, the cooled exhaust gas was processed at 76 ° C without water condensation from the exhaust gas. In the absorber of the biological equipment, H2S is washed out of the exhaust gas with a diluted sodium hydroxide solution, and then the solution containing the absorbed H2S is passed into the aerobic bioreactor, where H2s is converted into elemental sulfur. In biological equipment, no heat is supplied or removed, so H2S absorption and conversion to elemental sulfur occur at 76. (: At the same temperature. 205 Nm3 / hour of air is fed into the aerobic reactor to partially oxidize H2S to sulfur. The amount of gas from the absorber is 22780 Nm3 / hour, at 76 ° C and 1. 〇5 Absolute bar has the following composition: 75 ppmH2S 2 ppmCOS 0.82% by volume H2 1.91% by volume C02 63.12% by volume N2 0.75% by volume Ar 33.39% by volume H20 _18________ One ^^ 5_ buckle Chinese national standard (< :) 8 4 specifications (210 > < 297 mm) (Please read the precautions on the back before filling this page)

:¾¾-部-6-e);i:?.sr/.Jh.T消於合竹打卬來 A7 ----------__ B7 五、發明説明(' — 本氣體經由一個補燃器通至煙囪。生物設備中生成之 胃119公斤/小時。在硫回收設備與生物設備中所產 生之硫總量爲8346公斤/小時,以原始酸氣體爲標準,其 將總去硫效率提高到99.97%。 實施例3 來自氣體純化設備之3500Nm3/小時的酸氣體,在 4〇°C及I·7絕對巴下有下列組成: 88·0 體積。/q h2s 6·1 體積。C02 u體積% ch4 4.4 髏積。/。h2o 氣體送入一個具三個克勞斯反應器的克勞斯設備 中0 本克勞斯設備的空氣,係設定使熱階段與克勞斯 反應器中的反應(2)以過量H2S來操作,如此H2S : S02含 量在第三反應器階段後係大於100比1,如此so2含量變 得小於0.009體積%。 在熱階段與催化反應器階段之後,將硫回收設備中所 生成的硫冷凝並排放。硫量爲4239公斤/小時。以酸氣體 爲標準,本克勞斯設備之硫回收率爲96.4%。來自克勞斯 設備之lOOOlNm3/小時的排出氣體,在130°C及1.15絕 對巴下有下列組成:: ¾¾- 部 -6-e); i:?. Sr / .Jh.T disappeared in conjunction with bamboo snoring to A7 ----------__ B7 V. Description of the invention ('— This gas passes through One afterburner leads to the chimney. The stomach generated in biological equipment is 119 kg / hour. The total sulfur generated in sulfur recovery equipment and biological equipment is 8346 kg / hour. Based on the original acid gas, it will always go to The sulfur efficiency was increased to 99.97%. Example 3 The 3500 Nm3 / hour acid gas from the gas purification equipment had the following composition at 40 ° C and 1 · 7 absolute bar: 88 · 0 vol./q h2s 6.1 vol. C02 u% by volume ch4 4.4 Cross product. /. H2o gas is sent to a Claus equipment with three Claus reactors. 0 The air of this Claus equipment is set to react with Claus in the hot stage. The reaction (2) in the reactor is operated with an excess of H2S, so that the H2S: S02 content is greater than 100 to 1 after the third reactor stage, so the so2 content becomes less than 0.009% by volume. After the thermal stage and the catalytic reactor stage The sulfur generated in the sulfur recovery equipment is condensed and discharged. The sulfur content is 4239 kg / hour. Based on the acid gas, this Claus equipment Sulfur recovery from Claus was 96.4% lOOOlNm3 equipment / h exhaust gas, and at 130 ° C under 1.15 bar absolute to have the following composition:

0.93 體積% H2S 0.009 mm% s〇2 19 (請先閱讀背面之注意事項再填寫本頁) 、-·° 本紙張尺度適用中國國家標隼(CNS ) Λ4規格(210X 297公釐) 經浐部中戎"'^-^,-;)5消抡^竹^卬纪 A7 B7 五、發明説明(/尤) 0.04體積% COS 〇.〇4體積% cs2 0.001體積% S6 〇.〇1體積% S8 0.36體積% CO 1.83體積% h2 2.79 體積。/0 C〇2 59.68體積% n2 0.60 體積°/〇 Ar 33.71體積% h2o 之後將此排出氣體冷卻至78°C ’此爲比排出氣體水蒸 氣露點高3°C的溫度。然後在生物設備中’於73°C處理冷 卻的排出氣體,而沒有發生水從排出氣體中冷凝出來。在 生物設備的吸收器中,以稀釋的氫氧化鈉溶液將H2S自排 出氣體中洗出’之後將含有被吸收H2S的溶液通入好氧性 生物反應器中,其中轉化成元素硫。在生物設備中, 並無供應或移去熱量,因此H2S的吸收與轉化成元素硫都 發生在73 °C的相同溫度。 將320 Nm3/小時的空氣供入好氧性反應器中,以便 將H2S選擇性氧化成硫。來自吸收器之氣體量爲9901 Nm3 /小時,在73°C及1.05絕對巴下有下列組成: 190 ppmH2S 7 ppmCOS 9 ppmCS2 彳]中國國家摞準(CNS ) A4規格(2丨0X297公釐) (請先閱讀背面之注意事項再填寫本頁) 、\s° •Ί0.93% by volume H2S 0.009 mm% s〇2 19 (Please read the precautions on the back before filling this page),-· ° This paper size applies to China National Standards (CNS) Λ4 specifications (210X 297 mm) Zhongrong "'^-^,-;) 5 eliminates ^ bamboo ^ Jiji A7 B7 V. Description of the invention (/ especially) 0.04% by volume COS 〇.04% by volume cs2 0.001% by volume S6 〇.〇1 % S8 0.36 vol% CO 1.83 vol% h2 2.79 vol. / 0 C〇2 59.68 vol% n2 0.60 vol ° / 〇 Ar 33.71 vol% h2o After this exhaust gas is cooled to 78 ° C, this is a temperature 3 ° C higher than the dew point of the exhaust gas water vapor. The cooled exhaust gas is then processed in a biological device 'at 73 ° C without water condensation from the exhaust gas. In the absorber of the biological equipment, the H2S is washed out of the exhaust gas with the diluted sodium hydroxide solution ', and then the solution containing the absorbed H2S is passed into the aerobic bioreactor, which is converted into elemental sulfur. In biological equipment, no heat is supplied or removed, so H2S absorption and conversion to elemental sulfur occur at the same temperature of 73 ° C. 320 Nm3 / hour of air was fed into the aerobic reactor to selectively oxidize H2S to sulfur. The amount of gas from the absorber is 9901 Nm3 / hour, and has the following composition at 73 ° C and 1.05 absolute bar: 190 ppmH2S 7 ppmCOS 9 ppmCS2 彳] China National Standard (CNS) A4 specification (2 丨 0X297 mm) ( Please read the notes on the back before filling this page), \ s ° • Ί

---""""" 五、發明説明() 1.85 體積% H2 0.36 體積% CO 2.82 體積% C02 60.28 體積% N2 0.61 mm% Ar 34.06 體積% H20 2 縣㈣。生物設備中生成之 本氣體經由-個補燃備與生物設備中所產 硫量爲156公斤/賴H 氣麟標準,其 生之硫:總量爲4395公斤/小時·^'促 將總去硫效率提高到99.93%。戌於酸鹽。爲了不得到任 在鹼液中有少量的S〇2轉化爲硫 何硫酸鹽的堆積,因而排放85公斤/小寸夕里.B、、 以等量鹼液補充之。 圖式之.牛要元件符號說明 1 管線 2 管線 3 加熱器 4 管線 5 反應器 6 管線 7 冷卻器 8 管線 9 吸收器 ------ 21 本紙適财藏^準(CNS) Α4· (21()><297公瘦~7 ,經濟部智慧財產局員工消費合作社印製 S/86895--- " " " " " V. Description of the invention () 1.85 vol% H2 0.36 vol% CO 2.82 vol% C02 60.28 vol% N2 0.61 mm% Ar 34.06 vol% H20 2 counties. The amount of sulfur produced in the biological equipment through a supplementary combustion device and the biological equipment is 156 kg / L H. The standard sulfur produced is: the total sulfur is 4395 kg / hour. Sulfur efficiency increased to 99.93%. Stir in acid salt. In order to avoid the accumulation of a small amount of SO2 in the lye, which is converted into thiosulfate, it was discharged at 85 kg / sq. Mile. B, was supplemented with an equal amount of lye. Illustration of the symbol of the main components 1 pipeline 2 pipeline 3 heater 4 pipeline 5 reactor 6 pipeline 7 cooler 8 pipeline 9 absorber -------- 21 Paper suitable for storage ^ quasi (CNS) Α4 · ( 21 () < 297 male thin ~ 7, printed by S / 86895, Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs

V ,/ 五、發明説明() 10 管線_ 11 反應器 12 管線 13 管線 14 分離器 15 管線 16 管線 17 管線 18 補燃器 19 煙囪 圖2 10 0 克勞斯設備 10 1 管線 10 2 吸收器 10 3 管線 10 4 反應器 10 5 管線 10 6 管線 1〇 7 泵 10 8 管線 10 9 分離器 . 11 0 管線 11 1 管線 11 2 管線. 22 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) 五、發明説明() 386895 A7 B7 3 4 線線 管管 (請先閱讀背面之注意事項再填莴本頁) --¾ 4 經濟部智慈財產局員工消費合作社印製 23 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇Χ297公釐)V, / V. Description of the invention (10) Pipeline 11 reactor 12 pipeline 13 pipeline 14 separator 15 pipeline 16 pipeline 17 pipeline 18 afterburner 19 chimney diagram 2 10 0 Claus equipment 10 1 pipeline 10 2 absorber 10 3 Line 10 4 Reactor 10 5 Line 10 6 Line 1 07 Pump 10 8 Line 10 9 Separator. 11 0 Line 11 1 Line 11 2 Line. 22 (Please read the notes on the back before filling this page) This paper The scale is applicable to Chinese National Standard (CNS) A4 specification (210 X 297 mm). 5. Description of the invention () 386895 A7 B7 3 4 Wire tube (please read the precautions on the back before filling this page) --¾ 4 Printed by the Employees' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 23 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (21 × 297 mm)

Claims (1)

186895 經濟部智慧財產局員工消費合作社印製· A8 B8 C8 -^ 一 幺气7____ 六、申請專利範圍 1 . 一種自包含至少20體積%水蒸氣之排出氣體中除 去的方法,其包括在高於排出氣體之水露點的溫度下 ’以鹼性水溶液吸收Hj來處理排出氣體,接著將所生成 之含硫化物溶液進行硫化物的生物氧化反應。 2 ·根據申請專利範圍第1項之方法,其中吸收和氧 化反應,基本上發生在相同溫度。 3 .根據申請專利範圍第1項或第2項之方法,其中 欲處理之排出氣體來自一種去硫設備。 4 ·根據申請專利範圍第3項之方法,其中排出氣體 在被吸收前先進行氫化。 5 ·根據申請專利範圍第1項之方法,其中排出氣體 之H2S/S02莫耳比至少100,且其較佳來自一種克勞斯設 備。 6 ·根據申請專利範圍第1項之方法,其中排出氣體 包含20至4〇體積%之水蒸氣。 7 ·根據申請專利範圍第1項之方法,其中硫化物係 '以好氧性生物氧化反應轉化成元素硫。 8 ·根據申請專利範圍第1項之方法,其中硫係在生 物氧化反應之後與液體分離。 9 ·根據申請專利範圍第8項之方法,其中液體與硫 分離之後,再循環作爲吸收液體。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) f請先閱讀背面之注意事項再填寫本頁}186895 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs · A8 B8 C8-^ 幺 7 7 __ 6. Application for patent scope 1. A method for removing from the exhaust gas containing at least 20% by volume of water vapor, including At the temperature of the dew point of the exhaust gas, the exhaust gas is treated by absorbing Hj with an alkaline aqueous solution, and then the generated sulfide-containing solution is subjected to a sulfide biooxidation reaction. 2. The method according to item 1 of the scope of patent application, wherein the absorption and oxidation reactions occur at substantially the same temperature. 3. The method according to item 1 or 2 of the scope of patent application, wherein the exhaust gas to be treated comes from a desulfurization equipment. 4. The method according to item 3 of the scope of patent application, wherein the exhaust gas is hydrogenated before being absorbed. 5. The method according to item 1 of the scope of the patent application, wherein the H2S / S02 mole ratio of the exhaust gas is at least 100, and it is preferably derived from a Claus device. 6. The method according to item 1 of the patent application range, wherein the exhaust gas contains 20 to 40% by volume of water vapor. 7 · The method according to item 1 of the scope of patent application, wherein the sulfide is converted into elemental sulfur by aerobic biological oxidation reaction. 8. The method according to item 1 of the scope of patent application, wherein the sulfur system is separated from the liquid after the biological oxidation reaction. 9-The method according to item 8 of the scope of patent application, wherein the liquid is separated from the sulfur and recycled as an absorption liquid. This paper size applies Chinese National Standard (CNS) A4 (210X297 mm) f Please read the notes on the back before filling in this page} 186895 經濟部智慧財產局員工消費合作社印製· A8 B8 C8 -^ 一 幺气7____ 六、申請專利範圍 1 . 一種自包含至少20體積%水蒸氣之排出氣體中除 去的方法,其包括在高於排出氣體之水露點的溫度下 ’以鹼性水溶液吸收Hj來處理排出氣體,接著將所生成 之含硫化物溶液進行硫化物的生物氧化反應。 2 ·根據申請專利範圍第1項之方法,其中吸收和氧 化反應,基本上發生在相同溫度。 3 .根據申請專利範圍第1項或第2項之方法,其中 欲處理之排出氣體來自一種去硫設備。 4 ·根據申請專利範圍第3項之方法,其中排出氣體 在被吸收前先進行氫化。 5 ·根據申請專利範圍第1項之方法,其中排出氣體 之H2S/S02莫耳比至少100,且其較佳來自一種克勞斯設 備。 6 ·根據申請專利範圍第1項之方法,其中排出氣體 包含20至4〇體積%之水蒸氣。 7 ·根據申請專利範圍第1項之方法,其中硫化物係 '以好氧性生物氧化反應轉化成元素硫。 8 ·根據申請專利範圍第1項之方法,其中硫係在生 物氧化反應之後與液體分離。 9 ·根據申請專利範圍第8項之方法,其中液體與硫 分離之後,再循環作爲吸收液體。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) f請先閱讀背面之注意事項再填寫本頁}186895 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs · A8 B8 C8-^ 幺 7 7 __ 6. Application for patent scope 1. A method for removing from the exhaust gas containing at least 20% by volume of water vapor, including At the temperature of the dew point of the exhaust gas, the exhaust gas is treated by absorbing Hj with an alkaline aqueous solution, and then the generated sulfide-containing solution is subjected to a sulfide biooxidation reaction. 2. The method according to item 1 of the scope of patent application, wherein the absorption and oxidation reactions occur at substantially the same temperature. 3. The method according to item 1 or 2 of the scope of patent application, wherein the exhaust gas to be treated comes from a desulfurization equipment. 4. The method according to item 3 of the scope of patent application, wherein the exhaust gas is hydrogenated before being absorbed. 5. The method according to item 1 of the scope of the patent application, wherein the H2S / S02 mole ratio of the exhaust gas is at least 100, and it is preferably derived from a Claus device. 6. The method according to item 1 of the patent application range, wherein the exhaust gas contains 20 to 40% by volume of water vapor. 7 · The method according to item 1 of the scope of patent application, wherein the sulfide is converted into elemental sulfur by aerobic biological oxidation reaction. 8. The method according to item 1 of the scope of patent application, wherein the sulfur system is separated from the liquid after the biological oxidation reaction. 9-The method according to item 8 of the scope of patent application, wherein the liquid is separated from the sulfur and recycled as an absorption liquid. This paper size applies Chinese National Standard (CNS) A4 (210X297 mm) f Please read the notes on the back before filling in this page}
TW087109447A 1997-06-17 1998-06-15 Method for dusulfurizing Off-gases TW386895B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL1006339A NL1006339C2 (en) 1997-06-17 1997-06-17 Process for desulfurizing waste gases.

Publications (1)

Publication Number Publication Date
TW386895B true TW386895B (en) 2000-04-11

Family

ID=19765181

Family Applications (1)

Application Number Title Priority Date Filing Date
TW087109447A TW386895B (en) 1997-06-17 1998-06-15 Method for dusulfurizing Off-gases

Country Status (15)

Country Link
EP (1) EP0989902A1 (en)
JP (1) JP2002504858A (en)
KR (1) KR20010013905A (en)
CN (1) CN1265604A (en)
AR (1) AR016072A1 (en)
AU (1) AU737133B2 (en)
BR (1) BR9810187A (en)
CA (1) CA2295443A1 (en)
HU (1) HUP0001892A3 (en)
NL (1) NL1006339C2 (en)
NO (1) NO996257L (en)
PL (1) PL337501A1 (en)
SK (1) SK182099A3 (en)
TW (1) TW386895B (en)
WO (1) WO1998057731A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1011490C2 (en) * 1999-03-08 2000-09-12 Paques Bio Syst Bv Process for desulfurizing gases.
BRPI0508311A (en) * 2004-03-03 2007-07-24 Shell Int Research sulfur recovery process and apparatus
AU2005225420B2 (en) * 2004-03-03 2008-11-06 Shell Internationale Research Maatschappij B.V. A process for the high recovery efficiency of sulfur from an acid gas stream
WO2005113124A1 (en) * 2004-04-22 2005-12-01 Fluor Technologies Corporation Cos-claus configurations and methods
CN100425324C (en) * 2006-01-10 2008-10-15 武汉加华科技有限公司 Top-push decreasing gas desulfurization at normal-pressure and apparatus thereof
US8765451B2 (en) * 2009-04-08 2014-07-01 Shell Oil Company Method of treating an off-gas stream and an apparatus therefor
EP3034157A1 (en) 2015-02-19 2016-06-22 Paqell B.V. Process for treating a hydrogen sulphide and mercaptans comprising gas
CN106139812A (en) * 2015-04-20 2016-11-23 兰州信元新型材料有限责任公司 Carbon disulfide Special desulfurizing agent and preparation method thereof
CN113209794B (en) * 2021-05-07 2022-05-17 南京飞锦环保科技有限公司 Biological soil deodorization system and deodorization method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7612503L (en) * 1975-11-11 1977-05-12 Courtaulds Ltd TREATMENT OF GASES
DE3204907C2 (en) * 1982-02-12 1987-01-29 Dr. C. Otto & Co Gmbh, 4630 Bochum Process for removing hydrogen sulphide from gases, in particular coal distillation gases
DE3542345A1 (en) * 1985-11-29 1987-06-04 Imhausen Chemie Gmbh METHOD FOR REMOVING SULDURATE FROM EXHAUST GAS
NL8801009A (en) * 1988-04-19 1989-11-16 Rijkslandbouwuniversiteit Oxidative biological removal of sulphide from waste water - using short-fall in oxygen, giving conversion largely to sulphur
NL9001369A (en) * 1990-06-15 1992-01-02 Pacques Bv PROCESS FOR THE REMOVAL OF H2S FROM BIOGAS.
NL9002661A (en) * 1990-12-04 1992-07-01 Pacques Bv PROCESS FOR THE REMOVAL OF H2S FROM GAS.
US5236677A (en) * 1992-03-13 1993-08-17 Grupo Cydsa S.A. De C.V. Biological process for the elimination of sulphur compounds present in gas mixtures
NL9301000A (en) * 1993-06-10 1995-01-02 Pacques Bv Method for the purification of waste water containing sulphide.

Also Published As

Publication number Publication date
NO996257L (en) 2000-02-16
AU737133B2 (en) 2001-08-09
AU8132198A (en) 1999-01-04
EP0989902A1 (en) 2000-04-05
WO1998057731A1 (en) 1998-12-23
CN1265604A (en) 2000-09-06
PL337501A1 (en) 2000-08-28
NO996257D0 (en) 1999-12-16
NL1006339C2 (en) 1998-12-21
JP2002504858A (en) 2002-02-12
SK182099A3 (en) 2000-07-11
HUP0001892A2 (en) 2000-11-28
BR9810187A (en) 2000-08-08
AR016072A1 (en) 2001-06-20
HUP0001892A3 (en) 2002-02-28
CA2295443A1 (en) 1998-12-23
KR20010013905A (en) 2001-02-26

Similar Documents

Publication Publication Date Title
KR100810188B1 (en) Treatment of a gas stream containing hydrogen sulphide
EP0324526B1 (en) Process for converting and removing sulfur compounds from a co containing gas
CA2586381C (en) Configurations and methods for sox removal in oxygen-containing gases
KR20030059127A (en) Process and apparatus for recovering sulphur from a gas stream containing sulphide
JP4931800B2 (en) Structure of COS-Klaus and COS-Klaus method
WO2008035972A2 (en) Process for the recovery of sulfur from sulfur containing gases
US8431101B2 (en) Method of treating an acid gas stream and an apparatus therefor
WO2017220655A1 (en) Integrated process for the production of sulphuric acid and sulphur
TW386895B (en) Method for dusulfurizing Off-gases
JP2007533447A (en) Composition and method for treatment of exhaust gas
EP1899042A1 (en) Treatment of fuel gas
US20200369577A1 (en) Production of fertilizers from landfill gas or digester gas
US7250149B1 (en) Sulfur gas treatment process
US20020094308A1 (en) Process and apparatus for processing hydrogen sulfide from a gas
US4960575A (en) Removal of hydrogen sulfide with on site generated sulfite from geothermal steam
US20020021993A1 (en) Treatment of feed gas streams containing hydrogen sulphide
JPH02214523A (en) Process for removing hyurogen sulfide from gas mixture
US20020025284A1 (en) Treatment of gas streams containing hydrogen sulphide
Vatachi et al. Modified Claus Process Applied To Natural Gas For Sulfur Recovery
JPH0511044B2 (en)
JPH0270794A (en) Purification of coal gasification gas
MXPA99011904A (en) Method for desulfurizing off-gases
CZ456699A3 (en) Process of removing H2S from waste gases
JPH06127907A (en) Hydrogenation treatment of gas incorporating sulfur compounds
d'Haene Traditional And New Sulphur Recovery Processes Used In The Gas Processing And Refining Industries

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees