TW202419791A - Method and computer program product for controlling hot blast stove - Google Patents

Method and computer program product for controlling hot blast stove Download PDF

Info

Publication number
TW202419791A
TW202419791A TW111142766A TW111142766A TW202419791A TW 202419791 A TW202419791 A TW 202419791A TW 111142766 A TW111142766 A TW 111142766A TW 111142766 A TW111142766 A TW 111142766A TW 202419791 A TW202419791 A TW 202419791A
Authority
TW
Taiwan
Prior art keywords
hot blast
blast furnace
value
parameter
values
Prior art date
Application number
TW111142766A
Other languages
Chinese (zh)
Other versions
TWI817819B (en
Inventor
吳調原
孫文龍
鄭璨朧
Original Assignee
中國鋼鐵股份有限公司
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW111142766A priority Critical patent/TWI817819B/en
Priority claimed from TW111142766A external-priority patent/TWI817819B/en
Application granted granted Critical
Publication of TWI817819B publication Critical patent/TWI817819B/en
Publication of TW202419791A publication Critical patent/TW202419791A/en

Links

Images

Abstract

A method and a computer program product for controlling a hot blast stove are provided. The method includes: inputting operating predetermined values of a hot blast stove operating parameter group in a first cycle operation and request values of a hot air request parameter group in a second cycle operation into a predictive model for computing to output a value of a predictive hot air temperature in the second cycle operation, the hot blast stove operating parameter group including an affecting efficiency parameter with which a value of a fuel efficiency parameter changes, a firstly adjective value corresponding to the value of the affecting efficiency parameter; adjusting the affecting efficiency parameter based on increasing the values of the fuel efficiency parameter to obtain secondly adjective values and inputting the secondly adjective values into the predictive model to output values of the predictive hot air temperature; choosing one as a suitable value from the firstly adjective value and the secondly adjective values; and controlling the hot blast stove to being in the second cycle operation according to the suitable value.

Description

熱風爐的控制方法及其電腦程式產品Hot blast furnace control method and computer program product thereof

本發明是有關於一種控制方法及電腦程式產品,且特別是指一種熱風爐的控制方法及其電腦程式產品。The present invention relates to a control method and a computer program product, and in particular to a control method of a hot air furnace and a computer program product thereof.

高爐熱風爐的作用是供應穩定溫度熱風至高爐。而蓄熱式的高爐熱風爐在每一循環分成燃燒期及送風期:在燃燒期時,高爐熱風爐內燃燒燃料且將熱量蓄積在蓄熱磚;在送風期時,調節入爐的冷鼓風帶走蓄熱磚的熱量且與未入爐的冷鼓風混合以維持穩定風溫並輸出。又高爐熱風爐使用的燃料佔高爐整體使用燃料的比例極高,因此提升高爐熱風爐燃料的使用效率一直是本領域研究的目標。The function of the hot blast furnace of a blast furnace is to supply hot air with a stable temperature to the blast furnace. The regenerative hot blast furnace of a blast furnace is divided into a combustion period and an air supply period in each cycle: during the combustion period, the fuel is burned in the hot blast furnace of the blast furnace and the heat is stored in the heat storage bricks; during the air supply period, the cold blast entering the furnace is adjusted to take away the heat of the heat storage bricks and mix with the cold blast that has not entered the furnace to maintain a stable air temperature and output. The fuel used by the hot blast furnace of a blast furnace accounts for a very high proportion of the total fuel used by the blast furnace, so improving the efficiency of the fuel used by the hot blast furnace of a blast furnace has always been the goal of research in this field.

本發明的目的是在於提供一種熱風爐的控制方法及其電腦程式產品,其透過調整影響熱風爐的燃料利用效率的影響效率參數,並將調整的影響效率參數之值輸入預測模型運算以輸出下一循環操作的預測熱風溫度,依據預測模型的輸出結果選擇符合下一循環操作需求的一者來控制熱風爐的下一循環操作,使熱風爐能發揮最大的節能效果。The purpose of the present invention is to provide a control method for a hot blast furnace and a computer program product thereof, which adjusts an efficiency parameter affecting the fuel utilization efficiency of the hot blast furnace, and inputs the adjusted efficiency parameter value into a prediction model to calculate and output a predicted hot blast temperature for the next cycle operation. According to the output result of the prediction model, one that meets the requirements of the next cycle operation is selected to control the next cycle operation of the hot blast furnace, so that the hot blast furnace can exert the maximum energy saving effect.

本發明之一態樣是在提供一種熱風爐的控制方法,其包含:提供熱風爐操作參數組所對應的一組操作預設值,其中此組操作預設值為熱風爐在第一循環操作的操作結果;提供熱風爐在第二循環操作需產生熱風的熱風需求參數組所對應的一組需求值;將此組操作預設值及此組需求值輸入預測模型來進行運算,以輸出第二循環操作之預測熱風溫度之值,其中,第二循環操作係接續第一循環操作,熱風爐操作參數組相關熱風爐內的溫度及熱風輸出參數,且包括影響效率參數,熱風爐的燃料利用效率之值係隨著影響效率參數之值而變化,此組操作預設值中的第一調整值為對應影響效率參數之值,熱風需求參數組包括熱風需求溫度;以提高燃料利用效率之值來調整影響效率參數,而獲得複數個對應不同的燃料利用效率之值的第二調整值;將第二調整值輸入該預測模型運算以輸出此些第二調整值分別對應之預測熱風溫度之值;從第一調整值及第二調整值中選擇一者在其對應之預測熱風溫度之值符合熱風需求溫度且對應至最高的燃料利用效率之值作為合適值;以及依據合適值控制熱風爐,以進行第二循環操作。One aspect of the present invention is to provide a control method for a hot blast furnace, which includes: providing a set of operation preset values corresponding to a set of operation parameters of the hot blast furnace, wherein the set of operation preset values is the operation result of the hot blast furnace in a first cycle operation; providing a set of demand values corresponding to a set of hot blast demand parameters for generating hot blast in a second cycle operation of the hot blast furnace; inputting the set of operation preset values and the set of demand values into a prediction model for calculation to output a value of a predicted hot blast temperature of the second cycle operation, wherein the second cycle operation is a continuation of the first cycle operation, the hot blast furnace operation parameter set is related to the temperature in the hot blast furnace and the hot blast output parameter, and includes an efficiency-affecting parameter, and the value of the fuel utilization efficiency of the hot blast furnace is a function of the fuel utilization efficiency of the hot blast furnace. The first adjustment value in the set of operation preset values is the value corresponding to the parameter affecting the efficiency, and the hot air demand parameter set includes the hot air demand temperature; the efficiency parameter is adjusted to improve the fuel utilization efficiency, and a plurality of second adjustment values corresponding to different fuel utilization efficiency values are obtained; the second adjustment value is input into the prediction model to calculate and output the predicted hot air temperature values corresponding to these second adjustment values; one of the first adjustment value and the second adjustment value is selected as the appropriate value when the corresponding predicted hot air temperature value meets the hot air demand temperature and corresponds to the highest fuel utilization efficiency; and the hot air furnace is controlled according to the appropriate value to perform the second cycle operation.

依據本發明的一實施例,影響效率參數是經由模擬熱風爐的物理模型,在熱風爐運作時依據熱風爐操作參數組與燃料利用效率的相關性所獲得。According to an embodiment of the present invention, the parameters affecting the efficiency are obtained by simulating the physical model of the hot blast furnace and according to the correlation between the hot blast furnace operating parameter set and the fuel utilization efficiency when the hot blast furnace is in operation.

依據本發明的一實施例,熱風爐在每一次的循環包括燃燒期及送風期,影響效率參數為煙氣排放終點溫度,其為燃燒期末期時熱風爐排放煙氣的溫度。According to an embodiment of the present invention, the hot blast furnace includes a combustion period and an air supply period in each cycle, and the parameter affecting the efficiency is the flue gas emission end point temperature, which is the temperature of the flue gas emitted by the hot blast furnace at the end of the combustion period.

依據本發明的一實施例,每次調整煙氣排放終點溫度的值介於攝氏1度至攝氏5度之間。According to an embodiment of the present invention, the value of the flue gas emission end point temperature is adjusted each time to be between 1 degree Celsius and 5 degrees Celsius.

依據本發明的一實施例,控制參數隨著影響效率參數變化,控制參數與熱風爐的操作穩定性相關,在預測模型運算的步驟中,預測模型還輸出在第二循環操作時對應第一調整值的控制參數之值,在將第二調整值輸入預測模型運算的步驟中,預測模型還輸出在第二循環操作時分別對應第二調整值的控制參數之值,在從第一調整值及第二調整值中選擇的步驟中,選擇的合適值對應的控制參數之值還需符合使熱風爐操作穩定的穩定範圍。According to an embodiment of the present invention, the control parameter changes along with the influencing efficiency parameter, and the control parameter is related to the operational stability of the hot blast furnace. In the step of predictive model calculation, the predictive model also outputs the value of the control parameter corresponding to the first adjustment value during the second cycle operation. In the step of inputting the second adjustment value into the predictive model calculation, the predictive model also outputs the value of the control parameter corresponding to the second adjustment value during the second cycle operation. In the step of selecting from the first adjustment value and the second adjustment value, the value of the control parameter corresponding to the selected appropriate value must also comply with the stable range for stabilizing the operation of the hot blast furnace.

依據本發明的一實施例,熱風爐在每一次的循環包括燃燒期及送風期,控制參數為混冷閥終點開度,其為送風期末期時熱風爐的混冷閥之開度。According to an embodiment of the present invention, each cycle of the hot blast furnace includes a combustion period and an air supply period, and the control parameter is the final opening of the mixing and cooling valve, which is the opening of the mixing and cooling valve of the hot blast furnace at the end of the air supply period.

依據本發明的一實施例,穩定範圍邊界的極限值係隨著熱風爐的使用期限、損壞頻率、或損壞次數而調整。According to an embodiment of the present invention, the limit value of the boundary of the stable range is adjusted according to the service life, damage frequency, or number of damages of the hot blast furnace.

依據本發明的一實施例,在預測模型運算的步驟中,還將第二循環操作的燃料條件輸入預測模型運算。According to one embodiment of the present invention, in the step of predictive model calculation, the fuel condition of the second cycle operation is also input into the predictive model calculation.

依據本發明的一實施例,預測模型是依據熱風爐操作參數組所對應的複數組歷史值、燃料條件所對應的複數個歷史值與熱風需求參數組所對應的複數組歷史值,及對應的預測熱風溫度所對應的複數個歷史值與對應的控制參數所對應的複數個歷史值,經由機器學習演算法或統計方法建立熱風爐操作參數組、燃料條件、熱風需求參數組,與預測熱風溫度、控制參數之間的對應關係。According to an embodiment of the present invention, the prediction model is based on a plurality of historical values corresponding to the hot blast furnace operating parameter set, a plurality of historical values corresponding to the fuel conditions, and a plurality of historical values corresponding to the hot blast demand parameter set, and a plurality of historical values corresponding to the corresponding predicted hot blast temperature and a plurality of historical values corresponding to the corresponding control parameters. The corresponding relationship between the hot blast furnace operating parameter set, the fuel conditions, the hot blast demand parameter set, and the predicted hot blast temperature and the control parameters is established through a machine learning algorithm or a statistical method.

本發明之另一態樣是在提供一種用於控制熱風爐的電腦程式產品,當電腦載入此電腦程式產品並執行後,可完成如上所述之熱風爐的控制方法。Another aspect of the present invention is to provide a computer program product for controlling a hot blast furnace. When the computer is loaded with the computer program product and executed, the hot blast furnace control method as described above can be completed.

以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。The following is a detailed discussion of embodiments of the present invention. However, it is understood that the embodiments provide many applicable concepts that can be implemented in a variety of specific contexts. The embodiments discussed and disclosed are for illustration only and are not intended to limit the scope of the present invention.

在本文中所使用的用語僅是為了描述特定實施例,非用以限制申請專利範圍。除非另有限制,否則單數形式的「一」或「該」用語也可用來表示複數形式。The terms used in this article are only for describing specific embodiments and are not intended to limit the scope of the patent application. Unless otherwise limited, the singular forms "a", "an" or "the" can also be used to represent plural forms.

參閱圖1和圖2,其中圖1為依據執行本發明實施例之熱風爐的控制方法的熱風爐系統100的方塊圖,圖2為熱風爐200的一示例。熱風爐系統100用以供應穩定溫度之熱風至高爐。熱風爐系統100包括熱風爐200和控制模組300。Referring to FIG. 1 and FIG. 2 , FIG. 1 is a block diagram of a hot blast furnace system 100 according to a control method of a hot blast furnace according to an embodiment of the present invention, and FIG. 2 is an example of a hot blast furnace 200 . The hot blast furnace system 100 is used to supply hot blast of a stable temperature to a high temperature furnace. The hot blast furnace system 100 includes a hot blast furnace 200 and a control module 300 .

熱風爐200包括燃燒室210、蓄熱室220及連通燃燒室210和蓄熱室220的爐頂230。蓄熱室220內設置多個蓄熱磚(圖未示)。熱風爐200在每一次的循環包括燃燒期及送風期。在燃燒期時(氣體的流向如實線箭頭所示),燃料在燃燒室210燃燒且產生煙氣,煙氣產生的熱量隨著煙氣而傳輸且蓄積在蓄熱磚內,之後煙氣自蓄熱室220排放至爐外。在送風期時(氣體的流向如虛線箭頭所示),自蓄熱室220調節進入爐內的冷鼓風在經過蓄熱磚帶走熱量而升溫成熱風,熱風與未進爐的冷鼓風混合以維持穩定熱風風溫輸出至高爐(圖未示),其中用來維持穩定風溫的冷鼓風之流量是經由調節混冷閥240之開度來控制。The hot blast furnace 200 includes a combustion chamber 210, a heat storage chamber 220, and a furnace top 230 connecting the combustion chamber 210 and the heat storage chamber 220. A plurality of heat storage bricks (not shown) are arranged in the heat storage chamber 220. The hot blast furnace 200 includes a combustion period and a blast period in each cycle. During the combustion period (the flow direction of the gas is shown by the solid arrow), the fuel burns in the combustion chamber 210 and generates flue gas, and the heat generated by the flue gas is transmitted along with the flue gas and stored in the heat storage bricks, and then the flue gas is discharged from the heat storage chamber 220 to the outside of the furnace. During the air supply period (the flow direction of the gas is shown by the dotted arrow), the cold blast air regulated from the heat storage chamber 220 entering the furnace is heated to hot air after the heat is taken away by the heat storage bricks. The hot air is mixed with the cold blast air that has not entered the furnace to maintain a stable hot air temperature and is output to the high-temperature furnace (not shown). The flow rate of the cold blast air used to maintain a stable air temperature is controlled by adjusting the opening of the mixing valve 240.

熱風爐200的熱風爐操作參數組為熱風爐200每次循環的操作結果,其為相關熱風爐200內的溫度及熱風輸出參數,例如為送風期末期時的爐頂溫度、燃燒期末期時熱風爐排放煙氣的溫度(即煙氣排放終點溫度)、熱風溫度(即輸出至高爐的熱風之溫度)、熱風流量(即自蓄熱室220調節進入爐內升溫成熱風的流量)等。其中,在熱風爐操作參數組中包括影響效率參數,其影響熱風爐200的燃料利用效率,燃料利用效率為「熱風熱量」比「燃料之投熱熱量」的比值。在本示例中,經由模擬熱風爐200的物理模型,在熱風爐200運作時依據熱風爐操作參數組與燃料利用效率的相關性,即燃料利用效率之值係隨著影響效率參數之值而變化,從而在熱風爐操作參數組中找出影響效率參數。在本示例中,影響效率參數為煙氣排放終點溫度。如圖3所示,其為煙氣排放溫度與燃燒時間、燃料利用效率關係的模擬圖。煙氣排放溫度隨著燃燒時間的增加成為煙氣排放終點溫度,在煙氣排放終點溫度從攝氏354度調降為攝氏344度時,燃料利用效率之值提升0.6%;在煙氣排放終點溫度從攝氏354度調降為攝氏337度時,燃料利用效率之值提升1%;在煙氣排放終點溫度從攝氏354度調降為攝氏330度時,燃料利用效率之值提升1.5%;在煙氣排放終點溫度從攝氏354度調降為攝氏322度時,燃料利用效率之值提升2%。因此,調整煙氣排放終點溫度下降時,燃料利用效率隨之提升。The hot blast furnace operation parameter set of the hot blast furnace 200 is the operation result of each cycle of the hot blast furnace 200, which is the temperature in the relevant hot blast furnace 200 and the hot blast output parameters, such as the furnace top temperature at the end of the air supply period, the temperature of the flue gas discharged by the hot blast furnace at the end of the combustion period (i.e., the end point temperature of the flue gas discharge), the hot blast temperature (i.e., the temperature of the hot blast output to the high furnace), the hot blast flow rate (i.e., the flow rate of the hot blast heated up by the heat storage chamber 220 into the furnace), etc. Among them, the hot blast furnace operation parameter set includes the efficiency-affecting parameter, which affects the fuel utilization efficiency of the hot blast furnace 200, and the fuel utilization efficiency is the ratio of "hot blast heat" to "fuel input heat". In this example, by simulating the physical model of the hot blast furnace 200, when the hot blast furnace 200 is in operation, the hot blast furnace operating parameter set is based on the correlation with the fuel utilization efficiency, that is, the value of the fuel utilization efficiency changes with the value of the parameter affecting the efficiency, thereby finding the parameter affecting the efficiency in the hot blast furnace operating parameter set. In this example, the parameter affecting the efficiency is the flue gas emission terminal temperature. As shown in FIG3, it is a simulation diagram of the relationship between the flue gas emission temperature, the combustion time, and the fuel utilization efficiency. As the combustion time increases, the flue gas emission temperature becomes the flue gas emission terminal temperature. When the flue gas emission terminal temperature is reduced from 354 degrees Celsius to 344 degrees Celsius, the fuel utilization efficiency value increases by 0.6%; when the flue gas emission terminal temperature is reduced from 354 degrees Celsius to 337 degrees Celsius, the fuel utilization efficiency value increases by 1%; when the flue gas emission terminal temperature is reduced from 354 degrees Celsius to 330 degrees Celsius, the fuel utilization efficiency value increases by 1.5%; when the flue gas emission terminal temperature is reduced from 354 degrees Celsius to 322 degrees Celsius, the fuel utilization efficiency value increases by 2%. Therefore, when the flue gas emission terminal temperature is adjusted to decrease, the fuel utilization efficiency increases accordingly.

更進一步地,影響效率參數變化時,使控制熱風爐200的控制參數亦隨之變化。在本示例中,控制參數為送風期末期時熱風爐200的混冷閥240之開度(即混冷閥終點開度),混冷閥240之開度範圍為0%至100%。在煙氣排放終點溫度下降時(即燃料利用效率提升),混冷閥終點開度也隨著降低。又在送風期末期時,混冷閥終點開度一般會調降,但在混冷閥終點開度低於某個程度時,混冷閥之開度與旁通冷鼓風流量呈現高度非線性,使旁通冷鼓風流量難以掌控,造成熱風爐200操作不穩定。此外,混冷閥終點開度過低即表示送風期結束時,蓄熱磚蓄積的熱量過少,有無法滿足送風需求的風險。因此,控制參數之值還需符合使熱風爐200操作穩定的穩定範圍內,穩定範圍為控制參數之值須大於穩定範圍邊界的極限值。又穩定範圍的極限值係隨著熱風爐200的使用期限、損壞頻率、或損壞次數而調整。例如隨著熱風爐200的使用期間增長,極限值隨之調高。舉例來說,在熱風爐200使用一年時,極限值設定為5%,在熱風爐200使用十年時,極限值調高為10%。又例如隨著熱風爐200曾經損壞的損壞頻率、或損壞次數的增加,極限值隨之調高。舉例來說,在熱風爐200曾經損壞5次時,極限值設定為5%,在熱風爐200曾經損壞15次時,極限值調高為10%。Furthermore, when the parameters affecting the efficiency change, the control parameters for controlling the hot blast furnace 200 also change accordingly. In this example, the control parameter is the opening of the cold mixing valve 240 of the hot blast furnace 200 at the end of the air supply period (i.e., the final opening of the cold mixing valve), and the opening range of the cold mixing valve 240 is 0% to 100%. When the terminal temperature of the flue gas emission decreases (i.e., the fuel utilization efficiency is improved), the final opening of the cold mixing valve also decreases. At the end of the air supply period, the final opening of the cold mixing valve is generally adjusted down, but when the final opening of the cold mixing valve is lower than a certain level, the opening of the cold mixing valve and the bypass cold blast flow rate are highly nonlinear, making the bypass cold blast flow rate difficult to control, resulting in unstable operation of the hot blast furnace 200. In addition, if the end point opening of the mixed cold valve is too low, it means that at the end of the air supply period, the heat stored in the heat storage brick is too little, and there is a risk that the air supply demand cannot be met. Therefore, the value of the control parameter must also meet the stable range for the operation of the hot air furnace 200. The stable range is that the value of the control parameter must be greater than the limit value of the stable range boundary. The limit value of the stable range is adjusted with the service life, damage frequency, or number of damages of the hot air furnace 200. For example, as the service life of the hot air furnace 200 increases, the limit value is adjusted accordingly. For example, when the hot air furnace 200 is used for one year, the limit value is set to 5%, and when the hot air furnace 200 is used for ten years, the limit value is increased to 10%. For another example, as the damage frequency or the number of damages of the hot air furnace 200 increases, the limit value is increased accordingly. For example, when the hot air furnace 200 is damaged 5 times, the limit value is set to 5%, and when the hot air furnace 200 is damaged 15 times, the limit value is increased to 10%.

配合參閱圖4,控制模組300用以控制熱風爐200的操作設定,且執行熱風爐的控制方法。控制模組300包括預測模型310。預測模型310是依據前一循環操作(即第一循環操作)的熱風爐操作參數組所對應的複數組歷史值、接續前一循環操作之後的下一循環操作(即第二循環操作)的燃料條件所對應的複數個歷史值與下一循環操作的熱風需求參數組所對應的複數組歷史值,及對應的下一循環操作的熱風溫度(即預測熱風溫度)所對應的複數個歷史值與對應的下一循環操作的控制參數所對應的複數個歷史值,經由機器學習演算法或統計方法建立前一循環操作的熱風爐操作參數組、下一循環操作的燃料條件、下一循環操作的熱風需求參數組,與下一循環操作的熱風溫度、下一循環操作的控制參數之間的對應關係。其中,燃料條件例如為燃料熱值。熱風需求參數組例如為熱風需求溫度、熱風需求流量等。Referring to FIG. 4 , the control module 300 is used to control the operation settings of the hot blast furnace 200 and to execute the control method of the hot blast furnace. The control module 300 includes a prediction model 310. The prediction model 310 is based on a plurality of historical values corresponding to the hot blast furnace operation parameter set of the previous cycle operation (i.e., the first cycle operation), a plurality of historical values corresponding to the fuel conditions of the next cycle operation (i.e., the second cycle operation) following the previous cycle operation, a plurality of historical values corresponding to the hot blast demand parameter set of the next cycle operation, and a corresponding hot blast temperature of the next cycle operation (i.e., the prediction value). The corresponding relationship between the hot air furnace operation parameter set of the previous cycle operation, the fuel condition of the next cycle operation, the hot air demand parameter set of the next cycle operation, and the hot air temperature of the next cycle operation and the control parameter of the next cycle operation is established by a machine learning algorithm or a statistical method. Among them, the fuel condition is, for example, the calorific value of the fuel. The hot air demand parameter set is, for example, the hot air demand temperature, the hot air demand flow rate, etc.

因此,建立的預測模型310可依據輸入之熱風爐前一循環操作的熱風爐操作參數組、下一循環操作的燃料條件和熱風需求參數組進行運算,以輸出預測之下一循環操作的熱風溫度(即預測熱風溫度)和控制參數。Therefore, the established prediction model 310 can be calculated based on the input hot blast furnace operation parameter set of the previous cycle operation of the hot blast furnace, the fuel conditions of the next cycle operation and the hot blast demand parameter set to output the predicted hot blast temperature (i.e., predicted hot blast temperature) and control parameters of the next cycle operation.

參閱圖1、圖4和圖5,其中圖5為依據本發明實施例之熱風爐的控制方法500的流程示意圖。執行熱風爐的控制方法500的時間點,為前一循環操作(第一循環操作)已結束,且下一循環操作(第二循環操作)還未開始的期間,藉由執行熱風爐的控制方法500找出最適合下一循環操作(第二循環操作)時之控制熱風爐200的操作設定。Referring to FIG. 1 , FIG. 4 and FIG. 5 , FIG. 5 is a schematic flow chart of a control method 500 for a hot blast furnace according to an embodiment of the present invention. The time point for executing the control method 500 for the hot blast furnace is when the previous cycle operation (first cycle operation) has ended and the next cycle operation (second cycle operation) has not yet started. By executing the control method 500 for the hot blast furnace, the operation setting for controlling the hot blast furnace 200 that is most suitable for the next cycle operation (second cycle operation) is found.

首先,在步驟510中,提供熱風爐操作參數組所對應的一組操作預設值,其中提供的這組操作預設值為熱風爐200在前一循環操作(第一循環操作)的操作結果。即在步驟510中,先藉由控制模組300從配置在熱風爐200內之感應器擷取熱風爐200在前一循環操作的一組操作預設值。其中,熱風爐操作參數組中的影響效率參數所對應之值為第一調整值。First, in step 510, a set of operation preset values corresponding to the hot blast furnace operation parameter set is provided, wherein the set of operation preset values provided is the operation result of the hot blast furnace 200 in the previous cycle operation (first cycle operation). That is, in step 510, the control module 300 first captures a set of operation preset values of the hot blast furnace 200 in the previous cycle operation from the sensor configured in the hot blast furnace 200. Among them, the value corresponding to the efficiency-affecting parameter in the hot blast furnace operation parameter set is the first adjustment value.

在步驟520中,提供熱風爐200在下一循環操作的燃料條件及需產生熱風的熱風需求參數組所分別對應的燃料條件之值及一組需求值。即在步驟520中,操作人員可預先輸入儲存或即時輸入在下一循環操作投入熱風爐200之燃料的燃料條件之值,以及在下一循環操作需供應至高爐的需求值至控制模組300。In step 520, the fuel condition of the hot blast furnace 200 in the next cycle operation and the hot blast demand parameter set for generating hot blast are provided, and the fuel condition values and a set of demand values are respectively corresponding to the hot blast demand parameter set. That is, in step 520, the operator can pre-enter the stored or real-time value of the fuel condition of the fuel to be put into the hot blast furnace 200 in the next cycle operation, and the demand value to be supplied to the blast furnace in the next cycle operation to the control module 300.

在步驟530中,藉由控制模組300將上述操作預設值、燃料條件之值及需求值輸入預測模型310來進行運算,以輸出下一循環操作的熱風溫度之值及控制參數之值。In step 530, the control module 300 inputs the above-mentioned operation preset value, fuel condition value and demand value into the prediction model 310 for calculation to output the value of the hot air temperature and the value of the control parameter of the next cycle operation.

在步驟540中,藉由控制模組300以提高燃料利用效率之值來調整影響效率參數,而獲得複數個對應不同的燃料利用效率之值的第二調整值。每次調整煙氣排放終點溫度的值介於攝氏1度至攝氏5度之間。In step 540, the control module 300 adjusts the efficiency parameter by increasing the fuel efficiency value, thereby obtaining a plurality of second adjustment values corresponding to different fuel efficiency values. Each adjustment of the flue gas emission end point temperature is between 1 degree Celsius and 5 degrees Celsius.

在步驟550中,藉由控制模組300將步驟540獲得的第二調整值及如同步驟510、步驟520所提供的其餘參數之值(即不涵蓋第一調整值的其餘參數之值)再輸入預測模型310運算,以輸出不同的第二調整值分別對應之下一循環操作的熱風溫度之值及控制參數之值。In step 550, the control module 300 inputs the second adjustment value obtained in step 540 and the values of the remaining parameters provided by the synchronization module 510 and step 520 (i.e., the values of the remaining parameters not covering the first adjustment value) into the prediction model 310 for calculation, so as to output the values of the hot air temperature and the control parameters of the next cycle operation corresponding to different second adjustment values.

在步驟560中,藉由控制模組300依據步驟550的結果,判斷第一調整值及第二調整值所分別對應之下一循環操作的熱風溫度之值及控制參數之值中,是否有下一循環操作的熱風溫度之值符合需求,且控制參數之值在穩定範圍內並最趨近極限值(即為穩定範圍內的最低值)。若控制模組300判斷為是,則進行步驟570;若控制模組300判斷為否,則再回到步驟540重新調整影響效率參數。In step 560, the control module 300 determines, based on the result of step 550, whether the hot air temperature value of the next cycle operation and the control parameter value corresponding to the first adjustment value and the second adjustment value respectively meet the requirements, and the control parameter value is within the stable range and closest to the limit value (i.e., the lowest value within the stable range). If the control module 300 determines yes, step 570 is performed; if the control module 300 determines no, it returns to step 540 to re-adjust the parameters affecting efficiency.

在步驟570中,藉由控制模組300從第一調整值及第二調整值中選擇一者作為合適值,選擇的合適值所對應的下一循環操作的熱風溫度符合需求以及所對應的控制參數之值在穩定範圍中最趨近極限值。在本示例中,合適值所對應的控制參數之值為在穩定範圍中的最低值。In step 570, the control module 300 selects one of the first adjustment value and the second adjustment value as a suitable value, and the hot air temperature of the next cycle operation corresponding to the selected suitable value meets the requirements and the value of the corresponding control parameter is closest to the limit value in the stable range. In this example, the value of the control parameter corresponding to the suitable value is the lowest value in the stable range.

舉例來說,在步驟540中,每次調整煙氣排放終點溫度的值為攝氏2度,第一調整值為攝氏347度,多個第二調整值分別為攝氏345度、攝氏343度、攝氏341度、攝氏339度、攝氏337度、攝氏335度。在步驟550、步驟560、步驟570中,煙氣排放終點溫度在攝氏337度所對應之下一循環操作的熱風溫度之值符合需求,且控制參數之值在穩定範圍內中的最低值,而煙氣排放終點溫度在攝氏335度所對應之下一循環操作的熱風溫度之值雖符合需求,但控制參數之值卻超出穩定範圍,因此,合適值為煙氣排放終點溫度在攝氏337度。For example, in step 540, the value of the flue gas emission end point temperature is adjusted by 2 degrees Celsius each time, the first adjustment value is 347 degrees Celsius, and the multiple second adjustment values are 345 degrees Celsius, 343 degrees Celsius, 341 degrees Celsius, 339 degrees Celsius, 337 degrees Celsius, and 335 degrees Celsius. In step 550, step 560, and step 570, the value of the hot air temperature of the next cycle operation corresponding to the flue gas emission terminal temperature of 337 degrees Celsius meets the requirements, and the value of the control parameter is the lowest value within the stable range. Although the value of the hot air temperature of the next cycle operation corresponding to the flue gas emission terminal temperature of 335 degrees Celsius meets the requirements, the value of the control parameter exceeds the stable range. Therefore, the appropriate value is the flue gas emission terminal temperature of 337 degrees Celsius.

在步驟580中,藉由控制模組300依據熱風爐操作參數組所對應的操作預設值及合適值控制熱風爐200,以進行第二循環操作。在本示例中,控制模組300依據操作預設值中的第一調整值及合適值的差值來設定第二循環操作的操作指引,操作指引例如為燃料的使用量。In step 580, the control module 300 controls the hot blast furnace 200 according to the operation preset value and the appropriate value corresponding to the hot blast furnace operation parameter set to perform the second cycle operation. In this example, the control module 300 sets the operation guide of the second cycle operation according to the difference between the first adjustment value in the operation preset value and the appropriate value, and the operation guide is, for example, the amount of fuel used.

參閱圖6,其為實際驗證在多次的循環操作,煙氣排放終點溫度與燃料利用效率的實驗圖。經過實際驗證,在調降煙氣排放終點溫度攝氏10度左右時,可提升燃料利用效率約1.3%,且混冷閥終點開度範圍從調整前的20~40%降低至13~29%的範圍。混冷閥終點開度不僅在穩定範圍內、趨近極限值,且波動範圍變小,因此熱風爐200保持在操作穩定的範圍、蓄熱磚的蓄熱量足夠,並使熱風爐200能發揮最大的節能效果。Refer to Figure 6, which is an experimental diagram of the flue gas emission terminal temperature and fuel utilization efficiency in multiple cycle operations. After actual verification, when the flue gas emission terminal temperature is reduced by about 10 degrees Celsius, the fuel utilization efficiency can be improved by about 1.3%, and the range of the final opening of the mixing and cooling valve is reduced from 20~40% before adjustment to 13~29%. The final opening of the mixing and cooling valve is not only within the stable range and close to the limit value, but also the fluctuation range is reduced, so the hot air furnace 200 is kept in the stable operation range, the heat storage capacity of the heat storage brick is sufficient, and the hot air furnace 200 can play the maximum energy saving effect.

要補充說明的是,上述熱風爐的控制方法500可由包含複數個程式指令的電腦程式產品實現。電腦程式產品可為在網路上傳輸的檔案,亦可儲存於非暫態電腦可讀取儲存媒體中。電腦程式產品所包含的此些程式指令被載入電子計算裝置(例如上述的控制模組300)後,電腦程式執行如上所述的熱風爐的控制方法500。其中,非暫態電腦可讀取儲存媒體可為例如唯讀記憶體(Read Only Memory;ROM)、快閃記憶體、軟碟、硬碟、光碟(Compact Disk;CD)、數位多功能光碟(Digital Versatile Disc;DVD)、隨身碟、可由網路存取的資料庫或其他類似的電子產品。It should be noted that the control method 500 of the hot blast furnace described above can be implemented by a computer program product including a plurality of program instructions. The computer program product can be a file transmitted on the Internet, or can be stored in a non-transient computer-readable storage medium. After the program instructions included in the computer program product are loaded into an electronic computing device (such as the control module 300 described above), the computer program executes the control method 500 of the hot blast furnace described above. Among them, the non-transient computer-readable storage medium can be, for example, a read-only memory (ROM), a flash memory, a floppy disk, a hard disk, a compact disk (CD), a digital versatile disc (DVD), a flash drive, a database accessible by the network, or other similar electronic products.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed as above by way of embodiments, it is not intended to limit the present disclosure. Any person having ordinary knowledge in the relevant technical field may make some changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be subject to the definition of the attached patent application scope.

100:熱風爐系統 200:熱風爐 210:燃燒室 220:蓄熱室 230:爐頂 240:混冷閥 300:控制模組 310:預測模型 510:步驟 520:步驟 530:步驟 540:步驟 550:步驟 560:步驟 570:步驟 580:步驟 100: hot air furnace system 200: hot air furnace 210: combustion chamber 220: regenerator 230: furnace top 240: mixed cooling valve 300: control module 310: prediction model 510: step 520: step 530: step 540: step 550: step 560: step 570: step 580: step

為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中: [圖1]為依據執行本發明實施例之熱風爐的控制方法的熱風爐系統的方塊圖; [圖2]為熱風爐的示意圖; [圖3]為煙氣排放溫度與燃燒時間、燃料利用效率關係的模擬圖; [圖4]為[圖1]的預測模型進行運算的示意圖; [圖5]為依據本發明實施例之熱風爐的控制方法的流程示意圖;以及 [圖6]為實際驗證在多次的循環操作,煙氣排放終點溫度與燃料利用效率的實驗圖。 In order to more fully understand the embodiment and its advantages, reference is now made to the following description in conjunction with the attached figures, wherein: [Figure 1] is a block diagram of a hot blast furnace system according to the control method of the hot blast furnace of the embodiment of the present invention; [Figure 2] is a schematic diagram of the hot blast furnace; [Figure 3] is a simulation diagram of the relationship between the flue gas emission temperature and the combustion time and fuel utilization efficiency; [Figure 4] is a schematic diagram of the prediction model of [Figure 1] for calculation; [Figure 5] is a schematic diagram of the process of the control method of the hot blast furnace according to the embodiment of the present invention; and [Figure 6] is an experimental diagram for actually verifying the end point temperature of the flue gas emission and the fuel utilization efficiency in multiple cycle operations.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

510:步驟 510: Steps

520:步驟 520: Steps

530:步驟 530: Steps

540:步驟 540: Steps

550:步驟 550: Steps

560:步驟 560: Steps

570:步驟 570: Steps

580:步驟 580: Steps

Claims (10)

一種熱風爐的控制方法,包含: 提供一熱風爐操作參數組所對應的一組操作預設值,其中該組操作預設值為該熱風爐在一第一循環操作的操作結果; 提供該熱風爐在一第二循環操作需產生熱風的一熱風需求參數組所對應的一組需求值; 將該組操作預設值及該組需求值輸入一預測模型來進行運算,以輸出該第二循環操作之一預測熱風溫度之值,其中,該第二循環操作係接續該第一循環操作,該熱風爐操作參數組相關該熱風爐內的一溫度及一熱風輸出參數,且包括一影響效率參數,該熱風爐的一燃料利用效率之值係隨著該影響效率參數之值而變化,該些操作預設值中的一第一調整值為對應該影響效率參數之值,該熱風需求參數組包括一熱風需求溫度; 以提高該燃料利用效率之值來調整該影響效率參數,而獲得複數個對應不同的該些燃料利用效率之值的第二調整值; 將該些第二調整值輸入該預測模型運算以輸出該些第二調整值分別對應之該些預測熱風溫度之值; 從該第一調整值及該些第二調整值中選擇一者在其對應之該預測熱風溫度之值符合該熱風需求溫度且對應至最高的該燃料利用效率之值作為一合適值;以及 依據該合適值控制該熱風爐,以進行該第二循環操作。 A control method for a hot blast furnace, comprising: Providing a set of operation preset values corresponding to a set of operation parameters of the hot blast furnace, wherein the set of operation preset values is the operation result of the hot blast furnace in a first cycle operation; Providing a set of demand values corresponding to a set of hot air demand parameters required to generate hot air in a second cycle operation of the hot blast furnace; The set of operation preset values and the set of demand values are input into a prediction model for calculation to output a predicted hot air temperature value of the second cycle operation, wherein the second cycle operation is a continuation of the first cycle operation, the hot blast furnace operation parameter set is related to a temperature in the hot blast furnace and a hot air output parameter, and includes an efficiency-affecting parameter, a fuel utilization efficiency value of the hot blast furnace changes with the value of the efficiency-affecting parameter, a first adjustment value among the operation preset values is a value corresponding to the efficiency-affecting parameter, and the hot air demand parameter set includes a hot air demand temperature; The efficiency-affecting parameter is adjusted to increase the value of the fuel utilization efficiency, and a plurality of second adjustment values corresponding to different values of the fuel utilization efficiency are obtained; Input the second adjustment values into the prediction model to calculate and output the predicted hot air temperature values corresponding to the second adjustment values; Select one of the first adjustment value and the second adjustment values as a suitable value when the corresponding predicted hot air temperature value meets the hot air demand temperature and corresponds to the highest fuel utilization efficiency; and Control the hot air furnace according to the suitable value to perform the second cycle operation. 如請求項1所述之熱風爐的控制方法,其中該影響效率參數是經由模擬該熱風爐的一物理模型,在該熱風爐運作時依據該熱風爐操作參數組與該燃料利用效率的相關性所獲得。A control method for a hot blast furnace as described in claim 1, wherein the efficiency-affecting parameter is obtained by simulating a physical model of the hot blast furnace and based on the correlation between the hot blast furnace operating parameter set and the fuel utilization efficiency when the hot blast furnace is in operation. 如請求項1所述之熱風爐的控制方法,其中該熱風爐在每一次的循環包括一燃燒期及一送風期,該影響效率參數為一煙氣排放終點溫度,其為該燃燒期末期時該熱風爐排放煙氣的溫度。A control method for a hot blast furnace as described in claim 1, wherein the hot blast furnace includes a combustion period and an air supply period in each cycle, and the parameter affecting the efficiency is a flue gas emission end point temperature, which is the temperature of the flue gas emitted by the hot blast furnace at the end of the combustion period. 如請求項3所述之熱風爐的控制方法,其中每次調整該煙氣排放終點溫度的值介於攝氏1度至攝氏5度之間。A method for controlling a hot blast furnace as described in claim 3, wherein the value of the flue gas emission end point temperature is adjusted each time to a value between 1 degree Celsius and 5 degrees Celsius. 如請求項1所述之熱風爐的控制方法,其中一控制參數隨著該影響效率參數變化,該控制參數與該熱風爐的操作穩定性相關,在該預測模型運算的步驟中,該預測模型還輸出在該第二循環操作時對應該第一調整值的該控制參數之值,在將該些第二調整值輸入該預測模型運算的步驟中,該預測模型還輸出在該第二循環操作時分別對應該些第二調整值的該些控制參數之值,在從該第一調整值及該些第二調整值中選擇的步驟中,選擇的該合適值對應的該控制參數之值還需符合使該熱風爐操作穩定的一穩定範圍。A control method for a hot blast furnace as described in claim 1, wherein a control parameter varies with the parameter affecting the efficiency, and the control parameter is related to the operational stability of the hot blast furnace. In the step of calculating the prediction model, the prediction model also outputs the value of the control parameter corresponding to the first adjustment value when the second cycle is in operation. In the step of inputting the second adjustment values into the prediction model calculation, the prediction model also outputs the values of the control parameters respectively corresponding to the second adjustment values when the second cycle is in operation. In the step of selecting from the first adjustment value and the second adjustment values, the value of the control parameter corresponding to the selected appropriate value must also comply with a stable range that stabilizes the operation of the hot blast furnace. 如請求項5所述之熱風爐的控制方法,其中該熱風爐在每一次的循環包括一燃燒期及一送風期,該控制參數為一混冷閥終點開度,其為該送風期末期時該熱風爐的一混冷閥之開度。A control method for a hot blast furnace as described in claim 5, wherein the hot blast furnace includes a combustion period and an air supply period in each cycle, and the control parameter is a terminal opening of a mixing and cooling valve, which is the opening of a mixing and cooling valve of the hot blast furnace at the end of the air supply period. 如請求項5所述之熱風爐的控制方法,其中該穩定範圍邊界的一極限值係隨著該熱風爐的一使用期限、一損壞頻率、或一損壞次數而調整。A control method for a hot blast furnace as described in claim 5, wherein a limit value of the boundary of the stable range is adjusted according to a service life, a damage frequency, or a damage count of the hot blast furnace. 如請求項5所述之熱風爐的控制方法,其中在該預測模型運算的步驟中,還將該第二循環操作的一燃料條件輸入該預測模型運算。A control method for a hot blast furnace as described in claim 5, wherein in the step of calculating the prediction model, a fuel condition of the second cycle operation is also input into the prediction model calculation. 如請求項8所述之熱風爐的控制方法,其中該預測模型是依據該熱風爐操作參數組所對應的複數組歷史值、該燃料條件所對應的複數個歷史值與該熱風需求參數組所對應的複數組歷史值,及對應的該預測熱風溫度所對應的複數個歷史值與對應的該控制參數所對應的複數個歷史值,經由機器學習演算法或統計方法建立該熱風爐操作參數組、該燃料條件、該熱風需求參數組,與該預測熱風溫度、該控制參數之間的對應關係。A control method for a hot blast furnace as described in claim 8, wherein the prediction model is based on a plurality of sets of historical values corresponding to the hot blast furnace operating parameter set, a plurality of historical values corresponding to the fuel conditions, and a plurality of historical values corresponding to the hot blast demand parameter set, and a plurality of historical values corresponding to the corresponding predicted hot blast temperature and a plurality of historical values corresponding to the corresponding control parameters, and a corresponding relationship between the hot blast furnace operating parameter set, the fuel conditions, the hot blast demand parameter set, and the predicted hot blast temperature and the control parameter is established through a machine learning algorithm or a statistical method. 一種用於控制熱風爐的電腦程式產品,當電腦載入此電腦程式產品並執行後,可完成如請求項1至9中任一項所述之熱風爐的控制方法。A computer program product for controlling a hot blast furnace. When the computer is loaded with the computer program product and executed, the hot blast furnace control method as described in any one of claims 1 to 9 can be completed.
TW111142766A 2022-11-09 2022-11-09 Method and computer program product for controlling hot blast stove TWI817819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111142766A TWI817819B (en) 2022-11-09 2022-11-09 Method and computer program product for controlling hot blast stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111142766A TWI817819B (en) 2022-11-09 2022-11-09 Method and computer program product for controlling hot blast stove

Publications (2)

Publication Number Publication Date
TWI817819B TWI817819B (en) 2023-10-01
TW202419791A true TW202419791A (en) 2024-05-16

Family

ID=89857983

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111142766A TWI817819B (en) 2022-11-09 2022-11-09 Method and computer program product for controlling hot blast stove

Country Status (1)

Country Link
TW (1) TWI817819B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312296C (en) * 2004-01-16 2007-04-25 冶金自动化研究设计院 Optimizing control method for hybrid type blast furnace hot blast stove
CN101408314B (en) * 2008-03-19 2010-06-23 首钢总公司 Automatic control system of blast furnace hot blast stove combustion process
CN111831719A (en) * 2020-07-22 2020-10-27 山东钢铁股份有限公司 Intelligent control method and system for blast furnace ironmaking production process
CN114657294B (en) * 2022-03-31 2023-02-07 北京科技大学 Experimental method and device for simulating combustion of blast furnace injection fuel

Similar Documents

Publication Publication Date Title
CN101684944B (en) Self-optimizing combustion control method of blast-furnace hot blast stove
CN201737965U (en) Automatic optimizing combustion intelligent control system of hot blast stove
JP4734014B2 (en) Hot stove control method, control system, computer program, and computer-readable recording medium
CN101736111A (en) Intelligent control method for automatic optimization combustion of hot-blast stove
CN102453792B (en) Method and equipment for controlling furnace pressure of continuous annealing furnace
CN112795716B (en) Efficient and practical hot blast stove burning control method
CN110205427A (en) A kind of intelligence hot-blast stove Optimal Control System and method
JP5343935B2 (en) Boiler system
CN101749731A (en) Automatic optimal combustion intelligent control system for hot blast stove
TW202419791A (en) Method and computer program product for controlling hot blast stove
TWI817819B (en) Method and computer program product for controlling hot blast stove
JP5286729B2 (en) Combustion control method and combustion control apparatus for hot stove
CN114704387B (en) Fuel control method for gas turbine
JP5640689B2 (en) Combustion control device for hot stove and combustion control method for hot stove
JP6907207B2 (en) Gas turbine combustion temperature control using air injection system
JP5685899B2 (en) Combustion control device for hot stove and combustion control method for hot stove
JP5423443B2 (en) Method for calculating fuel flow rate in continuous heating furnace, method for producing steel material, and continuous heating furnace
JP5849612B2 (en) Combustion control method and combustion control apparatus for hot stove
JP2013234847A (en) Boiler system
JP5418375B2 (en) Hot stove control calculation apparatus, hot stove control method, and computer program
KR101388020B1 (en) Mehtod for controlling combustion of hot strove of blast furnace
KR102466507B1 (en) System and method for operating of hot blast stove
JP2013096002A (en) Method and apparatus for controlling combustion in hot blast stove
JPH0637651B2 (en) Hot stove operation method
CN110397934B (en) Automatic temperature rise control method and device for incinerator