TW202414438A - Processing method of radioactive ionic resins - Google Patents

Processing method of radioactive ionic resins Download PDF

Info

Publication number
TW202414438A
TW202414438A TW111135409A TW111135409A TW202414438A TW 202414438 A TW202414438 A TW 202414438A TW 111135409 A TW111135409 A TW 111135409A TW 111135409 A TW111135409 A TW 111135409A TW 202414438 A TW202414438 A TW 202414438A
Authority
TW
Taiwan
Prior art keywords
ammonia
radioactive
copper
resin
treatment method
Prior art date
Application number
TW111135409A
Other languages
Chinese (zh)
Other versions
TWI839848B (en
Inventor
莊禮璟
楊智翔
謝賢德
Original Assignee
行政院原子能委員會核能研究所
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Publication of TW202414438A publication Critical patent/TW202414438A/en
Application granted granted Critical
Publication of TWI839848B publication Critical patent/TWI839848B/en

Links

Abstract

A processing method of radioactive ionic resins is provided. The processing method at least comprises performing a wet oxidation step and performing an ammonia treatment step. The wet oxidation step utilizes a hydrogen peroxide solution and a catalyst solution for decomposing the radioactive ionic resins to generate a waste solution and an ammonia gas. The ammonia treatment step utilizes a copper oxide-based catalyst having a copper compound with low oxidation state for decomposing the ammonia gas to generate a nitrogen gas and a water vapor.

Description

放射性離子樹脂的處理方法Treatment of Radioactive Ion Resins

本發明一般係關於一種離子樹脂的處理方法,具體而言,本發明係關於一種放射性離子樹脂的處理方法。The present invention generally relates to a method for treating an ion resin, and more particularly, to a method for treating a radioactive ion resin.

離子交換樹脂(Ion Exchange Resin)或稱為離子樹脂經常應用於污水處理,去除污水中的陽離子與陰離子。現行核電廠大多使用輕水式反應爐(light water reactor)機組,其產生的污水中經常帶有各種放射性核種,例如鍶-90(Sr-90)、銫-137(Cs-137)等,在污水中常以離子型態存在。此放射性污水使用離子交換樹脂可以有效地去除污水中的放射性核種,使放射性核種附著於離子交換樹脂上,形成放射性離子樹脂,且使過濾後的污水達到放流的標準。Ion exchange resins (Ion Exchange Resins) or ion resins are often used in sewage treatment to remove cations and anions in sewage. Most current nuclear power plants use light water reactor units, and the sewage they produce often contains various radioactive nuclides, such as strontium-90 (Sr-90) and cesium-137 (Cs-137), which often exist in the form of ions in the sewage. The use of ion exchange resins in this radioactive sewage can effectively remove the radioactive nuclides in the sewage, allowing the radioactive nuclides to attach to the ion exchange resin to form a radioactive ion resin, and the filtered sewage can meet the discharge standards.

目前核電廠與相關放射性設施產生的放射性離子樹脂可使用焚化法、熱裂解法、水泥固化法、濕式氧化法等進行處理。其中,使用焚化法與熱裂解法進行分解容易產生揮發性有機氣體等有害物質,如硫氧化物(SOx)、氮氧化物(NOx)等,且容易導致放射性核種逸散的問題。水泥固化法雖然操作簡單且成本低廉,但是放射性離子樹脂中含水量高,容易跟水泥中的鈣離子進行離子交換,導致水泥結構不穩,吸水後膨脹龜裂,造成放射性核種流出的問題。At present, the radioactive ion resins produced by nuclear power plants and related radioactive facilities can be treated by incineration, thermal cracking, cement solidification, wet oxidation, etc. Among them, the decomposition by incineration and thermal cracking is easy to produce harmful substances such as volatile organic gases, such as sulfur oxides (SOx), nitrogen oxides (NOx), etc., and it is easy to cause the problem of radioactive nuclides to escape. Although the cement solidification method is simple to operate and low in cost, the radioactive ion resin has a high water content and is easy to exchange ions with calcium ions in cement, resulting in an unstable cement structure, swelling and cracking after absorbing water, causing the problem of radioactive nuclides to leak out.

濕式氧化法有超臨界水氧化法、電漿氧化法以及高級濕式氧化法等。超臨界水氧化法需要操作在高溫高壓下處理放射性離子樹脂,容易造成設備被腐蝕。電漿氧化法成本高,氧化時容易產生有揮發性有機氣體等有害物質,亦有放射性核種逸散的問題。高級濕式氧化法中,例如芬頓(Fenton)氧化法,可將放射性離子樹脂預先氧化分解縮小體積,且可減少含水量,有利於後續的固化作業。Wet oxidation methods include supercritical water oxidation, plasma oxidation, and advanced wet oxidation. Supercritical water oxidation requires high temperature and high pressure to process radioactive ion resins, which can easily cause equipment corrosion. Plasma oxidation is costly and can easily produce harmful substances such as volatile organic gases during oxidation, and there is also the problem of radioactive nuclei escaping. Advanced wet oxidation methods, such as Fenton oxidation, can pre-oxidize and decompose radioactive ion resins to reduce their volume, and can reduce water content, which is beneficial to subsequent curing operations.

使用高級濕式氧化法,如Fenton氧化法,分解放射性陽離子與陰離子樹脂時,除了產生硫酸鹽之外,廢液中將有過剩的氫氧化銨,且在反應高溫下以氨氣的型態逸出溶液。習知使用還原鎳觸媒分解氨氣形成氫氣與氮氣,且分解過程中溫度需要700℃以上,且在高溫下有氫氣與空氣中的氧氣過度反應,造成***的風險。因此,如何妥善處理放射性離子樹脂,並且安全且有效地分解高級濕式氧化法中產生的氨氣,成為本領域技術人員急欲解決的問題。When using advanced wet oxidation methods, such as the Fenton oxidation method, to decompose radioactive cationic and anionic resins, in addition to producing sulfate, there will be excess ammonium hydroxide in the waste liquid, and it will escape the solution in the form of ammonia at high reaction temperatures. It is known that the use of reduced nickel catalysts to decompose ammonia to form hydrogen and nitrogen, and the temperature during the decomposition process needs to be above 700°C, and at high temperatures, hydrogen and oxygen in the air will over-react, causing the risk of explosion. Therefore, how to properly handle radioactive ion resins and safely and effectively decompose the ammonia produced in advanced wet oxidation methods has become a problem that technical personnel in this field are eager to solve.

本發明之一目的在於提供一種放射性離子樹脂的處理方法,可以分解放射性離子樹脂,縮小廢液體積,而且可以有效地處理分解過程中產生的氨氣,形成氮氣與水氣,達到回收或排放的標準,不會對環境造成二次污染。此外,分解後的廢液可以安全地固化,不會對環境造成危害。One purpose of the present invention is to provide a method for treating radioactive ion resin, which can decompose radioactive ion resin, reduce the volume of waste liquid, and effectively treat ammonia generated during the decomposition process to form nitrogen and water vapor, meet the standards for recycling or discharge, and will not cause secondary pollution to the environment. In addition, the decomposed waste liquid can be safely solidified without causing harm to the environment.

本發明之一實施例提供一種放射性離子樹脂的處理方法,至少包括進行濕式氧化步驟與進行氨氣處理步驟。濕式氧化步驟使用過氧化氫溶液與催化劑溶液分解放射性離子樹脂,產生廢液與氨氣。氨氣處理步驟使用具有低氧化態含銅物之氧化銅基觸媒分解氨氣,產生氮氣與水氣。One embodiment of the present invention provides a method for treating a radioactive ion resin, which at least includes a wet oxidation step and an ammonia treatment step. The wet oxidation step uses a hydrogen peroxide solution and a catalyst solution to decompose the radioactive ion resin to produce waste liquid and ammonia. The ammonia treatment step uses a copper oxide-based catalyst with low-oxidation copper to decompose ammonia to produce nitrogen and water.

本發明之另一實施例提供一種放射性離子樹脂的處理方法,更包括進行固化處理步驟,將廢液固化製成固化體。Another embodiment of the present invention provides a method for treating a radioactive ion resin, further comprising a curing step to cure the waste liquid into a cured body.

相較於習知技術,本發明的放射性離子樹脂的處理方法使用具有低氧化態含銅物之氧化銅基觸媒分解氨氣,產生安全的氮氣與水氣,增加製程的安全性,且產生的氮氣與水氣達到回收或排放的標準,不會對環境造成二次污染。此外,放射性離子樹脂可以有效地被分解,分解後的廢液也可以安全地固化,不會對環境造成危害。Compared with the prior art, the radioactive ion resin treatment method of the present invention uses a copper oxide-based catalyst with low-oxidation copper to decompose ammonia to produce safe nitrogen and water vapor, thereby increasing the safety of the process. The nitrogen and water vapor produced meet the standards for recycling or discharge and will not cause secondary pollution to the environment. In addition, the radioactive ion resin can be effectively decomposed, and the decomposed waste liquid can also be safely solidified without causing harm to the environment.

圖1為本發明之一實施例的放射性離子樹脂之處理方法的流程圖。圖2為本發明之一實施例的放射性離子樹脂之分解示意圖。請參考圖1與圖2,本發明之一實施例的放射性離子樹脂10之處理方法至少包括進行濕式氧化步驟(S100)與進行氨氣處理步驟(S200)。濕式氧化步驟使用過氧化氫溶液與催化劑溶液分解放射性離子樹脂10,產生氨氣20與廢液30。本發明之實施例中的放射性離子樹脂10泛指使用離子交換樹脂吸收放射性離子之後,而產生的放射性離子樹脂10,包括放射性陽離子樹脂、放射性陰離子樹脂或其組合。離子交換樹脂的基體或骨架,較佳可使用苯乙烯系或丙烯酸系,亦可使用醋酸系、環氧系、乙烯吡啶系、脲醛系、 氯乙烯系等,但不限於此。陽離子交換樹脂的酸性基團較佳可使用磺酸基(-SO 3H),亦可使用其他的酸性基團,在污水處理中與放射性陽離子交換後,形成廢棄的放射性陽離子樹脂。陰離子交換樹脂的鹼性基團較佳可使用季胺基(-NR 3OH),亦可使用其他的鹼性基團,在污水處理中與放射性陰離子交換後,形成廢棄的放射性陰離子樹脂。 FIG. 1 is a flow chart of a method for treating a radioactive ion resin according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a decomposition of a radioactive ion resin according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 2, a method for treating a radioactive ion resin 10 according to an embodiment of the present invention at least includes a wet oxidation step (S100) and an ammonia treatment step (S200). The wet oxidation step uses a hydrogen peroxide solution and a catalyst solution to decompose the radioactive ion resin 10, generating ammonia 20 and waste liquid 30. The radioactive ion resin 10 in the embodiment of the present invention generally refers to the radioactive ion resin 10 produced by using an ion exchange resin to absorb radioactive ions, including radioactive cationic resins, radioactive anionic resins or combinations thereof. The matrix or skeleton of the ion exchange resin is preferably styrene-based or acrylic-based, and may also be acetic acid-based, epoxy-based, vinylpyridine-based, urea-formaldehyde-based, vinyl chloride-based, etc., but not limited thereto. The acidic group of the cationic ion exchange resin is preferably sulfonic acid group (-SO 3 H), and may also be other acidic groups, which may be exchanged with radioactive cations in sewage treatment to form a waste radioactive cationic resin. The alkaline group of the anion exchange resin is preferably a quaternary amine group (-NR 3 OH), and other alkaline groups can also be used. After exchanging with radioactive anions in sewage treatment, a waste radioactive anion resin is formed.

請參考圖1與圖2,在放射性污水處理使用過後所產生廢棄的放射性離子樹脂10,可使用高級濕式氧化法進行氧化處理,較佳可使用芬頓(Fenton)氧化法,亦可使用流體化床Fenton氧化法,或其他類Fenton氧化法,可以有效地氧化放射性離子樹脂10中的碳與氫,形成二氧化碳與水。高級濕式氧化法可使用現有的Fenton氧化法處理系統進行,與現有的處理系統相容性高,不需要額外增加設備。高級濕式氧化法可使用過氧化氫(H 2O 2)溶液與催化劑溶液來分解放射性離子樹脂10,可包括放射性陽離子樹脂、放射性陰離子樹脂或其組合,分解後產生廢液30與氨氣20 (S100)。例如,Fenton氧化法的催化劑溶液可使用硫酸亞鐵(Fe 2+)溶液,其他類Fenton氧化法的催化劑溶液可使用其他金屬離子溶液作為催化劑,例如使用二價錳(Mn 2+)、二價銅(Cu 2+)、三價鈰(Ce 3+)等及其組合,但不限於此,跟Fenton氧化法有類似的效果。溶液中的過氧化氫經由催化劑作用形成OH自由基(・OH),跟放射性離子樹脂10進行氧化反應。其中,放射性離子樹脂10中含有的氮,經過氧化反應後形成氫氧化銨(NH 4OH),在溶液高溫作用下形成氨氣(NH 3)逸出。 Please refer to FIG. 1 and FIG. 2. The radioactive ion resin 10 produced after the waste radioactive wastewater treatment can be oxidized by advanced wet oxidation. Preferably, Fenton oxidation can be used. Fluidized bed Fenton oxidation can also be used. Or other Fenton oxidation methods can be used to effectively oxidize carbon and hydrogen in the radioactive ion resin 10 to form carbon dioxide and water. Advanced wet oxidation can be carried out using the existing Fenton oxidation treatment system. It is highly compatible with the existing treatment system and does not require additional equipment. The advanced wet oxidation method may use hydrogen peroxide (H 2 O 2 ) solution and catalyst solution to decompose radioactive ion resin 10, which may include radioactive cationic resin, radioactive anionic resin or a combination thereof, to generate waste liquid 30 and ammonia 20 (S100) after decomposition. For example, the catalyst solution of the Fenton oxidation method may use ferrous sulfate (Fe 2+ ) solution, and the catalyst solution of other Fenton oxidation methods may use other metal ion solutions as catalysts, such as divalent manganese (Mn 2+ ), divalent copper (Cu 2+ ), trivalent cadmium (Ce 3+ ) and combinations thereof, but not limited thereto, and have similar effects to the Fenton oxidation method. Hydrogen peroxide in the solution is converted into OH radicals (・OH) by the action of the catalyst, and then undergoes an oxidation reaction with the radioactive ion resin 10. The nitrogen contained in the radioactive ion resin 10 is converted into ammonium hydroxide (NH 4 OH) by the peroxidation reaction, and then forms ammonia gas (NH 3 ) under the action of the high temperature of the solution and escapes.

請參考圖1與圖2,接著進行氨氣處理步驟,使用具有低氧化態含銅物之氧化銅基觸媒分解氨氣20,產生氮氣22與水氣24 (S200)。低氧化態含銅物包含銅金屬(Cu)或氧化亞銅(Cu 2O),且低氧化態含銅物具有帶電價低於2。此氨氣處理步驟可在溫度低於450℃下進行,使氨氣分解製程可以更加的安全,且不必擔心習知處理氨氣產生氫氣可能造成的***問題。 Referring to FIG. 1 and FIG. 2 , an ammonia treatment step is then performed, using a copper oxide-based catalyst having a low-oxidation copper-containing substance to decompose ammonia 20 to generate nitrogen 22 and water vapor 24 (S200). The low-oxidation copper-containing substance includes copper metal (Cu) or cuprous oxide (Cu 2 O), and the low-oxidation copper-containing substance has a charge value lower than 2. This ammonia treatment step can be performed at a temperature lower than 450° C., making the ammonia decomposition process safer, and there is no need to worry about the explosion problem that may be caused by the production of hydrogen by the conventional treatment of ammonia.

請參考圖1與圖2,本發明之另一實施例更包括進行一固化處理步驟,將前述濕式氧化步驟S100所產生的廢液30固化製成固化體40 (S300)。例如,可使用波索蘭材料(pozzolanic materials)對廢液30進行固化,所形成的固化體40,可以具有高品質均勻性以及長期穩定性,不必擔心膨脹龜裂的問題發生,可以穩定地長久儲存防止放射性核種外洩。Referring to FIG. 1 and FIG. 2 , another embodiment of the present invention further includes a curing step to cure the waste liquid 30 produced in the wet oxidation step S100 to form a solidified body 40 (S300). For example, pozzolanic materials can be used to cure the waste liquid 30. The solidified body 40 thus formed can have high quality uniformity and long-term stability, and there is no need to worry about the problem of expansion and cracking. It can be stably stored for a long time to prevent the leakage of radioactive nuclides.

為了進一步了解本發明之目的與優點,本發明在另一實施例中以Fenton氧化法舉例進行說明濕式氧化步驟,但並不限於Fenton氧化法。In order to further understand the purpose and advantages of the present invention, the present invention uses the Fenton oxidation method as an example to illustrate the wet oxidation step in another embodiment, but is not limited to the Fenton oxidation method.

圖3為本發明之另一實施例的放射性離子樹脂之濕式氧化步驟的流程圖。請參考圖3,使用Fenton氧化法分解放射性離子樹脂10,可包括陽離子放射性樹脂與陰離子放射性樹脂。首先在攪拌槽中放入硫酸亞鐵溶液,作為催化劑溶液。將放射性離子樹脂10放置於硫酸亞鐵溶液中,將硫酸亞鐵溶液攪拌並加熱溫度至90℃以上且沸點以下(S110)。例如,在攪拌槽中置入0.06M的硫酸亞鐵溶液1000ml,並且加入放射性陽離子樹脂 40ml,以及放射性陰離子樹脂 60ml。然後加入濃硫酸,調節溶液之酸鹼值(pH值),控制在0.5至4之間較佳,且更佳是控制在1至3.5之間,在本實施例中控制至約2左右。將攪拌槽進行攪拌且加熱達到溫度95℃。FIG3 is a flow chart of the wet oxidation step of a radioactive ion resin of another embodiment of the present invention. Referring to FIG3, the radioactive ion resin 10 is decomposed using the Fenton oxidation method, which may include a cationic radioactive resin and an anionic radioactive resin. First, a ferrous sulfate solution is placed in a stirring tank as a catalyst solution. The radioactive ion resin 10 is placed in the ferrous sulfate solution, and the ferrous sulfate solution is stirred and heated to a temperature above 90° C. and below the boiling point (S110). For example, 1000 ml of a 0.06 M ferrous sulfate solution is placed in a stirring tank, and 40 ml of a radioactive cationic resin and 60 ml of a radioactive anionic resin are added. Then, concentrated sulfuric acid is added to adjust the pH value of the solution, preferably between 0.5 and 4, and more preferably between 1 and 3.5, and in this embodiment, it is controlled to about 2. The stirring tank is stirred and heated to a temperature of 95°C.

請參考圖3,接著添加過氧化氫溶液於硫酸亞鐵溶液中,形成混合溶液,並以硫酸或氫氧化鋇調節混合溶液的酸鹼值於酸性範圍內(S120)。例如,使用50%過氧化氫溶液,以12.5ml/min的流量加入攪拌槽中。開始加入過氧化氫溶液之後,混合溶液反應升溫至沸點,將溫度調節在98℃至沸點之間。另外,可加入適量的消泡劑消除過程中產生的發泡。然後使用硫酸或氫氧化鋇調節混合溶液之pH值,使其介於1.9±0.1間。接著,比如可每半小時加入放射性陽離子樹脂 40ml和放射性陰離子樹脂 60ml,以及過氧化氫溶液375ml,並且維持pH值。Please refer to Figure 3, then add hydrogen peroxide solution to the ferrous sulfate solution to form a mixed solution, and adjust the pH value of the mixed solution to the acidic range with sulfuric acid or barium hydroxide (S120). For example, use 50% hydrogen peroxide solution and add it to the stirring tank at a flow rate of 12.5ml/min. After the hydrogen peroxide solution is added, the mixed solution reacts and heats up to the boiling point, and the temperature is adjusted between 98°C and the boiling point. In addition, an appropriate amount of defoaming agent can be added to eliminate the foaming generated during the process. Then use sulfuric acid or barium hydroxide to adjust the pH value of the mixed solution to between 1.9±0.1. Then, for example, 40ml of radioactive cationic resin and 60ml of radioactive anionic resin, as well as 375ml of hydrogen peroxide solution, can be added every half hour, and the pH value is maintained.

接著升高混合溶液的溫度到沸點,讓混合溶液充分反應,並讓所產生的水蒸汽與二氧化碳予以回收再利用或排放(S130)。當加入最後一批放射性離子樹脂10後,加入足量的過氧化氫溶液,升高混合溶液的溫度到沸點,維持混合溶液的溫度約0.5小時,使過氧化氫充分反應,分解放射性離子樹脂10。反應產生的水蒸氣與二氧化碳可以進行回收,避免水蒸氣與二氧化碳夾帶微量的放射性核種逸出。若儀器檢測確認水蒸氣與二氧化碳夾帶微量的放射性核種在可排放的容許範圍內則可選擇排出。反應後可取樣分析總有機碳(Total Organic Carbon;TOC),計算氧化分解效率。Then, the temperature of the mixed solution is raised to the boiling point, the mixed solution is allowed to fully react, and the generated water vapor and carbon dioxide are recycled or discharged (S130). After the last batch of radioactive ion resin 10 is added, a sufficient amount of hydrogen peroxide solution is added, the temperature of the mixed solution is raised to the boiling point, and the temperature of the mixed solution is maintained for about 0.5 hours to allow the hydrogen peroxide to fully react and decompose the radioactive ion resin 10. The water vapor and carbon dioxide generated by the reaction can be recycled to prevent the water vapor and carbon dioxide from carrying trace amounts of radioactive nuclides and escaping. If the instrument detects that the water vapor and carbon dioxide carry trace amounts of radioactive nuclides within the allowable range for discharge, they can be discharged. After the reaction, a sample can be taken for analysis of the total organic carbon (TOC) to calculate the oxidation decomposition efficiency.

請參考圖3,然後於混合溶液中加入氫氧化鋇,使混合溶液中形成硫酸鋇與氨氣,同時使氨氣20逸出混合溶液(S140)。例如,進行混合溶液中硫酸鹽之轉化,在攪拌槽的混合溶液中加入485克氫氧化鋇,攪拌並維持溫度於98℃左右,使混合溶液中分解放射性離子樹脂10所產生的硫酸銨轉化為硫酸鋇。在加入氫氧化鋇的過程中,硫酸銨與氫氧化鋇反應產生硫酸鋇與氫氧化銨,而氫氧化銨在高溫中分解產生氨氣20與水,使氨氣20 (濃度約為1500ppm至2000ppm)逸出混合溶液,並且留下廢液30。Referring to FIG. 3 , barium hydroxide is then added to the mixed solution to form barium sulfate and ammonia in the mixed solution, and ammonia 20 is simultaneously released from the mixed solution (S140). For example, the sulfate in the mixed solution is converted by adding 485 g of barium hydroxide to the mixed solution in the stirring tank, stirring and maintaining the temperature at about 98° C., so that ammonium sulfate generated by decomposing the radioactive ion resin 10 in the mixed solution is converted into barium sulfate. In the process of adding barium hydroxide, ammonium sulfate reacts with barium hydroxide to generate barium sulfate and ammonium hydroxide, and ammonium hydroxide decomposes at high temperature to generate ammonia 20 and water, so that ammonia 20 (concentration is about 1500 ppm to 2000 ppm) escapes from the mixed solution, and waste liquid 30 is left.

圖4為本發明之一實施例的氨分解器的結構示意圖。請參考圖4,將前述濕式氧化步驟中產生的氨氣20導入氨分解器100,用以將氨氣20分解為氮氣22與水氣24。圖4之氨分解器100僅用於舉例說明,並不限制其形狀與結構位置。氨分解器100至少包括殼體110,例如石英管,在殼體110的一端可設置有第一進氣口112與第二進氣口114。第一進氣口112可將前述濕式氧化步驟中產生的氨氣(NH 3)20導入氨分解器100內,第二進氣口114則可導入空氣(Air)。在殼體110的另一端可設置有出氣口116,將分解後的氮氣(N 2)22與水氣 (或稱為水蒸氣;H 2O)24排出。在氨分解器100內設置有多個擔體200,且在下方可選擇性設置固定網120並且預留部分空間,可使氨氣20與空氣充分混合後再通過固定網120與擔體200。其中,擔體200較佳可使用多孔氧化物擔體,其材質例如是γ-三氧化二鋁(γ-Al 2O 3) 、二氧化矽、黏土或沸石或其組合,但不限於此。多孔氧化物擔體可以有較大的表面積,增進催化反應的效果。在擔體200的表面設置有大量的氧化銅基觸媒(catalyst)300,且氧化銅基觸媒300具有低氧化態含銅物。其中,低氧化態含銅物包含銅金屬(Cu)或氧化亞銅(Cu 2O),且低氧化態含銅物具有帶電價低於2。氧化銅基觸媒300可使用銅金屬或氧化亞銅之低氧化態含銅物製作,並且摻製於多孔氧化物擔體200上。由於低氧化態含銅物具有較低活化能,在低溫(小於450℃)下進行氨催化反應,使氨氣(NH 3)分解為氮氣(N 2)22與水氣(H 2O)24,其反應如下(式一)所示: (式一) FIG4 is a schematic diagram of the structure of an ammonia decomposer of an embodiment of the present invention. Referring to FIG4 , the ammonia gas 20 generated in the aforementioned wet oxidation step is introduced into the ammonia decomposer 100 to decompose the ammonia gas 20 into nitrogen gas 22 and water vapor 24. The ammonia decomposer 100 in FIG4 is only used for illustration, and its shape and structural position are not limited. The ammonia decomposer 100 at least includes a shell 110, such as a quartz tube, and a first air inlet 112 and a second air inlet 114 may be provided at one end of the shell 110. The first air inlet 112 may introduce the ammonia gas (NH 3 ) 20 generated in the aforementioned wet oxidation step into the ammonia decomposer 100, and the second air inlet 114 may introduce air. An outlet 116 may be provided at the other end of the shell 110 to discharge the decomposed nitrogen (N 2 ) 22 and water vapor (or water vapor; H 2 O) 24. A plurality of carriers 200 are provided in the ammonia decomposer 100, and a fixed net 120 may be optionally provided at the bottom and a portion of space may be reserved so that the ammonia 20 and the air are fully mixed and then pass through the fixed net 120 and the carrier 200. The carrier 200 may preferably be a porous oxide carrier, and its material may be, for example, γ-aluminum trioxide (γ-Al 2 O 3 ), silicon dioxide, clay or zeolite or a combination thereof, but is not limited thereto. The porous oxide carrier may have a larger surface area to enhance the effect of the catalytic reaction. A large amount of copper oxide-based catalyst 300 is disposed on the surface of the carrier 200, and the copper oxide-based catalyst 300 has a low-oxidation copper-containing substance. The low-oxidation copper-containing substance includes copper metal (Cu) or cuprous oxide (Cu 2 O), and the low-oxidation copper-containing substance has a charge valence lower than 2. The copper oxide-based catalyst 300 can be made of a low-oxidation copper-containing substance of copper metal or cuprous oxide, and is doped on the porous oxide carrier 200. Since the low-oxidation copper-containing substance has a lower activation energy, it performs an ammonia catalytic reaction at a low temperature (less than 450° C.), decomposing ammonia (NH 3 ) into nitrogen (N 2 ) 22 and water vapor (H 2 O) 24, and the reaction is shown in the following (Formula 1): (Formula 1)

經此催化反應,不會有大量的氫氣產生,因此不必擔心習知因為氫氣產生與空氣混合,在高溫下有***的風險。此外,此催化反應不會因為高溫作用而生成大量的一氧化氮(NO)、二氧化氮(NO 2)、一氧化二氮(N 2O)等氮氧化物(NOx)之揮發性有機氣體等有害物質。催化反應產生的水氣可以使用冷凝器進行冷凝成液態水,避免放射性核種可能發生逸散的問題。 After this catalytic reaction, a large amount of hydrogen will not be generated, so there is no need to worry about the risk of explosion when hydrogen is mixed with air at high temperatures. In addition, this catalytic reaction will not generate a large amount of harmful substances such as volatile organic gases such as nitrogen oxides (NOx) such as nitrogen monoxide ( NO2 ), nitrogen dioxide ( N2O ) due to high temperatures. The water vapor generated by the catalytic reaction can be condensed into liquid water using a condenser to avoid the possible escape of radioactive nuclides.

在此實施例中,氨分解器100內的多孔氧化物擔體200可使用γ-Al 2O 3。將前面濕式氧化步驟(S100)產生的氨氣20(濃度約1500ppm至2000ppm)通入氨分解器100中,並且通入空氣流量約100 ml/min,使氨氣20產生氣體流量為動態方式呈現,因此氨氣濃度與流量會隨著時間增加而逐漸減少。使用氨分解器100之氣時空速(Gas Hourly Space Velocity;GHSV)最高可為20000 h -1,製程操作溫度例如約為440 ℃。在氨分解器100的第一與第二進氣口112、114及出氣口116可設有流量儀與氣體分析儀等裝置,量測氨氣與空氣流量,同時監測氨氣(NH 3)與氮氧化物(NOx)的濃度。 In this embodiment, the porous oxide support 200 in the ammonia decomposer 100 may use γ-Al 2 O 3 . The ammonia 20 (concentration of about 1500 ppm to 2000 ppm) produced in the previous wet oxidation step ( S100 ) is introduced into the ammonia decomposer 100 , and the air flow rate is about 100 ml/min, so that the gas flow rate of the ammonia 20 is presented in a dynamic manner, so the ammonia concentration and flow rate will gradually decrease with time. The gas hourly space velocity (GHSV) of the ammonia decomposer 100 can be up to 20000 h -1 , and the process operating temperature is, for example, about 440 °C. The first and second air inlets 112, 114 and the air outlet 116 of the ammonia decomposer 100 may be provided with flow meters and gas analyzers to measure the flow rates of ammonia and air and monitor the concentrations of ammonia ( NH3 ) and nitrogen oxides (NOx).

測試結果如下表一所示,反應後氨氣尾氣濃度約小於60ppm,且氮氧化物(NOx)濃度低於50ppm。 表一:氨分解器分解後殘餘氣體濃度 時間 氨氣流量(ml/min) 氨氣尾氣濃度(ppm) NOx濃度(ppm) 2 min 5 50 30 4 min 8 44 35 6 min 15 55 40 8 min 19 40 30 10 min 24 56 35 12 min 28 57 44 14 min 30 55 47 16 min 30 59 36 18 min 30 47 30 20 min 26 45 36 22 min 14 44 44 24 min 10 58 45 26 min 8 50 30 28 min 5 57 36 30 min 0 44 47 The test results are shown in Table 1 below. After the reaction, the concentration of ammonia tail gas is approximately less than 60ppm, and the concentration of nitrogen oxides (NOx) is less than 50ppm. Table 1: Residual gas concentration after decomposition by the ammonia decomposer time Ammonia flow rate (ml/min) Ammonia tail gas concentration (ppm) NOx concentration (ppm) 2 min 5 50 30 4 min 8 44 35 6 min 15 55 40 8 min 19 40 30 10 min twenty four 56 35 12 min 28 57 44 14 min 30 55 47 16 min 30 59 36 18 min 30 47 30 20 min 26 45 36 22 min 14 44 44 24 min 10 58 45 26 min 8 50 30 28 min 5 57 36 30 min 0 44 47

因此,本發明之氨分解器100使用具有低氧化態含銅物之氧化銅基觸媒300分解氨氣20,產生安全的氮氣22與水氣24,增加製程的安全性。而且,產生的氮氣22與水氣24,以及殘餘的氨氣與氮氧化物達到回收或排放的標準,不會對環境造成二次污染。Therefore, the ammonia decomposer 100 of the present invention uses a copper oxide-based catalyst 300 with low-oxidation copper to decompose ammonia 20, generating safe nitrogen 22 and water vapor 24, thereby increasing the safety of the process. Moreover, the generated nitrogen 22 and water vapor 24, as well as the residual ammonia and nitrogen oxides, meet the standards for recovery or discharge, and will not cause secondary pollution to the environment.

在前述濕式氧化步驟(S100)中產生的廢液30,更包括進行固化處理步驟(S300),將該廢液30固化製成固化體40。首先,將廢液30加熱趕出多餘的水分,調節廢液30的含水量,使固化處理步驟進行時固化劑與水的重量有適當的比例。例如,經加熱處理後得到廢液30的體積約為734ml,其中含水量約為576克。將廢液30倒入固化器中,攪拌時緩慢加入固化劑約757克,持續攪拌使其充分均勻混合後,可將混合後的漿液倒入模具中,製作成圓柱形的固化體40。固化劑例如使用波索蘭材料((pozzolanic materials),可含有水泥、矽灰(silica fume)、飛灰(fly ash)、爐石粉(blast furnace slag powder)等,另外亦可選擇性地加入矽酸鹽、磷酸鹽,以及鈣、鎂、鐵、鋁、矽等的氧化物或鹽類,可增進操作性,以及確保固化體40的品質均勻性與長期穩定性。固化體40製成樣品後,再依美國核能管制委員會(US Nuclear Regulatory Commission;USNRC)之測試方法進行抗壓強度以及凍融(freezing and thawing)等測試。測試後所得之固化體抗壓強度達190kg/cm 2,凍融測試後之抗壓強度達240kg/cm 2,均高於美國核能管制委員會與我國原能會放射性物料管理局之要求。因此,本發明所製作的固化體40具有良好的機械強度、耐凍融性與耐水性,且具有優良的長期穩定性。 The waste liquid 30 generated in the aforementioned wet oxidation step (S100) further includes a curing treatment step (S300) to cure the waste liquid 30 to form a solidified body 40. First, the waste liquid 30 is heated to drive out excess water, and the water content of the waste liquid 30 is adjusted so that the weight of the curing agent and the water have an appropriate ratio when the curing treatment step is performed. For example, the volume of the waste liquid 30 obtained after the heating treatment is about 734 ml, of which the water content is about 576 grams. The waste liquid 30 is poured into a curing device, and about 757 grams of the curing agent is slowly added while stirring. After continuous stirring to make it fully and evenly mixed, the mixed slurry can be poured into a mold to make a cylindrical solidified body 40. The curing agent may be, for example, pozzolanic materials, which may contain cement, silica fume, fly ash, blast furnace slag powder, etc. Silicate, phosphate, and oxides or salts of calcium, magnesium, iron, aluminum, silicon, etc. may be selectively added to improve operability and ensure the uniformity of the quality and long-term stability of the cured body 40. After the cured body 40 is made into a sample, it is tested for compressive strength and freezing and thawing according to the test method of the US Nuclear Regulatory Commission (USNRC). The compressive strength of the cured body obtained after the test is 190kg/ cm2 , and the compressive strength after the freeze-thaw test is 240kg/ cm2. , which are higher than the requirements of the Nuclear Regulatory Commission of the United States and the Radioactive Materials Management Bureau of the Atomic Energy Commission of Taiwan. Therefore, the solidified body 40 produced by the present invention has good mechanical strength, freeze-thaw resistance and water resistance, and has excellent long-term stability.

綜上所述,本發明的放射性離子樹脂的處理方法使用濕式氧化步驟分解放射性離子樹脂,可以有效地減少放射性離子樹脂的容積與含水量。另外,使用具有低氧化態含銅物之氧化銅基觸媒,可以安全地分解濕式氧化步驟所產生的氨氣,且分解氨氣後產生的氮氣、水氣與殘餘廢氣達到回收或排放的標準。此外,濕式氧化步驟所產生的廢液可以安全地固化,不會對環境造成危害。In summary, the radioactive ion resin treatment method of the present invention uses a wet oxidation step to decompose the radioactive ion resin, which can effectively reduce the volume and water content of the radioactive ion resin. In addition, the use of a copper oxide-based catalyst with low-oxidation copper can safely decompose the ammonia generated by the wet oxidation step, and the nitrogen, water vapor and residual waste gas generated after the decomposition of the ammonia meet the standards for recovery or discharge. In addition, the waste liquid generated by the wet oxidation step can be safely solidified without causing harm to the environment.

本發明已由上述相關實施例加以描述,然而上述實施例僅為實施本發明之範例。必需指出的是,已揭露之實施例並未限制本發明之範圍。相反地,包含於申請專利範圍之精神及範圍之修改及均等設置均包含於本發明之範圍內。The present invention has been described by the above-mentioned related embodiments, however, the above-mentioned embodiments are only examples for implementing the present invention. It must be pointed out that the disclosed embodiments do not limit the scope of the present invention. On the contrary, modifications and equivalent arrangements within the spirit and scope of the patent application are all within the scope of the present invention.

10:放射性離子樹脂 20:氨氣 22:氮氣 24:水氣 30:廢液 40:固化體 100:氨分解器 110:殼體 112:第一進氣口 114:第二進氣口 116:出氣口 120:固定網 200:擔體 300:氧化銅基觸媒 S100:步驟 S110:步驟 S120:步驟 S130:步驟 S140:步驟 S200:步驟 S300:步驟 10: Radioactive ion resin 20: Ammonia 22: Nitrogen 24: Water vapor 30: Waste liquid 40: Solidified body 100: Ammonia decomposer 110: Shell 112: First air inlet 114: Second air inlet 116: Air outlet 120: Fixed net 200: Support body 300: Copper oxide-based catalyst S100: Step S110: Step S120: Step S130: Step S140: Step S200: Step S300: Step

圖1為本發明之一實施例的放射性離子樹脂之處理方法的流程圖。FIG. 1 is a flow chart of a method for treating a radioactive ion resin according to an embodiment of the present invention.

圖2為本發明之一實施例的放射性離子樹脂之分解示意圖。FIG. 2 is a schematic diagram showing the decomposition of a radioactive ion resin according to an embodiment of the present invention.

圖3為本發明之另一實施例的放射性離子樹脂之濕式氧化步驟的流程圖。FIG3 is a flow chart of the wet oxidation step of the radioactive ion resin according to another embodiment of the present invention.

圖4為本發明之一實施例的氨分解器的結構示意圖。FIG. 4 is a schematic structural diagram of an ammonia decomposer according to an embodiment of the present invention.

S100:步驟 S100: Step

S200:步驟 S200: Steps

S300:步驟 S300: Steps

Claims (10)

一種放射性離子樹脂的處理方法,包括: 進行一濕式氧化步驟,使用一過氧化氫溶液與一催化劑溶液分解一放射性離子樹脂,產生一廢液與一氨氣;以及 進行一氨氣處理步驟,使用具有一低氧化態含銅物之一氧化銅基觸媒分解該氨氣,產生一氮氣與一水氣。 A method for treating a radioactive ion resin comprises: performing a wet oxidation step, using a hydrogen peroxide solution and a catalyst solution to decompose a radioactive ion resin to produce a waste liquid and an ammonia gas; and performing an ammonia treatment step, using a copper oxide-based catalyst having a low-oxidation state copper-containing substance to decompose the ammonia gas to produce a nitrogen gas and a water vapor. 如請求項1所述的處理方法,其中該低氧化態含銅物包含一銅金屬(Cu)或一氧化亞銅(Cu 2O),且該低氧化態含銅物具有一帶電價低於2。 The processing method as claimed in claim 1, wherein the low-oxidation state copper-containing material comprises copper metal (Cu) or cuprous oxide (Cu 2 O), and the low-oxidation state copper-containing material has a charge value lower than 2. 如請求項1所述的處理方法,其中該氨氣處理步驟之溫度低於450℃The treatment method of claim 1, wherein the temperature of the ammonia treatment step is lower than 450°C 如請求項1所述的處理方法,其中該氧化銅基觸媒設置於一多孔氧化物擔體上。A processing method as described in claim 1, wherein the copper oxide-based catalyst is disposed on a porous oxide carrier. 如請求項4所述的處理方法,其中該多孔氧化物擔體包括γ-三氧化二鋁、二氧化矽、黏土或沸石或其組合。The treatment method as described in claim 4, wherein the porous oxide carrier comprises γ-aluminum trioxide, silicon dioxide, clay or zeolite or a combination thereof. 如請求項4所述的處理方法,其中該多孔氧化物擔體設置於一氨分解器內。A treatment method as described in claim 4, wherein the porous oxide carrier is placed in an ammonia decomposer. 如請求項6所述的處理方法,其中該氨分解器之氣時空速最高為20000h -1The treatment method as described in claim 6, wherein the maximum gas hourly space velocity of the ammonia decomposer is 20000h -1 . 如請求項1所述的處理方法,其中該催化劑溶液包括一硫酸亞鐵溶液。The treatment method of claim 1, wherein the catalyst solution comprises a ferrous sulfate solution. 如請求項1所述的處理方法,其中該放射性離子樹脂包括一放射性陰離子樹脂、一放射性陽離子樹脂或其組合。The treatment method as described in claim 1, wherein the radioactive ion resin comprises a radioactive anion resin, a radioactive cation resin or a combination thereof. 如請求項1所述的處理方法,更包括進行一固化處理步驟,將該廢液固化製成一固化體。The treatment method as described in claim 1 further includes performing a curing treatment step to solidify the waste liquid into a solidified body.
TW111135409A 2022-09-19 Processing method of radioactive ionic resins TWI839848B (en)

Publications (2)

Publication Number Publication Date
TW202414438A true TW202414438A (en) 2024-04-01
TWI839848B TWI839848B (en) 2024-04-21

Family

ID=

Similar Documents

Publication Publication Date Title
JP6649960B2 (en) Gas denitration process and its equipment
JPH0310919B2 (en)
KR20080016701A (en) Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
CN85108112A (en) Reduce radioactive method in the nuclear power station
JP4414214B2 (en) Treatment method of waste ion exchange resin
JPH0257878B2 (en)
KR20190015525A (en) Methods for decontaminating metal surfaces of nuclear facilities
CN110400648A (en) A kind of efficient oxidation processing method of nuclear leve radioactive spent resin
TWI839848B (en) Processing method of radioactive ionic resins
JP3657747B2 (en) Decomposition method of ion exchange resin
CN107210073B (en) The method of metal surface is purified in the cooling system of nuclear reactor
CN109961867B (en) Method for treating radioactive mixed ion exchange resin by Fenton-like oxidation method
TW202414438A (en) Processing method of radioactive ionic resins
JP2000065986A (en) Method and device for treating radioactive organic waste
ES2278237T3 (en) METHOD TO PROCESS USED EXCHANGE RESINS USED.
CN103474123B (en) A kind of nanometer Fe/Mn composite catalyst is used for the method for radioactive spent resin oxygenolysis
EP0105498B1 (en) Inorganic adsorbent, production thereof and use thereof
JP7095130B2 (en) Wet decomposition of waste ion exchange resin A method of preparing a curable slurry with waste liquid and using it to solidify / fix other waste, and an improved wet oxidation method of waste ion exchange resin and organic matter.
CN113244945B (en) Preparation method of heterogeneous Fenton catalyst for wastewater treatment
CN112655055B (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
CN109928438B (en) Method for removing nitrogen oxides in catalyst produced by iron-based water purifying agent
JP4861252B2 (en) Chemical decontamination method before reactor demolition
WO1992003829A1 (en) Organic material oxidation process utilizing no added catalyst
JP2020076650A (en) Radioactive waste liquid processing method and radioactive waste liquid processing system