TW202409640A - Optical module and augmented reality near-eye display including the same - Google Patents

Optical module and augmented reality near-eye display including the same Download PDF

Info

Publication number
TW202409640A
TW202409640A TW111132752A TW111132752A TW202409640A TW 202409640 A TW202409640 A TW 202409640A TW 111132752 A TW111132752 A TW 111132752A TW 111132752 A TW111132752 A TW 111132752A TW 202409640 A TW202409640 A TW 202409640A
Authority
TW
Taiwan
Prior art keywords
area
image light
light
coupling region
output coupling
Prior art date
Application number
TW111132752A
Other languages
Chinese (zh)
Other versions
TWI814557B (en
Inventor
陳志強
侍育徵
鍾佳欣
王偉訓
粘瀚升
王銘瑞
王呈展
李欣浤
黃勝銘
Original Assignee
友達光電股份有限公司
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW111132752A priority Critical patent/TWI814557B/en
Priority claimed from TW111132752A external-priority patent/TWI814557B/en
Application granted granted Critical
Publication of TWI814557B publication Critical patent/TWI814557B/en
Publication of TW202409640A publication Critical patent/TW202409640A/en

Links

Images

Abstract

An optical module is disclosed, which includes a projection light source and a first optical waveguide. The projection light source switches to provide a first image light and a second image light. The first optical waveguide has a first in-coupling zone, a first out-coupling zone and a second out-coupling zone. When the first image light is incident on the first in-coupling zone, the first in-coupling region transmits the first image light to the first out-coupling zone along a first direction. When the second image light is incident on the first in-coupling zone, the first in-coupling zone transmits the second image light to the second out-coupling zone along a second direction, and the first direction and the second direction are different.

Description

光學模組及包含其的增強實境近眼顯示器Optical module and augmented reality near-eye display including the same

本發明涉及一種光學模組,具體而言,本發明是有關於一種使用單一光源的光學模組。The present invention relates to an optical module, and more particularly, to an optical module using a single light source.

增強實境(augmented reality, AR)眼鏡的光學顯示系統主要是由微型顯示器與光學元件所組成,微型顯示器提供顯示內容的光源。光學元件包括稜鏡,自由曲面鏡,帶有光束分離功能的曲面鏡(birdbath)與光波導。光波導可以區分為幾何式光波導以及繞射式光波導二種。繞射式光波導可以區分為表面浮雕光柵(Surface Relief Grating, SRG),以及全息體光柵 (Volumetric Holographic Grating, VHG)。The optical display system of augmented reality (AR) glasses is mainly composed of microdisplays and optical components. The microdisplay provides the light source for displaying the content. Optical components include prisms, free-form mirrors, birdbaths with beam splitting functions, and optical waveguides. Optical waveguides can be divided into geometric waveguides and diffraction waveguides. Diffraction waveguides can be divided into surface relief gratings (SRG) and volumetric holographic gratings (VHG).

光學影像藉由光波導把影像光傳送至觀察者,以將虛像引導至觀察者的瞳孔並實現這種疊加功能。然而,為了向觀看者提供兩個單獨的影像,需要使用多個影像源。使用多個影像源難以在輕便的、可佩戴的觀看設備中實施,僅能於頭戴式顯示器(head-mounted display, HMD)上較易實施。不過目前增強實境眼鏡在消費型市場上須具有輕薄的條件才能使消費者較容易接受。Optical imaging transmits image light to the observer through optical waveguides to guide the virtual image to the observer's pupil and achieve this superposition function. However, in order to provide the viewer with two separate images, multiple image sources are required. Using multiple image sources is difficult to implement in lightweight, wearable viewing devices, and can only be implemented easily on head-mounted displays (HMD). However, currently in the consumer market, augmented reality glasses must be thin and light in order for consumers to accept them more easily.

為解決上述問題,本發明的實施例提供一種光學模組,包含投影光源及第一繞射式光波導。投影光源切換地提供第一影像光及第二影像光。第一光波導具有第一輸入耦合區、第一輸出耦合區及第二輸出耦合區。當第一影像光入射至第一輸入耦合區時,第一輸入耦合區沿第一方向傳遞第一影像光至第一輸出耦合區。當第二影像光入射至第一輸入耦合區時,第一輸入耦合區沿第二方向傳遞第二影像光至第二輸出耦合區,且第一方向及第二方向不相同。To solve the above problems, an embodiment of the present invention provides an optical module, including a projection light source and a first diffraction light waveguide. The projection light source provides a first image light and a second image light alternately. The first light waveguide has a first input coupling region, a first output coupling region, and a second output coupling region. When the first image light is incident on the first input coupling region, the first input coupling region transmits the first image light to the first output coupling region along a first direction. When the second image light is incident on the first input coupling region, the first input coupling region transmits the second image light to the second output coupling region along a second direction, and the first direction and the second direction are different.

本發明的實施例也提供一種例如可用於增強實境(augmented reality, AR)的近眼顯示器,包含上述的光學模組。An embodiment of the present invention also provides a near-eye display that can be used for augmented reality (AR), including the above-mentioned optical module.

對照先前技術的功效Comparison with the efficacy of previous technologies

依據本發明的實施例所提供的光學模組及增強實境近眼顯示器,可以使用單一的影像源向觀看者提供兩個單獨的影像,可以將增強實境眼鏡的整體尺寸有效的輕薄化,增加穿戴時的方便性。According to the optical module and the augmented reality near-eye display provided by the embodiments of the present invention, a single image source can be used to provide two separate images to the viewer, which can effectively reduce the overall size of the augmented reality glasses and increase the convenience of wearing.

本說明書中將描述各種實施例,且所屬技術領域中具有通常知識者在參照說明搭配圖式下,應可輕易理解本發明之精神與原則。在此,各圖式中所繪示之各元件或部分可為了清晰起見而誇大或變化。因此,所屬技術領域中具有通常知識者應明瞭的是,在圖式中所繪示之各元件或部分之尺寸及相對比例並非實際該元件或部分之真實尺寸及相對比例。另外,雖然在文中會具體說明一些特定實施例,這些實施例僅作為例示性,且於各方面而言皆非視為限制性或窮盡性意義。因此,對於所屬技術領域中具有通常知識者而言,在不脫離本發明之精神與原則下,對於本發明之各種變化及修改應為顯而易見且可輕易達成的。Various embodiments will be described in this specification, and those with ordinary knowledge in the art should be able to easily understand the spirit and principles of the present invention by referring to the description with the accompanying drawings. Here, the components or parts shown in the drawings may be exaggerated or changed for the sake of clarity. Therefore, those with ordinary knowledge in the art should understand that the size and relative proportion of the components or parts shown in the drawings are not the actual size and relative proportion of the components or parts. In addition, although some specific embodiments will be specifically described in the text, these embodiments are only for illustrative purposes and are not to be regarded as limiting or exhaustive in all aspects. Therefore, for those having ordinary knowledge in the relevant technical field, various changes and modifications of the present invention should be obvious and can be easily achieved without departing from the spirit and principles of the present invention.

應當理解,儘管術語『第一』、『第二』、『第三』等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。因此,下面討論的『第一元件』、『部件』、『區域』、『層』或『部分』可以被稱為第二元件、部件、區域、層或部分而不脫離本文的教導。It will be understood that, although the terms "first", "second", "third" etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, and/or sections or parts thereof shall not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a 'first element', 'component', 'region', 'layer' or 'section' discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein.

參照圖1,其為根據本發明的實施例的光學模組立體示意圖。如圖所示,本發明的實施例提供的光學模組10,包含投影光源100及第一光波導200,且投影光源100週期性的切換地提供第一影像光110及第二影像光120。例如,投影光源100可在時序上交替地提供第一影像光110及第二影像光120。投影光源100的實施態樣,例如可以使用微有機發光二極體(micro organic light-emitting diode, micro OLED),或者是用微發光二極體(micro light-emitting diode, micro LED)。Referring to FIG. 1 , which is a perspective view of an optical module according to an embodiment of the present invention. As shown in the figure, the optical module 10 provided by the embodiment of the present invention includes a projection light source 100 and a first optical waveguide 200, and the projection light source 100 periodically switches to provide the first image light 110 and the second image light 120. For example, the projection light source 100 may provide the first image light 110 and the second image light 120 alternately in time sequence. The projection light source 100 may be implemented using, for example, a micro organic light-emitting diode (micro OLED) or a micro light-emitting diode (micro LED).

由於僅使用單一的影像源,投影光源100的配置可以有較大的彈性,例如可以將投影光源100配置在將第一影像光110及第二影像光120垂直投射到第一光波導200的中間的位置。此外,也可以用接近側投影的方式,將投影光源100配置在將第一影像光110及第二影像光120垂直投射到第一光波導200上靠近兩旁的位置。Since only a single image source is used, the configuration of the projection light source 100 can be more flexible. For example, the projection light source 100 can be configured to vertically project the first image light 110 and the second image light 120 onto the middle of the first light waveguide 200. In addition, the projection light source 100 can also be configured to vertically project the first image light 110 and the second image light 120 onto the first light waveguide 200 near both sides in a near side projection manner.

第一光波導200具有第一輸入耦合區210、第一輸出耦合區240及第二輸出耦合區250,當第一影像光110入射(例如,沿著圖1中的Y方向)至第一輸入耦合區210時,第一輸入耦合區210將第一影像光110沿第一方向(例如圖1中的X軸指向的反方向),傳遞至第一輸出耦合區240。當第二影像120光入射(例如,沿著圖1中的Y軸指向的方向的反方向)至第一輸入耦合區210時,第一輸入耦合區210將第二影像光120沿第二方向(例如圖1中的X軸指向的方向),傳遞至第二輸出耦合區250,且第一方向及第二方向不相同,例如像圖1中所示,兩者為反方向,但並不以此為限。第一光波導200可以用輕薄透明的玻璃基底(例如,一般厚度在幾毫米或亞毫米級別)加工製成,光通過在玻璃上下表面之間來回全反射前進。The first light waveguide 200 has a first input coupling region 210, a first output coupling region 240 and a second output coupling region 250. When the first image light 110 is incident (e.g., along the Y direction in FIG. 1 ) to the first input coupling region 210, the first input coupling region 210 transfers the first image light 110 along a first direction (e.g., the opposite direction to the X axis in FIG. 1 ) to the first output coupling region 240. When the second image light 120 is incident (e.g., along the opposite direction to the Y axis in FIG. 1 ) to the first input coupling region 210, the first input coupling region 210 transfers the second image light 120 along a second direction (e.g., the direction to the X axis in FIG. 1 ) to the second output coupling region 250. The first direction and the second direction are different, for example, as shown in FIG. 1 , they are opposite directions, but the present invention is not limited thereto. The first optical waveguide 200 can be made of a thin and transparent glass substrate (for example, generally having a thickness of several millimeters or sub-millimeter levels), and light travels by total reflection back and forth between the upper and lower surfaces of the glass.

上述的第一輸入耦合區210的實施態樣,可以用極性偏光片搭配繞射光柵來實施,例如在第一輸入耦合區210上設置第一光篩選區,像是第一極性偏光片220,以及設置第二光篩選區,像是第二極性偏光片230。第一極性偏光片210的偏光方向可以垂直第二影像光120的偏振方向,舉例來說,第一極性偏光片220的偏光方向平行如圖1中的X軸的方向,而第二影像光120的偏振方向平行如圖1中的Z軸的方向。也就是說,當第二影像光120入射至第一輸入耦合區210上的第一極性偏光片220的區域時,由於第二影像光120的偏振方向垂直第一極性偏光片220的偏光方向而被吸收。The above-mentioned implementation of the first input coupling region 210 can be implemented by using a polar polarizer and a diffraction grating. For example, a first light screening region, such as the first polar polarizer 220, is provided on the first input coupling region 210. and providing a second light filtering area, such as a second polarity polarizer 230 . The polarization direction of the first polarizer 210 may be perpendicular to the polarization direction of the second image light 120 . For example, the polarization direction of the first polarizer 220 is parallel to the X-axis direction in FIG. 1 , and the second image light 120 The polarization direction is parallel to the Z-axis direction in Figure 1. That is to say, when the second image light 120 is incident on the area of the first polar polarizer 220 on the first input coupling region 210, since the polarization direction of the second image light 120 is perpendicular to the polarization direction of the first polar polarizer 220, absorbed.

同理,第二極性偏光片230的偏光方向可以垂直第一影像光110的偏振方向,舉例來說,第二極性偏光片230的偏光方向平行如圖1中的Z軸的方向,而第一影像光110的偏振方向平行如圖1中的X軸的方向。也就是說,當第一影像光110入射至第一輸入耦合區210上的第二極性偏光片230的區域時,由於第一影像光110的偏振方向垂直第二極性偏光片230的偏光方向而被吸收。Similarly, the polarization direction of the second polarization polarizer 230 can be perpendicular to the polarization direction of the first image light 110. For example, the polarization direction of the second polarization polarizer 230 is parallel to the direction of the Z axis in FIG. 1, while the polarization direction of the first image light 110 is parallel to the direction of the X axis in FIG. 1. In other words, when the first image light 110 is incident on the region of the second polarization polarizer 230 on the first input coupling region 210, the first image light 110 is absorbed because the polarization direction of the first image light 110 is perpendicular to the polarization direction of the second polarization polarizer 230.

關於第一極性偏光片220及第二極性偏光片230的配置方式,可以如圖1所示,將第一極性偏光片220及第二極性偏光片230以左右對稱的方式設置在第一輸入耦合區210上,並且第一極性偏光片220及第二極性偏光片230兩者沒有重疊的區域。因此,從投影光源100入射至第一輸入耦合區210的第一影像光110,其偏振方向平行於第一極性偏光片220的偏光方向(兩者皆平行如圖1中的X軸的方向),故通過第一極性偏光片220而沒有通過第二極性偏光片230。Regarding the configuration of the first polarization polarizer 220 and the second polarization polarizer 230, as shown in FIG1, the first polarization polarizer 220 and the second polarization polarizer 230 can be disposed on the first input coupling region 210 in a bilaterally symmetrical manner, and there is no overlapping area between the first polarization polarizer 220 and the second polarization polarizer 230. Therefore, the first image light 110 incident on the first input coupling region 210 from the projection light source 100 has a polarization direction parallel to the polarization direction of the first polarization polarizer 220 (both are parallel to the direction of the X axis in FIG1), and therefore passes through the first polarization polarizer 220 but does not pass through the second polarization polarizer 230.

同理,從投影光源100入射至第一輸入耦合區210的第二影像光120,其偏振方向平行於第二極性偏光片230的偏光方向(兩者皆平行如圖1中的Z軸的方向),故通過第二極性偏光片230而沒有通過第一極性偏光片220。經由以上描述,達成了使用單一影像源提供兩個單獨的影像的效果。Similarly, the polarization direction of the second image light 120 incident from the projection light source 100 to the first input coupling region 210 is parallel to the polarization direction of the second polarity polarizer 230 (both are parallel to the Z-axis direction in Figure 1 ), so it passes through the second polarity polarizer 230 but does not pass through the first polarity polarizer 220 . Through the above description, the effect of using a single image source to provide two separate images is achieved.

接著描述上述提及的繞射光柵的配置,參閱圖2A及圖2B,其中圖2A為根據本發明的實施例的光學模組之第一影像光傳遞路徑的俯視示意圖,圖2B為根據本發明的實施例的光學模組之第二影像光傳遞路徑的俯視示意圖。如圖2A及圖2B所示,可以將第一繞射光柵211設置於第一極性偏光片220相反於投影光源100之一側,即將第一繞射光柵211設置於第一極性偏光片220之後方,且可位於第一光波導200背向投影光源的一側外表面,或是位於第一光波導200內部。類似的,可以將第二繞射光柵212設置於第二極性偏光片230相反於投影光源100之一側,即將第二繞射光柵212設置於第二極性偏光片230之後方,且可位於第一光波導200背向投影光源的一側外表面,或是位於第一光波導200內部。Next, the configuration of the above-mentioned diffraction grating is described. Refer to FIGS. 2A and 2B . FIG. 2A is a top view of the first image light transmission path of the optical module according to an embodiment of the present invention. FIG. 2B is a schematic diagram of the first image light transmission path according to the embodiment of the present invention. A schematic top view of the second image light transmission path of the optical module according to the embodiment. As shown in FIGS. 2A and 2B , the first diffraction grating 211 can be disposed on the side of the first polarizer 220 opposite to the projection light source 100 , that is, the first diffraction grating 211 is disposed behind the first polarizer 220 square, and may be located on the outer surface of one side of the first optical waveguide 200 facing away from the projection light source, or located inside the first optical waveguide 200 . Similarly, the second diffraction grating 212 can be disposed on a side of the second polarizer 230 opposite to the projection light source 100 , that is, the second diffraction grating 212 is disposed behind the second polarizer 230 and can be located on the second side of the second polarizer 230 . An outer surface of an optical waveguide 200 faces away from the projection light source, or is located inside the first optical waveguide 200 .

如圖2A所示,藉由繞射光柵的光學特性,投影光源100發出的第一影像光110,在通過第一極性偏光片220並且入射至第一繞射光柵211時,會改變傳遞方向,往圖2A中的X軸指向的方向的反方向傳遞(即前述的第一方向),以全反射的方式傳遞到第一輸出耦合區240,再由第一輸出耦合區240出射以顯示影像。As shown in FIG. 2A , due to the optical characteristics of the diffraction grating, the first image light 110 emitted by the projection light source 100 will change the transmission direction when passing through the first polarizer 220 and incident on the first diffraction grating 211. It is transmitted in the opposite direction to the direction of the X-axis in FIG. 2A (ie, the aforementioned first direction), is transmitted to the first output coupling area 240 in a total reflection manner, and is then emitted from the first output coupling area 240 to display the image.

以本實施例的光傳遞路徑而言,當投影光源100週期性切換至提供第一影像光110並且入射至第一光波導200的第一輸入耦合區210上的時候,第一輸入耦合區210上的第一極性偏光片220的偏光方向平行第一影像光110的偏振方向(兩者之偏振方向皆設置為平行如圖2A中的X軸的方向),故第一影像光110穿過第一極性偏光片220。並且,第一影像光110入射到第一輸入耦合區210上的第一繞射光柵211,經由第一繞射光柵211改變傳遞方向(即前述第一方向,如相反於圖中的X指向的反方向)。然而,第二極性偏光片230的偏光方向垂直第一影像光110的偏振方向,因此第一影像光110不會穿過第二極性偏光片230,也不會入射至第一輸入耦合區210上的第二繞射光柵212,故不會在第一光波導200的第二方向上傳遞。In terms of the light transmission path of the present embodiment, when the projection light source 100 is periodically switched to provide the first image light 110 and incident on the first input coupling region 210 of the first light waveguide 200, the polarization direction of the first polarization film 220 on the first input coupling region 210 is parallel to the polarization direction of the first image light 110 (the polarization directions of both are set to be parallel to the direction of the X axis in FIG. 2A ), so the first image light 110 passes through the first polarization film 220. In addition, the first image light 110 is incident on the first diversion grating 211 on the first input coupling region 210, and the transmission direction is changed by the first diversion grating 211 (i.e., the aforementioned first direction, such as the opposite direction to the X direction in the figure). However, the polarization direction of the second polarizing film 230 is perpendicular to the polarization direction of the first image light 110 , so the first image light 110 will not pass through the second polarizing film 230 , nor will it be incident on the second diffraction grating 212 on the first input coupling region 210 , and therefore will not be transmitted in the second direction of the first optical waveguide 200 .

第一影像光110在第一光波導200中傳遞到第一輸出耦合區240時,可以利用第三繞射光柵213將第一影像光110輸出,例如傳遞至使用者的眼睛。然而在不同實施例中,第三繞射光柵213亦可再將第一影像光110進行轉向,以進一步的傳遞至其他區域作其他光學處理,例如擴瞳或改變出光的位置等。When the first image light 110 is transmitted to the first output coupling region 240 in the first light waveguide 200, the third diffraction grating 213 can be used to output the first image light 110, for example, to the user's eyes. However, in different embodiments, the third diffraction grating 213 can also redirect the first image light 110 to further transmit it to other areas for other optical processing, such as dilating the pupil or changing the position of the light output.

同理,如圖2B所示,投影光源100發出的第二影像光120,在通過第二極性偏光片230並且入射至第二繞射光柵212時,會改變傳遞方向,往圖2B中的X軸指向的正方向的傳遞(即前述的第二方向),以全反射的方式傳遞到第二輸出耦合區250,再由第二輸出耦合區250出射以顯示影像。Similarly, as shown in FIG. 2B , when the second image light 120 emitted by the projection light source 100 passes through the second polarizer 230 and is incident on the second diffraction grating 212 , it will change the transmission direction toward X in FIG. 2B The transmission in the forward direction of the axis (ie, the aforementioned second direction) is transmitted to the second output coupling area 250 by total reflection, and then emitted from the second output coupling area 250 to display the image.

以本實施例的光傳遞路徑而言,當投影光源100週期性切換至提供第二影像光120並且入射至第一光波導200的第一輸入耦合區210上的時候,第一輸入耦合區210上的第二極性偏光片230的偏光方向平行第二影像光120的偏振方向(兩者皆設置為平行如圖2B中的Z軸的方向),故第二影像光120穿過第二極性偏光片230。並且,第二影像光120入射到第一輸入耦合區210上的第二繞射光柵212,經由第二繞射光柵212改變傳遞方向(即前述第二方向,如圖中的X軸指向的方向)。然而,第一極性偏光片220的偏光方向垂直第二影像光120的偏振方向,因此第二影像光120不會穿過第一極性偏光片220,也不會入射至第一輸入耦合區210上的第一繞射光柵211,故不會在第一光波導200的第一方向上傳遞。In terms of the light transmission path of the present embodiment, when the projection light source 100 is periodically switched to provide the second image light 120 and incident on the first input coupling region 210 of the first light waveguide 200, the polarization direction of the second polarization film 230 on the first input coupling region 210 is parallel to the polarization direction of the second image light 120 (both are set to be parallel to the direction of the Z axis in FIG. 2B ), so the second image light 120 passes through the second polarization film 230. In addition, the second image light 120 is incident on the second diversion grating 212 on the first input coupling region 210, and the transmission direction (i.e., the aforementioned second direction, such as the direction pointed by the X axis in the figure) is changed by the second diversion grating 212. However, the polarization direction of the first polarizing film 220 is perpendicular to the polarization direction of the second image light 120 , so the second image light 120 will not pass through the first polarizing film 220 , nor will it be incident on the first diffraction grating 211 on the first input coupling region 210 , and therefore will not be transmitted in the first direction of the first optical waveguide 200 .

第二影像光120在第一光波導200中傳遞到第二輸出耦合區250時,可以利用第四繞射光柵214將第二影像光120輸出,例如傳遞至使用者的眼睛。然而在不同實施例中,第四繞射光柵214亦可再將第二影像光120進行轉向,以進一步的傳遞至其他區域作其他光學處理,例如擴瞳或改變出光的位置等。When the second image light 120 is transmitted to the second output coupling region 250 in the first light waveguide 200, the fourth diffraction grating 214 can be used to output the second image light 120, for example, to the user's eyes. However, in different embodiments, the fourth diffraction grating 214 can also redirect the second image light 120 to further transmit it to other areas for other optical processing, such as dilating the pupil or changing the position of the light output.

上述的第一繞射光柵211、第二繞射光柵212、第三繞射光柵213及第四繞射光柵214的實施態樣,例如可以藉由設計光柵的其他參數(像是材料折射率、光柵形狀、厚度、占空比等),可以將某一繞射級(即某一方向)的繞射效率調整到最高,從而使大部分光在繞射後主要沿一方向傳播,例如朝第一方向的正向或反向傳播。請參閱圖3A至3C,其為根據本發明的實施例的繞射光柵的俯視示意圖。繞射光柵的光柵形狀,可以如圖3A中的矩形光柵、圖3B中的傾斜光柵,或如圖3C中的閃耀光柵。通常,當光入射到如圖3A中的矩形光柵時,其零級繞射的光的能量佔據了入射光能量的80%以上,而當光入射到如圖3B中的傾斜光柵時,其一級繞射的光的能量可以佔據入射光能量的97%。或者,調整如圖3C中的閃耀光柵的幾何形狀,可以將入射光的能量全部集中到某一級的繞射光。因此,可以利用上述的矩形光柵、傾斜光柵以及閃耀光柵的的不同光學特性,調整第一影像光110及第二影像光120在光波導中的傳遞方式。The implementation of the first diversion grating 211, the second diversion grating 212, the third diversion grating 213 and the fourth diversion grating 214 can adjust the diffraction efficiency of a certain diversion order (i.e., a certain direction) to the highest by designing other parameters of the grating (such as material refractive index, grating shape, thickness, duty cycle, etc.), so that most of the light propagates mainly in one direction after diffraction, such as forward or reverse propagation in the first direction. Please refer to Figures 3A to 3C, which are top-view schematic diagrams of diversion gratings according to embodiments of the present invention. The grating shape of the diversion grating can be a rectangular grating as shown in Figure 3A, a tilted grating as shown in Figure 3B, or a shining grating as shown in Figure 3C. Generally, when light is incident on a rectangular grating as shown in FIG3A , the energy of the zero-order diffracted light accounts for more than 80% of the energy of the incident light, and when light is incident on a tilted grating as shown in FIG3B , the energy of the first-order diffracted light can account for 97% of the energy of the incident light. Alternatively, by adjusting the geometric shape of the glare grating as shown in FIG3C , the energy of the incident light can be concentrated on a certain order of diffracted light. Therefore, the different optical properties of the rectangular grating, tilted grating, and glare grating can be used to adjust the transmission mode of the first image light 110 and the second image light 120 in the optical waveguide.

在不同實施例中,亦可調整繞射光柵在X-Z平面上的角度,以達到改變光路徑的效果。如圖3D所示,其為根據本發明的實施例之第一輸入耦合區的繞射光柵之方向的前視示意圖,黑色實線表示表面浮雕光柵(Surface Relief Grating, SRG)中相對凸起的區域,黑色實線之間的白色區域表示表面浮雕光柵中相對凹陷的區域。表面浮雕光柵的功能,可以取代傳統的幾何式光學元件,另如取代稜鏡及半透射半反射鏡面陣列等等。第一繞射光柵211及第二繞射光柵212兩者的配置,例如可以如圖3D所示,將兩者的光柵方向(可以定義為黑色實線或白色區域延伸的方向)與Z軸夾一個角度,例如皆為45度(即第一繞射光柵211及第二繞射光柵212兩者的光柵方向彼此垂直),但不為此限。In different embodiments, the angle of the diffraction grating on the X-Z plane can also be adjusted to achieve the effect of changing the light path. As shown in Figure 3D, which is a schematic front view of the direction of the diffraction grating in the first input coupling region according to an embodiment of the present invention, the black solid line represents the relatively convex part of the surface relief grating (Surface Relief Grating, SRG). area, the white area between the solid black lines represents the relatively recessed area in the surface relief grating. The function of surface relief grating can replace traditional geometric optical components, such as mirrors, semi-transmissive and semi-reflective mirror arrays, etc. The arrangement of the first diffraction grating 211 and the second diffraction grating 212 can be, for example, as shown in FIG. 3D . An angle is, for example, 45 degrees (that is, the grating directions of the first diffraction grating 211 and the second diffraction grating 212 are perpendicular to each other), but is not limited to this.

為了有效傳遞第一影像光110及第二影像光120或是為了其他光學設計上的目的,例如縮小整體模組的尺寸或配合使用者視角範圍,還可以將第一影像光110或第二影像光120在不同的光波導中傳遞。如圖4所示,其為根據本發明的實施例之包含第一光波導及第二光波導的光學模組之立體示意圖,光學模組10還包含與第一光波導200至少部分疊設的第二光波導300。第二光波導300具有第二輸入耦合區310及第三輸出耦合區320,其中第二輸入耦合區310與第二輸出耦合區250在投影光源100光源投射方向上之投影範圍至少部分重疊設置。第一影像光110的傳遞方式大致類似於前述的實施例,在此不再贅述。第二影像光120先經由第一光波導200中的第二輸出耦合區250轉換方向沿Y方向傳遞到第二光波導300的第二輸入耦合區310,再由第二輸出耦合區310轉換方向經第二光波導300傳遞到第三輸出耦合區320,最後由第三輸出耦合區320將第二影像光120輸出至使用者的眼睛。In order to effectively transmit the first image light 110 and the second image light 120 or for other optical design purposes, such as reducing the size of the overall module or matching the user's viewing angle, the first image light 110 or the second image light 120 can also be transmitted in different optical waveguides. As shown in FIG4 , it is a three-dimensional schematic diagram of an optical module including a first optical waveguide and a second optical waveguide according to an embodiment of the present invention. The optical module 10 further includes a second optical waveguide 300 at least partially overlapped with the first optical waveguide 200. The second optical waveguide 300 has a second input coupling region 310 and a third output coupling region 320, wherein the second input coupling region 310 and the second output coupling region 250 are at least partially overlapped in the projection range of the projection direction of the projection light source 100. The transmission method of the first image light 110 is generally similar to the aforementioned embodiment, and will not be repeated here. The second image light 120 is firstly transformed in direction by the second output coupling region 250 in the first optical waveguide 200 and transmitted to the second input coupling region 310 of the second optical waveguide 300 along the Y direction, and then transformed in direction by the second output coupling region 310 and transmitted to the third output coupling region 320 through the second optical waveguide 300. Finally, the third output coupling region 320 outputs the second image light 120 to the user's eyes.

具體而言,如圖5所示,其為根據本發明的另一實施例之光學模組的第二影像光傳遞路徑之俯視示意圖,第四繞射光柵214係設置於第二輸出耦合區250朝向投影光源100的一面上,並將傳遞至第二輸出耦合區250的第二影像光120轉向以沿Y方向出射至第二光波導300的第二輸入耦合區310;然而在不同實施例中,第四繞射光柵214係設置於第二輸出耦合區250內部。第二輸入耦合區310可在背向投影光源100的一側表面或內部配置有第五繞射光柵215,以將第二影像光120由第二輸入耦合區310轉向傳遞至第三輸出耦合區320。第三輸出耦合區320可在背向投影光源100的一側表面或內部配置有第六繞射光柵216,以將第二影像光120由第二繞射式光波導300輸出至使用者的眼睛。Specifically, as shown in FIG5 , which is a schematic top view of the second image light transmission path of the optical module according to another embodiment of the present invention, the fourth diffraction grating 214 is disposed on the surface of the second output coupling region 250 facing the projection light source 100, and diverts the second image light 120 transmitted to the second output coupling region 250 to be emitted along the Y direction to the second input coupling region 310 of the second optical waveguide 300; however, in a different embodiment, the fourth diffraction grating 214 is disposed inside the second output coupling region 250. The second input coupling region 310 may be provided with a fifth diffraction grating 215 on a side surface or inside thereof facing away from the projection light source 100, so as to divert the second image light 120 from the second input coupling region 310 to be transmitted to the third output coupling region 320. The third outcoupling region 320 may be provided with a sixth diffraction grating 216 on a surface or inside thereof facing the projection light source 100 , so as to output the second image light 120 from the second diffraction light waveguide 300 to the user's eyes.

第五繞射光柵215及第六繞射光柵216的實施態樣,可以參考如前述圖3A至3D所述,以不同的光柵方向及不同的幾何結構(即矩形光柵、傾斜光柵以及閃耀光柵)來實施,在此不再贅述。The fifth diffraction grating 215 and the sixth diffraction grating 216 can be implemented with different grating directions and different geometric structures (ie, rectangular grating, tilted grating and blazed grating) as described in FIGS. 3A to 3D . To implement, I won’t go into details here.

經由以上描述,本發明的各實施例可達成使用單一的影像源向觀看者提供兩個單獨的影像,可以將光學模組10的整體尺寸有效的輕薄化。此外,為了將第一影像光110及第二影像光120可以用較大的視場(Field of View, FOV)進入觀看者的眼睛,可以利用二維擴瞳(pupil expansion)的方式布置第一輸出耦合區240及第三輸出耦合區320。Through the above description, various embodiments of the present invention can achieve using a single image source to provide two separate images to the viewer, and can effectively reduce the overall size of the optical module 10 to be thin and light. In addition, in order to allow the first image light 110 and the second image light 120 to enter the viewer's eyes with a larger field of view (FOV), the first image light 110 and the second image light 120 may be arranged in a two-dimensional pupil expansion manner. The output coupling area 240 and the third output coupling area 320.

參閱圖6A至圖6C,圖6A為根據本發明的實施例之第一光波導的第一輸出耦合區之分布的前視示意圖,圖6B為根據本發明的實施例之第二光波導的第三輸出耦合區之分布的前視示意圖,圖6C為根據本發明的實施例之第一光波導之第一輸出耦合區及擴瞳與第二光波導之第三輸出耦合區及擴瞳的前後疊合的前視示意圖。如圖6A所示,可以沿著平行Z軸的方向,在第一輸出耦合區240設置第一擴瞳區241及第二擴瞳區242,以達成二維擴瞳的效果。Referring to Figures 6A to 6C, Figure 6A is a front view schematic diagram of the distribution of the first output coupling region of the first optical waveguide according to an embodiment of the present invention, Figure 6B is a front view schematic diagram of the distribution of the third output coupling region of the second optical waveguide according to an embodiment of the present invention, and Figure 6C is a front view schematic diagram of the front and back superposition of the first output coupling region and pupil of the first optical waveguide and the third output coupling region and pupil of the second optical waveguide according to an embodiment of the present invention. As shown in Figure 6A, a first pupil dilation region 241 and a second pupil dilation region 242 can be arranged in the first output coupling region 240 along a direction parallel to the Z axis to achieve a two-dimensional pupil dilation effect.

如圖6A所示,第一輸入耦合區210係將第一影像光110傳遞至第一輸出耦合區240中的第一擴瞳區241。第一擴瞳區241將第一影像光110複製成多個(例如N個)在X軸上分佈的影像,藉由前述的繞射光柵或其他光學手段加以轉向並傳送至第二擴瞳區242。第二擴瞳區242再將此N個在X軸上分佈的影像分別在Z軸方向上複製成多個(例如M個)影像,即可形成N*M的影像矩陣。第二擴瞳區242再以繞射光柵或其他光學手段使此N*M的影像矩陣出光以投射至使用者的視野中,即可達成二維擴瞳。As shown in FIG. 6A , the first input coupling area 210 transmits the first image light 110 to the first pupil expansion area 241 in the first output coupling area 240 . The first pupil expansion area 241 copies the first image light 110 into multiple (for example, N) images distributed on the X-axis, which are diverted by the aforementioned diffraction grating or other optical means and transmitted to the second pupil expansion area. 242. The second pupil expansion area 242 then copies the N images distributed on the X-axis into multiple (for example, M) images in the Z-axis direction, thereby forming an N*M image matrix. The second pupil expansion area 242 then uses a diffraction grating or other optical means to project the N*M image matrix into the user's field of view, thereby achieving two-dimensional pupil expansion.

同理,如圖6B所示,可以沿著平行Z軸的方向,在第三輸出耦合區320設置第三擴瞳區323及第四擴瞳區324,以達成二維擴瞳的效果。Similarly, as shown in FIG. 6B , a third pupil dilation region 323 and a fourth pupil dilation region 324 may be disposed in the third output coupling region 320 along a direction parallel to the Z axis to achieve a two-dimensional pupil dilation effect.

如圖6B所示,第二輸入耦合區310係將第二影像光120傳遞至第三輸出耦合區320中的第三擴瞳區323。第三擴瞳區323將第二影像光120複製成多個(例如N個)在X軸上分佈的影像,藉由前述的繞射光柵或其他光學手段加以轉向並傳送至第四擴瞳區324。第四擴瞳區324再將此N個在X軸上分佈的影像分別在Z軸方向上複製成多個(例如M個)影像,即可形成N*M的影像矩陣。第四擴瞳區324再以繞射光柵或其他光學手段使此N*M的影像矩陣出光以投射至使用者的視野中,即可達成二維擴瞳。As shown in FIG. 6B , the second input coupling area 310 transmits the second image light 120 to the third pupil expansion area 323 in the third output coupling area 320 . The third pupil expansion area 323 copies the second image light 120 into multiple (for example, N) images distributed on the X-axis, which are diverted by the aforementioned diffraction grating or other optical means and transmitted to the fourth pupil expansion area. 324. The fourth pupil expansion area 324 then copies the N images distributed on the X-axis into multiple (for example, M) images in the Z-axis direction to form an N*M image matrix. The fourth pupil expansion area 324 then uses a diffraction grating or other optical means to emit light from the N*M image matrix and project it into the user's field of view, thereby achieving two-dimensional pupil expansion.

如圖6C所示,在本實施例中,第三擴瞳區323或第四擴瞳區324在投影光源100之投射方向(Y方向)上與第一輸出耦合區240之投影範圍是不重疊的。藉由此一設計,可減少第二影像顯示時受到在前方光學元件的干擾現象。然而在不同實施例中,第三擴瞳區323或第四擴瞳區324在投影光源100之投射方向(Y方向)上亦可與第一輸出耦合區240之投影範圍重疊或部分重疊。藉由此一設計,可減少整體模組的體積,且使得第一影像光110及第二影像光120的視野範圍較為接近。As shown in FIG. 6C , in this embodiment, the third pupil expansion area 323 or the fourth pupil expansion area 324 does not overlap with the projection range of the first output coupling area 240 in the projection direction (Y direction) of the projection light source 100 of. Through this design, interference from the front optical elements during the display of the second image can be reduced. However, in different embodiments, the third pupil expansion area 323 or the fourth pupil expansion area 324 may also overlap or partially overlap with the projection range of the first output coupling area 240 in the projection direction (Y direction) of the projection light source 100 . Through this design, the volume of the overall module can be reduced, and the fields of view of the first image light 110 and the second image light 120 can be closer.

如圖7A所示,其為根據本發明的另一實施例之第一光波導的第一輸出耦合區及擴瞳之分布的前視示意圖,第一輸出耦合區240可進一步包含設置在第一擴瞳區231及第二擴瞳區232之間的第一輔助擴瞳區243。如圖7A所示,第一輸入耦合區210係將第一影像光110傳遞至第一輸出耦合區240中的第一擴瞳區231。第一擴瞳區231將第一影像光110複製成多個(例如N個)在X軸上分佈的影像,藉由前述的繞射光柵或其他光學手段加以轉向並傳送至輔助擴瞳區243。輔助擴瞳區243再將此N個在X軸上分佈的影像在X軸上進一步增加到N+n個影像,並再傳遞至第二擴瞳區232,以分別在Z軸方向上複製成多個(例如M個)影像,即可形成(N+n)*M的影像矩陣。第二擴瞳區232再以繞射光柵或其他光學手段使此(N+n)*M的影像矩陣出光以投射至使用者的視野中,即可形成範圍更大的視野範圍。As shown in FIG. 7A , which is a schematic front view of the distribution of the first output coupling region and pupil dilation of the first optical waveguide according to another embodiment of the present invention, the first output coupling region 240 may further include a first output coupling region 240 disposed on the first optical waveguide. The first auxiliary pupil expansion area 243 is between the pupil expansion area 231 and the second pupil expansion area 232. As shown in FIG. 7A , the first input coupling region 210 transmits the first image light 110 to the first pupil expansion region 231 in the first output coupling region 240 . The first pupil expansion area 231 copies the first image light 110 into multiple (for example, N) images distributed on the X-axis, which are redirected by the aforementioned diffraction grating or other optical means and transmitted to the auxiliary pupil expansion area 243 . The auxiliary pupil expansion area 243 further increases the N images distributed on the X-axis to N+n images on the X-axis, and then passes them to the second pupil expansion area 232 to copy them in the Z-axis direction into Multiple (for example, M) images can form an image matrix of (N+n)*M. The second pupil expansion area 232 then uses a diffraction grating or other optical means to emit light from the (N+n)*M image matrix and project it into the user's field of view, thereby forming a wider field of view.

類似的,如圖7B所示,其為根據本發明的另一實施例之第二光波導的第三輸出耦合區及擴瞳之分布的前視示意圖,第三輸出耦合區320亦可作類似的配置,進而使最終於第四擴瞳區324出光形成的影像矩陣增加面積。因此,如圖7C所示,可使得第四擴瞳區324與第二擴瞳區232的重疊面積進一步增加,甚至達到完成重疊。Similarly, as shown in FIG. 7B , which is a schematic front view of the distribution of the third output coupling region and the pupil dilation of the second optical waveguide according to another embodiment of the present invention, the third output coupling region 320 can also be similar. configuration, thereby increasing the area of the image matrix formed by the light emitted from the fourth pupil expansion area 324. Therefore, as shown in FIG. 7C , the overlapping area of the fourth pupil expansion area 324 and the second pupil expansion area 232 can be further increased, or even complete overlap.

根據本發明的實施例,上述的光學模組10可以應用到增強實境(augmented reality, AR)眼鏡或近眼顯示器上。由於只使用了單一的影像源向觀看者提供兩個單獨的影像,可以將增強實境眼鏡或近眼顯示器的整體尺寸有效的輕薄化,增加穿戴時的方便性。According to embodiments of the present invention, the above-mentioned optical module 10 can be applied to augmented reality (AR) glasses or near-eye displays. Since only a single image source is used to provide two separate images to the viewer, the overall size of the augmented reality glasses or near-eye display can be effectively made thin and light, increasing the convenience of wearing them.

上文中所述僅為本發明之一些較佳實施例。應注意的是,在不脫離本發明之精神與原則下,本發明可進行各種變化及修改。所屬技術領域中具有通常知識者應明瞭的是,本發明由所附申請專利範圍所界定,且在符合本發明之意旨下,各種可能置換、組合、修飾及轉用等變化皆不超出本發明由所附申請專利範圍所界定之範疇。What is described above are only some preferred embodiments of the present invention. It should be noted that various changes and modifications can be made to the present invention without departing from the spirit and principles of the invention. It should be clear to those with ordinary skill in the art that the present invention is defined by the scope of the appended patent application, and that all possible substitutions, combinations, modifications, and diversions and other changes that are consistent with the spirit of the present invention do not exceed the scope of the present invention. The scope is defined by the scope of the attached patent application.

10:光學模組 100:投影光源 110:第一影像光 120:第二影像光 200:第一光波導 210:第一輸入耦合區 211:第一繞射光柵 212:第二繞射光柵 213:第三繞射光柵 214:第四繞射光柵 215:第五繞射光柵 216:第六繞射光柵 220:第一極性偏光片 230:第二極性偏光片 240:第一輸出耦合區 231:第一擴瞳區 232:第二擴瞳區 241:第一擴瞳區 242:第二擴瞳區 243:輔助擴瞳區 250:第二輸出耦合區 300:第二光波導 310:第二輸入耦合區 320:第三輸出耦合區 323:第三擴瞳區 324:第四擴瞳區 10: Optical module 100: Projection light source 110: First image light 120: Second image light 200:First optical waveguide 210: First input coupling area 211: First diffraction grating 212: Second diffraction grating 213: The third diffraction grating 214: The fourth diffraction grating 215: The fifth diffraction grating 216: The sixth diffraction grating 220: First polarity polarizer 230: Second polarity polarizer 240: First output coupling area 231: The first pupil dilation area 232: Second pupil dilation area 241: The first pupil dilation area 242: Second pupil dilation area 243: Auxiliary pupil dilation area 250: Second output coupling area 300: Second optical waveguide 310: Second input coupling area 320: The third output coupling area 323: The third pupil dilation area 324: The fourth pupil dilation zone

圖1為根據本發明的實施例的包含第一光波導之光學模組立體示意圖。FIG. 1 is a three-dimensional schematic diagram of an optical module including a first optical waveguide according to an embodiment of the present invention.

圖2A為根據本發明的實施例的光學模組之第一影像光傳遞路徑的俯視示意圖。2A is a schematic top view of the first image light transmission path of the optical module according to an embodiment of the present invention.

圖2B為根據本發明的實施例的光學模組之第二影像光傳遞路徑的俯視示意圖。FIG. 2B is a schematic top view of the second image light transmission path of the optical module according to an embodiment of the present invention.

圖3A至3C為根據本發明的實施例的繞射光柵的俯視示意圖。3A to 3C are schematic top views of diffraction gratings according to embodiments of the present invention.

圖3D為根據本發明的實施例之第一輸入耦合區的繞射光柵之方向的前視示意圖。3D is a schematic front view of the direction of the diffraction grating in the first input coupling region according to an embodiment of the present invention.

圖4為根據本發明的實施例之包含第一光波導及第二光波導的光學模組之立體示意圖。FIG. 4 is a schematic three-dimensional view of an optical module including a first optical waveguide and a second optical waveguide according to an embodiment of the present invention.

圖5為根據本發明的另一實施例之光學模組的第二影像光傳遞路徑之俯視示意圖。FIG5 is a schematic top view of a second image light transmission path of an optical module according to another embodiment of the present invention.

圖6A為根據本發明的實施例之第一光波導的第一輸出耦合區及擴瞳之分布的前視示意圖。FIG. 6A is a front view schematic diagram of the first output coupling region and the distribution of the pupil expansion of the first optical waveguide according to an embodiment of the present invention.

圖6B為根據本發明的實施例之第二光波導的第三輸出耦合區及擴瞳之分布的前視示意圖。FIG6B is a front view schematic diagram of the third output coupling region and the distribution of the pupil expansion of the second optical waveguide according to an embodiment of the present invention.

圖6C為根據本發明的實施例之第一光波導之第一輸出耦合區及擴瞳與第二光波導之第三輸出耦合區及擴瞳的前後疊合的前視示意圖。6C is a schematic front view of the first output coupling region and the pupil expansion of the first optical waveguide and the third output coupling region and the pupil expansion of the second optical waveguide according to an embodiment of the present invention.

圖7A為根據本發明的另一實施例之第一光波導的第一輸出耦合區及擴瞳之分布的前視示意圖。7A is a schematic front view of the distribution of the first output coupling region and pupil expansion of the first optical waveguide according to another embodiment of the present invention.

圖7B為根據本發明的另一實施例之第二光波導的第三輸出耦合區及擴瞳之分布的前視示意圖。7B is a schematic front view of the distribution of the third output coupling region and pupil expansion of the second optical waveguide according to another embodiment of the present invention.

圖7C為根據本發明的另一實施例之第一光波導之第一輸出耦合區及擴瞳與第二光波導之第三輸出耦合區及擴瞳的前後疊合的分布之前視示意圖。7C is a schematic front view of the distribution of the first output coupling region and the pupil expansion of the first optical waveguide and the third output coupling region and the pupil expansion of the second optical waveguide according to another embodiment of the present invention.

10:光學模組 10: Optical module

100:投影光源 100: Projection light source

110:第一影像光 110: First image light

120:第二影像光 120: Second image light

200:第一光波導 200: First optical waveguide

210:第一輸入耦合區 210: First input coupling area

220:第一極性偏光片 220: First polarization polarizer

230:第二極性偏光片 230: Second polarity polarizer

240:第一輸出耦合區 240: First output coupling area

241:第一擴瞳區 241: The first pupil dilation area

242:第二擴瞳區 242: Second pupil dilation area

250:第二輸出耦合區 250: Second output coupling area

300:第二光波導 300: Second optical waveguide

310:第二輸入耦合區 310: Second input coupling area

320:第三輸出耦合區 320: The third output coupling area

323:第三擴瞳區 323: The third pupil dilation area

324:第四擴瞳區 324: The fourth pupil dilation area

Claims (14)

一種光學模組,包含: 一投影光源,切換地提供一第一影像光及一第二影像光;以及 一第一光波導,具有一第一輸入耦合區、一第一輸出耦合區及一第二輸出耦合區; 其中,當該第一影像光入射至該第一輸入耦合區時,該第一輸入耦合區沿一第一方向傳遞該第一影像光至該第一輸出耦合區;當該第二影像光入射至該第一輸入耦合區時,該第一輸入耦合區沿一第二方向傳遞該第二影像光至該第二輸出耦合區,且該第一方向及該第二方向不相同。 An optical module including: A projection light source switches to provide a first image light and a second image light; and A first optical waveguide having a first input coupling area, a first output coupling area and a second output coupling area; Wherein, when the first image light is incident on the first input coupling region, the first input coupling region transmits the first image light to the first output coupling region along a first direction; when the second image light is incident on When reaching the first input coupling area, the first input coupling area transmits the second image light to the second output coupling area along a second direction, and the first direction and the second direction are different. 如請求項1所述的光學模組,其中該第一輸入耦合區包含: 一第一光篩選區,當該第二影像光入射至該第一光篩選區時,該第二影像光被該第一光篩選區吸收;以及 一第二光篩選區,當該第一影像光入射至該第二光篩選區時,該第一影像光被該第二光篩選區吸收。 An optical module as described in claim 1, wherein the first input coupling region comprises: a first light filtering region, when the second image light is incident on the first light filtering region, the second image light is absorbed by the first light filtering region; and a second light filtering region, when the first image light is incident on the second light filtering region, the first image light is absorbed by the second light filtering region. 如請求項2所述的光學模組,其中該第一光篩選區包含一第一極性偏光片且該第二光篩選區包含一第二極性偏光片;其中該第一極性偏光片具有垂直該第二影像光的偏振方向的一第一偏光方向,且該第二極性偏光片具有垂直該第一影像光的偏振方向的一第二偏光方向。The optical module of claim 2, wherein the first light filtering area includes a first polarizer and the second light filtering area includes a second polarizer; wherein the first polarizer has a perpendicular to the polarizer. A first polarization direction of the polarization direction of the second image light, and the second polarity polarizer has a second polarization direction perpendicular to the polarization direction of the first image light. 如請求項2所述的光學模組,其中該第一輸入耦合區包含: 一第一繞射光柵,設置於該第一光篩選區,使進入該第一光篩選區的該第一影像光,沿該第一方向傳遞該第一影像光;以及 一第二繞射光柵,設置於該第二光篩選區,使進入該第二光篩選區的該第二影像光,沿該第二方向傳遞該第二影像光。 The optical module as claimed in claim 2, wherein the first input coupling region includes: A first diffraction grating is disposed in the first light screening area so that the first image light entering the first light screening area transmits the first image light along the first direction; and A second diffraction grating is disposed in the second light screening area so that the second image light entering the second light screening area transmits the second image light along the second direction. 如請求項2所述的光學模組,其中該第一光篩選區及該第二光篩選區之間沒有重疊區域。An optical module as described in claim 2, wherein there is no overlapping area between the first light filtering area and the second light filtering area. 如請求項1所述的光學模組,其中該第一輸出耦合區包含一第三繞射光柵,該第三繞射光柵使該第一影像光透射出該第一光波導,或改變該第一影像光的傳播方向; 其中該第二輸出耦合區包含一第四繞射光柵,該第四繞射光柵使該第二影像光透射出該第一光波導,或改變該第二影像光的傳播方向。 The optical module as claimed in claim 1, wherein the first output coupling region includes a third diffraction grating that transmits the first image light out of the first optical waveguide or changes the third diffraction grating. The propagation direction of an image light; The second output coupling area includes a fourth diffraction grating. The fourth diffraction grating allows the second image light to transmit out of the first optical waveguide, or changes the propagation direction of the second image light. 如請求項1所述的光學模組,進一步包含: 一第二光波導,具有一第二輸入耦合區及一第三輸出耦合區; 其中在該投影光源之投射方向上,該第二輸入耦合區與該第二輸出耦合區之投影範圍至少部分重疊設置,該第二影像光經該第二輸出耦合區轉換方向傳遞至該第二輸入耦合區,再經該第二輸入耦合區轉換方向傳遞至該第三輸出耦合區。 The optical module as described in claim 1 further comprises: A second optical waveguide having a second input coupling region and a third output coupling region; wherein in the projection direction of the projection light source, the projection range of the second input coupling region and the second output coupling region at least partially overlap, and the second image light is transferred to the second input coupling region by changing the direction through the second output coupling region, and then transferred to the third output coupling region by changing the direction through the second input coupling region. 如請求項7所述的光學模組,其中該第二輸入耦合區包含一第五繞射光柵,且該第三輸出耦合區包含一第六繞射光柵。An optical module as described in claim 7, wherein the second input coupling region includes a fifth diffraction grating, and the third output coupling region includes a sixth diffraction grating. 如請求項7所述的光學模組,其中該第三輸出耦合區與該第一輸出耦合區在該投影光源之投射方向上之投影範圍不重疊。An optical module as described in claim 7, wherein the projection range of the third output coupling region and the first output coupling region in the projection direction of the projection light source does not overlap. 如請求項1所述的光學模組,其中該第一輸出耦合區具有一第一擴瞳區及一第二擴瞳區,該第一擴瞳區自該第一光篩選區接收該第一影像光後進行一第一維擴瞳,並轉向傳遞至該第二擴瞳區進行一第二維擴瞳。The optical module of claim 1, wherein the first output coupling area has a first pupil expansion area and a second pupil expansion area, and the first pupil expansion area receives the first pupil expansion area from the first light screening area. The image light then undergoes a first-dimensional pupil expansion and is transferred to the second pupil expansion area for a second-dimensional pupil expansion. 如請求項7所述的光學模組,其中該第三輸出耦合區具有一第三擴瞳區及一第四擴瞳區,該第三擴瞳區自該第二輸入耦合區接收該第二影像光後進行一第一維擴瞳並轉向傳遞至該第四擴瞳區進行一第二維擴瞳。The optical module of claim 7, wherein the third output coupling area has a third pupil expansion area and a fourth pupil expansion area, and the third pupil expansion area receives the second pupil expansion area from the second input coupling area. The image light then undergoes a first-dimensional pupil expansion and is transferred to the fourth pupil expansion area for a second-dimensional pupil expansion. 如請求項11所述的光學模組,其中該第三擴瞳區或該第四擴瞳區在該投影光源之投射方向上與該第一輸出耦合區之投影範圍至少部分重疊。The optical module of claim 11, wherein the third pupil expansion area or the fourth pupil expansion area at least partially overlaps the projection range of the first output coupling area in the projection direction of the projection light source. 如請求項1所述的光學模組,其中該第一影像光及該第二影像光由該投影光源週期性切換地提供。The optical module as claimed in claim 1, wherein the first image light and the second image light are periodically switched and provided by the projection light source. 一種近眼顯示器,包含如請求項1至13之中任一項所述的光學模組。A near-eye display comprises an optical module as described in any one of claims 1 to 13.
TW111132752A 2022-08-30 2022-08-30 Optical module and augmented reality near-eye display including the same TWI814557B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111132752A TWI814557B (en) 2022-08-30 2022-08-30 Optical module and augmented reality near-eye display including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111132752A TWI814557B (en) 2022-08-30 2022-08-30 Optical module and augmented reality near-eye display including the same

Publications (2)

Publication Number Publication Date
TWI814557B TWI814557B (en) 2023-09-01
TW202409640A true TW202409640A (en) 2024-03-01

Family

ID=88966051

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111132752A TWI814557B (en) 2022-08-30 2022-08-30 Optical module and augmented reality near-eye display including the same

Country Status (1)

Country Link
TW (1) TWI814557B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9791703B1 (en) * 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
CN108681067A (en) * 2018-05-16 2018-10-19 上海鲲游光电科技有限公司 A kind of waveguide display device at extended field of view angle
CN113341569B (en) * 2021-06-09 2022-04-19 东南大学 Polarization multiplexing diffraction waveguide large-view-field angle imaging system and method
CN114153073A (en) * 2021-11-29 2022-03-08 谷东科技有限公司 Binocular near-to-eye display device based on single optical machine and augmented reality display equipment

Similar Documents

Publication Publication Date Title
TWI751262B (en) Overlapping facets
EP3347761B1 (en) Imaging light guide with reflective turning array
US10551622B2 (en) Field of view tiling in waveguide-based near-eye displays
US9791703B1 (en) Waveguides with extended field of view
US10386642B2 (en) Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system
US8848289B2 (en) Near-to-eye display with diffractive lens
JP6720315B2 (en) Imaging light guide with reflective conversion array
EP2788809B1 (en) Compact illumination module for head mounted display
EP2740004B1 (en) Method and apparatus for a near-to-eye display
TW202013006A (en) Optical system including light-guide optical element with partially-reflective internal surfaces
EP3443403A1 (en) Waveguide exit pupil expander with improved intensity distribution
CN107238926B (en) Optical element, display device, and method for manufacturing optical element
CN110036235B (en) Waveguide with peripheral side geometry for recycling light
TW202020503A (en) Device for augmented reality or virtual reality display
KR20210152451A (en) new grid arrangement
CN114051593B (en) Near-eye display device, augmented reality glasses including the same, and method of operating the same
US20210165216A1 (en) Correction optical member and head-mounted display
TWI814557B (en) Optical module and augmented reality near-eye display including the same
US20240094456A1 (en) Image light guide with compound in-coupling diffractive optic
JP2017161564A (en) Light guide device and virtual image display device
TW202409640A (en) Optical module and augmented reality near-eye display including the same
CN116964509A (en) Optical device
CN116699751B (en) Optical waveguide and near-to-eye display device
US20230273449A1 (en) Full-color waveguide combiner with embedded metagrating
US20240134125A1 (en) Image light guide with multi-wavelength in-coupling diffractive optic