TW202406409A - X-ray source, x-ray beam and methods for generating the same - Google Patents

X-ray source, x-ray beam and methods for generating the same Download PDF

Info

Publication number
TW202406409A
TW202406409A TW112119598A TW112119598A TW202406409A TW 202406409 A TW202406409 A TW 202406409A TW 112119598 A TW112119598 A TW 112119598A TW 112119598 A TW112119598 A TW 112119598A TW 202406409 A TW202406409 A TW 202406409A
Authority
TW
Taiwan
Prior art keywords
ray
electron beam
source
photocathode
electron
Prior art date
Application number
TW112119598A
Other languages
Chinese (zh)
Inventor
吉爾達多 戴加多
Original Assignee
美商諾威量測設備公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商諾威量測設備公司 filed Critical 美商諾威量測設備公司
Publication of TW202406409A publication Critical patent/TW202406409A/en

Links

Images

Abstract

A method for generating an x-ray beam, the method includes (a) directing an x-ray generating fluid towards a cryogenic x-ray emitting target; (b) freezing, by the cryogenic x-ray emitting target, the x-ray generating fluid to provide a frozen x-ray generating material; and (c) illuminating the frozen x-ray generating material with an electron beam to generate the x-ray beam.

Description

X射線源、X射線束以及生成其的方法X-ray sources, X-ray beams and methods of generating the same

本發明要求申請日期為2022年5月26日的美國臨時專利序號63/365,414的優先權,其全部內容通過引用併入本文。This application claims priority to U.S. Provisional Patent No. 63/365,414, filed May 26, 2022, the entire contents of which are incorporated herein by reference.

對於提供用於計量和檢查的高亮度X射線源的需求日益增長。There is a growing need to provide high-brightness X-ray sources for metrology and inspection.

在下面的詳細描述中,闡述了許多具體細節,以便提供對本發明的透徹理解。然而,本領域技術人員將理解,本發明可以在沒有這些具體細節的情況下實施。在其他情況下,沒有詳細描述眾所周知的方法、程式和組件,以免混淆本發明。In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, one skilled in the art will understand that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures and components have not been described in detail so as not to obscure the present invention.

在說明書的結論部分特別指出並清楚地要求保護被認為是本發明的主題。然而,當結合圖式閱讀時,通過參考下面的詳細描述,可以最好地理解本發明的組織和操作方法及其目的、特徵和優點。The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the concluding part of the specification. However, the organization and method of operation of the invention, as well as its objects, features and advantages, are best understood by reference to the following detailed description when read in conjunction with the drawings.

應當理解,為了說明的簡單和清楚,圖中所示的元件不一定按比例繪製。例如,為了清楚起見,一些元件的尺寸可能相對於其他元件被誇大。此外,在認為合適的情況下,圖式標記可以在圖式中重複,以指示對應或類似的元件。It should be understood that, for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some elements may be exaggerated relative to other elements for clarity. Additionally, where deemed appropriate, drawing labels may be repeated throughout the drawings to indicate corresponding or similar elements.

因為所示出的本發明的實施例在很大程度上可以使用本領域技術人員已知的電子束元件和電路來實現,所以為了理解和領會本發明的基本概念,並且為了不混淆或偏離本發明的教導,除了如上所述認為必要的範圍之外,將不會對細節進行任何更大程度的解釋。Because the illustrated embodiments of the invention can be implemented to a large extent using electron beam elements and circuits known to those skilled in the art, it is important in order to understand and appreciate the basic concepts of the invention, and in order not to obscure or depart from the scope of this invention. The teachings of the invention will not be construed to any greater extent than to the extent deemed necessary as set forth above.

說明書中對方法的任何引用都應該比照應用於能夠執行該方法的系統。Any reference to a method in the specification should apply mutatis mutandis to a system capable of executing the method.

說明書中對系統的任何引用都應該比照應用於系統可以執行的方法。Any references in the specification to a system should apply mutatis mutandis to methods that the system can perform.

提供了一種X射線源,該X射線源表現出高亮度(例如,具有大於1×10 10ph/s的光子通量),用於計量和檢查,以實現: a. 更高的輸送量 b. 更高品質的X射線束 c. 替代架構 d. 其他技術(尺寸計量、材料計量、疊層成像、檢查) e. 可從低到高能調諧(100eV-數十(10’s) KeV) An X-ray source is provided that exhibits high brightness (e.g., has a photon flux greater than 1×10 10 ph/s) for use in metrology and inspection to achieve: a. Higher delivery b. . Higher quality X-ray beams c. Alternative architectures d. Other technologies (dimensional metrology, material metrology, stack imaging, inspection) e. Tunable from low to high energy (100eV - tens (10's) KeV)

建議的X射線源比基於放電或箍縮電漿的溶液(也表現出低亮度)、固體帶雷射產生的電漿(LPP)、氣體噴射流LPP、液體LPP和低溫LPP更具成本效益-所有這些都太貴而無法用於計量。The proposed X-ray sources are more cost-effective than solutions based on discharge or pinch plasma (also exhibiting low brightness), solid band laser-produced plasma (LPP), gas jet LPP, liquid LPP and cryogenic LPP - All are too expensive to be metered.

可以使用商業上可獲得的電子束源,例如熱離子或場發射器源,但有一些限制。熱離子源通常由鎢或六硼化鑭(LaB 6)製成。在熱離子發射中,當電子熱能高到足以克服表面勢壘時,電子從材料表面蒸發。儘管熱離子發射器被廣泛使用,但它們通常需要升高的溫度(例如>1300K)來工作,並且可能具有幾個缺點,例如低效的功耗、寬的能量分佈、短的壽命、低的電流密度和有限的亮度。 Commercially available electron beam sources, such as thermionic or field emitter sources, can be used, with some limitations. Thermionic sources are usually made of tungsten or lanthanum hexaboride (LaB 6 ). In thermionic emission, electrons evaporate from the surface of a material when their thermal energy is high enough to overcome the surface barrier. Although thermionic emitters are widely used, they usually require elevated temperatures (e.g., >1300K) to operate and may have several disadvantages, such as inefficient power consumption, wide energy distribution, short lifetime, low current density and limited brightness.

其他更有效和更高亮度的電子源(例如肖特基發射器和冷電子場發射器源)是可用的。然而,它們容易受到污染,需要非常高的真空度。然而,這些技術可以解決其中的一些問題。Other more efficient and brighter electron sources (such as Schottky emitter and cold electron field emitter sources) are available. However, they are susceptible to contamination and require very high vacuum levels. However, these technologies can solve some of these problems.

提供了一種包括光電陰極的X射線源,並且能夠生成高亮度X射線源,因為該技術可以解決大多數這些問題。An X-ray source including a photocathode and capable of generating a high-brightness X-ray source is provided because this technology can solve most of these problems.

光電陰極在加速器物理學中很重要,它們被用於光注入器中以生成高亮度電子束。光電陰極生成的電子束通常用於自由電子雷射器和超快電子衍射。光電陰極也通常用作光檢測設備中的負電荷電極,例如光電倍增管或光電管。Photocathodes are important in accelerator physics, where they are used in light injectors to generate high-brightness electron beams. The electron beam generated by the photocathode is commonly used in free electron lasers and ultrafast electron diffraction. Photocathode is also commonly used as a negatively charged electrode in light detection devices such as photomultiplier tubes or phototubes.

X射線源的最簡單形式包括光電陰極和光學元件,光學元件被配置為接收入射輻射束(例如光束),該入射輻射束在光電陰極表面上提供成形、準直和聚焦。In its simplest form, an X-ray source includes a photocathode and an optical element configured to receive an incident radiation beam (eg, a beam) that provides shaping, collimation, and focusing on the photocathode surface.

光電陰極表面生成具有非常低能量擴散的高亮度電子束。然後電子束聚焦在目標上,以生成高亮度的X射線束。可以選擇目標材料來優化X射線能量。通過仔細選擇材料,能量從100eV–數十keV的X射線是可能的。這種目標材料也可以稱為“X射線材料”。The photocathode surface generates a high-brightness electron beam with very low energy spread. The electron beam is then focused on the target to produce a high-brightness X-ray beam. Target materials can be selected to optimize X-ray energy. By careful selection of materials, X-rays with energies from 100eV–tens of keV are possible. This target material may also be referred to as "X-ray material".

X射線源的光學元件可以將光束聚焦到由波長和光學系統的數值孔徑(NA)控制的衍射受限尺寸。例如,對於具有波長λ的雷射系統,可以用焦距為f的透鏡聚焦高斯光束,並且束腰w o到最終腰 The optics of an X-ray source can focus the beam to a diffraction-limited size controlled by the wavelength and numerical aperture (NA) of the optical system. For example, for a laser system with wavelength λ, a Gaussian beam can be focused with a lens of focal length f, and the beam waist wo reaches the final waist. .

因此,光斑尺寸可以非常小。對於紫外(UV)雷射器,這個光斑的直徑可以小於一微米。Therefore, the spot size can be very small. For ultraviolet (UV) lasers, this spot can be less than one micron in diameter.

由X射線源生成的電子束可以通過使用光學元件(例如濾光器或光罩,或使用光罩砂濾光器的電子光學元件)被成形為任何期望的幾何形狀。The electron beam generated by an X-ray source can be shaped into any desired geometry by using optical elements such as filters or reticles, or electron optics using reticle sand filters.

光電陰極發射的電子的性質取決於驅動雷射器的形狀。例如,它可以是高斯形狀或平頂束。它可以是環形、環狀或任何期望的形狀。The nature of the electrons emitted by the photocathode depends on the shape of the driving laser. For example, it can be a Gaussian shape or a flat-top beam. It can be annular, ring-shaped or any desired shape.

光電陰極可能優於其他形式的陰極,因為光電陰極可能具有更好地控制從光電陰極輸出的電子束品質的能力。Photocathode may be preferred over other forms of cathodes because the photocathode may have the ability to better control the quality of the electron beam output from the photocathode.

光電陰極被光束撞擊時,通過應用光電效應發射電子。光電效應保持了入射光束的能量和動量。因此,在光子電子束中,光束性質將保持不變。例如,用光束照射的光電陰極將保持許多雷射光束參數,例如能量擴散和穩定性。When the photocathode is struck by a light beam, it emits electrons by applying the photoelectric effect. The photoelectric effect preserves the energy and momentum of the incident light beam. Therefore, in a photonic electron beam, the beam properties will remain unchanged. For example, a photocathode illuminated with a beam will maintain many laser beam parameters, such as energy spread and stability.

X射線源的光電陰極可以被任何類型的光照射,這些光可以由各種光源生成,例如燈、電漿、雷射產生的電漿、放電電漿、二極體或雷射器。The photocathode of an X-ray source can be illuminated by any type of light, which can be generated by a variety of light sources, such as lamps, plasma, laser-generated plasma, discharge plasma, diodes, or lasers.

光束可以是連續的(例如CW)或脈衝的。The beam can be continuous (e.g. CW) or pulsed.

當使用光電陰極時,X射線源可以保持(光子電子束的)能量擴散或能量色散,其可以小到0.1eV,與傳統的熱發射電子槍(>1eV)或場發射系統(>0.3eV)相比,其可以小到0.1eV。When using a photocathode, the X-ray source can maintain energy dispersion (of the photon electron beam), or energy dispersion, which can be as small as 0.1eV, comparable to conventional thermal emission electron guns (>1eV) or field emission systems (>0.3eV) ratio, which can be as small as 0.1eV.

電子束的低能量擴散可能是能夠製造高品質電子束和具有非常小能量尾的小光斑尺寸的重要參數。The low energy spread of the electron beam may be an important parameter to be able to produce high quality electron beams and small spot sizes with very small energy tails.

傳統的電子束不能產生非常低水準的能量色散。能量色散越小,束品質和小電子光斑尺寸品質越好。此外,低能量色散將有助於最初獲得幾乎平行的電子束。小於200微米直徑的期望光斑尺寸是優選的。Conventional electron beams are unable to produce very low levels of energy dispersion. The smaller the energy dispersion, the better the beam quality and small electron spot size. In addition, low energy dispersion will help to obtain an almost parallel electron beam initially. Desired spot sizes less than 200 microns in diameter are preferred.

圖1示出了透射型X射線源,其包括輻射源,例如光子束源20,例如但不限於被配置為將輻射(例如光束11)導向機械支撐光電陰極40的透明基板30的雷射器。光束11撞擊在光電陰極40的一側上,並使電子從光電陰極的相對側發射以形成電子束12。電子束12被吸引到控制柵極50(其被偏置電路70相對於光電陰極40偏置,偏置可以確定從控制柵極發射的電子的能量),然後撞擊到生成X射線束13的X射線發射目標60上。FIG. 1 shows a transmission X-ray source that includes a radiation source, such as a photon beam source 20 , such as, but not limited to, a laser configured to direct radiation (eg, beam 11 ) toward a transparent substrate 30 that mechanically supports a photocathode 40 . The beam 11 impinges on one side of the photocathode 40 and causes electrons to be emitted from the opposite side of the photocathode to form the electron beam 12 . Electron beam 12 is attracted to control grid 50 (which is biased relative to photocathode 40 by bias circuit 70 , the bias can determine the energy of the electrons emitted from the control grid), and then strikes the X-ray beam 13 generating X-ray beam 13 . The ray is fired at target 60.

圖2示出了反射型X射線源,其包括輻射源,例如光子束源20,例如但不限於被配置為將輻射(例如光束11)導向光電陰極40的雷射器。由基板31支撐光電陰極40。光束11撞擊光電陰極40的一側,並使電子從同一側發射以形成電子束12。電子束12被吸引到控制柵極50(其被偏置電路70相對於光電陰極40偏置,偏置可以確定從控制柵極發射的電子的能量),然後撞擊到生成X射線束13的X射線發射目標60上。FIG. 2 shows a reflective X-ray source that includes a radiation source, such as a photon beam source 20 , such as, but not limited to, a laser configured to direct radiation (eg, beam 11 ) toward a photocathode 40 . The photocathode 40 is supported by the substrate 31 . Beam 11 strikes one side of photocathode 40 and causes electrons to be emitted from the same side to form electron beam 12. The electron beam 12 is attracted to the control grid 50 (which is biased relative to the photocathode 40 by a bias circuit 70 which determines the energy of the electrons emitted from the control grid) and then strikes the X-ray beam 13 generating the X-ray beam 13 . The ray is fired at target 60.

高品質的電子束12也可以通過使用電子束光學器件(位於光電陰極和X射線材料之間)來成形並聚焦到非常小的光斑尺寸。A high-quality electron beam 12 can also be shaped and focused to a very small spot size by using electron beam optics (located between the photocathode and the X-ray material).

電子光學器件可以包括電子束柱的至少一些部件,例如一個或多個孔徑和/或一個或多個偏轉器和/或一個或多個掃描線圈和/或一個或多個電磁透鏡和/或一個或多個磁透鏡和/或一個或多個檢測器。The electron optics may include at least some components of the electron beam column, such as one or more apertures and/or one or more deflectors and/or one or more scan coils and/or one or more electromagnetic lenses and/or a or multiple magnetic lenses and/or one or more detectors.

電子光學器件的配置可以隨著系統的具體應用而變化。電子能量範圍可以覆蓋100eV-數十 keV。X射線材料上的電子光斑尺寸可能小於50μm。The configuration of the electron optics can vary with the specific application of the system. The electron energy range can cover 100eV-tens of keV. The electron spot size on X-ray materials may be less than 50 μm.

然後可以將電子束聚焦在X射線發射目標上,該X射線發射目標可以由X射線材料固體製成。X射線發射目標可以由(或可以包括)液體或氣體製成,以生成具有非常明確定義X射線光斑的X射線。The electron beam can then be focused on an X-ray emitting target, which can be made from a solid of X-ray material. X-ray emission targets can be made of (or can include) liquids or gases to generate X-rays with a very well-defined X-ray spot.

雖然圖1和圖2示出了透射型模式X射線發射目標,但X射線發射目標可以是反射型模式X射線發射目標。Although FIGS. 1 and 2 illustrate a transmissive mode X-ray emitting target, the X-ray emitting target may be a reflective mode X-ray emitting target.

圖3示出了具有反射型X射線發射目標的X射線源。Figure 3 shows an X-ray source with a reflective X-ray emitting target.

圖4示出了在控制柵極50和X射線發射目標之間具有電子光學器件80的X射線源的示例。Figure 4 shows an example of an X-ray source with electron optics 80 between the control grid 50 and the X-ray emission target.

基板(支撐光電陰極)可以由根據輻射束的波長選擇的材料製成。例如,對於低至248nm的UV波長,可以使用熔融石英或藍寶石作為基板材料。對於低至190nm的波長,可以使用高級熔融石英。對於低於190nm的波長,可以使用MgF 2或CaF 2。光電陰極的材料可以被選擇為在給定波長下的最佳量子效率(QE)、能量擴散和期望壽命。 The substrate (which supports the photocathode) can be made of a material selected according to the wavelength of the radiation beam. For example, for UV wavelengths as low as 248nm, fused silica or sapphire can be used as the substrate material. For wavelengths down to 190nm, high-grade fused silica is available. For wavelengths below 190 nm, MgF 2 or CaF 2 can be used. The material of the photocathode can be selected for optimal quantum efficiency (QE), energy dispersion and expected lifetime at a given wavelength.

光電陰極可以被選擇為對於輻射束的波長產生高亮度。例如,光電陰極材料可以被選擇,並且可以根據波長或配置是否處於透射與反射模式而具有不同的塗層或不同的基板。The photocathode can be selected to produce high brightness for the wavelength of the radiation beam. For example, the photocathode material can be selected and can have different coatings or different substrates depending on the wavelength or whether the configuration is in transmissive versus reflective mode.

光電陰極的選擇可以是半導體、半導體合金、金屬、金屬合金或混合系統。Photocathode choices can be semiconductors, semiconductor alloys, metals, metal alloys or hybrid systems.

例如,可以使用的半導體PC為:Cs 2Te、CsK 2Sb和GaAs。Cs 2Te、CsK 2Sb、K 2CsSb、Cs:GaAs、GaAs、AlGaN或由AlGaN和GaN、InGaN、InGaP、GaP、GaAN和GaP、CsI、CsBr形成的合金,或鹼鹵化物光電陰極。 For example, semiconductor PCs that can be used are: Cs 2 Te, CsK 2 Sb and GaAs. Cs 2 Te, CsK 2 Sb, K 2 CsSb, Cs:GaAs, GaAs, AlGaN or alloys formed from AlGaN and GaN, InGaN, InGaP, GaP, GaAN and GaP, CsI, CsBr, or alkali halide photocathode.

圖5示出了用於生成X射線束的方法200的示例。Figure 5 shows an example of a method 200 for generating an X-ray beam.

方法200可以從步驟210開始:用光束照射光電陰極。Method 200 may begin with step 210 of illuminating the photocathode with a light beam.

步驟210之後可以是步驟220:通過光電陰極並由於照射而生成電子束。Step 210 may be followed by step 220 of generating an electron beam through the photocathode and as a result of the irradiation.

步驟220可以由光電陰極在以透射模式操作的同時執行。Step 220 may be performed by the photocathode while operating in transmission mode.

步驟220可以由光電陰極在以反射模式操作的同時執行。Step 220 may be performed by the photocathode while operating in reflective mode.

步驟220之後可以是步驟230:將電子束轉換為X射線束。Step 220 may be followed by step 230 of converting the electron beam into an X-ray beam.

光束的光斑尺寸可以是微觀尺度。The spot size of the beam can be on a microscopic scale.

電子束可以表現出小於0.3電子伏特的能量擴散。Electron beams can exhibit energy spread of less than 0.3 electron volts.

光電陰極可以包括熔融石英或藍寶石。所述材料可以用作基板材料。The photocathode may include fused quartz or sapphire. The material can be used as a substrate material.

光電陰極可以由MgF 2、CaF 2、BaF 2或LiF 2製成。 The photocathode can be made of MgF2 , CaF2 , BaF2 or LiF2 .

光電陰極可以由Cs 2Te、CsK 2Sb、GaAs、Cs 2Te、CsK 2Sb、K 2CsSb、Cs:GaAs、GaAs、AlGaN中的至少一種材料、由AlGaN或GaN、InGaN、InGaP、InGaP、GaP、GaN、GaP、CsI、CsBr形成的一種或多種合金、或鹼鹵化物製成。 The photocathode may be made of at least one material of Cs 2 Te, CsK 2 Sb, GaAs, Cs 2 Te, CsK 2 Sb, K 2 CsSb, Cs: GaAs, GaAs, AlGaN, AlGaN or GaN, InGaN, InGaP, InGaP, Made of one or more alloys formed by GaP, GaN, GaP, CsI, CsBr, or alkali halides.

光束、電子束和X射線束可以是連續束或脈衝束。Light beams, electron beams and X-ray beams can be continuous or pulsed.

也可以提供混合X射線源。例如,熱離子陰極材料使用熱輔助光電發射過程。例如,LaB 6或CeB 6陰極被加熱並使用光源來輔助電子發射過程。已經成功地用作光電陰極。 Hybrid X-ray sources are also available. For example, thermionic cathode materials use a thermally assisted photoemission process. For example, a LaB 6 or CeB 6 cathode is heated and uses a light source to assist the electron emission process. have been successfully used as photocathode.

用於生成X射線的材料可以是以下任一種: a. 氣體噴射流(Gas jet),加壓氣體噴射流。 b. 低溫氣體、液體或固體。 c. 反射模式中使用的固體塊體材料。 d. 可以在透射或反射模式中使用的薄膜。 e. 帶。 f. 液態金屬。 The material used to generate X-rays can be any of the following: a. Gas jet, pressurized gas jet. b. Low temperature gas, liquid or solid. c. Solid bulk material used in reflective mode. d. Films that can be used in transmission or reflection mode. e. To bring. f. Liquid metal.

在X射線源中可以使用各種配置的上述材料中的任何一種。例如,氣體噴射流是方便的目標材料,因為與液體或固體相比,氣體產生的碎片很少。Any of the above materials in various configurations can be used in the X-ray source. For example, gas jets are convenient target materials because gases create little debris compared to liquids or solids.

此外,氣體噴射流可以容易地輸送輕質Z材料,例如任何輕質有機物或醇,例如乙醇、O 2、CO 2或H 2O、H 2O 2等。部署在氣體噴射流中的低Z材料可以用於從光子生成波長,其能量範圍從數十eV到數百eV,這取決於氣體壓力和氣體成分。X射線收集可以相對於氣體噴射流以不同的角度或幾何形狀佈置,如圖5中所描繪的。 In addition, the gas jet can easily transport lightweight Z materials, such as any light organic matter or alcohol, such as ethanol, O2 , CO2 or H2O , H2O2 , etc. Low-Z materials deployed in gas jets can be used to generate wavelengths from photons with energies ranging from tens to hundreds of eV, depending on gas pressure and gas composition. The X-ray collection can be arranged at different angles or geometries relative to the gas jet, as depicted in Figure 5.

圖6示出了可以遵循圖1至圖4中任何一個的控制柵極50的電子束到X射線轉換光學器件的示例。Figure 6 shows an example of electron beam to X-ray conversion optics that may follow the control grid 50 of any of Figures 1-4.

電子束到X射線轉換光學器件可以將電子束152(由電子束源502生成並由聚焦元件162聚焦)轉換為X射線束156,這由氣體噴射流154(由X射線生成流體源503生成)輔助,以提供轉換所需的材料。Electron beam to X-ray conversion optics may convert electron beam 152 (generated by electron beam source 502 and focused by focusing element 162 ) into X-ray beam 156 , which is generated by gas jet 154 (generated by X-ray generating fluid source 503 ) Auxiliary to provide materials needed for conversion.

X射線束可以相對於氣體噴射流的傳播方向以任何角度或任何其它幾何關係傳播。X射線生成輔助單元504(例如低溫X射線目標)輔助X射線的生成-例如當使用氣體噴射流或液體噴射時,通過改進電子束到X射線束的轉換。The X-ray beam can propagate at any angle or any other geometric relationship relative to the direction of propagation of the gas jet. An X-ray generation assist unit 504 (eg a cryogenic X-ray target) assists in the generation of X-rays - for example by improving the conversion of electron beams to X-ray beams when using gas jets or liquid jets.

圖7示出了X射線生成輔助單元,例如低溫X射線發射目標170(其可以是低溫固體陽極),其通過將氣體或液體(來自X射線生成流體源503)冷凝(冷凍)成密度更大的物質(例如固體)來改進轉換,該物質每單位面積包括更多的分子-這使得電子束152(由電子束源502生成)在電子束到X射線束轉換期間與更多的分子相互作用,這改進了轉換並產生更高亮度的X射線束156。Figure 7 shows an X-ray generation auxiliary unit, such as a cryogenic X-ray emission target 170 (which may be a cryogenic solid anode), which works by condensing (freezing) a gas or liquid (from X-ray generating fluid source 503) into a denser Improve conversion by using a substance (e.g., a solid) that includes more molecules per unit area - this allows the electron beam 152 (generated by the electron beam source 502 ) to interact with more molecules during the electron beam to X-ray beam conversion , which improves conversion and produces a higher brightness X-ray beam 156 .

圖7還示出了(從左至右看)流體158的液滴158-1(也稱為X射線生成流體)的示例,該液滴接近低溫X射線發射目標170,接觸低溫X射線發射目標170,並冷凍以形成固體元件159-1(也稱為冷凍的X射線生成材料),該固體元件與電子束152相互作用以形成X射線束156。Figure 7 also shows (viewed from left to right) an example of a droplet 158-1 of fluid 158 (also referred to as an X-ray generating fluid) proximate to, contacting a cryogenic X-ray emission target 170 170 , and frozen to form solid element 159 - 1 (also referred to as frozen X-ray generating material) that interacts with electron beam 152 to form X-ray beam 156 .

該相互作用可以輕微損壞低溫X射線發射目標-並且移動低溫X射線發射目標(通過可以包括馬達的機械單元510)可能是有益的-使得低溫X射線發射目標的不同區域將隨著時間的推移而被侵蝕。該移動可以是旋轉的和/或線性的,諸如此類。This interaction can slightly damage the cryogenic X-ray emitting target - and it may be beneficial to move the cryogenic eroded. The movement may be rotational and/or linear, and so on.

對於計量和檢查,可以使用圖7的電子束到X射線轉換光學器件生成能量範圍為10 eV–數十keV的X射線束。For metrology and inspection, the electron beam to X-ray conversion optics of Figure 7 can be used to generate X-ray beams in the energy range of 10 eV – tens of keV.

上面所示的X射線源可以提供高品質的高亮度電子束,並且可以是半相干的,並且使用這種電子束來提供高品質的半相干高亮度X射線束。X射線束可以在10 eV-10 keV的能量範圍內進行調諧。這些品質對於實現XPS和XRF的快速採集時間非常重要,但也可以實現XRS的其他先進技術和工藝,如疊層成像。The X-ray source shown above can provide a high-quality high-brightness electron beam and can be semi-coherent, and this electron beam is used to provide a high-quality semi-coherent high-brightness X-ray beam. The X-ray beam can be tuned in the energy range of 10 eV-10 keV. These qualities are important for achieving fast acquisition times for XPS and XRF, but also enable other advanced techniques and processes for XRS, such as stack imaging.

這些高亮度X射線源使得尺寸計量、材料表徵計量、半導體檢測、電池檢測、生物或生物醫學的X射線衍射成像等廣泛技術成為可能。These high-brightness X-ray sources make possible a wide range of technologies such as dimensional metrology, material characterization metrology, semiconductor inspection, battery inspection, biological or biomedical X-ray diffraction imaging, etc.

圖8示出了用於生成X射線束的方法300的示例。Figure 8 shows an example of a method 300 for generating an X-ray beam.

方法300可以包括預備步驟305:生成電子束。可以通過用光束照射光電陰極來生成電子束。預備步驟305可以包括接收電子束。Method 300 may include a preliminary step 305 of generating an electron beam. An electron beam can be generated by shining a light beam on a photocathode. Preliminary step 305 may include receiving an electron beam.

電子束可以是連續電子束或脈衝電子束。The electron beam may be a continuous electron beam or a pulsed electron beam.

方法300還可以包括步驟310:將X射線生成流體導向低溫X射線發射目標。Method 300 may also include step 310 of directing the X-ray generating fluid to a cryogenic X-ray emission target.

X射線生成流體可以是X射線生成液體或X射線生成氣體。The X-ray generating fluid may be an X-ray generating liquid or an X-ray generating gas.

步驟310之後可以是步驟320:由低溫X射線發射目標冷凍X射線生成流體,以提供冷凍的X射線生成材料。Step 310 may be followed by step 320 of freezing the X-ray generating fluid from the cryogenic X-ray emission target to provide frozen X-ray generating material.

方法300還可以包括步驟330:用電子束照射冷凍的X射線生成材料,以生成X射線束。Method 300 may further include step 330 of irradiating the frozen X-ray generating material with an electron beam to generate an X-ray beam.

可以在冷凍的X射線生成材料位於低溫X射線發射目標上的同時發生步驟330。Step 330 may occur while the frozen X-ray generating material is located on the cryogenic X-ray emission target.

步驟310、步驟320和步驟330可以重複多次。Step 310, step 320 and step 330 may be repeated multiple times.

方法300可以包括步驟340:在低溫X射線發射目標、以及電子束與冷凍的X射線生成材料之間的相互作用點之間引入運動。Method 300 may include step 340 of introducing motion between the cryogenic X-ray emitting target and the point of interaction between the electron beam and the frozen X-ray generating material.

該運動可以是低溫X射線發射目標的旋轉運動-或者任何其他運動。This motion can be a rotational motion of the cryo-X-ray emitting target - or any other motion.

X射線束可以包括一條或多條Kα線和100eV至數十KeV之間的連續能量輻射。The X-ray beam may include one or more Kα lines and continuous energy radiation between 100 eV and tens of KeV.

可以提供一種用於生成X射線束的方法,該方法可以包括將X射線生成流體導向低溫X射線發射目標;A method for generating an X-ray beam may be provided, the method may include directing an X-ray generating fluid toward a cryogenic X-ray emission target;

由低溫X射線發射目標冷凍X射線生成流體,以提供冷凍的X射線生成材料;以及用電子束照射冷凍的X射線生成材料,以生成X射線束。The cryogenic X-ray emission target freezes the X-ray generating fluid to provide a frozen X-ray generating material; and irradiates the frozen X-ray generating material with an electron beam to generate an X-ray beam.

照射可以在冷凍的X射線生成材料可以位於低溫X射線發射目標上的同時發生。Illumination may occur while the frozen X-ray generating material may be located on the cryogenic X-ray emitting target.

該方法可以包括在低溫X射線發射目標和電子束與冷凍的X射線生成材料之間的相互作用點之間引入運動。The method may include introducing motion between the cryogenic X-ray emitting target and the point of interaction between the electron beam and the frozen X-ray generating material.

運動的引入可以包括旋轉低溫X射線發射目標。The introduction of motion may include rotating the cryogenic X-ray emission target.

X射線生成流體可以是X射線生成液體。The X-ray generating fluid may be an X-ray generating liquid.

X射線生成流體可以是X射線生成氣體。The X-ray generating fluid may be an X-ray generating gas.

該方法可以包括通過高亮度熱場發射器生成電子束。The method may include generating the electron beam via a high brightness thermal field emitter.

高亮度熱場發射器可以是肖特基電子束源(Schottky electron beam source)。The high-brightness thermal field emitter can be a Schottky electron beam source.

該方法可以包括通過高亮度冷電子場發射器源生成電子束。The method may include generating the electron beam by a high brightness cold electron field emitter source.

該方法可以包括通過用從光束和雷射光束中選擇的束照射光電陰極來生成電子束。The method may include generating the electron beam by irradiating the photocathode with a beam selected from the group consisting of an optical beam and a laser beam.

電子束可以是連續電子束。The electron beam may be a continuous electron beam.

電子束可以是脈衝電子束。The electron beam may be a pulsed electron beam.

X射線束可以包括一條或多條Kα線和100eV至數十KeV之間的連續能量輻射。The X-ray beam may include one or more Kα lines and continuous energy radiation between 100 eV and tens of KeV.

可以提供一種X射線束源,該X射線束源可以包括:X射線生成流體源,可以被配置為將X射線生成流體導向低溫X射線發射目標;低溫X射線發射目標,可以被配置為冷凍X射線生成流體,以提供冷凍的X射線生成材料;以及電子束源,可以被配置為用電子束照射冷凍的X射線生成材料,以生成X射線束。An X-ray beam source may be provided, and the X-ray beam source may include: an X-ray generating fluid source that may be configured to direct the X-ray generating fluid to a cryogenic a ray generating fluid to provide the frozen X-ray generating material; and an electron beam source that may be configured to irradiate the frozen X-ray generating material with an electron beam to generate an X-ray beam.

電子束源可以被配置為在冷凍的X射線生成材料可以位於低溫X射線發射目標上的同時照射冷凍的X射線生成材料。The electron beam source may be configured to irradiate the frozen X-ray generating material while the frozen X-ray generating material may be positioned on the cryogenic X-ray emission target.

X射線束源可以包括機械單元,機械單元被配置為在低溫X射線發射目標和電子束與冷凍的X射線生成材料之間的相互作用點之間引入運動。The X-ray beam source may include a mechanical unit configured to induce motion between the cryogenic X-ray emitting target and the point of interaction between the electron beam and the frozen X-ray generating material.

機械單元可以被配置為旋轉低溫X射線發射目標。The mechanical unit may be configured to rotate the cryogenic X-ray emission target.

X射線生成流體可以是X射線生成液體。The X-ray generating fluid may be an X-ray generating liquid.

X射線生成流體可以是X射線生成氣體。The X-ray generating fluid may be an X-ray generating gas.

電子束源可以包括高亮度熱場發射器。The electron beam source may include a high brightness thermal field emitter.

高亮度熱場發射器可以是肖特基電子束源。The high-brightness thermal field emitter can be a Schottky electron beam source.

電子束源可以包括高亮度冷電子場發射器源。The electron beam source may include a high brightness cold electron field emitter source.

電子束源可以包括光電陰極和束源,束源可以被配置為通過從光束和雷射光束中選擇的束照射光電陰極。The electron beam source may include a photocathode and a beam source, and the beam source may be configured to illuminate the photocathode with a beam selected from an optical beam and a laser beam.

電子束可以是連續電子束。The electron beam may be a continuous electron beam.

電子束可以是脈衝電子束。The electron beam may be a pulsed electron beam.

X射線束可以包括一條或多條Kα線和100eV至數十KeV之間的連續能量輻射。The X-ray beam may include one or more Kα lines and continuous energy radiation between 100 eV and tens of KeV.

可以提供一種用於生成X射線束的方法,該方法可以包括:用從光束和雷射光束中選擇的光子束照射光電陰極;通過光電陰極並由於照射而生成電子束;以及將電子束轉換為X射線束。A method for generating an X-ray beam.

光子束的直徑不超過200微米。The diameter of the photon beam does not exceed 200 microns.

光電陰極可以是透射型光電陰極。The photocathode may be a transmission photocathode.

光電陰極可以是反射型光電陰極。The photocathode may be a reflective photocathode.

電子束表現出小於0.5電子伏特的能量擴散。Electron beams exhibit energy spread of less than 0.5 electron volts.

光電陰極可以由熔融石英或藍寶石製成,可以用作基板材料。The photocathode can be made of fused quartz or sapphire, which can be used as the substrate material.

光電陰極基板可以由MgF 2、CaF 2、BaF 2或LiF 2製成。 The photocathode substrate can be made of MgF2 , CaF2 , BaF2 or LiF2 .

光電陰極可以由Cs 2Te、CsK 2Sb、GaAs、Cs 2Te、CsK 2Sb、K 2CsSb、Cs:GaAs、GaAs、AlGaN中的至少一種材料,由AlGaN或GaN、InGaN、InGaP、InGaP、GaP、GaN、GaP、CsI、CsBr形成的一種或多種合金,或鹼鹵化物製成。 The photocathode may be made of at least one material from Cs 2 Te, CsK 2 Sb, GaAs, Cs 2 Te, CsK 2 Sb, K 2 CsSb, Cs: GaAs, GaAs, AlGaN, AlGaN or GaN, InGaN, InGaP, InGaP, One or more alloys formed by GaP, GaN, GaP, CsI, CsBr, or alkali halides.

光子束、電子束和X射線束可以是連續束。Photon beams, electron beams and X-ray beams may be continuous beams.

光子束、電子束和X射線束可以是脈衝束。Photon beams, electron beams and X-ray beams may be pulsed beams.

可以提供一種X射線源,該X射線源可以包括:光子束源,其可以被配置為用從光束和雷射光束中選擇的光子束照射光電陰極;其中,光電陰極可以被配置為由於照射而生成電子束;以及電子束到X射線束轉換器,其可以被配置為將電子束轉換為X射線束。An X-ray source may be provided, which may include: a photon beam source that may be configured to irradiate a photocathode with a photon beam selected from a light beam and a laser beam; wherein the photocathode may be configured to generating an electron beam; and an electron beam to X-ray beam converter that may be configured to convert the electron beam into an X-ray beam.

光子束的直徑不超過200微米。The diameter of the photon beam does not exceed 200 microns.

光電陰極可以是透射型光電陰極。The photocathode may be a transmission photocathode.

光電陰極可以是反射型光電陰極。The photocathode may be a reflective photocathode.

電子束表現出小於0.5電子伏特的能量擴散。Electron beams exhibit energy spread of less than 0.5 electron volts.

光電陰極可以由熔融石英或藍寶石製成。The photocathode can be made of fused quartz or sapphire.

光電陰極基板可以由MgF 2、CaF 2、BaF 2或LiF 2製成。 The photocathode substrate can be made of MgF2 , CaF2 , BaF2 or LiF2 .

光電陰極可以由Cs 2Te、CsK 2Sb、GaAs、Cs 2Te、CsK 2Sb、K 2CsSb、Cs:GaAs、GaAs、AlGaN中的至少一種材料、由AlGaN或GaN、InGaN、InGaP、InGaP、GaP、GaN、GaP、CsI、CsBr形成的一種或多種合金、或鹼鹵化物製成。 The photocathode may be made of at least one material of Cs 2 Te, CsK 2 Sb, GaAs, Cs 2 Te, CsK 2 Sb, K 2 CsSb, Cs: GaAs, GaAs, AlGaN, AlGaN or GaN, InGaN, InGaP, InGaP, Made of one or more alloys formed by GaP, GaN, GaP, CsI, CsBr, or alkali halides.

光子束、電子束和X射線束可以是連續束。Photon beams, electron beams and X-ray beams may be continuous beams.

光子束、電子束和X射線束可以是脈衝束。Photon beams, electron beams and X-ray beams may be pulsed beams.

可以提供一種用於生成X射線束的方法,該方法可以包括:用高亮度熱場發射器電子束源照射X射線目標;以及通過X射線目標將電子束轉換為X射線束。A method for generating an X-ray beam may be provided, the method may include: irradiating an X-ray target with a high brightness thermal field emitter electron beam source; and converting the electron beam into an X-ray beam by the X-ray target.

可以提供一種用於生成X射線束的方法,該方法可以包括:用高亮度冷場發射器電子束源照射X射線目標;以及通過X射線目標將電子束轉換為X射線束。A method for generating an X-ray beam may be provided, the method may include: irradiating an X-ray target with a high brightness cold field emitter electron beam source; and converting the electron beam into an X-ray beam by the X-ray target.

可以提供一種非暫時性電腦可讀,其存儲指令,一旦由控制器(例如具有積體電路的控制器)執行就使得控制器控制本申請中所示的任何方法的執行。A non-transitory computer-readable device may be provided that stores instructions that upon execution by a controller (eg, a controller having integrated circuitry) cause the controller to control performance of any of the methods shown herein.

在前述說明書中,已經參考本發明的實施例的具體示例描述了本發明。然而,顯而易見的是,在不脫離所附申請專利範圍中闡述的本發明的更廣泛的精神和範圍的情況下,可以在其中進行各種修改和改變。In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will be apparent, however, that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.

此外,說明書和申請專利範圍中的術語“前”、“後”、“頂”、“下”、“底”、“下面”等(如果有的話)用於描述目的,而不一定用於描述永久的相對位置。應當理解,如此使用的術語在適當的情況下是可互換的,例如,使得本文描述的本發明的實施例能夠在除了本文所示或以其他方式描述的那些方向之外的其他方向上操作。In addition, the terms "front", "rear", "top", "lower", "bottom", "below", etc. (if any) in the specification and the scope of the patent application are used for descriptive purposes and not necessarily for Describes a permanent relative position. It is to be understood that the terms so used are interchangeable under appropriate circumstances, e.g., such that the embodiments of the invention described herein are capable of operation in other orientations than those shown or otherwise described herein.

實現相同功能的組件的任何佈置被有效地“關聯”,從而實現期望的功能。因此,在本文組合以實現特定功能的任何兩個組件可以被視為彼此“關聯”,從而實現期望的功能,而不考慮架構或中間組件。同樣,如此關聯的任何兩個組件也可以被視為彼此“可操作地連接”或“可操作地耦合”,以實現期望的功能。Any arrangement of components that implement the same functionality is effectively "associated" so that the desired functionality is achieved. Thus, any two components combined herein to achieve a specific functionality can be considered to be "associated with" each other such that the desired functionality is achieved, without regard to architecture or intermediary components. Likewise, any two components so associated are also considered to be "operably connected" or "operably coupled" to each other to achieve the desired functionality.

此外,本領域的技術人員將認識到,上述操作之間的邊界僅僅是說明性的。多個操作可以組合成單個操作;單個操作可以分佈在額外操作中,並且操作可以在時間上至少部分重疊地執行。此外,替代實施例可以包括具體操作的多個實例,並且操作的順序可以在各種其他實施例中改變。Furthermore, those skilled in the art will recognize that the boundaries between the operations described above are illustrative only. Multiple operations can be combined into a single operation; a single operation can be distributed among additional operations, and operations can be performed with at least partial overlap in time. Furthermore, alternative embodiments may include multiple instances of specific operations, and the order of operations may be changed in various other embodiments.

然而,其他修改、變化和替代也是可能的。因此,說明書和附圖被認為是說明性的,而不是限制性的。However, other modifications, changes and substitutions are possible. Accordingly, the specification and drawings are to be regarded as illustrative rather than restrictive.

任何關於包括的提法應比照適用於“組成”,並且比照適用於“基本上由……組成”。Any reference to including shall apply mutatis mutandis to "consisting of" and shall apply mutatis mutandis to "consisting essentially of".

在請求項中,括弧中的任何附圖標記都不應被解釋為對請求項的限制。單詞“包括”不排除存在請求項中列出的那些之外的其他元件或步驟。此外,本文使用的術語“一”或“一個”被定義為一個或多於一個。此外,在請求項中使用諸如“至少一個”和“一個或多個”等引導性短語不應被解釋為暗示由不定冠詞“一”或“一個”引入另一個請求項元件將包含這種引入的請求項元件的任何特定請求項限制為僅包含一個這種元件的發明,即使當同一請求項包括引導性短語“一個或多個”或“至少一個”和諸如“一”或“一個”等不定冠詞時也是如此。這同樣適用於定冠詞的使用。除非另有說明,諸如“第一”和“第二”等術語用於任意區分這些術語所描述的元件。因此,這些術語不一定意在指示這些元件的時間或其他優先順序。在互不相同的請求項中記載某些措施的事實並不表示不能有利地使用這些措施的組合。In a claim, any reference signs placed in parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of other elements or steps than those listed in the claim. Furthermore, the terms "a" or "an" as used herein are defined as one or more than one. Furthermore, the use of introductory phrases such as "at least one" and "one or more" in a claim shall not be construed to imply that the introduction of another claim element by the indefinite article "a" or "an" will contain such Any particular claim introducing a claimed element is limited to an invention containing only one such element, even when the same claim includes the introductory phrases "one or more" or "at least one" and terms such as "a" or "an "The same goes for the indefinite article." The same applies to the use of the definite article. Unless stated otherwise, terms such as "first" and "second" are used to arbitrarily distinguish between the elements that these terms describe. Thus, these terms are not necessarily intended to indicate a temporal or other priority of these elements. The fact that certain measures are stated in mutually different claims does not mean that a combination of these measures cannot be used to advantage.

雖然在本文已經說明和描述了本發明的某些特徵,但是本領域普通技術人員現在將會想到許多修改、替換、改變和等同物。因此,應該理解,所附申請專利範圍旨在覆蓋所有這些落入本發明的真實精神內的修改和改變。Although certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

11:光束 12:電子束 13:X射線束 20:光子束源 30:透明基板 31:基板 40:光電陰極 50:控制柵極 60:X射線發射目標 70:偏置電路 80:光學器件 152:電子束 154:氣體噴射流 156:X射線束 158:流體 158-1:液滴 159-1:固體元件 162:聚焦元件 170:低溫X射線發射目標 200、300:方法 210、220、230、310、320、330、340:步驟 305:預備步驟 502:電子束源 503:流體源 504:輔助單元 510:機械單元 11:Beam 12:Electron beam 13:X-ray beam 20: Photon beam source 30:Transparent substrate 31:Substrate 40: Photocathode 50:Control gate 60:X-ray emission target 70: Bias circuit 80:Optical devices 152:Electron beam 154:Gas jet 156:X-ray beam 158:Fluid 158-1: Droplets 159-1:Solid components 162:Focusing element 170: Low temperature X-ray emission target 200, 300: Method 210, 220, 230, 310, 320, 330, 340: steps 305: Preliminary steps 502: Electron beam source 503: Fluid source 504: Auxiliary unit 510:Mechanical unit

在說明書的結論部分特別指出並清楚地要求保護被認為是本發明的主題。然而,當結合圖式閱讀時,通過參考下面的詳細描述,可以最好地理解本發明的組織和操作方法及其目的、特徵和優點,其中: 圖1至圖4示出了包括光電陰極的X射線源的示例; 圖5示出了方法的示例; 圖6-圖7示出了電子束到X射線轉換光學器件的示例;以及 圖8示出了方法的示例。 The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the concluding part of the specification. However, the organization and method of operation of the invention, together with its objects, features and advantages, are best understood by reference to the following detailed description when read in conjunction with the drawings, wherein: Figures 1 to 4 show examples of X-ray sources including photocathode; Figure 5 shows an example of the method; Figures 6-7 illustrate examples of electron beam to X-ray conversion optics; and Figure 8 shows an example of the method.

200:方法 200:Method

210、220、230:步驟 210, 220, 230: steps

Claims (48)

一種用於生成X射線束的方法,所述方法包括以下步驟: 將X射線生成流體導向低溫X射線發射目標; 由所述低溫X射線發射目標冷凍所述X射線生成流體,以提供冷凍的X射線生成材料;以及 用電子束照射所述冷凍的X射線生成材料,以生成所述X射線束。 A method for generating an X-ray beam, the method comprising the following steps: Directing the X-ray generating fluid to the cryogenic X-ray emission target; Freezing the X-ray generating fluid by the cryogenic X-ray emitting target to provide frozen X-ray generating material; and The frozen X-ray generating material is irradiated with an electron beam to generate the X-ray beam. 如請求項1所述的方法,其中,所述照射發生在所述冷凍的X射線生成材料位於所述低溫X射線發射目標上的同時。The method of claim 1, wherein the irradiation occurs while the frozen X-ray generating material is located on the low temperature X-ray emission target. 如請求項1所述的方法,其進一步包括在所述低溫X射線發射目標、以及所述電子束與所述冷凍的X射線生成材料之間的相互作用點之間引入運動。The method of claim 1, further comprising introducing motion between the cryogenic X-ray emitting target and the point of interaction between the electron beam and the frozen X-ray generating material. 如請求項3所述的方法,其中,所述運動的所述引入包括旋轉所述低溫X射線發射目標。The method of claim 3, wherein said introduction of said motion includes rotating said cryogenic X-ray emission target. 如請求項1所述的方法,其中,所述X射線生成流體是X射線生成液體。The method of claim 1, wherein the X-ray generating fluid is an X-ray generating liquid. 如請求項1所述的方法,其中,所述X射線生成流體是X射線生成氣體。The method of claim 1, wherein the X-ray generating fluid is an X-ray generating gas. 如請求項1所述的方法,其進一步包括由高亮度熱場發射器生成所述電子束。The method of claim 1, further comprising generating the electron beam from a high brightness thermal field emitter. 如請求項7所述的方法,其中,所述高亮度熱場發射器是肖特基電子束源。The method of claim 7, wherein the high-brightness thermal field emitter is a Schottky electron beam source. 如請求項1所述的方法,其進一步包括由高亮度冷電子場發射器源生成所述電子束。The method of claim 1, further comprising generating the electron beam from a high brightness cold electron field emitter source. 如請求項1所述的方法,其進一步包括通過用從光束和雷射光束中選擇的束照射光電陰極來生成所述電子束。The method of claim 1, further comprising generating the electron beam by irradiating the photocathode with a beam selected from a light beam and a laser beam. 如請求項1所述的方法,其中,所述電子束是連續電子束。The method of claim 1, wherein the electron beam is a continuous electron beam. 如請求項1所述的方法,其中,所述電子束是脈衝電子束。The method of claim 1, wherein the electron beam is a pulsed electron beam. 如請求項1所述的方法,其中,所述X射線束包括一條或多條Kα線和100eV至數十KeV之間的連續能量輻射。The method of claim 1, wherein the X-ray beam includes one or more Kα lines and continuous energy radiation between 100 eV and tens of KeV. 一種X射線束源,其包括: X射線生成流體源,其被配置為將X射線生成流體導向低溫X射線發射目標; 低溫X射線發射目標,其被配置為冷凍所述X射線生成流體,以提供冷凍的X射線生成材料;以及 電子束源,其被配置為用電子束照射所述冷凍的X射線生成材料,以生成X射線束。 An X-ray beam source including: An X-ray generating fluid source configured to direct the X-ray generating fluid towards the cryogenic X-ray emission target; a cryogenic X-ray emission target configured to freeze the X-ray generating fluid to provide frozen X-ray generating material; and An electron beam source configured to irradiate the frozen X-ray generating material with an electron beam to generate an X-ray beam. 如請求項14所述的X射線束源,其中,所述電子束源被配置為在所述冷凍的X射線生成材料位於所述低溫X射線發射目標上的同時照射所述冷凍的X射線生成材料。The X-ray beam source of claim 14, wherein the electron beam source is configured to irradiate the frozen X-ray generating material while the frozen X-ray generating material is located on the cryogenic X-ray emission target. Material. 如請求項14所述的X射線束源,其進一步包括機械單元,所述機械單元被配置為在所述低溫X射線發射目標、以及所述電子束與所述冷凍的X射線生成材料之間的相互作用點之間引入運動。The X-ray beam source of claim 14, further comprising a mechanical unit configured to be between the cryogenic X-ray emission target, the electron beam and the frozen X-ray generating material Introduce motion between the interaction points. 如請求項16所述的X射線束源,其中,所述機械單元被配置為旋轉所述低溫X射線發射目標。The X-ray beam source of claim 16, wherein the mechanical unit is configured to rotate the cryogenic X-ray emission target. 如請求項14所述的X射線束源,其中,所述X射線生成流體是X射線生成液體。The X-ray beam source of claim 14, wherein the X-ray generating fluid is an X-ray generating liquid. 如請求項14所述的X射線束源,其中,所述X射線生成流體是X射線生成氣體。The X-ray beam source of claim 14, wherein the X-ray generating fluid is an X-ray generating gas. 如請求項14所述的X射線束源,其中,所述電子束源包括高亮度熱場發射器。The X-ray beam source of claim 14, wherein the electron beam source includes a high-brightness thermal field emitter. 如請求項20所述的X射線束源,其中,所述高亮度熱場發射器是肖特基電子束源。The X-ray beam source of claim 20, wherein the high-brightness thermal field emitter is a Schottky electron beam source. 如請求項14所述的X射線束源,其中,所述電子束源包括高亮度冷電子場發射器源。The X-ray beam source of claim 14, wherein the electron beam source includes a high-brightness cold electron field emitter source. 如請求項14所述的X射線束源,其中,所述電子束源包括光電陰極和束源,所述束源被配置為通過從光束和雷射光束中選擇的束來照射所述光電陰極。The X-ray beam source of claim 14, wherein the electron beam source includes a photocathode and a beam source configured to irradiate the photocathode with a beam selected from a light beam and a laser beam. 如請求項14所述的X射線束源,其中,所述電子束是連續電子束。The X-ray beam source of claim 14, wherein the electron beam is a continuous electron beam. 如請求項14所述的X射線束源,其中,所述電子束是脈衝電子束。The X-ray beam source of claim 14, wherein the electron beam is a pulsed electron beam. 如請求項14所述的X射線束源,其中,所述X射線束包括一條或多條Kα線和100eV至數十KeV之間的連續能量輻射。The X-ray beam source as claimed in claim 14, wherein the X-ray beam includes one or more Kα lines and continuous energy radiation between 100 eV and tens of KeV. 一種用於生成X射線束的方法,所述方法包括以下步驟: 用從光束和雷射光束中選擇的光子束照射光電陰極; 通過所述光電陰極並由於所述照射而生成電子束;以及 將所述電子束轉換為X射線束。 A method for generating an X-ray beam, the method comprising the following steps: irradiating the photocathode with a photon beam selected from the light beam and the laser beam; An electron beam is generated by the photocathode as a result of the irradiation; and Convert the electron beam into an X-ray beam. 如請求項27所述的方法,其中,所述光子束的直徑不超過200微米。The method of claim 27, wherein the diameter of the photon beam does not exceed 200 microns. 如請求項27所述的方法,其中,所述光電陰極是透射型光電陰極。The method of claim 27, wherein the photocathode is a transmission photocathode. 如請求項27所述的方法,其中,所述光電陰極是反射型光電陰極。The method of claim 27, wherein the photocathode is a reflective photocathode. 如請求項27所述的方法,其中,所述電子束表現出小於0.5電子伏特的能量擴散。The method of claim 27, wherein the electron beam exhibits an energy spread of less than 0.5 electron volts. 如請求項27所述的方法,其中,所述光電陰極由能夠用作基板材料的熔融石英或藍寶石製成。The method of claim 27, wherein the photocathode is made of fused quartz or sapphire that can be used as a substrate material. 如請求項27所述的方法,其中,光電陰極基板由MgF 2、CaF 2、BaF 2或LiF 2製成。 The method of claim 27, wherein the photocathode substrate is made of MgF 2 , CaF 2 , BaF 2 or LiF 2 . 如請求項27所述的方法,其中,所述光電陰極由Cs 2Te、CsK 2Sb、GaAs、Cs 2Te、CsK 2Sb、K 2CsSb、Cs:GaAs、GaAs、AlGaN中的至少一種材料、由AlGaN或GaN、InGaN、InGaP、InGaP、GaP、GaN、GaP、CsI、CsBr形成的一種或多種合金、或鹼鹵化物製成。 The method of claim 27, wherein the photocathode is made of at least one material selected from Cs 2 Te, CsK 2 Sb, GaAs, Cs 2 Te, CsK 2 Sb, K 2 CsSb, Cs: GaAs, GaAs, and AlGaN , made of AlGaN or one or more alloys formed by GaN, InGaN, InGaP, InGaP, GaP, GaN, GaP, CsI, CsBr, or alkali halides. 如請求項27所述的方法,其中,所述光子束、所述電子束和所述X射線束是連續束。The method of claim 27, wherein the photon beam, the electron beam and the X-ray beam are continuous beams. 如請求項27所述的方法,其中,所述光子束、所述電子束和所述X射線束是脈衝束。The method of claim 27, wherein the photon beam, the electron beam and the X-ray beam are pulsed beams. 一種X射線源,其包括: 光子束源,其被配置為用從光束和雷射光束中選擇的光子束照射光電陰極;其中,所述光電陰極被配置為由於所述照射而生成電子束;以及 電子束到X射線束轉換器,其被配置為將所述電子束轉換為X射線束。 An X-ray source including: a photon beam source configured to illuminate a photocathode with a photon beam selected from a light beam and a laser beam; wherein the photocathode is configured to generate an electron beam as a result of the illumination; and An electron beam to X-ray beam converter configured to convert the electron beam into an X-ray beam. 如請求項27所述的X射線源,其中,所述光子束的直徑不超過200微米。The X-ray source of claim 27, wherein the diameter of the photon beam does not exceed 200 microns. 如請求項27所述的X射線源,其中,所述光電陰極是透射型光電陰極。The X-ray source of claim 27, wherein the photocathode is a transmission photocathode. 如請求項27所述的X射線源,其中,所述光電陰極是反射型光電陰極。The X-ray source of claim 27, wherein the photocathode is a reflective photocathode. 如請求項27所述的X射線源,其中,所述電子束表現出小於0.5電子伏特的能量擴散。The X-ray source of claim 27, wherein the electron beam exhibits an energy spread of less than 0.5 electron volts. 如請求項27所述的X射線源,其中,所述光電陰極由熔融石英或藍寶石製成。The X-ray source of claim 27, wherein the photocathode is made of fused quartz or sapphire. 如請求項27所述的X射線源,其中,光電陰極基板由MgF 2、CaF 2、BaF 2或LiF 2製成。 The X-ray source of claim 27, wherein the photocathode substrate is made of MgF 2 , CaF 2 , BaF 2 or LiF 2 . 如請求項27所述的X射線源,其中,所述光電陰極由Cs 2Te、CsK 2Sb、GaAs、Cs 2Te、CsK 2Sb、K 2CsSb、Cs:GaAs、GaAs、AlGaN中的至少一種材料、由AlGaN或GaN、InGaN、InGaP、InGaP、GaP、GaN、GaP、CsI、CsBr形成的一種或多種合金、或鹼鹵化物製成。 The X-ray source according to claim 27, wherein the photocathode is made of at least one of Cs 2 Te, CsK 2 Sb, GaAs, Cs 2 Te, CsK 2 Sb, K 2 CsSb, Cs: GaAs, GaAs, and AlGaN. A material, made of one or more alloys formed from AlGaN or GaN, InGaN, InGaP, InGaP, GaP, GaN, GaP, CsI, CsBr, or alkali halides. 如請求項27所述的X射線源,其中,所述光子束、所述電子束和所述X射線束是連續束。The X-ray source of claim 27, wherein the photon beam, the electron beam and the X-ray beam are continuous beams. 如請求項27所述的X射線源,其中,所述光子束、所述電子束和所述X射線束是脈衝束。The X-ray source of claim 27, wherein the photon beam, the electron beam and the X-ray beam are pulsed beams. 一種用於生成X射線束的方法,所述方法包括以下步驟: 用高亮度熱場發射器電子束源照射X射線目標;以及 由所述X射線目標將電子束轉換為X射線束。 A method for generating an X-ray beam, the method comprising the following steps: Illuminating X-ray targets with high-brightness thermal field emitter electron beam sources; and The electron beam is converted into an X-ray beam by the X-ray target. 一種用於生成X射線束的方法,所述方法包括以下步驟: 用高亮度冷場發射器電子束源照射X射線目標;以及 由所述X射線目標將所述電子束轉換為X射線束。 A method for generating an X-ray beam, the method comprising the following steps: Illuminating X-ray targets with high-brightness cold field emitter electron beam sources; and The electron beam is converted into an X-ray beam by the X-ray target.
TW112119598A 2022-05-26 2023-05-26 X-ray source, x-ray beam and methods for generating the same TW202406409A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63/365,414 2022-05-26

Publications (1)

Publication Number Publication Date
TW202406409A true TW202406409A (en) 2024-02-01

Family

ID=

Similar Documents

Publication Publication Date Title
US6711233B2 (en) Method and apparatus for generating X-ray or EUV radiation
JP2008503078A (en) Extreme ultraviolet generator and application of the apparatus to a light source for lithography using extreme ultraviolet
KR101357231B1 (en) Lpp euv light source and method for producing same
KR102615663B1 (en) Plasmonic photocathode emitter in ultraviolet and visible wavelengths
US6927405B1 (en) Method for obtaining an extreme ultraviolet radiation source, radiation source and use in lithography
TW202406409A (en) X-ray source, x-ray beam and methods for generating the same
WO2021100359A1 (en) Electron beam application device, and electron beam emission method for electron beam application device
US6759800B1 (en) Diamond supported photocathodes for electron sources
CN110199374A (en) Optics addressing, thermionic electron bundle device
US7864924B2 (en) Scanning X-ray radiation
WO2022230488A1 (en) Electron gun, electron beam applying device, and irradiation position shifting method
WO2023228133A2 (en) High brightness x-ray source
US11330697B2 (en) Modular laser-produced plasma X-ray system
TWI768180B (en) Photocathode system, wafer inspection method, and wafer inspection tool
JP5709084B2 (en) LPP EUV light source and generation method thereof
JP2530591B2 (en) Pulsed laser photoexcitation electron source device suitable for high current density electron emission
JP2000223052A (en) Electron beam generating device
JP2011054403A (en) Euv light source of lpp method and its generating method
JP2023061069A (en) Electron beam application device, and method of producing detection data in the same
CN117872690A (en) Scattered electron lithography machine
Mironov et al. Generation of a directed nanolocalized photoelectron beam by means of femtosecond laser pulses
Hayashi et al. Focusing of soft X-ray using a grazing incidence mirror
JP2004127641A (en) X-ray generation device
JP2007073529A (en) Image intensifier device and method
JP2009277462A (en) X-ray generating device