TW202344807A - 用於正則化應用特定半導體測量系統參數設定之最佳化之方法及系統 - Google Patents

用於正則化應用特定半導體測量系統參數設定之最佳化之方法及系統 Download PDF

Info

Publication number
TW202344807A
TW202344807A TW111125529A TW111125529A TW202344807A TW 202344807 A TW202344807 A TW 202344807A TW 111125529 A TW111125529 A TW 111125529A TW 111125529 A TW111125529 A TW 111125529A TW 202344807 A TW202344807 A TW 202344807A
Authority
TW
Taiwan
Prior art keywords
measurement
parameters
value
semiconductor structure
optimization
Prior art date
Application number
TW111125529A
Other languages
English (en)
Inventor
克里斯多福 D 里曼
賓迪 M 那格達
安東尼歐 艾里昂 吉里紐
Original Assignee
美商科磊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商科磊股份有限公司 filed Critical 美商科磊股份有限公司
Publication of TW202344807A publication Critical patent/TW202344807A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by using a combination of at least two measurements at least one being a transmission measurement and one a scatter measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/706831Recipe selection or optimisation, e.g. select or optimise recipe parameters such as wavelength, polarisation or illumination modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本文中描述用於最佳化對硬體模型化參數之變動及幾何模型化誤差穩健之一半導體測量配方之方法及系統。穩健測量配方最佳化最小化包含約束程序空間之一或多個正則化項之一成本函數,且因此顯著減少最佳化一測量配方所需之運算工作量。此減少總體程序時間且改良晶圓處理量。在一些實例中,基於與一半導體結構之多個例項相關聯之測量資料來執行最佳化;各例項特性化一或多個所關注幾何參數之一不同值。在一些實例中,搜尋經最佳化測量配方限於與可用測量資料集相關聯之測量系統參數值之離散集。以此方式,使用現有測量資料來驗證一特定測量配方之效能。

Description

用於正則化應用特定半導體測量系統參數設定之最佳化之方法及系統
所述實施例係關於度量衡系統及方法,且更特定言之係關於用於半導體結構之經改良測量之方法及系統。
半導體裝置(諸如邏輯及記憶體裝置)通常由應用於一樣品之一序列處理步驟製造。半導體裝置之各種特徵及多個結構層級係由此等處理步驟形成。例如,尤其微影術係涉及在一半導體晶圓上產生一圖案之一種半導體製程。半導體製程之額外實例包含但不限於化學機械拋光、蝕刻、沈積及離子植入。多個半導體裝置可製造於一單一半導體晶圓上且接著被分成個別半導體裝置。
在一半導體製程期間之各個步驟使用度量衡程序來偵測晶圓上之缺陷以促進較高良率。通常使用包含散射量測(scatterometry)及反射量測(reflectometry)實施方案之若干基於度量衡之技術以及相關聯分析演算法來特性化奈米級結構之臨界尺寸、膜厚度、組合物及其他參數。
傳統上,對由薄膜及/或重複週期性結構組成之目標執行散射量測臨界尺寸(SCD)測量。在裝置製造期間,此等膜及週期性結構通常表示實際裝置幾何結構及材料結構或一中間設計。隨著裝置(例如,邏輯及記憶體裝置)朝向較小奈米級尺寸進展,特性化變得更困難。併有複雜三維幾何結構及具有互異實體性質之材料的裝置促成特性化困難。例如,現代記憶體結構通常為使光學輻射難以穿透至底部層之高縱橫比三維結構。利用紅外線至可見光之光學度量衡工具可穿透許多半透明材料層,但提供良好穿透深度之較長波長未提供對小異常之足夠敏感度。另外,特性化複雜結構(例如,FinFET)所需之增加數目個參數導致增加之參數相關性。因此,特性化目標之參數通常無法可靠地解耦。
在一個實例中,已採用較長波長(例如,近紅外線)來試圖克服利用多晶矽作為堆疊中之交替材料之一者之3D FLASH裝置的穿透問題。然而,3D FLASH之鏡樣結構固有地引起光強度隨著照明更深入地傳播至膜堆疊中而減小。此在深度上引起敏感度損失及相關性問題。在此情景中,SCD僅能夠以高敏感度及低相關性成功地提取一精簡度量衡尺寸集。
在另一實例中,在現代半導體結構中愈來愈多地採用不透明高k材料。光學輻射通常無法穿透由此等材料構造之層。因此,運用薄膜散射量測工具(諸如橢圓偏光儀或反射計)之測量變得愈來愈具挑戰性。
回應於此等挑戰,已發展出更複雜的光學度量衡工具。例如,已發展出具有多個照明角度、較短照明波長、較廣照明波長範圍及自反射信號之較完整資訊獲取(例如,除較習知反射率或橢圓偏光信號之外亦測量多個穆勒(Mueller)矩陣元素)之工具。另外,X射線散射量測系統(諸如透射小角度x射線散射量測(T-SAXS)系統)有望解決挑戰性測量應用。此等基於X射線之散射量測系統亦以大照明角度範圍、廣照明波長範圍等為特徵。雖然當前最先進技術光學及X射線散射量測系統實現具挑戰性之測量應用,但適時測量配方產生已作為一限制效能問題出現。
測量配方最佳化係散射量測之一關鍵態樣。一測量配方識別用於估計一所關注結構參數(例如,臨界尺寸、膜厚度、材料組合物等)之測量系統設定(例如,特定波長、入射角、方位角、曝光時間等)集。理想地,一測量配方應包含估計一所關注參數所需之最小數目個不同測量以最大化測量處理量。現代散射量測工具提供廣範圍之測量系統參數(例如,入射角、波長等)之。此使配方產生複雜化,此係因為存在可用之如此多的不同測量系統參數值。此外,執行有用測量之時間有限。因此,針對一特定測量應用產生一測量配方所需之時間係關鍵的。
產生一測量配方之時間對於針對各測量需要相對較長時段之測量技術尤其關鍵。例如,一些T-SAXS測量遭受低亮度及低散射橫截面。因此,此等測量具有長獲取時間。在一些實例中,與一T-SAXS測量相關聯之測量模型係複雜的且需要一長運算時間以求解模型。
在可用測量系統設定(例如,入射角、方位角、射束發散度、波長、曝光時間等)之完整範圍內執行一半導體結構之一理想化測量。在相對較長曝光時間內收集與以可用測量系統設定之各組合對一半導體結構之測量相關聯的資料,且分析該資料以達成特性化受測量結構之一所關注參數之一經估計值。此一理想化測量對於現代散射量測工具係不切實際的。在整個測量選項廣度內執行一度量衡目標之測量所需之時間長得不切實際。此外,執行此一詳盡測量集所需之光子劑量威脅受測量結構之完整性。
當前,測量配方產生藉由以下操作而開始:識別與一特定測量應用相關聯之相對大量不同測量;執行全部測量;及接著產生一經改良測量配方。例如,識別各自具有不同系統設定(即,不同系統參數值)之一相對較大測量集。接著,以不同規定度量衡系統設定之各者執行一或多個結構之測量。收集及分析與全部測量相關聯之測量資料以產生一經改良測量配方(即,一測量子集或不同測量集)。
反覆地應用此方法以達成一令人滿意的測量配方。在各反覆,將新測量集應用於另一批晶圓。若一給定測量配方不足,則將經改良測量配方應用於下一批晶圓。因此,程序偏移可在度量衡系統提供值之前觸發長時段(例如,數周)之反覆配方最佳化。對於較緩慢工具(例如,缺乏光子之工具),用於配方最佳化之此方法產生不可接受的延遲。
在一些實例中,模擬與一特定測量應用相關聯之相對大量不同測量且基於測量效能與獲取時間之間之一權衡來產生一測量配方。在美國專利公開案第2020/0025554號及美國專利公開案第2019/0293578號中描述實施效能與獲取時間之間之自動權衡的實例,該等案各者之內容之全文以引用的方式併入本文中。
基於一測量效能度量之習知測量配方最佳化以關於參數誤差之規定假定識別一單一經模擬幾何結構之一最佳測量配方。例示性參數誤差包含與系統參數相關聯之誤差,例如,與用於特性化受測量幾何結構之幾何參數相關聯之硬體容限及誤差。
不幸地,習知測量配方最佳化遭受穩健性缺乏。例如,若待測量實際結構之範圍與用於產生測量配方之經模擬結構顯著不同,則經最佳化測量配方之效能明顯降級。
未來度量衡應用歸因於愈來愈小的解析度要求、多參數相關性、愈來愈複雜的幾何結構及不透明材料之愈來愈多的使用而對度量衡提出挑戰。因此,期望用於經改良測量配方產生之方法及系統。
本文中描述用於最佳化對硬體模型化參數之變動及幾何模型化誤差穩健之一半導體測量配方之方法及系統。一穩健測量配方識別滿足晶圓處理量及測量不確定性要求之一最小測量系統設定集,儘管有測量系統誤差、幾何模型化誤差及受測量結構之基本幾何結構之不確定性。
穩健測量配方最佳化最小化不僅包含特性化測量效能及曝光時間之項而且包含約束在最佳化期間探索之程序空間之一或多個正則化項的一成本函數。藉由針對特定經模擬模型參數值集使用如本文中所描述之正則化增加最佳化穩健性且減少偏差,需要較少經模擬模型參數值集。此顯著減少最佳化一測量配方所需之運算工作量。
一般而言,本文中所描述之經正則化測量配方最佳化可包含效能估計之任何方法,包含誤差傳播、機器學習、迴歸等。藉由將一成本引入至一程序空間中之可用點之評估,如本文中所描述,正則化增加測量配方穩健性且減少總測量程序時間。
經最佳化之測量系統參數值集描述一度量衡系統在一或多個測量位點之各者處對一半導體結構之一序列測量。該序列測量之各測量特徵為定義度量衡系統之一組態之一或多個度量衡系統參數之一不同值。換言之,測量系統組態(例如,入射角、發散度、方位角、射束能量、整合時間等針對該序列測量之各測量係不同的)。在一個態樣中,一經正則化測量配方最佳化成本函數包含特性化表達依據入射角而變化之曝光時間之一曲線之粗糙度的一正則化項。
在另一態樣中,一經正則化測量配方最佳化成本函數包含特性化表達依據入射角而變化之曝光時間之一曲線之不對稱性的一正則化項。
在另一態樣中,一經正則化測量配方最佳化成本函數包含特性化一當前測量配方與一參考測量配方之間之差異的一正則化項。
在另一態樣中,一經正則化測量配方最佳化成本函數包含特性化由當前測量配方規定之一測量系統參數之一當前值與一參考測量系統參數值之間之差異的一正則化項。
一般而言,一經正則化成本函數可包含任何數目個正則化項,例如,本文中所描述之正則化項之任何組合。
在又一態樣中,基於與各自特性化一或多個所關注幾何參數之一不同值之一半導體結構之多個例項相關聯的測量資料來執行經正則化測量配方最佳化。以此方式,測量資料包含在特性化結構之幾何結構之幾何參數之不同標稱值下對半導體結構的測量。
在一些實施例中,針對半導體結構之各例項判定與一測量配方最佳化相關聯之一經正則化成本函數之值。平均化經正則化成本函數之所得值,且採用經正則化成本函數之平均值來驅動測量配方之下一反覆。藉由平均化與一半導體結構效能之一系列不同例項相關聯之經正則化成本函數的值,經最佳化測量配方對受測量結構之幾何結構之變動更穩健。
一般而言,可合成一正則化項且將其用作基於受測量結構之任何已知特性(包含但不限於結構之對稱性、光學密度、高度及類別)之一測量配方最佳化之成本函數的一元素。另外,可合成一正則化項且將其用作基於特定所關注參數(例如,CD、傾斜度等)之一測量配方最佳化之成本函數的一元素。
在又一態樣中,搜尋經最佳化測量配方限於與可用測量資料集相關聯之測量系統參數值之離散集。因此,一經最佳化測量配方係與可用測量資料集相關聯之測量系統參數值之一離散子集。以此方式,可使用現有測量資料來驗證一特定測量配方之效能。
前文係一概述且因此必然含有細節之簡化、概括及省略;因此,熟習此項技術者將瞭解,該概述僅為闡釋性的且不以任何方式限制。本文中所描述之裝置及/或程序之其他態樣、發明特徵及優點將在本文中所闡述之非限制性[實施方式]中變得顯而易見。
相關申請案之交叉參考
本專利申請案根據35 U.S.C. §119規定主張2021年12月29日申請之標題為「Methods for using regularization to increase time efficiency of metrology」之美國臨時專利申請案序號63/294,841之優先權,該案標的物之全文以引用的方式併入本文中。
現將詳細參考本發明之背景實例及一些實施例,本發明之實例繪示於隨附圖式中。
本文中描述用於選擇針對一特定測量應用最佳化且對於硬體模型化參數(例如,通量、射束中心等)之變動及幾何模型化誤差穩健的可用半導體測量系統設定之一子集之方法及系統。
一度量衡工具包含各種各樣的測量選項。測量效能因各測量選項及測量應用而變化。一穩健測量配方識別滿足晶圓處理量及測量不確定性要求之一最小測量系統設定集,儘管有測量系統誤差、幾何模型化誤差及受測量結構之基本幾何結構之不確定性。
穩健測量配方最佳化最小化不僅包含特性化測量效能及曝光時間之項而且包含約束在最佳化期間探索之程序空間之一或多個正則化項的一成本函數。公式化正則化項以併入測量應用之先前知識以加快穩健測量配方最佳化。此外,正則化藉由緩解配方最佳化對特定標稱參數值之偏差而降低可能幾何變動之整個空間內之不確定性。藉由針對特定經模擬模型參數值集使用如本文中所描述之正則化來增加最佳化穩健性且減少偏差,需要較少經模擬模型參數值集。此顯著減少最佳化一測量配方所需之運算工作量。
總體測量程序時間包含測量時間及測量配方最佳化時間兩者。若在最佳化時考量全部可能測量系統參數設定,則配方最佳化時間大幅增加。此外,若需要大量不同測量系統參數設定之長曝光時間,則測量時間大幅增加。藉由正則化配方最佳化來併入受測量結構之先前知識減少經最佳化配方中之偏差,而導致以一較低測量時間作出對系統參數之一更最佳選取。此減少測量時間及配方最佳化時間兩者。
一般而言,本文中所描述之經正則化測量配方最佳化可包含效能估計之任何方法,包含誤差傳播、機器學習、迴歸等。藉由將一成本引入至一程序空間中之可用點之評估,如本文中所描述,正則化增加測量配方穩健性且減少總測量程序時間。
圖1繪示用於根據本文中所呈現之例示性方法測量一樣品之特性的一度量衡工具100之一實施例。如圖1中所展示,系統100可用於在安置於一樣品定位系統140上之一樣品101之一檢測區域102上執行x射線散射測量。
在所描繪實施例中,度量衡工具100包含經組態以產生適用於x射線散射測量之x射線輻射之一x射線照明源110。在一些實施例中,x射線照明系統110經組態以產生介於0.01奈米與1奈米之間之波長。X射線照明源110產生入射於樣品101之檢測區域102上之一x射線射束117。
一般而言,可審慎考慮用以供應x射線照明用於x射線散射測量之能夠依足以實現高處理量在線度量衡之通量位準產生高亮度x射線的任何適合高亮度x射線照明源。在一些實施例中,一x射線源包含使x射線源能夠遞送在不同可選擇波長下之x射線輻射的一可調諧單色器。
在一些實施例中,採用發射具有大於15 keV之光子能量之輻射的一或多個x射線源以確保x射線源供應在容許充分透射穿過整個裝置以及晶圓基板之波長下的光。藉由非限制性實例,可採用一粒子加速器源、一液態陽極源、一旋轉陽極源、一固定固態陽極源、一微焦源、一微焦旋轉陽極源及一逆康普頓(inverse Compton)源之任何者作為x射線源110。在一個實例中,可審慎考慮可購自加利福尼亞州(美國)帕洛阿爾托市(Palo Alto)之Lyncean Technologies公司之一逆康普頓源。逆康普頓源具有能夠產生在一光子能量範圍內之x射線,藉此使x射線源能夠遞送在不同可選擇波長下之x射線輻射的一額外優點。
例示性x射線源包含經組態以轟擊固態或液態目標以模擬x射線輻射之電子束源。圖2描繪用於根據本文中所呈現之例示性方法測量一樣品之特性的一度量衡工具200。度量衡工具100及200之相同編號之元件係類似的。然而,在圖2中描繪之實施例中,x射線照明源110係一基於液態金屬之x射線照明系統。一液態金屬噴流119係自一液態金屬容器111產生且收集在一液態金屬收集器112中。一液態金屬循環系統(未展示)使由收集器112收集之液態金屬返回至液態金屬容器111。液態金屬噴流119包含一或多種元素。藉由非限制性實例,液態金屬噴流119包含鋁、鎵、銦、錫、鉈及鉍之任何者。以此方式,液態金屬噴流119產生與其構成元素對應之x射線。在一項實施例中,液態金屬噴流包含鎵及銦合金。在一些實施例中,x射線照明系統110經組態以產生介於0.01奈米與1奈米之間之波長。一電子束源113 (例如,電子槍)產生由電子光學器件114引導至液態金屬噴流119之一電子流118。適合電子光學器件114包含用於聚焦電子束及將射束引導於液態金屬噴流處之電磁體、永久磁體或電磁體及永久磁體之一組合。液態金屬噴流119與電子流118之重合產生入射於樣品101之檢測區域102上之一x射線射束117。
在2011年4月19日頒予KLA-Tencor公司之美國專利第7,929,667號中描述用於產生高亮度液態金屬x射線照明之方法及系統,該案之全文以引用的方式併入本文中。
在一項實施例中,入射x射線射束117處於24.2 keV之銦kα線。使用用於x射線散射測量之多層x射線光學器件將x射線射束縮小準直為小於1毫弧度發散度。
在一些實施例中,在未使用定位於x射線源與受測量樣品之間之一螢幕之情況下達成本文中所描述之x射線散射測量。在此等實施例中,入射射束在入射角、多個波長或兩者之一組合之一範圍內之經測量強度提供足夠資訊以解析經測量結構之一所要材料性質(例如,複折射率、電子密度或吸收率)之一分佈圖(即,影像)。然而,在一些其他實例中,一針孔或另一孔隙定位於一原本不透明螢幕(其定位於x射線源與受測量樣品之間)上以改良x射線射束之準直。針對孔隙之數個位置測量繞射圖案之強度。在一些其他實施例中,使用具有一偽隨機孔隙圖案之一螢幕且針對多個螢幕測量繞射圖案。亦可審慎考慮此等方法以提供額外資訊以解析經測量結構之所要材料性質之三維分佈。
在一些實施例中,入射x射線射束之輪廓受兩個或更多個孔隙、狹縫或其等之一組合控制。在又一實施例中,孔隙、狹縫或兩者經組態以與樣品之定向協調旋轉以針對各入射角、方位角或兩者最佳化入射射束之輪廓。
如圖1中所描繪,x射線光學器件115整形入射x射線射束117且將其引導至樣品101。在一些實例中,x射線光學器件115包含一x射線單色器以將入射於樣品101上之x射線射束單色化。在一個實例中,採用一晶體單色器(諸如一洛克斯利-坦納-伯恩(Loxley-Tanner-Bowen)單色器)將x射線輻射之射束單色化。在一些實例中,x射線光學器件115使用多層x射線光學器件將x射線射束117準直或聚焦至樣品101之檢測區域102上至小於1毫弧度發散度。在一些實施例中,x射線光學器件115包含一或多個x射線準直鏡、x射線孔隙、x射線射束光闌、折射x射線光學器件、繞射光學器件(諸如波帶片)、鏡面x射線光學器件(諸如掠入射橢球面鏡)、多毛細管光學器件(諸如中空毛細管x射線波導)、多層光學器件或系統或其等之任何組合。在美國專利公開案第2015/0110249號中描述進一步細節,該案內容之全文以引用的方式併入本文中。
一般而言,針對各測量應用最佳化照明光學系統之焦平面。以此方式,系統100經組態以取決於測量應用而將焦平面定位於樣品內之各種深度處。
X射線偵測器116收集自樣品101散射之x射線輻射125,且根據一x射線散射測量模態產生指示對入射x射線輻射敏感之樣品101之性質的一輸出信號126。在一些實施例中,藉由x射線偵測器116收集散射x射線125,而樣品定位系統140定位且定向樣品101以產生角度解析之散射x射線。
在一些實施例中,一x射線散射量測系統包含具有高動態範圍(例如,大於10 5)之一或多個光子計數偵測器及吸收直射射束(即,零級射束)而不具有損害且具有最小寄生反向散射的厚的高度吸收性晶體基板。在一些實施例中,一單一光子計數偵測器偵測經偵測光子之位置及數目。
全射束x射線散射量測需要收集零級射束以及較高繞射級。零級射束比其他級強烈數個數量級。若零級射束在偵測器之X射線敏感區段中未被完全吸收,則其將散射且產生寄生信號。此等寄生信號之強度限制測量之動態範圍。例如,若寄生信號係最大通量信號(即,零級信號)之10 -4,則與許多較高級相關聯之信號將被污染。因此,偵測器(例如,偵測器116)展現X射線至電子電洞對之高轉換效率及高X射線吸收以增加全射束度量衡之有效動態範圍係關鍵的。
適用於全射束x射線散射量測之例示性偵測器材料包含碲化鎘(CdTe)、鍺(Ge)及砷化鎵(GaAs)晶體等等。在一些實施例中,偵測器材料經選擇以在對應於源能量之一窄能帶中提供高轉換效率。
在一些實施例中,偵測器材料之厚度經選擇以達成傳入X射線之所要吸收。在一些實施例中,偵測器相對於傳入X射線射束(各種繞射級)傾斜以增加X射線射束穿過偵測器材料之路徑長度,且因此增加總吸收量。
在一些實施例中,採用雙臨限值偵測器以改良SNR。
在一些實施例中,x射線偵測器解析一或多個x射線光子能量且針對各x射線能量分量產生指示樣品之性質之信號。在一些實施例中,x射線偵測器116包含一CCD陣列、一微通道板、一光電二極體陣列、一微帶比例計數器、一充氣比例計數器、一閃爍器或一螢光材料之任何者。
以此方式,除像素位置及計數數目之外,亦按能量鑑別偵測器內之X射線光子相互作用。在一些實施例中,藉由比較X射線光子相互作用之能量與一預定上臨限值及一預定下臨限值來鑑別X射線光子相互作用。在一項實施例中,經由輸出信號126將此資訊傳達至運算系統130以進行進一步處理及儲存。
在一些實施例中,使偵測器相對於傳入X射線掃描以緩解來自入射零級射束之損害或過度充電。在一些此等實施例中,使偵測器相對於傳入X射線連續掃描以避免使零級射束停留在偵測器表面上之一特定位置上達一延長時段。在一些其他實施例中,使偵測器相對於傳入X射線週期性地移動以避免使零級射束停留在偵測器表面上之一特定位置上達一延長時段。在一些實施例中,掃描或週期性移動近似垂直於傳入X射線。在一些實施例中,移動係旋轉的(例如,使偵測器旋轉使得偵測器表面上之一特定位置在空間中描繪出一圓圈)。在一些實施例中,移動係使零級射束之入射點移動至偵測器表面上之各種不同位置之平移移動之一組合。
在一x射線散射測量中,一結構(例如,一高縱橫比、垂直製造之結構)使一經準直X射線射束繞射成繞射級。各繞射級在一特定可預測方向上行進。繞射級之角間距與樣品之晶格常數除以波長成反比。由放置於距晶圓某一距離處之一偵測器陣列偵測繞射級。偵測器之各像素輸出指示命中該像素之光子之數目之一信號。
繞射級之強度具有形式I(m,n, θ,ϕ,λ),其中{m,n}係繞射級之整數指數,{θ,ϕ}係入射射束之仰角及方位角(即,入射主射線相對於固定至晶圓之一座標系統之極座標),且λ係入射X射線之波長。
數個雜訊源在照明光離開照明且傳播朝向樣品時擾動照明光。例示性干擾包含電子束電流波動、溫度誘發之光學漂移等。將經擾動入射通量表示為F 0(1+n 1)。
目標使入射輻射以取決於入射射束之方位角及仰角之一方式散射。光散射成級(m,n)之效率可被定義為S mn(θ,ϕ)。在繞射光自樣品傳播至偵測器時,射束行進穿過類似地以某一變動(1+n 2)及寄生雜訊(n 3)影響全部級之其他散射介質。以此方式,在一時間t測量之各級之總強度I mn可由方程式(1)表達。 (1)
在一些實施例中,可期望依由繞由圖1中描繪之座標系統146指示之x及y軸之旋轉描述的不同定向執行測量。此藉由擴展可用於分析之資料集之數目及多樣性以包含各種大角度、平面外定向而增加經測量參數之精度及準確度且降低參數間之相關性。測量具有一較深、較多樣資料集之樣品參數亦降低參數間之相關性且改良測量準確度。例如,在一法向定向上,x射線散射量測能夠解析一特徵之臨界尺寸,但對於一特徵之側壁角及高度在很大程度上不敏感。然而,藉由在平面外角位置之一廣範圍內收集測量資料,可解析一特徵之側壁角及高度。
如圖1中所繪示,度量衡工具100包含經組態以在相對於散射計之平面外角定向之一大範圍內進行對準樣品101及定向樣品101兩者的一樣品定位系統140。換言之,樣品定位系統140經組態以使樣品101繞與樣品101之表面平面內對準之一或多個旋轉軸線在一大角度範圍內旋轉。在一些實施例中,樣品定位系統140經組態以使樣品101繞與樣品101之表面平面內對準之一或多個旋轉軸線在至少90度之一範圍內旋轉。在一些實施例中,樣品定位系統經組態以使樣品101繞與樣品101之表面平面內對準之一或多個旋轉軸線在至少120度之一範圍內旋轉。在一些其他實施例中,樣品定位系統經組態以使樣品101繞與樣品101之表面平面內對準之一或多個旋轉軸線在至少1度之一範圍內旋轉。以此方式,藉由度量衡系統100在樣品101之表面上之任何數目個位置上方收集樣品101之角度解析測量。在一個實例中,運算系統130將指示樣品101之所要位置之命令信號傳達至樣品定位系統140之運動控制器145。作為回應,運動控制器145產生至樣品定位系統140之各種致動器之命令信號以達成樣品101之所要定位。
藉由非限制性實例,如圖1中所繪示,樣品定位系統140包含一邊緣夾持卡盤141以將樣品101固定地附接至樣品定位系統140。一旋轉致動器142經組態以使邊緣夾持卡盤141及經附接樣品101相對於一周邊框架143旋轉。在所描繪實施例中,旋轉致動器142經組態以使樣品101繞圖1中繪示之座標系統146之x軸旋轉。如圖1中所描繪,樣品101繞z軸之一旋轉係樣品101之一平面內旋轉。繞x軸及y軸(未展示)之旋轉係使樣品之表面相對於度量衡系統100之度量衡元件有效地傾斜之樣品101的平面外旋轉。雖然未繪示,但一第二旋轉致動器經組態以使樣品101繞y軸旋轉。一線性致動器144經組態以使周邊框架143在x方向上平移。另一線性致動器(未展示)經組態以使周邊框架143在y方向上平移。以此方式,樣品101之表面上之每一位置可用於在平面外角位置之一範圍內之測量。例如,在一項實施例中,在相對於樣品101之法向定向之-45度至+45度之一範圍內在數個角度增量內測量樣品101之一位置。
一般而言,樣品定位系統140可包含機械元件之任何適合組合以達成所要線性及角度定位效能,包含但不限於測角器台、六腳架台(hexapod stage)、角度台及線性台。
如本文中所描述,依照明x射線射束相對於半導體晶圓之表面法線之多個定向執行x射線散射測量。藉由晶圓101相對於x射線照明射束之任何兩個角旋轉來描述各定向,或反之亦然。在一個實例中,可關於固定至晶圓之一座標系統描述定向。圖3描繪按由角度ϕ及θ描述之一特定定向入射於晶圓101上之x射線照明射束117。座標系XYZ固定度量衡系統且座標系X’Y’Z’固定至晶圓101。Z與法向於晶圓101之表面之一軸線對準。X及Y在與晶圓101之表面對準之一平面中。類似地,Z’與法向於晶圓101之表面之一軸線對準,且X’及Y’在與晶圓101之表面對準之一平面中。如圖3中所描繪,x射線照明射束117位於X’Z’平面內。角度ϕ描述x射線照明射束117在X’Z’平面中相對於晶圓之表面法線之定向。此外,角度θ描述X’Z’平面相對於XZ平面之定向。θ及ϕ在一起唯一地定義x射線照明射束117相對於晶圓101之表面之定向。在此實例中,x射線照明射束相對於晶圓101之表面之定向係由繞法向於晶圓101之表面之一軸線(即,Z軸)之一旋轉及繞與晶圓101之表面對準之一軸線(即,Y’軸)之一旋轉描述。在一些其他實例中,x射線照明射束相對於晶圓101之表面之定向係由繞與晶圓101之表面對準之一第一軸線及與晶圓101之表面對準且垂直於第一軸線(如關於圖1所描述)之另一軸線的一旋轉描述。
在又一態樣中,採用一x射線散射量測系統以基於一或多個經測量繞射級判定一樣品之性質(例如,結構參數值)。如圖1中所描繪,度量衡工具100包含用於根據一穩健測量配方獲取由偵測器116產生之信號126且至少部分基於經獲取信號判定樣品之性質的一運算系統130。
圖4繪示適於由本發明之度量衡系統100及200實施之一方法300。在一個態樣中,應認知,方法300之資料處理方塊可經由運算系統130之一或多個處理器所執行之一預程式化演算法來實行。雖然以下描述係在度量衡系統100及200之內容背景中呈現,但本文中應認知,度量衡系統100及200之特定結構態樣不表示限制且不應僅解釋為闡釋性的。
在方塊301中,產生與具有一或多個所關注參數之已知值之至少一個半導體結構之第一複數個測量相關聯的測量資料。第一複數個測量各自具有一或多個測量系統參數之不同值。
在較佳實施例中,藉由電磁模擬預測測量信號。在此等實施例中,基於特徵為一或多個所關注參數(例如,臨界尺寸、高度等)之一經測量結構之一幾何模型產生經模擬測量信號。
在一些實例中,測量系統參數包含不同照明角(例如,入射角及方位角)、不同偵測器解析度、不同曝光時間、不同目標大小、不同源大小、不同經收集能量或其等之任何組合之任何組合。
在方塊302中,基於測量資料及一測量模型估計與至少一個半導體結構相關聯之一或多個所關注參數之值。
在一些實施例中,使用一逆向解技術(諸如基於模型之迴歸、疊層成像、斷層攝影、一或多個機器學習模型或其等之一組合)來基於測量資料估計一所關注參數(例如,臨界尺寸、側壁角、高度、疊對等)之一值。
在一些此等實施例中,一或多個所關注參數之值係由一預定測量模型運用測量資料之一逆向解判定。測量模型包含幾個(大約十個)可調整參數且表示樣品之幾何結構及光學性質以及測量系統之光學性質。以此方式,藉由求解最小化經測量散射x射線強度與模型化結果之間之誤差之一參數化測量模型的值來估計目標輪廓參數。
在又一態樣中,運算系統130經組態以產生一樣品之一經測量結構之一結構模型(例如,幾何模型、材料模型或組合幾何及材料模型),自結構模型產生包含至少一個幾何參數之一x射線散射量測回應模型,且藉由用x射線散射量測回應模型執行x射線散射測量資料之一擬合分析來解析至少一個樣品參數值。分析引擎用於比較經模擬x射線散射量測信號與經測量資料,藉此容許幾何以及材料性質(諸如樣本之電子密度)之判定。在圖1中描繪之實施例中,運算系統130組態為經組態以實施如本文中描述之模型構建及分析功能性之一模型構建及分析引擎。
圖5係繪示由運算系統130實施之一例示性模型構建及分析引擎150之一圖。如圖5中所描繪,模型構建及分析引擎150包含產生一樣品之一經測量結構之一結構模型152的一結構模型構建模組151。在一些實施例中,結構模型152亦包含樣品之材料性質。接收結構模型152作為至x射線散射量測回應函數構建模組153之輸入。x射線散射量測回應函數構建模組153至少部分基於結構模型152產生一x射線散射量測回應函數模型155。在一些實例中,x射線散射量測回應函數模型155係基於x射線形狀因數, (2) 其中F係形狀因數,q係散射向量,且ρ(r)係樣品在球面座標中之電子密度。接著,x射線散射強度由下式給出 (3) 接收x射線散射量測回應函數模型155作為至擬合分析模組157之輸入。擬合分析模組157比較經模型化x射線散射量測回應與對應經測量資料126以判定樣品之幾何以及材料性質。
在一些實例中,藉由最小化一卡方值而達成經模型化資料至實驗資料之擬合。例如,針對x射線散射測量,一卡方值可定義為 (4)
其中 係「通道」j中之經測量x射線散射量測信號126,其中指數j描述一系統參數(諸如繞射級、能量、角座標等)集, 係針對一結構(目標)參數集 評估之「通道」j之經模型化x射線散射量測信號S j,其中此等參數描述幾何(CD、側壁角、疊對等)及材料(電子密度等)。 係與第j通道相關聯之不確定性。N SAXS係x射線度量衡中之通道之總數。L係特性化度量衡目標之參數之數目。
方程式(4)假定與不同通道相關聯之不確定性係不相關的。在其中與不同通道相關聯之不確定性相關之實例中,可計算不確定性之間之一協方差。在此等實例中,x射線散射測量之一卡方值可被表達為
其中 係SAXS通道不確定性之協方差矩陣,且T表示轉置。
在一些實例中,擬合分析模組157藉由用x射線散射量測回應模型155對x射線散射測量資料126執行一擬合分析來解析至少一個樣品參數值。在一些實例中, 經最佳化。
如上文中所描述,藉由最小化卡方值而達成x射線散射量測資料之擬合。然而,一般而言,x射線散射量測資料之擬合可由其他函數達成。
X射線散射量測度量衡資料之擬合對於提供對所關注幾何及/或材料參數之敏感度之任何類型之x射線散射量測技術係有利的。樣品參數可為確定性的(例如,CD、SWA等)或統計性的(例如,側壁粗糙度之rms高度、粗糙度相關長度等),只要使用描述與樣品之x射線散射量測射束相互作用之適當模型即可。
一般而言,運算系統130經組態以採用即時臨界尺寸標註(RTCD)來即時地存取模型參數,或其可存取預先計算模型之庫以判定與樣品101相關聯之至少一個樣品參數值之一值。一般而言,可使用某種形式之CD引擎來評估一樣品之經指派CD參數與相關聯於經測量樣品之CD參數之間的差異。在2010年11月2日頒予KLA-Tencor公司之美國專利第7,826,071號中描述用於運算樣品參數值之例示性方法及系統,該案之全文以引用的方式併入本文中。
在一些實例中,模型構建及分析引擎150藉由側饋分析、前饋分析及並行分析之任何組合來改良經測量參數之準確度。側饋分析係指取得關於相同樣品之不同區域之多個資料集且將自第一資料集判定之共同參數傳遞至第二資料集上以供分析。前饋分析係指取得關於不同樣品之資料集且使用一逐步複製精確參數前饋方法將共同參數前向傳遞至後續分析。並行分析係指將一非線性擬合方法並行或同時應用於多個資料集,其中在擬合期間耦合至少一個共同參數。
多工具及結構分析係指基於迴歸、一查找表(即,「庫」匹配)或多個資料集之另一擬合程序之一前饋、側饋或並行分析。在2009年1月13日頒予KLA-Tencor公司之美國專利第7,478,019號中描述用於多工具及結構分析之例示性方法及系統,該案之全文以引用的方式併入本文中。
在方塊303中,在一或多個系統參數之不同值之各者處判定一或多個所關注參數之各者之一值對一或多個測量系統參數之各者之值之變化的一敏感度。
在一些實施例中,一亞可比(Jacobian)矩陣量化一所關注參數之一經估計值對不同測量系統參數值(例如,測量時間、入射角、方位角等)之敏感度。
在方塊304中,基於包含經判定敏感度之一經正則化成本函數之一最佳化來判定一測量系統參數值集。
經最佳化測量系統參數值集描述一度量衡系統在一或多個測量位點之各者處對一半導體結構之一序列測量。該序列測量之各測量特徵為定義度量衡系統之一組態之一或多個度量衡系統參數之一不同值。換言之,測量系統組態(例如,入射角、發散度、方位角、射束能量、整合時間等針對該序列測量之各測量係不同的)。
使用非線性最小平方法、非線性整數最佳化、窮舉搜尋、模擬退火、L1範數迴歸、遺傳搜尋、經訓練模型等來搜尋可能測量組態。經訓練模型係基於來自先前所列方法、合成訓練集或實際結果之決策。在一些實施例中,亞可比矩陣被用作最佳化之部分以選擇一測量系統參數值集及相關聯測量時間以最佳化一經正則化測量效能度量。一般而言,反覆地更新一測量配方直至最終測量配方最小化經正則化測量效能度量或測量配方產生所容許之最大時間期滿。
在一些實施例中,最佳化成本函數之正則化確保測量對離群值及程序偏移之穩健性,同時權衡測量不確定性、測量時間、移動時間、曝光時間、曝光劑量等之任何組合。
在一個態樣中,一經正則化測量配方最佳化成本函數包含特性化表達依據入射角而變化之曝光時間之一曲線之粗糙度的一正則化項。經驗表明,表達一程序變動之一曲線(諸如依據入射角AOI而變化之曝光時間T,例如,T(AOI))應為平滑的,即,可忽略的粗糙度。在一個實例中,粗糙度之特徵為依據入射角而變化之曝光時間T(AOI)之二階導數的一經正則化標準偏差,如由方程式(6)繪示。 (6)
在另一態樣中,一經正則化測量配方最佳化成本函數包含特性化表達依據入射角而變化之曝光時間之一曲線之不對稱性的一正則化項。對於CD-SAXS測量,所得散射強度在入射測量射束之入射角與受測量結構之傾斜角對準時處於一最大值。在此入射角,經測量信號對總體測量精度及準確度提供最大貢獻。此外,傾斜或疊對中之程序變動同樣可能分別在平均傾斜或疊對之任一側上實現。因此,偏好展現關於平均幾何結構(例如,平均傾斜角、平均疊對等)對稱之一曝光時間分佈的測量配方係有利的。在此等實例中,表達一程序變動(諸如依據入射角AOI而變化之曝光時間T,例如,T(AOI))之一曲線應為對稱的。在一個實例中,特性化依據入射角與平均傾斜或疊對之間之差異而變化的曝光時間之不對稱性的一正則化項由方程式(7)繪示,其中x係傾斜或疊對之平均值。一般而言,基於程序知識,度量衡系統之一使用者已知傾斜或疊對之平均值。 (7)
圖6描繪繪示由一透射小角度X射線散射(T-SAXS)工具(諸如度量衡系統100)測量之一溝槽結構170之一橫截面視圖的一圖。如圖6中所描繪,溝槽結構170係以相對於一半導體晶圓172之一表面法線171之一傾斜角α製造。在一個實例中,大量樣本之平均傾斜角係+1度。在此實例中,在測量配方最佳化期間採用由方程式(7)繪示之不對稱項的正則化引起最佳化偏好展現曝光時間關於+1度之一入射角之對稱性的測量配方。
圖7描繪繪示一測量配方之依據入射角而變化之曝光時間之一曲線圖180。如圖7中所繪示,測量配方展現曝光時間關於+1度之一入射角之對稱性。
在另一實例中,大量樣本之平均傾斜角係零度。在此實例中,不存在預期傾斜,且在測量配方最佳化期間採用由方程式(7)繪示之不對稱項的正則化引起最佳化偏好展現曝光時間關於零度之一入射角之對稱性的測量配方。
在另一態樣中,一經正則化測量配方最佳化成本函數包含特性化一當前測量配方與一參考測量配方之間之差異之一正則化項。在一個實例中,特性化一當前測量配方與一參考測量配方之間之差異之一正則化項由方程式(8)繪示,其中T(AOI)係與當前測量配方相關聯之依據入射角而變化之曝光時間,且T ref(AOI)係與參考測量配方相關聯之依據入射角而變化之曝光時間。以此方式,由方程式(8)繪示之正則化項基於當前測量配方與參考配方之不同程度而懲罰成本函數。 (8)
在一些實例中,一參考測量配方係在過去針對由相同類型之度量衡系統測量之相同類型之幾何結構(例如,通道孔、字線切割、DRAM等)之測量良好運作的一測量配方。有意義的是,與由相同類型之度量衡系統對相同類型之幾何結構之一測量相關聯的一經最佳化測量配方不應與參考測量配方大不相同。
在一些實例中,一參考測量配方係藉由分析一或多個測量系統參數對一所關注參數之一經估計值的敏感度而合成。在一些實例中,自參考測量配方排除對一所關注參數具有低敏感度之入射角、方位角或兩者之值。
在一些其他實例中,一參考測量配方係藉由分析一經估計所關注參數在一測量系統參數範圍內之相關性且排除高度相關之測量系統參數範圍之一子集而合成。高度相關之信號不太可能促成效能成本函數度量(諸如精度或準確度)之一最小化。因此,消除子集以減小由參考測量配方取樣之測量系統參數之空間。
在一些其他實例中,一參考測量配方係藉由分析一測量系統參數與其他測量系統參數之相關性且約束高度相關之測量系統參數之一子集而合成。高度相關之測量系統參數有可能為冗餘的,且其等值應絕對固定或被約束為另一測量系統參數值之值以減小由參考測量配方取樣之測量系統參數之空間。
在一些其他實例中,一參考測量配方係藉由在一測量系統參數範圍(例如,入射角及方位角之不同值之對)內執行未運用正則化之測量最佳化而合成。
在一些其他實例中,一參考測量配方係基於現有測量程序知識合成。例如,對於線切割結構之測量,較佳方位角法向於切割以更佳地捕捉通道之側壁之形狀。在此實例中,排除全部其他方位角以減小由參考測量配方取樣之測量系統參數之空間。
在另一態樣中,一經正則化測量配方最佳化成本函數包含特性化由當前測量配方規定之一測量系統參數之一當前值與一參考測量系統參數值之間之差異的一正則化項。在一個實例中,已知相對較矮結構之基於x射線散射量測之測量在遠離法向入射之入射角下更敏感。對於相對較矮結構,遠離法向入射,經受x射線透射之材料量及因此散射強度大大增加。相反地,相對較高結構之基於x射線散射量測之測量在接近法向入射之入射角下更敏感。
在一個實例中,特性化距零入射角之距離之一正則化項由方程式(9)繪示,其中C係由一使用者提供之一正常數。常數C之值愈大,則正則化之強度愈大。C之值經選擇以對於高結構相對較大且對於矮結構相對較小或為零。以此方式,由方程式(9)繪示之正則化項基於由當前測量配方規定之入射角之當前值與零(即,法向入射)之不同程度而懲罰成本函數。 (9)
在一個實例中,一成本函數之正則化包含曝光時間對AOI曲線之不對稱及粗糙度的最小化。最佳化在測量配方之各反覆按粗糙度及不對稱之量懲罰成本函數。依據入射角而變化之曝光時間之一平滑且對稱分佈適用於一廣範圍之測量樣本,且緩解在配方最佳化期間對某些測量位點相較於其他測量位點之過度強調。
在一些實例中,相對於未經正則化成本函數分量對各正則化分量加權,如由方程式(8)繪示,其中w 1及w 2係加權值。 (8)
加權值通常由一使用者選擇。未經正則化成本函數通常表達量化測量精度、準確度等之效能度量。
一般而言,一經正則化成本函數可包含任何數目個正則化項,例如,本文中描述之正則化項之任何組合。
在又一態樣中,基於與一半導體結構之多個例項(其等各自特性化一或多個所關注幾何參數之一不同值)相關聯之測量資料來執行經正則化測量配方最佳化。以此方式,測量資料包含在特性化結構之幾何結構之幾何參數之不同標稱值下對半導體結構之測量。
在一些實施例中,針對半導體結構之各例項判定與一測量配方最佳化相關聯之一經正則化成本函數之值。平均化經正則化成本函數之所得值,且採用經正則化成本函數之平均值來驅動測量配方之下一反覆。藉由平均化與一半導體結構效能之一系列不同例項相關聯之經正則化成本函數的值,經最佳化測量配方對受測量結構之幾何結構之變動更穩健。
一般而言,可合成一正則化項且將其用作基於受測量結構之任何已知特性(包含但不限於結構之對稱性、光學密度、高度及類別)之一測量配方最佳化之成本函數的一元素。另外,可合成一正則化項且將其用作基於特定所關注參數(例如,CD、傾斜等)之一測量配方最佳化之成本函數的一元素。
在又一態樣中,搜尋經最佳化測量配方限於與可用測量資料集相關聯之測量系統參數值之離散集。因此,一經最佳化測量配方係與可用測量資料集相關聯之測量系統參數值之一離散子集。以此方式,可使用現有測量資料來驗證一特定測量配方之效能。在一些實施例中,使用非線性整數最佳化來執行測量配方最佳化,而非對測量系統參數值之離散集直接操作之一連續最佳化。
在一些實施例中,在未調整與可用測量資料集之各測量相關聯之曝光時間之情況下合成一經最佳化測量配方。在此等實施例中,測量系統參數(例如,AOI、AZ等)之一特定組合被視為在測量資料集中考量之完整曝光時間之一經最佳化測量配方的部分,抑或完全不被視為經最佳化測量配方之部分。換言之,相較於可用測量資料集中與一特定測量相關聯之曝光時間,包含於一測量配方中之與該特定測量相關聯之曝光時間不變。在此等實施例中,藉由自可用測量資料集完全移除測量信號,用與經最佳化配方相關聯之測量資料對一測量模型執行迴歸,及確認所得測量效能(例如,測量精度、準確度等)而驗證一經最佳化測量配方。
在一些其他實施例中,運用與可用測量資料集之各測量相關聯之曝光時間之離散調整來合成一經最佳化測量配方。在此等實施例中,包含於一測量配方中之與一特定測量相關聯之曝光時間可為可用測量資料集中與該特定測量相關聯之曝光時間之一離散子集。在一個實例中,將各特定測量執行為一訊框序列,例如,各自三秒之數個訊框之序列。在此實例中,一經最佳化測量配方可包含與可用測量資料集之各測量相關聯之可用訊框之一子集。在此等實施例中,藉由自可用測量資料集之測量信號移除特定訊框,用與經最佳化配方相關聯之測量資料對一測量模型執行迴歸,及確認所得測量效能(例如,測量精度、準確度等)而驗證一經最佳化測量配方。
在另一態樣中,基於候選測量配方之一庫之一搜尋判定一經最佳化測量配方。
在一個實例中,針對過去測量配方之一庫之各測量配方評估如本文中所描述之一經正則化成本函數之值。選擇與經正則化成本函數之最小值相關聯之測量配方作為最佳測量配方,或替代地作為使用經正則化成本函數以一反覆方式進一步最佳化之一初始測量配方。
在另一態樣中,評估與根據一經最佳化測量配方(即,由經最佳化測量配方規定之測量系統設定集)對一或多個所關注參數之一測量相關聯的測量不確定性以驗證測量配方。一般而言,可基於經測量資料、經模擬資料或兩者來驗證一經最佳化測量配方。
在一些實例中,一亞可比矩陣量化一所關注參數之經估計值回應於隨機或系統性測量系統誤差之一變化。在此等實例中,採用一亞可比矩陣以鑑於預期測量系統誤差估計可達成測量精度、準確度或兩者。
在一些其他實例中,採用一基於機器學習之模型來估計與根據一經最佳化測量配方對一或多個所關注參數之一測量相關聯的測量不確定性。
在一些其他實例中,採用基於模型之迴歸來估計與根據一經最佳化測量配方對一或多個所關注參數之一測量相關聯的測量不確定性。
在一些實例中,一度量衡系統對一半導體結構之一測量集包含一或多個不同目標參數(例如,MCD、BCD、OVL、SWA等)之測量。以此方式,測量配方之最佳化包含選擇提供所關注參數(例如,CD)之一更佳估計之與一特定半導體結構相關聯之一或多個目標參數。
可對任何數目個不同度量衡系統(諸如但不限於x射線透射工具、x射線反射工具、紅外線透射工具等)執行如本文中所描述之經正則化測量配方最佳化。
在又一態樣中,根據如本文中描述般最佳化之一測量配方在提供充分解析度及穿透深度之一入射角範圍內執行x射線散射測量,以通過其等整個深度特性化高縱橫比結構。
在又一態樣中,藉由傳達導致一度量衡系統之一或多個元件之狀態之變化的控制命令以實施一經最佳化測量配方而對度量衡系統實施經最佳化測量配方。
在一些實例中,將控制命令提供至照明源。作為回應,調整照明源之電狀態以改變經掃描光點大小及形狀、照明功率、光點偏移、入射角等。
在一些實例中,將控制命令提供至控制度量衡系統之一或多個光學元件之位置的一或多個定位裝置。作為回應,一或多個定位裝置改變一或多個光學元件之一位置/定向以調整入射角、照明源與照明光學器件之間之焦距、射束定位、射束光點在光學器件上之位置,以最小化表面粗糙度之效應等。
採用度量衡系統及技術以測量與不同半導體製程相關聯之結構及材料特性。在一些實例中,採用經最佳化測量配方以用於對包含但不限於以下者之高縱橫比半導體結構之臨界尺寸、厚度、疊對及材料性質進行x射線散射測量:自旋轉移力矩隨機存取記憶體(STT-RAM)、三維NAND記憶體(3D-NAND)或垂直NAND記憶體(V-NAND)、動態隨機存取記憶體(DRAM)、三維FLASH記憶體(3D-FLASH)、電阻式隨機存取記憶體(Re-RAM)及相變隨機存取記憶體(PC-RAM)。
在一些實施例中,將x射線偵測器116維持於與樣品101相同之大氣環境(例如,氣體沖洗環境)中。然而,在一些實施例中,樣品101與x射線偵測器116之間之距離係冗長的且環境干擾(例如,空氣紊流)對經偵測信號促成雜訊。因此,在一些實施例中,將x射線偵測器之一或多者維持於由一真空窗與樣品(例如,樣品101)分開之一局部真空環境中。
類似地,在一些實施例中,將x射線照明源110、照明光學器件115或兩者維持於與樣品101相同之大氣環境(例如,氣體沖洗環境)中。然而,在一些實施例中,x射線照明源110與照明光學器件115之間之光學路徑長度及照明光學器件115與樣品101之間之光學路徑長度較長且環境干擾(例如,空氣紊流)對照明射束促成雜訊。因此,在一些實施例中,將x射線照明源、照明光學器件115或兩者維持於由一真空窗與樣品(例如,樣品101)分開之一局部真空環境中。
圖8係繪示一項實施例中之容納x射線照明源110及照明光學器件115之一真空腔室160及容納x射線偵測器116之一真空腔室163的一圖。在一較佳實施例中,真空腔室160包含x射線照明源110與樣品101之間之光學路徑之一實質部分,且真空腔室163包含樣品101與x射線偵測器116之間之光學路徑之一實質部分。真空腔室160及真空腔室163之開口分別由真空窗161及164覆蓋。真空窗161及164可由對x射線輻射實質上透明之任何適合材料(例如,鈹)構造而成。照明射束117在其傳播朝向樣品101時行進穿過真空窗161。在與樣品101相互作用之後,散射x射線輻射125行進穿過真空窗164,進入真空腔室160且入射於x射線偵測器116上。在真空腔室160內維持一適合真空環境162以最小化對照明射束117之干擾,且在真空腔室163內維持一適合真空環境165以最小化對散射x射線輻射125之干擾。一適合真空環境可包含任何適合真空位準、包含一惰性氣體(例如,氦)之任何適合沖洗環境或其等之任何組合。以此方式,將儘可能多的射束路徑定位於真空中以最大化通量且最小化擾動。
在一些實施例中,將包含樣品101之整個光學系統維持於真空中。然而,一般而言,歸因於與樣品定位系統140之構造相關聯之複雜性,與將樣品101維持於真空中相關聯之成本較高。
在一些實施例中,如本文中所描述之特徵為x射線散射測量之度量衡目標定位於受測量晶圓之一切割道內。在此等實施例中,度量衡目標經定大小以配合於切割道之寬度內。在一些實例中,切割道寬度小於80微米。在一些實例中,切割道小於50微米。一般而言,半導體製造中所採用之切割道之寬度趨於更小。
在一些實施例中,如本文中所描述之特徵為x射線散射測量之度量衡目標定位於受測量晶圓之一作用晶粒區域內,且其係一功能積體電路(例如,記憶體、影像感測器、邏輯裝置等)之一部分。
一般而言,一度量衡目標之特徵為被定義為度量衡目標之一最大高度尺寸(即,法向於晶圓表面之尺寸)除以一最大橫向範圍尺寸(即,與晶圓表面對準之尺寸)的一縱橫比。在一些實施例中,受測量度量衡目標具有至少20之一縱橫比。在一些實施例中,度量衡目標具有至少40之一縱橫比。
圖9A至圖9C分別描繪以本文中所描述之方式經受測量之一典型3D FLASH記憶體裝置190之一等角視圖、一俯視圖及一橫截面視圖。記憶體裝置190之總高度(或等效地,深度)在自1微米至數微米之範圍內。記憶體裝置190係一垂直製造裝置。一垂直製造裝置(諸如記憶體裝置190)基本上使一習知平面記憶體裝置轉動90度,而使位元線及單元串垂直地(垂直於晶圓表面)定向。為提供足夠記憶體容量,將不同材料之大量交替層沈積於晶圓上。對於具有100奈米或更小之一最大橫向範圍之結構,此需要圖案化程序以良好執行至數微米之深度。因此,25:1或50:1之縱橫比係常見的。
一般而言,使用高亮度x射線散射量測實現至目標之不透明區域中之高通量x射線輻射穿透。使用x射線散射量測之可測量幾何參數之實例包含孔徑、孔密度、線邊緣粗糙度、線寬粗糙度、側壁角、輪廓、臨界尺寸、疊對、邊緣放置誤差及節距。一可測量材料參數之一實例包含電子密度。在一些實例中,x射線散射量測實現小於10 nm之特徵以及先進半導體結構(諸如STT-RAM、V-NAND、DRAM、PC-RAM及Re-RAM)之測量,其中需要幾何參數及材料參數之測量。
應認知,在整個本發明中描述之各個步驟可由一單一電腦系統130或替代地一多電腦系統130實行。此外,系統100之不同子系統(諸如樣品定位系統140)可包含適於實行本文中所描述之步驟之至少一部分之一電腦系統。因此,前述描述不應被解釋為對本發明之一限制而是僅為一繪示。此外,一或多個運算系統130可經組態以執行本文中所描述之方法實施例之任何者之任何(若干)其他步驟。
另外,電腦系統130可以此項技術中已知之任何方式通信地耦合至偵測器116及照明光學器件115。例如,一或多個運算系統130可耦合至分別與偵測器116及照明光學器件115相關聯之運算系統。在另一實例中,偵測器116及照明光學器件115之任何者可由耦合至電腦系統130之一單一電腦系統直接控制。
電腦系統130可經組態以藉由可包含有線及/或無線部分之一傳輸媒體自系統之子系統(例如,偵測器116及照明光學器件115及類似者)接收及/或獲取資料或資訊。以此方式,傳輸媒體可用作電腦系統130與系統100之其他子系統之間之一資料鏈路。
度量衡系統100之電腦系統130可經組態以藉由可包含有線及/或無線部分之一傳輸媒體自其他系統接收及/或獲取資料或資訊(例如,測量結果、模型化輸入、模型化結果等)。以此方式,傳輸媒體可用作電腦系統130與其他系統(例如,記憶體板上度量衡系統100、外部記憶體或外部系統)之間之一資料鏈路。例如,運算系統130可經組態以經由一資料鏈路自一儲存媒體(即,記憶體132或180)接收測量資料(例如,信號126)。例如,使用任何偵測器116之一光譜儀獲得之光譜結果可儲存於一永久或半永久記憶體裝置(例如,記憶體132或180)中。在此方面,可自板上記憶體或自一外部記憶體系統匯入測量結果。此外,電腦系統130可經由一傳輸媒體將資料發送至其他系統。例如,由電腦系統130判定之樣品參數值170可儲存於一永久或半永久記憶體裝置(例如,記憶體180)中。在此方面,可將測量結果匯出至另一系統。
運算系統130可包含但不限於一個人電腦系統、主機電腦系統、工作站、影像電腦、平行處理器或此項技術中已知之任何其他裝置。一般而言,術語「運算系統」可被廣義地定義為涵蓋具有執行來自一記憶媒體之指令之一或多個處理器的任何裝置。
實施諸如本文中所描述之方法之方法的程式指令134可經由諸如一導線、纜線或無線傳輸鏈路之一傳輸媒體傳輸。例如,如圖1中所繪示,儲存於記憶體132中之程式指令經由匯流排133傳輸至處理器131。程式指令134儲存於一電腦可讀媒體(例如,記憶體132)中。例示性電腦可讀媒體包含唯讀記憶體、一隨機存取記憶體、一磁碟或光碟或一磁帶。
在一些實施例中,將如本文中所描述之一經最佳化測量配方實施為一製程工具之部分。製程工具之實例包含但不限於微影曝光工具、膜沈積工具、植入工具及蝕刻工具。以此方式,使用一經最佳化測量配方之結果來控制一製程。在一個實例中,將自一或多個目標收集之x射線散射測量資料發送至一製程工具。如本文中所描述般分析x射線散射測量資料且將結果用於調整製程工具之操作。
如本文中所描述之散射測量可用於判定各種半導體結構之特性。例示性結構包含但不限於FinFET、低維結構(諸如奈米線或石墨烯)、亞10 nm結構、微影結構、貫穿基板通孔(TSV)、記憶體結構(諸如DRAM、DRAM 4F2、FLASH、MRAM及高縱橫比記憶體結構)。例示性結構特性包含但不限於幾何參數(諸如線邊緣粗糙度、線寬粗糙度、孔徑、孔密度、側壁角、輪廓、臨界尺寸、節距)及材料參數(諸如電子密度、組合物、晶粒結構、形態、應力、應變及元素識別)。
如本文中所描述,術語「臨界尺寸」包含一結構之任何臨界尺寸(例如,底部臨界尺寸、中間臨界尺寸、頂部臨界尺寸、側壁角、光柵高度等)、任何兩個或更多個結構之間的一臨界尺寸(例如,兩個結構之間的距離)及兩個或更多個結構之間的一位移(例如,疊對光柵結構之間的疊對位移等)。結構可包含三維結構、經圖案化結構、疊對結構等。
如本文中所描述,術語「臨界尺寸應用」或「臨界尺寸測量應用」包含任何臨界尺寸測量。
如本文中所描述,術語「度量衡系統」包含至少部分用以在任何態樣中特性化一樣品之任何系統,包含測量應用,諸如臨界尺寸度量衡、疊對度量衡、焦點/劑量度量衡及組合物度量衡。然而,此等技術術語不限制如本文中所描述之術語「度量衡系統」之範疇。另外,系統100可經組態用於經圖案化晶圓及/或未經圖案化晶圓之測量。度量衡系統可組態為一LED檢測工具、邊緣檢測工具、背側檢測工具、宏觀檢測工具或多模式檢測工具(涉及同時來自一或多個平台之資料)及獲益於基於臨界尺寸資料之系統參數之校準的任何其他度量衡或檢測工具。
本文中描述可用於在任何半導體處理工具(例如,一檢測系統或一微影系統)內測量一樣品之一半導體測量系統的各項實施例。術語「樣品」在本文中用於指代一晶圓、一倍縮光罩或可藉由此項技術中已知之手段處理(例如,印刷或檢測缺陷)之任何其他樣本。
如本文中所使用,術語「晶圓」大體上指代由一半導體或非半導體材料形成之基板。實例包含但不限於單晶矽、砷化鎵及磷化銦。此等基板可普遍在半導體製造設施中找到及/或處理。在一些情況中,一晶圓可僅包含基板(即,裸晶圓)。替代地,一晶圓可包含形成於一基板上之一或多個不同材料層。形成於一晶圓上之一或多個層可「經圖案化」或「未經圖案化」。例如,一晶圓可包含具有可重複圖案特徵之複數個晶粒。
一「倍縮光罩」可為在一倍縮光罩製程之任何階段之一倍縮光罩,或可或可能未經釋放以於一半導體製造設施中使用的一完成倍縮光罩。一倍縮光罩或一「遮罩」大體上被定義為具有形成於其上且組態成一圖案之實質上不透明區的一實質上透明基板。基板可包含例如一玻璃材料,諸如非晶SiO 2。可在一微影程序之一曝光步驟期間將一倍縮光罩安置於一抗蝕劑覆蓋之晶圓上方,使得可將倍縮光罩上之圖案轉印至抗蝕劑。
形成於一晶圓上之一或多個層可經圖案化或未經圖案化。例如,一晶圓可包含各自具有可重複圖案化特徵之複數個晶粒。此等材料層之形成及處理最終可導致完成裝置。許多不同類型之裝置可形成於一晶圓上,且如本文中所使用之術語晶圓旨在涵蓋其上製造此項技術中已知之任何類型之裝置的一晶圓。
在一或多項例示性實施例中,所述功能可實施於硬體、軟體、韌體或其等之任何組合中。若在軟體中實施,則功能可作為一或多個指令或程式碼儲存於一電腦可讀媒體上或經由該電腦可讀媒體傳輸。電腦可讀媒體包含電腦儲存媒體及通信媒體(包含促進一電腦程式自一個位置至另一位置之傳送之任何媒體)兩者。一儲存媒體可為可由一通用或專用電腦存取之任何可用媒體。藉由實例且非限制地,此等電腦可讀媒體可包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存器、磁碟儲存器或其他磁性儲存裝置,或可用於載送或儲存呈指令或資料結構之形式之所要程式碼構件且可由一通用或專用電腦或一通用或專用處理器存取的任何其他媒體。再者,任何連接被適當地稱為一電腦可讀媒體。例如,若使用一同軸電纜、光纖纜線、雙絞線、數位用戶線(DSL)或無線技術(諸如紅外線、無線電及微波)自一網站、伺服器或其他遠端源傳輸軟體,則同軸電纜、光纖纜線、雙絞線、DSL或無線技術(諸如紅外線、無線電及微波)包含於媒體之定義中。如本文中所使用,磁碟及光碟包含光碟片(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟及藍光光碟,其中磁碟通常磁性地再現資料而光碟用雷射光學地再現資料。上述之組合亦應包含於電腦可讀媒體之範疇內。
雖然上文為指導目的而描述某些特定實施例,但本專利文件之教示具有一般適用性且不限於上文所描述之特定實施例。因此,可在不脫離如發明申請專利範圍中所闡述之本發明之範疇之情況下實踐所述實施例之各種特徵之各種修改、調適及組合。
100:度量衡系統/度量衡工具 101:晶圓/樣品 102:檢測區域 110:x射線照明源/x射線照明系統/x射線源 111:液態金屬容器 112:液態金屬收集器 113:電子束源 114:電子光學器件 115:x射線光學器件/照明光學器件 116:x射線偵測器 117:x射線照明射束/x射線射束 118:電子流 119:液態金屬噴流 125:散射x射線輻射/散射x射線 126:輸出信號/經測量資料/經測量x射線散射量測信號/x射線散射測量資料 130:運算系統/電腦系統 131:處理器 132:記憶體 133:匯流排 134:程式指令 140:樣品定位系統 141:邊緣夾持卡盤 142:旋轉致動器 143:周邊框架 144:線性致動器 145:運動控制器 146:座標系統 150:模型構建及分析引擎 151:結構模型構建模組 152:結構模型 153:x射線散射量測回應函數構建模組 155:x射線散射量測回應函數模型 157:擬合分析模組 160:真空腔室 161:真空窗 162:真空環境 163:真空腔室 164:真空窗 165:真空環境 170:溝槽結構(圖6)/樣品參數值(圖5) 171:表面法線 172:半導體晶圓 180:曲線圖(圖7)/記憶體(圖5) 190:3D FLASH記憶體裝置 200:度量衡工具/度量衡系統 300:方法 301:方塊 302:方塊 303:方塊 304:方塊 α:傾斜角 ϕ:角度 θ:角度
圖1係繪示經組態以根據本文中所描述之方法測量一樣品之特性的一度量衡系統100之一圖。
圖2係繪示另一實施例中之經組態以根據本文中所呈現之方法測量一樣品之特性的一度量衡工具200之一圖。
圖3描繪按由角度ϕ及θ描述之一特定定向入射於晶圓101上之x射線照明射束117。
圖4描繪繪示如本文中所描述之測量配方最佳化之一例示性方法300的一流程圖。
圖5係繪示經組態以根據本文中所描述之方法基於x射線散射量測資料解析樣品參數值的一模型構建及分析引擎150之一圖。
圖6係繪示由一透射小角度X射線散射(T-SAXS)工具(諸如度量衡系統100)測量之一溝槽結構之另一例項的一圖。
圖7描繪繪示一測量配方之依據入射角而變化之曝光時間的一曲線圖180。
圖8係繪示容納在與樣品101分開之真空環境中之度量衡系統100及200之元件的一圖。
圖9A至圖9C分別描繪以本文中所描述之方式經受測量之一典型3D FLASH記憶體裝置190之一等角視圖、一俯視圖及一橫截面視圖。
100:度量衡系統/度量衡工具
101:晶圓/樣品
102:檢測區域
110:x射線照明源/x射線照明系統/x射線源
115:x射線光學器件/照明光學器件
116:x射線偵測器
117:x射線照明射束/x射線射束
125:散射x射線輻射/散射x射線
126:輸出信號/經測量資料/經測量x射線散射量測信號/x射線散射測量資料
130:運算系統/電腦系統
131:處理器
132:記憶體
133:匯流排
134:程式指令
140:樣品定位系統
141:邊緣夾持卡盤
142:旋轉致動器
143:周邊框架
144:線性致動器
145:運動控制器
146:座標系統

Claims (23)

  1. 一種方法,其包括: 產生與具有一或多個所關注參數之已知值之至少一個半導體結構之第一複數個測量相關聯的測量資料,該第一複數個測量各自具有一或多個測量系統參數之不同值; 基於該測量資料及一測量模型估計與該至少一個半導體結構相關聯之該一或多個所關注參數之值; 在該一或多個系統參數之該等不同值之各者處判定該一或多個所關注參數之各者之一值對該一或多個測量系統參數之各者之值之變化的一敏感度;及 基於包含該等經判定敏感度之一經正則化成本函數之一最佳化來判定該等測量系統參數之一集合。
  2. 如請求項1之方法,其中該經正則化成本函數包含對測量時間之一約束。
  3. 如請求項1之方法,其中該測量資料係經模擬測量資料、實際測量資料或兩者。
  4. 如請求項1之方法,其中該測量資料包含該至少一個半導體結構之複數個例項,該複數個例項之各者具有該一或多個所關注參數之一不同已知值。
  5. 如請求項4之方法,其中與一測量配方相關聯之該經正則化成本函數之一值係與該至少一個半導體結構之該複數個例項之各者相關聯之該經正則化成本函數之值的一平均值。
  6. 如請求項1之方法,其進一步包括: 基於該經最佳化測量系統參數集判定一測量效能度量之一值。
  7. 如請求項1之方法,其中該一或多個測量系統參數包含方位角、入射角及曝光時間。
  8. 如請求項1之方法,其中該經最佳化測量系統參數集係一或多個測量系統參數之該等不同值之一離散子集。
  9. 如請求項1之方法,該經正則化成本函數包含該至少一個半導體結構之一特性化。
  10. 如請求項9之方法,其中該特性化包含該至少一個半導體結構之一對稱性、該至少一個半導體結構之一光學密度、該至少一個半導體結構之一高度、該至少一個半導體結構之一結構類別或其等之任何組合之任何者。
  11. 如請求項1之方法,其中該經正則化成本函數之該最佳化涉及遍及候選測量系統參數集之一庫之一搜尋。
  12. 如請求項1之方法,其中該最佳化係一非線性整數最佳化。
  13. 如請求項1之方法,其進一步包括: 基於對合成測量資料或實際測量資料之一迴歸測試來驗證測量效能。
  14. 如請求項13之方法,其中該驗證係基於與該至少一個半導體結構之該第一複數個測量相關聯之該測量資料。
  15. 一種系統,其包括: 一度量衡工具,其包含一照明源及一偵測器,該偵測器經組態以根據一經最佳化測量系統參數值集自安置於一第一晶圓上之一或多個半導體結構之測量收集一第一數量之實際測量資料;及 一運算系統,其經組態以: 產生與具有一或多個所關注參數之已知值之至少一個半導體結構之第一複數個測量相關聯的測量資料,該第一複數個測量各自具有一或多個測量系統參數之不同值; 基於該測量資料及一測量模型估計與該至少一個半導體結構相關聯之該一或多個所關注參數之值; 在該一或多個系統參數之該等不同值之各者處判定該一或多個所關注參數之各者之一值對該一或多個測量系統參數之各者之值之變化的一敏感度;及 基於包含該等經判定敏感度之一經正則化成本函數之一最佳化來判定該經最佳化測量系統參數值集。
  16. 如請求項15之系統,其中該測量資料包含該至少一個半導體結構之複數個例項,該複數個例項之各者具有該一或多個所關注參數之一不同已知值。
  17. 如請求項16之系統,其中與一測量配方相關聯之該經正則化成本函數之一值係與該至少一個半導體結構之該複數個例項之各者相關聯之該經正則化成本函數之值的一平均值。
  18. 如請求項15之系統,其中該經最佳化測量系統參數值集係一或多個測量系統參數之該等不同值之一離散子集。
  19. 如請求項18之系統,其中該最佳化係一非線性整數最佳化。
  20. 如請求項15之系統,其中該經正則化成本函數包含該至少一個半導體結構之一特性化。
  21. 如請求項20之系統,其中該特性化包含該至少一個半導體結構之一對稱性、該至少一個半導體結構之一光學密度、該至少一個半導體結構之一高度、該至少一個半導體結構之一結構類別或其等之任何組合之任何者。
  22. 如請求項15之系統,其中該經正則化成本函數之該最佳化涉及遍及候選測量系統參數集之一庫之一搜尋。
  23. 一種系統,其包括: 一度量衡工具,其包含一照明源及一偵測器,該偵測器經組態以根據一經最佳化測量系統參數值集自安置於一第一晶圓上之一或多個半導體結構之測量收集一第一數量之實際測量資料;及 一非暫時性電腦可讀媒體,其包含指令,該等指令在由一運算系統之一或多個處理器執行時引起該運算系統: 產生與具有一或多個所關注參數之已知值之至少一個半導體結構之第一複數個測量相關聯的測量資料,該第一複數個測量各自具有一或多個測量系統參數之不同值; 基於該測量資料及一測量模型估計與該至少一個半導體結構相關聯之該一或多個所關注參數之值; 在該一或多個系統參數之該等不同值之各者處判定該一或多個所關注參數之各者之一值對該一或多個測量系統參數之各者之值之變化的一敏感度;及 基於包含該等經判定敏感度之一經正則化成本函數之一最佳化來判定該經最佳化測量系統參數值集。
TW111125529A 2021-12-29 2022-07-07 用於正則化應用特定半導體測量系統參數設定之最佳化之方法及系統 TW202344807A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163294841P 2021-12-29 2021-12-29
US63/294,841 2021-12-29
US202217828461A 2022-05-31 2022-05-31
US17/828,461 2022-05-31

Publications (1)

Publication Number Publication Date
TW202344807A true TW202344807A (zh) 2023-11-16

Family

ID=87000193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111125529A TW202344807A (zh) 2021-12-29 2022-07-07 用於正則化應用特定半導體測量系統參數設定之最佳化之方法及系統

Country Status (3)

Country Link
IL (1) IL309226A (zh)
TW (1) TW202344807A (zh)
WO (1) WO2023129279A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118036407B (zh) * 2024-04-11 2024-07-02 华中科技大学 一种平板式音圈电磁式力控执行器设计与优化方法及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126700B2 (en) * 2003-12-12 2006-10-24 Timbre Technologies, Inc. Parametric optimization of optical metrology model
US7483133B2 (en) * 2004-12-09 2009-01-27 Kla-Tencor Technologies Corporation. Multiple angle of incidence spectroscopic scatterometer system
TWI416096B (zh) * 2007-07-11 2013-11-21 Nova Measuring Instr Ltd 用於監控圖案化結構的性質之方法及系統
US9857291B2 (en) * 2013-05-16 2018-01-02 Kla-Tencor Corporation Metrology system calibration refinement
US10502692B2 (en) * 2015-07-24 2019-12-10 Kla-Tencor Corporation Automated metrology system selection

Also Published As

Publication number Publication date
WO2023129279A1 (en) 2023-07-06
IL309226A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
TWI753030B (zh) 用於x 射線散射測量系統之全光束度量
TWI809061B (zh) 用於即時量測控制之方法及系統
KR102363266B1 (ko) 고 애스펙트비 구조체에 대한 x 선 산란측정법 계측
TWI649536B (zh) 用於以散射術量測為基礎之成像及關鍵尺寸度量之度量方法、度量系統及非暫時性電腦可讀媒體
US10324050B2 (en) Measurement system optimization for X-ray based metrology
TWI783988B (zh) 傳輸小角度x射線散射度量系統
CN109073902B (zh) 用于小光斑大小透射小角x射线散射术的光束整形狭缝
US10859518B2 (en) X-ray zoom lens for small angle x-ray scatterometry
TW202344807A (zh) 用於正則化應用特定半導體測量系統參數設定之最佳化之方法及系統
US20240060914A1 (en) Methods And Systems For X-Ray Scatterometry Measurements Employing A Machine Learning Based Electromagnetic Response Model
TW202424475A (zh) 使用基於機器學習之電磁回應模型的x射線散射測量之方法及系統