TW202334345A - Optical laminate and image display device capable of realizing an image display device that can reduce reflection luminance - Google Patents

Optical laminate and image display device capable of realizing an image display device that can reduce reflection luminance Download PDF

Info

Publication number
TW202334345A
TW202334345A TW111149697A TW111149697A TW202334345A TW 202334345 A TW202334345 A TW 202334345A TW 111149697 A TW111149697 A TW 111149697A TW 111149697 A TW111149697 A TW 111149697A TW 202334345 A TW202334345 A TW 202334345A
Authority
TW
Taiwan
Prior art keywords
compensation layer
optical compensation
optical
refractive index
phase difference
Prior art date
Application number
TW111149697A
Other languages
Chinese (zh)
Inventor
有賀草平
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW202334345A publication Critical patent/TW202334345A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides an optical laminate capable of realizing an image display device that can reduce reflection luminance. The optical laminate according to an embodiment of the present invention sequentially includes: a polarizing element; a first optical compensation layer having refractive index characteristics showing the relationship of nz > nx = ny; and a third optical compensation layer having refractive index characteristics showing the relationship of nx > ny. The refractive index characteristics of the second optical compensation layer and/or the third optical compensation layer show the relationship of nx > ny ≥ nz. The in-plane phase difference of each of the second optical compensation layer and the third optical compensation layer is 10 nm or more and 220 nm or less. An absorption axis direction of the polarizing element intersects with a slow axis direction of the second optical compensation layer in a substantially non-orthogonal manner. The Nz coefficient of the third optical compensation layer is -4 or more and 0 or less, or 0.9 or more and 4 or less. The first optical compensation layer, the second optical compensation layer and the third optical compensation layer satisfy the specific formula (1).

Description

光學積層體及圖像顯示裝置Optical laminated body and image display device

本發明係關於一種光學積層體及圖像顯示裝置。The present invention relates to an optical laminated body and an image display device.

於圖像顯示裝置中,一般來說為了補償適於用途之光學特性,使用組合偏光元件與光學補償膜而成之各種光學積層體。作為此種光學積層體,例如提出了依次具備偏光元件、作為λ/2板之第一雙折射層、作為λ/4板之第二雙折射層、及折射率特性顯示nz>nx=ny之關係之第三雙折射層的橢圓偏光板(例如參照專利文獻1)。 又,於圖像顯示裝置中,有時因顯示裝置自身或用於顯示裝置之反射體(例如觸摸面板部、金屬佈線)所導致之外界光反射、背景之映入等會成為問題。特別是,有機EL面板由於具有反射性高之金屬層,因此易產生外界光反射、背景之映入等問題。因此,探討了於圖像顯示面板之視認側配置光學積層體來降低圖像顯示裝置之反射亮度。但是,即便於圖像顯示裝置中採用專利文獻1記載之橢圓偏光板,亦難以充分地降低反射亮度,反射亮度之降低仍有改善之餘地。 先前技術文獻 專利文獻 Generally, in image display devices, various optical laminates composed of a combination of a polarizing element and an optical compensation film are used in order to compensate for optical characteristics suitable for the intended use. As such an optical laminated body, for example, it is proposed to have a polarizing element, a first birefringent layer as a λ/2 plate, a second birefringent layer as a λ/4 plate, and a refractive index characteristic showing nz>nx=ny in this order. An elliptical polarizing plate with a third birefringent layer (for example, see Patent Document 1). In addition, in an image display device, problems may arise such as reflection of external light or reflection of the background caused by the display device itself or a reflector (such as a touch panel part or metal wiring) used in the display device. In particular, organic EL panels have a highly reflective metal layer, so they are prone to problems such as external light reflection and background reflection. Therefore, it has been considered to arrange an optical laminate on the viewing side of the image display panel to reduce the reflected brightness of the image display device. However, even if the elliptically polarizing plate described in Patent Document 1 is used in an image display device, it is difficult to sufficiently reduce the reflection brightness, and there is still room for improvement in the reduction of reflection brightness. Prior technical literature patent documents

[專利文獻1]日本專利特開2006-268007號公報[Patent Document 1] Japanese Patent Application Laid-Open No. 2006-268007

[發明所欲解決之問題][Problem to be solved by the invention]

本發明係為了解決上述先前之問題而完成者,其主要目的在於提供一種可實現能夠降低反射亮度之圖像顯示裝置之光學積層體。 [解決問題之技術手段] The present invention was completed in order to solve the above-mentioned previous problems, and its main object is to provide an optical laminate that can realize an image display device capable of reducing reflection brightness. [Technical means to solve problems]

本發明實施方式之光學積層體依次具備:偏光元件;折射率特性顯示nz>nx=ny之關係之第一光學補償層;折射率特性顯示nx>ny之關係之第二光學補償層;及折射率特性顯示nx>ny之關係之第三光學補償層。上述第二光學補償層及/或上述第三光學補償層之折射率特性顯示nx>ny≥nz之關係。上述第二光學補償層之面內相位差Re 2(550)及上述第三光學補償層之面內相位差Re 3(550)分別為10 nm以上且220 nm以下。上述偏光元件之吸收軸方向與上述第二光學補償層之慢軸方向以實質上不正交之方式交叉。上述第三光學補償層之Nz係數為-4以上且0以下或者0.9以上且4以下。上述第一光學補償層、上述第二光學補償層及上述第三光學補償層滿足下述式(1)。 [數1] (1) (式(1)中,Rth 1(550)表示第一光學補償層之厚度方向之相位差;Rth 2(550)表示第二光學補償層之厚度方向之相位差;Rth 3(550)表示第三光學補償層之厚度方向之相位差;Re 2(550)表示第二光學補償層之面內相位差;Re 3(550)表示第三光學補償層之面內相位差)。 一個實施方式中,上述第二光學補償層之折射率特性顯示nz≥nx>ny之關係,上述第三光學補償層之折射率特性顯示nx>ny≥nz之關係。 一個實施方式中,上述第三光學補償層之面內相位差Re 3(550)為80 nm以上。 一個實施方式中,上述第三光學補償層之面內相位差Re 3(550)為140 nm以上。 一個實施方式中,上述第二光學補償層之面內相位差Re 2(550)為50 nm以上且90 nm以下。 一個實施方式中,上述第一光學補償層之厚度方向之相位差Rth 1(550)為-80 nm以上。 一個實施方式中,上述第二光學補償層之折射率特性顯示nz=nx>ny之關係,上述第三光學補償層之折射率特性顯示nx>ny=nz之關係。 一個實施方式中,上述第二光學補償層之折射率特性顯示nx>ny≥nz之關係,上述第三光學補償層之折射率特性顯示nz≥nx>ny之關係。 一個實施方式中,上述第三光學補償層之面內位相差Re 3(550)為180 nm以下。 一個實施方式中,上述第三光學補償層之面內位相差Re 3(550)為110 nm以下。 一個實施方式中,上述第二光學補償層之面內相位差Re 2(550)為80 nm以上。 一個實施方式中,上述第二光學補償層之面內相位差Re 2(550)為100 nm以上。 一個實施方式中,上述第一光學補償層之厚度方向之相位差Rth 1(550)為-70 nm以上。 一個實施方式中,上述第二光學補償層之折射率特性顯示nx>ny=nz之關係,上述第三光學補償層之折射率特性顯示nz=nx>ny之關係。 一個實施方式中,上述第二光學補償層及上述第三光學補償層各自之折射率特性顯示nx>ny≥nz之關係。 一個實施方式中,上述第三光學補償層之面內相位差Re 3(550)為60 nm以上。 一個實施方式中,上述第三光學補償層之面內相位差Re 3(550)為170 nm以上。 一個實施方式中,上述第二光學補償層之面內相位差Re 2(550)為50 nm以上且90 nm以下。 一個實施方式中,上述第一光學補償層之厚度方向之相位差Rth 1(550)為-100 nm以下。 一個實施方式中,上述第二光學補償層及上述第三光學補償層各自之折射率特性顯示nx>ny=nz之關係。 一個實施方式中,上述第二光學補償層及上述第三光學補償層中之折射率特性顯示nx>ny≥nz之關係之光學補償層之Re(450)/Re(550)未達1。 本發明之另一態樣之圖像顯示裝置具備圖像顯示單元及上述光學積層體。 [發明之效果] The optical laminated body according to the embodiment of the present invention includes in this order: a polarizing element; a first optical compensation layer whose refractive index characteristics show the relationship nz>nx=ny; a second optical compensation layer whose refractive index characteristics show the relationship nx>ny; and refraction. The rate characteristics of the third optical compensation layer show the relationship nx>ny. The refractive index characteristics of the above-mentioned second optical compensation layer and/or the above-mentioned third optical compensation layer show the relationship nx>ny≥nz. The in-plane phase difference Re 2 (550) of the above-mentioned second optical compensation layer and the in-plane phase difference Re 3 (550) of the above-mentioned third optical compensation layer are respectively 10 nm or more and 220 nm or less. The absorption axis direction of the polarizing element intersects with the slow axis direction of the second optical compensation layer in a substantially non-orthogonal manner. The Nz coefficient of the third optical compensation layer is -4 or more and 0 or less, or 0.9 or more and 4 or less. The first optical compensation layer, the second optical compensation layer and the third optical compensation layer satisfy the following formula (1). [Number 1] (1) (In formula (1), Rth 1 (550) represents the phase difference in the thickness direction of the first optical compensation layer; Rth 2 (550) represents the phase difference in the thickness direction of the second optical compensation layer; Rth 3 (550 ) represents the phase difference in the thickness direction of the third optical compensation layer; Re 2 (550) represents the in-plane phase difference of the second optical compensation layer; Re 3 (550) represents the in-plane phase difference of the third optical compensation layer). In one embodiment, the refractive index characteristics of the second optical compensation layer exhibit the relationship nz≥nx>ny, and the refractive index characteristics of the third optical compensation layer exhibit the relationship nx>ny≥nz. In one embodiment, the in-plane phase difference Re 3 (550) of the third optical compensation layer is 80 nm or more. In one embodiment, the in-plane phase difference Re 3 (550) of the third optical compensation layer is 140 nm or more. In one embodiment, the in-plane phase difference Re 2 (550) of the second optical compensation layer is 50 nm or more and 90 nm or less. In one embodiment, the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer is -80 nm or more. In one embodiment, the refractive index characteristics of the second optical compensation layer exhibit the relationship nz=nx>ny, and the refractive index characteristics of the third optical compensation layer exhibit the relationship nx>ny=nz. In one embodiment, the refractive index characteristics of the second optical compensation layer exhibit the relationship nx>ny≥nz, and the refractive index characteristics of the third optical compensation layer exhibit the relationship nz≥nx>ny. In one embodiment, the in-plane phase difference Re 3 (550) of the third optical compensation layer is 180 nm or less. In one embodiment, the in-plane phase difference Re 3 (550) of the third optical compensation layer is 110 nm or less. In one embodiment, the in-plane phase difference Re 2 (550) of the second optical compensation layer is 80 nm or more. In one embodiment, the in-plane phase difference Re 2 (550) of the second optical compensation layer is 100 nm or more. In one embodiment, the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer is -70 nm or more. In one embodiment, the refractive index characteristics of the second optical compensation layer exhibit the relationship nx>ny=nz, and the refractive index characteristics of the third optical compensation layer exhibit the relationship nz=nx>ny. In one embodiment, the refractive index characteristics of each of the second optical compensation layer and the third optical compensation layer show a relationship of nx>ny≥nz. In one embodiment, the in-plane phase difference Re 3 (550) of the third optical compensation layer is 60 nm or more. In one embodiment, the in-plane phase difference Re 3 (550) of the third optical compensation layer is 170 nm or more. In one embodiment, the in-plane phase difference Re 2 (550) of the second optical compensation layer is 50 nm or more and 90 nm or less. In one embodiment, the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer is -100 nm or less. In one embodiment, the refractive index characteristics of each of the second optical compensation layer and the third optical compensation layer show a relationship of nx>ny=nz. In one embodiment, the Re(450)/Re(550) of the optical compensation layer whose refractive index characteristics show the relationship nx>ny≥nz among the second optical compensation layer and the third optical compensation layer is less than 1. An image display device according to another aspect of the present invention includes an image display unit and the optical layered body. [Effects of the invention]

根據本發明實施方式之光學積層體,可以實現能夠降低反射亮度之圖像顯示裝置。According to the optical laminate according to the embodiment of the present invention, an image display device capable of reducing reflected brightness can be realized.

以下,說明本發明之代表性實施方式,但本發明並不限於該等實施方式。Hereinafter, representative embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

(用語及符號之定義) 本說明書中之用語及符號之定義如下所述。 (1)折射率(nx、ny、nz) 「nx」係面內之折射率成為最大之方向(即慢軸方向)之折射率,「ny」係於面內與慢軸正交之方向(即快軸方向)之折射率,「nz」係厚度方向之折射率。 (2)面內相位差(Re) 「Re(λ)」係於23℃下利用波長λ nm之光測得之面內相位差。例如,「Re(550)」係於23℃下利用波長550 nm之光測得之面內相位差。Re(λ)係於將層(膜)之厚度設為d(nm)時,藉由式:Re(λ)=(nx-ny)×d求出。再者,本說明書中,有時將「第一光學補償層之面內相位差Re(λ)」稱作「Re 1(λ)」,將「第二光學補償層之面內相位差Re(λ)」稱作「Re 2(λ)」,將「第三光學補償層之面內相位差Re(λ)」稱作「Re 3(λ)」。 (3)厚度方向之相位差(Rth) 「Rth(λ)」係於23℃下利用波長λ nm之光測得之厚度方向之相位差。例如,「Rth(550)」係於23℃下利用波長550 nm之光測得之厚度方向之相位差。Rth(λ)係於將層(膜)之厚度設為d(nm)時,藉由式:Rth(λ)=(nx-nz)×d求出。再者,本說明書中,有時將「第一光學補償層之厚度方向之相位差Rth(λ)」稱作「Rth 1(λ)」,將「第二光學補償層之厚度方向之相位差Rth(λ)」稱作「Rth 2(λ)」,將「第三光學補償層之厚度方向之相位差Rth(λ)」稱作「Rth 3(λ)」。 (4)Nz係數 Nz係數係藉由Nz=Rth/Re求出。 (5)實質上平行或正交 「實質上正交」及「大致正交」這一表述包括2個方向所成之角度為90°±3°之情況,「實質上平行」及「大致平行」這一表述包括2個方向所成之角度為0°±3°之情況。又,「以實質上不正交之方式交叉」係指2個方向所成之角度實質上不正交且亦實質上不平行。更具體而言,「以實質上不正交之方式交叉」這一表述包括2個方向所成之角度超過3°且未達87°之情況,及超過93°且未達177°之情況,較佳為5°以上且85°以下、或95°以上且175°以下。 (Definition of terms and symbols) The definitions of terms and symbols in this manual are as follows. (1) Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the refractive index in the plane becomes maximum (that is, the slow axis direction), and "ny" is the refractive index in the direction orthogonal to the slow axis in the plane (i.e., the direction of the slow axis). That is, the refractive index in the fast axis direction), "nz" is the refractive index in the thickness direction. (2) In-plane phase difference (Re) "Re(λ)" is the in-plane phase difference measured at 23°C using light of wavelength λ nm. For example, "Re(550)" is the in-plane phase difference measured at 23°C using light with a wavelength of 550 nm. Re(λ) is calculated by the formula: Re(λ)=(nx-ny)×d when the thickness of the layer (film) is d(nm). Furthermore, in this specification, "the in-plane phase difference Re(λ) of the first optical compensation layer" may be referred to as "Re 1 (λ)", and "the in-plane phase difference Re(λ) of the second optical compensation layer λ)" is called "Re 2 (λ)", and "the in-plane phase difference Re(λ) of the third optical compensation layer" is called "Re 3 (λ)". (3) Phase difference in the thickness direction (Rth) "Rth(λ)" is the phase difference in the thickness direction measured at 23°C using light of wavelength λ nm. For example, "Rth(550)" is the phase difference in the thickness direction measured at 23°C using light with a wavelength of 550 nm. Rth(λ) is calculated by the formula: Rth(λ)=(nx-nz)×d when the thickness of the layer (film) is d(nm). Furthermore, in this specification, "the phase difference Rth (λ) in the thickness direction of the first optical compensation layer" is sometimes referred to as "Rth 1 (λ)", and "the phase difference in the thickness direction of the second optical compensation layer Rth (λ)" is called "Rth 2 (λ)", and "the phase difference Rth (λ) in the thickness direction of the third optical compensation layer" is called "Rth 3 (λ)". (4) Nz coefficient The Nz coefficient is calculated by Nz=Rth/Re. (5) Substantially parallel or orthogonal. The expressions "substantially orthogonal" and "approximately orthogonal" include the case where the angle between the two directions is 90°±3°. "Substantially parallel" and "approximately parallel""This expression includes the case where the angle formed by the two directions is 0°±3°. Furthermore, "intersecting in a manner that is not substantially orthogonal" means that the angle formed by the two directions is not substantially orthogonal and is not substantially parallel. More specifically, the expression "intersecting in a substantially non-orthogonal manner" includes the case where the angle between the two directions exceeds 3° and does not reach 87°, and the case where the angle exceeds 93° and does not reach 177°, Preferably it is 5° or more and 85° or less, or 95° or more and 175° or less.

A. 光學積層體之整體構成 圖1為本發明一個實施方式之光學積層體之概略剖視圖。圖示例之光學積層體100依次具備:包含偏光元件41之偏光板40;折射率特性顯示nz>nx=ny之關係之第一光學補償層10;折射率特性顯示nx>ny之關係之第二光學補償層20;及折射率特性顯示nx>ny之關係之第三光學補償層30。第二光學補償層20及/或第三光學補償層30之折射率特性顯示nx>ny≥nz之關係。第二光學補償層20之面內相位差Re 2(550)及第三光學補償層30之面內相位差Re 3(550)分別為10 nm以上且220 nm以下,較佳為30 nm以上且200 nm以下。偏光元件41之吸收軸方向與第二光學補償層20之慢軸方向以實質上不正交之方式交叉。第三光學補償層之Nz係數為-4以上且0以下或者0.9以上且4以下。第一光學補償層10、第二光學補償層20及第三光學補償層30滿足下述式(1)。 [數2] (1) (式(1)中,Rth 1(550)表示第一光學補償層之厚度方向之相位差;Rth 2(550)表示第二光學補償層之厚度方向之相位差;Rth 3(550)表示第三光學補償層之厚度方向之相位差;Re 2(550)表示第二光學補償層之面內相位差;Re 3(550)表示第三光學補償層之面內相位差)。 當將具有此種構成之光學積層體應用於圖像顯示裝置中時,可以謀求降低圖像顯示裝置之反射亮度。 再者,光學積層體於具備面內相位差Re超過220 nm之光學補償層(特別是λ/2板)時,難以謀求該光學補償層之薄化,材料使用量之降低亦困難。進而,面內相位差Re超過220 nm之光學補償層(特別是λ/2板)有配向角不均一之虞,偏光元件之吸收軸方向與該光學補償層之慢軸方向之軸偏移可能增大。又,即便為同等程度之軸偏移,相位差值越大,則對光學補償之影響變得越大。因此,於具備此種光學補償層(λ/2板)之光學積層體中,難以如本發明實施方式之上述光學積層體那樣謀求薄化且謀求降低圖像顯示裝置之反射亮度。 A. Overall structure of optical laminate FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical laminated body 100 in the illustrated example includes in this order: a polarizing plate 40 including a polarizing element 41; a first optical compensation layer 10 whose refractive index characteristics show the relationship nz>nx=ny; and a third optical compensation layer 10 whose refractive index characteristics show the relationship nx>ny. the second optical compensation layer 20; and the third optical compensation layer 30 whose refractive index characteristics show the relationship nx>ny. The refractive index characteristics of the second optical compensation layer 20 and/or the third optical compensation layer 30 show the relationship nx>ny≥nz. The in-plane phase difference Re 2 (550) of the second optical compensation layer 20 and the in-plane phase difference Re 3 (550) of the third optical compensation layer 30 are respectively 10 nm or more and 220 nm or less, preferably 30 nm or more and Below 200 nm. The absorption axis direction of the polarizing element 41 intersects with the slow axis direction of the second optical compensation layer 20 in a substantially non-orthogonal manner. The Nz coefficient of the third optical compensation layer is -4 or more and 0 or less, or 0.9 or more and 4 or less. The first optical compensation layer 10, the second optical compensation layer 20, and the third optical compensation layer 30 satisfy the following formula (1). [Number 2] (1) (In formula (1), Rth 1 (550) represents the phase difference in the thickness direction of the first optical compensation layer; Rth 2 (550) represents the phase difference in the thickness direction of the second optical compensation layer; Rth 3 (550 ) represents the phase difference in the thickness direction of the third optical compensation layer; Re 2 (550) represents the in-plane phase difference of the second optical compensation layer; Re 3 (550) represents the in-plane phase difference of the third optical compensation layer). When the optical laminate having such a structure is applied to an image display device, the reflection brightness of the image display device can be reduced. Furthermore, when the optical laminate has an optical compensation layer (especially a λ/2 plate) with an in-plane retardation Re exceeding 220 nm, it is difficult to thin the optical compensation layer and reduce the amount of material used. Furthermore, an optical compensation layer (especially a λ/2 plate) with an in-plane phase difference Re exceeding 220 nm may have uneven alignment angles, and the absorption axis direction of the polarizing element may be offset from the slow axis direction of the optical compensation layer. increase. In addition, even if the axis deviation is of the same degree, the larger the phase difference value is, the greater the impact on optical compensation will be. Therefore, in the optical laminate provided with such an optical compensation layer (λ/2 plate), it is difficult to achieve thinning and to reduce the reflection brightness of the image display device as in the optical laminate according to the embodiment of the present invention.

上述式(1)中算出之值例如為-150以上,較佳為-100以上;例如為150以下,較佳為100以下,更佳為60以下。 第一光學補償層10之折射率特性顯示nz>nx=ny之關係。此處,「nx=ny」不僅為nx與ny完全相同之情況,還包括nx與ny實質上相同之情況。 第一光學補償層10之面內相位差Re 1(550)例如為0 nm以上且3.0 nm以下,較佳為0 nm。 第一光學補償層10之厚度方向之相位差Rth 1(550)例如為-200 nm以上且未達0 nm,較佳為-5 nm以下。 The value calculated from the above formula (1) is, for example, -150 or more, preferably -100 or more; for example, it is 150 or less, preferably 100 or less, and more preferably 60 or less. The refractive index characteristics of the first optical compensation layer 10 show the relationship nz>nx=ny. Here, "nx=ny" means not only the case where nx and ny are exactly the same, but also the case where nx and ny are substantially the same. The in-plane phase difference Re 1 (550) of the first optical compensation layer 10 is, for example, 0 nm or more and 3.0 nm or less, preferably 0 nm. The phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer 10 is, for example, -200 nm or more and less than 0 nm, preferably -5 nm or less.

第二光學補償層20及第三光學補償層30中之至少一者之折射率特性顯示nx>ny≥nz之關係。當第三光學補償層30之折射率特性顯示nx>ny≥nz之關係時,第二光學補償層20之折射率特性代表性地顯示nz≥nx>ny之關係或者顯示nx>ny≥nz之關係。又,當第二光學補償層20之折射率特性顯示nx>ny≥nz之關係時,第三光學補償層30之折射率特性代表性地顯示nz≥nx>ny之關係或者顯示nx>ny≥nz之關係。此處,「nz=nx」不僅為nz與nx完全相同之情況,還包括nz與nx實質上相同之情況。又,「ny=nz」不僅為ny與nz完全相同之情況,還包括ny與nz實質上相同之情況。The refractive index characteristic of at least one of the second optical compensation layer 20 and the third optical compensation layer 30 shows the relationship nx>ny≥nz. When the refractive index characteristics of the third optical compensation layer 30 show the relationship nx>ny≥nz, the refractive index characteristics of the second optical compensation layer 20 typically show the relationship nz≥nx>ny or nx>ny≥nz. relation. In addition, when the refractive index characteristics of the second optical compensation layer 20 show the relationship nx>ny≥nz, the refractive index characteristics of the third optical compensation layer 30 typically show the relationship nz≥nx>ny or nx>ny≥ nz relationship. Here, "nz=nx" means not only the case where nz and nx are exactly the same, but also the case where nz and nx are substantially the same. Furthermore, "ny=nz" means not only the case where ny and nz are exactly the same, but also the case where ny and nz are substantially the same.

第二光學補償層20及第三光學補償層30中之折射率特性顯示nz=nx>ny之關係之光學補償層的厚度方向之相位差Rth(550)例如為-3.0 nm以上且3.0 nm以下,較佳為0 nm。 第二光學補償層20及第三光學補償層30中之折射率特性顯示nz>nx>ny之關係之光學補償層的厚度方向之相位差Rth(550)例如為-60 nm以上且未達0 nm,較佳為-50 nm以上且-5 nm以下。此時,該光學補償層之Nz係數例如為-1.0以上且-0.1以下、較佳為-0.5以上且-0.2以下。 第二光學補償層20以及第三光學補償層30中之折射率特性顯示nx>ny≥nz之關係之光學補償層的厚度方向之相位差Rth(550)例如為10 nm以上且220 nm以下,較佳為30 nm以上且210 nm以下。於該情形時,該光學補償層之Nz係數例如為0.9以上且1.1以下。 The phase difference Rth (550) in the thickness direction of the optical compensation layer in which the refractive index characteristics of the second optical compensation layer 20 and the third optical compensation layer 30 show the relationship nz=nx>ny is, for example, -3.0 nm or more and 3.0 nm or less. , preferably 0 nm. The retardation Rth (550) in the thickness direction of the optical compensation layer in which the refractive index characteristics of the second optical compensation layer 20 and the third optical compensation layer 30 show the relationship nz>nx>ny is, for example, -60 nm or more and less than 0 nm, preferably -50 nm or more and -5 nm or less. At this time, the Nz coefficient of the optical compensation layer is, for example, -1.0 or more and -0.1 or less, preferably -0.5 or more and -0.2 or less. The retardation Rth (550) in the thickness direction of the optical compensation layer in which the refractive index characteristics of the second optical compensation layer 20 and the third optical compensation layer 30 show the relationship nx>ny≥nz is, for example, 10 nm or more and 220 nm or less, Preferably, it is 30 nm or more and 210 nm or less. In this case, the Nz coefficient of the optical compensation layer is, for example, 0.9 or more and 1.1 or less.

一個實施方式中,第二光學補償層20及第三光學補償層30中之折射率特性顯示nx>ny≥nz之關係之光學補償層的Re(450)/Re(550)未達1,代表性地為0.8以上。In one embodiment, the Re(450)/Re(550) of the optical compensation layer whose refractive index characteristics show the relationship nx>ny≥nz in the second optical compensation layer 20 and the third optical compensation layer 30 is less than 1, which means The sex value is above 0.8.

一個實施方式中,偏光元件41之吸收軸方向與第三光學補償層30之慢軸方向以實質上不正交之方式交叉。In one embodiment, the absorption axis direction of the polarizing element 41 intersects with the slow axis direction of the third optical compensation layer 30 in a substantially non-orthogonal manner.

光學積層體可以為單片狀,亦可以為長條狀。本說明書中,「長條狀」係指長度相對於寬度足夠長之細長形狀,例如包含長度為寬度之10倍以上、較佳為20倍以上之細長形狀。長條狀之光學積層體可以捲繞成卷狀。The optical laminate may be in the form of a single sheet or in the form of a strip. In this specification, "strip shape" refers to an elongated shape with a length that is sufficiently long relative to the width, and includes, for example, an elongated shape with a length that is 10 times or more, preferably 20 times or more, the width. The long optical laminate can be rolled into a roll shape.

實際應用中,於第三光學補償層之與偏光板相反之一側設置黏著劑層(未圖示),可將光學積層體貼附於圖像顯示單元上。進而,較佳為於黏著劑層之表面上暫時黏有剝離襯裡直至將光學積層體供至使用。藉由暫時黏有剝離襯裡,可以於保護黏著劑層之同時形成卷。In practical applications, an adhesive layer (not shown) is provided on the side of the third optical compensation layer opposite to the polarizing plate, so that the optical laminate can be attached to the image display unit. Furthermore, it is preferable to temporarily adhere a release liner to the surface of the adhesive layer until the optical laminate is used. By temporarily attaching a release liner, the roll can be formed while protecting the adhesive layer.

以下,對光學積層體中之第一光學補償層、第二光學補償層及第三光學補償層之具體組合進行說明。Hereinafter, the specific combination of the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer in the optical laminate will be described.

A-1. 第一光學積層體 一個實施方式中,第一光學補償層10之折射率特性顯示nz>nx=ny之關係,第二光學補償層20之折射率特性顯示nz≥nx>ny之關係,第三光學補償層30之折射率特性顯示nx>ny≥nz之關係。有時將包含此種第一光學補償層、第二光學補償層及第三光學補償層之組合之光學積層體稱作第一光學積層體。 第一光學積層體中,更佳為第二光學補償層20之折射率特性顯示nz=nx>ny之關係,第三光學補償層30之折射率特性顯示nx>ny=nz之關係。當第一光學補償層、第二光學補償層及第三光學補償層為此種組合時,可以進一步降低圖像顯示裝置之反射亮度。 A-1. First optical laminate In one embodiment, the refractive index characteristics of the first optical compensation layer 10 show the relationship nz>nx=ny, the refractive index characteristics of the second optical compensation layer 20 show the relationship nz≥nx>ny, and the third optical compensation layer 30 The refractive index characteristics show the relationship nx>ny≥nz. The optical laminated body including such a combination of the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer may be called a first optical laminated body. In the first optical laminated body, it is more preferable that the refractive index characteristics of the second optical compensation layer 20 show the relationship nz=nx>ny, and the refractive index characteristics of the third optical compensation layer 30 show the relationship nx>ny=nz. When the first optical compensation layer, the second optical compensation layer and the third optical compensation layer are in this combination, the reflected brightness of the image display device can be further reduced.

第一光學積層體中,第一光學補償層10之厚度方向之相位差Rth 1(550)較佳為-100 nm以上,更佳為-80 nm以上,進而較佳為-60 nm以上;較佳為-5 nm以下,更佳為-20 nm以下。 第一光學積層體中,當Rth 1(550)為上述範圍時,於圖像顯示裝置中可以進一步降低反射亮度。 In the first optical laminated body, the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer 10 is preferably -100 nm or more, more preferably -80 nm or more, further preferably -60 nm or more; Preferably, it is below -5 nm, more preferably below -20 nm. In the first optical layered body, when Rth 1 (550) is in the above range, the reflected brightness can be further reduced in the image display device.

第一光學積層體中,第二光學補償層20之面內相位差Re 2(550)較佳為40 nm以上,更佳為50 nm以上;較佳為120 nm以下,更佳為90 nm以下。 第一光學積層體中,當Re 2(550)為上述範圍時,於圖像顯示裝置中可以進一步降低反射亮度。 又,第一光學積層體中,偏光元件41之吸收軸方向與第二光學補償層20之慢軸方向所成之角度較佳為5°以上且70°以下,更佳為10°以上且60°以下,進而較佳為20°以上且40°以下。 In the first optical laminated body, the in-plane phase difference Re 2 (550) of the second optical compensation layer 20 is preferably 40 nm or more, more preferably 50 nm or more; preferably 120 nm or less, more preferably 90 nm or less. . In the first optical layered body, when Re 2 (550) is in the above range, the reflection brightness can be further reduced in the image display device. Furthermore, in the first optical layered body, the angle formed by the absorption axis direction of the polarizing element 41 and the slow axis direction of the second optical compensation layer 20 is preferably 5° or more and 70° or less, more preferably 10° or more and 60°. ° or less, and more preferably 20° or more and 40° or less.

第一光學積層體中,第三光學補償層30之面內相位差Re 3(550)較佳為50 nm以上,更佳為80 nm以上,進而較佳為110 nm以上,尤佳為140 nm以上;較佳為195 nm以下。 第一光學積層體中,第三光學補償層30之厚度方向之相位差Rth 3(550)較佳為50 nm以上,較佳為80 nm以上,更佳為110 nm以上,尤佳為140 nm以上;較佳為210 nm以下,更佳為195 nm以下。 第一光學積層體中,當Re 3(550)及/或Rth 3(550)為上述範圍時,於圖像顯示裝置中可以更進一步降低反射亮度。 又,第一光學積層體中,偏光元件41之吸收軸方向與第三光學補償層30之慢軸方向所成之角度較佳為20°以上且80°以下或者100°以上且170°以下,更佳為110°以上且160°以下,進而較佳為130°以上且150°以下。 In the first optical laminated body, the in-plane phase difference Re 3 (550) of the third optical compensation layer 30 is preferably 50 nm or more, more preferably 80 nm or more, further preferably 110 nm or more, especially 140 nm. Above; preferably below 195 nm. In the first optical laminated body, the phase difference Rth 3 (550) in the thickness direction of the third optical compensation layer 30 is preferably 50 nm or more, more preferably 80 nm or more, more preferably 110 nm or more, especially 140 nm. or above; preferably below 210 nm, more preferably below 195 nm. In the first optical layered body, when Re 3 (550) and/or Rth 3 (550) is within the above range, the reflected brightness can be further reduced in the image display device. Furthermore, in the first optical layered body, the angle formed by the absorption axis direction of the polarizing element 41 and the slow axis direction of the third optical compensation layer 30 is preferably 20° or more and 80° or less, or 100° or more and 170° or less. More preferably, it is 110° or more and 160° or less, and still more preferably, it is 130° or more and 150° or less.

A-2. 第二光學積層體 一個實施方式中,第一光學補償層10之折射率特性顯示nz>nx=ny之關係,第二光學補償層20之折射率特性顯示nx>ny≥nz之關係,第三光學補償層30之折射率特性顯示nz≥nx>ny之關係。有時將包含此種第一光學補償層、第二光學補償層及第三光學補償層之組合之光學積層體稱作第二光學積層體。 第二光學積層體中,更佳為第二光學補償層20之折射率特性顯示nx>ny=nz之關係,第三光學補償層30之折射率特性顯示nz=nx>ny之關係。當第一光學補償層、第二光學補償層及第三光學補償層為此種組合時,可以進一步降低圖像顯示裝置之反射亮度。 A-2. Second optical laminate In one embodiment, the refractive index characteristics of the first optical compensation layer 10 show the relationship nz>nx=ny, the refractive index characteristics of the second optical compensation layer 20 show the relationship nx>ny≥nz, and the third optical compensation layer 30 The refractive index characteristics show the relationship nz≥nx>ny. The optical laminated body including such a combination of the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer may be called a second optical laminated body. In the second optical laminated body, it is more preferable that the refractive index characteristics of the second optical compensation layer 20 show the relationship nx>ny=nz, and the refractive index characteristics of the third optical compensation layer 30 show the relationship nz=nx>ny. When the first optical compensation layer, the second optical compensation layer and the third optical compensation layer are in this combination, the reflected brightness of the image display device can be further reduced.

第二光學積層體中,第一光學補償層10之厚度方向之相位差Rth 1(550)較佳為-100 nm以上,更佳為-70 nm以上;較佳為-10 nm以下,更佳為-30 nm以下。 第二光學積層體中,當Rth 1(550)為上述範圍時,於圖像顯示裝置中可以進一步降低反射亮度。 In the second optical laminated body, the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer 10 is preferably -100 nm or more, more preferably -70 nm or more; preferably -10 nm or less, more preferably is below -30 nm. In the second optical layered body, when Rth 1 (550) is in the above range, the reflected brightness can be further reduced in the image display device.

第二光學積層體中,第二光學補償層20之面內相位差Re 2(550)較佳為50 nm以上,更佳為80 nm以上,進而較佳為100 nm以上,尤佳為140 nm以上;較佳為195 nm以下。 第二光學積層體中,第二光學補償層20之厚度方向之相位差Rth 2(550)較佳為50 nm以上,更佳為80 nm以上,進而較佳為100 nm以上,尤佳為140 nm以上;較佳為210 nm以下,更佳為195 nm以下。 第二光學積層體中,當Re 2(550)及/或Rth 2(550)為上述範圍時,於圖像顯示裝置中可以進一步降低反射亮度。 又,第二光學積層體中,偏光元件41之吸收軸方向與第二光學補償層20之慢軸方向所成之角度較佳為5°以上且70°以下或者95°以上且160°以下,更佳為10°以上且50°以下,進而較佳為10°以上且40°以下。 In the second optical laminated body, the in-plane phase difference Re 2 (550) of the second optical compensation layer 20 is preferably 50 nm or more, more preferably 80 nm or more, further preferably 100 nm or more, especially 140 nm. Above; preferably below 195 nm. In the second optical laminated body, the phase difference Rth 2 (550) in the thickness direction of the second optical compensation layer 20 is preferably 50 nm or more, more preferably 80 nm or more, further preferably 100 nm or more, and particularly preferably 140 nm. nm or more; preferably 210 nm or less, more preferably 195 nm or less. In the second optical layered body, when Re 2 (550) and/or Rth 2 (550) is within the above range, the reflected brightness can be further reduced in the image display device. Furthermore, in the second optical laminated body, the angle formed by the absorption axis direction of the polarizing element 41 and the slow axis direction of the second optical compensation layer 20 is preferably 5° or more and 70° or less, or 95° or more and 160° or less. More preferably, it is 10° or more and 50° or less, and still more preferably, it is 10° or more and 40° or less.

第二光學積層體中,第三光學補償層30之面內相位差Re 3(550)較佳為40 nm以上,更佳為60 nm以上;較佳為200 nm以下,更佳為180 nm以下,進而較佳為110 nm以下。 第二光學積層體中,當Re 3(550)為上述範圍時,於圖像顯示裝置中可以更進一步降低反射亮度。 又,第二光學積層體中,偏光元件41之吸收軸方向與第三光學補償層30之慢軸方向所成之角度較佳為10°以上且85°以下,更佳為30°以上且85°以下,進而較佳為60°以上且85°以下。 In the second optical laminated body, the in-plane phase difference Re 3 (550) of the third optical compensation layer 30 is preferably 40 nm or more, more preferably 60 nm or more; preferably 200 nm or less, more preferably 180 nm or less. , and more preferably 110 nm or less. In the second optical layered body, when Re 3 (550) is in the above range, the reflection brightness can be further reduced in the image display device. Furthermore, in the second optical laminated body, the angle between the absorption axis direction of the polarizing element 41 and the slow axis direction of the third optical compensation layer 30 is preferably 10° or more and 85° or less, more preferably 30° or more and 85°. ° or less, and more preferably 60° or more and 85° or less.

A-3. 第三光學積層體 一個實施方式中,第一光學補償層10之折射率特性顯示nz>nx=ny之關係,第二光學補償層20及第三光學補償層30各自之折射率特性顯示nx>ny≥nz之關係。有時將包含此種第一光學補償層、第二光學補償層及第三光學補償層之組合之光學積層體稱作第三光學積層體。 第三光學積層體中,更佳為第二光學補償層20及第三光學補償層30各自之折射率特性顯示nx>ny=nz之關係。當第一光學補償層、第二光學補償層及第三光學補償層為此種組合時,可以進一步降低圖像顯示裝置之反射亮度。 A-3. Third optical laminate In one embodiment, the refractive index characteristics of the first optical compensation layer 10 show the relationship nz>nx=ny, and the refractive index characteristics of the second optical compensation layer 20 and the third optical compensation layer 30 show the relationship nx>ny≥nz. . The optical laminated body including such a combination of the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer may be called a third optical laminated body. In the third optical laminated body, it is more preferable that the refractive index characteristics of each of the second optical compensation layer 20 and the third optical compensation layer 30 show the relationship of nx>ny=nz. When the first optical compensation layer, the second optical compensation layer and the third optical compensation layer are in this combination, the reflected brightness of the image display device can be further reduced.

第三光學積層體中,第一光學補償層10之厚度方向之相位差Rth 1(550)較佳為-180 nm以上,更佳為-140 nm以上;較佳為-10 nm以下,更佳為-80 nm以下,進而較佳為-100 nm以下。 第三光學積層體中,當Rth 1(550)為上述範圍時,於圖像顯示裝置中可以進一步降低反射亮度。 In the third optical layered body, the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer 10 is preferably -180 nm or more, more preferably -140 nm or more; preferably -10 nm or less, more preferably It is -80 nm or less, and it is more preferable that it is -100 nm or less. In the third optical layered body, when Rth 1 (550) is within the above range, the reflected brightness can be further reduced in the image display device.

第三光學積層體中,第二光學補償層20之面內相位差Re 2(550)較佳為40 nm以上,更佳為50 nm以上;較佳為180 nm以下,更佳為120 nm以下,進而較佳為90 nm以下。 第三光學積層體中,第二光學補償層20之厚度方向之相位差Rth 2(550)較佳為40 nm以上,更佳為50 nm以上;較佳為180 nm以下,更佳為120 nm以下,進而較佳為90 nm以下。 第三光學積層體中,當Re 2(550)及/或Rth 2(550)為上述範圍時,於圖像顯示裝置中可以進一步降低反射亮度。 又,第三光學積層體中,偏光元件41之吸收軸方向與第二光學補償層20之慢軸方向所成之角度較佳為5°以上且60°以下或者110°以上且170°以下,更佳為10°以上且50°以下,進而較佳為20°以上且40°以下。 In the third optical layered body, the in-plane phase difference Re 2 (550) of the second optical compensation layer 20 is preferably 40 nm or more, more preferably 50 nm or more; preferably 180 nm or less, more preferably 120 nm or less. , and more preferably 90 nm or less. In the third optical layered body, the phase difference Rth 2 (550) in the thickness direction of the second optical compensation layer 20 is preferably 40 nm or more, more preferably 50 nm or more; preferably 180 nm or less, more preferably 120 nm. or less, and more preferably 90 nm or less. In the third optical layered body, when Re 2 (550) and/or Rth 2 (550) is within the above range, the reflected brightness can be further reduced in the image display device. Furthermore, in the third optical layered body, the angle formed by the absorption axis direction of the polarizing element 41 and the slow axis direction of the second optical compensation layer 20 is preferably 5° or more and 60° or less, or 110° or more and 170° or less. More preferably, it is 10° or more and 50° or less, and still more preferably, it is 20° or more and 40° or less.

第三光學積層體中,第三光學補償層30之面內相位差Re 3(550)較佳為40 nm以上,更佳為60 nm以上,進而較佳為130 nm以上,尤佳為170 nm以上;較佳為195 nm以下。 第三光學積層體中,第三光學補償層30之厚度方向之相位差Rth 3(550)較佳為40 nm以上,更佳為60 nm以上,進而較佳為130 nm以上,尤佳為170 nm以上;較佳為210 nm以下,更佳為195 nm以下。 第三光學積層體中,當Re 3(550)及/或Rth 3(550)為上述範圍時,於圖像顯示裝置中可以更進一步降低反射亮度。 又,第三光學積層體中,偏光元件41之吸收軸方向與第三光學補償層30之慢軸方向所成之角度較佳為10°以上且70°以下或者95°以上且170°以下,更佳為110°以上且160°以下,進而較佳為130°以上且150°以下。 In the third optical laminated body, the in-plane phase difference Re 3 (550) of the third optical compensation layer 30 is preferably 40 nm or more, more preferably 60 nm or more, further preferably 130 nm or more, especially 170 nm. Above; preferably below 195 nm. In the third optical laminated body, the phase difference Rth 3 (550) in the thickness direction of the third optical compensation layer 30 is preferably 40 nm or more, more preferably 60 nm or more, further preferably 130 nm or more, and particularly preferably 170 nm. nm or more; preferably 210 nm or less, more preferably 195 nm or less. In the third optical layered body, when Re 3 (550) and/or Rth 3 (550) is within the above range, the reflected brightness can be further reduced in the image display device. Furthermore, in the third optical layered body, the angle formed by the absorption axis direction of the polarizing element 41 and the slow axis direction of the third optical compensation layer 30 is preferably 10° or more and 70° or less, or 95° or more and 170° or less. More preferably, it is 110° or more and 160° or less, and still more preferably, it is 130° or more and 150° or less.

以下,對構成光學積層體之各構件進行說明。Each member constituting the optical laminated body will be described below.

B. 偏光板 B-1. 偏光元件 作為偏光元件41,可以採用任意適當之偏光元件。例如,形成偏光元件之樹脂膜可以為單層之樹脂膜,亦可以為兩層以上之積層體。 B. Polarizing plate B-1. Polarizing element As the polarizing element 41, any appropriate polarizing element can be used. For example, the resin film forming the polarizing element may be a single-layer resin film or a laminate of two or more layers.

作為由單層之樹脂膜構成之偏光元件之具體例,可例舉:對聚乙烯醇(PVA)系膜、部分縮甲醛化PVA系膜、乙烯-乙酸乙烯酯共聚物系部分皂化膜等親水性高分子膜實施了利用碘、二色性染料等二色性物質之染色處理及延伸處理者;PVA之脫水處理物或聚氯乙烯之脫鹽酸處理物等多烯系配向膜等。從光學特性優異之方面考慮,可較佳地使用利用碘對PVA系膜進行染色並進行單軸延伸而獲得之偏光元件。Specific examples of polarizing elements composed of a single-layer resin film include hydrophilic polyvinyl alcohol (PVA)-based films, partially formalized PVA-based films, and ethylene-vinyl acetate copolymer-based partially saponified films. Polyene-based alignment films such as those that have been dyed and stretched using dichroic substances such as iodine and dichroic dyes; dehydrated PVA or dehydrochloric acid-treated polyvinyl chloride. From the viewpoint of excellent optical properties, a polarizing element obtained by dyeing a PVA-based film with iodine and uniaxially stretching it can be preferably used.

上述利用碘進行之染色例如藉由將PVA系膜浸漬於碘水溶液中來進行。上述單軸延伸之延伸倍率較佳為3倍以上且7倍以下。延伸可以於染色處理後進行,亦可以一邊染色一邊進行。又,還可以於延伸後進行染色。根據需要,對PVA系膜實施膨潤處理、交聯處理、洗淨處理、乾燥處理等。例如,藉由於染色前將PVA系膜浸漬於水中進行水洗,不僅可洗淨PVA系膜表面之污漬或抗黏連劑,亦可使PVA系膜膨潤而防止染色不均等。The above-mentioned dyeing with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution. The stretching ratio of the above-mentioned uniaxial stretching is preferably 3 times or more and 7 times or less. Extending can be performed after dyeing or while dyeing. Furthermore, dyeing may be performed after stretching. As necessary, the PVA film is subjected to swelling treatment, cross-linking treatment, cleaning treatment, drying treatment, etc. For example, by immersing the PVA film in water and washing it before dyeing, not only can stains or anti-adhesive agents on the surface of the PVA film be washed away, but the PVA film can also be swollen to prevent uneven dyeing.

作為使用積層體而獲得之偏光元件之具體例,可例舉:使用樹脂基材與積層於該樹脂基材上之PVA系樹脂層(PVA系樹脂膜)之積層體或樹脂基材與塗佈形成於該樹脂基材上之PVA系樹脂層之積層體所獲得之偏光元件。使用樹脂基材與塗佈形成於該樹脂基材上之PVA系樹脂層之積層體所獲得的偏光元件例如可藉由如下方式製作:將PVA系樹脂溶液塗佈於樹脂基材上,使其乾燥而於樹脂基材上形成PVA系樹脂層,而獲得樹脂基材與PVA系樹脂層之積層體;及對該積層體進行延伸及染色,將PVA系樹脂層製成偏光元件。本發明之一個實施方式中,較佳於樹脂基材之單側形成包含鹵化物及聚乙烯醇系樹脂之聚乙烯醇系樹脂層。關於延伸,就代表而言,包括將積層體浸漬於硼酸水溶液中來進行延伸。進而,延伸根據需要可進而包括於硼酸水溶液中進行延伸之前將積層體於高溫(例如95℃以上)下進行空中延伸。此外,於本發明之一個實施方式中,較佳將積層體供至藉由一邊於長度方向上進行搬送一邊進行加熱而使其於寬度方向上收縮2%以上的乾燥收縮處理。就代表性而言,本實施方式之製造方法包括對積層體依次實施空中輔助延伸處理、染色處理、水中延伸處理、及乾燥收縮處理。藉由導入輔助延伸,即便於熱塑性樹脂上塗佈PVA時,亦可提高PVA之結晶性,而能夠達成高光學特性。又,藉由同時事先提高PVA之配向性,於隨後之染色步驟或延伸步驟中浸漬於水中時,可防止PVA之配向性下降或者溶解等問題,而能夠達成高光學特性。進而,於將PVA系樹脂層浸漬於液體中時,與PVA系樹脂層不含鹵化物時相比,可以抑制聚乙烯醇分子之配向混亂及配向性之降低。藉此,可以提高經過染色處理及水中延伸處理等將積層體浸漬於液體中進行之處理步驟所獲得之偏光元件之光學特性。進而,藉由利用乾燥收縮處理使積層體於寬度方向上收縮,可以提高光學特性。所得之樹脂基材/偏光元件之積層體可直接使用(即,可將樹脂基材作為偏光元件之保護層),亦可自樹脂基材/偏光元件之積層體剝離樹脂基材,於該剝離面上根據目的積層任意適當之保護層來使用。此種偏光元件之製造方法之詳細情況例如記載於日本專利特開2012-73580號公報、日本專利第6470455號中。該等公報之全部記載作為參考被援引至本說明書中。Specific examples of polarizing elements obtained using a laminate include a laminate using a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and coating A polarizing element obtained by a laminate of PVA-based resin layers formed on the resin base material. A polarizing element obtained using a laminate of a resin base material and a PVA-based resin layer coated on the resin base material can be produced, for example, by applying a PVA-based resin solution to the resin base material. Drying to form a PVA-based resin layer on the resin base material to obtain a laminate of the resin base material and the PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer into a polarizing element. In one embodiment of the present invention, it is preferable to form a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin on one side of the resin base material. Stretching typically involves immersing the laminate in a boric acid aqueous solution and stretching it. Furthermore, the stretching may further include stretching the laminate in the air at a high temperature (for example, 95° C. or higher) before stretching in a boric acid aqueous solution, if necessary. Furthermore, in one embodiment of the present invention, it is preferable to subject the laminated body to a drying and shrinkage process in which the laminate is heated while being transported in the longitudinal direction to shrink the laminate by 2% or more in the width direction. Typically, the manufacturing method of this embodiment includes sequentially performing an air-assisted stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process on the laminate. By introducing auxiliary stretching, even when PVA is coated on thermoplastic resin, the crystallinity of PVA can be improved and high optical properties can be achieved. In addition, by improving the alignment of PVA in advance at the same time, when immersed in water in the subsequent dyeing step or stretching step, problems such as decrease in alignment or dissolution of PVA can be prevented, and high optical properties can be achieved. Furthermore, when the PVA-based resin layer is immersed in a liquid, compared with when the PVA-based resin layer does not contain a halide, the alignment disorder of polyvinyl alcohol molecules and the decrease in alignment can be suppressed. This can improve the optical properties of the polarizing element obtained by immersing the laminate in a liquid, such as dyeing treatment and water stretching treatment. Furthermore, by shrinking the laminated body in the width direction by drying and shrinking treatment, the optical properties can be improved. The obtained laminated body of the resin base material/polarizing element can be used directly (that is, the resin base material can be used as a protective layer of the polarizing element), or the resin base material can be peeled off from the laminated body of the resin base material/polarizing element. Use any suitable protective layer on the surface according to the purpose. Details of the manufacturing method of such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. All descriptions in these publications are incorporated by reference into this specification.

偏光元件之厚度例如為1 μm以上且80 μm以下,較佳為1 μm以上且15 μm以下,更佳為1 μm以上且12 μm以下,進而較佳為3 μm以上且12 μm以下,尤佳為3 μm以上且8 μm以下。只要偏光元件之厚度於此種範圍內,則可良好地抑制加熱時之捲縮,並可獲得良好之加熱時之外觀耐久性。The thickness of the polarizing element is, for example, 1 μm or more and 80 μm or less, preferably 1 μm or more and 15 μm or less, more preferably 1 μm or more and 12 μm or less, still more preferably 3 μm or more and 12 μm or less, especially preferably It is 3 μm or more and 8 μm or less. As long as the thickness of the polarizing element is within this range, curling during heating can be well suppressed and good appearance durability during heating can be obtained.

偏光元件較佳為於波長380 nm~780 nm中之任一波長下顯示出吸收二色性。偏光元件之單質透過率例如為41.5%以上且46.0%以下,較佳為43.0%以上且46.0%以下,更佳為44.5%以上且46.0%以下。偏光元件之偏光度較佳為97.0%以上,更佳為99.0%以上,進而較佳為99.9%以上。The polarizing element preferably exhibits absorption dichroism at any wavelength from 380 nm to 780 nm. The single-element transmittance of the polarizing element is, for example, 41.5% or more and 46.0% or less, preferably 43.0% or more and 46.0% or less, more preferably 44.5% or more and 46.0% or less. The polarization degree of the polarizing element is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.

B-2. 保護層 偏光板40還可以進而具備保護層。保護層係設置於偏光元件之至少一個面。圖示例中,偏光板40具備設置於偏光元件41之視認側一面之保護層42。 B-2. Protective layer The polarizing plate 40 may further include a protective layer. The protective layer is disposed on at least one surface of the polarizing element. In the illustrated example, the polarizing plate 40 includes a protective layer 42 provided on the viewing side of the polarizing element 41 .

保護層由可作為偏光元件之保護層使用之任意適當之膜形成。作為成為該膜主成分之材料之具體例,可例舉:三乙醯纖維素(TAC)等纖維素系樹脂;聚酯系、聚乙烯醇系、聚碳酸酯系、聚醯胺系、聚醯亞胺系、聚醚碸系、聚碸系、聚苯乙烯系、聚降𦯉烯系、聚烯烴系、(甲基)丙烯酸系、乙酸酯系等透明樹脂。又,亦可例舉:(甲基)丙烯酸系、胺基甲酸酯系、(甲基)丙烯酸胺基甲酸酯系、環氧系、矽酮系等熱硬化型樹脂或紫外線硬化型樹脂等。除此以外,例如亦可例舉矽氧烷系聚合物等玻璃質系聚合物。又,亦可使用日本專利特開2001-343529號公報(WO01/37007)所記載之聚合物膜。The protective layer is formed of any appropriate film that can be used as a protective layer of the polarizing element. Specific examples of materials that serve as the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC); polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyamide-based resins; Transparent resins include imine series, polyether series, polystyrene series, polystyrene series, polynorphenyl series, polyolefin series, (meth)acrylic series, acetate series, etc. Furthermore, thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be used. wait. In addition to these, glassy polymers such as siloxane polymers can also be used. In addition, the polymer film described in Japanese Patent Application Laid-Open No. 2001-343529 (WO01/37007) can also be used.

偏光板40於具備位於後述圖像顯示裝置最表面之保護層時,還可根據需要對該保護層實施硬塗處理、抗反射處理、抗黏處理、防眩光處理等表面處理。When the polarizing plate 40 has a protective layer located on the outermost surface of the image display device described below, the protective layer may also be subjected to surface treatments such as hard coating treatment, anti-reflection treatment, anti-stick treatment, and anti-glare treatment as needed.

保護層之厚度代表性地為5 mm以下,較佳為1 mm以下,更佳為1 μm以上且500 μm以下,進而較佳為5 μm以上且150 μm以下。再者,於實施有表面處理時,保護層之厚度係包括表面處理層之厚度在內之厚度。The thickness of the protective layer is typically 5 mm or less, preferably 1 mm or less, more preferably 1 μm or more and 500 μm or less, further preferably 5 μm or more and 150 μm or less. Furthermore, when surface treatment is performed, the thickness of the protective layer includes the thickness of the surface treatment layer.

C. 第一光學補償層 圖示例中,第一光學補償層10係相鄰地配置於偏光板40。更具體而言,第一光學補償層10係相鄰地配置於偏光元件41。本說明書中「相鄰地配置」係指直接積層、或者僅介由接著層(例如接著劑層或黏著劑層)積層。即,意指於偏光板40與第一光學補償層10之間不介存其他光學功能層。 第一光學補償層10之波長550 nm下之透光率較佳為80%以上,更佳為85%以上,進而較佳為90%以上。透光率之理論上限為100%,但由於會因空氣與相位差膜之折射率差而產生表面反射,故透光率能夠實現之上限大概為94%。 第一光學補償層10之厚度可以獲得所需光學特性之方式設定。第一光學補償層10之厚度代表性地為0.5 μm以上;代表性地為10 μm以下,較佳為8 μm以下,進而較佳為5 μm以下。 C. First optical compensation layer In the illustrated example, the first optical compensation layer 10 is arranged adjacent to the polarizing plate 40 . More specifically, the first optical compensation layer 10 is arranged adjacent to the polarizing element 41 . "Adjacently arranged" in this specification means being laminated directly or laminated only through an adhesive layer (for example, an adhesive layer or an adhesive layer). That is, it means that no other optical functional layer is interposed between the polarizing plate 40 and the first optical compensation layer 10 . The light transmittance of the first optical compensation layer 10 at a wavelength of 550 nm is preferably more than 80%, more preferably more than 85%, and further preferably more than 90%. The theoretical upper limit of light transmittance is 100%, but due to surface reflection due to the difference in refractive index between air and the retardation film, the upper limit of the achievable light transmittance is approximately 94%. The thickness of the first optical compensation layer 10 is set in such a way that desired optical properties can be obtained. The thickness of the first optical compensation layer 10 is typically 0.5 μm or more; typically it is 10 μm or less, preferably 8 μm or less, and further preferably 5 μm or less.

第一光學補償層10之折射率特性如上所述顯示nz>nx=ny之關係。顯示nz>nx=ny之折射率特性之層(膜)有時被稱作「正C板」等。 第一光學補償層10代表性地由包含固定成垂直配向之液晶材料之膜(以下為垂直配向液晶膜)構成。能夠垂直配向之液晶材料(液晶化合物)可以為液晶單體,亦可以為液晶聚合物。液晶材料(液晶化合物)較佳為具有聚合性,更佳為具有光聚合性。作為該液晶化合物之具體例,可例舉日本專利特開2002-333642號公報之[0020]~[0028]記載之液晶化合物。 The refractive index characteristics of the first optical compensation layer 10 show the relationship nz>nx=ny as described above. A layer (film) showing the refractive index characteristic of nz>nx=ny is sometimes called a "positive C plate" or the like. The first optical compensation layer 10 is typically composed of a film including a liquid crystal material fixed in a vertical alignment (hereinafter referred to as a vertical alignment liquid crystal film). The liquid crystal material (liquid crystal compound) capable of vertical alignment can be a liquid crystal monomer or a liquid crystal polymer. The liquid crystal material (liquid crystal compound) preferably has polymerizability, and more preferably has photopolymerizability. Specific examples of the liquid crystal compound include liquid crystal compounds described in Japanese Patent Application Laid-Open No. 2002-333642 [0020] to [0028].

作為此種垂直配向液晶膜之製備方法,可以採用任意適當之製備方法。例如,將包含液晶材料及溶劑之塗覆液塗覆於基材(例如樹脂基材)後,加熱塗膜,使液晶材料以液晶狀態垂直配向。之後,對垂直配向之液晶材料照射例如光(紫外線等),使液晶材料聚合或交聯,將液晶材料之配向性固定化。藉此,獲得垂直配向液晶膜。 又,藉由調整配向處理條件(加熱溫度、加熱時間),可以將第一光學補償層之Rth 1(550)調整至上述範圍。 加熱溫度例如為60℃以上,較佳為70℃以上;例如為300℃以下,較佳為200℃以下。加熱時間例如為10秒以上,較佳為20秒以上;例如為2小時以下,較佳為30分鐘以下。配向處理條件若為上述範圍,則可以穩定地形成垂直配向。 As a preparation method of such a vertically aligned liquid crystal film, any appropriate preparation method can be adopted. For example, after a coating liquid containing a liquid crystal material and a solvent is applied to a substrate (such as a resin substrate), the coating film is heated to vertically align the liquid crystal material in a liquid crystal state. Thereafter, the vertically aligned liquid crystal material is irradiated with light (ultraviolet, etc.) to polymerize or crosslink the liquid crystal material, thereby fixing the alignment of the liquid crystal material. Thereby, a vertically aligned liquid crystal film is obtained. In addition, by adjusting the alignment treatment conditions (heating temperature, heating time), Rth 1 (550) of the first optical compensation layer can be adjusted to the above range. The heating temperature is, for example, 60°C or higher, preferably 70°C or higher; for example, it is 300°C or lower, preferably 200°C or lower. The heating time is, for example, 10 seconds or more, preferably 20 seconds or more; for example, it is 2 hours or less, preferably 30 minutes or less. If the alignment treatment conditions are within the above range, vertical alignment can be stably formed.

D. 第二光學補償層 第二光學補償層20相對於第一光學補償層10配置於偏光板40之相反側。圖示例中,第二光學補償層20係相鄰地配置於第一光學補償層10。即,是指於第一光學補償層10與第二光學補償層20之間不介存其他光學功能層。 第二光學補償層20之波長550 nm下之透光率之範圍與上述第一光學補償層10之透光率之範圍相同。 第二光學補償層20之厚度可以獲得所需光學特性之方式設定。第二光學補償層20之厚度代表性地為1 μm以上,較佳為4 μm以上;代表性地為200 μm以下,較佳為150 μm以下,更佳為40 μm以下,進而較佳為30 μm以下。 D. Second optical compensation layer The second optical compensation layer 20 is disposed on the opposite side of the polarizing plate 40 relative to the first optical compensation layer 10 . In the illustrated example, the second optical compensation layer 20 is arranged adjacent to the first optical compensation layer 10 . That is, it means that no other optical functional layer is interposed between the first optical compensation layer 10 and the second optical compensation layer 20 . The range of the light transmittance of the second optical compensation layer 20 at a wavelength of 550 nm is the same as the range of the light transmittance of the first optical compensation layer 10 . The thickness of the second optical compensation layer 20 is set in such a way that desired optical properties can be obtained. The thickness of the second optical compensation layer 20 is typically 1 μm or more, preferably 4 μm or more; typically 200 μm or less, preferably 150 μm or less, more preferably 40 μm or less, and further preferably 30 μm or less. Below μm.

第二光學補償層20之折射率特性如上所述顯示nx>ny之關係,代表性地顯示nz≥nx>ny之關係或nx>ny≥nz之關係。有時將顯示nz=nx>ny之折射率特性之層(膜)稱作「負A板」等。有時將顯示nz>nx>ny之折射率特性之層(膜)稱作「正B板」等。有時將顯示nx>ny=nz之折射率特性之層(膜)稱作「正A板」等。有時將顯示nx>ny>nz之折射率特性之層(膜)稱作「負B板」等。 第二光學補償層20只要能夠獲得如上述之特性,則可以採用任意適當之材料。 The refractive index characteristic of the second optical compensation layer 20 shows the relationship of nx>ny as described above, and typically shows the relationship of nz≥nx>ny or the relationship of nx>ny≥nz. A layer (film) showing the refractive index characteristic of nz=nx>ny is sometimes called a "negative A plate" or the like. A layer (film) showing the refractive index characteristics of nz>nx>ny is sometimes called a "positive B plate" or the like. A layer (film) showing refractive index characteristics of nx>ny=nz is sometimes called "positive A plate" or the like. A layer (film) showing refractive index characteristics of nx>ny>nz is sometimes called a "negative B plate" or the like. The second optical compensation layer 20 can be made of any appropriate material as long as it can obtain the above characteristics.

D-1. 折射率特性顯示nz≥nx>ny之關係之第二光學補償層 當第二光學補償層20之折射率特性顯示nz≥nx>ny之關係時,第二光學補償層20代表性地由以熱塑性樹脂為主成分之高分子膜之延伸膜構成。作為該熱塑性樹脂,較佳為使用顯示負雙折射之聚合物。藉由使用顯示負雙折射之聚合物,可以簡便地獲得具有nz≥nx>ny之折射率橢球之相位差膜。此處,「顯示負雙折射」係指利用延伸等使聚合物配向時,其延伸方向之折射率相對地減小。換言之,係指與延伸方向正交之方向之折射率增大。作為顯示負雙折射之聚合物,例如可例舉將芳香環或羰基等極化各向異性大之化學鍵或官能基導入至側鏈之聚合物。具體地可例舉丙烯酸系樹脂、苯乙烯系樹脂、馬來醯亞胺系樹脂等。 D-1. The second optical compensation layer whose refractive index characteristics show the relationship nz≥nx>ny When the refractive index characteristic of the second optical compensation layer 20 shows the relationship nz≥nx>ny, the second optical compensation layer 20 is typically composed of an extended film of a polymer film containing thermoplastic resin as the main component. As the thermoplastic resin, it is preferable to use a polymer showing negative birefringence. By using a polymer showing negative birefringence, a retardation film having a refractive index ellipsoid of nz≥nx>ny can be easily obtained. Here, "showing negative birefringence" means that when the polymer is aligned by stretching or the like, the refractive index in the stretching direction is relatively reduced. In other words, it refers to the increase in the refractive index in the direction orthogonal to the extension direction. Examples of polymers showing negative birefringence include polymers in which chemical bonds or functional groups with large polarization anisotropy, such as aromatic rings or carbonyl groups, are introduced into side chains. Specific examples include acrylic resin, styrene resin, maleimide resin, and the like.

上述丙烯酸系樹脂例如可以藉由使丙烯酸酯系單體加成聚合來獲得。作為丙烯酸系樹脂,例如可例舉:聚甲基丙烯酸甲酯(PMMA)、聚甲基丙烯酸丁酯、聚甲基丙烯酸環己酯。The acrylic resin can be obtained, for example, by addition polymerization of an acrylate monomer. Examples of the acrylic resin include polymethyl methacrylate (PMMA), polybutyl methacrylate, and polycyclohexyl methacrylate.

上述苯乙烯系樹脂例如可藉由使苯乙烯系單體加成聚合來獲得。作為苯乙烯系單體,例如可例舉:苯乙烯、α-甲基苯乙烯、鄰甲基苯乙烯、對甲基苯乙烯、對氯苯乙烯、對硝基苯乙烯、對胺基苯乙烯、對羧基苯乙烯、對苯基苯乙烯、2,5-二氯苯乙烯、對第三丁基苯乙烯。The above-mentioned styrene-based resin can be obtained, for example, by addition polymerization of styrene-based monomers. Examples of the styrene-based monomer include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, p-chlorostyrene, p-nitrostyrene, and p-aminostyrene. , p-carboxystyrene, p-phenylstyrene, 2,5-dichlorostyrene, p-tert-butylstyrene.

上述馬來醯亞胺系樹脂例如可藉由使馬來醯亞胺系單體加成聚合來獲得。作為馬來醯亞胺系單體,例如可例舉:N-乙基馬來醯亞胺、N-環己基馬來醯亞胺、N-苯基馬來醯亞胺、N-(2-甲基苯基)馬來醯亞胺、N-(2-乙基苯基)馬來醯亞胺、N-(2-丙基苯基)馬來醯亞胺、N-(2-異丙基苯基)馬來醯亞胺、N-(2,6-二甲基苯基)馬來醯亞胺、N-(2,6-二丙基苯基)馬來醯亞胺、N-(2,6-二異丙基苯基)馬來醯亞胺、N-(2-甲基-6-乙基苯基)馬來醯亞胺、N-(2-氯苯基)馬來醯亞胺、N-(2,6-二氯苯基)馬來醯亞胺、N-(2-溴苯基)馬來醯亞胺、N-(2,6-二溴苯基)馬來醯亞胺、N-(2-聯苯基)馬來醯亞胺、N-(2-氰基苯基)馬來醯亞胺。The above-mentioned maleimide-based resin can be obtained, for example, by addition polymerization of a maleimide-based monomer. Examples of maleimide-based monomers include N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-(2- Methylphenyl)maleimide, N-(2-ethylphenyl)maleimide, N-(2-propylphenyl)maleimide, N-(2-isopropyl) phenyl)maleimide, N-(2,6-dimethylphenyl)maleimide, N-(2,6-dipropylphenyl)maleimide, N- (2,6-diisopropylphenyl)maleimide, N-(2-methyl-6-ethylphenyl)maleimide, N-(2-chlorophenyl)maleimide Imide, N-(2,6-dichlorophenyl)maleimide, N-(2-bromophenyl)maleimide, N-(2,6-dibromophenyl)maleimide Leimide, N-(2-biphenyl)maleimide, N-(2-cyanophenyl)maleimide.

於上述加成聚合中,還可以藉由於聚合後將側鏈取代、或者進行馬來醯亞胺化或接枝化反應等來控制所得樹脂之雙折射特性。In the above-mentioned addition polymerization, the birefringence characteristics of the obtained resin can also be controlled by substituting side chains after polymerization, or performing maleyl imidization or grafting reactions.

上述顯示負雙折射之聚合物還可以共聚其他單體。藉由共聚其他單體,可以改善脆性或成形加工性、耐熱性。作為所述其他單體,例如可例舉:乙烯、丙烯、1-丁烯、1,3-丁二烯、2-甲基-1-丁烯、2-甲基-1-戊烯、1-己烯等烯烴;丙烯腈;丙烯酸甲酯、甲基丙烯酸甲酯等(甲基)丙烯酸酯;馬來酸酐;乙酸乙烯酯等乙烯基酯。The above-mentioned polymer showing negative birefringence can also be copolymerized with other monomers. By copolymerizing other monomers, brittleness, formability, and heat resistance can be improved. Examples of the other monomer include: ethylene, propylene, 1-butene, 1,3-butadiene, 2-methyl-1-butene, 2-methyl-1-pentene, 1 -Olefins such as hexene; acrylonitrile; (meth)acrylates such as methyl acrylate and methyl methacrylate; maleic anhydride; vinyl esters such as vinyl acetate.

當上述顯示負雙折射之聚合物為上述苯乙烯系單體與上述其他單體之共聚物時,苯乙烯系單體之調配率較佳為50莫耳%~80莫耳%。上述顯示負雙折射之聚合物為上述馬來醯亞胺系單體與上述其他單體之共聚物時,馬來醯亞胺系單體之調配率較佳為2莫耳%~50莫耳%。藉由以此種範圍進行調配,可以獲得韌性及成形加工性優異之高分子膜。When the polymer showing negative birefringence is a copolymer of the above styrenic monomer and the above other monomer, the blending rate of the styrenic monomer is preferably 50 mol% to 80 mol%. When the polymer showing negative birefringence is a copolymer of the above-mentioned maleimide monomer and the above-mentioned other monomer, the blending rate of the maleimine monomer is preferably 2 mol% to 50 mol%. %. By blending within this range, a polymer film excellent in toughness and formability can be obtained.

作為上述顯示負雙折射之聚合物,可較佳地使用苯乙烯-馬來酸酐共聚物、苯乙烯-丙烯腈共聚物、苯乙烯-(甲基)丙烯酸酯共聚物、苯乙烯-馬來醯亞胺共聚物、乙烯基酯-馬來醯亞胺共聚物、烯烴-馬來醯亞胺共聚物等。其等可單獨使用或者組合使用2種以上。該等聚合物可以顯示高之負雙折射且耐熱性優異。該等聚合物例如可以從Nova Chemical Japan或荒川化學工業股份有限公司獲得。As the polymer showing negative birefringence, styrene-maleic anhydride copolymer, styrene-acrylonitrile copolymer, styrene-(meth)acrylate copolymer, styrene-maleic anhydride copolymer can be preferably used. Imine copolymer, vinyl ester-maleimine copolymer, olefin-maleimine copolymer, etc. These can be used individually or in combination of 2 or more types. These polymers can exhibit high negative birefringence and have excellent heat resistance. Such polymers are available from Nova Chemical Japan or Arakawa Chemical Industry Co., Ltd., for example.

作為上述顯示負雙折射之聚合物,亦可較佳地使用具有下述通式(I)所示之重複單元之聚合物。此種聚合物可以顯示更高之負雙折射且耐熱性、機械強度更優異。此種聚合物例如可以藉由使用N-苯基取代馬來醯亞胺來獲得,該N-苯基取代馬來醯亞胺係導入了至少於鄰位具有取代基之苯基作為起始原料之馬來醯亞胺系單體之N取代基而成。 [化1] As the polymer showing negative birefringence, a polymer having a repeating unit represented by the following general formula (I) can also be preferably used. This kind of polymer can show higher negative birefringence and has better heat resistance and mechanical strength. Such a polymer can be obtained, for example, by using N-phenyl-substituted maleimide, which introduces at least a phenyl group having a substituent at the ortho position as a starting material. It is formed from the N substituent of the maleimide monomer. [Chemical 1]

上述通式(I)中,R 1~R 5各自獨立地表示氫、鹵原子、羧酸、羧酸酯、羥基、硝基、或者碳數為1~8之直鏈或支鏈烷基或者烷氧基(其中R 1及R 5不同時為氫原子),R 6及R 7表示氫或者碳數為1~8之直鏈或支鏈烷基或者烷氧基,n表示2以上之整數。 In the above general formula (I), R 1 to R 5 each independently represent hydrogen, a halogen atom, a carboxylic acid, a carboxylic acid ester, a hydroxyl group, a nitro group, or a linear or branched alkyl group having 1 to 8 carbon atoms, or Alkoxy group (where R 1 and R 5 are not hydrogen atoms at the same time), R 6 and R 7 represent hydrogen or a straight-chain or branched alkyl group or alkoxy group with a carbon number of 1 to 8, n represents an integer above 2 .

作為上述顯示負雙折射之聚合物並不限定於上述,例如還可以使用如日本專利特開2005-350544號公報等中所揭示之環狀烯烴系共聚物。進而,還可以較佳地使用日本專利特開2005-156862號公報、日本專利特開2005-227427號公報等中所揭示之包含聚合物及無機微粒子之組合物。又,作為顯示負雙折射之聚合物,可以單獨地使用1種,還可以混合使用2種以上。進而,還可以藉由共聚、分枝、交聯、分子末端修飾(或封端)及立體規則改性等對其等進行改性而使用。The polymer showing negative birefringence is not limited to the above. For example, a cyclic olefin copolymer disclosed in Japanese Patent Application Laid-Open No. 2005-350544 and the like can also be used. Furthermore, a composition containing a polymer and inorganic fine particles disclosed in Japanese Patent Laid-Open No. 2005-156862, Japanese Patent Laid-Open No. 227427, etc. can also be preferably used. In addition, as a polymer showing negative birefringence, one type may be used alone, or two or more types may be mixed and used. Furthermore, they can also be used by modifying them by copolymerization, branching, cross-linking, molecular terminal modification (or capping), stereoregular modification, etc.

作為此種高分子膜之成形方法,可以採用任意適當之成形方法。成形條件可以根據所用樹脂之組成或種類、成形加工法等適當設定。As a method of forming such a polymer film, any appropriate forming method can be used. Molding conditions can be appropriately set depending on the composition or type of resin used, the molding processing method, etc.

對應於折射率特性顯示nz≥nx>ny之關係之第二光學補償層之相位差膜(延伸膜)可以藉由於任意之適當延伸條件下對上述高分子膜進行延伸來獲得。 作為延伸方法之具體例,可例舉:縱向單軸延伸法、橫向單軸延伸法、縱橫逐次雙軸延伸法、縱橫同時雙軸延伸法。可較佳地使用縱向單軸延伸法、縱橫逐次雙軸延伸法、縱橫同時雙軸延伸法。對於上述顯示負雙折射之聚合物而言,由於如上所述,延伸方向之折射率相對地減小,故而於為縱向單軸延伸法時,於高分子膜之搬送方向上具有快軸(與搬送方向正交之方向之折射率變為nx)。為縱橫逐次雙軸延伸法、縱橫同時雙軸延伸法時,根據縱、橫之延伸倍率之比,搬送方向、寬度方向均可成為慢軸。具體而言,當相對地增大縱(搬送)方向之延伸倍率時,橫(寬度)方向變為慢軸,當相對地增大橫(寬度)方向之延伸倍率時,縱(搬送)方向變為慢軸。 The retardation film (stretched film) of the second optical compensation layer corresponding to the refractive index characteristic showing the relationship nz≥nx>ny can be obtained by stretching the above-mentioned polymer film under any appropriate stretching conditions. Specific examples of the stretching method include a longitudinal uniaxial stretching method, a transverse uniaxial stretching method, a longitudinal and transverse sequential biaxial stretching method, and a longitudinal and transverse simultaneous biaxial stretching method. The longitudinal uniaxial stretching method, the longitudinal and transverse sequential biaxial stretching method, and the longitudinal and transverse simultaneous biaxial stretching method can be preferably used. For the above-mentioned polymer showing negative birefringence, since the refractive index in the stretching direction is relatively reduced as described above, when the longitudinal uniaxial stretching method is used, it has a fast axis in the conveying direction of the polymer film (with The refractive index in the direction orthogonal to the transport direction becomes nx). In the case of the longitudinal and transverse sequential biaxial stretching method or the longitudinal and transverse simultaneous biaxial stretching method, both the conveying direction and the width direction can become the slow axis according to the ratio of the longitudinal and transverse stretching magnifications. Specifically, when the stretch ratio in the longitudinal (conveyance) direction is relatively increased, the transverse (width) direction becomes the slow axis. When the stretch ratio in the transverse (width) direction is relatively increased, the longitudinal (conveyance) direction becomes the slow axis. is the slow axis.

又,藉由調整高分子膜之厚度(原片厚度)、延伸溫度及延伸倍率,可將第二光學補償層之Re 2(550)及Rth 2(550)調整至上述範圍。 高分子膜之厚度(原片厚度)代表性地為5 μm以上,較佳為10 μm以上;代表性地為50 μm以下,較佳為40 μm以下。 延伸溫度(延伸高分子膜時之延伸烘箱內之溫度)較佳為高分子膜之玻璃轉移溫度(Tg)附近。具體而言,較佳為(Tg-10)℃~(Tg+30)℃,進而較佳為Tg~(Tg+25)℃,特佳為(Tg+5)℃~(Tg+20)℃。當延伸溫度過低時,有相位差值或慢軸之方向變得不均勻、或者高分子膜發生結晶化(白濁)之虞。另一方面,當延伸溫度過高時,有高分子膜熔解、或相位差之顯現變得不足之虞。延伸溫度代表性地為120℃以上且170℃以下。再者,玻璃轉移溫度可以根據JISK7121-1987利用DSC法求出。 延伸倍率可以根據高分子膜之組成、揮發性成分等之種類、揮發性成分等之殘留量、所需之相位差值等設定為任意適當之值。較佳為1.1倍以上且3.0倍以下。又,延伸時之進給速度從延伸裝置之機械精度、穩定性等觀點出發,較佳為0.5 m/分鐘~20 m/分鐘。 In addition, by adjusting the thickness of the polymer film (original film thickness), stretching temperature, and stretching ratio, Re 2 (550) and Rth 2 (550) of the second optical compensation layer can be adjusted to the above ranges. The thickness of the polymer film (original sheet thickness) is typically 5 μm or more, preferably 10 μm or more; typically it is 50 μm or less, preferably 40 μm or less. The stretching temperature (the temperature in the stretching oven when stretching the polymer film) is preferably near the glass transition temperature (Tg) of the polymer film. Specifically, (Tg-10)°C to (Tg+30)°C is preferred, Tg to (Tg+25)°C is more preferred, and (Tg+5)°C to (Tg+20)°C is particularly preferred. When the stretching temperature is too low, the phase difference value or the direction of the slow axis may become uneven, or the polymer film may crystallize (white turbidity). On the other hand, when the stretching temperature is too high, the polymer film may melt or the phase difference may become insufficiently expressed. The elongation temperature is typically 120°C or more and 170°C or less. In addition, the glass transition temperature can be calculated|required by the DSC method based on JISK7121-1987. The stretching ratio can be set to any appropriate value according to the composition of the polymer film, the type of volatile components, the residual amount of volatile components, etc., the required phase difference value, etc. Preferably it is 1.1 times or more and 3.0 times or less. In addition, the feed speed during stretching is preferably 0.5 m/min to 20 m/min from the viewpoint of mechanical accuracy and stability of the stretching device.

以上,對使用顯示負雙折射之聚合物獲得相位差膜之方法進行了敍述,但相位差膜亦可以使用顯示正雙折射之聚合物獲得。作為使用顯示正雙折射之聚合物獲得相位差膜之方法,例如可以使用日本專利特開2000-231016號公報、日本專利特開2000-206328號公報、日本專利特開2002-207123號公報中所揭示之增大厚度方向之折射率的延伸方法。具體地可例舉於含有顯示正雙折射之聚合物之膜之單面或兩面上接著熱收縮性膜並進行加熱處理之方法。於因加熱處理產生之熱收縮性膜之收縮力之作用下使該膜收縮,藉由使該膜之長度方向及寬度方向收縮,可以增大厚度方向之折射,可以獲得具有nz>nx>ny之折射率橢球之相位差膜。The method of obtaining a retardation film using a polymer showing negative birefringence has been described above, but the retardation film can also be obtained using a polymer showing positive birefringence. As a method of obtaining a retardation film using a polymer showing positive birefringence, for example, those disclosed in Japanese Patent Laid-Open Nos. 2000-231016, 2000-206328, and 2002-207123 can be used. An extension method for increasing the refractive index in the thickness direction is disclosed. A specific example is a method of attaching a heat shrinkable film to one or both sides of a film containing a polymer showing positive birefringence and subjecting it to heat treatment. By shrinking the heat-shrinkable film in the length direction and width direction due to the shrinkage force generated by the heat treatment, the refraction in the thickness direction can be increased, and nz>nx>ny can be obtained. The retardation film of the refractive index ellipsoid.

如上所述,折射率特性顯示nz≥nx>ny之關係之第二光學補償層即便使用顯示負之任一種雙折射之聚合物亦可進行製造。一般來說,當使用顯示正雙折射之聚合物時,於可供選擇之聚合物之種類多之方面具有優點,當使用顯示負雙折射之聚合物時,與使用顯示正雙折射之聚合物之情況相比,由於其延伸方法,於可簡便地獲得慢軸方向之均勻性優異之相位差膜之方面具有優點。As described above, the second optical compensation layer having a refractive index characteristic showing the relationship nz≥nx>ny can be produced using any polymer showing negative birefringence. Generally speaking, when using a polymer showing positive birefringence, there is an advantage in the wide variety of polymers to choose from. When using a polymer showing negative birefringence, it is better to use a polymer showing positive birefringence. Compared with this case, the stretching method has an advantage in that a retardation film with excellent uniformity in the slow axis direction can be easily obtained.

D-2. 折射率特性顯示nx>ny≥nz之關係之第二光學補償層 當第二光學補償層20之折射率特性顯示nx>ny≥nz之關係時,第二光學補償層20代表性地由相位差膜(高分子膜之延伸膜)構成。作為形成高分子膜之樹脂,可以採用任意適當之樹脂。作為具體例,可例舉降𦯉烯系樹脂、聚碳酸酯系樹脂、纖維素系樹脂、聚乙烯醇系樹脂、聚碸系樹脂等構成正雙折射膜之樹脂。其中,較佳為降𦯉烯系樹脂、聚碳酸酯系樹脂。 D-2. The second optical compensation layer whose refractive index characteristics show the relationship nx>ny≥nz When the refractive index characteristic of the second optical compensation layer 20 shows the relationship nx>ny≥nz, the second optical compensation layer 20 is typically composed of a retardation film (an extended film of a polymer film). As the resin forming the polymer film, any appropriate resin can be used. Specific examples include resins constituting a positive birefringence film such as nordecene-based resin, polycarbonate-based resin, cellulose-based resin, polyvinyl alcohol-based resin, and polyurethane-based resin. Among them, nordecene-based resins and polycarbonate-based resins are preferred.

上述降𦯉烯系樹脂係以降𦯉烯系單體作為聚合單元進行聚合之樹脂。作為所述降𦯉烯系單體,例如可例舉:降𦯉烯及其烷基及/或亞烷基取代物,例如5-甲基-2-降𦯉烯、5-二甲基-2-降𦯉烯、5-乙基-2-降𦯉烯、5-丁基-2-降𦯉烯、5-亞乙基-2-降𦯉烯等其等之鹵素等極性基取代物;二環戊二烯、2,3-二氫二環戊二烯等;二甲橋八氫萘、其烷基及/或亞烷基取代物、及鹵素等極性基取代物,例如6-甲基-1,4:5,8-二甲橋基-1,4,4a,5,6,7,8,8a-八氫萘、6-乙基-1,4:5,8-二甲橋基-1,4,4a,5,6,7,8,8a-八氫萘、6-亞乙基-1,4:5,8-二甲橋基-1,4,4a,5,6,7,8,8a-八氫萘、6-氯-1,4:5,8-二甲橋基-1,4,4a,5,6,7,8,8a-八氫萘、6-氰基-1,4:5,8-二甲橋基-1,4,4a,5,6,7,8,8a-八氫萘、6-吡啶基-1,4:5,8-二甲橋基-1,4,4a,5,6,7,8,8a-八氫萘、6-甲氧基羰基-1,4:5,8-二甲橋基-1,4,4a,5,6,7,8,8a-八氫萘等;環戊二烯之三聚體~四聚體,例如4,9:5,8-二甲橋基-3a,4,4a,5,8,8a,9,9a-八氫-1H-芴、4,11:5,10:6,9-三甲橋基-3a,4,4a,5,5a,6,9,9a,10,10a,11,11a-十二氫-1H-環戊并蒽。上述降𦯉烯系樹脂還可以為降𦯉烯系單體與其他單體之共聚物。The above-mentioned norvinyl-based resin is a resin polymerized with a nordecene-based monomer as a polymerization unit. Examples of the norridene-based monomer include: norphenylene and its alkyl and/or alkylene substituents, such as 5-methyl-2-norphenylene, 5-dimethyl-2 -Norridene, 5-ethyl-2-norphenylene, 5-butyl-2-norphenylene, 5-ethylidene-2-norphenylene, and other halogen and other polar substituents; di Cyclopentadiene, 2,3-dihydrodicyclopentadiene, etc.; dimethyloctahydronaphthalene, its alkyl and/or alkylene substituents, and halogen and other polar substituents, such as 6-methyl -1,4:5,8-dimethyl bridge-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-ethyl-1,4:5,8-dimethyl bridge Base-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-ethylene-1,4:5,8-dimethyl bridge base-1,4,4a,5,6 ,7,8,8a-octahydronaphthalene, 6-chloro-1,4:5,8-dimethyl bridge-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6- Cyano-1,4:5,8-dimethyl bridge-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-pyridyl-1,4:5,8-di Methyl bridge-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-methoxycarbonyl-1,4:5,8-dimethyl bridge-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, etc.; trimers to tetramers of cyclopentadiene, such as 4,9:5,8-dimethyl bridge-3a,4,4a,5, 8,8a,9,9a-octahydro-1H-fluorene, 4,11:5,10:6,9-trimethyl bridge-3a,4,4a,5,5a,6,9,9a,10,10a ,11,11a-dodecahydro-1H-cyclopentanthracene. The above-mentioned norvinyl resin may also be a copolymer of a norvinyl monomer and other monomers.

上述聚碳酸酯系樹脂例如包含:來自於茀系二羥基化合物之結構單元;來自於異山梨醇系二羥基化合物之結構單元;及來自於選自由脂環式二醇、脂環式二甲醇、二乙二醇、三乙二醇或聚乙二醇、以及伸烷基二醇或螺二醇所組成之群中之至少1種二羥基化合物之結構單元。聚碳酸酯系樹脂較佳為包含來自於茀系二羥基化合物之結構單元、來自於異山梨醇系二羥基化合物之結構單元、及來自於螺二醇之結構單元。聚碳酸酯系樹脂還可以根據需要包含來自於其他二羥基化合物之結構單元。再者,本發明中可較佳使用之聚碳酸酯系樹脂之詳細情況例如記載於日本專利特開2014-10291號公報、日本專利特開2014-26266號公報、日本專利特開2015-212816號公報、日本專利特開2015-212817號公報、日本專利特開2015-212818號公報中,該記載作為參考被援引至本說明書中。The above-mentioned polycarbonate resin contains, for example: a structural unit derived from a fluorine-based dihydroxy compound; a structural unit derived from an isosorbide-based dihydroxy compound; and a structural unit derived from an alicyclic diol, alicyclic dimethanol, The structural unit of at least one dihydroxy compound in the group consisting of diethylene glycol, triethylene glycol or polyethylene glycol, and alkylene glycol or spiro glycol. The polycarbonate resin preferably contains a structural unit derived from a fluorine-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from spirodiol. The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Furthermore, details of the polycarbonate-based resin that can be preferably used in the present invention are described in, for example, Japanese Patent Application Laid-Open No. 2014-10291, Japanese Patent Application Laid-Open No. 2014-26266, and Japanese Patent Application Laid-Open No. 2015-212816 The descriptions in the publications, Japanese Patent Application Laid-Open No. 2015-212817 and Japanese Patent Application Laid-Open No. 2015-212818 are incorporated by reference in this specification.

對應於折射率特性顯示nx>ny≥nz關係之第二光學補償層之相位差膜(延伸膜)可以藉由於任意適當之延伸條件下對上述高分子膜進行延伸來獲得。具體而言,藉由適當選擇聚合物之種類、延伸條件(例如延伸溫度、延伸倍率、延伸方向)、延伸方法(例如縱向單軸延伸),可獲得具有上述所需之光學特性(例如折射率特性、面內相位差、厚度方向之相位差)之相位差膜(第二光學補償層)。特別是藉由調整高分子膜之厚度(原片厚度)、延伸溫度及延伸倍率,可以將第二光學補償層之Re 2(550)及Rth 2(550)調整至上述範圍。 高分子膜之厚度(原片厚度)代表性地為5 μm以上,較佳為10 μm以上;代表性地為210 μm以下,較佳為160 μm以下,更佳為50 μm以下,進而較佳為40 μm以下。 延伸溫度較佳為120℃以上且170℃以下,更佳為130℃以上且160℃以下。延伸倍率較佳為1.1倍~3.0倍,更佳為1.3倍~2.0倍。 The retardation film (stretched film) of the second optical compensation layer corresponding to the refractive index characteristic showing the relationship nx>ny≥nz can be obtained by stretching the above-mentioned polymer film under any appropriate stretching conditions. Specifically, by appropriately selecting the type of polymer, stretching conditions (such as stretching temperature, stretching ratio, stretching direction), and stretching method (such as longitudinal uniaxial stretching), it is possible to obtain the above-mentioned required optical properties (such as refractive index). Characteristics, in-plane retardation, thickness direction retardation) retardation film (second optical compensation layer). In particular, by adjusting the thickness of the polymer film (original film thickness), stretching temperature and stretching ratio, Re 2 (550) and Rth 2 (550) of the second optical compensation layer can be adjusted to the above range. The thickness of the polymer film (original sheet thickness) is typically 5 μm or more, preferably 10 μm or more; typically 210 μm or less, preferably 160 μm or less, more preferably 50 μm or less, and still more preferably is below 40 μm. The elongation temperature is preferably from 120°C to 170°C, more preferably from 130°C to 160°C. The extension ratio is preferably 1.1 times to 3.0 times, more preferably 1.3 times to 2.0 times.

E. 第三光學補償層 第三光學補償層30相對於第二光學補償層20配置於第一光學補償層10之相反側。圖示例中,第三光學補償層30相鄰地配置於第二光學補償層20。即,意指於第二光學補償層20與第三光學補償層30之間不介存其他光學功能層。 第三光學補償層30之波長550 nm下之透光率之範圍與上述第一光學補償層10之透光率之範圍相同。 第三光學補償層30之厚度可以獲得所需光學特性之方式設定。第三光學補償層30之厚度代表性地為1 μm以上,較佳為4 μm以上;代表性地為200 μm以下,較佳為150 μm以下,更佳為40 μm以下,較佳為30 μm以下。 E. Third optical compensation layer The third optical compensation layer 30 is arranged on the opposite side of the first optical compensation layer 10 relative to the second optical compensation layer 20 . In the illustrated example, the third optical compensation layer 30 is arranged adjacent to the second optical compensation layer 20 . That is, it means that no other optical functional layer is interposed between the second optical compensation layer 20 and the third optical compensation layer 30 . The range of the light transmittance at a wavelength of 550 nm of the third optical compensation layer 30 is the same as the range of the light transmittance of the above-mentioned first optical compensation layer 10 . The thickness of the third optical compensation layer 30 is set in such a way that required optical properties can be obtained. The thickness of the third optical compensation layer 30 is typically 1 μm or more, preferably 4 μm or more; typically 200 μm or less, preferably 150 μm or less, more preferably 40 μm or less, preferably 30 μm. the following.

第三光學補償層30之折射率特性如上所述,顯示nx>ny之關係,代表性地顯示nz≥nx>ny之關係或nx>ny≥nz之關係。 當第三光學補償層30之折射率特性顯示nz≥nx>ny之關係時,第三光學補償層30與上述D-1項中說明之第二光學補償層(折射率特性:nz≥nx>ny)同樣地形成。 當第三光學補償層30之折射率特性顯示nx>ny≥nz之關係時,第三光學補償層30與上述D-2項中說明之第二光學補償層(折射率特性:nx>ny≥nz)同樣地形成。 The refractive index characteristics of the third optical compensation layer 30 are as described above and show the relationship nx>ny, and typically show the relationship nz≥nx>ny or nx>ny≥nz. When the refractive index characteristics of the third optical compensation layer 30 show the relationship nz≥nx>ny, the third optical compensation layer 30 and the second optical compensation layer described in the above item D-1 (refractive index characteristics: nz≥nx> ny) are formed similarly. When the refractive index characteristics of the third optical compensation layer 30 show the relationship nx>ny≥nz, the third optical compensation layer 30 and the second optical compensation layer described in the above item D-2 (refractive index characteristics: nx>ny≥ nz) are formed similarly.

F. 圖像顯示裝置 上述A項~E項中記載之光學積層體可以應用於圖像顯示裝置。因此,本發明之一個實施方式還包含使用了此種光學積層體之圖像顯示裝置。作為圖像顯示裝置之代表例,可例舉液晶顯示裝置、有機EL顯示裝置。特別是,上述光學積層體由於可以降低圖像顯示裝置之反射亮度,故而可以較佳地應用於有機EL顯示裝置。本發明實施方式之圖像顯示裝置具備圖像顯示單元及上述A項~E項中記載之光學積層體。代表性地,圖像顯示裝置具備包含圖像顯示單元之圖像顯示面板及配置於其視認側之上述光學積層體。再者,有時將圖像顯示裝置稱作光學顯示裝置,有時將圖像顯示面板稱作光學顯示面板,有時將圖像顯示單元稱作光學顯示單元。 實施例 F. Image display device The optical laminated body described in the above-mentioned items A to E can be applied to an image display device. Therefore, one embodiment of the present invention also includes an image display device using such an optical layered body. Representative examples of image display devices include liquid crystal display devices and organic EL display devices. In particular, the above-mentioned optical laminate can reduce the reflected brightness of the image display device, so it can be preferably applied to the organic EL display device. An image display device according to an embodiment of the present invention includes an image display unit and the optical laminate described in items A to E above. Typically, the image display device includes an image display panel including an image display unit and the above-mentioned optical layered body disposed on the viewing side. Furthermore, the image display device is sometimes called an optical display device, the image display panel is sometimes called an optical display panel, and the image display unit is sometimes called an optical display unit. Example

以下,藉由實施例具體地説明本發明,但本發明並不受該等實施例限定。各特性之測定方法如下所述。Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples. The measurement method of each characteristic is as follows.

(1)相位差值之測定 使用王子計測製造之KOBRA-WPR,對實施例及比較例中所使用之第一光學補償層、第二光學補償層及第三光學補償層之相位差值進行了自動測量。測定波長為450 nm或550 nm,測定溫度為23℃。 (2)反射亮度(亮度) 對於實施例及比較例中所獲得之圖像顯示裝置之反射亮度,利用亮度計(Instrument Systems公司製造,商品名「DMS505」),於極角60°下每隔方位角5°來測定亮度(單位:cd/m 2),將其最大值作為反射亮度。將其結果示於表1~表4中。 (1) Measurement of phase difference values The phase difference values of the first optical compensation layer, the second optical compensation layer and the third optical compensation layer used in the examples and comparative examples were measured using KOBRA-WPR manufactured by Oji Instruments. Automatic measurement. The measurement wavelength is 450 nm or 550 nm, and the measurement temperature is 23°C. (2) Reflection brightness (brightness) The reflection brightness of the image display devices obtained in the Examples and Comparative Examples was measured at intervals of 60° at a polar angle using a luminance meter (manufactured by Instrument Systems, trade name "DMS505"). The brightness (unit: cd/m 2 ) was measured at an azimuth angle of 5°, and the maximum value was taken as the reflected brightness. The results are shown in Tables 1 to 4.

<折射率特性為nz>nx=ny之相位差膜(正C板)之製作> <<製造例1>> 將下述化學式(II)(式中之數字65及35表示單體單元之莫耳%,為了方便以嵌段聚合物表示:重量平均分子量為5000)所示之側鏈型液晶聚合物20質量份、顯示向列型液晶相之聚合性液晶(BASF公司製造:商品名PaliocolorLC242)80質量份及光聚合起始劑(Ciba Specialty Chemicals公司製造:商品名Irgacure 907)5質量份溶解於環戊酮200質量份中,製備液晶塗覆液。 [化2] 然後,利用棒塗機將該塗覆液塗覆於基材膜(降𦯉烯系樹脂膜:日本Zeon公司製造、商品名「ZEONEX」)上後,於80℃下加熱乾燥4分鐘,藉此使液晶配向。藉由對該液晶層照射紫外線,使液晶層硬化,而於基材上形成相位差膜(厚度為:1 μm)。 如此獲得之相位差膜之折射率特性顯示nz>nx=ny之關係。將相位差膜(正C板)之面內相位差Re(550)及厚度為方向之相位差Rth(550)示於表1~表4中。 <<製造例2~8>> 以厚度方向之相位差Rth(550)成為表1~表4所示之值之方式變更配向處理條件,除此以外,與製造例1同樣地獲得相位差膜(正C板)。 <Preparation of retardation film (positive C plate) with refractive index characteristics nz>nx=ny><<Manufacturing Example 1>> The following chemical formula (II) (numbers 65 and 35 in the formula represent the monomer units) %, expressed as a block polymer for convenience: 20 parts by mass of a side chain liquid crystal polymer shown with a weight average molecular weight of 5000) and a polymerizable liquid crystal showing a nematic liquid crystal phase (manufactured by BASF: trade name PaliocolorLC242) 80 parts by mass and 5 parts by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: trade name Irgacure 907) were dissolved in 200 parts by mass of cyclopentanone to prepare a liquid crystal coating liquid. [Chemicalization 2] Then, the coating liquid was coated on the base film (norphene-based resin film: manufactured by Zeon Corporation of Japan, trade name "ZEONEX") using a bar coater, and then heated and dried at 80° C. for 4 minutes. Align the liquid crystal. By irradiating the liquid crystal layer with ultraviolet rays, the liquid crystal layer is hardened and a retardation film (thickness: 1 μm) is formed on the base material. The refractive index characteristics of the retardation film thus obtained show the relationship of nz>nx=ny. The in-plane phase difference Re (550) of the retardation film (positive C plate) and the phase difference Rth (550) in the thickness direction are shown in Tables 1 to 4. <<Manufacturing Examples 2 to 8>>A retardation film was obtained in the same manner as in Manufacturing Example 1, except that the alignment treatment conditions were changed so that the retardation Rth (550) in the thickness direction became the values shown in Tables 1 to 4. (Positive C plate).

<折射率特性為nz=nx>ny之相位差膜(負A板)之製作> 《製造例9》 使用單軸擠出機及T模頭,於270℃下擠出苯乙烯-馬來酸酐共聚物(NOVA Chemicals Japan公司製造、商品名「Dylark D232」)之顆粒狀樹脂,利用冷卻滾筒對片材狀之熔融樹脂進行冷卻,獲得厚度為40 μm之膜。使用輥延伸機,於溫度130℃、延伸倍率1.1倍下將該膜於搬送方向上進行縱向延伸,獲得於搬送方向上具有快軸之相位差膜。 如此獲得之相位差膜之折射率特性顯示nz=nx>ny之關係。將相位差膜(負A板)之面內相位差Re(550)、厚度方向之相位差Rth(550)及Re(450)/Re(550)示於表1及表2中。 《製造例10~16》 將與製造例9同樣地獲得之延伸前之膜(厚度為40 μm)以面內相位差Re(550)成為表1及表2所示值之方式於130℃下進行縱延伸,獲得相位差膜(負A板)。 <Production of retardation film (negative A plate) with refractive index characteristics nz=nx>ny> "Manufacture Example 9" Using a single-screw extruder and a T-die, styrene-maleic anhydride copolymer (manufactured by NOVA Chemicals Japan, trade name "Dylark D232") granular resin is extruded at 270°C, and the sheet is cooled by a cooling roller. The molten resin in the shape was cooled to obtain a film with a thickness of 40 μm. Using a roller stretching machine, the film was longitudinally stretched in the conveying direction at a temperature of 130° C. and a stretching ratio of 1.1 times to obtain a retardation film having a fast axis in the conveying direction. The refractive index characteristics of the retardation film thus obtained show the relationship nz=nx>ny. The in-plane phase difference Re (550) of the retardation film (negative A plate), the phase difference Rth (550) in the thickness direction, and Re (450)/Re (550) are shown in Tables 1 and 2. "Manufacturing Examples 10~16" The film before stretching (thickness: 40 μm) obtained in the same manner as in Production Example 9 was longitudinally stretched at 130° C. so that the in-plane phase difference Re (550) became the values shown in Table 1 and Table 2, and the phase difference was obtained. membrane (negative A plate).

<折射率特性為nz>nx>ny之相位差膜(正B板)之製作> 《製造例17及18》 將與製造例9同樣地獲得之延伸前之膜(厚度為40 μm)以面內相位差Re(550)及厚度方向之相位差Rth(550)成為表1及表2所示值之方式於130℃下於搬送方向上進行固定端縱延伸,獲得相位差膜。 如此獲得之相位差膜之折射率特性顯示nz>nx>ny之關係。將相位差膜(正B板)之面內相位差Re(550)、厚度方向之相位差Rth(550)、Re(450)/Re(550)及Nz係數示於表1及表2中。 <Preparation of retardation film (positive B plate) with refractive index characteristics nz>nx>ny> "Manufacturing Examples 17 and 18" The film before stretching (thickness: 40 μm) obtained in the same manner as in Production Example 9 was prepared so that the in-plane phase difference Re (550) and the phase difference Rth (550) in the thickness direction became the values shown in Table 1 and Table 2. The fixed end was stretched longitudinally in the conveyance direction at 130°C to obtain a retardation film. The refractive index characteristics of the retardation film thus obtained show the relationship of nz>nx>ny. The in-plane phase difference Re (550), the thickness direction phase difference Rth (550), Re (450)/Re (550), and the Nz coefficient of the retardation film (positive B plate) are shown in Tables 1 and 2.

<折射率特性為nx>ny=nz之相位差膜(正A板)之製作> 《製造例19》 將長條之降𦯉烯系樹脂膜(日本Zeon公司製造、商品名Zeonor、厚度為40 μm、光彈性係數為3.10×10 -12m 2/N)於135℃下進行自由端縱延伸至1.4倍,藉此獲得厚度為35 μm之相位差膜。 如此獲得之相位差膜之折射率特性顯示nx>ny=nz之關係。將相位差膜(正A板)之面內相位差Re(550)、厚度方向之相位差Rth(550)、Re(450)/Re(550)及Nz係數示於表1~表4中。 《製造例20~30》 將降𦯉烯系樹脂膜(日本Zeon公司製造、商品名Zeonor、厚度為40 μm)以面內相位差Re(550)成為表1~表4所示值之方式於135℃下進行自由端縱延伸,獲得相位差膜(正A板)。再者,製造例29之相位差膜之Re(550)為270 nm,作為λ/2板發揮功能。又,製造例30之相位差膜之Re(550)為135 nm,作為λ/4板發揮功能。 <Preparation of retardation film (positive A plate) with refractive index characteristics nx>ny=nz>《Manufacture Example 19》A long olefin-based resin film (manufactured by Zeon Corporation of Japan, trade name Zeonor, thickness 40 μm, photoelastic coefficient is 3.10×10 -12 m 2 /N) and the free end is longitudinally extended to 1.4 times at 135°C to obtain a retardation film with a thickness of 35 μm. The refractive index characteristics of the retardation film thus obtained show the relationship nx>ny=nz. The in-plane phase difference Re (550), the thickness direction phase difference Rth (550), Re (450)/Re (550) and the Nz coefficient of the retardation film (positive A plate) are shown in Tables 1 to 4. "Manufacturing Examples 20 to 30" A nordecene-based resin film (manufactured by Zeon Corporation of Japan, trade name: Zeonor, thickness: 40 μm) was prepared so that the in-plane phase difference Re (550) becomes the value shown in Tables 1 to 4. The free end was stretched longitudinally at 135°C to obtain a retardation film (positive A plate). In addition, Re (550) of the retardation film of Production Example 29 is 270 nm, and it functions as a λ/2 plate. Furthermore, the retardation film of Production Example 30 has Re (550) of 135 nm and functions as a λ/4 plate.

《製造例31》 於包含2個具備攪拌葉及控制為100℃之回流冷卻器之立式反應器的分批聚合裝置中投入雙[9-(2-苯氧基羰基乙基)茀-9-基]甲烷29.60質量份(0.046 mol)、異山梨醇(ISB)29.21質量份(0.200 mol)、螺二醇(SPG)42.28質量份(0.139 mol)、碳酸二苯酯(DPC)63.77質量份(0.298 mol)、及作為觸媒之乙酸鈣一水合物1.19×10 -2質量份(6.78×10 -5mol)。將反應器內於減壓下進行氮氣置換後,利用熱媒進行加溫,於內溫達到100℃時開始攪拌。升溫開始40分鐘後使內溫達到220℃,以保持該溫度之方式進行控制,同時開始減壓,達到220℃後,用90分鐘之時間達到13.3 kPa。將隨聚合反應一起副產生之苯酚蒸氣導入至100℃之回流冷卻器中,將苯酚蒸氣中所包含之若干量之單體成分返回至反應器中,未冷凝之苯酚蒸氣導入至45℃之冷凝器中進行回收。向第一反應器中導入氮氣,暫時復壓至大氣壓後,將第一反應器內之經寡聚化之反應液移至第二反應器中。繼而,開始第二反應器內之升溫及減壓,用50分鐘之時間達到內溫240℃、壓力0.2 kPa。之後,進行聚合直至達到規定之攪拌動力。於到達規定動力時,向反應器中導入氮氣進行復壓,將所生成之聚酯碳酸酯系樹脂擠出至水中,將線料切割而獲得顆粒。 將所得之聚酯碳酸酯系樹脂(顆粒)於80℃下真空乾燥5小時後,使用具備單軸擠出機(東芝機械公司製造、機筒設定溫度:250℃)、T模頭(寬度為200 mm、設定溫度:250℃)、冷卻輥(設定溫度:120~130℃)及捲取機之膜製膜裝置,製作厚度為130 μm之長條狀樹脂膜。將所得之長條狀樹脂膜於140℃下進行自由端縱延伸至1.4倍,獲得厚度為110 μm之相位差膜(正A板)。 《製造例32及33》 將與製造例31同樣地獲得之延伸前之樹脂膜(厚度為130 μm)以面內相位差Re(550)成為表1~表4所示值之方式於140℃下進行自由端縱延伸,獲得相位差膜(正A板)。再者,製造例33之相位差膜之Re(550)為140 nm,作為λ/4板發揮功能。 "Production Example 31" Bis[9-(2-phenoxycarbonylethyl)fluorine-9 was put into a batch polymerization device including two vertical reactors equipped with stirring blades and a reflux cooler controlled at 100°C. -Based]methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42.28 parts by mass (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by mass (0.298 mol), and 1.19×10 -2 parts by mass (6.78×10 -5 mol) of calcium acetate monohydrate as a catalyst. After replacing the reactor with nitrogen under reduced pressure, the reactor was heated using a heating medium, and stirring was started when the internal temperature reached 100°C. 40 minutes after the temperature rise starts, the internal temperature reaches 220°C and is controlled to maintain the temperature. At the same time, pressure reduction begins. After reaching 220°C, it takes 90 minutes to reach 13.3 kPa. The phenol vapor produced by the polymerization reaction is introduced into a reflux cooler at 100°C, a certain amount of monomer components contained in the phenol vapor is returned to the reactor, and the uncondensed phenol vapor is introduced into a reflux cooler at 45°C. be recycled in the container. Nitrogen gas was introduced into the first reactor, and after the pressure was temporarily restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was moved to the second reactor. Then, the temperature rise and pressure reduction in the second reactor were started, and it took 50 minutes to reach the internal temperature of 240°C and the pressure of 0.2 kPa. Afterwards, polymerization is carried out until the specified stirring power is reached. When the specified power is reached, nitrogen gas is introduced into the reactor for repressurization, the generated polyester carbonate resin is extruded into water, and the strands are cut to obtain pellets. The obtained polyester carbonate resin (pellet) was vacuum dried at 80°C for 5 hours, and then used with a single-screw extruder (manufactured by Toshiba Machinery Co., Ltd., barrel setting temperature: 250°C) and a T-die (width: 200 mm, set temperature: 250℃), cooling roller (set temperature: 120~130℃) and film forming device of the winding machine to produce long strips of resin film with a thickness of 130 μm. The free end of the obtained long resin film was lengthwise extended to 1.4 times at 140°C to obtain a retardation film (positive plate A) with a thickness of 110 μm. <Manufacture Examples 32 and 33> The resin film (thickness: 130 μm) obtained in the same manner as Production Example 31 before stretching was heated at 140°C so that the in-plane phase difference Re (550) becomes the value shown in Table 1 to Table 4. The free end is extended longitudinally to obtain a retardation film (positive A plate). Furthermore, the retardation film of Production Example 33 has Re (550) of 140 nm and functions as a λ/4 plate.

<折射率特性為nx>ny>nz之相位差膜(負B板)之製作> 《製造例34及35》 將降𦯉烯系樹脂膜(日本Zeon公司製造、商品名Zeonor、厚度為40 μm)以面內相位差Re(550)及厚度方向之相位差Rth(550)成為表1~表3所示值之方式於135℃下進行固定端橫延伸,獲得相位差膜。 如此獲得之相位差膜之折射率特性顯示nx>ny>nz之關係。將相位差膜(負B板)之面內相位差Re(550)、厚度方向之相位差Rth(550)、Re(450)/Re(550)及Nz係數示於表1~表3中。 <Preparation of retardation film (negative B plate) with refractive index characteristics nx>ny>nz> "Manufacturing Examples 34 and 35" The in-plane phase difference Re (550) and the phase difference Rth (550) in the thickness direction of the nordecene-based resin film (manufactured by Zeon Corporation of Japan, trade name Zeonor, thickness 40 μm) were set to the values shown in Tables 1 to 3 The fixed end is stretched laterally at 135°C to obtain a retardation film. The refractive index characteristics of the retardation film thus obtained show the relationship nx>ny>nz. The in-plane phase difference Re (550), the thickness direction phase difference Rth (550), Re (450)/Re (550) and the Nz coefficient of the retardation film (negative B plate) are shown in Tables 1 to 3.

<偏光板之製作> 《製造例36》 作為熱塑性樹脂基材,使用長條狀且Tg約為75℃之非晶質之間苯二甲酸共聚聚對苯二甲酸乙二酯膜(厚度為:100 μm),對樹脂基材之單面實施電暈處理。 向將聚乙烯醇(聚合度為4200、皂化度為99.2莫耳%)及乙醯乙醯基改性PVA(日本合成化學工業公司製造、商品名「Gohsefimer」)以9:1混合而成之PVA系樹脂100質量份中添加碘化鉀13質量份後,使所得者溶解於水中,而製備PVA水溶液(塗佈液)。 於樹脂基材之電暈處理面上塗佈上述PVA水溶液,於60℃下乾燥,藉此形成厚度為13 μm之PVA系樹脂層,製作積層體。 將所得積層體於130℃之烘箱內於縱方向(長度方向)上單軸延伸至2.4倍(空中輔助延伸處理)。 繼而,將積層體浸漬於液溫為40℃之不溶化浴(相對於水100質量份調配4質量份之硼酸獲得之硼酸水溶液)中30秒鐘(不溶化處理)。 繼而,於液溫為30℃之染色浴(相對於水100質量份以1:7之重量比調配碘與碘化鉀所獲得之碘水溶液)中,一邊以最終獲得之偏光元件之單質透過率(Ts)達到所需值之方式調整濃度,一邊浸漬60秒鐘(染色處理)。 繼而,於液溫為40℃之交聯浴(相對於水100質量份調配3質量份之碘化鉀並調配5質量份之硼酸所獲得之硼酸水溶液)中浸漬30秒鐘(交聯處理)。 之後,一邊將積層體浸漬於液溫為70℃之硼酸水溶液(硼酸濃度為4重量%、碘化鉀濃度為5重量%)一邊於圓周速度不同之輥間於縱方向(長度方向)上以總延伸倍率達到5.5倍之方式進行單軸延伸(水中延伸處理)。 之後,將積層體浸漬於液溫為20℃之洗淨浴(相對於水100質量份調配4質量份之碘化鉀所獲得之水溶液)中(洗淨處理)。 之後,一邊於保持於約90℃之烘箱中進行乾燥,一邊使其接觸於表面溫度被保持在約75℃之SUS製加熱輥(乾燥收縮處理)。 如此,於樹脂基材上形成厚度約為5 μm之偏光元件,獲得具有樹脂基材/偏光元件之構成之積層體。 於所得積層體之偏光元件表面(與樹脂基材相反一側之面)上貼合作為保護層之HC-TAC膜(厚度為20 μm)。繼而,將樹脂基材剝離,獲得具有保護層/偏光元件/之構成之偏光板。 <Production of Polarizing Plate> "Manufacture Example 36" As the thermoplastic resin base material, a long amorphous isophthalic acid copolymer polyethylene terephthalate film (thickness: 100 μm) with a Tg of about 75°C is used. Implement corona treatment. A mixture of polyvinyl alcohol (degree of polymerization: 4200, saponification degree: 99.2 mol%) and acetate-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gohsefimer") at a ratio of 9:1 After adding 13 parts by mass of potassium iodide to 100 parts by mass of PVA-based resin, the resultant was dissolved in water to prepare a PVA aqueous solution (coating liquid). The above-mentioned PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60°C to form a PVA-based resin layer with a thickness of 13 μm to prepare a laminate. The obtained laminate was uniaxially stretched to 2.4 times in the longitudinal direction (length direction) in an oven at 130° C. (air-assisted stretching treatment). Next, the laminated body was immersed in an insolubilization bath (a boric acid aqueous solution prepared by mixing 4 parts by mass of boric acid with respect to 100 parts by mass of water) with a liquid temperature of 40° C. for 30 seconds (insolubilization treatment). Then, in a dyeing bath with a liquid temperature of 30°C (an iodine aqueous solution prepared by mixing iodine and potassium iodide at a weight ratio of 1:7 with respect to 100 parts by mass of water), the single-element transmittance (Ts) of the finally obtained polarizing element was measured. ) to reach the desired value, while soaking for 60 seconds (dyeing process). Next, it was immersed in a crosslinking bath (a boric acid aqueous solution prepared by mixing 3 parts by mass of potassium iodide and 5 parts by mass of boric acid to 100 parts by mass of water) with a liquid temperature of 40° C. for 30 seconds (crosslinking treatment). Thereafter, the laminated body was immersed in a boric acid aqueous solution with a liquid temperature of 70° C. (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) while being stretched in the longitudinal direction (lengthwise direction) between rollers with different circumferential speeds. Uniaxial stretching (water stretching treatment) is performed at a magnification of 5.5 times. Thereafter, the laminated body was immersed in a cleaning bath (an aqueous solution prepared by mixing 4 parts by mass of potassium iodide with respect to 100 parts by mass of water) having a liquid temperature of 20° C. (washing treatment). Thereafter, while drying in an oven maintained at about 90°C, it was brought into contact with a SUS heated roller whose surface temperature was maintained at about 75°C (drying shrinkage treatment). In this way, a polarizing element with a thickness of approximately 5 μm is formed on the resin base material, and a laminate having a resin base material/polarizing element structure is obtained. An HC-TAC film (thickness: 20 μm) was bonded as a protective layer on the surface of the polarizing element of the obtained laminate (the surface opposite to the resin base material). Then, the resin base material is peeled off to obtain a polarizing plate having a structure of protective layer/polarizing element/.

<圖像顯示面板(OLED面板)之準備> 從有機EL顯示器(Samsung公司製造、製品名「Galaxy A41」)上取出貼附有偏光膜之有機EL面板之後,將偏光膜取下,獲得圖像顯示面板(OLED面板)。 <Preparation of image display panel (OLED panel)> After taking out the organic EL panel with the polarizing film attached to it from the organic EL display (manufactured by Samsung, product name "Galaxy A41"), the polarizing film is removed to obtain an image display panel (OLED panel).

[實施例1~8] 將表1所示之製造例之相位差膜及製造例36之偏光板分別沖切成對應於圖像顯示單元之尺寸。又,將各製造例之相位差膜如表1所示那樣分類為對應於第一光學補償層之第一相位差膜、對應於第二光學補償層之第二相位差膜、及對應於第三光學補償層之第三相位差膜。 繼而,於OLED面板之視認側依次積層有第三相位差膜(第三光學補償層)、第二相位差膜(第二光學補償層)、第一相位差膜(第一光學補償層)及偏光板。積層係以偏光元件之吸收軸方向與光學補償層(第二光學補償層及第三光學補償層各自)之慢軸方向所成之角度成為表1值之方式進行。 如此製作圖像顯示裝置。繼而,將圖像顯示裝置供至上述反射亮度測定。 [Examples 1~8] The retardation film of the manufacturing example shown in Table 1 and the polarizing plate of manufacturing example 36 were punched into sizes corresponding to the image display units respectively. Furthermore, as shown in Table 1, the retardation films of each production example are classified into a first retardation film corresponding to the first optical compensation layer, a second retardation film corresponding to the second optical compensation layer, and a second retardation film corresponding to the second optical compensation layer. The third phase difference film of the three optical compensation layers. Then, on the viewing side of the OLED panel, a third retardation film (third optical compensation layer), a second retardation film (second optical compensation layer), a first retardation film (first optical compensation layer) and Polarizing plate. The lamination is performed so that the angle between the absorption axis direction of the polarizing element and the slow axis direction of the optical compensation layer (each of the second optical compensation layer and the third optical compensation layer) becomes the value in Table 1. In this way, an image display device is produced. Then, the image display device was subjected to the above-mentioned reflection brightness measurement.

[表1] [Table 1] No. No. 實施例1 Example 1 實施例2 Example 2 實施例3 Example 3 實施例4 Example 4 實施例5 Example 5 實施例6 Example 6 實施例7 Example 7 實施例8 Example 8 第一光學補償層 (第一相位差膜) first optical compensation layer (First retardation film) 製造例 Manufacturing example 製造例1 Manufacturing example 1 製造例1 Manufacturing example 1 製造例2 Manufacturing example 2 製造例2 Manufacturing example 2 製造例1 Manufacturing example 1 製造例3 Manufacturing example 3 製造例2 Manufacturing example 2 製造例2 Manufacturing example 2 折射率特性 refractive index properties nz>nx=ny nz>nx=ny Re 1(550)[nm] Re 1 (550)[nm] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rth 1(550)[nm] Rth 1 (550)[nm] -30 -30 -30 -30 -40 -40 -40 -40 -30 -30 -90 -90 -40 -40 -40 -40 第二光學補償層 (第二相位差膜) second optical compensation layer (Second retardation film) 製造例 Manufacturing example 製造例9 Manufacturing example 9 製造例10 Manufacturing example 10 製造例11 Manufacturing example 11 製造例12 Manufacturing example 12 製造例12 Manufacturing example 12 製造例11 Manufacturing example 11 製造例17 Manufacturing example 17 製造例12 Manufacturing example 12 折射率特性 refractive index properties nz=nx>ny nz=nx>ny nz>nx>ny nz>nx>ny nz=nx>ny nz=nx>ny Re 2(550)[nm] Re 2 (550)[nm] 50 50 100 100 40 40 70 70 70 70 40 40 70 70 70 70 Rth 2(550)[nm] Rth 2 (550)[nm] 0 0 0 0 0 0 0 0 0 0 0 0 -21 -twenty one 0 0 Nz係數 Nz coefficient - - - - - - - - - - - - -0.3 -0.3 - - Re 2(450)/Re 2(550) Re 2 (450)/Re 2 (550) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] 5 5 15 15 5 5 30 30 45 45 30 30 30 30 30 30 第三光學補償層 (第三相位差膜) third optical compensation layer (Third phase difference film) 製造例 Manufacturing example 製造例19 Manufacturing example 19 製造例20 Manufacturing example 20 製造例19 Manufacturing example 19 製造例21 Manufacturing example 21 製造例22 Manufacturing example 22 製造例23 Manufacturing example 23 製造例34 Manufacturing example 34 製造例31 Manufacturing example 31 折射率特性 refractive index properties nx>ny=nz nx>ny=nz nx>ny>nz nx>ny>nz nx>ny=nz nx>ny=nz Re 3(550)[nm] Re 3 (550)[nm] 130 130 100 100 130 130 190 190 70 70 170 170 190 190 190 190 Rth 3(550)[nm] Rth 3 (550)[nm] 130 130 100 100 130 130 190 190 70 70 170 170 209 209 190 190 Nz係數 Nz coefficient 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 L0 L0 1.0 1.0 1.1 1.1 1.0 1.0 Re 3(450)/Re 3(550) Re 3 (450)/Re 3 (550) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] 45 45 55 55 45 45 140 140 45 45 135 135 140 140 140 140 (Rth 1)+(Rth 2-Re 2/2)+(Rth 3-Re 3/2) (Rth 1 ) + (Rth 2 - Re 2 /2) + (Rth 3 - Re 3 /2) 10 10 -30 -30 5 5 20 20 -30 -30 -25 -25 18 18 20 20 亮度[cd/m 2] Brightness [cd/m 2 ] 0.54 0.54 0.62 0.62 0.52 0.52 0.42 0.42 0.65 0.65 0.48 0.48 0.61 0.61 0.34 0.34

[實施例9~16] 除了將第一相位差膜(第一光學補償層)、第二相位差膜(第二光學補償層)及第三相位差膜(第三光學補償層)分別變更為表2所示之製造例之相位差膜以外,與實施例1同樣地製作圖像顯示裝置。繼而,將圖像顯示裝置供至上述反射亮度測定。 [Examples 9~16] Except that the first retardation film (first optical compensation layer), the second retardation film (second optical compensation layer) and the third retardation film (third optical compensation layer) were respectively changed to the manufacturing example shown in Table 2 An image display device was produced in the same manner as in Example 1 except for the retardation film. Then, the image display device was subjected to the above-mentioned reflection brightness measurement.

[表2] [Table 2] No. No. 實施例9 Example 9 實施例10 Example 10 實施例11 Example 11 實施例12 Example 12 實施例13 Example 13 實施例14 Example 14 實施例15 Example 15 實施例16 Example 16 第一光學補償層 (第一相位差膜) first optical compensation layer (First retardation film) 製造例 Manufacturing example 製造例1 Manufacturing example 1 製造例4 Manufacturing example 4 製造例1 Manufacturing example 1 製造例1 Manufacturing example 1 製造例1 Manufacturing example 1 製造例5 Manufacturing example 5 製造例1 Manufacturing example 1 製造例4 Manufacturing example 4 折射率特性 refractive index properties nz>nx>ny nz>nx>ny Re 1(550)[nm] Re 1 (550)[nm] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rth 1(550)[nm] Rth 1 (550)[nm] -30 -30 -50 -50 -30 -30 -30 -30 -30 -30 -80 -80 -30 -30 -50 -50 第二光學補償層 (第二相位差膜) second optical compensation layer (Second retardation film) 製造例 Manufacturing example 製造例24 Manufacturing example 24 製造例21 Manufacturing example 21 製造例22 Manufacturing example 22 製造例20 Manufacturing example 20 製造例20 Manufacturing example 20 製造例21 Manufacturing example 21 製造例34 Manufacturing example 34 製造例31 Manufacturing example 31 折射率特性 refractive index properties nx>ny=nz nx>ny=nz nx>ny>nz nx>ny>nz nx>ny=nz nx>ny=nz Re 2(550)[nm] Re 2 (550)[nm] 90 90 190 190 70 70 100 100 100 100 190 190 190 190 190 190 Rth 2(550)[nm] Rth 2 (550)[nm] 90 90 190 190 70 70 100 100 100 100 190 190 209 209 190 190 Nz係數 Nz coefficient 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 Re 2(450)/Re 2(550) Re 2 (450)/Re 2 (550) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] 45 45 25 25 45 45 110 110 40 40 5 5 25 25 25 25 第三光學補償層 (第三相位差膜) third optical compensation layer (Third phase difference film) 製造例 Manufacturing example 製造例9 Manufacturing example 9 製造例13 Manufacturing example 13 製造例14 Manufacturing example 14 製造例15 Manufacturing example 15 製造例11 Manufacturing example 11 製造例16 Manufacturing example 16 製造例18 Manufacturing example 18 製造例13 Manufacturing example 13 折射率特性 refractive index properties nz=nx>ny nz=nx>ny nz>nx>ny nz>nx>ny nz=nx>ny nz=nx>ny Re 3(550)[nm] Re 3 (550)[nm] 50 50 80 80 60 60 190 190 40 40 120 120 80 80 80 80 Rth 3(550) [nm] Rth 3 (550) [ nm] 0 0 0 0 0 0 0 0 0 0 0 0 -24 -twenty four 0 0 Nz係數 Nz coefficient - - - - - - - - - - - - -0.3 -0.3 - - Re 3(450)/Re 3(550) Re 3 (450)/Re 3 (550) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] 45 45 85 85 45 45 55 55 50 50 50 50 85 85 85 85 (Rth 1)+(Rth 2-Re 2/2)+(Rth 3-Re 3/2) (Rth 1 ) + (Rth 2 - Re 2 /2) + (Rth 3 - Re 3 /2) -10 -10 5 5 -25 -25 -75 -75 0 0 -45 -45 20 20 5 5 亮度[cd/m 2] Brightness [cd/m 2 ] 0.48 0.48 0.44 0.44 0.60 0.60 0.70 0.70 0.44 0.44 0.80 0.80 0.50 0.50 0.42 0.42

[實施例17~23] 除了將第一相位差膜(第一光學補償層)、第二相位差膜(第二光學補償層)以及第三相位差膜(第三光學補償層)分別變更為表3所示之製造例之相位差膜以外,與實施例1同樣地製作圖像顯示裝置。繼而,將圖像顯示裝置供至上述反射亮度測定。 [Examples 17~23] Except that the first retardation film (first optical compensation layer), the second retardation film (second optical compensation layer) and the third retardation film (third optical compensation layer) were respectively changed to the manufacturing example shown in Table 3 An image display device was produced in the same manner as in Example 1 except for the retardation film. Then, the image display device was subjected to the above-mentioned reflection brightness measurement.

[表3] [table 3] No. No. 實施例17 Example 17 實施例18 Example 18 實施例19 Example 19 實施例20 Example 20 實施例21 Example 21 實施例22 Example 22 實施例23 Example 23 第一光學補償層 (第一相位差膜) first optical compensation layer (First retardation film) 製造例 Manufacturing example 製造例3 Manufacturing example 3 製造例6 Manufacturing example 6 製造例3 Manufacturing example 3 製造例7 Manufacturing example 7 製造例6 Manufacturing example 6 製造例7 Manufacturing example 7 製造例7 Manufacturing example 7 折射率特性 refractive index properties nz>nx=ny nz>nx=ny Re 1(550)[nm] Re 1 (550)[nm] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rth 1(550)[nm] Rth 1 (550)[nm] -90 -90 -70 -70 -90 -90 -110 -110 -70 -70 -110 -110 -110 -110 第二光學補償層 (第二相位差膜) second optical compensation layer (Second retardation film) 製造例 Manufacturing example 製造例25 Manufacturing example 25 製造例26 Manufacturing example 26 製造例27 Manufacturing example 27 製造例22 Manufacturing example 22 製造例20 Manufacturing example 20 製造例35 Manufacturing example 35 製造例32 Manufacturing example 32 折射率特性 refractive index properties nx>ny=nz nx>ny=nz nx>ny>nz nx>ny>nz nx>ny=nz nx>ny=nz Re 2(550)[nm] Re 2 (550)[nm] 50 50 150 150 40 40 70 70 100 100 70 70 70 70 Rth 2(550)[nm] Rth 2 (550)[nm] 50 50 150 150 40 40 70 70 100 100 77 77 70 70 Nz係數 Nz coefficient 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 Re 2(450)/Re 2(550) Re 2 (450)/Re 2 (550) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] 15 15 150 150 20 20 30 30 45 45 30 30 30 30 第三光學補償層 (第三相位差膜) third optical compensation layer (Third phase difference film) 製造例 Manufacturing example 製造例28 Manufacturing example 28 製造例25 Manufacturing example 25 製造例28 Manufacturing example 28 製造例21 Manufacturing example 21 製造例27 Manufacturing example 27 製造例34 Manufacturing example 34 製造例31 Manufacturing example 31 折射率特性 refractive index properties nx>ny=nz nx>ny=nz nx>ny>nz nx>ny>nz nx>ny=nz nx>ny=nz Re 3(550)[nm] Re 3 (550)[nm] 160 160 50 50 160 160 190 190 40 40 190 190 190 190 Rth 3(550)[nm] Rth 3 (550)[nm] 160 160 50 50 160 160 190 190 40 40 209 209 190 190 Nz係數 Nz coefficient 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 Re 3(450)/Re 3(550) Re 3 (450)/Re 3 (550) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] 135 135 100 100 135 135 140 140 45 45 140 140 140 140 (Rth 1)+(Rth 2-Re 2/2)+(Rth 3-Re 3/2) (Rth 1 ) + (Rth 2 - Re 2 /2) + (Rth 3 - Re 3 /2) 15 15 30 30 10 10 20 20 0 0 46 46 20 20 亮度[cd/m 2] Brightness [cd/m 2 ] 0.39 0.39 0.74 0.74 0.35 0.35 0.24 0.24 0.73 0.73 0.40 0.40 0.20 0.20

[比較例1及2] 除了將第一相位差膜(第一光學補償層)及第二相位差膜(第二光學補償層)變更為表4所示之製造例之相位差膜,並且不設置第三相位差膜(第三光學補償層)以外,與實施例1同樣地製作圖像顯示裝置。繼而,將圖像顯示裝置供至上述反射亮度測定。 [比較例3] 除了將第一相位差膜(第一光學補償層)、第二相位差膜(第二光學補償層)及第三相位差膜(第三光學補償層)分別變更為表4所示之製造例之相位差膜以外,與實施例1同樣地製作圖像顯示裝置。繼而,將圖像顯示裝置供至上述反射亮度測定。 [Comparative Examples 1 and 2] Except that the first retardation film (first optical compensation layer) and the second retardation film (second optical compensation layer) are changed to the retardation films of the manufacturing examples shown in Table 4, and the third retardation film ( Except for the third optical compensation layer), an image display device was produced in the same manner as in Example 1. Then, the image display device was subjected to the above-mentioned reflection brightness measurement. [Comparative example 3] Except that the first retardation film (first optical compensation layer), the second retardation film (second optical compensation layer) and the third retardation film (third optical compensation layer) were respectively changed to the manufacturing examples shown in Table 4 An image display device was produced in the same manner as in Example 1 except for the retardation film. Then, the image display device was subjected to the above-mentioned reflection brightness measurement.

[表4] [Table 4] No. No. 比較例1 Comparative example 1 比較例2 Comparative example 2 比較例3 Comparative example 3 第一光學補償層 (第一相位差膜) first optical compensation layer (First retardation film) 製造例 Manufacturing example 製造例33 Manufacturing example 33 製造例29 Manufacturing example 29 製造例29 Manufacturing example 29 折射率特性 refractive index properties nn>ny=nz nn>ny=nz Re 1(550)[nm] Re 1 (550)[nm] 140 140 270 270 270 270 Rth 1(550)[nm] Rth 1 (550)[nm] 140 140 270 270 270 270 Nz係數 Nz coefficient 1.0 1.0 1.0 1.0 1.0 1.0 Re l(450)/RE 1(550) Re l (450)/RE 1 (550) 0.8 0.8 1.0 1.0 1.0 1.0 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] 45 45 15 15 15 15 第二光學補償層 (第二相位差膜) second optical compensation layer (Second retardation film) 製造例 Manufacturing example 製造例8 Manufacturing example 8 製造例30 Manufacturing example 30 製造例30 Manufacturing example 30 折射率特性 refractive index properties nz>nx=ny nz>nx=ny nx>ny=nz nx>ny=nz Re 2(550)[nm] Re 2 (550)[nm] 0 0 135 135 135 135 Rth 2(550)[nm] Rth 2 (550)[nm] -100 -100 135 135 135 135 Nz係數 Nz coefficient - - 1.0 1.0 1.0 1.0 Re 2(450)/Re 2(550) Re 2 (450)/Re 2 (550) - - 1.0 1.0 1.0 1.0 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] - - 75 75 75 75 第三光學補償層 (第三相位差膜) third optical compensation layer (Third phase difference film) 製造例 Manufacturing example - - - - 製造例4 Manufacturing example 4 折射率特性 refractive index properties - - - - nz>nx=ny nz>nx=ny Re 3(550)[nm] Re 3 (550)[nm] - - - - 0 0 Rth 3(550)[nm] Rth 3 (550)[nm] - - - - -50 -50 Nz係數 Nz coefficient - - - - - - Re 3(450)/Re 3(550) Re 3 (450)/Re 3 (550) - - - - - - 吸收軸方向與慢軸方向所成之角度[°] The angle between the absorption axis direction and the slow axis direction [°] - - - - - - (Rth 1-Re 1/2)+(Rth 2-Re 2/2)+(Rth 3-Re 3/2) (Rth 1 - Re 1 /2) + (Rth 2 - Re 2 /2) + (Rth 3 - Re 3 /2) -30 -30 203 203 153 153 亮度[cd/m 2] Brightness [cd/m 2 ] 1.00 1.00 1.80 1.80 1.20 1.20

[評價] 根據表1~表4可知,藉由使第一光學補償層之折射率特性顯示nz>nx=ny之關係,使第二光學補償層及/或第三光學補償層之折射率特性顯示nx>ny≥nz之關係,使Re 2(550)及Re 3(550)分別為10 nm以上且220 nm以下,使第三光學補償層之Nz係數為-4以上且0以下或者0.9以上且4以下,並使第一光學補償層、第二光學補償層以及第三光學補償層滿足上述式(1),可以實現反射亮度顯著小之圖像顯示裝置(有機EL顯示裝置)。 [產業上之可利用性] [Evaluation] According to Table 1 to Table 4, by making the refractive index characteristics of the first optical compensation layer show the relationship nz>nx=ny, the refractive index characteristics of the second optical compensation layer and/or the third optical compensation layer can be improved. The relationship of nx>ny≥nz is shown, so that Re 2 (550) and Re 3 (550) are above 10 nm and below 220 nm respectively, and the Nz coefficient of the third optical compensation layer is above -4 and below 0 or above 0.9 and 4 or less, and by making the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer satisfy the above formula (1), an image display device (organic EL display device) with significantly small reflection brightness can be realized. [Industrial availability]

本發明實施方式之光學積層體可較佳地應用於圖像顯示裝置(代表性地為液晶顯示裝置、有機EL顯示裝置)。The optical laminate according to the embodiment of the present invention can be suitably applied to an image display device (typically a liquid crystal display device or an organic EL display device).

10:第一光學補償層 20:第二光學補償層 30:第三光學補償層 40:偏光板 41:偏光元件 42:保護層 100:光學積層體 10: First optical compensation layer 20: Second optical compensation layer 30: The third optical compensation layer 40:Polarizing plate 41:Polarizing element 42:Protective layer 100: Optical laminated body

圖1係本發明之一個實施方式之光學積層體之概略剖視圖。FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.

10:第一光學補償層 10: First optical compensation layer

20:第二光學補償層 20: Second optical compensation layer

30:第三光學補償層 30: The third optical compensation layer

40:偏光板 40:Polarizing plate

41:偏光元件 41:Polarizing element

42:保護層 42:Protective layer

100:光學積層體 100: Optical laminated body

Claims (22)

一種光學積層體,其依次具備: 偏光元件; 折射率特性顯示nz>nx=ny之關係之第一光學補償層; 折射率特性顯示nx>ny之關係之第二光學補償層;及 折射率特性顯示nx>ny之關係之第三光學補償層, 上述第二光學補償層及/或上述第三光學補償層之折射率特性顯示nx>ny≥nz之關係, 上述第二光學補償層之面內相位差Re 2(550)及上述第三光學補償層之面內相位差Re 3(550)分別為10 nm以上且220 nm以下, 上述偏光元件之吸收軸方向與上述第二光學補償層之慢軸方向以實質上不正交之方式交叉, 上述第三光學補償層之Nz係數為-4以上且0以下或者為0.9以上且4以下, 上述第一光學補償層、上述第二光學補償層及上述第三光學補償層滿足下述式(1): [數1] (1) (式(1)中,Rth 1(550)表示第一光學補償層之厚度方向之相位差;Rth 2(550)表示第二光學補償層之厚度方向之相位差;Rth 3(550)表示第三光學補償層之厚度方向之相位差;Re 2(550)表示第二光學補償層之面內相位差;Re 3(550)表示第三光學補償層之面內相位差)。 An optical laminate, which is provided in this order: a polarizing element; a first optical compensation layer whose refractive index characteristics show the relationship nz>nx=ny; a second optical compensation layer whose refractive index characteristics show the relationship nx>ny; and refractive index characteristics The third optical compensation layer showing the relationship nx>ny, the refractive index characteristics of the above-mentioned second optical compensation layer and/or the above-mentioned third optical compensation layer showing the relationship nx>ny≥nz, the in-plane of the above-mentioned second optical compensation layer The phase difference Re 2 (550) and the in-plane phase difference Re 3 (550) of the above-mentioned third optical compensation layer are respectively above 10 nm and below 220 nm. The absorption axis direction of the above-mentioned polarizing element is slower than the direction of the absorption axis of the above-mentioned second optical compensation layer. The axis directions intersect in a substantially non-orthogonal manner, the Nz coefficient of the above-mentioned third optical compensation layer is -4 or more and 0 or less or is 0.9 or more and 4 or less, the above-mentioned first optical compensation layer, the above-mentioned second optical compensation layer and The above-mentioned third optical compensation layer satisfies the following formula (1): [Equation 1] (1) (In formula (1), Rth 1 (550) represents the phase difference in the thickness direction of the first optical compensation layer; Rth 2 (550) represents the phase difference in the thickness direction of the second optical compensation layer; Rth 3 (550 ) represents the phase difference in the thickness direction of the third optical compensation layer; Re 2 (550) represents the in-plane phase difference of the second optical compensation layer; Re 3 (550) represents the in-plane phase difference of the third optical compensation layer). 如請求項1之光學積層體,其中上述第二光學補償層之折射率特性顯示nz≥nx>ny之關係, 上述第三光學補償層之折射率特性顯示nx>ny≥nz之關係。 The optical laminated body of Claim 1, wherein the refractive index characteristics of the second optical compensation layer show the relationship nz≥nx>ny, The refractive index characteristics of the above-mentioned third optical compensation layer show the relationship nx>ny≥nz. 如請求項2之光學積層體,其中上述第三光學補償層之面內相位差Re 3(550)為80 nm以上。 The optical laminated body of claim 2, wherein the in-plane phase difference Re 3 (550) of the third optical compensation layer is 80 nm or more. 如請求項3之光學積層體,其中上述第三光學補償層之面內相位差Re 3(550)為140 nm以上。 The optical laminated body according to claim 3, wherein the in-plane phase difference Re 3 (550) of the third optical compensation layer is 140 nm or more. 如請求項2之光學積層體,其中上述第二光學補償層之面內相位差Re 2(550)為50 nm以上且90 nm以下。 The optical laminated body according to claim 2, wherein the in-plane phase difference Re 2 (550) of the second optical compensation layer is 50 nm or more and 90 nm or less. 如請求項2之光學積層體,其中上述第一光學補償層之厚度方向之相位差Rth 1(550)為-80 nm以上。 The optical laminated body according to claim 2, wherein the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer is -80 nm or more. 如請求項2之光學積層體,其中上述第二光學補償層之折射率特性顯示nz=nx>ny之關係, 上述第三光學補償層之折射率特性顯示nx>ny=nz之關係。 The optical laminated body of claim 2, wherein the refractive index characteristics of the second optical compensation layer show the relationship nz=nx>ny, The refractive index characteristics of the above-mentioned third optical compensation layer show the relationship nx>ny=nz. 如請求項1之光學積層體,其中上述第二光學補償層之折射率特性顯示nx>ny≥nz之關係, 上述第三光學補償層之折射率特性顯示nz≥nx>ny之關係。 The optical laminated body of claim 1, wherein the refractive index characteristics of the second optical compensation layer show the relationship nx>ny≥nz, The refractive index characteristics of the above-mentioned third optical compensation layer show the relationship nz≥nx>ny. 如請求項8之光學積層體,其中上述第三光學補償層之面內相位差Re 3(550)為180 nm以下。 The optical laminated body according to claim 8, wherein the in-plane phase difference Re 3 (550) of the third optical compensation layer is 180 nm or less. 如請求項9之光學積層體,其中上述第三光學補償層之面內相位差Re 3(550)為110 nm以下。 The optical laminated body according to claim 9, wherein the in-plane phase difference Re 3 (550) of the third optical compensation layer is 110 nm or less. 如請求項8之光學積層體,其中上述第二光學補償層之面內相位差Re 2(550)為80 nm以上。 The optical laminated body according to claim 8, wherein the in-plane phase difference Re 2 (550) of the second optical compensation layer is 80 nm or more. 如請求項11之光學積層體,其中上述第二光學補償層之面內相位差Re 2(550)為100 nm以上。 The optical laminate of claim 11, wherein the in-plane phase difference Re 2 (550) of the second optical compensation layer is 100 nm or more. 如請求項8之光學積層體,其中上述第一光學補償層之厚度方向之相位差Rth 1(550)為-70 nm以上。 The optical laminated body according to claim 8, wherein the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer is -70 nm or more. 如請求項8之光學積層體,其中上述第二光學補償層之折射率特性顯示nx>ny=nz之關係, 上述第三光學補償層之折射率特性顯示nz=nx>ny之關係。 The optical laminated body of claim 8, wherein the refractive index characteristics of the second optical compensation layer show the relationship nx>ny=nz, The refractive index characteristics of the above-mentioned third optical compensation layer show the relationship nz=nx>ny. 如請求項1之光學積層體,其中上述第二光學補償層及上述第三光學補償層各自之折射率特性顯示nx>ny≥nz之關係。The optical laminated body according to claim 1, wherein the refractive index characteristics of each of the second optical compensation layer and the third optical compensation layer show a relationship of nx>ny≥nz. 如請求項15之光學積層體,其中上述第三光學補償層之面內相位差Re 3(550)為60 nm以上。 The optical laminated body of Claim 15, wherein the in-plane phase difference Re 3 (550) of the third optical compensation layer is 60 nm or more. 如請求項16之光學積層體,其中上述第三光學補償層之面內相位差Re 3(550)為170 nm以上。 The optical laminated body of claim 16, wherein the in-plane phase difference Re 3 (550) of the third optical compensation layer is 170 nm or more. 如請求項15之光學積層體,其中上述第二光學補償層之面內相位差Re 2(550)為50 nm以上且90 nm以下。 The optical laminated body according to claim 15, wherein the in-plane phase difference Re 2 (550) of the second optical compensation layer is 50 nm or more and 90 nm or less. 如請求項15之光學積層體,其中上述第一光學補償層之厚度方向之相位差Rth 1(550)為-100 nm以下。 The optical laminated body according to claim 15, wherein the phase difference Rth 1 (550) in the thickness direction of the first optical compensation layer is -100 nm or less. 如請求項15之光學積層體,其中上述第二光學補償層及上述第三光學補償層各自之折射率特性顯示nx>ny=nz之關係。The optical laminated body according to claim 15, wherein the refractive index characteristics of each of the second optical compensation layer and the third optical compensation layer show a relationship of nx>ny=nz. 如請求項1之光學積層體,其中上述第二光學補償層及上述第三光學補償層中之折射率特性顯示nx>ny≥nz之關係之光學補償層之Re(450)/Re(550)未達1。The optical laminated body according to claim 1, wherein the refractive index characteristics of the second optical compensation layer and the third optical compensation layer show the relationship nx>ny≥nz Re(450)/Re(550) of the optical compensation layer Less than 1. 一種圖像顯示裝置,其具備: 圖像顯示單元、及 如請求項1至21中任一項之光學積層體。 An image display device having: image display unit, and The optical laminate according to any one of claims 1 to 21.
TW111149697A 2022-01-31 2022-12-23 Optical laminate and image display device capable of realizing an image display device that can reduce reflection luminance TW202334345A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-012989 2022-01-31
JP2022012989A JP2023111232A (en) 2022-01-31 2022-01-31 Optical laminate and image display device

Publications (1)

Publication Number Publication Date
TW202334345A true TW202334345A (en) 2023-09-01

Family

ID=87396526

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111149697A TW202334345A (en) 2022-01-31 2022-12-23 Optical laminate and image display device capable of realizing an image display device that can reduce reflection luminance

Country Status (4)

Country Link
JP (1) JP2023111232A (en)
KR (1) KR20230117517A (en)
CN (1) CN116520472A (en)
TW (1) TW202334345A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006268007A (en) 2005-02-25 2006-10-05 Nitto Denko Corp Method of producing elliptically polarizing plate and image display device using the elliptically polarizing plate

Also Published As

Publication number Publication date
JP2023111232A (en) 2023-08-10
KR20230117517A (en) 2023-08-08
CN116520472A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
TWI413813B (en) Laminated optical film, and liquid crystal panel and liquid crystal display apparatus using the laminated optical film
JP7382801B2 (en) Polarizing plate with retardation layer and image display device
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP6081244B2 (en) Polarizing plate and liquid crystal display device
JP2009251326A (en) Liquid crystal panel and liquid crystal display
TW202334345A (en) Optical laminate and image display device capable of realizing an image display device that can reduce reflection luminance
TW202334723A (en) Optical laminate and image display device that comprises, in sequence, a polarization element, a first optical compensation layer, a second optical compensation layer, and a third optical compensation layer
TW202338406A (en) Optical laminate and image display device including a polarizing element, a first optical compensation layer, a second optical compensation layer and a third optical compensation layer in sequence
TW202401050A (en) Optical laminate and image display device
TW202404801A (en) Optical laminate and image display device
CN116125577A (en) Polarizing plate with retardation layer and image display device comprising same
KR101139743B1 (en) Laminated optical film, and liquid crystal panel and liquid crystal display apparatus using the laminated optical film
JP2024081519A (en) Polarizing plate with phase difference layer and image display device
TW202208896A (en) Polarizing plate with phase difference layers and image display device
TW202423678A (en) Polarizing plate with phase difference layer and image display device
JP2024081558A (en) Polarizing plate with phase difference layer and image display device
KR20230152587A (en) Phase difference layer-equipped polarizing plate and image display device
TW202204986A (en) Polarizing plate and image display device using the polarizing plate
KR20230031220A (en) A polarizing plate having a retardation layer and a pressure-sensitive adhesive layer, and an image display device using the polarizing plate having the retardation layer and the pressure-sensitive adhesive layer
CN118151280A (en) Polarizing plate with retardation layer and image display device
JP2014167577A (en) Polarizing plate and liquid crystal display device