TW202331290A - System and method using passive spatial awareness for geo network routing - Google Patents

System and method using passive spatial awareness for geo network routing Download PDF

Info

Publication number
TW202331290A
TW202331290A TW111144797A TW111144797A TW202331290A TW 202331290 A TW202331290 A TW 202331290A TW 111144797 A TW111144797 A TW 111144797A TW 111144797 A TW111144797 A TW 111144797A TW 202331290 A TW202331290 A TW 202331290A
Authority
TW
Taiwan
Prior art keywords
node
nodes
communication
destination
relay
Prior art date
Application number
TW111144797A
Other languages
Chinese (zh)
Inventor
宅珍 權
威廉 B 索兒司比
艾力克 J 羅倫
Original Assignee
美商羅克韋爾柯林斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/534,061 external-priority patent/US11665658B1/en
Priority claimed from US17/541,703 external-priority patent/US20220094634A1/en
Priority claimed from PCT/US2022/024653 external-priority patent/WO2022221429A1/en
Priority claimed from US17/940,898 external-priority patent/US20230081728A1/en
Application filed by 美商羅克韋爾柯林斯公司 filed Critical 美商羅克韋爾柯林斯公司
Publication of TW202331290A publication Critical patent/TW202331290A/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

A system may include a mobile ad-hoc network (MANET) including a plurality of nodes. Each of the plurality of nodes is configured to transmit communication data packets and transmit beacons. Each of the plurality of nodes has passive spatial awareness. A first node has information of own node velocity, own node orientation, and a destination. The first node may be configured to: calculate a direct line or an arc from the first node to the destination; utilize passive spatial awareness; assess possible relay routes beyond the communication range and within the beacon range of the first node; determine a next relay node that is on one of the possible relay routes wherein the one of the possible relay routes may be closest to the direct line or the arc without being determined to be part of a dead-end route; and transmit a communication data packet to the next relay node.

Description

使用被動空間覺知進行地理網路路由之系統及方法Systems and methods for geographic network routing using passive spatial awareness

行動特用網路(MANET)在此項技術中被視為不具有預定義網路拓撲之可快速部署之自組態無線網路。假設一MANET中之各通信節點能夠自由移動。在MANET及其他多節點通信網路之內容脈絡中,拓撲學習係路由機制之關鍵任務,尤其係對於主動路由。歸因於由節點行動性及頻道條件改變導致之頻繁拓撲改變,拓撲學習係非常重要的,且需要大量空中控制封包交換。建構一大型MANET之精確拓撲係非常困難的。現有路由協定利用小型招呼封包交換來識別鄰近節點。具有鄰近者清單之招呼訊息傳遞係學習第一跳躍及第二跳躍鄰近者之一常用機制。藉由招呼訊息傳遞學習之區域拓撲經由封包泛流或貫穿所連接網路之逐跳躍傳播來遞送。藉由組合區域拓撲資訊,各及每一通信節點可識別至全部所連接通信節點之路由。GEO路由係主動路由之一替代解決方案,其利用位置資訊,而不基於網路拓撲來建構路由。在不具有包含GPS之位置資訊之情況下,現有機制皆無法工作。除此之外,使用鄰近者資訊及經由資料通信獲取之顯式位置資訊來決定至目的地之中繼節點。A mobile ad hoc network (MANET) is considered in this technology to be a rapidly deployable self-configuring wireless network with no predefined network topology. Assume that each communication node in a MANET can move freely. In the context of MANET and other multi-node communication networks, topology learning is a key task of routing mechanisms, especially for active routing. Due to the frequent topology changes caused by changes in node mobility and channel conditions, topology learning is very important and requires a large number of over-the-air control packet exchanges. Constructing the exact topology of a large MANET is very difficult. Existing routing protocols utilize the exchange of small hello packets to identify neighboring nodes. Hello messaging with a neighbor list is a common mechanism for learning first-hop and second-hop neighbors. The area topology learned by hello messaging is delivered via packet flooding or hop-by-hop propagation throughout the connected network. By combining the area topology information, each and every communication node can identify routes to all connected communication nodes. GEO routing is an alternative solution to active routing, which utilizes location information rather than network topology to construct routes. None of the existing mechanisms work without location information including GPS. In addition, neighbor information and explicit location information obtained through data communication are used to determine the relay node to the destination.

在一個態樣中,本文中揭示之發明概念之實施例係關於一種系統。該系統可包含含有複數個節點之一行動特用網路(MANET)。該複數個節點之各者包括一通信介面及一控制器。該複數個節點之各者經組態以發射通信資料封包及發射信標。各信標之一範圍大於各通信資料封包之一通信範圍。該複數個節點之各者具有被動空間覺知。該複數個節點之一第一節點具有自身節點速度、自身節點定向及一目的地之資訊,該目的地係一目的地區域或一目的地節點。該目的地在該第一節點之該通信範圍之外,且視情況在該第一節點之該信標範圍之外。該第一節點經組態以:計算從該第一節點至該目的地之一直線或一彎曲弧線。該第一節點可經進一步組態以:利用被動空間覺知來編譯該第一節點之該信標範圍內之節點之空間覺知。該第一節點可經進一步組態以:評估超出該通信範圍且在該第一節點之該信標範圍內之可能中繼路由。該第一節點可經進一步組態以:判定該複數個節點中位於該等可能中繼路由之一者上之一下一中繼節點。該等可能中繼路由之該一者可最接近該直線或該彎曲弧線,而不被判定為一終端路由之部分。該第一節點可經進一步組態以:將一通信資料封包發射至該下一中繼節點。In one aspect, embodiments of the inventive concepts disclosed herein relate to a system. The system may comprise a mobile ad hoc network (MANET) comprising a plurality of nodes. Each of the plurality of nodes includes a communication interface and a controller. Each of the plurality of nodes is configured to transmit communication packets and transmit beacons. A range of each beacon is greater than a communication range of each communication data packet. Each of the plurality of nodes has passive spatial awareness. A first node of the plurality of nodes has its own node speed, its own node orientation and information of a destination, and the destination is a destination area or a destination node. The destination is outside the communication range of the first node, and optionally outside the beacon range of the first node. The first node is configured to: calculate a straight line or a curved arc from the first node to the destination. The first node can be further configured to: utilize passive spatial awareness to encode spatial awareness of nodes within range of the beacon of the first node. The first node can be further configured to: evaluate possible relay routes beyond the communication range and within the beacon range of the first node. The first node may be further configured to: determine a next relay node of the plurality of nodes on one of the possible relay routes. The one of the possible relay routes may be closest to the straight line or the curved arc without being determined to be part of a terminal route. The first node can be further configured to: transmit a communication data packet to the next relay node.

在一進一步態樣中,本文中揭示之發明概念之實施例係關於一種方法。該方法可包含:提供包含複數個節點之一行動特用網路(MANET),其中該複數個節點之各者包括一通信介面及一控制器,其中該複數個節點之各者經組態以發射通信資料封包且發射信標,其中各信標之一信標範圍大於各通信資料封包之一通信範圍,其中該複數個節點之各者具有被動空間覺知,其中該複數個節點之一第一節點具有自身節點速度、自身節點定向及一目的地之資訊,該目的地係一目的地區域或一目的地節點,其中該目的地在該第一節點之該通信範圍之外且視情況在該第一節點之該信標範圍之外;藉由該第一節點計算從該第一節點至該目的地之一直線或一彎曲弧線;藉由該第一節點利用被動空間覺知來編譯該第一節點之該信標範圍內之節點之空間覺知;藉由該第一節點評估超出該通信範圍且在該第一節點之該信標範圍內之可能中繼路由;藉由該第一節點判定該複數個節點中位於該等可能中繼路由之一者上之一下一中繼節點,該等可能中繼路由之該一者最接近該直線或該彎曲弧線,而不被判定為一終端路由之部分;及藉由該第一節點將一通信資料封包發射至該下一中繼節點。In a further aspect, embodiments of the inventive concepts disclosed herein relate to a method. The method may include: providing a mobile ad hoc network (MANET) comprising a plurality of nodes, wherein each of the plurality of nodes includes a communication interface and a controller, wherein each of the plurality of nodes is configured to transmitting communication data packets and transmitting beacons, wherein a beacon range of each beacon is greater than a communication range of each communication data packet, wherein each of the plurality of nodes has passive spatial awareness, wherein a first of the plurality of nodes A node has information of own node speed, own node orientation and a destination, the destination being a destination area or a destination node, wherein the destination is outside the communication range of the first node and optionally within outside the beacon range of the first node; by the first node calculating a straight line or a curved arc from the first node to the destination; by the first node utilizing passive spatial awareness to compile the first node spatial awareness of nodes within the beacon range of a node; by the first node evaluating possible relay routes beyond the communication range and within the beacon range of the first node; by the first node determining a next relay node of the plurality of nodes located on one of the possible relay routes, the one of the possible relay routes being closest to the straight line or the curved arc without being determined as a terminal part of routing; and transmitting a communication data packet to the next relay node by the first node.

此[發明內容]僅被提供為對在[實施方式]及圖式中充分描述之標的物之一介紹。[發明內容]不應被視為描述本質特徵,亦不應被用於判定發明申請專利範圍之範疇。此外,應理解,前述[發明內容]及以下[實施方式]兩者僅提供為實例及說明性的,且不必限制所主張之標的物。This [Summary of the Invention] is provided only as an introduction to one of the subject matter fully described in the [Embodiment Modes] and drawings. [Content of the invention] should not be regarded as describing the essential features, nor should it be used to determine the scope of the scope of the patent application for the invention. In addition, it should be understood that both the aforementioned [Summary of the Invention] and the following [Implementation Mode] are provided as examples and illustrations only, and do not necessarily limit the claimed subject matter.

相關申請案之交叉參考Cross References to Related Applications

本申請案係關於以下美國專利申請案且主張其等之優先權:This application is related to and claims priority to the following U.S. patent applications:

(a) 2022年8月23日申請之美國專利申請案第63/400,138號,該案之全部內容以引用的方式併入本文中。(a) U.S. Patent Application Serial No. 63/400,138 filed August 23, 2022, which is incorporated herein by reference in its entirety.

(b)2022年4月13日申請之PCT專利申請案第PCT/US22/24653號,其主張2021年4月16日申請之美國專利申請案第17/233,107號之優先權,該等案之全部內容以引用的方式併入本文中;(b) PCT Patent Application No. PCT/US22/24653, filed April 13, 2022, which claims priority to U.S. Patent Application No. 17/233,107, filed April 16, 2021, of which The entire content is incorporated herein by reference;

(c) 2021年8月20日申請之美國專利申請案第17/408,156號,其主張2021年4月16日申請之美國專利申請案第17/233,107號之優先權,該等案之全部內容以引用的方式併入本文中;(c) U.S. Patent Application No. 17/408,156, filed August 20, 2021, which claims priority to U.S. Patent Application No. 17/233,107, filed April 16, 2021, the entire contents of which Incorporated herein by reference;

(d) 2021年12月3日申請之美國專利申請案第17/541,703號,該案之全部內容以引用的方式併入本文中,其主張以下申請案之優先權: a.   2021年8月20日申請之美國專利申請案第17/408,156號,該案之全部內容以引用的方式併入本文中;及 b.  2021年4月16日申請之美國專利申請案第17/233,107號,該案之全部內容以引用的方式併入本文中; (d) U.S. Patent Application No. 17/541,703, filed December 3, 2021, which is incorporated herein by reference in its entirety, which claims priority to the following applications: a. U.S. Patent Application Serial No. 17/408,156, filed August 20, 2021, which is hereby incorporated by reference in its entirety; and b. U.S. Patent Application Serial No. 17/233,107, filed April 16, 2021, which is incorporated herein by reference in its entirety;

(e) 2021年11月23日申請之美國專利申請案第17/534,061號,該案之全部內容以引用的方式併入本文中;(e) U.S. Patent Application Serial No. 17/534,061, filed November 23, 2021, which is incorporated herein by reference in its entirety;

(f) 2022年5月20日申請之美國專利申請案第63/344,445號,該案之全部內容以引用的方式併入本文中;(f) U.S. Patent Application Serial No. 63/344,445, filed May 20, 2022, which is incorporated herein by reference in its entirety;

(g) 2022年7月5日申請之美國專利申請案第17/857,920號,該案之全部內容以引用的方式併入本文中;(g) U.S. Patent Application Serial No. 17/857,920, filed July 5, 2022, which is incorporated herein by reference in its entirety;

(h) 2021年8月20日申請之美國專利申請案第17/408,156號,該案之全部內容以引用的方式併入本文中;(h) U.S. Patent Application Serial No. 17/408,156, filed August 20, 2021, which is incorporated herein by reference in its entirety;

(i) 2021年4月16日申請之美國專利申請案第17/233,107號,該案之全部內容以引用的方式併入本文中;(i) U.S. Patent Application Serial No. 17/233,107 filed April 16, 2021, which is incorporated herein by reference in its entirety;

(j) 2020年9月14日申請之美國專利申請案第17/020,231號,該案之全部內容以引用的方式併入本文中,其主張以下權利: a.   2020年8月7日申請之美國專利申請案第16/987,671號,該案之全部內容以引用的方式併入本文中;及 b.  2019年11月27日申請之美國專利申請案第16/698,230號,該案之全部內容以引用的方式併入本文中;及 (j) U.S. Patent Application No. 17/020,231, filed September 14, 2020, which is incorporated herein by reference in its entirety, claims the following rights: a. U.S. Patent Application Serial No. 16/987,671, filed August 7, 2020, which is incorporated herein by reference in its entirety; and b. U.S. Patent Application Serial No. 16/698,230, filed November 27, 2019, which is incorporated herein by reference in its entirety; and

(k) 2020年10月23日申請之美國專利申請案第17/079,175號,該案之全部內容以引用的方式併入本文中。(k) U.S. Patent Application Serial No. 17/079,175, filed October 23, 2020, which is incorporated herein by reference in its entirety.

本申請案係關於2019年3月29日申請之美國專利申請案第16/369398號,其在2021年4月13日作為專利第10,979,348號發佈,該案之全部內容以引用的方式併入本文中。本申請案係關於2019年8月12日申請之美國專利申請案第16/537824號,其在2021年2月23日作為專利第10,931,570號發佈,該案之全部內容以引用的方式併入本文中。This application is related to U.S. Patent Application No. 16/369,398, filed March 29, 2019, which issued as Patent No. 10,979,348 on April 13, 2021, which is incorporated herein by reference in its entirety middle. This application is related to U.S. Patent Application No. 16/537,824, filed August 12, 2019, which issued as Patent No. 10,931,570 on February 23, 2021, which is incorporated herein by reference in its entirety middle.

在詳細說明本發明之一或多項實施例之前,應理解,該等實施例在其等之應用中不限於在以下描述中闡述或在圖式中繪示之組件或步驟或方法之構造及配置之細節。在實施例之以下詳細描述中,可闡述數種特定細節以提供本發明之一更透徹理解。然而,受益於本發明之一般技術者將明白,可在不具有一些此等特定細節之情況下實踐本文中揭示之實施例。在其他例項中,可不詳細描述眾所周知之特徵以避免不必要地複雜化本發明。Before describing in detail one or more embodiments of the present invention, it should be understood that these embodiments are not limited in their application to the construction and arrangement of components or steps or methods set forth in the following description or shown in the drawings the details. In the following detailed description of the embodiments, several specific details may be set forth in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one of ordinary skill having the benefit of this disclosure, that the embodiments disclosed herein may be practiced without some of these specific details. In other instances, well known features have not been described in detail to avoid unnecessarily complicating the present invention.

如本文中使用,一元件符號之後之一字母旨在指涉可類似但不一定相同於帶有相同元件符號之一先前描述元件或特徵之特徵或元件之一實施例(例如,1、1a、1b)。此速記表示法僅為方便起見而使用,且不應被解釋為以任何方式限制本發明,除非明確相反規定。As used herein, a letter following an element number is intended to refer to an embodiment of a feature or element that may be similar, but not necessarily identical, to a previously described element or feature with the same element number (e.g., 1, 1a, 1b). This shorthand notation is used for convenience only and should not be construed as limiting the invention in any way unless expressly stated to the contrary.

此外,除非明確相反規定,否則「或」指代一包含性或且不指代一排他性或。例如,一條件A或B由以下任一者滿足:A為真(或存在)且B為假(或不存在),A為假(或不存在)且B為真(或存在)以及A及B兩者皆為真(或存在)。Furthermore, unless expressly stated to the contrary, "or" designates an inclusive or and does not denote an exclusive or. For example, a condition A or B is satisfied by any of the following: A is true (or exists) and B is false (or does not exist), A is false (or does not exist) and B is true (or exists) and A and B Both are true (or exist).

另外,可採用「一」或「一個」之使用來描述本文中揭示之實施例之元件及組件。此僅為方便起見而進行,且「一」及「一個」旨在包含「一個」或「至少一個」,且單數亦包含複數,除非明顯具有另外含義。Additionally, the use of "a" or "an" may be used to describe elements and components of the embodiments disclosed herein. This is done for convenience only and "a" and "an" are intended to include "one" or "at least one" and the singular also includes the plural unless it is obvious that it is meant otherwise.

最終,如本文中使用,對「一項實施例」或「一些實施例」之任何參考意謂結合該實施例描述之一特定元件、特徵、結構或特性包含於本文中揭示之至少一項實施例中。在說明書中之不同位置出現之片語「在一些實施例中」不一定皆指代相同實施例,且實施例可包含本文中明確描述或固有存在之一或多個特徵,或兩個或更多個此等特徵連同可能不一定在本發明中明確描述或固有存在之任何其他特徵之子組合之任何組合。Ultimately, as used herein, any reference to "one embodiment" or "some embodiments" means that a particular element, feature, structure, or characteristic described in connection with that embodiment is included in at least one implementation disclosed herein. example. The appearances of the phrase "in some embodiments" in various places in the specification are not necessarily all referring to the same embodiment, and an embodiment may include one or more features, or two or more features, either expressly described or inherently present herein. Any combination of a plurality of these features together with subcombinations of any other features which may not necessarily be explicitly described or inherently present in the present invention.

廣而言之,本文中揭示之發明概念之實施例係關於一種方法及系統,其包含具有複數個節點之一網路,該複數個節點經組態以使用被動空間覺知以透過MANET路由一通信資料封包,諸如參考圖31至圖46展示及論述。Broadly speaking, embodiments of the inventive concepts disclosed herein relate to a method and system comprising a network having nodes configured to use passive spatial awareness to route a network through a MANET. Communication data packets, such as shown and discussed with reference to FIGS. 31-46 .

大體上參考圖1至圖4C,一些實施例可利用被動空間覺知(PSA)之態樣。Referring generally to FIGS. 1-4C , some embodiments may utilize aspects of passive spatial awareness (PSA).

一些實施例可包含一種用於判定一行動特用網路(MANET)或類似多節點通信網路之相互動態通信節點之間之相對速度向量、方向及時脈頻率偏移之系統及方法。例如,經由使用全向天線進行都卜勒零掃描(或在一些實施例中,需要經由空間掃描進行定向追蹤之定向天線),可判定高動態網路環境中之鄰近節點之定向拓撲。此外,若都卜勒零掃描知識為全部節點所共有,則接收節點可調諧至適當都卜勒頻移以維持完全相干靈敏度。Some embodiments may include a system and method for determining relative velocity vectors, directions, and clock frequency offsets between mutually dynamic communication nodes of a mobile ad hoc network (MANET) or similar multi-node communication network. For example, by using omnidirectional antennas for Doppler zero scan (or in some embodiments, directional antennas that require directional tracking through spatial scanning), the directional topology of neighboring nodes in a highly dynamic network environment can be determined. Furthermore, if the Doppler zero-scan knowledge is shared by all nodes, the receiving node can tune to the appropriate Doppler shift to maintain full coherent sensitivity.

參考圖1,揭示一多節點通信網路100。多節點通信網路100可包含多個通信節點,例如,一發射(Tx)節點102及一接收(Rx)節點104。Referring to FIG. 1, a multi-node communication network 100 is disclosed. The multi-node communication network 100 may include a plurality of communication nodes, such as a transmitting (Tx) node 102 and a receiving (Rx) node 104 .

在實施例中,多節點通信網路100可包含此項技術中已知之任何多節點通信網路。例如,多節點通信網路100可包含一行動特用網路(MANET),其中Tx及Rx節點102、104 (以及多節點通信網路內之每一其他通信節點)能夠自由且獨立地移動。類似地,Tx及Rx節點102、104可包含此項技術中已知之可通信地耦合之任何通信節點。就此而言,Tx及Rx節點102、104可包含此項技術中已知之用於發射/收發資料封包之任何通信節點。例如,Tx及Rx節點102、104可包含但不限於無線電、行動電話、智慧型電話、平板電腦、智慧型手錶、膝上型電腦及類似物。在實施例中,多節點通信網路100之Rx節點104可各包含但不限於一各自控制器106 (例如,控制處理器)、記憶體108、通信介面110及天線元件112。(在實施例中,下文描述之Rx節點104之全部屬性、能力等可類似地應用於Tx節點102及多節點通信網路100之任何其他通信節點)。In an embodiment, the multi-node communication network 100 may comprise any multi-node communication network known in the art. For example, the multi-node communication network 100 may comprise a mobile ad hoc network (MANET) in which the Tx and Rx nodes 102, 104 (and every other communication node within the multi-node communication network) are able to move freely and independently. Similarly, Tx and Rx nodes 102, 104 may comprise any communicatively coupled communication nodes known in the art. In this regard, Tx and Rx nodes 102, 104 may comprise any communication nodes known in the art for transmitting/transceiving data packets. For example, Tx and Rx nodes 102, 104 may include, but are not limited to, radios, cell phones, smartphones, tablets, smart watches, laptops, and the like. In an embodiment, the Rx nodes 104 of the multi-node communication network 100 may each include, but are not limited to, a respective controller 106 (eg, control processor), memory 108 , communication interface 110 and antenna element 112 . (In an embodiment, all attributes, capabilities, etc. of the Rx node 104 described below are similarly applicable to the Tx node 102 and any other communication nodes of the multi-node communication network 100).

在實施例中,控制器106至少為Rx節點104提供處理功能性,且可包含任何數目個處理器、微控制器、電路系統、場可程式化閘陣列(FPGA)或其他處理系統及用於儲存由Rx節點104存取或產生之資料、可執行碼及其他資訊之駐留或外部記憶體。控制器106可執行體現在一非暫時性電腦可讀媒體(例如,記憶體108)中之實施本文中描述之技術之一或多個軟體程式。控制器106不受限於形成其之材料或其中採用之處理機制,且因而可經由(若干)半導體及/或電晶體(例如,使用電子積體電路(IC)組件)等實施。In an embodiment, controller 106 provides processing functionality for at least Rx node 104, and may include any number of processors, microcontrollers, circuitry, field programmable gate arrays (FPGAs), or other processing systems and for Resident or external memory that stores data, executable code, and other information accessed or generated by the Rx node 104. Controller 106 may execute one or more software programs embodied in a non-transitory computer-readable medium (eg, memory 108 ) that implement one or more of the techniques described herein. Controller 106 is not limited by the materials from which it is formed or the processing mechanisms employed therein, and thus may be implemented via semiconductor(s) and/or transistors (eg, using electronic integrated circuit (IC) components), or the like.

在實施例中,記憶體108可為提供用以儲存與Rx節點104及/或控制器106之操作相關聯之各種資料及/或程式碼(諸如軟體程式及/或碼片段或用以指示控制器106及Rx節點104之可能其他組件執行本文中描述之功能性之其他資料)之儲存功能性之有形電腦可讀儲存媒體之一實例。因此,記憶體108可儲存資料,諸如用於操作Rx節點104 (包含其組件(例如,控制器106、通信介面110、天線元件112等)等)之一指令程式。應注意,雖然描述一單一記憶體108,但可採用廣泛多種類型及組合之記憶體(例如,有形、非暫時性記憶體)。記憶體108可與控制器106整合、可包括獨立記憶體或可為兩者之一組合。記憶體108之一些實例可包含可抽換式及不可抽換式記憶體組件,諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體(例如,一安全數位(SD)記憶卡、一迷你SD記憶卡及/或一微型SD記憶卡)、固態硬碟(SSD)記憶體、磁性記憶體、光學記憶體、通用串列匯流排(USB)記憶體裝置、硬碟記憶體、外部記憶體等。In an embodiment, the memory 108 may be provided for storing various data and/or program codes (such as software programs and/or code segments or used to indicate control One example of a tangible computer-readable storage medium that stores the functionality of the device 106 and possibly other components of the Rx node 104 (other data that perform the functionality described herein). Accordingly, memory 108 may store data, such as a program of instructions for operating Rx node 104 (including its components (eg, controller 106, communication interface 110, antenna element 112, etc.), etc.). It should be noted that while a single memory 108 is described, a wide variety of types and combinations of memory (eg, tangible, non-transitory memory) may be employed. The memory 108 may be integrated with the controller 106, may include a separate memory, or may be a combination of both. Some examples of memory 108 may include removable and non-removable memory components such as random access memory (RAM), read only memory (ROM), flash memory (e.g., a secure bit ( SD) memory card, a mini SD memory card and/or a micro SD memory card), solid state drive (SSD) memory, magnetic memory, optical memory, universal serial bus (USB) memory device, hard disk memory, external memory, etc.

在實施例中,通信介面110可操作地組態以與Rx節點104之組件通信。例如,通信介面110可經組態以從控制器106或其他裝置(例如,Tx節點102及/或其他節點)擷取資料,發射資料以儲存於記憶體108中,從記憶體中之儲存器擷取資料等。通信介面110亦可與控制器106通信地耦合以促進Rx節點104之組件與控制器106之間之資料傳送。應注意,雖然通信介面110被描述為Rx節點104之一組件,但通信介面110之一或多個組件可實施為經由一有線及/或無線連接通信地耦合至Rx節點104之外部組件。Rx節點104亦可包含及/或連接至一或多個輸入/輸出(I/O)裝置。在實施例中,通信介面110包含或耦合至一發射器、接收器、收發器、實體連接介面或其等之任何組合。In an embodiment, the communication interface 110 is operably configured to communicate with components of the Rx node 104 . For example, communication interface 110 may be configured to retrieve data from controller 106 or other devices (e.g., Tx node 102 and/or other nodes), transmit data for storage in memory 108, retrieve data from storage in memory Retrieve data etc. Communication interface 110 may also be communicatively coupled with controller 106 to facilitate data transfer between components of Rx node 104 and controller 106 . It should be noted that although communication interface 110 is described as a component of Rx node 104, one or more components of communication interface 110 may be implemented as external components communicatively coupled to Rx node 104 via a wired and/or wireless connection. Rx node 104 may also include and/or be connected to one or more input/output (I/O) devices. In an embodiment, the communication interface 110 includes or is coupled to a transmitter, receiver, transceiver, physical connection interface, or any combination thereof.

本文中經考慮,Rx節點104之通信介面110可經組態以使用此項技術中已知之任何無線通信技術通信地耦合至多節點通信網路100之額外通信節點(例如,Tx節點102)之額外通信介面110,包含但不限於GSM、GPRS、CDMA、EV-DO、EDGE、WiMAX、3G、4G、4G LTE、5G、WiFi協定、RF、LoRa及類似物。It is contemplated herein that communication interface 110 of Rx node 104 may be configured to communicatively couple to additional communication nodes (e.g., Tx node 102) of multi-node communication network 100 using any wireless communication technique known in the art. The communication interface 110 includes but not limited to GSM, GPRS, CDMA, EV-DO, EDGE, WiMAX, 3G, 4G, 4G LTE, 5G, WiFi protocol, RF, LoRa and the like.

在實施例中,天線元件112可包含能夠***縱或以其他方式引導(例如,經由通信介面110)以相對於Rx節點104在一完整360度弧(114)中進行空間掃描之定向或全向天線元件。In an embodiment, antenna element 112 may comprise a directional or omnidirectional antenna element that can be steered or otherwise directed (e.g., via communication interface 110) to spatially scan a full 360-degree arc (114) relative to Rx node 104. antenna element.

在實施例中,Tx節點102及Rx節點104兩者皆可以一任意速率在一任意方向上移動,且可類似地相對於彼此移動。例如,Tx節點102可根據一速度向量116以一相對速度V Tx及一相對角方向(相對於一任意方向118之一角度α (例如,正東方))相對於Rx節點104移動;θ可為Rx節點相對於正東方之角方向。 In an embodiment, both Tx node 102 and Rx node 104 can move at an arbitrary rate in an arbitrary direction, and can similarly move relative to each other. For example, the Tx node 102 can move relative to the Rx node 104 according to a velocity vector 116 with a relative velocity V Tx and a relative angular direction (an angle α (e.g., due east) relative to an arbitrary direction 118); θ can be The angular orientation of the Rx node relative to due east.

在實施例中,Tx節點102可實施一都卜勒調零協定。例如,Tx節點102可調整其發射頻率以抵銷都卜勒頻率偏移,使得在一都卜勒調零方向120上(例如,在相對於任意方向118之一角度ϕ)不存在淨頻率偏移(例如,「都卜勒零」)。發射波形(例如,Tx節點102之通信介面110)可由平台(例如,控制器106)通知其速度向量及定向(例如,α、V T),且可調整其發射頻率以移除在各都卜勒調零方向120及角度ϕ之都卜勒頻移。 In an embodiment, Tx node 102 may implement a Doppler nulling protocol. For example, Tx node 102 may adjust its transmit frequency to offset the Doppler frequency offset such that there is no net frequency offset in a Doppler-nulling direction 120 (e.g., at an angle ϕ relative to any direction 118). shift (for example, "Doppler zero"). The transmit waveform (e.g., communication interface 110 of Tx node 102) can be informed of its velocity vector and orientation (e.g., α, V T ) by the platform (e.g., controller 106), and its transmit frequency can be adjusted to remove Doppler frequency shift in direction 120 and angle ϕ of Le zeroing.

在實施例中,即使Rx節點104不知道都卜勒調零協定,Rx節點仍可在Tx節點102覆蓋(例如,操縱、定向、引導天線元件112)一系列都卜勒調零方向120 (例如,相對於任意方向118,各都卜勒調零方向120具有一對應都卜勒調零角度ϕ)時觀察(例如,監測、量測)淨頻率偏移。因此,Rx節點104可判定Tx節點102之速度向量 之參數A之量值,以使Tx節點覆蓋兩個極值(例如,達成相對於Rx節點之一最小及一最大速度兩者),使得 其中f係Tx節點之發射頻率,且c係光速。例如,由Rx節點104在一給定都卜勒調零方向120偵測到之各頻移點(FSP)可對應於Tx節點102相對於Rx節點之一速度向量。如上文提及,且如下文更詳細描述,量值參數A可併入一最大及最小相對速度。然而,若都卜勒調零角度ϕ之範圍不夠寬,則量值參數A可僅包含都卜勒調零角度之該有限範圍之相對最大值及最小值(例如,而非可能都卜勒調零角度之完整360度;例如,參見下文圖2A至圖3B)。 In an embodiment, even if the Rx node 104 is not aware of the Doppler nulling protocol, the Rx node can still cover (e.g., steer, orient, steer the antenna element 112) at the Tx node 102 a series of Doppler nulling directions 120 (e.g., , with respect to any direction 118, each Doppler-nulling direction 120 has a corresponding Doppler-nulling angle ϕ) when observing (eg, monitoring, measuring) a net frequency shift. Therefore, the Rx node 104 can determine the velocity vector of the Tx node 102 The magnitude of parameter A such that the Tx node covers both extremes (e.g., achieving both a minimum and a maximum speed relative to the Rx node), such that Where f is the emission frequency of the Tx node, and c is the speed of light. For example, each frequency shift point (FSP) detected by the Rx node 104 in a given Doppler nulling direction 120 may correspond to a velocity vector of the Tx node 102 relative to the Rx node. As mentioned above, and as described in more detail below, the magnitude parameter A may incorporate a maximum and minimum relative velocity. However, if the range of Doppler-nulling angles ϕ is not wide enough, the magnitude parameter A may only contain the relative maximum and minimum values of this limited range of Doppler-nulling angles (e.g., rather than the possible Doppler-nulling A full 360 degrees of zero angle; for example, see Figures 2A-3B below).

在一些實施例中,都卜勒調零協定及該組都卜勒調零方向120 (及對應角度ϕ)對於Rx節點104係已知的,且為多節點通信網路100之全部其他節點所共有。例如,Tx節點102可藉由在如上文描述之該組或該系列方向之各都卜勒調零方向120及角度ϕ上指向一都卜勒零來執行都卜勒調零協定。Rx節點104可在執行都卜勒調零協定時監測Tx節點102,且因此可判定及解析各都卜勒調零方向120及角度ϕ之淨都卜勒頻移。In some embodiments, the Doppler-nulling protocol and the set of Doppler-nulling directions 120 (and corresponding angles ϕ) are known to the Rx node 104 and to all other nodes of the multi-node communication network 100 in total. For example, Tx node 102 may implement the Doppler nulling protocol by pointing to a Doppler null in each of the Doppler nulling directions 120 and angle ϕ of the set or series of directions as described above. The Rx node 104 can monitor the Tx node 102 while executing the Doppler nulling protocol, and thus can determine and resolve the net Doppler shift for each Doppler nulling direction 120 and angle ϕ.

在實施例中,儘管Tx及Rx節點102、104兩者可相對於任意方向118移動,然Rx節點104對都卜勒調零協定之監測可被執行且呈現在Rx節點104之慣性參考系中(例如,就Tx節點102相對於Rx節點104之移動而言)以無需對應於Rx節點之額外向量變數。例如,Tx節點102在一全域參考系中之速度向量可根據Rx節點104之速度向量移位,例如: 其中 係Tx節點在Rx節點之慣性參考系中之速度向量,且 分別係Tx節點及Rx節點在地球參考系中之速度向量。在實施例中,Tx節點102及Rx節點104之任一者或兩者可相應地補償其等自身相對於地球之速度向量,且將任何相關速度向量及相對速度分佈轉換為一全域參考系,例如,用於分佈遍及多節點通信網路100。另外,雖然Tx及Rx節點102、104之間之相對運動之表示在此處以兩個維度呈現,但相對運動(及例如任何相關聯速度向量、角方向、都卜勒調零方向及其他參數)可以添加垂直/z軸分量之三個維度呈現。 In an embodiment, although both the Tx and Rx nodes 102, 104 may move relative to an arbitrary direction 118, monitoring of the Doppler nulling agreement by the Rx node 104 may be performed and presented in the inertial frame of reference of the Rx node 104 (eg, for the movement of the Tx node 102 relative to the Rx node 104) so that no additional vector variables corresponding to the Rx nodes are required. For example, the velocity vector of Tx node 102 in a global reference frame can be shifted according to the velocity vector of Rx node 104, for example: in is the velocity vector of the Tx node in the inertial reference frame of the Rx node, and , are the velocity vectors of the Tx node and the Rx node in the earth reference system, respectively. In an embodiment, either or both of the Tx node 102 and the Rx node 104 may accordingly compensate their own velocity vectors relative to the Earth, and convert any associated velocity vectors and relative velocity distributions into a global frame of reference, For example, for distribution throughout the multi-node communication network 100 . Additionally, although representations of relative motion between the Tx and Rx nodes 102, 104 are presented here in two dimensions, the relative motion (and any associated velocity vectors, angular orientation, Doppler-nulling direction, and other parameters, for example) Three-dimensional rendering with vertical/z-axis components can be added.

現參考圖2A及圖2B,分別展示圖表200及多節點通信網路100。圖表200可針對多個都卜勒調零方向(120,圖1)及角度ϕ (例如,相對於任意方向(118,圖2B))以及Tx節點之速度VTx標繪Tx節點(102,圖2B)相對於Rx節點(104,圖2B)之速度向量之變化方向分量(α,圖2B)之頻移輪廓。為了清楚起見,圖表200及下文提供之頻移輪廓之其他標繪圖可按c/f縮放以消除比率f/c (其中如上文提及,f係Tx節點102之發射頻率,且c係光速)。Referring now to FIG. 2A and FIG. 2B , a diagram 200 and a multi-node communication network 100 are shown, respectively. Graph 200 may plot the Tx node (102, FIG. 2B ) for multiple Doppler-nulling directions (120, FIG. 1 ) and angles ϕ (e.g., relative to any direction (118, FIG. 2B )) and the velocity VTx of the Tx node. ) with respect to the frequency shift profile of the changing direction component (α, FIG. 2B ) of the velocity vector of the Rx node ( 104 , FIG. 2B ). For clarity, graph 200 and other plots of frequency shift profiles provided below may be scaled by c/f to eliminate the ratio f/c (where, as mentioned above, f is the transmit frequency of Tx node 102 and c is the speed of light ).

在實施例中,Rx節點104可針對Tx節點102之多個都卜勒調零方向120及角度ϕ重複淨都卜勒頻移判定及解析程序(例如,隨機或根據預定或預程式化協定來選擇)。例如,Tx節點102可掃描通過至少三個都卜勒調零方向(202a至202c,圖2B)/角度ϕ,且經由對應頻移點映射各都卜勒調零方向及角度ϕ之相依都卜勒頻移之分佈。假定角方向θ=0 (例如,與向正東方移動之一Rx節點104一致)且Tx節點102之速度V Tx=1500 m/s,圖表200可繪製相對於任意方向118之變化方向分量α之頻移輪廓。如眾所周知,都卜勒頻移係相對於都卜勒調零方向202a至202c之角度ϕ之一正弦分佈,由Rx節點104在Tx節點102之多個都卜勒調零方向上之量測可產生頻移點(204a至204c,圖2A),一頻移輪廓206可作為一正弦曲線映射至該等頻移點,該正弦曲線展示Tx及Rx節點102、104之間之相對速度在都卜勒調零角度ϕ之整個範圍內之分佈(例如,假定包含最大及最小相對速度)。 In an embodiment, the Rx node 104 may repeat the net Doppler shift determination and resolution procedure (e.g., randomly or according to a predetermined or preprogrammed agreement) for a plurality of Doppler nulling directions 120 and angles ϕ of the Tx node 102 choose). For example, the Tx node 102 may scan through at least three Doppler nulling directions (202a to 202c, FIG. 2B )/angle ϕ, and map the dependencies of each Doppler nulling direction and angle ϕ via corresponding frequency shift points Distribution of Le shift. Assuming angular direction θ=0 (e.g., coincident with an Rx node 104 moving due east) and a velocity V Tx of Tx node 102 =1500 m/s, graph 200 can plot the change in directional component α relative to any direction 118 Frequency shift profile. As is well known, the Doppler frequency shift is a sinusoidal distribution of the angle ϕ with respect to the Doppler nulling directions 202a to 202c, measured by the Rx node 104 in the multiple Doppler nulling directions of the Tx node 102. Frequency shift points (204a-204c, FIG. 2A) are generated to which a frequency shift profile 206 can be mapped as a sinusoid showing the relative velocity between the Tx and Rx nodes 102, 104 at both Distribution over the entire range of the zeroing angle ϕ (eg, assumed to include maximum and minimum relative velocities).

在實施例中,頻移輪廓206之振幅可對應於Tx節點102相對於Rx節點104之速度。例如,即使Rx節點104不知道都卜勒調零協定,仍可判定Tx節點102之速度向量 之一量值參數A (例如,在Rx節點之參考系中),例如,在一最小相對速度208 (例如,0 m/s)與一最大相對速度210 (例如,3000 m/s)之間,或與在相反方向上行進之Tx及Rx節點一致(α=180°,與向正西方(212)行進之一Tx節點及相位偏移頻移輪廓214一致)。 In an embodiment, the amplitude of the frequency shift profile 206 may correspond to the velocity of the Tx node 102 relative to the Rx node 104 . For example, the velocity vector of Tx node 102 can be determined even if Rx node 104 is unaware of the Doppler nulling protocol A magnitude parameter A (e.g., in the reference frame of the Rx node), e.g., between a minimum relative velocity 208 (e.g., 0 m/s) and a maximum relative velocity 210 (e.g., 3000 m/s) , or coincident with Tx and Rx nodes traveling in opposite directions (α = 180°, consistent with one Tx node traveling due west (212) and phase offset frequency shift profile 214).

在實施例中,當α變化時,頻移輪廓214、216、218可呈現為頻移輪廓206之相位偏移版本(例如,具有類似偏移最大及最小相對速度)。例如(除了上文提及之頻移輪廓214之外),頻移輪廓216可對應於α=90°,與向正北方(220)行進之一Tx節點一致,且頻移輪廓218可對應於α=-90°,與向正南方(222)行進之一Tx節點一致。In an embodiment, the frequency shift profiles 214, 216, 218 may appear as phase-shifted versions of the frequency shift profile 206 (eg, with similarly shifted maxima and minimum relative velocities) as a varies. For example (in addition to frequency shift profile 214 mentioned above), frequency shift profile 216 may correspond to α=90°, coincident with a Tx node traveling due north (220), and frequency shift profile 218 may correspond to α=-90°, consistent with one of the Tx nodes traveling due south (222).

在實施例中,頻移輪廓206、214、216、218可容許Rx節點104導出除Tx節點102之速度向量 之量值參數A之外之參數。例如,歸因於Tx及Rx節點102、104之間之相對徑向速度之真實都卜勒頻移可為(如由Rx節點所見): 且依據都卜勒調零協定,Tx節點102可歸因於其在都卜勒調零角度ϕ之速度投影而調整發射頻率f,使得: 且淨都卜勒頻移(亦考量時脈頻率偏移Δf clock)因此可為: 例如,假定速度向量及方向相對於Δf net之週期性量測緩慢地改變。應注意,如上文呈現之Δf net表示從標稱併入f/c之一淨頻率偏移(例如,比較圖2A至圖2B與上文隨附文字)。在此等條件下,從Rx節點104之角度而言,參數α、Tx及θ可作為常數,且淨頻率偏移Δf net亦可表達為: 其中常數參數A、B及C可經由一都卜勒調零角度ϕ之至少三個量測來判定。如上文提及, 同時亦 B=π-α 及 其中如上文提及,A可對應於Tx節點102相對於Rx節點104之速度向量之量值。類似地,B可對應於速度向量之方向分量α,且C可對應於Rx節點104之角方向θ。 In an embodiment, the frequency shift profiles 206, 214, 216, 218 may allow the Rx node 104 to derive a velocity vector other than the Tx node 102 Parameters other than the value parameter A. For example, the true Doppler shift due to the relative radial velocity between the Tx and Rx nodes 102, 104 may be (as seen by the Rx nodes): And according to the Doppler nulling agreement, the Tx node 102 can adjust the transmit frequency f due to its velocity projection at the Doppler nulling angle ϕ such that: And the net Doppler frequency shift (also considering the clock frequency offset Δf clock ) can thus be: For example, assume that the velocity vector and direction change slowly with respect to a periodic measure of Δf net . It should be noted that Δf net as presented above represents a net frequency shift from the nominal incorporated f/c (eg compare Figures 2A-2B with accompanying text above). Under these conditions, from the perspective of the Rx node 104, the parameters α, Tx and θ can be regarded as constants, and the net frequency offset Δf net can also be expressed as: The constant parameters A, B and C can be determined by at least three measurements of a Doppler zeroing angle ϕ. As mentioned above, Also B=π-α and Where as mentioned above, A may correspond to the magnitude of the velocity vector of the Tx node 102 relative to the Rx node 104 . Similarly, B may correspond to the directional component α of the velocity vector, and C may correspond to the angular direction θ of the Rx node 104 .

在實施例中,一旦判定參數A、B及C,便可由此導出參數α、V’ T、θ,如上文可見。例如,當時脈頻率偏移Δf clock為零時,可直接從上文C導出θ。然而,當時脈頻率偏移Δf clock不為零時,Rx節點104可藉由與Tx節點102交換資訊來判定Δf clock。例如,Rx及Tx節點104、102可交換角色:Rx節點104可針對各種都卜勒調零方向120及角度ϕ執行都卜勒調零協定,而Tx節點102監測都卜勒調零協定以解析θ’=θ+π (且Δf’ clock=−Δf clock)之淨都卜勒頻移。Tx節點102可與Rx節點104共用此資訊,Rx節點104可合併來自兩個方向之資訊以判定θ及Δf clockIn an embodiment, once the parameters A, B, and C are determined, the parameters α, V'T , θ can be derived therefrom, as seen above. For example, when the clock frequency offset Δf clock is zero, θ can be directly derived from C above. However, when the clock frequency offset Δf clock is not zero, the Rx node 104 can determine Δf clock by exchanging information with the Tx node 102 . For example, the Rx and Tx nodes 104, 102 may switch roles: the Rx node 104 may execute the Doppler nulling protocol for various Doppler nulling directions 120 and angles ϕ, while the Tx node 102 monitors the Doppler nulling protocol for resolution The net Doppler frequency shift of θ'=θ+π (and Δf' clock =−Δf clock ). Tx node 102 can share this information with Rx node 104, which can combine information from both directions to determine θ and Δf clock .

現參考圖3A及圖3B,圖表300及多節點通信網路100a可經實施且可類似於圖2A及圖2B之圖表200及多節點通信網路100來運作,惟圖表300及多節點通信網路100a可反映一致零方向分量α (例如,在任意方向(118,圖3B,例如,正東方)上或平行於任意方向移動之一Tx節點(102,圖3B))及Rx節點(104、104a至104c,圖3B)相對於Tx節點之可變角方向θ除外。Referring now to FIGS. 3A and 3B , diagram 300 and multi-node communication network 100a may be implemented and may operate similarly to diagram 200 and multi-node communication network 100 of FIGS. 2A and 2B , except that diagram 300 and multi-node communication network Road 100a may reflect a uniformly zero directional component α (e.g., a Tx node (102, FIG. 3B ) moving in or parallel to any direction (118, FIG. 3B , e.g., due east)) and an Rx node (104, 104a to 104c, Figure 3B) except for the variable angular direction Θ with respect to the Tx node.

在實施例中,頻率輪廓(302、304、306、308;圖3A)可分別與θ=0° (例如,與直接位於Tx節點102之路徑中之Rx節點104一致);θ=90° (Rx節點104a);θ=180° (Rx節點104b,與在與Rx節點(例如,向正西方移動之一Rx節點)相反之方向上移動之Tx節點一致)相關聯;且θ=−95° (Rx節點104c)。特定言之參考圖3A,頻率輪廓302至308可在振幅上移位(而非在相位上,如由圖2A之圖表200展示),使得都卜勒頻移僅在量值(例如,相對最大及最小速度)上變化。可注意,頻移輪廓304 (θ=90°)看似相同於與θ=-90° (Rx節點104d)相關聯之頻移輪廓,其中兩個角方向θ垂直於Tx節點102之速度向量(方向分量α),但相互相反。例如,若一Rx節點104a、104d通信節點以此一位置及速度進入多節點通信網路100a,則可能必須藉由其他方法(例如,或藉由等待Rx節點速度或θ之一改變)進行一次性判定以精確地判定θ (例如,+90°/-90°),在該判定之後,可無歧義地追蹤精確θ。In an embodiment, the frequency profiles (302, 304, 306, 308; FIG. 3A ) may correspond to θ=0° (e.g., coincident with Rx node 104 directly in the path of Tx node 102); θ=90° ( Rx node 104a); θ = 180° (Rx node 104b, associated with a Tx node moving in the opposite direction to an Rx node (e.g., an Rx node moving due west)); and θ = −95° (Rx node 104c). Referring specifically to FIG. 3A , the frequency contours 302 to 308 may be shifted in amplitude (rather than in phase, as shown by graph 200 of FIG. 2A ), such that the Doppler shift is only in magnitude (e.g., relative maximum and minimum speed). It may be noted that the frequency shift profile 304 (θ=90°) appears identical to the frequency shift profile associated with θ=−90° (Rx node 104d), where the two angular directions θ are perpendicular to the velocity vector of the Tx node 102 ( directional components α), but opposite to each other. For example, if an Rx node 104a, 104d communication node enters the multi-node communication network 100a at this position and speed, it may have to be done once by other means (eg, or by waiting for a change in either the Rx node speed or θ). A positive decision is made to determine θ precisely (eg, +90°/-90°), after which the exact θ can be tracked unambiguously.

在一些實施例中,Rx節點104、104a至104c可藉由量測時間差分點(TDP)而非FSP來評估及判定歸因於Tx節點102之相對運動之都卜勒效應。例如,由Tx節點102以1 kHz發射之一信號可經受10 Hz之都卜勒頻移。此百分之一(1%)之頻率改變可替代地表達為量測所發射信號之一循環(或例如任意數目個循環)所需之時間之百分之一的一差分。都卜勒效應可在頻域或時域中精確且等效地特性化。例如,標繪Tx節點102相對於Rx節點104、104a至104c之速度向量(y軸)對都卜勒調零角度ϕ之圖2A及圖3A之圖表200、300可在頻域與時域之間保持一致,惟各FSP (204a至204c,圖2A)對應於在一給定都卜勒調零角度ϕ之一所量測時間差分(例如,對應於一TDP)而非對應於在該調零角度之一所量測頻移除外。In some embodiments, the Rx nodes 104, 104a-104c can evaluate and determine the Doppler effect due to the relative motion of the Tx node 102 by measuring the time difference point (TDP) instead of the FSP. For example, a signal transmitted by Tx node 102 at 1 kHz may experience a Doppler shift of 10 Hz. This one percent (1%) change in frequency may alternatively be expressed as a difference in one percent of the time required to measure one cycle (or, for example, any number of cycles) of the transmitted signal. The Doppler effect can be precisely and equivalently characterized in the frequency domain or the time domain. For example, the graphs 200, 300 of FIGS. 2A and 3A that plot the velocity vector (y-axis) of the Tx node 102 relative to the Rx nodes 104, 104a-104c versus the Doppler nulling angle ϕ can be compared between the frequency domain and the time domain. , but each FSP (204a to 204c, FIG. 2A) corresponds to a time difference measured at a given Doppler nulling angle ϕ (for example, corresponding to a TDP) rather than corresponding to One of the measured frequencies at zero angle is excluded.

在一些實施例中,歸因於所發射信號之性質(或例如其他條件),對於Rx節點104而言,在時域中而非在頻域中判定都卜勒頻移可更容易或更有利。例如,當由Tx節點102在一給定都卜勒調零方向(202a至202c,圖2B)發射之信號由一系列短脈衝及一長脈衝重複時間間隔(例如,而非例如一連續短持續時間脈衝)組成時,Rx節點104可代替地藉由量測所發射信號之接收循環之間之時間差分且基於各組所判定TDP產生時間差分輪廓來判定待解析之都卜勒頻移。由於類似於圖2A及圖3A之頻移輪廓圖表200、300,所得時間差分輪廓標繪Tx節點102在一組都卜勒調零角度ϕ上之相對速度向量,因此可由Rx節點104判定相同資訊。 圖4A至圖4C-方法 In some embodiments, due to the nature of the transmitted signal (or other conditions, for example), it may be easier or more advantageous for the Rx node 104 to determine the Doppler shift in the time domain rather than in the frequency domain . For example, when the signal transmitted by Tx node 102 in a given Doppler-nulling direction (202a to 202c, FIG. When composed of time pulses), the Rx node 104 may instead determine the Doppler shift to be resolved by measuring the time difference between receive cycles of the transmitted signal and generating a time difference profile based on each set of determined TDPs. As similar to the frequency shift profile graphs 200, 300 of FIGS. 2A and 3A, the resulting time difference profile plots the relative velocity vector of the Tx node 102 over a set of Doppler nulling angles ϕ, so the same information can be determined by the Rx node 104. . Figure 4A to Figure 4C - Method

現參考圖4A,方法400可由多節點通信網路100、100a實施,且可包含以下步驟。Referring now to FIG. 4A, the method 400 may be implemented by the multi-node communication network 100, 100a, and may include the following steps.

在一步驟402,多節點通信網路之一接收(Rx)節點監測網路之一發射(Tx)節點以識別由Tx節點在一系列都卜勒調零角度(例如,或一組離散都卜勒調零角度)內發射之信號,該等信號包含對發射頻率之調整以抵銷在各都卜勒調零角度之都卜勒頻率偏移。例如,Tx節點可根據一速度向量及一角方向相對於Rx節點移動。各所識別信號可對應於在一特定都卜勒調零角度之一特定Tx頻率調整(例如,由Rx節點偵測到之一淨頻移)以解析在該角度之一都卜勒頻率偏移。In a step 402, one of the receiving (Rx) nodes of the multi-node communication network monitors one of the transmitting (Tx) nodes of the network to identify a range of Doppler nulling angles (e.g., or a set of discrete Doppler Signals transmitted within Doppler nulling angles) that include adjustments to the transmitted frequency to offset the Doppler frequency shift at each Doppler nulling angle. For example, a Tx node can move relative to an Rx node according to a velocity vector and an angular direction. Each identified signal may correspond to a specific Tx frequency adjustment (eg, a net frequency shift detected by the Rx node) at a specific Doppler nulling angle to resolve a Doppler frequency shift at that angle.

在步驟404,Rx節點之一控制器基於監測及所識別信號判定一組(例如,三個或更多個)頻移點(FSP),其中各FSP對應於信號之一淨頻移。例如,各FSP可對應於在一都卜勒調零方向上掃描且根據一調零協定調整其發射頻率以解析在對應都卜勒調零角度ϕ之都卜勒偏移之Tx節點(例如,知道其速度向量及平台定向),從而導致由Rx節點偵測到之淨頻移。在一些實施例中,Rx節點在時域中而在非頻域中量測淨頻移。例如,Rx節點可量測與所識別信號之一或多個接收循環相關聯之一時間差分,該時間差分對應於在對應都卜勒調零角度之淨頻移。At step 404, a controller of the Rx nodes determines a set (eg, three or more) of frequency shift points (FSPs) based on the monitored and identified signals, where each FSP corresponds to a net frequency shift of the signal. For example, each FSP may correspond to a Tx node that scans in a Doppler-nulling direction and adjusts its transmit frequency according to a nulling protocol to resolve a Doppler offset at a corresponding Doppler-nulling angle ϕ (e.g., Knowing its velocity vector and platform orientation), resulting in a net frequency shift detected by the Rx node. In some embodiments, the Rx node measures the net frequency shift in the time domain and not in the frequency domain. For example, the Rx node may measure a time difference associated with one or more receive cycles of the identified signal, the time difference corresponding to the net frequency shift at the corresponding Doppler nulling angle.

在步驟406,控制器基於複數個頻移點判定Tx及Rx節點之間之相對速度向量之一量值(例如,在Rx節點之參考系中)。例如,可從速度之量值導出相對於該系列都卜勒調零角度ϕ之一最大及最小相對速度。In step 406, the controller determines the magnitude of the relative velocity vector between the Tx and Rx nodes (eg, in the reference frame of the Rx node) based on the frequency shift points. For example, a maximum and a minimum relative velocity with respect to one of the series of Doppler nulling angles ϕ can be derived from the magnitude of the velocity.

在一些實施例中,該系列或該組都卜勒調零角度ϕ可為多節點通信網路之全部節點(例如,包含Rx節點)所知,且方法400可包含額外步驟408及410。In some embodiments, the series or set of Doppler-nulling angles ϕ may be known to all nodes (eg, including Rx nodes) of the multi-node communication network, and method 400 may include additional steps 408 and 410 .

在步驟408,Rx節點將所判定FSP映射至對應於在全部可能都卜勒調零角度ϕ上之ϕ相依淨頻移之一分佈(例如,一正弦曲線)之一頻移輪廓。在一些實施例中,控制器進一步判定頻移輪廓之一相位偏移。In step 408, the Rx node maps the determined FSP to a frequency shift profile corresponding to a distribution (eg, a sinusoid) of ϕ-dependent net frequency shifts over all possible Doppler nulling angles ϕ. In some embodiments, the controller further determines a phase shift of one of the frequency shift profiles.

在步驟410,控制器基於頻移輪廓判定一速度V’ T及速度向量(例如,Tx節點102相對於一任意方向之速度向量)之一方向分量α以及角方向θ (例如,Rx節點相對於任意方向之角方向)。 In step 410, the controller determines a velocity V' T and a directional component α of the velocity vector (eg, Tx node 102 relative to an arbitrary direction velocity vector) and angular direction θ (eg, Rx node relative to Angular direction in any direction).

亦參考圖4B,方法400可包含一額外步驟412。在步驟412,角方向θ併入Tx與Rx節點之間之一時脈頻率偏移,該Rx節點基於從Tx節點接收之額外資訊判定該時脈頻率偏移。Referring also to FIG. 4B , the method 400 may include an additional step 412 . At step 412, the angular direction Θ incorporates a clock frequency offset between the Tx and Rx nodes, and the Rx node determines the clock frequency offset based on additional information received from the Tx node.

現參考圖4C,方法400可包含一額外步驟414。在步驟414,速度向量可在特定於Rx節點之一慣性參考系中。例如,Rx節點可將速度向量從其自身之平台參考系轉換為一全域參考系。Referring now to FIG. 4C , method 400 may include an additional step 414 . At step 414, the velocity vector may be in one of the inertial reference frames specific to the Rx node. For example, the Rx node can transform the velocity vector from its own platform frame of reference to a global frame of reference.

大體上參考圖5至圖8B,一些實施例可利用高效資訊及收集分佈(EICD)之態樣。Referring generally to FIGS. 5-8B , some embodiments may utilize aspects of efficient information and collection distribution (EICD).

本文中揭示之發明概念之一些實施例係關於用於貫穿一行動特用網路(MANET)或其他類似多節點通信網路高效地收集及分佈關鍵任務資訊(MCI)之系統及方法。例如,美國專利申請案16/698,230 (其之全部內容以引用的方式併入本文中)揭示經由MANET之選定關鍵節點收集及分佈定位資訊(PLI)。美國專利申請案16/987,671 (其之全部內容以引用的方式併入本文中)揭示使用關鍵節點之支配集減少關於MANET節點之鏈路狀態通告及被動叢集化之總封包泛流。本文中揭示之發明概念之實施例可藉由消除每一節點泛流或廣播其他類型之MCI (包含但不限於動態頻譜分配(DSA)或頻道品質量測)之需求來減少附加項(且類似地減少頻寬及潛在頻道干擾)。類似地,MCI之高效分佈可用於非常大MANET之叢集化或重構。Some embodiments of the inventive concepts disclosed herein relate to systems and methods for efficiently collecting and distributing mission critical information (MCI) throughout a mobile ad hoc network (MANET) or other similar multi-node communication network. For example, US Patent Application 16/698,230, the entire contents of which are incorporated herein by reference, discloses the collection and distribution of Positioning Information (PLI) over selected key nodes of a MANET. US Patent Application 16/987,671, the entire contents of which are incorporated herein by reference, discloses the use of dominant sets of key nodes to reduce overall packet flooding for link state advertisements and passive clustering of MANET nodes. Embodiments of the inventive concepts disclosed herein may reduce overhead (and similar minimize bandwidth and potential channel interference). Similarly, efficient distribution of MCIs can be used for clustering or reconfiguration of very large MANETs.

參考圖5,揭示一多節點通信網路2100。多節點通信網路2100可包含通信節點2102。Referring to FIG. 5, a multi-node communication network 2100 is disclosed. The multi-node communication network 2100 may include a communication node 2102 .

在實施例中,多節點通信網路2100可包含此項技術中已知之任何多節點通信網路。例如,多節點通信網路2100可包含一行動特用網路(MANET),其中多節點通信網路內之各通信節點2102能夠自由且獨立地移動。類似地,一或多個通信節點2102可包含此項技術中已知之可通信地耦合之任何通信節點。就此而言,一或多個通信節點2102可包含此項技術中已知之用於發射/收發資料封包之任何通信節點。例如,一或多個通信節點2102可包含但不限於無線電、行動電話、智慧型電話、平板電腦、智慧型手錶、膝上型電腦及類似物。在實施例中,多節點通信網路2100之各通信節點2102可包含但不限於一各自控制器2104 (例如,控制處理器)、記憶體2106及通信介面2108。In an embodiment, the multi-node communication network 2100 may comprise any multi-node communication network known in the art. For example, the multi-node communication network 2100 may include a mobile ad hoc network (MANET), wherein each communication node 2102 within the multi-node communication network can move freely and independently. Similarly, one or more communication nodes 2102 may include any communication nodes known in the art to be communicatively coupled. In this regard, the one or more communication nodes 2102 may include any communication nodes known in the art for transmitting/receiving data packets. For example, one or more communication nodes 2102 may include, but are not limited to, radios, cell phones, smartphones, tablets, smart watches, laptops, and the like. In an embodiment, each communication node 2102 of the multi-node communication network 2100 may include, but is not limited to, a respective controller 2104 (eg, control processor), memory 2106 and communication interface 2108 .

控制器2104至少為通信節點2102提供處理功能性,且可包含任何數目個處理器、微控制器、電路系統、場可程式化閘陣列(FPGA)或其他處理系統及用於儲存由通信節點2102存取或產生之資料、可執行碼及其他資訊之駐留或外部記憶體。控制器2104可執行體現在一非暫時性電腦可讀媒體(例如,記憶體2106)中之實施本文中描述之技術之一或多個軟體程式。控制器2104不受限於形成其之材料或其中採用之處理機制,且因而,可經由(若干)半導體及/或電晶體(例如,使用電子積體電路(IC)組件)等實施。Controller 2104 provides at least processing functionality for communication node 2102 and may include any number of processors, microcontrollers, circuitry, field programmable gate arrays (FPGAs), or other processing systems and for storing Resident or external memory for accessing or generating data, executable code and other information. Controller 2104 may execute one or more software programs embodied in a non-transitory computer-readable medium (eg, memory 2106 ) that implement one or more techniques described herein. Controller 2104 is not limited by the materials from which it is formed or the processing mechanisms employed therein, and thus, may be implemented via semiconductor(s) and/or transistors (eg, using electronic integrated circuit (IC) components), and the like.

記憶體2106可為提供用以儲存與通信節點2102/控制器2104之操作相關聯之各種資料及/或程式碼(諸如軟體程式及/或碼片段或用以指示控制器2104及通信節點2102之可能其他組件執行本文中描述之功能性之其他資料)之儲存功能性之有形電腦可讀儲存媒體之一實例。因此,記憶體2106可儲存資料,諸如用於操作通信節點2102 (包含其組件(例如,控制器2104、通信介面2108等)等)之一指令程式。應注意,雖然描述一單一記憶體2106,但可採用廣泛多種類型及組合之記憶體(例如,有形、非暫時性記憶體)。記憶體2106可與控制器2104整合、可包括獨立記憶體或可為兩者之一組合。記憶體2106之一些實例可包含可抽換式及不可抽換式記憶體組件,諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體(例如,一安全數位(SD)記憶卡、一迷你SD記憶卡及/或一微型SD記憶卡)、固態硬碟(SSD)記憶體、磁性記憶體、光學記憶體、通用串列匯流排(USB)記憶體裝置、硬碟記憶體、外部記憶體等。The memory 2106 may be provided for storing various data and/or program codes (such as software programs and/or code segments or used to instruct the controller 2104 and the communication node 2102) associated with the operation of the communication node 2102/controller 2104 One example of a tangible computer-readable storage medium that stores functionality, possibly other components that perform the functionality described herein, other data). Accordingly, memory 2106 may store data, such as a program of instructions for operating communication node 2102 (including its components (eg, controller 2104, communication interface 2108, etc.), etc.). It should be noted that while a single memory 2106 is described, a wide variety of types and combinations of memory (eg, tangible, non-transitory memory) may be employed. The memory 2106 may be integrated with the controller 2104, may include a separate memory, or may be a combination of both. Some examples of memory 2106 may include removable and non-removable memory components, such as random access memory (RAM), read only memory (ROM), flash memory (e.g., a secure bit ( SD) memory card, a mini SD memory card and/or a micro SD memory card), solid state drive (SSD) memory, magnetic memory, optical memory, universal serial bus (USB) memory device, hard disk memory, external memory, etc.

通信介面2108可操作地組態以與通信節點2102之組件通信。例如,通信介面2108可經組態以從控制器2104或其他裝置(例如,其他節點2102)擷取資料,發射資料以儲存於記憶體2106中,從記憶體2106中之儲存器擷取資料等。通信介面2108亦可與控制器2104通信地耦合以促進通信節點2102之組件與控制器2104之間之資料傳送。應注意,雖然通信介面2108被描述為通信節點2102之一組件,但通信介面2108之一或多個組件可實施為經由一有線及/或無線連接通信地耦合至通信節點2102之外部組件。通信節點2102亦可包含及/或連接至一或多個輸入/輸出(I/O)裝置。在實施例中,通信介面2108包含或耦合至一發射器、接收器、收發器、實體連接介面或其等之任何組合。Communication interface 2108 is operatively configured to communicate with components of communication node 2102 . For example, communication interface 2108 may be configured to retrieve data from controller 2104 or other devices (e.g., other nodes 2102), transmit data for storage in memory 2106, retrieve data from storage in memory 2106, etc. . Communication interface 2108 may also be communicatively coupled with controller 2104 to facilitate data transfer between components of communication node 2102 and controller 2104 . It should be noted that although communication interface 2108 is described as a component of communication node 2102, one or more components of communication interface 2108 may be implemented as external components communicatively coupled to communication node 2102 via a wired and/or wireless connection. Communications node 2102 may also include and/or be connected to one or more input/output (I/O) devices. In an embodiment, the communication interface 2108 includes or is coupled to a transmitter, receiver, transceiver, physical connection interface, or any combination thereof.

本文中經考慮,一通信節點2102之通信介面2108可經組態以使用此項技術中已知之任何無線通信技術(包含但不限於GSM、GPRS、CDMA、EV-DO、EDGE、WiMAX、3G、4G、4G LTE、5G、WiFi協定、RF、LoRa及類似物)通信地耦合至多節點通信網路100之額外通信節點2102之額外通信介面2108。It is contemplated herein that the communication interface 2108 of a communication node 2102 may be configured to use any wireless communication technology known in the art (including but not limited to GSM, GPRS, CDMA, EV-DO, EDGE, WiMAX, 3G, 4G, 4G LTE, 5G, WiFi protocol, RF, LoRa, and the like) communicatively coupled to the additional communication interface 2108 of the additional communication node 2102 of the multi-node communication network 100 .

在實施例中,多節點通信網路2100可判定用於在一源節點2102a與一目的地節點2102b之間發射一資料封包之最短路由。例如,源節點2102a可不直接將資料封包發射至目的地節點2102b,而經由將資料封包轉發至目的地節點2102b之一或多個中繼節點2102c。In an embodiment, the multi-node communication network 2100 may determine the shortest route for transmitting a data packet between a source node 2102a and a destination node 2102b. For example, the source node 2102a may not directly transmit the data packet to the destination node 2102b, but instead forwards the data packet to one or more relay nodes 2102c of the destination node 2102b.

在實施例中,多節點通信網路2100可經由其參與通信節點2102之間之全域協作藉由產生多節點通信網路內之全部通信節點之一獨立支配集(IDS)或一子集來建構網路拓撲。例如,在OLSR下,每一通信節點2102、2102a至2102c可在最壞情況下(例如,在不具有全域協作之一每節點基礎上)被選擇為一MPR節點,從而導致過度路由附加項(例如,歸因於每一MPR節點發射鏈路狀態通告(LSA))及/或頻寬要求(例如,歸因於併入兩跳鄰近者清單之過度招呼訊息傳遞)。In an embodiment, the multi-node communication network 2100 may be constructed by generating an Independent Dominant Set (IDS) or a subset of all communication nodes in the multi-node communication network through global cooperation among its participating communication nodes 2102 network topology. For example, under OLSR, each communication node 2102, 2102a-2102c may be selected as an MPR node in the worst case (e.g., on a per-node basis without global cooperation), resulting in excessive routing additions ( For example, due to each MPR node transmitting a Link State Advertisement (LSA)) and/or bandwidth requirements (eg, due to over-hello messaging incorporating a two-hop neighbor list).

亦參考圖6,在實施例中,多節點通信網路100可藉由建構通信節點2102之一支配集(DS)來組織(例如,或重組)。例如,DS可包含通信節點2102之一子集,使得1)包括DS之通信節點並非彼此之鄰近者,即,未彼此通信地耦合,且2)包括DS之通信節點之相關聯鏈路狀態可到達多節點通信網路2100之每一通信節點。Referring also to FIG. 6 , in an embodiment, the multi-node communication network 100 may be organized (eg, or reorganized) by constructing a dominating set (DS) of communication nodes 2102 . For example, a DS may comprise a subset of communication nodes 2102 such that 1) the communication nodes comprising the DS are not neighbors of each other, i.e., are not communicatively coupled to each other, and 2) the associated link states of the communication nodes comprising the DS may be Each communication node of the multi-node communication network 2100 is reached.

在實施例中,DS可包括多節點通信網路2100內之一組叢集頭節點2202,各叢集頭節點2202與該叢集頭節點直接通信地連接至之鄰近節點2206之一叢集2204相關聯。例如,基於從多節點通信網路2100內接收之訊務,叢集頭節點2202 (例如,經由其控制器(2104,圖5))可例如從閘道節點狀態或普通節點狀態轉變為叢集頭節點狀態。通信節點2102之狀態轉變可根據一或多個被動叢集化程序及其等之相關聯狀態轉變演算法來判定,例如,具有被動叢集化之高效泛流(EFPC)、零附加項高效泛流(ZOEF)或任何其他類似被動叢集化程序。In an embodiment, a DS may include a set of cluster head nodes 2202 within the multi-node communication network 2100, each cluster head node 2202 being associated with a cluster 2204 of neighboring nodes 2206 to which the cluster head node is directly communicatively connected. For example, based on traffic received from within multi-node communication network 2100, cluster head node 2202 (e.g., via its controller (2104, FIG. 5)) may transition, for example, from a gateway node state or a normal node state to a cluster head node state. The state transition of the communication node 2102 may be determined according to one or more passive clustering procedures and their associated state transition algorithms, e.g., efficient flooding with passive clustering (EFPC), zero-additional efficient flooding ( ZOEF) or any other similar passive clustering program.

在實施例中,由用於到達多節點通信網路2100之每一通信節點之最小必要數目個節點2202組成之DS可被稱為一獨立支配集(IDS)。In an embodiment, a DS consisting of the minimum necessary number of nodes 2202 for reaching each communication node of the multi-node communication network 2100 may be referred to as an Independent Dominant Set (IDS).

在實施例中,叢集2204可包含與叢集頭節點2202直接通信或作為彼此之兩跳鄰近者(例如,經由叢集頭節點2202彼此通信之兩個鄰近節點2206)之任何鄰近節點2206。在一些實施例中,叢集2204之大小可由叢集頭節點2202之發射範圍來判定。應注意,取決於多節點通信網路2100之叢集化結構及/或相關聯叢集化狀態,本發明可將術語「鄰近節點2206」與「閘道節點」或「普通節點」互換地使用,此係因為一叢集頭節點2202之各鄰近節點(例如,與叢集頭節點通信之節點)可為一閘道節點或一普通節點(或分別係某一其他類型之關鍵或非關鍵節點)。In an embodiment, the cluster 2204 may include any neighboring nodes 2206 that communicate directly with the cluster head node 2202 or that are two-hop neighbors of each other (eg, two neighboring nodes 2206 that communicate with each other via the cluster head node 2202 ). In some embodiments, the size of the cluster 2204 may be determined by the transmission range of the cluster head node 2202 . It should be noted that the present invention may use the term "adjacent node 2206" interchangeably with "gateway node" or "normal node" depending on the clustering structure and/or associated clustering state of the multi-node communication network 2100, where This is because each neighboring node of a cluster head node 2202 (eg, a node that communicates with the cluster head node) can be a gateway node or a normal node (or some other type of critical or non-critical node, respectively).

在實施例中,叢集頭節點2202之指定(例如,除了多節點通信網路2100內之任何其他叢集頭節點之外)可基於從其鄰近節點2206接收之訊務。例如,從一鄰近節點2206接收之招呼訊息或其他網路訊務可指示發射鄰近節點中之一狀態轉變(此繼而可藉由例如將一通信節點2102添加至多節點通信網路2100或從多節點通信網路2100刪除一通信節點2102來驅動)。此所接收狀態轉變或來自多個鄰近節點2206之若干所接收狀態轉變可導致叢集頭節點2202改變其自身之節點狀態。在一些實施例中,叢集頭節點2202可經由至多節點通信網路2100內之全部通信節點2102之一初始泛流(例如,根據用於資料封包泛流之一或多個高效泛流(EF)程序)來起始IDS之一網路重構及定義。In an embodiment, designation of a cluster head node 2202 (eg, in addition to any other cluster head nodes within the multi-node communication network 2100 ) may be based on traffic received from its neighboring nodes 2206 . For example, a hello message or other network traffic received from a neighboring node 2206 may indicate a state transition in the transmitting neighboring node (which in turn may be detected by, for example, adding a communication node 2102 to the multi-node communication network 2100 or from the multi-node The communication network 2100 deletes a communication node 2102 to drive). This received state transition, or several received state transitions from multiple neighboring nodes 2206, may cause cluster head node 2202 to change its own node state. In some embodiments, cluster head node 2202 may initiate flooding via an initial flood to all communication nodes 2102 within multi-node communication network 2100 (e.g., according to one or more efficient flooding (EF) program) to initiate a network reconfiguration and definition of the IDS.

本文中揭示之發明概念之實施例不限於上文描述之叢集化結構,但可適用於併入叢集頭節點2202之任何其他多節點通信網路2100,而非多節點通信網路內之其他通信節點。本文中應注意,本發明之叢集化結構(例如,叢集化階層)不應被視為本發明之一限制,除非本文中另有提及。就此而言,本文中經考慮,包含兩種或更多種類型/狀態之通信節點2102之任何叢集化階層可用於實施本發明之實施例。Embodiments of the inventive concepts disclosed herein are not limited to the clustered architecture described above, but are applicable to any other multi-node communication network 2100 incorporated into the cluster head node 2202, rather than other communications within the multi-node communication network node. It should be noted herein that the clustering structure (eg, clustering hierarchy) of the present invention should not be considered as a limitation of the present invention unless otherwise mentioned herein. In this regard, it is contemplated herein that any clustering hierarchy comprising two or more types/states of communication nodes 2102 may be used to implement embodiments of the present invention.

參考圖7A,叢集2204a可經實施且可類似於圖6之叢集2204來運作,惟叢集2204a可獲取叢集頭節點2202之發射範圍內之額外通信節點2102除外。例如,除了其叢集頭節點2202之外,叢集2204a亦可包含閘道節點2302及普通(例如,非關鍵)節點2304。在實施例中,閘道節點2302可自動中繼任何所接收資料封包或訊息,除非另外被阻止如此做(例如,經由一資料封包內所含有之指示封包不被中繼或已被中繼之存活時間(TTL)資訊)。Referring to FIG. 7A , cluster 2204a may be implemented and may function similarly to cluster 2204 of FIG. 6 , except that cluster 2204a may acquire additional communication nodes 2102 within transmission range of cluster head node 2202 . For example, cluster 2204a may also include gateway node 2302 and normal (eg, non-critical) nodes 2304 in addition to its cluster head node 2202 . In an embodiment, gateway node 2302 may automatically relay any received data packets or messages unless otherwise prevented from doing so (e.g., via a message contained within a data packet indicating that the packet is not to be relayed or has been relayed). time-to-live (TTL) information).

在實施例中,通信節點2102d至2102e可定位於多於一個叢集頭節點之發射範圍內,且因此可選擇一主叢集頭及叢集。例如,通信節點2102d可在叢集頭節點2202、2202a之範圍內(例如,在叢集2204a、2204b內),且可選擇加入叢集2204a,其中叢集頭節點2202作為其主叢集頭。類似地,通信節點2102e可在叢集頭節點2202、2202b之範圍內(例如,在叢集2204a、2204c內),但可選擇加入叢集2204c,其中叢集頭節點2202b作為其主叢集頭。In embodiments, communication nodes 2102d-2102e may be located within transmission range of more than one cluster head node, and thus may select a master cluster head and cluster. For example, communication node 2102d may be within range of cluster head nodes 2202, 2202a (eg, within clusters 2204a, 2204b), and may elect to join cluster 2204a with cluster head node 2202 as its primary cluster head. Similarly, communication node 2102e may be within range of cluster head nodes 2202, 2202b (eg, within clusters 2204a, 2204c), but may elect to join cluster 2204c with cluster head node 2202b as its primary cluster head.

在實施例中,叢集頭節點2202可接收一MCI請求封包2306,或對通信節點2102轉發其等之MCI資料之一請求。例如,MCI請求封包2306可起源於一源節點2308 (例如,命令位置;叢集2204a外部之一通信節點2102,但仍在多節點通信網路2100內)。在一些實施例中,MCI請求封包306可由叢集2204a之一閘道節點2302接收,且由閘道節點中繼至叢集頭節點2202。In an embodiment, the cluster head node 2202 may receive an MCI request packet 2306 or request the correspondent node 2102 to forward its MCI data. For example, the MCI request packet 2306 may originate at a source node 2308 (eg, command location; a communication node 2102 outside the cluster 2204a, but still within the multi-node communication network 2100). In some embodiments, the MCI request packet 306 may be received by a gateway node 2302 of the cluster 2204 a and relayed by the gateway node to the cluster head node 2202 .

現參考圖8B,揭示叢集2204a。Referring now to Figure 8B, cluster 2204a is revealed.

在實施例中,叢集頭節點2202可接收MCI請求封包2306,且從其叢集2204a之鄰近節點2206 (例如,通信地連結至叢集頭節點2202且從叢集頭節點2202聽到之全部通信節點(2102,圖5))收集資訊。例如,叢集頭節點2202可將所接收MCI請求封包2306廣播(2310)至其區域鄰近者清單上之單跳鄰近者,例如,包含閘道節點2302及普通節點2304。In an embodiment, the cluster head node 2202 may receive the MCI request packet 2306 and from its neighboring nodes 2206 of the cluster 2204a (e.g., all communication nodes communicatively linked to and heard from the cluster head node 2202 (2102, Figure 5)) Collect information. For example, cluster head node 2202 may broadcast ( 2310 ) received MCI request packet 2306 to one-hop neighbors on its area neighbor list, including gateway node 2302 and normal node 2304 , for example.

在一些實施例中,叢集頭節點2202可經由零附加項高效泛流(ZOEF)、具有被動叢集化之高效封包泛流(EFPC)或任何其他適當封包泛流或封包廣播程序或方案將MCI請求封包2306分佈遍及其叢集2204a。In some embodiments, the cluster head node 2202 may forward the MCI request via zero-additional efficient flooding (ZOEF), efficient packet flooding with passive clustering (EFPC), or any other suitable packet flooding or packet broadcasting procedure or scheme Packet 2306 is distributed throughout its cluster 2204a.

在一些實施例中,由叢集頭節點2202分佈之MCI請求封包2306可包含用於識別轉發MCI資料將需要之叢集頭節點之特定鄰近節點2206 (例如,叢集2204a之閘道節點2302及普通節點2304)之一或多個請求特性;不滿足此等請求特性之任何鄰近節點可避免回應於MCI請求封包2306而進行報告。In some embodiments, the MCI request packet 2306 distributed by the cluster head node 2202 may include specific neighboring nodes 2206 (e.g., the gateway node 2302 and the normal node 2304 of the cluster 2204a) for identifying the cluster head node that will be required to forward the MCI data. ) one or more of the requested characteristics; any neighboring node that does not satisfy these requested characteristics may refrain from reporting in response to the MCI request packet 2306.

請求特性可包含但不限於叢集化狀態(例如,叢集頭節點2202對閘道節點2302對普通節點2304)、位置(例如,一指定地理圍欄區域內之全部通信節點2102)、高度(例如,高於/低於一指定高度之全部通信節點2102)、速率、航向、行動或不動(例如,僅行動通信節點2102)、高於/低於一指定排名,或高於/低於距源節點2308之一指定臨限值距離之距離。藉由另一實例,一請求特性可針對自上次報告MCI資料以來已改變其等之位置超過一臨限值量之通信節點2102,使得可僅需要已改變位置超過一臨限值距離之通信節點2102來報告新MCI資料。Request characteristics may include, but are not limited to, clustering status (e.g., cluster head node 2202 vs. gateway node 2302 vs. normal node 2304), location (e.g., all communication nodes 2102 within a specified geofenced area), height (e.g., height All communication nodes 2102 at/below a specified altitude), speed, heading, action or motionlessness (e.g., only mobile communication nodes 2102), above/below a specified rank, or above/below distance from source node 2308 One specifies the distance of the threshold distance. By way of another example, a request characteristic may be directed to communication nodes 2102 that have changed their location by more than a threshold amount since the last time they reported MCI data, so that only communications that have changed location by more than a threshold distance may be required Node 2102 to report new MCI data.

本文中應注意,在MCI請求封包2306內包含請求特性可降低MCI報告之頻率,且因此可減少多節點通信網路2100內之總訊務。另外,歸因於並非每一單一通信節點2102可需要回應各MCI請求封包(取決於請求特性),多節點通信網路2100之總訊務可不與網路之大小成正比,藉此防止威脅接收器藉由監測網路訊務來判定及/或估計網路之大小。It should be noted herein that including the request characteristic within the MCI request packet 2306 can reduce the frequency of MCI reporting, and thus can reduce the overall traffic within the multi-node communication network 2100 . Additionally, since not every single communication node 2102 may need to respond to each MCI request packet (depending on the nature of the request), the total traffic of the multi-node communication network 2100 may not be proportional to the size of the network, thereby preventing threats from receiving The device determines and/or estimates the size of the network by monitoring network traffic.

在一些實施例中,叢集頭節點2202對MCI請求封包2306之分佈可在叢集2204a內或更廣泛地在多節點通信網路2100內形成或重組態一叢集化結構。In some embodiments, the distribution of the MCI request packet 2306 by the cluster head node 2202 may form or reconfigure a clustered structure within the cluster 2204 a or more generally within the multi-node communication network 2100 .

現參考圖7C,揭示叢集2204a。Referring now to Figure 7C, cluster 2204a is revealed.

在實施例中,在將MCI請求封包(2306/2310,圖6B)分佈遍及叢集2204a之後,叢集頭節點2202可貫穿一第一時間間隔T 1等待回應。例如,在第一時間間隔T 1期間,叢集頭節點2202可從其鄰近節點2206 (例如,閘道節點2302及/或普通節點2304)收集MCI報告封包(2314),各MCI報告封包包含特定於發射鄰近節點之MCI資訊。MCI報告封包2314可進一步包含特定於發射鄰近節點2206之唯一識別碼。如本文中先前提及,唯一識別碼可包含但不限於實體位址(例如,MAC位址)、網路位址(例如,IP位址)及類似物。 In an embodiment, after distributing the MCI request packet (2306/2310, FIG. 6B) throughout the cluster 2204a, the cluster head node 2202 may wait for a response for a first time interval T1 . For example, during a first time interval T1 , cluster head node 2202 may collect MCI report packets (2314) from its neighboring nodes 2206 (e.g., gateway node 2302 and/or normal node 2304), each MCI report packet containing information specific to Transmit MCI information of neighboring nodes. The MCI report packet 2314 may further include a unique identification code specific to the transmitting neighbor node 2206 . As mentioned earlier herein, unique identifiers may include, but are not limited to, physical addresses (eg, MAC addresses), network addresses (eg, IP addresses), and the like.

取決於多節點通信網路2100之特性(例如,拓撲、訊務、雜訊、擾亂)及/或周圍環境之特性(例如,天氣條件、地面干擾),由叢集頭節點2202發射之一或多個MCI請求封包2306及/或由鄰近節點群組2206發射之一或多個MCI報告封包可能無法成功遞送。就此而言,貫穿第一時間間隔T 1,叢集頭節點2202可僅從較大鄰近節點群組之一子集接收MCI報告封包2314。例如,如圖7C中展示,叢集頭節點2202可從一些鄰近節點2206接收MCI報告封包2314,但未從其他閘道節點(2302a)或普通節點(2304a)接收。 Depending on the characteristics of the multi-node communication network 2100 (e.g., topology, traffic, noise, jamming) and/or the characteristics of the surrounding environment (e.g., weather conditions, ground interference), one or more MCI request packets 2306 and/or one or more MCI report packets transmitted by neighboring node group 2206 may not be successfully delivered. In this regard, cluster head node 2202 may only receive MCI report packets 2314 from a subset of the larger group of neighboring nodes throughout first time interval T 1 . For example, as shown in Figure 7C, cluster head node 2202 may receive MCI report packets 2314 from some neighboring nodes 2206, but not from other gateway nodes (2302a) or normal nodes (2304a).

在實施例中,叢集頭節點2202之控制器(2104,圖5)可經組態以追蹤其已從中接收一MCI報告封包2314之各鄰近節點2206。就此而言,叢集頭節點2202可產生包含先前將一MCI報告封包2314發射至叢集頭節點2202之各鄰近節點2206(例如,閘道節點2302、普通節點2304)之一成員清單。此等閘道節點2302及普通節點2304可被稱為經認可鄰近節點(2206a)。在實施例中,成員清單可包含特定於各經認可鄰近節點2206a之唯一識別碼之一清單。In an embodiment, the controller (2104, FIG. 5) of the cluster head node 2202 may be configured to keep track of each neighboring node 2206 from which it has received an MCI report packet 2314. In this regard, cluster head node 2202 may generate a membership list that includes each neighboring node 2206 (eg, gateway node 2302 , normal node 2304 ) that previously transmitted an MCI report packet 2314 to cluster head node 2202 . These gateway nodes 2302 and normal nodes 2304 may be referred to as approved neighbor nodes (2206a). In an embodiment, the member list may include a list of unique identifiers specific to each approved neighbor node 2206a.

在第一時間間隔T 1期滿之後(例如,在貫穿第一時間間隔T 1收集MCI報告封包(2314,圖7C)之後),叢集頭節點2202可轉播(例如,重新發射)具有所收集成員清單之MCI請求封包2306a。 After the first time interval T1 expires (e.g., after collecting MCI report packets (2314, FIG. 7C) throughout the first time interval T1 ), the cluster head node 2202 may rebroadcast (e.g., retransmit) List MCI request packet 2306a.

現參考圖7D,揭示叢集2204a。Referring now to Figure 7D, cluster 2204a is revealed.

在實施例中,叢集頭節點2202可將MCI請求封包2306a (例如,包含成員清單)轉播至叢集2204之鄰近節點2206。例如,接收MCI請求封包306a之任何鄰近節點2206 (例如,閘道節點2302、普通節點2304)可檢視鄰近者清單,且若鄰近節點在成員清單上(例如,若鄰近節點係經認可鄰近節點2206a),則可不採取進一步動作(例如,由於可無需進一步動作,鄰近節點已將其當前MCI資料轉發至叢集頭節點2202)。在一些實施例中,叢集頭節點2202可組態轉播MCI請求封包2306a,使得其未被轉發或中繼超過一次(例如,基於一唯一源識別碼及/或序列號)。In an embodiment, the cluster head node 2202 may relay the MCI request packet 2306a (eg, including the membership list) to the neighboring nodes 2206 of the cluster 2204 . For example, any neighbor node 2206 (e.g., gateway node 2302, normal node 2304) receiving the MCI request packet 306a can view the neighbor list and if the neighbor node is on the member list (e.g., if the neighbor node is an approved neighbor node 2206a ), then no further action may be taken (eg, the neighboring node has already forwarded its current MCI data to the cluster head node 2202 since no further action may be required). In some embodiments, cluster head node 2202 may be configured to rebroadcast MCI request packet 2306a such that it is not forwarded or relayed more than once (eg, based on a unique source identifier and/or sequence number).

在實施例中,叢集頭節點2202可等待一第二時間間隔T 2以回應於轉播MCI請求封包2306a,第二時間間隔第一時間T 2短於第一時間間隔T 1。若在第二時間間隔T 2期間,叢集頭節點2202從叢集2204a之額外未認可鄰近節點2206 (例如,閘道節點2302a及普通節點2304a)接收額外MCI報告封包2314,則叢集頭節點2202可再次轉播MCI請求封包2306a (例如,具有一經更新成員清單以指示在第二時間間隔期間接收之MCI報告封包2314),等待短於第二時間間隔T 2之一第三時間間隔T 3。只要作為回應繼續發射MCI報告封包2314,叢集頭節點2202便可在愈來愈短之時間間隔T N內繼續轉播MCI請求封包306a。 In an embodiment, the cluster head node 2202 may wait for a second time interval T 2 to respond to the rebroadcast MCI request packet 2306 a, and the second time interval first time T 2 is shorter than the first time interval T 1 . If during the second time interval T2 , cluster head node 2202 receives additional MCI report packets 2314 from additional unapproved neighbor nodes 2206 of cluster 2204a (e.g., gateway node 2302a and normal node 2304a), then cluster head node 2202 may again Rebroadcasting the MCI request packet 2306a (eg, with an updated membership list to indicate MCI report packets 2314 received during the second time interval) waits for a third time interval T3 that is shorter than the second time interval T2 . As long as the MCI report packet 2314 is continued to be transmitted in response, the cluster head node 2202 may continue to rebroadcast the MCI request packet 306a for increasingly shorter time intervals TN .

現參考圖7E,展示叢集2204a。Referring now to Figure 7E, cluster 2204a is shown.

在實施例中,若在最近結束之時間間隔T N期間,未由叢集頭節點2202接收到MCI報告封包(2314,圖7C),則叢集頭節點可停止轉播且發射一MCI發佈封包2316 (例如,經由閘道節點2302至MCI請求封包2306所源於之源節點2308)。例如,MCI發佈封包2316可包含與各報告鄰近節點2206 (例如,由鄰近節點2206發送之各MCI報告封包2314)相關聯之任何MCI資料及唯一識別碼。另外或替代地,叢集頭節點2202可例如經由任何適當封包廣播或封包泛流程序或方案(例如,EFPC、ZOEF及類似物)將MCI發佈封包2316廣播至多節點通信網路(2100,圖5)之每一通信節點(2102,圖5)。例如,叢集頭節點2202可將MCI發佈封包2316分佈至其單跳鄰近節點(2206);若此等單跳鄰近節點2206包含閘道節點2302,則閘道節點可將MCI發佈封包(2316a)中繼至其等自身之單跳鄰近節點(例如,普通節點2304)。 In an embodiment, if no MCI report packets are received by the cluster head node 2202 during the most recently ended time interval TN (2314, FIG. , via the gateway node 2302 to the source node 2308 from which the MCI request packet 2306 originated). For example, the MCI publish packet 2316 may include any MCI data and a unique identifier associated with each reporting neighbor node 2206 (eg, each MCI report packet 2314 sent by the neighbor node 2206). Additionally or alternatively, the cluster head node 2202 may broadcast the MCI publication packet 2316 to the multi-node communication network, such as via any suitable packet broadcast or packet flooding program or scheme (e.g., EFPC, ZOEF, and the like) (2100, FIG. 5 ). for each communication node (2102, FIG. 5). For example, the cluster head node 2202 can distribute the MCI release packet 2316 to its one-hop neighbor nodes (2206); Next to their own one-hop neighbor nodes (eg, normal node 2304).

現參考圖8A,方法2400可由圖5至圖7F之多節點通信網路2100實施,且可包含以下步驟。Referring now to FIG. 8A , the method 2400 can be implemented by the multi-node communication network 2100 shown in FIG. 5 to FIG. 7F , and can include the following steps.

在步驟2402,多節點通信網路之一通信節點接收一MCI請求封包。例如,可從多節點通信網路內之一源節點接收MCI請求封包(例如,或由一閘道節點轉發,如下文提及)。In step 2402, one of the communication nodes of the multi-node communication network receives an MCI request packet. For example, the MCI request packet may be received from a source node within the multi-node communication network (eg, or forwarded by a gateway node, as mentioned below).

在一步驟2404,通信節點判定其是否係一叢集頭節點。例如,若通信節點並非一叢集頭節點,則可忽略MCI請求封包(或若通信節點係一閘道節點,則通信節點可將MCI請求封包中繼至例如其主叢集頭節點)。In a step 2404, the correspondent node determines whether it is a cluster head node. For example, if the correspondent node is not a cluster head node, the MCI request packet may be ignored (or if the correspondent node is a gateway node, the correspondent node may relay the MCI request packet to, for example, its primary cluster head node).

在一步驟2406,若通信節點係一叢集頭節點,則通信節點將MCI請求封包發射至其鄰近節點,例如,其叢集之鄰近節點。例如,通信節點可在發射MCI請求封包時併入EFPC、ZOEF或任何其他適當封包泛流或封包廣播方案。In a step 2406, if the communication node is a cluster head node, the communication node transmits the MCI request packet to its neighboring nodes, eg, the neighboring nodes of its cluster. For example, a communication node may incorporate EFPC, ZOEF, or any other suitable packet flooding or packet broadcasting scheme when transmitting MCI request packets.

在一步驟2408,叢集頭節點從鄰近節點之一子集接收(例如,在等待一第一時間間隔T 1時) MCI報告封包,各MCI報告封包包含發射鄰近節點之MCI資料(例如,及一唯一識別碼)。 In a step 2408, the cluster head node receives (e.g., while waiting for a first time interval T1 ) MCI report packets from a subset of the neighboring nodes, each MCI report packet containing MCI data of the transmitting neighboring nodes (e.g., and a unique identifier).

亦參考圖8B,在一步驟2410,叢集頭節點將MCI請求封包重新發射至其鄰近節點,且在一進一步時間間隔T 2(T 2<T 1)內等待MCI報告封包。例如,叢集頭節點可透過N次反覆轉播MCI請求封包,其中對於從1至N之每一M,緊接之後續時間間隔T (M+1)短於當前時間間隔T M。例如,叢集頭節點轉播具有一當前成員清單之MCI請求封包,該當前成員清單經更新以包含已提交MCI報告封包之經認可鄰近節點之識別資訊。在一些實施例中,叢集頭節點轉播包含指示哪些鄰近節點應或不應發射MCI報告封包之請求特性之MCI請求封包。 Referring also to FIG. 8B , in a step 2410 , the cluster head node retransmits the MCI request packet to its neighbor nodes and waits for the MCI report packet for a further time interval T 2 (T 2 <T 1 ). For example, the cluster head node may rebroadcast the MCI request packet through N iterations, wherein for each M from 1 to N, the immediately subsequent time interval T (M+1) is shorter than the current time interval TM . For example, the cluster head node rebroadcasts the MCI request packet with a current member list updated to include the identification information of the approved neighbor nodes that submitted the MCI report packet. In some embodiments, the cluster head node rebroadcasts the MCI request packet including the request characteristics indicating which neighboring nodes should or should not transmit the MCI report packet.

在步驟2412,叢集頭節點貫穿第二時間間隔T 2從鄰近節點之一第二子集接收MCI報告封包。在一些實施例中,叢集頭節點可繼續將MCI請求封包轉播至其鄰近節點,且作為回應而在逐漸變短之時間間隔內等待MCI報告封包。在一些實施例中,叢集頭節點從尚未包含在成員清單中之未認可鄰近節點或從滿足或實現請求特性之鄰近節點接收MCI報告封包。 In step 2412, the cluster head node receives MCI report packets from a second subset of neighboring nodes throughout a second time interval T2 . In some embodiments, the cluster head node may continue to rebroadcast MCI request packets to its neighbors, and in response wait for MCI report packets for progressively shorter time intervals. In some embodiments, the cluster head node receives MCI report packets from unapproved neighbors not yet included in the membership list or from neighbors that meet or implement the requested characteristic.

在步驟2414,叢集頭節點未偵測到在最近時間間隔T N期間從其鄰近節點接收之新MCI報告封包。 In step 2414, the cluster head node detects no new MCI report packets received from its neighbor nodes during the latest time interval TN .

在步驟2416,叢集頭節點發射包含從各發射鄰近節點接收之MCI之一MCI發佈封包。例如,叢集頭節點可將MCI發佈封包單播至MCI請求封包所源於之源節點,或經由其叢集之鄰近節點貫穿多節點通信網路廣播MCI發佈封包(例如,根據任何適當封包廣播或封包泛流方案)。In step 2416, the cluster head node transmits an MCI release packet containing the MCIs received from each transmitting neighbor node. For example, the cluster head node may unicast the MCI publish packet to the source node from which the MCI request packet originated, or broadcast the MCI publish packet throughout the multi-node communication network via its cluster's neighbor nodes (e.g., according to any suitable packet broadcast or packet Flood program).

大體上參考圖9至圖12D,一些實施例可利用基於信標之被動叢集化(BBPC)之態樣。Referring generally to FIGS. 9-12D , some embodiments may utilize aspects of beacon-based passive clustering (BBPC).

本文中揭示之發明概念之一些實施例係關於能夠經由透過高能信標信號發射之部分鄰近者清單進行兩跳被動叢集化之一行動特用網路(MANET)或其他類似多節點通信網路之行動通信節點。基於信標之被動叢集化以短期網路效率換取長期效率及一通常更穩定網路結構,而不丟失連接能力。藉由容許近接叢集頭節點保持其等之狀態,可避免與其他形式之被動叢集化相關聯之漣波效應重構(及對網路效率之對應有害效應)。Some embodiments of the inventive concepts disclosed herein relate to mobile ad hoc networks (MANETs) or other similar multi-node communication networks capable of two-hop passive clustering via partial neighbor lists transmitted through high-energy beacon signals. mobile communication node. Beacon-based passive clustering trades short-term network efficiency for long-term efficiency and a generally more stable network structure without loss of connectivity. By allowing proximate cluster-head nodes to maintain their state, the ripple effect reconfigurations (and corresponding detrimental effects on network efficiency) associated with other forms of passive clustering can be avoided.

參考圖9,揭示一多節點通信網路3100。多節點通信網路3100可包含通信節點3102。Referring to FIG. 9, a multi-node communication network 3100 is disclosed. Multi-node communication network 3100 may include communication nodes 3102 .

在實施例中,多節點通信網路3100可包含此項技術中已知之任何多節點通信網路。例如,多節點通信網路3100可包含一行動特用網路(MANET),其中多節點通信網路內之各通信節點3102能夠自由且獨立地移動。類似地,一或多個通信節點3102可包含此項技術中已知之可通信地耦合之任何通信節點。就此而言,一或多個通信節點3102可包含此項技術中已知之用於發射/收發資料封包之任何通信節點。例如,一或多個通信節點3102可包含但不限於無線電、行動電話、智慧型電話、平板電腦、智慧型手錶、膝上型電腦及類似物。在實施例中,多節點通信網路3100之各通信節點3102可包含但不限於一各自控制器3104 (例如,控制處理器)、記憶體3106及通信介面3108。In an embodiment, the multi-node communication network 3100 may comprise any multi-node communication network known in the art. For example, the multi-node communication network 3100 may comprise a mobile ad hoc network (MANET), wherein each communication node 3102 within the multi-node communication network can move freely and independently. Similarly, one or more communication nodes 3102 may include any communication nodes known in the art to be communicatively coupled. In this regard, the one or more communication nodes 3102 may include any communication nodes known in the art for transmitting/receiving data packets. For example, one or more communication nodes 3102 may include, but are not limited to, radios, cell phones, smartphones, tablets, smart watches, laptops, and the like. In an embodiment, each communication node 3102 of the multi-node communication network 3100 may include, but is not limited to, a respective controller 3104 (eg, control processor), memory 3106 and communication interface 3108 .

控制器3104至少為通信節點3102提供處理功能性,且可包含任何數目個處理器、微控制器、電路系統、場可程式化閘陣列(FPGA)或其他處理系統及用於儲存由通信節點3102存取或產生之資料、可執行碼及其他資訊之駐留或外部記憶體。控制器3104可執行體現在一非暫時性電腦可讀媒體(例如,記憶體3106)中之實施本文中描述之技術之一或多個軟體程式。控制器3104不受限於形成其之材料或其中採用之處理機制,且因而,可經由(若干)半導體及/或電晶體(例如,使用電子積體電路(IC)組件)等實施。Controller 3104 provides at least processing functionality for communication node 3102 and may include any number of processors, microcontrollers, circuitry, field programmable gate arrays (FPGAs), or other processing systems and for storing Resident or external memory for accessing or generating data, executable code and other information. Controller 3104 may execute one or more software programs embodied in a non-transitory computer-readable medium (eg, memory 3106 ) that implement one or more techniques described herein. Controller 3104 is not limited by the materials from which it is formed or the processing mechanisms employed therein, and thus, may be implemented via semiconductor(s) and/or transistors (eg, using electronic integrated circuit (IC) components), and the like.

記憶體3106可為提供用以儲存與通信節點3102/控制器3104之操作相關聯之各種資料及/或程式碼(諸如軟體程式及/或碼片段或用以指示控制器3104及通信節點3102之可能其他組件執行本文中描述之功能性之其他資料)之儲存功能性之有形電腦可讀儲存媒體之一實例。因此,記憶體3106可儲存資料,諸如用於操作通信節點3102 (包含其組件(例如,控制器3104、通信介面3108等)等)之一指令程式。應注意,雖然描述一單一記憶體3106,但可採用廣泛多種類型及組合之記憶體(例如,有形、非暫時性記憶體)。記憶體3106可與控制器3104整合、可包括獨立記憶體或可為兩者之一組合。記憶體3106之一些實例可包含可抽換式及不可抽換式記憶體組件,諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體(例如,一安全數位(SD)記憶卡、一迷你SD記憶卡及/或一微型SD記憶卡)、固態硬碟(SSD)記憶體、磁性記憶體、光學記憶體、通用串列匯流排(USB)記憶體裝置、硬碟記憶體、外部記憶體等。The memory 3106 may be provided for storing various data and/or program codes (such as software programs and/or code segments or used to instruct the controller 3104 and the communication node 3102) associated with the operation of the communication node 3102/controller 3104 One example of a tangible computer-readable storage medium that stores functionality, possibly other components that perform the functionality described herein, other data). Accordingly, memory 3106 may store data such as a program of instructions for operating communication node 3102 (including its components (eg, controller 3104, communication interface 3108, etc.), etc.). It should be noted that while a single memory 3106 is described, a wide variety of types and combinations of memory (eg, tangible, non-transitory memory) may be employed. The memory 3106 may be integrated with the controller 3104, may include separate memory, or may be a combination of both. Some examples of memory 3106 may include removable and non-removable memory components, such as random access memory (RAM), read only memory (ROM), flash memory (e.g., a secure bit ( SD) memory card, a mini SD memory card and/or a micro SD memory card), solid state drive (SSD) memory, magnetic memory, optical memory, universal serial bus (USB) memory device, hard disk memory, external memory, etc.

通信介面3108可操作地組態以與通信節點3102之組件通信。例如,通信介面3108可經組態以從控制器3104或其他裝置(例如,其他節點3102)擷取資料,發射資料以儲存於記憶體3106中,從記憶體3106中之儲存器擷取資料等。通信介面3108亦可與控制器3104通信地耦合以促進通信節點3102之組件與控制器3104之間之資料傳送。應注意,雖然通信介面3108被描述為通信節點3102之一組件,但通信介面3108之一或多個組件可實施為經由一有線及/或無線連接通信地耦合至通信節點3102之外部組件。通信節點3102亦可包含及/或連接至一或多個輸入/輸出(I/O)裝置。在實施例中,通信介面3108包含或耦合至一發射器、接收器、收發器、實體連接介面或其等之任何組合。Communication interface 3108 is operably configured to communicate with components of communication node 3102 . For example, communication interface 3108 may be configured to retrieve data from controller 3104 or other devices (e.g., other nodes 3102), transmit data for storage in memory 3106, retrieve data from storage in memory 3106, etc. . Communication interface 3108 may also be communicatively coupled with controller 3104 to facilitate data transfer between components of communication node 3102 and controller 3104 . It should be noted that although communication interface 3108 is described as a component of communication node 3102, one or more components of communication interface 3108 may be implemented as external components communicatively coupled to communication node 3102 via a wired and/or wireless connection. Communications node 3102 may also include and/or be connected to one or more input/output (I/O) devices. In an embodiment, the communication interface 3108 includes or is coupled to a transmitter, receiver, transceiver, physical connection interface, or any combination thereof.

本文中經考慮,一通信節點3102之通信介面3108可經組態以使用此項技術中已知之任何無線通信技術(包含但不限於GSM、GPRS、CDMA、EV-DO、EDGE、WiMAX、3G、4G、4G LTE、5G、WiFi協定、RF、LoRa及類似物)通信地耦合至多節點通信網路3100之額外通信節點3102之額外通信介面3108。It is contemplated herein that the communication interface 3108 of a communication node 3102 may be configured to use any wireless communication technology known in the art (including but not limited to GSM, GPRS, CDMA, EV-DO, EDGE, WiMAX, 3G, 4G, 4G LTE, 5G, WiFi protocol, RF, LoRa, and the like) communicatively coupled to the additional communication interface 3108 of the additional communication node 3102 of the multi-node communication network 3100 .

在實施例中,多節點通信網路3100可被組織為叢集3110a至3110e,且其成員通信節點3102之各者可與一節點叢集化狀態相關聯。例如,各叢集3110a至3110e可圍繞一叢集頭節點3112組織(例如,叢集3110a、3110b、3110c、3110d、3110e及分別具有一叢集頭節點狀態之節點31、27、9、13及36)。除了叢集頭節點狀態3112之外,多節點通信網路3100之各通信節點3102可具有一組叢集化狀態之一者,例如,閘道節點3114及普通節點3116。例如,叢集頭節點3112及閘道節點3114可被另外稱為「關鍵節點」,且可經組態以將路由請求泛流、鏈路狀態通告(LSA)及/或其他資料封包中繼至叢集頭或閘道節點連接至或例如可在圍繞一叢集頭節點組織之一叢集3110a至3110e內之閘道節點或普通節點3116。In an embodiment, multi-node communication network 3100 may be organized into clusters 3110a-3110e, and each of its member communication nodes 3102 may be associated with a node clustering state. For example, each cluster 3110a-3110e may be organized around a cluster head node 3112 (eg, clusters 3110a, 3110b, 3110c, 3110d, 3110e and nodes 31, 27, 9, 13, and 36 each having a cluster head node status). In addition to cluster head node state 3112 , each communication node 3102 of multi-node communication network 3100 may have one of a set of clustering states, eg, gateway node 3114 and normal node 3116 . For example, cluster head node 3112 and gateway node 3114 may be otherwise referred to as "key nodes" and may be configured to relay route request floods, link state advertisements (LSAs), and/or other data packets to the cluster A head or gateway node is connected to or may be, for example, a gateway node or general node 3116 within a cluster 3110a-3110e organized around a cluster head node.

應注意,「關鍵節點」之此用法並不等效於如下文更詳細描述之「關鍵路徑」。例如,一通信節點3102可為一「關鍵節點」,例如,一叢集頭節點3112或一閘道節點3114,但可不在一「關鍵路徑」上。在實施例中,多節點通信網路3100之各通信節點3102可從一個節點叢集化狀態轉變為另一叢集化狀態,如下文描述(參見例如圖11及隨附文字)。It should be noted that this usage of "critical node" is not equivalent to "critical path" as described in more detail below. For example, a communication node 3102 may be a "critical node", such as a cluster head node 3112 or a gateway node 3114, but may not be on a "critical path". In an embodiment, each communication node 3102 of the multi-node communication network 3100 may transition from one node clustering state to another clustering state, as described below (see, eg, FIG. 11 and accompanying text).

在實施例中,多節點通信網路之通信節點3102可被稱為單跳或兩跳鄰近者。例如,閘道節點10、11、12 (3114)可為叢集頭節點9 (3112)之單跳鄰近者,因為閘道節點10、11、12與叢集頭節點9直接通信。類似地,閘道節點11及12 (3114)之各者係叢集110e之閘道節點16之一兩跳鄰近者,因為各對閘道節點(11至16、12至16)經由兩次跳躍連接,例如,從源閘道節點至叢集頭節點36 (3112),且接著至目的地閘道節點。In an embodiment, communication nodes 3102 of a multi-node communication network may be referred to as one-hop or two-hop neighbors. For example, gateway nodes 10, 11, 12 (3114) may be one-hop neighbors of cluster head node 9 (3112), since gateway nodes 10, 11, 12 communicate directly with cluster head node 9. Similarly, each of gateway nodes 11 and 12 (3114) is a two-hop neighbor of gateway node 16 of cluster 110e, since each pair of gateway nodes (11 to 16, 12 to 16) is connected via two hops , for example, from the source gateway node to the cluster head node 36 (3112), and then to the destination gateway node.

在實施例中,多節點通信網路3100可併入基於信標之被動叢集化以用於初始網路組態或用於回應於一狀態改變之網路重組態。例如,多節點通信網路3100可作為具有一預設閘道節點叢集化狀態之閘道節點3114或通信節點3102之一網路開始,隨著網路演進,例如,隨著通信節點加入、離開或在多節點通信網路內移動,各種通信節點可從該預設閘道節點叢集化狀態轉變為其他節點叢集化狀態。例如,各叢集3110a至3110e可包含額外普通節點3116;各叢集內(或例如貫穿整個多節點通信網路3100)之普通節點之密度可增加或減少,而不顯著影響網路效率。In embodiments, multi-node communication network 3100 may incorporate beacon-based passive clustering for initial network configuration or for network reconfiguration in response to a state change. For example, the multi-node communication network 3100 can start as a network of gateway nodes 3114 or correspondent nodes 3102 with a default gateway node clustering state, and evolve as the network, e.g., as correspondent nodes join, leave Or when moving within a multi-node communication network, various communication nodes can change from the preset gateway node clustering state to other node clustering states. For example, each cluster 3110a-3110e may include additional common nodes 3116; the density of common nodes within each cluster (or, for example, throughout multi-node communication network 3100) may be increased or decreased without significantly affecting network efficiency.

大體上參考圖10A至圖10E,展示多節點通信網路3100。Referring generally to FIGS. 10A-10E , a multi-node communication network 3100 is shown.

在實施例中,特定言之參考圖10A,多節點通信網路3100之通信節點3102可回應於網路狀態之一改變而實施基於信標之被動叢集化。例如,叢集頭節點36 (3112)可朝向叢集頭節點9 (3202)移動,使得叢集頭節點36及9兩者共存於重疊叢集3110c、3110e內。作為回應,通信節點3102 (例如,叢集頭節點3112、閘道節點3114、普通節點3116)可經由高能信標信號將部分鄰近者清單3204發射至其等之單跳鄰近者。替代地或另外,多節點通信網路3100可以定期及/或預定時間間隔提供週期性信標循環。In an embodiment, with particular reference to FIG. 10A , communication nodes 3102 of a multi-node communication network 3100 may implement beacon-based passive clustering in response to a change in network status. For example, cluster head node 36 (3112) may move toward cluster head node 9 (3202), such that cluster head nodes 36 and 9 both coexist within overlapping clusters 3110c, 3110e. In response, a communication node 3102 (eg, cluster head node 3112, gateway node 3114, regular node 3116) may transmit a partial neighbor list 3204 to its one-hop neighbors via a high-energy beacon signal. Alternatively or additionally, multi-node communication network 3100 may provide periodic beacon cycles at regular and/or predetermined time intervals.

在一些實施例中,一網路組態或重組態(及關鍵鄰近者學習)可包括若干信標循環,而習知泛流可在一單一泛流程序內建構一叢集化結構。例如,信標循環之持續時間通常可長於封包泛流程序,且叢集化可比使用封包泛流或經由支配集更零散。然而,若叢集頭節點位於一關鍵路徑上,如下文描述,則所得網路叢集化結構可藉由容許叢集頭節點之有限共存(而非例如叢集頭之立即退出或互殺案例)來改良長期穩定性。In some embodiments, a network configuration or reconfiguration (and key neighbor learning) may include several beacon cycles, and conventional flooding may build a clustering structure within a single flooding program. For example, the duration of a beacon cycle can generally be longer than a packet flooding procedure, and clustering can be more sporadic than using packet flooding or via a dominant set. However, if the cluster head node is on a critical path, as described below, the resulting network clustering structure can improve the long-term by allowing limited coexistence of cluster head nodes (rather than, for example, cases of immediate exit or mutual killing of cluster heads). stability.

在實施例中,多節點通信網路3100之一些或全部通信節點3102可經由高能信標信號將部分鄰近者清單3204發射至其等之單跳鄰近者。例如,多節點通信網路之全部關鍵節點(例如,叢集頭節點9 (3112)、閘道節點14 (3114))可發射出站部分鄰近者清單3204 (且可相應地接收入站部分鄰近者清單,如下文更詳細描述)。在一些實施例中,普通節點3116亦可發射部分鄰近者清單3204。In an embodiment, some or all of the communication nodes 3102 of the multi-node communication network 3100 may transmit the partial neighbor list 3204 to their one-hop neighbors via high-energy beacon signals. For example, all key nodes of a multi-node communication network (e.g., cluster head node 9 (3112), gateway node 14 (3114)) may transmit outbound partial neighbor list 3204 (and may receive inbound partial neighbor list, as described in more detail below). In some embodiments, the regular node 3116 may also transmit the partial neighbor list 3204 .

在實施例中,使用高能信標信號發射出站部分鄰近者清單3204可降低一或多個單跳鄰近者可能未接收到一所發射部分鄰近者清單之可能性。在一些實施例中,可經由招呼訊息發射部分鄰近者清單3204。然而,部分鄰近者清單3204可區別於附加至習知招呼訊息之鄰近者清單,因為由任何通信節點3102發射之一部分鄰近者清單3204僅包含具有一叢集頭節點狀態或一閘道節點狀態之該等單跳鄰近者之唯一識別碼及節點叢集化狀態(例如,除了發射通信節點本身之一唯一識別碼及節點叢集化狀態之外)。例如,閘道節點14 (3114)可將部分鄰近者清單3204發射至其單跳鄰近者(例如,閘道節點12、叢集頭節點13及普通節點3116a),該部分鄰近者清單3204包含其自身(節點14,閘道節點狀態)及其鄰近關鍵節點(節點12,閘道節點狀態;節點13,叢集頭節點狀態)。類似地,叢集頭節點9 (3112)可將一部分鄰近者清單3204發射至其單跳鄰近者(閘道節點10、11、12及普通節點3116b),該部分鄰近者清單3204包含其自身(節點9,叢集頭節點狀態)及其鄰近關鍵節點(節點10,閘道節點狀態;節點11,閘道節點狀態;節點12,閘道節點狀態)。雖然叢集頭節點9 (3112)及閘道節點14 (3114)兩者可具有一或多個普通節點3116a至3116b作為單跳鄰近者,但此等普通節點皆將不被包含在部分鄰近者清單中(儘管此等普通節點可接收及發射部分鄰近者清單3204,且可在狀態上轉變為閘道節點或叢集頭節點,如下文由圖10F及圖11更詳細展示)。In an embodiment, transmitting the outbound partial neighbor list 3204 using a high energy beacon signal may reduce the possibility that one or more one-hop neighbors may not receive a transmitted partial neighbor list. In some embodiments, the partial neighbor list 3204 may be transmitted via a hello message. However, the partial neighbor list 3204 can be distinguished from the neighbor list appended to conventional hello messages in that a partial neighbor list 3204 transmitted by any communication node 3102 contains only those neighbors with either a cluster head node status or a gateway node status. The unique identifier and node clustering status of such single-hop neighbors (eg, in addition to a unique identifier and node clustering status of the transmitting communication node itself). For example, gateway node 14 (3114) may transmit a partial neighbor list 3204 containing itself (node 14, gateway node status) and its adjacent key nodes (node 12, gateway node status; node 13, cluster head node status). Similarly, cluster head node 9 (3112) may transmit to its one-hop neighbors (gateway nodes 10, 11, 12 and normal node 3116b) a partial neighbor list 3204 containing itself (node 9, cluster head node status) and its adjacent key nodes (node 10, gateway node status; node 11, gateway node status; node 12, gateway node status). While both cluster head node 9 (3112) and gateway node 14 (3114) may have one or more normal nodes 3116a-3116b as one-hop neighbors, none of these normal nodes will be included in the partial neighbor list (although such normal nodes may receive and transmit partial neighbor lists 3204, and may transition in state to gateway nodes or cluster head nodes, as shown in more detail below by FIGS. 10F and 11 ).

在實施例中,亦參考圖10B,多節點通信網路3100之一些或全部通信節點3102同樣可經由由其等之單跳鄰近者發射之信標信號接收入站部分鄰近者清單3206。例如,叢集頭節點9 (3112)可從其單跳鄰近者(例如,閘道節點10、11及12)之各者接收一部分鄰近者清單3206。類似地,閘道節點14 (3114)可從其單跳鄰近者(閘道節點12、叢集頭節點13)之各者接收一部分鄰近者清單3206,且普通節點3116可從其單跳鄰近者(閘道節點31、叢集頭節點25)之各者接收一部分鄰近者清單3206。In an embodiment, referring also to FIG. 10B , some or all of the communication nodes 3102 of the multi-node communication network 3100 may also receive the inbound partial neighbor list 3206 via beacon signals transmitted by their one-hop neighbors. For example, cluster head node 9 (3112) may receive a portion of neighbor list 3206 from each of its one-hop neighbors (eg, gateway nodes 10, 11, and 12). Similarly, gateway node 14 (3114) may receive a portion of the neighbor list 3206 from each of its one-hop neighbors (gateway node 12, cluster head node 13), and normal node 3116 may receive a portion of the neighbor list 3206 from its one-hop neighbors ( Each of the gateway node 31, the cluster head node 25) receives a portion of the neighbor list 3206.

在實施例中,亦參考圖10C至圖10E,多節點通信網路3100之各通信節點3102可檢視其入站部分鄰近者清單(3206a至3206e)以判定通信節點是否在一關鍵路徑上(例如,多節點通信網路是否可在不具有通信節點之情況下進行劃分)。例如,叢集頭節點9 (3112)可檢視分別由其單跳鄰近者(閘道節點10、11、12)發射之部分鄰近者清單3206a至3206c。由閘道節點10 (3114)發射之部分鄰近者清單3206a  (且不包含接收節點,叢集頭節點9,其為全部部分鄰近者清單3206a至3206c所共有)可包含發射節點10本身之一唯一識別碼(節點10)及叢集化狀態(GW,閘道)以及其單跳鄰近者(閘道節點28)之唯一識別碼(28)及叢集化狀態(GW,閘道)。類似地,部分鄰近者清單3206b可識別發射節點(節點11,GW/閘道)及其另一單跳鄰近者(節點36,CH/叢集頭)且指示其狀態。最後,部分鄰近者清單3206c可識別發射節點(節點12,GW/閘道)且指示其狀態,且亦識別三個關鍵單跳鄰近者(節點13,CH/叢集頭;節點36,CH/叢集頭;及節點14,GW/閘道)且指示其等之狀態。In an embodiment, also referring to FIGS. 10C-10E , each communication node 3102 of the multi-node communication network 3100 may review its inbound partial neighbor list (3206a-3206e) to determine whether the communication node is on a critical path (e.g. , whether the multi-node communication network can be divided without communication nodes). For example, cluster head node 9 (3112) may view partial neighbor lists 3206a-3206c transmitted by its one-hop neighbors (gateway nodes 10, 11, 12), respectively. The partial neighbor list 3206a transmitted by the gateway node 10 (3114) (and not including the receiving node, cluster head node 9, which is common to all partial neighbor lists 3206a to 3206c) may contain a unique identification of the transmitting node 10 itself code (node 10) and clustering state (GW, gateway) and the unique identification code (28) and clustering state (GW, gateway) of its one-hop neighbor (gateway node 28). Similarly, partial neighbor list 3206b may identify the transmitting node (Node 11, GW/Gateway) and its other one-hop neighbor (Node 36, CH/Cluster Head) and indicate its status. Finally, partial neighbor list 3206c may identify the transmitting node (Node 12, GW/Gateway) and indicate its status, and also identifies three key single-hop neighbors (Node 13, CH/Cluster Head; Node 36, CH/Cluster header; and Node 14, GW/Gateway) and indicate their status.

在實施例中,特定言之參考圖10C,若部分鄰近者清單3206a至3206c具有任何共同元素,則叢集頭節點9可合併任何此等部分鄰近者清單。例如,由於部分鄰近者清單3206b至3206c(由閘道節點11及12發射)共用一共同單跳鄰近者(叢集頭節點36),叢集頭節點9可將部分鄰近者清單合併至經合併清單3208中。然而,若不存在具有共同元素之現有組鄰近節點,則叢集頭節點9 (3112)可代替地產生叢集頭節點9之一組鄰近節點(例如,包含其鄰近閘道節點10、11、12)。In an embodiment, with particular reference to FIG. 10C , cluster head node 9 may merge any partial neighbor lists 3206 a - 3206 c if they have any elements in common. For example, since partial neighbor lists 3206b-3206c (transmitted by gateway nodes 11 and 12) share a common single-hop neighbor (cluster head node 36), cluster head node 9 may merge the partial neighbor lists into merged list 3208 middle. However, if there is no existing set of neighbor nodes with common elements, cluster head node 9 (3112) may instead generate a set of neighbor nodes of cluster head node 9 (e.g., including its neighbor gateway nodes 10, 11, 12) .

在實施例中,若在任何必要合併之後剩餘多於一個組(例如,部分鄰近者清單),則通信節點3102在一關鍵路徑上,例如,多節點通信網路3100可在不具有通信節點之情況下進行劃分。例如,由於叢集頭節點9剩餘多個組(例如,3206a、3208),叢集頭節點9可斷定其在一關鍵路徑上。(參見例如圖10E。)In an embodiment, the communication node 3102 is on a critical path if more than one group (e.g., a partial neighbor list) remains after any necessary merging, e.g., the multi-node communication network 3100 may have no communication nodes between cases are divided. For example, since the cluster head node 9 has multiple groups (eg, 3206a, 3208 ) remaining, the cluster head node 9 may conclude that it is on a critical path. (See, eg, Figure 10E.)

在實施例中,特定言之參考圖10D,閘道節點14 (3114)可類似地檢視分別從其單跳鄰近者(閘道節點12及叢集頭節點13)接收之部分鄰近者清單3206d至3206c。例如,部分鄰近者清單3206d識別發射節點(12,GW/閘道)及其單跳鄰近者(9,CH/叢集頭;13,CH/叢集頭)且指示其等之叢集化狀態。類似地,部分鄰近者清單3206e識別發射節點(13,CH/叢集頭)及其單跳鄰近者(12,GW/閘道;15,GW/閘道)且指示其等之叢集化狀態。如由圖10D展示,部分鄰近者清單3206d至3206e可不同於圖10C之部分鄰近者清單3206a至3206c,因為部分鄰近者清單3206d至3206e共用共同元素,特定言之,閘道節點12及叢集頭節點13。因此,閘道節點14將部分鄰近者清單3206d至3206e合併為一單一組3208。由於僅剩餘單一組3208,所以閘道節點14可斷定其不在一關鍵路徑上。In an embodiment, with particular reference to FIG. 10D , gateway node 14 ( 3114 ) may similarly view partial neighbor lists 3206 d - 3206 c received from its one-hop neighbors (gateway node 12 and cluster head node 13 ), respectively. . For example, partial neighbor list 3206d identifies the transmitting node (12, GW/gateway) and its one-hop neighbors (9, CH/clusterhead; 13, CH/clusterhead) and indicates their clustering status. Similarly, partial neighbor list 3206e identifies the transmitting node (13, CH/Cluster Head) and its one-hop neighbors (12, GW/Gateway; 15, GW/Gateway) and indicates their clustering status. As shown by FIG. 10D , the partial neighbor lists 3206 d - 3206 e may differ from the partial neighbor lists 3206 a - 3206 c of FIG. 10C because the partial neighbor lists 3206 d - 3206 e share common elements, in particular, the gateway node 12 and the cluster head. Node 13. Accordingly, the gateway node 14 merges the partial neighbor lists 3206d through 3206e into a single group 3208 . Since only a single group 3208 remains, the gateway node 14 may conclude that it is not on a critical path.

在實施例中,亦參考圖10E,且如分別由圖10C及圖10D展示,叢集頭節點9 (3112)在一關鍵路徑3210上,而閘道節點14 (3114)不在一關鍵路徑上。例如,若叢集頭節點9與鄰近閘道節點10之間之連接被切斷,則可從叢集3110c至3110e劃分叢集3110a至3110b。然而,若閘道節點14與閘道節點12及叢集頭節點13之間之任一連接被切斷(例如,若節點12、13之任一者而非兩者丟失),則閘道節點14將不從多節點通信網路3100劃分(但代替地將經由兩個節點12、13之剩餘者保持連接)。類似地,可藉由上文程序展示叢集頭節點36亦在一關鍵路徑3210上(例如,相對於閘道節點16)。在實施例中,可類似地展示叢集頭節點13、27及閘道節點10、12、28亦在一關鍵路徑3210上,因為此等節點之任一者之丟失將劃分多節點通信網路3100之一部分。In an embodiment, also referring to FIG. 10E , and as shown by FIGS. 10C and 10D respectively, cluster head node 9 ( 3112 ) is on a critical path 3210 , while gateway node 14 ( 3114 ) is not on a critical path. For example, if the connection between the cluster head node 9 and the adjacent gateway node 10 is severed, the clusters 3110a to 3110b may be divided from the clusters 3110c to 3110e. However, if any connection between gateway node 14 and gateway node 12 and cluster head node 13 is severed (for example, if either but not both nodes 12, 13 are lost), then gateway node 14 Will not split from the multi-node communication network 3100 (but will instead remain connected via the remainder of the two nodes 12, 13). Similarly, it can be shown by the procedure above that cluster head node 36 is also on a critical path 3210 (eg, relative to gateway node 16). In an embodiment, it can similarly be shown that cluster head nodes 13, 27 and gateway nodes 10, 12, 28 are also on a critical path 3210, since the loss of any of these nodes would divide the multi-node communication network 3100 one part.

在一些實施例中,現參考圖10F,多節點通信網路3100a可經實施且可類似於圖9至圖10E之多節點通信網路100來運作,惟增加叢集3110f及其叢集頭節點40 (3112)除外。In some embodiments, referring now to FIG. 10F, a multi-node communication network 3100a may be implemented and may operate similarly to the multi-node communication network 100 of FIGS. 3112) except.

在實施例中,普通節點3116可發射及接收部分鄰近者清單,且可經由上文偵測程序判定普通節點在一關鍵路徑3210上。例如,叢集3110a之普通節點3116可建立至叢集頭節點40之一鏈路(例如,歸因於叢集頭節點40及/或其叢集3110f接近叢集3110a及普通節點3116之移動)。在實施例中,普通節點3116可經由由圖10A至圖10E展示之偵測程序判定普通節點在一關鍵路徑3210上,從而透過普通節點將叢集3110a至3110e連接至叢集3110f。例如,普通節點3116之丟失可劃分叢集3110f與多節點通信網路3100a之其餘部分。因此,普通節點3116可立即轉變為閘道節點狀態(3114)。In an embodiment, the normal node 3116 can transmit and receive a partial neighbor list, and can determine that the normal node is on a critical path 3210 through the above detection procedure. For example, regular node 3116 of cluster 3110a may establish a link to cluster head node 40 (eg, due to movement of cluster head node 40 and/or its cluster 3110f close to cluster 3110a and regular node 3116). In an embodiment, the common node 3116 can determine that the common node is on a critical path 3210 through the detection process shown in FIGS. 10A to 10E , so as to connect the clusters 3110 a to 3110 e to the cluster 3110 f through the common nodes. For example, loss of common node 3116 may divide cluster 311 Of from the remainder of multi-node communication network 3100a. Therefore, normal node 3116 may immediately transition to the gateway node state (3114).

叢集頭節點9及36 (3112)可存在於同一叢集(例如,重疊叢集3110c、3110e)內。在一些實施例中,例如,若叢集頭節點根據多節點通信網路3100、3100a之狀態轉變規則在一關鍵路徑3210上,則兩個叢集頭節點9、36可保持其等之叢集頭狀態,而非叢集頭節點9、36之任一者立即退出,如下文更詳細描述。Cluster head nodes 9 and 36 (3112) may exist within the same cluster (eg, overlapping clusters 3110c, 3110e). In some embodiments, for example, if the cluster head node is on a critical path 3210 according to the state transition rules of the multi-node communication network 3100, 3100a, then the two cluster head nodes 9, 36 can maintain their cluster head state, Either of the non-cluster head nodes 9, 36 exits immediately, as described in more detail below.

現參考圖11,展示圖9至圖10F之多節點通信網路3100、3100a之一狀態轉變圖3300。Referring now to FIG. 11, a state transition diagram 3300 of the multi-node communication network 3100, 3100a shown in FIG. 9 to FIG. 10F is shown.

在實施例中,多節點通信網路3100之各通信節點(3102,圖9)可具有一閘道節點(3114)狀態作為其初始叢集化狀態(例如,在信標循環及網路組態之前),且任何經中繼部分鄰近者清單或其他發射可將該節點識別為一閘道節點。當例如經由部分鄰近者清單之交換及關鍵節點偵測接收新鏈路資訊時,如上文展示,各通信節點3102可更新其自身之區域鄰近者清單及/或鏈路狀態資訊,且可基於此資訊之改變來轉變為一不同節點狀態。例如,若根據經更新鏈路或區域鄰近者資訊,在多節點通信網路3100內不存在叢集頭節點3112,則一閘道節點3114可轉變(3302)為叢集頭就緒狀態(3304)。一叢集頭就緒節點3304可在例如一部分鄰近者清單或其他適用資料封包之成功發射之後將其自身(3306)指定為一叢集頭節點3112。然而,一叢集頭就緒節點3304可替代地轉變(3308)為普通節點狀態(3116),例如,前提是叢集頭就緒節點從一叢集頭節點3112接收一資料封包,且以下關係適用:In an embodiment, each communication node (3102, FIG. 9 ) of the multi-node communication network 3100 may have a gateway node (3114) state as its initial clustering state (e.g., prior to beacon cycles and network configuration ), and any relayed partial neighbor list or other transmission may identify the node as a gateway node. As shown above, each communication node 3102 may update its own area neighbor list and/or link state information when new link information is received, eg, via the exchange of partial neighbor lists and key node detection, and may based thereon Information changes to transition to a different node state. For example, a gateway node 3114 may transition (3302) to the cluster head ready state (3304) if no cluster head node 3112 exists within the multi-node communication network 3100 based on updated link or area neighbor information. A cluster head ready node 3304 may designate itself (3306) as a cluster head node 3112 upon successful transmission of, for example, a portion of a neighbor list or other applicable data packet. However, a cluster head ready node 3304 may alternatively transition (3308) to normal node state (3116), e.g., provided that the cluster head ready node receives a data packet from a cluster head node 3112 and the following relationship applies:

[ 1 ]   GW ≥ α * ( CH ) + β[ 1 ] GW ≥ α * ( CH ) + β

其中GW係貫穿多節點通信網路之具有一閘道節點狀態(3114)之通信節點之當前數目,CH係貫穿多節點通信網路之具有一叢集頭節點狀態(3112)之通信節點之當前數目,且α、β係可手動或自動調整以控制多節點通信網路3100內之閘道節點之數目及密度(及因此普通/非關鍵節點之數目)之閘道冗餘因子。儘管本文中提供之實例提供相等之閘道冗餘因子(例如,α=β=1),然本文中應注意,閘道冗餘因子α、β無需相等。在實施例中,調整閘道冗餘因子α、β可更改閘道節點3114對普通節點3116之比率,此可影響貫穿多節點通信網路3100之資料發射密度。藉由調整多節點通信網路3100內之閘道節點3112對普通節點3116之比率,可根據數種因素來定製網路,包含但不限於資料遞送之重要性、延遲要求、頻寬要求、通信節點3102之數目、通信節點之密度及類似物。Where GW is the current number of communication nodes with a gateway node status (3114) running through the multi-node communication network, CH is the current number of communication nodes with a cluster head node status (3112) running through the multi-node communication network , and α, β are gateway redundancy factors that can be adjusted manually or automatically to control the number and density of gateway nodes (and thus the number of common/non-critical nodes) within the multi-node communication network 3100 . Although the examples provided herein provide equal gateway redundancy factors (eg, α=β=1), it should be noted herein that the gateway redundancy factors α, β need not be equal. In an embodiment, adjusting the gateway redundancy factors α, β can change the ratio of gateway nodes 3114 to normal nodes 3116 , which can affect the data transmission density throughout the multi-node communication network 3100 . By adjusting the ratio of gateway nodes 3112 to normal nodes 3116 within the multi-node communication network 3100, the network can be tailored according to several factors, including but not limited to the importance of data delivery, latency requirements, bandwidth requirements, Number of communication nodes 3102, density of communication nodes, and the like.

在實施例中,叢集頭就緒節點3304可轉變(3310)回為一閘道節點3114,例如,前提是叢集頭就緒節點處於非作用中(例如,對於一預定超時週期),或叢集頭就緒節點從一叢集頭節點3112接收一資料封包且以下關係適用:In an embodiment, the cluster head ready node 3304 may transition (3310) back to a gateway node 3114, e.g., if the cluster head ready node is inactive (e.g., for a predetermined timeout period), or if the cluster head is ready A node receives a data packet from a cluster head node 3112 and the following relationship applies:

[ 2 ]   GW < α * ( CH ) + β[ 2 ] GW < α * ( CH ) + β

在實施例中,一叢集頭節點3112可轉變(3312)為一普通節點3116,前提是叢集頭節點從另一叢集頭節點接收一資料封包,且以下全部適用: ● [ 1 ]    GW ≥ α * ( CH ) + β; ● 叢集頭節點不在一關鍵路徑上;及 ● 對應叢集中之每一閘道節點3114具有多於兩個叢集頭節點(例如,具有多於一個替代叢集頭節點)。 In an embodiment, a cluster head node 3112 may transition (3312) to a normal node 3116, provided that the cluster head node receives a data packet from another cluster head node, and all of the following apply: ● [ 1 ] GW ≥ α * ( CH ) + β; ● The cluster head node is not on a critical path; and • Each gateway node 3114 in the corresponding cluster has more than two cluster head nodes (eg, has more than one alternate cluster head node).

類似地,叢集頭節點3112可轉變(3314)為閘道節點狀態(3114),前提是叢集頭節點從另一叢集頭節點接收一資料封包,且以下全部適用: ● [ 2 ]   GW < α * ( CH ) + β; ● 叢集頭節點不在一關鍵路徑上;及 ● 對應叢集中之每一閘道節點3114具有多於兩個叢集頭節點(例如,具有多於一個替代叢集頭節點)。 返回參考圖10E,可觀察到,叢集頭節點9、36 (3112)雖然共存於同一叢集(例如,重疊叢集3110c、3110e)內,但兩者可歸因於兩個叢集頭節點皆在一關鍵路徑3210上而保持其等之叢集頭狀態。 Similarly, the cluster head node 3112 may transition (3314) to the gateway node state (3114), provided that the cluster head node receives a data packet from another cluster head node, and all of the following apply: ● [ 2 ] GW < α * ( CH ) + β; ● The cluster head node is not on a critical path; and • Each gateway node 3114 in the corresponding cluster has more than two cluster head nodes (eg, has more than one alternate cluster head node). Referring back to FIG. 10E , it can be observed that although cluster head nodes 9, 36 (3112) co-exist within the same cluster (e.g., overlapping clusters 3110c, 3110e), both can be attributed to the fact that both cluster head nodes are in a key path 3210 while maintaining their cluster-head status.

在實施例中,若多節點通信網路內不存在其他叢集頭節點3112,則一普通節點3116可轉變(3316)為叢集頭就緒狀態3304。In an embodiment, a normal node 3116 may transition ( 3316 ) to the cluster head ready state 3304 if there are no other cluster head nodes 3112 within the multi-node communication network.

在實施例中,一普通節點3116可轉變(3318)為閘道節點狀態3114,前提是以下任一者適用: ● 普通節點係非作用中(例如,至少對於一預定超時週期); ● 普通節點在一關鍵路徑上;或 ● [ 2 ]   GW < α * ( CH ) + β。 In an embodiment, a normal node 3116 may transition (3318) to the gateway node state 3114 if any of the following apply: ● normal nodes are inactive (eg, at least for a predetermined timeout period); ● common nodes are on a critical path; or ● [ 2 ] GW < α * ( CH ) + β.

在實施例中,若關係[2]適用(GW≥α*(CH)+β),則閘道節點3114可轉變(3320)為普通節點狀態(3116)。In an embodiment, the gateway node 3114 may transition (3320) to a normal node state (3116) if the relation [2] applies (GW≥α*(CH)+β).

在一些實施例中,多節點通信網路3100可提供其他節點狀態及/或調節此等狀態之間之轉變之其他演算法或規則,例如,如由EFPC、ZOEF或由多節點通信網路3100利用之任何其他適當高效泛流及/或被動叢集化方案提供(例如,如由以引用的方式全部併入本文中之相關美國專利申請案第16/369,398號及第16/987,671號更詳細描述)。In some embodiments, multi-node communication network 3100 may provide other node states and/or other algorithms or rules that regulate transitions between these states, for example, as provided by EFPC, ZOEF, or by multi-node communication network 3100 Any other suitable high-efficiency flooding and/or passive clustering schemes utilized provide (for example, as described in more detail by related U.S. Patent Application Nos. 16/369,398 and 16/987,671, which are hereby incorporated by reference in their entirety) ).

現參考圖12A,方法3400可由多節點通信網路3100之通信節點3102之實施例實施,且可包含以下步驟。Referring now to FIG. 12A , the method 3400 may be implemented by an embodiment of the communication node 3102 of the multi-node communication network 3100 and may include the following steps.

在步驟3402,通信節點發射一或多個出站部分鄰近者清單。各部分鄰近者清單唯一地識別發射通信節點且指示其叢集化狀態(例如,閘道或叢集頭),且同樣地將每一單跳鄰近者之一唯一識別碼及叢集化狀態提供至具有一閘道或一叢集頭節點狀態之發射通信節點。在一些實施例中,經由高能信標信號發射部分鄰近者清單。在一些實施例中,經由招呼訊息發射部分鄰近者清單。In step 3402, the correspondent node transmits one or more outbound partial neighbor lists. Each partial neighbor list uniquely identifies the transmitting communication node and indicates its clustering status (e.g., gateway or cluster head), and likewise provides a unique identifier and clustering status for each single-hop neighbor to a node with a Gateway or a transmitting communication node in the state of a cluster head node. In some embodiments, the partial neighbor list is transmitted via a high energy beacon signal. In some embodiments, the partial neighbor list is transmitted via a hello message.

在步驟3404,通信節點從其單跳鄰近者接收入站部分鄰近者清單。各入站部分鄰近者清單唯一地識別發射鄰近節點及其叢集化狀態,且同樣地將各單跳鄰近者之一唯一識別碼及叢集化狀態(叢集頭或閘道)提供至具有一叢集頭或閘道狀態之發射節點。At step 3404, the correspondent node receives an inbound partial neighbor list from its one-hop neighbors. Each inbound partial neighbor list uniquely identifies the transmitting neighbor node and its clustering state, and likewise provides a unique identifier and clustering state (clusterhead or gateway) for each single-hop neighbor to a node with a clusterhead Or the transmitting node of the gateway state.

在步驟3406,通信節點基於所接收入站部分鄰近者清單判定通信節點是否在一關鍵路徑上(例如,節點之丟失將把網路劃分為兩個或更多個斷開部分)。At step 3406, the correspondent node determines whether the correspondent node is on a critical path (eg, the loss of a node would divide the network into two or more disconnected parts) based on the received inbound partial neighbor list.

參考圖12B,方法3400可包含一額外步驟3408。在步驟3408,若通信節點係一普通節點,且通信節點係一關鍵路徑,則通信節點從普通節點狀態轉變為閘道節點狀態。Referring to FIG. 12B , method 3400 may include an additional step 3408 . In step 3408, if the communication node is a normal node and the communication node is a critical path, the communication node changes from a normal node state to a gateway node state.

參考圖12C,方法3400可包含一額外步驟3410。在步驟3410,若通信節點係一叢集頭節點,且通信節點係一關鍵路徑,則通信節點可保持其叢集頭節點狀態。例如,即使另一叢集頭節點存在於其叢集或發射範圍內,叢集頭節點仍可保持其叢集頭節點狀態。Referring to FIG. 12C , method 3400 may include an additional step 3410 . In step 3410, if the communication node is a cluster head node and the communication node is a critical path, then the communication node may maintain its cluster head status. For example, a cluster head node may maintain its cluster head node status even if another cluster head node exists within its cluster or launch range.

參考圖12D,方法3400可包含一額外步驟3412。在步驟3412,通信節點基於所接收入站部分鄰近者清單更新其區域鄰近者清單及/或鏈路狀態資訊。Referring to FIG. 12D , method 3400 may include an additional step 3412 . In step 3412, the correspondent node updates its area neighbor list and/or link state information based on the received inbound partial neighbor list.

一些實施例可利用高效泛流,諸如具有被動叢集化之高效泛流(EFPC)或零附加項高效泛流(ZOEF)。2019年3月29日申請之美國專利申請案第16/369,398號(在2021年4月13日作為專利第10,979,348號發佈)詳細論述零附加項高效泛流(ZOEF)。2019年3月29日申請之美國專利申請案第16/369,398號(在2021年4月13日作為專利第10,979,348號發佈)之全部內容以引用的方式併入本文中。一些實施例可利用泛流路由(F2R)。2019年8月12日申請之美國專利申請案第16/537824號(在2021年2月23日作為專利第10,931,570號發佈)詳細論述F2R。2019年8月12日申請之美國專利申請案第16/537824號(在2021年2月23日作為專利第10,931,570號發佈)之全部內容以引用的方式併入本文中。Some embodiments may utilize efficient flooding, such as efficient flooding with passive clustering (EFPC) or zero-additional efficient flooding (ZOEF). U.S. Patent Application Serial No. 16/369,398, filed March 29, 2019 (issued April 13, 2021 as Patent No. 10,979,348), discusses Zero Addition Efficient Floodflow (ZOEF) in detail. The entire contents of U.S. Patent Application Serial No. 16/369,398, filed March 29, 2019 (issued April 13, 2021 as Patent No. 10,979,348), are incorporated herein by reference in their entirety. Some embodiments may utilize flood routing (F2R). US Patent Application Serial No. 16/537824, filed August 12, 2019 (issued February 23, 2021 as Patent No. 10,931,570) discusses F2R in detail. The entire contents of U.S. Patent Application Serial No. 16/537,824, filed August 12, 2019 (issued February 23, 2021 as Patent Serial No. 10,931,570) are incorporated herein by reference in their entirety.

歸因於EFPC技術無需網路拓撲或甚至鄰近者清單之任何先前知識之事實,通常使用具有被動叢集化之高效泛流(EFPC)。EFPC及其他高效泛流技術可用於一兩跳叢集化結構之即時部署,且可為有利的,因為第一泛流可如隨後泛流般高效。然而,憑藉EFPC,各MAC封包之兩個位元專用於各通信節點之叢集化狀態資訊。歸因於EFPC利用專用兩個位元進行高效泛流之事實,EFPC減少可用位址空間,破壞互操作性,且在不破壞通信協定之情況下可能無法實施。其最小化互操作性,且可能減少可用位址空間。Efficient Flooding with Passive Clustering (EFPC) is commonly used due to the fact that the EFPC technique does not require any prior knowledge of the network topology or even the neighbor list. EFPC and other efficient flooding techniques can be used for immediate deployment of one-two hop clustered structures, and can be advantageous because the first flood can be as efficient as subsequent floods. However, with EFPC, two bits of each MAC packet are dedicated to the clustering status information of each communication node. Due to the fact that EFPC utilizes dedicated two bits for efficient flooding, EFPC reduces available address space, breaks interoperability, and may not be implementable without breaking communication protocols. It minimizes interoperability and may reduce available address space.

本發明之一些實施例係關於一種用於零附加項高效泛流(ZOEF)之系統及方法。更特定言之,本發明之實施例係關於一種用於在不使用叢集化狀態資料之專用兩個位元之情況下進行資料封包泛流及被動叢集化之系統及方法。本發明之額外實施例係關於針對一多節點通信網路內之各種類型之通信節點使用多個指定廣播位址。本發明之額外實施例係關於用於資料封包泛流及被動叢集化之系統及方法,其利用包括一資料封包之一總位址空間之一單一位址之一廣播位址。本發明之進一步實施例係關於一種高效封包泛流之系統及方法,其提供EFPC之全部益處,同時保持互操作性。Some embodiments of the present invention relate to a system and method for Zero Addition Efficient Flooding (ZOEF). More particularly, embodiments of the present invention relate to a system and method for data packet flooding and passive clustering without using dedicated two bits of clustering state data. Additional embodiments of the present invention relate to the use of multiple designated broadcast addresses for various types of communication nodes within a multi-node communication network. Additional embodiments of the present invention relate to systems and methods for data packet flooding and passive clustering utilizing a broadcast address comprising a single address of a total address space of a data packet. Further embodiments of the present invention relate to a system and method for efficient packet flooding that provides all the benefits of EFPC while maintaining interoperability.

例如,關於ZOEF,一些實施例可包含一多節點通信網路之一通信節點。在一或多項實施例中,通信節點包含一通信介面及通信地耦合至通信介面之一控制器。控制器經組態以經由通信介面從多節點通信網路之一第一額外通信節點接收一資料封包,該資料封包包含指示第一額外通信節點之一叢集化狀態之一廣播位址。控制器經進一步組態以判定通信節點之一叢集化狀態,該叢集化狀態基於通信地耦合至通信節點之數個閘道節點與數個叢集頭節點之間之一關係。若所判定叢集化狀態係一閘道叢集化狀態或一叢集頭叢集化狀態,則控制器經進一步組態以經由通信介面將資料封包發射至多節點通信網路之至少一第二額外通信節點,該資料封包包含指示通信節點之叢集化狀態之一廣播位址。在一些實施例中,若所判定叢集化狀態包含一普通節點叢集化狀態,則控制器經進一步組態以避免發射資料封包。在通信節點之一些實施例中,控制器經進一步組態以判定通信地耦合至通信節點之閘道節點之數目及叢集頭節點之數目。在通信節點之一些實施例中,指示第一額外通信節點之叢集化狀態之廣播位址或指示通信節點之叢集化狀態之廣播位址之至少一者包括資料封包之一總位址空間之一單一位址。在通信節點之一些實施例中,指示第一額外通信節點之叢集化狀態之廣播位址或指示通信節點之叢集化狀態之廣播位址之至少一者包括以下至少一者:指示一閘道節點叢集化狀態之一第一廣播位址;指示一叢集頭節點叢集化狀態之一第二廣播位址;或指示一普通節點叢集化狀態之一第三廣播位址。在通信節點之一些實施例中,控制器進一步包含一記憶體,該記憶體經組態以儲存通信地耦合至通信節點之一或多個通信節點之一區域清單。在通信節點之一些實施例中,判定通信地耦合至通信節點之閘道節點之一數目及叢集頭節點之一數目包括對區域清單內之閘道節點之一數目進行計數,且對區域清單內之叢集頭節點之一數目進行計數。在通信節點之一些實施例中,控制器經進一步組態以:基於與資料封包一起從第一額外通信節點接收之第一額外通信節點之一唯一識別碼來識別第一額外通信節點;判定第一額外通信節點是否存在於儲存於記憶體中之區域清單中;若第一額外通信節點不存在於區域清單中,則將第一額外通信節點添加至區域清單;及若第一額外通信節點存在於區域清單內,則更新區域清單內之第一額外通信節點之一叢集化狀態及一通信時間戳記,其中更新通信時間戳記包含將通信時間戳記更新至一當前時間。在通信節點之一些實施例中,唯一識別碼包含一媒體存取控制(MAC)位址或一網際網路協定(IP)位址之至少一者。在通信節點之一些實施例中,控制器經進一步組態以識別區域清單內之一或多個超時通信節點,且從區域清單移除一或多個所識別超時通信節點。在通信節點之一些實施例中,判定通信節點之叢集化狀態包括:若GW≥α*CH+β,則判定一普通節點叢集化狀態,及若GW<α*CH+β,則判定一閘道節點叢集化狀態,其中GW定義閘道節點之所判定數目,CH定義叢集頭節點之所判定數目,且α及β定義閘道冗餘因子。For example, with respect to ZOEF, some embodiments may include one communication node of a multi-node communication network. In one or more embodiments, the communication node includes a communication interface and a controller communicatively coupled to the communication interface. The controller is configured to receive a data packet from a first additional communication node of the multi-node communication network via the communication interface, the data packet including a broadcast address indicating a clustering state of the first additional communication node. The controller is further configured to determine a clustering state of the communication node based on a relationship between the number of gateway nodes and the number of cluster head nodes communicatively coupled to the communication node. If the determined clustering state is a gateway clustering state or a cluster head clustering state, the controller is further configured to transmit the data packet to at least one second additional communication node of the multi-node communication network via the communication interface, The data packet contains a broadcast address indicating the clustering status of the communication node. In some embodiments, the controller is further configured to avoid transmitting data packets if the determined clustering state includes a normal node clustering state. In some embodiments of the communication node, the controller is further configured to determine the number of gateway nodes and the number of cluster head nodes communicatively coupled to the communication node. In some embodiments of the communication node, at least one of the broadcast address indicating the clustering status of the first additional communication node or the broadcast address indicating the clustering status of the communication node comprises one of the total address space of the data packet single address. In some embodiments of the communication node, at least one of the broadcast address indicating the clustering status of the first additional communication node or the broadcast address indicating the clustering status of the communication node includes at least one of: indicating a gateway node A first broadcast address of the clustering state; a second broadcast address indicating the clustering state of a cluster head node; or a third broadcast address indicating the clustering state of a common node. In some embodiments of the communication nodes, the controller further includes a memory configured to store a list of regions communicatively coupled to one or more of the communication nodes. In some embodiments of the communication node, determining a number of gateway nodes and a number of cluster head nodes communicatively coupled to the communication node includes counting a number of gateway nodes in the zone list, and counting a number of gateway nodes in the zone list Count the number of one of the cluster head nodes. In some embodiments of the communication node, the controller is further configured to: identify the first additional communication node based on a unique identification code of the first additional communication node received with the data packet from the first additional communication node; whether an additional communication node exists in the area list stored in memory; if the first additional communication node does not exist in the area list, then add the first additional communication node to the area list; and if the first additional communication node exists In the area list, a clustering state and a communication time stamp of the first additional communication node in the area list are updated, wherein updating the communication time stamp includes updating the communication time stamp to a current time. In some embodiments of the communication node, the unique identifier includes at least one of a Media Access Control (MAC) address or an Internet Protocol (IP) address. In some embodiments of the communication nodes, the controller is further configured to identify one or more timed-out communication nodes within the area list, and remove the one or more identified time-out communication nodes from the area list. In some embodiments of the communication node, determining the clustering state of the communication node includes: if GW≥α*CH+β, then determining a common node clustering state, and if GW<α*CH+β, then determining a gate Gateway node clustering status, where GW defines the determined number of gateway nodes, CH defines the determined number of cluster head nodes, and α and β define the gateway redundancy factor.

關於F2R,在一些實施例中,通信節點包含一通信介面及通信地耦合至通信介面之一控制器。在實施例中,控制器經組態以:接收從一源通信節點發射至一目的地通信節點之一第一資料封包;經由一封包泛流程序將第一資料封包發射至一或多個中繼通信節點;沿著一所發現路由接收從目的地通信節點發射至源通信節點之一第一路由回應;沿著所發現路由中繼從源通信節點發射至目的地通信節點之一第一額外資料封包;判定第一額外資料封包之一路由失敗;經由一封包泛流程序將第一額外資料封包重新發射至目的地通信節點;沿著一經恢復路由接收從目的地通信節點發射至源通信節點之一額外路由回應;及沿著經恢復路由中繼從源通信節點發射至目的地通信節點之一第二額外資料封包。With respect to F2R, in some embodiments, a communication node includes a communication interface and a controller communicatively coupled to the communication interface. In an embodiment, the controller is configured to: receive a first data packet transmitted from a source communication node to a destination communication node; transmit the first data packet to one or more receiving a first route response transmitted from the destination communication node to the source communication node along a discovered route; relaying a first additional route transmitted from the source communication node to the destination communication node along the discovered route data packets; determining that one of the routes of the first additional data packets has failed; retransmitting the first additional data packets to the destination communication node via a packet flooding procedure; receiving and transmitting from the destination communication node to the source communication node along a restored route an additional route response; and relaying a second additional data packet transmitted from the source communication node to the destination communication node along the restored route.

大體上參考圖13至圖19,一些實施例可包含經組態用於MHSA之一多節點通信網路4100。在一些實施例中,基於信標之叢集頭節點4102-1可編譯空間覺知資訊,且經由高效泛流分佈經編譯空間覺知資訊。例如,MANET (例如,4100)之全部節點4102之PLI資訊可經由等於BB-CH節點4102-1之一數量之一數量之高效泛流跨一整個MANET分佈。例如,MANET可利用被動空間覺知(如上文論述)、基於信標之被動叢集化(BBPC)之態樣(如上文論述)及高效泛流(如上文論述,例如,零附加項高效泛流(ZOEF))以將至少一些(例如,一些或全部)經編譯空間覺知資訊分佈至MANET之複數個節點4102之每一所連接節點4102。應注意,BBPC通常使用BB-CH、基於信標之閘道節點(BB-GW節點)及基於信標之普通節點(BB-ON)建構一基於信標之被動叢集化結構;然而,在一些實施例中,在MHSA中僅利用BB-CH節點4102-1,且可省略BB-GW節點及BB-ON。亦應注意,高效泛流(例如,ZOEF或EFPC)使用用於通信(Comm)叢集化之叢集頭(CH)節點4102-4、GW節點4102-3及ON 4102-2建構一通信叢集化結構;在一些實施例中,此通信叢集化結構亦可用於高效泛流及/或EICD。由於基於信標之被動叢集化之結構優點,可減少泛流之數目。因此,學習每一參與節點之位置資訊可以最小附加項達成。Referring generally to FIGS. 13-19 , some embodiments may include a multi-node communication network 4100 configured for MHSA. In some embodiments, the beacon-based cluster head node 4102-1 can compile spatially aware information and distribute the compiled spatially aware information via efficient flooding. For example, PLI information for all nodes 4102 of a MANET (eg, 4100) may be distributed across an entire MANET via efficient flooding by a number equal to a number of BB-CH nodes 4102-1. For example, MANETs can utilize passive spatial awareness (discussed above), aspects of Beacon-Based Passive Clustering (BBPC) (discussed above), and efficient flooding (discussed above, e.g., zero-additional efficient flooding (ZOEF)) to distribute at least some (eg, some or all) of the compiled spatially aware information to each connected node 4102 of the plurality of nodes 4102 of the MANET. It should be noted that BBPC typically uses BB-CH, beacon-based gateway nodes (BB-GW nodes) and beacon-based normal nodes (BB-ON) to construct a beacon-based passive clustering structure; however, in some In an embodiment, only the BB-CH node 4102-1 is used in MHSA, and the BB-GW node and BB-ON can be omitted. It should also be noted that efficient flooding (e.g., ZOEF or EFPC) constructs a communication clustering structure using cluster head (CH) node 4102-4, GW node 4102-3, and ON 4102-2 for communication (Comm) clustering ; In some embodiments, this communication clustering structure can also be used for efficient flooding and/or EICD. Due to the architectural advantages of beacon-based passive clustering, the number of floods can be reduced. Therefore, learning the location information of each participating node can be achieved with minimal additional terms.

目前,被動空間覺知(PSA)限於一BB-CH節點4102-1之一信標範圍。PSA可取代招呼訊息,且通常對區域路由決策有用。Currently, Passive Spatial Awareness (PSA) is limited to a beacon range of a BB-CH node 4102-1. PSAs can replace hello messages and are often useful for area routing decisions.

目前,PLI可為一任務要求。習知PLI交換可消耗大量頻寬,且因此再新率可較低。Currently, PLI may be required for a task. Conventional PLI switching can consume a lot of bandwidth, and thus the refresh rate can be low.

目前,路由協定可產生大量線路附加項以學習一網路拓撲。包含招呼、鏈路狀態及/或距離向量通告訊息之路由附加項消耗頻寬。Currently, routing protocols can generate a large number of line appends to learn a network topology. Routing extras including hello, link state and/or distance vector advertisement messages consume bandwidth.

PSA可為不具有資料通信之空間覺知。例如,低可觀測信標可用於估計其信標可被接收之節點之位置、速度、方向及加速率。PSA can be spatial awareness without data communication. For example, low-observable beacons can be used to estimate the position, velocity, direction, and acceleration of nodes whose beacons can be received.

主動空間覺知可為透過資料通信之空間覺知。PLI或精確參與者位置資訊(PPLI)可利用顯式資料封包及通信以向朋友節點通知發送者之位置、速率、方向及加速率。多跳空間覺知(MHSA)亦可為主動空間覺知之一形式。在習知PLI中,每一節點經由泛流發送其PLI。在具有EICD之PLI中,一叢集頭節點收集其專用成員之PLI且發送經組合PLI資訊;與習知PLI相比,泛流數量可顯著減少;ZOEF可進一步減少泛流附加項。在利用MHSA之一些實施例中,基於信標之叢集頭(BB-CH)節點可使其被動空間覺知與其PLI一起泛流;在基於信標之叢集中可不存在作用中PLI交換;且與具有EICD之PLI相比,泛流之數量可進一步減少,此係因為基於信標之叢集4112之大小大於一通信叢集化4110之叢集。Active spatial awareness may be spatial awareness through data communication. PLI, or Precise Participant Location Information (PPLI), may utilize explicit data packets and communications to inform friend nodes of the sender's position, velocity, direction, and acceleration. Multi-hop spatial awareness (MHSA) can also be a form of active spatial awareness. In conventional PLI, each node sends its PLI via flooding. In PLI with EICD, a cluster head node collects PLIs of its dedicated members and sends combined PLI information; compared with conventional PLI, the number of flooding can be significantly reduced; ZOEF can further reduce flooding additions. In some embodiments utilizing MHSA, a beacon-based cluster head (BB-CH) node may flood its passive spatial awareness with its PLI; there may be no active PLI exchange in a beacon-based cluster; and with The number of floods can be further reduced compared to PLI with EICD because the size of the beacon-based cluster 4112 is larger than that of a communication cluster 4110.

在利用MHSA之一些實施例中:網路可使用PSA、基於信標之被動叢集化(BB-PC)及高效泛流(例如,ZOEF)。例如,網路之每一節點可具有不具有任何資料通信之PSA,BB-PC可選擇一BB-CH節點,且BB-CH節點可利用PSA編譯空間覺知訊息。例如,當被容許時,BB-CH節點可經由ZOEF廣播空間覺知訊息;此可容許BB-CH處理任務參數,諸如藉由調整廣播頻率。例如,空間覺知訊息可包含以下資訊:發送者識別(ID) (例如,BB-CH)及發送者之PLI;成員ID及額外資訊,諸如PLI、鏈路容量及/或至一成員之一跳躍計數;一時間戳記;及/或一生存時間。In some embodiments utilizing MHSA: the network may use PSA, Beacon-based Passive Clustering (BB-PC), and Efficient Flooding (eg, ZOEF). For example, each node of the network may have a PSA without any data communication, the BB-PC may select a BB-CH node, and the BB-CH node may compile spatially aware messages using the PSA. For example, BB-CH nodes may broadcast spatial awareness messages via ZOEF when allowed; this may allow BB-CH to process mission parameters, such as by adjusting the broadcast frequency. For example, a spatially aware message may contain the following information: sender identification (ID) (e.g., BB-CH) and sender's PLI; member ID and additional information such as PLI, link capacity, and/or to one of the members a jump count; a timestamp; and/or a time-to-live.

MHSA可以若干方式不同於具有EICD之PLI。例如,對於MHSA,不存在區域PLI資訊交換;BB-CH節點處之PSA係MHSA訊息之資訊源,且不存在區域PSA之資料通信。此外,對於MHSA,在MHSA中不存在成員資格聲明,而每一非CH節點在EICD中聲明成員資格。除此之外,假定信標範圍大於BB-CH節點之通信範圍,與具有EICD之PLI相比,MSHA中之泛流數目顯著更低。在MHSA中,泛流封包之大小可更大,且可存在可能重複資訊,此係因為缺少一專用叢集頭選擇協定。MHSA can differ from PLI with EICD in several ways. For example, for MHSA, there is no regional PLI information exchange; the PSA at the BB-CH node is the source of MHSA messages, and there is no data communication for regional PSA. Also, for MHSA, there is no membership declaration in MHSA, whereas each non-CH node declares membership in EICD. Besides, assuming that the beacon range is larger than the communication range of BB-CH nodes, the number of flooding in MSHA is significantly lower compared to PLI with EICD. In MHSA, the flooding packet size can be larger and there may be duplicate information, due to the lack of a dedicated cluster header selection protocol.

一些實施例可包含網路拓撲學習。存在許多MANET路由協定,但基於泛流之路由及/或遞送通常需要藉由交換單跳鄰近者之類似招呼訊息來進行拓撲學習。此等類似招呼訊息通常包含一鄰近者清單以驗證雙向性。除了單跳鄰近者發現之外,亦可經由狀態及/或距離向量通告來學習全域拓撲。鏈路狀態廣告通常經由泛流來完成。距離向量通常可使用逐跳躍聚合。在一些實施例中,信標範圍內之區域拓撲可經由PSA來學習,此可提供優於習知路由協定之顯著頻寬節省。Some embodiments may include network topology learning. Many MANET routing protocols exist, but flooding-based routing and/or delivery typically requires topology learning by exchanging similar hello messages to one-hop neighbors. Such hello messages usually include a neighbor list to verify bidirectionality. In addition to single-hop neighbor discovery, global topology can also be learned via state and/or distance vector advertisement. Link state advertisement is usually done via flooding. Distance vectors can often use hop-by-hop aggregation. In some embodiments, the topology of the area within range of the beacon can be learned via the PSA, which can provide significant bandwidth savings over conventional routing protocols.

下文係比較PLI、具有EICD之PLI及MHSA之特徵之一表: PLI 具有EICD之PLI MHSA PLI之準確性 經量測 經量測 經估計 通信附加項 非常高 中等 無線電佔用面積 非常高 中等 新鮮度 陳舊 中等 新鮮 可擴展性 中等 Below is a table comparing the characteristics of PLI, PLI with EICD, and MHSA: PLI PLI with EICD MHSA Accuracy of PLI Measured Measured Estimated communication add-on very high medium Low radio footprint very high medium Low Freshness obsolete medium Fresh scalability Low medium high

使用MHSA可具有許多優點。例如,MHSA可為一高效空間覺知。MHSA可為昂貴PLI協定之一良好替代方案,諸如在經估計空間覺知可能適合之情況下。MHSA可為高效MANET路由提供堅實基礎,此係因為除了MHSA之外可不存在額外線路附加項,對於至任何目的地之下一跳躍之一區域決策係可能的,且當更接近目的地時,可存在一路由決策之更高準確性。Using MHSA can have many advantages. For example, MHSA can be an efficient spatial awareness. MHSA may be a good alternative to expensive PLI protocols, such as where it is estimated that spatial awareness may be suitable. MHSA can provide a solid basis for efficient MANET routing because there may be no additional line additions other than MHSA, an area decision is possible for the next hop to any destination, and when closer to the destination, There is a higher accuracy of routing decisions.

圖13繪示根據本發明之一或多項實施例之一多節點通信網路4100。在實施例中,多節點通信網路4100可包含複數個通信節點4102。例如,多節點通信網路4100可包含一第一通信節點4102a、一第二通信節點4102b及一第三通信節點4102c。FIG. 13 illustrates a multi-node communication network 4100 according to one or more embodiments of the invention. In an embodiment, the multi-node communication network 4100 may include a plurality of communication nodes 4102 . For example, the multi-node communication network 4100 may include a first communication node 4102a, a second communication node 4102b, and a third communication node 4102c.

多節點通信網路4100可包含此項技術中已知之任何多節點通信網路。例如,多節點通信網路4100可為或包含一行動特用網路(MANET),其中多節點通信網路內之各通信節點4102能夠自由且獨立地移動。在額外及/或替代實施例中,多節點通信網路4100內之一或多個通信節點4102可為固定的。在實施例中,一或多個通信節點4102可包含此項技術中已知之可通信地耦合之任何通信節點。就此而言,一或多個通信節點4102可包含此項技術中已知之用於發射/收發資料封包之任何通信節點。例如,一或多個通信節點4102可包含但不限於無線電、行動電話、智慧型電話、平板電腦、智慧型手錶、膝上型電腦及類似物。Multi-node communication network 4100 may comprise any multi-node communication network known in the art. For example, the multi-node communication network 4100 can be or include a mobile ad hoc network (MANET), wherein each communication node 4102 within the multi-node communication network can move freely and independently. In additional and/or alternative embodiments, one or more of the communication nodes 4102 within the multi-node communication network 4100 may be stationary. In an embodiment, the one or more communication nodes 4102 may include any communication nodes known in the art to be communicatively coupled. In this regard, the one or more communication nodes 4102 may include any communication nodes known in the art for transmitting/receiving data packets. For example, one or more communication nodes 4102 may include, but are not limited to, radios, cell phones, smartphones, tablets, smart watches, laptops, and the like.

一或多個通信節點4102a、4102b、4102c之各通信節點4102可包含但不限於一各自控制器4104 (例如,控制器4104a、4104b、4104c等)、記憶體4106 (例如,記憶體4106a、4106b、4106c等)及通信介面4108 (例如,通信介面4108a、4108b、4108c等)。Each communication node 4102 of one or more communication nodes 4102a, 4102b, 4102c may include, but is not limited to, a respective controller 4104 (e.g., controller 4104a, 4104b, 4104c, etc.), memory 4106 (e.g., memory 4106a, 4106b , 4106c, etc.) and communication interface 4108 (eg, communication interface 4108a, 4108b, 4108c, etc.).

控制器4104至少為通信節點4102提供處理功能性,且可包含任何數目個處理器、微控制器、電路系統、場可程式化閘陣列(FPGA)或其他處理系統及用於儲存由通信節點4102存取或產生之資料、可執行碼及其他資訊之駐留或外部記憶體。控制器4104可執行體現在一非暫時性電腦可讀媒體(例如,記憶體4106)中之實施本文中描述之技術之一或多個軟體程式。控制器4104不受限於形成其之材料或其中採用之處理機制,且因而,可經由(若干)半導體及/或電晶體(例如,使用電子積體電路(IC)組件)等實施。Controller 4104 provides at least processing functionality for communication node 4102, and may include any number of processors, microcontrollers, circuitry, field programmable gate arrays (FPGAs), or other processing systems and for storing Resident or external memory for accessing or generating data, executable code and other information. Controller 4104 may execute one or more software programs embodied in a non-transitory computer-readable medium (eg, memory 4106 ) that implement one or more techniques described herein. Controller 4104 is not limited by the materials from which it is formed or the processing mechanisms employed therein, and as such, may be implemented via semiconductor(s) and/or transistors (eg, using electronic integrated circuit (IC) components), or the like.

記憶體4106可為提供用以儲存與通信節點4102/控制器4104之操作相關聯之各種資料及/或程式碼(諸如軟體程式及/或碼片段或用以指示控制器4104及通信節點4102之可能其他組件執行本文中描述之功能性之其他資料)之儲存功能性之有形電腦可讀儲存媒體之一實例。因此,記憶體4106可儲存資料,諸如用於操作通信節點4102 (包含其組件(例如,控制器4104、通信介面4108等)等)之一指令程式。應注意,雖然描述一單一記憶體4106,但可採用廣泛多種類型及組合之記憶體(例如,有形、非暫時性記憶體)。記憶體4106可與控制器4104整合、可包括獨立記憶體或可為兩者之一組合。記憶體4106之一些實例可包含可抽換式及不可抽換式記憶體組件,諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體(例如,一安全數位(SD)記憶卡、一迷你SD記憶卡及/或一微型SD記憶卡)、固態硬碟(SSD)記憶體、磁性記憶體、光學記憶體、通用串列匯流排(USB)記憶體裝置、硬碟記憶體、外部記憶體等。The memory 4106 may be provided for storing various data and/or program codes (such as software programs and/or code segments or used to instruct the controller 4104 and the communication node 4102) associated with the operation of the communication node 4102/controller 4104 One example of a tangible computer-readable storage medium that stores functionality, possibly other components that perform the functionality described herein, other data). Accordingly, memory 4106 may store data such as a program of instructions for operating communication node 4102 (including its components (eg, controller 4104, communication interface 4108, etc.), etc.). It should be noted that although a single memory 4106 is described, a wide variety of types and combinations of memory (eg, tangible, non-transitory memory) may be employed. Memory 4106 may be integrated with controller 4104, may include separate memory, or may be a combination of both. Some examples of memory 4106 may include removable and non-removable memory components, such as random access memory (RAM), read only memory (ROM), flash memory (e.g., a secure bit ( SD) memory card, a mini SD memory card and/or a micro SD memory card), solid state drive (SSD) memory, magnetic memory, optical memory, universal serial bus (USB) memory device, hard disk memory, external memory, etc.

通信介面4108可操作地組態以與通信節點4102之組件通信。例如,通信介面4108可經組態以從控制器4104或其他裝置(例如,其他節點4102)擷取資料,發射資料以儲存於記憶體4106中,從記憶體4106中之儲存器擷取資料等。通信介面4108亦可與控制器4104通信地耦合以促進通信節點4102之組件與控制器4104之間之資料傳送。應注意,雖然通信介面4108被描述為通信節點4102之一組件,但通信介面4108之一或多個組件可實施為經由一有線及/或無線連接通信地耦合至通信節點4102之外部組件。通信節點4102亦可包含及/或連接至一或多個輸入/輸出(I/O)裝置。在實施例中,通信介面4108包含或耦合至一發射器、接收器、收發器、實體連接介面或其等之任何組合。Communication interface 4108 is operably configured to communicate with components of communication node 4102 . For example, communication interface 4108 may be configured to retrieve data from controller 4104 or other devices (e.g., other nodes 4102), transmit data for storage in memory 4106, retrieve data from storage in memory 4106, etc. . Communication interface 4108 may also be communicatively coupled with controller 4104 to facilitate data transfer between components of communication node 4102 and controller 4104 . It should be noted that although communication interface 4108 is described as a component of communication node 4102, one or more components of communication interface 4108 may be implemented as external components communicatively coupled to communication node 4102 via a wired and/or wireless connection. Communications node 4102 may also include and/or be connected to one or more input/output (I/O) devices. In an embodiment, the communication interface 4108 includes or is coupled to a transmitter, receiver, transceiver, physical connection interface, or any combination thereof.

本文中經考慮,一通信節點4102之通信介面4108可經組態以使用此項技術中已知之任何無線通信技術(包含但不限於GSM、GPRS、CDMA、EV-DO、EDGE、WiMAX、3G、4G、4G LTE、5G、WiFi協定、射頻(RF)、LoRa及類似物)通信地耦合至多節點通信網路4100之額外通信節點4102之額外通信介面4108。It is contemplated herein that the communication interface 4108 of a communication node 4102 may be configured to use any wireless communication technology known in the art (including but not limited to GSM, GPRS, CDMA, EV-DO, EDGE, WiMAX, 3G, 4G, 4G LTE, 5G, WiFi protocol, radio frequency (RF), LoRa, and the like) communicatively coupled to the additional communication interface 4108 of the additional communication node 4102 of the multi-node communication network 4100 .

在實施例中,一通信節點4102之控制器4104經組態以實行本發明之任何或全部步驟及/或功能。In one embodiment, the controller 4104 of a communication node 4102 is configured to perform any or all of the steps and/or functions of the present invention.

圖14繪示根據本發明之一或多項實施例之經組態用於MHSA之一例示性多節點通信網路4100 (例如,一MANET)。在一些實施例中,多節點通信網路4100可包含複數個節點(例如,通信節點4102)。例如,多節點通信網路100可包含至少一個基於信標之叢集頭(BB-CH)節點4102-1、叢集頭(CH)節點4102-4、普通節點(ON) 4102-2及/或至少一個閘道節點(GW) 4102-3。FIG. 14 illustrates an exemplary multi-node communication network 4100 (eg, a MANET) configured for MHSA in accordance with one or more embodiments of the present invention. In some embodiments, multi-node communication network 4100 may include a plurality of nodes (eg, communication node 4102). For example, the multi-node communication network 100 may include at least one beacon-based cluster head (BB-CH) node 4102-1, cluster head (CH) node 4102-4, normal node (ON) 4102-2 and/or at least A gateway node (GW) 4102-3.

節點4102可為一通信網路4100內之一端點。例如,一節點可為由一士兵攜帶或安裝在一位置或載具中之一無線電裝置。Node 4102 may be an endpoint within a communication network 4100 . For example, a node may be a radio carried by a soldier or installed in a location or vehicle.

BB-CH節點4102-1可為通信網路4100內之用於聚合及分佈若干附近節點4102之資訊之一節點。BB-CH node 4102-1 may be one of the nodes within communication network 4100 for aggregating and distributing information of several nearby nodes 4102.

PLI可為詳述通信網路4100內之一節點4102之實體位置、速率及方向之資料。PLI may be data detailing the physical location, velocity and direction of a node 4102 within the communications network 4100 .

閘道節點4102-3可為連接至網路4100內之多個叢集以容許該等連接之間之通信流之一節點。閘道節點4102-3可為至少兩個CH節點4102-4之一成員。兩個或更多個閘道節點可一起工作以連接不相交叢集。Gateway node 4102-3 may be a node connected to multiple clusters within network 4100 to allow communication flow between those connections. Gateway node 4102-3 may be a member of one of at least two CH nodes 4102-4. Two or more gateway nodes can work together to connect disjoint clusters.

例如,隨著節點4102在一戰場周圍實體移動,網路拓撲可改變。如描述,此等節點4102 (例如,4102-2、4102-3及/或4102-4)可自註冊為一區域BB-CH節點4102-1之一成員,其可負責聚合及分佈BB-CH節點4102-1之成員之PLI。For example, as nodes 4102 physically move around a battlefield, the network topology may change. As depicted, these nodes 4102 (e.g., 4102-2, 4102-3, and/or 4102-4) may self-register as a member of a regional BB-CH node 4102-1, which may be responsible for aggregating and distributing BB-CH PLI for members of node 4102-1.

在一些實施例中,行動特用網路(MANET) (例如,4100)可包含複數個節點4102,其中複數個節點4102之各者包括一通信介面4108及一控制器4104,其中複數個節點4102包括基於信標之叢集頭(BB-CH)節點4102-1及成員(例如,4102-2、4102-3及/或4102-4)。複數個節點4102之各者可為BB-CH節點4102-1或至少一個BB-CH節點4102-1之一成員之一者。複數個節點4102之各者可經組態以發送通信資料封包且發射信標。各信標之一範圍可大於各通信資料封包之一範圍。複數個節點4102之各者可具有被動空間覺知。對於具有成員之BB-CH節點4102-1之各者,一BB-CH節點4102-1可經組態以至少基於來自BB-CH節點4102-1之成員之各成員之一信標經由被動空間覺知(PSA)編譯(例如,被動編譯)空間覺知資訊。來自成員之一給定成員之空間覺知資訊可包含給定成員之一成員識別符及/或給定成員之位置之資訊。經編譯空間覺知資訊可包含BB-CH節點4102-1之一BB-CH節點識別符,BB-CH節點4102-1之定位資訊(PLI)、BB-CH節點4102-1之成員之一數量、包含成員之成員識別符及各成員之PLI之一成員清單、一時間戳記、指示將為各成員轉發經編譯空間覺知資訊之一跳躍次數之一生存時間、鏈路容量及/或從BB-CH節點4102-1至BB-CH節點4102-1之各成員之一跳躍計數。對於BB-CH節點4102-1之各者,BB-CH節點4102-1可經組態以經由高效泛流(例如,ZOEF或EFPC)將經編譯空間覺知資訊之至少一些(例如,一些或全部)廣播至複數個節點4102之每一所連接節點4102。在一些實施例中,對於具有成員之BB-CH節點4102-1之至少一者,成員之至少一者係一閘道節點4102-3。In some embodiments, a mobile ad hoc network (MANET) (e.g., 4100) may include a plurality of nodes 4102, wherein each of the plurality of nodes 4102 includes a communication interface 4108 and a controller 4104, wherein the plurality of nodes 4102 A beacon-based cluster head (BB-CH) node 4102-1 and members (eg, 4102-2, 4102-3, and/or 4102-4) are included. Each of the plurality of nodes 4102 may be a BB-CH node 4102-1 or one of at least one member of the BB-CH node 4102-1. Each of the plurality of nodes 4102 may be configured to send communication packets and transmit beacons. A range of each beacon may be greater than a range of each communication data packet. Each of plurality of nodes 4102 may have passive spatial awareness. For each of the BB-CH nodes 4102-1 that have members, a BB-CH node 4102-1 can be configured to pass through the passive space based on at least one of the beacons from each of the members of the BB-CH node 4102-1 Awareness (PSA) encodes (eg, passively encodes) spatial awareness information. Spatial awareness information from a given one of the members may include a member identifier of the given member and/or information on the location of the given member. The compiled spatial awareness information may include a BB-CH node identifier of the BB-CH node 4102-1, location information (PLI) of the BB-CH node 4102-1, a number of members of the BB-CH node 4102-1 , a member list containing the member's member identifier and each member's PLI, a timestamp, a time-to-live indicating the number of hops that will forward the compiled spatially aware information for each member, link capacity and/or from BB - One hop count for each member of CH node 4102-1 to BB-CH node 4102-1. For each of the BB-CH nodes 4102-1, the BB-CH node 4102-1 may be configured to pass at least some (e.g., some or all) broadcast to each connected node 4102 of the plurality of nodes 4102. In some embodiments, for at least one of the BB-CH nodes 4102-1 having members, at least one of the members is a gateway node 4102-3.

在一些實施例中,可僅容許BB-CH節點4102-1經由泛流起始經編譯空間覺知資訊之一廣播。例如,MANET (例如,4100)之全部節點4102之PLI資訊可經由等於BB-CH節點4102-1之一數量之一數量之高效泛流跨整個MANET (例如,4100)分佈,且高效泛流中繼之數量可小於MANET (例如,4100)之節點4102之一數量。例如,對於圖14之網路4100,網路4100之全部節點4102之PLI資訊可經由小於用於通信叢集化之CH節點4102-4之一數量(例如,16個,如展示)之一數量之(例如,3個,如展示)高效泛流跨整個網路分佈,且高效泛流中繼之數量可小於MANET (例如,4100)之節點4102之一數量。In some embodiments, only BB-CH node 4102-1 may be allowed to initiate one broadcast of encoded spatially aware information via flooding. For example, PLI information for all nodes 4102 of a MANET (e.g., 4100) may be distributed across the entire MANET (e.g., 4100) via a number of high-efficiency flooding equal to one number of BB-CH nodes 4102-1, and in the high-efficiency flooding The subsequent number may be less than a number of nodes 4102 of the MANET (eg, 4100). For example, for the network 4100 of FIG. 14 , the PLI information for all nodes 4102 of the network 4100 can be transmitted via a number less than a number (e.g., 16, as shown) of CH nodes 4102-4 used for communication clustering. (eg, 3, as shown) efficient flooding is distributed across the entire network, and the number of efficient flooding relays may be less than one number of nodes 4102 of the MANET (eg, 4100).

在一些實施例中,MANET (例如,4100)利用被動空間覺知、基於信標之被動叢集化之態樣及高效泛流(例如,零附加項高效泛流(ZOEF)或EFPC)以將至少一些(例如,一些或全部)經編譯空間覺知資訊分佈至MANET之複數個節點4102之每一所連接節點4102。In some embodiments, a MANET (e.g., 4100) utilizes passive spatial awareness, aspects of beacon-based passive clustering, and efficient flooding (e.g., zero-additional efficient flooding (ZOEF) or EFPC) to combine at least Some (eg, some or all) of the compiled space-aware information is distributed to each connected node 4102 of the plurality of nodes 4102 of the MANET.

如圖14中例示性地展示,網路4100具有70個節點4102及具有用於通信叢集化之16個叢集頭4102-4之16個通信叢集4110以及具有三個BB-CH節點4102-1之三個基於信標之被動叢集4112。藉由使用MHSA,與將需要16個泛流之EICD及將需要170個泛流之PLI相比,網路4100中之全部70個節點4102之完全空間覺知可使用三個泛流來完成。例如,即使在一幾乎不連接之網路中,MHSA之頻寬節省仍顯而易見,如展示,與習知PLI網路之38個泛流(各節點4102一個)相比,MHSA將存在3個高效泛流。隨著網路4100之大小及密度之增加,節省變得更大。由於MHSA之此極其高效PLI學習,PLI更新可更頻繁,且可處置更大網路。As exemplarily shown in FIG. 14, a network 4100 has 70 nodes 4102 and 16 communication clusters 4110 with 16 cluster heads 4102-4 for communication clustering and a network with three BB-CH nodes 4102-1. Three beacon-based passive clusters 4112. By using MHSA, full spatial awareness of all 70 nodes 4102 in network 4100 can be accomplished using three floods compared to EICD which would require 16 floods and PLI which would require 170 floods. For example, even in a network with few connections, the bandwidth savings of MHSA is still evident, as shown, there will be 3 efficient flooding. As the size and density of the network 4100 increases, the savings become even greater. Due to the extremely efficient PLI learning of MHSA, PLI updates can be more frequent and larger networks can be handled.

圖15繪示根據本發明之一或多項實施例之經組態用於MHSA之一例示性多節點通信網路4100 (例如,一MANET)。如圖15中展示,網路4100可經組態以使用基於信標之被動叢集化(BBPC)。網路4100之節點4102可被組織為節點4102之BBPC叢集4112,各BBPC叢集4112包含一BB-CH節點4102-1及BB-CH節點4102-1之成員(例如,普通節點4102-2、閘道節點4102-3及/或用於通信叢集化之CH節點4102-4)。節點4102之各者可經組態以發射通信資料封包且發射信標;在一些實施例中,各信標之一範圍大於各通信資料封包之一範圍。信標可為可由比通信資料封包更遠之節點偵測到之一低可觀測信標。例如,如展示,信標範圍可為一通信資料封包之兩倍遠,但可使用任何適合發射範圍。Figure 15 illustrates an exemplary multi-node communication network 4100 (eg, a MANET) configured for MHSA in accordance with one or more embodiments of the present invention. As shown in FIG. 15, network 4100 may be configured to use beacon-based passive clustering (BBPC). Nodes 4102 of network 4100 may be organized into BBPC clusters 4112 of nodes 4102, each BBPC cluster 4112 comprising a BB-CH node 4102-1 and members of BB-CH node 4102-1 (e.g., normal node 4102-2, gate channel node 4102-3 and/or CH node 4102-4 for communication clustering). Each of the nodes 4102 can be configured to transmit communication data packets and transmit beacons; in some embodiments, a range of each beacon is greater than a range of each communication data packet. A beacon may be a low-observable beacon that can be detected by nodes further away than a communication data packet. For example, as shown, the beacon range may be twice as far as a communication data packet, but any suitable transmission range may be used.

圖16A及圖16B繪示根據本發明之一或多項實施例之經組態用於MHSA之一例示性多節點通信網路4100 (例如,一MANET)。類似於如圖15中展示,在圖16A及圖16B中,網路4100可經組態以使用BBPC。各BB-CH節點4102-1可編譯空間覺知(SA)訊息(例如,作為信標發射),包含其4102-1成員(例如,BB-CH節點之4102-1信標範圍內之全部節點4102)之必要資訊。PLI係可經由被動空間覺知(PSA)收穫之資訊之一實例。經編譯空間覺知資訊可包含BB-CH節點4102-1之一識別符(ID)及位置(例如,由一全球定位系統(GPS)等量測)、成員之一數目、成員ID之一清單及成員之PLI以及額外資訊。在此實例中,僅3個SA訊息泛流便足以學習網路4100之整個PLI。每一節點4102可在其信標範圍內具有空間覺知,而無需任何資料封包通信。16A and 16B illustrate an exemplary multi-node communication network 4100 (eg, a MANET) configured for MHSA in accordance with one or more embodiments of the invention. Similar to that shown in Figure 15, in Figures 16A and 16B, network 4100 can be configured to use BBPC. Each BB-CH node 4102-1 may compile a spatially aware (SA) message (e.g., transmitted as a beacon) including all nodes within range of its 4102-1 members (e.g., a BB-CH node's 4102-1 beacon 4102) necessary information. PLI is one example of information that can be harvested through passive spatial awareness (PSA). The compiled spatial awareness information may include an identifier (ID) and location (e.g., as measured by a Global Positioning System (GPS) etc.) of the BB-CH node 4102-1, a number of members, a list of member IDs and member's PLI and additional information. In this example, only 3 SA message floods are sufficient to learn the entire PLI of the network 4100. Each node 4102 can be spatially aware within range of its beacon without any data packet communication.

如圖16B中展示,BB-CH節點4102-1可經由高效泛流來散佈一些或全部經編譯空間覺知資訊作為一經編譯SA訊息。例如,高效泛流可為ZOEF或EFPC以將經編譯SA訊息遞送至每一所連接節點4102,其可遞送BB-CH節點4102-1及其成員之PLI。基於信標之被動叢集化可保證所連接網路4100中之每一節點4102係一BB-CH節點4102-1或一或多個BB-CH節點4102-1之一成員(例如,4102-2、4102-3及/或4102-4),此係來自BB-CH節點4102-1之經編譯SA泛流將足以學習整個PLI之原因。As shown in Figure 16B, BB-CH node 4102-1 may disseminate some or all of the compiled spatially aware information as a compiled SA message via efficient flooding. For example, efficient flooding may be ZOEF or EFPC to deliver compiled SA messages to each connected node 4102, which may deliver the PLI of BB-CH node 4102-1 and its members. Beacon-based passive clustering can ensure that each node 4102 in the connected network 4100 is a BB-CH node 4102-1 or a member of one or more BB-CH nodes 4102-1 (e.g., 4102-2 , 4102-3 and/or 4102-4), which is why the compiled SA flood from BB-CH node 4102-1 will be sufficient to learn the entire PLI.

圖17繪示根據本發明之一或多項實施例之經組態用於MHSA之一例示性多節點通信網路4100 (例如,一MANET)。類似於如圖15至圖16B中展示,網路4100可經組態以使用BBPC。在此實例中,可使用ZOEF或EFPC。如例示性地展示,每一節點4102可為BB-CH節點4102-1、一閘道節點4102-3或用於通信叢集化之一CH節點4102-4之至少一者。SA泛流可利用相同叢集化結構或建構一新叢集化結構。如例示性地展示,出於闡釋性目的,普通節點4102-2未在圖17中展示,但網路4100亦可包含任何適合數目個普通節點4102-2。Figure 17 illustrates an exemplary multi-node communication network 4100 (eg, a MANET) configured for MHSA in accordance with one or more embodiments of the present invention. Similar to that shown in Figures 15-16B, network 4100 may be configured to use BBPC. In this example, ZOEF or EFPC can be used. As exemplarily shown, each node 4102 may be at least one of a BB-CH node 4102-1, a gateway node 4102-3, or a CH node 4102-4 for communication clustering. SA flooding can utilize the same clustering structure or construct a new clustering structure. As exemplarily shown, normal node 4102-2 is not shown in FIG. 17 for illustrative purposes, but network 4100 may also include any suitable number of normal nodes 4102-2.

圖18繪示根據本發明之一或多項實施例之經組態用於MHSA之一例示性多節點通信網路4100 (例如,一MANET)。類似於如圖15至圖17中展示,網路4100可經組態以使用BBPC叢集4112及通信叢集化叢集4112。即使在一幾乎未連接網路中,使用MHSA優於PLI泛流之優點亦係明顯的,其中與用於PLI泛流之38個泛流相比,MHSA使用3個泛流。隨著網路變得愈來愈大且愈來愈緻密,增益愈來愈大。由於此極其高效PLI學習,PLI更新可更頻繁,且可處理更大網路。Figure 18 illustrates an exemplary multi-node communication network 4100 (eg, a MANET) configured for MHSA in accordance with one or more embodiments of the present invention. Similar to that shown in FIGS. 15-17 , the network 4100 can be configured to use a BBPC cluster 4112 and a communication clustering cluster 4112 . Even in a barely connected network, the advantage of using MHSA over PLI flooding is significant, where MHSA uses 3 floods compared to 38 floods for PLI flooding. As the network gets bigger and denser, the gain gets bigger and bigger. Due to this extremely efficient PLI learning, PLI updates can be more frequent and larger networks can be handled.

現參考圖19,根據本文中揭示之發明概念之一方法1900之一例示性實施例可包含以下步驟之一或多者。另外,例如,一些實施例可包含反覆、同時及/或循序執行方法1900之一或多個例項。另外,例如,方法1900之至少一些步驟可並行及/或同時執行。另外,在一些實施例中,方法1900之至少一些步驟可非循序執行。Referring now to FIG. 19 , an exemplary embodiment of a method 1900 according to the inventive concepts disclosed herein may include one or more of the following steps. Additionally, for example, some embodiments may include iterative, simultaneous, and/or sequential execution of one or more instances of method 1900 . Additionally, for example, at least some steps of method 1900 may be performed in parallel and/or simultaneously. Additionally, in some embodiments, at least some steps of method 1900 may be performed out of sequence.

一步驟1902可包含提供包含複數個節點之一行動特用網路(MANET),其中複數個節點之各者包括一通信介面及一控制器,其中複數個節點包括基於信標之叢集頭(BB-CH)節點及成員,其中複數個節點之各者係一BB-CH節點或至少一個BB-CH節點之一成員之一者,其中複數個節點之各者經組態以發射通信資料封包且發射信標,其中各信標之一範圍大於各通信資料封包之一範圍,其中複數個節點之各者具有被動空間覺知。A step 1902 may include providing a mobile ad hoc network (MANET) comprising a plurality of nodes, wherein each of the plurality of nodes comprises a communication interface and a controller, wherein the plurality of nodes comprises a beacon-based cluster header (BB -CH) nodes and members, wherein each of the plurality of nodes is a BB-CH node or one of at least one member of a BB-CH node, wherein each of the plurality of nodes is configured to transmit communication data packets and Transmitting beacons, wherein a range of each beacon is greater than a range of each communication data packet, wherein each of the plurality of nodes has passive spatial awareness.

步驟1904可包含對於具有成員之BB-CH節點之各者,藉由一BB-CH節點至少基於來自BB-CH節點之成員之各成員之一信標經由被動空間覺知(PSA)來編譯空間覺知資訊,其中來自成員之一給定成員之空間覺知資訊包含給定成員之一成員識別符及給定成員之位置之資訊,其中經編譯空間覺知資訊包含BB-CH節點之一BB-CH節點識別符、BB-CH節點之定位資訊(PLI)、BB-CH節點之成員之一數量及包含成員之成員識別符及各成員之PLI之一成員清單。Step 1904 may include, for each of the BB-CH nodes that have members, compiling the space via Passive Space Awareness (PSA) by a BB-CH node based at least on a beacon from each of the members of the BB-CH nodes Awareness information, wherein the spatial awareness information from a given member of a member comprises a member identifier of a given member and information of a location of a given member, wherein the compiled spatial awareness information comprises a BB of a BB-CH node - CH node identifier, location information (PLI) of the BB-CH node, a number of members of the BB-CH node and a member list including the member identifier of the members and the PLI of each member.

步驟1906可包含對於BB-CH節點之各者,藉由BB-CH節點經由高效泛流將經編譯空間覺知資訊之至少一些廣播至數個節點之每一所連接節點。Step 1906 may include, for each of the BB-CH nodes, broadcasting, by the BB-CH node, at least some of the compiled spatially aware information to each connected node of the number of nodes via efficient flooding.

此外,方法1900可包含貫穿全文揭示之任何操作。Additionally, method 1900 may include any of the operations disclosed throughout.

大體上參考圖20至圖23,一些實施例可包含經組態用於一輕型版本之MHSA (輕型MHSA)之一多節點通信網路4100。圖20至圖23之多節點通信網路4100可包含類似於圖13至圖19之多節點通信網路4100之組件且具有類似於圖13至圖19之多節點通信網路4100之功能性,至少惟對於輕型MHSA,經編譯空間覺知資訊之成員清單可不包含各成員節點(例如,4102-2、4102-3及/或4102-4)之PLI除外。另外,對於MHSA或輕型MHSA,多節點通信網路4100可利用空間覺知網路路由(SaNR)。Referring generally to FIGS. 20-23 , some embodiments may include a multi-node communication network 4100 configured for a lightweight version of MHSA (MHSA Lightweight). The multi-node communication network 4100 of FIGS. 20-23 may include components similar to the multi-node communication network 4100 of FIGS. 13-19 and have functionality similar to the multi-node communication network 4100 of FIGS. 13-19 , At least for lightweight MHSA, the member list of compiled spatially aware information may not include the PLI of each member node (eg, 4102-2, 4102-3, and/or 4102-4). Additionally, for MHSA or lightweight MHSA, the multi-node communication network 4100 may utilize space-aware network routing (SaNR).

行動特用網路(MANET)之路由附加項係不可忽略的,且隨著網路大小之增長而呈指數級增加。拓撲學習需要用於鄰近發現及鏈路狀態及/或距離向量通告之大量附加項。The routing additional items of mobile special-purpose network (MANET) cannot be ignored, and increase exponentially with the growth of network size. Topology learning requires substantial additions for proximity discovery and link state and/or distance vector advertisement.

輕型MHSA可利用MHSA之態樣,如關於圖13至圖19論述。例如,每一節點4102可在一信標範圍內具有被動空間覺知(PSA)。例如,可利用MHSA之態樣收穫一整個網路拓撲。憑藉多跳空間覺知(MHSA),複數個節點之各者具有全部所連接節點之PLI,而無需傳統PLI分佈系統。習知PLI分佈系統使用過多空中附加項,此可不適合於路由構造。另一方面,MHSA利用最少數目個資料泛流,其可以顯著少於傳統PLI分佈系統之控制附加項在一短週期時間內建構網路拓撲。一些實施例可包含經由MHSA利用所建構拓撲資訊之一路由協定。A lightweight MHSA can utilize aspects of the MHSA, as discussed with respect to FIGS. 13-19 . For example, each node 4102 may have passive spatial awareness (PSA) within range of a beacon. For example, an entire network topology can be harvested using aspects of the MHSA. With Multi-Hop Spatial Awareness (MHSA), each of the plurality of nodes has the PLI of all connected nodes without the traditional PLI distribution system. Conventional PLI distribution systems use too many overhead additions, which may not be suitable for routing construction. On the other hand, MHSA utilizes a minimum number of data floods, which can construct network topology in a short cycle time with significantly less control additions than conventional PLI distribution systems. Some embodiments may include a routing protocol utilizing constructed topology information via the MHSA.

與MHSA相比,輕型MHSA可具有網路附加項節省。例如,輕型MHSA可利用具有擁有成員ID但缺少成員(例如,4102-2、4102-3及/或4102-4)之PLI之成員清單之SA訊息。另外,在一些實施例中,代替具有成員之PLI之資訊,輕型MHSA SA訊息可包含成員之額外資訊,諸如鏈路容量及/或來自一BB-CH節點(4102-1)之一跳躍計數。網路4100之每一節點4102可具有全部目的地節點4102之ID、與此等目的地節點4102之各者相關聯之一(若干)對應BB-CH節點4102-1及BB-CH節點4102-1之當前PLI。A lightweight MHSA may have network add-on savings compared to an MHSA. For example, a lightweight MHSA may utilize an SA message with a member list for a PLI that has a member ID but lacks members (eg, 4102-2, 4102-3, and/or 4102-4). Also, in some embodiments, instead of having information about the member's PLI, the lightweight MHSA SA message may contain additional information about the member, such as link capacity and/or hop count from a BB-CH node (4102-1). Each node 4102 of the network 4100 may have the IDs of all destination nodes 4102, associated with each of these destination nodes 4102 one (s) of corresponding BB-CH node 4102-1 and BB-CH node 4102- 1 of the current PLI.

在一些實施例中,由於空間覺知(SA)訊息可缺少非BB-CH節點(例如,4102-2、4102-3及/或4102-4)之PLI,輕型MHSA可導致SA訊息之大小之顯著減小(與MHSA相比)。In some embodiments, since spatially aware (SA) messages may lack the PLI of non-BB-CH nodes (e.g., 4102-2, 4102-3, and/or 4102-4), lightweight MHSA may result in a size difference of SA messages. Significantly less (compared to MHSA).

在一些實施例中,與MHSA相比,SaNR可不具有額外線路附加項。可使用由MHSA及/或輕型MHSA訊息傳遞分佈之資訊來計算路由。例如,若節點4102將一訊息路由至與節點4102相關聯之一基於信標之叢集4112內之一目的地節點4102,則節點4102可利用叢集內路由。例如,若節點4102將一訊息路由至與節點4102相關聯之一基於信標之叢集4112外之一目的地節點4102,則節點4102可利用叢集間路由。叢集間路由可包含超出節點4102之一信標範圍之資料封包之定向轉發。例如,叢集間路由可包含通常朝向一目的地之航路點之資料封包之轉發。隨著資料轉發愈來愈接近目的地節點4102,叢集間路由可導致更佳路由決策,且叢集間路由無需透過路由中之BB-CH節點4102-1之不必要繞道。In some embodiments, SaNR may not have extra line additions compared to MHSA. Routes may be calculated using information distributed by MHSA and/or lightweight MHSA messaging. For example, if node 4102 routes a message to a destination node 4102 within a beacon-based cluster 4112 associated with node 4102, node 4102 may utilize intra-cluster routing. For example, node 4102 may utilize inter-cluster routing if node 4102 routes a message to a destination node 4102 outside of a beacon-based cluster 4112 associated with node 4102. Inter-cluster routing may include directed forwarding of data packets beyond the range of a beacon of node 4102. For example, inter-cluster routing may involve the forwarding of data packets generally towards a waypoint of a destination. Inter-cluster routing can lead to better routing decisions as data is forwarded closer and closer to the destination node 4102, and inter-cluster routing does not require unnecessary detours through the BB-CH node 4102-1 in the route.

在一些實施例中,關於叢集內路由,可使用被動空間覺知(PSA)來學習信標範圍內之全部節點之位置資訊。可經由基於節點之間之距離之一傳播模型來估計節點之間之鏈路。一些實施例可使用一(若干)最短路徑演算法(例如,貝爾曼-福特(Bellman-Ford))來建構具有權重之最短路徑路由(例如,基於操作概念(CONOP)要求,鏈路上之權重可經修改以建構信標範圍內之一最佳路由)。最短路徑路由可提供待在中繼節點4102處做出之一更佳路由決策。對於叢集內路由,每一節點4102參與者可參與以下:PSA、MHSA、ZOEF及BBPC,其等全部在上文描述。In some embodiments, with respect to intra-cluster routing, passive spatial awareness (PSA) may be used to learn location information for all nodes within beacon range. Links between nodes can be estimated via a propagation model based on the distance between nodes. Some embodiments may use a shortest path algorithm(s) (e.g., Bellman-Ford) to construct shortest path routes with weights (e.g., based on concept of operations (CONOP) requirements, weights on links may modified to construct one of the best routes within range of the beacon). Shortest path routing may provide one of the better routing decisions to be made at the relay node 4102. For intra-cluster routing, each node 4102 participant may participate in the following: PSA, MHSA, ZOEF, and BBPC, all of which are described above.

在一些實施例中,叢集間路由可為定向封包轉發之一方法。叢集間路由可包含計算一航路點。計算航路點可包含:識別其成員清單含有目的地節點4102之全部BB-CH節點4102-1。若存在多於一個BB-CH節點4102,則航路點可被運算為BB-CH節點4102-1之位置之中點(例如,BB-CH節點4102-1之位置之一平均值)。若僅存在目的地節點4102係其之一成員之一個BB-CH節點4102-1,則航路點可為BB-CH節點4102-1之位置。叢集間路由可進一步包含當目的地節點4102在信標範圍之外時,選擇朝向目的地節點4102之航路點之下一跳躍。選擇下一跳躍可包含:檢查BB-CH節點4102-1沿著路由之一連接能力;及將封包轉發朝向一所連接附近BB-CH節點4102-1。各中繼節點4102可以一類似方式將封包轉發至目的地節點4102之一最佳下一跳躍。一旦目的地節點4102在一信標範圍內,便可經由叢集內路由找到一最佳路由,如本文中揭示。In some embodiments, inter-cluster routing may be one method of directed packet forwarding. Inter-cluster routing may include computing a waypoint. Computing waypoints may include identifying all BB-CH nodes 4102-1 whose member list contains destination node 4102. If there is more than one BB-CH node 4102, the waypoint may be calculated as the midpoint of the positions of the BB-CH nodes 4102-1 (eg, an average of the positions of the BB-CH nodes 4102-1). If there is only one BB-CH node 4102-1 of which the destination node 4102 is a member, the waypoint may be the location of the BB-CH node 4102-1. Inter-cluster routing may further include selecting a next hop towards the waypoint of the destination node 4102 when the destination node 4102 is out of beacon range. Selecting the next hop may include: checking the connectivity capabilities of the BB-CH node 4102-1 along a route; and forwarding the packet towards a connected nearby BB-CH node 4102-1. Each relay node 4102 may forward the packet to a best next hop of the destination node 4102 in a similar manner. Once the destination node 4102 is within range of a beacon, an optimal route can be found via intra-cluster routing, as disclosed herein.

關於檢查BB-CH節點4102-1沿著至目的地節點4102之路由之一連接能力,在且僅在BB-CH節點4102-1具有共同成員之情況下,BB-CH節點4102-1經連接。一些實施例可包含選擇朝向目的地節點4102之下一BB-CH節點4102-1,其具有以最小數目個BB-CH 4102-1跳躍到達目的地BB-CH 4102-1之一路徑。此選擇可藉由以下方式執行:檢查與一目的地BB-CH節點4102-1連接之BB-CH節點4102-1,且識別一1-BB-CH跳開群組;將一所連接BB-CH節點4102-1識別為1-BB-CH跳離群組之任一者,且判定一2-BB-CH跳離群組;及/或重複先前步驟,直至當前BB-CH節點4102-1連接至n-BB-CH跳離群組,且判定沿著至所連接n-BB-CH跳離群組之一最短路徑至目的地節點4102之下一跳躍。With regard to checking the connectivity capabilities of BB-CH node 4102-1 along the route to destination node 4102, BB-CH node 4102-1 is connected via . Some embodiments may include selecting the next BB-CH node 4102-1 towards the destination node 4102 that has a path to reach the destination BB-CH 4102-1 with a minimum number of BB-CH 4102-1 hops. This selection can be performed by: examining the BB-CH node 4102-1 connected to a destination BB-CH node 4102-1, and identifying a 1-BB-CH skip group; linking a connected BB-CH node 4102-1 The CH node 4102-1 identifies as any one of the 1-BB-CH hopping group, and determines a 2-BB-CH hopping group; and/or repeats the previous steps until the current BB-CH node 4102-1 Connect to the n-BB-CH hop group, and determine the next hop to the destination node 4102 along one of the shortest paths to the connected n-BB-CH hop group.

在一些實施例中,如上文論述,SaNR可利用泛流路由(F2R)以在存在不穩定及/或不完整MHSA資訊時將一通信資料封包遞送至一目的地節點4102。F2R可不容許歸因於一路由錯誤或路由恢復之網路停機時間。另外,在一些實施例中,F2R可僅用於高優先級訊務(例如,具有高於正常訊務之一優先級位準之一預定優先級位準)以避免廣播風暴。In some embodiments, as discussed above, SaNR may utilize flood routing (F2R) to deliver a communication data packet to a destination node 4102 in the presence of unstable and/or incomplete MHSA information. F2R may not tolerate network downtime due to a routing error or routing restoration. Additionally, in some embodiments, F2R may only be used for high priority traffic (eg, having a predetermined priority level higher than that of normal traffic) to avoid broadcast storms.

下文係比較PLI、具有EICD之PLI、MHSA及輕型MHSA之特徵之一表: PLI 具有EICD之PLI MHSA 輕型MHSA PLI之準確性 經量測 經量測 經估計 參考 通信附加項 非常高 中等 非常低 無線電佔用面積 非常高 中等 非常低 新鮮度 陳舊 中等 新鮮 非常新鮮 可擴展性 中等 非常高 Below is a table comparing the characteristics of PLI, PLI with EICD, MHSA, and mild MHSA: PLI PLI with EICD MHSA light MHSA Accuracy of PLI Measured Measured Estimated refer to communication add-on very high medium Low very low radio footprint very high medium Low very low Freshness obsolete medium Fresh very fresh scalability Low medium high very high

在一些實施例中,SaNR可包含極輕及主動路由,同時具有用於隨選F2R之一明確定義之高效泛流結構。SaNR附加項可極其低。例如,SaNR之線路附加項可不多於MHSA。輕型MHSA可減少更多附加項。出於路由目的,例如,當每成員使用1位元組之附加項而非14+位元組之附加項時,輕型MHSA可為足夠的。SaNR容許更頻繁路由更新。另外,補充F2R可消除網路停機時間。憑藉輕型MHSA及SaNR,一大規模MANET可使用一主動式範例,且SaNR可提供比任何已知MANET路由方法更主動高效之路由。In some embodiments, SaNR may include very light and active routing, while having a well-defined efficient flooding structure for on-demand F2R. The SaNR add-on can be extremely low. For example, SaNR may have no more line additions than MHSA. Lightweight MHSA reduces even more add-ons. For routing purposes, for example, a lightweight MHSA may be sufficient when using 1-byte extras per member instead of 14+ bytes extras. SaNR allows for more frequent routing updates. Plus, supplementing F2R eliminates network downtime. With lightweight MHSA and SaNR, a large-scale MANET can use a proactive paradigm, and SaNR can provide more proactive and efficient routing than any known MANET routing method.

在一些實施例中,可使用經編譯空間覺知資訊建構一完整網路拓撲,且可計算至全部所連接節點之路由。泛流路由(F2R)係空間覺知網路路由(SaNR)之一隨選組件,其可在空間覺知資訊不完整或不穩定時將時間關鍵資料遞送至目的地。In some embodiments, a complete network topology can be constructed using the compiled space-aware information, and routes to all connected nodes can be calculated. Flood Routing (F2R) is an on-demand component of Space-Aware Network Routing (SaNR) that delivers time-critical data to destinations when space-aware information is incomplete or unstable.

一些實施例可包含含有一多節點通信網路4100 (例如,一MANET)之一系統。MANET可包含複數個節點4102。複數個節點4102之各者可包含一通信介面(例如,4108a、4108b或4108c)及一控制器(例如,4104a、4104b或4104c)。複數個節點4102可包含基於信標之叢集頭(BB-CH)節點4102-1及成員(例如,4102-2、4102-3及/或4102-4)。複數個節點4102之各者可為BB-CH節點4102-1或至少一個BB-CH節點4102-1之一成員(例如,4102-2、4102-3及/或4102-4)之一者。複數個節點4102之各者可經組態以發射通信資料封包且發射信標,其中各信標之一範圍大於各通信資料封包之一範圍。複數個節點4102之各者可具有被動空間覺知(PSA)。Some embodiments may include a system including a multi-node communication network 4100 (eg, a MANET). A MANET may contain a plurality of nodes 4102. Each of the plurality of nodes 4102 may include a communication interface (eg, 4108a, 4108b, or 4108c) and a controller (eg, 4104a, 4104b, or 4104c). Plurality of nodes 4102 may include beacon-based cluster head (BB-CH) node 4102-1 and members (eg, 4102-2, 4102-3, and/or 4102-4). Each of the plurality of nodes 4102 may be one of BB-CH node 4102-1 or at least one member of BB-CH node 4102-1 (eg, 4102-2, 4102-3, and/or 4102-4). Each of the plurality of nodes 4102 can be configured to transmit communication data packets and transmit beacons, wherein a range of each beacon is larger than a range of each communication data packet. Each of plurality of nodes 4102 may have passive spatial awareness (PSA).

在一些實施例中,對於具有成員(例如,4102-2、4102-3及/或4102-4)之BB-CH節點4102-1之各者,一BB-CH節點4102-1可經組態以至少基於來自BB-CH節點4102-1之各成員(例如,4102-2、4102-3或4102-4)之一信標經由被動空間覺知(PSA)來編譯空間覺知資訊。來自一給定成員(例如,4102-2、4102-3或4102-4)之空間覺知資訊可包含給定成員(例如,4102-2、4102-3或4102-4)之一成員識別符之資訊。經編譯空間覺知資訊可包含BB-CH節點4102-1之一BB-CH節點識別符、BB-CH節點4102-1之定位資訊(PLI)、BB-CH節點4102-1之成員(例如,4102-2、4102-3及/或4102-4)之一數量及包含成員(例如,4102-2、4102-3及/或4102-4)之成員識別符之一成員清單。對於BB-CH節點4102-1之各者,BB-CH節點4102-1可經組態以經由高效泛流將至少一些經編譯空間覺知資訊廣播至複數個節點4102之每一所連接節點4102。In some embodiments, for each of the BB-CH nodes 4102-1 that have members (e.g., 4102-2, 4102-3, and/or 4102-4), a BB-CH node 4102-1 may be configured Spatial awareness information is compiled via Passive Spatial Awareness (PSA) based at least on one beacon from each member of BB-CH node 4102-1 (eg, 4102-2, 4102-3 or 4102-4). Spatial awareness information from a given member (e.g., 4102-2, 4102-3, or 4102-4) may include a member identifier for the given member (e.g., 4102-2, 4102-3, or 4102-4) information. The compiled spatially aware information may include a BB-CH node identifier of the BB-CH node 4102-1, positioning information (PLI) of the BB-CH node 4102-1, members of the BB-CH node 4102-1 (e.g., 4102-2, 4102-3, and/or 4102-4) and a member list including member identifiers of the members (eg, 4102-2, 4102-3, and/or 4102-4). For each of the BB-CH nodes 4102-1, the BB-CH node 4102-1 may be configured to broadcast at least some encoded spatially aware information to each connected node 4102 of the plurality of nodes 4102 via efficient flooding .

在一些實施例中,經編譯空間覺知資訊進一步包含以下之至少一者之資訊:BB-CH節點4102-1之各成員(例如,4102-2、4102-3及/或4102-4)之鏈路容量、從BB-CH節點4102-1至BB-CH節點4102-1之各成員(例如,4102-2、4102-3及/或4102-4)之一跳躍計數、一時間戳記及/或指示將為各成員(例如,4102-2、4102-3及/或4102-4)轉發經編譯空間覺知資訊之一跳躍計數之一生存時間。In some embodiments, the compiled spatially aware information further comprises information of at least one of: information of each member (e.g., 4102-2, 4102-3, and/or 4102-4) of the BB-CH node 4102-1 link capacity, a hop count from BB-CH node 4102-1 to each member of BB-CH node 4102-1 (e.g., 4102-2, 4102-3, and/or 4102-4), a timestamp, and/or Or indicates a time-to-live of a hop count to forward compiled spatial awareness information for each member (eg, 4102-2, 4102-3, and/or 4102-4).

在一些實施例中,複數個節點4102之一節點4102可經組態以(例如,經由通信介面(例如,4108a、4108b或4108c)及/或控制器(例如,4104a、4104b或4104c)):將一通信資料封包路由朝向複數個節點4102之一目的地節點4102;判定目的地節點4102是否在節點4102之一信標範圍內;及/或以下之一者:(a)在判定目的地節點4102在節點4102之信標範圍內之後,利用叢集內路由將通信資料封包路由朝向目的地節點4102,其中叢集內路由係一基於信標之叢集4112內之路由;或(b)在判定目的地節點4102不在節點4102之信標範圍內之後,利用叢集間路由將通信資料封包路由朝向目的地節點4102,其中叢集間路由係基於信標之叢集4112之間之路由。In some embodiments, a node 4102 of the plurality of nodes 4102 may be configured (e.g., via a communication interface (e.g., 4108a, 4108b, or 4108c) and/or a controller (e.g., 4104a, 4104b, or 4104c)): routing a communication data packet towards a destination node 4102 of a plurality of nodes 4102; determining whether the destination node 4102 is within a beacon range of a node 4102; and/or one of the following: (a) upon determining the destination node 4102 after being within beacon range of node 4102, route the communication data packet towards destination node 4102 using intra-cluster routing, wherein intra-cluster routing is a routing within a beacon-based cluster 4112; or (b) upon determining the destination After the node 4102 is out of range of the node's 4102 beacon, the communication data packet is routed towards the destination node 4102 using inter-cluster routing, wherein the inter-cluster routing is based on routing between clusters 4112 of the beacon.

在一些實施例中,複數個節點4102之節點4102經組態以利用叢集內路由將通信資料封包路由朝向目的地節點4102可進一步包括節點4102經組態以:經由PSA基於節點4102之信標鄰近者4102之位置來計算一區域網路拓撲;經由鏈路調適來估計至節點4102與目的地節點4102之間之至少一個中繼節點4102之鏈路;及/或至少基於所估計鏈路,利用一最短路徑演算法建構通信資料封包朝向目的地節點4102之一路由。In some embodiments, the node 4102 of the plurality of nodes 4102 configured to utilize intra-cluster routing to route communication data packets towards the destination node 4102 may further include the node 4102 being configured to: via PSA based on beacon proximity of the node 4102 4102 to calculate an area network topology; estimate a link to at least one relay node 4102 between node 4102 and destination node 4102 via link adaptation; and/or based at least on the estimated link, using A shortest path algorithm constructs a route for the communication data packet towards one of the destination nodes 4102 .

在一些實施例中,複數個節點4102之節點4102經組態以利用叢集間路由將通信資料封包路由朝向目的地節點可進一步包括節點4102經組態以:計算具有與具有目的地節點4102作為一成員(例如,4102-2、4102-3或4102-4)之一或多個BB-CH節點4102-1之至少一個位置相關聯之一位置之一航路點,其中若一或多個BB-CH節點4102-1係一單一BB-CH節點4102-1,則航路點之一位置係一或多個BB-CH節點4102-1之一位置,其中若一或多個BB-CH節點4102-1係至少兩個BB-CH節點4102-1,則航路點之位置係一或多個BB-CH節點4102-1之一平均位置;及/或選擇朝向航路點之下一跳躍。在一些實施例中,複數個節點4102之節點4102經組態以選擇朝向航路點之下一跳躍可進一步包括節點4102經組態以:檢查BB-CH節點4102-1沿著朝向航路點之一路由之連接能力;及/或沿著路由將通信資料封包轉發朝向定位於一所連接BB-CH節點4102-1附近之至少一個中繼節點4102之一第一中繼節點4102,其中至少一個中繼節點4102之各者經組態以將通信資料封包轉發朝向朝向目的地節點4102之一最佳跳躍,其中在目的地節點4102之一信標範圍內之一個中繼節點4102經組態以經由叢集內路由將通信資料封包路由朝向目的地節點4102。In some embodiments, the node 4102 of the plurality of nodes 4102 configured to utilize inter-cluster routing to route communication data packets towards the destination node may further include the node 4102 being configured to: A waypoint of a location associated with at least one location of one or more BB-CH nodes 4102-1 of members (e.g., 4102-2, 4102-3, or 4102-4), wherein if one or more BB-CH nodes 4102-1 A CH node 4102-1 is a single BB-CH node 4102-1, and a position of a waypoint is a position of one or more BB-CH nodes 4102-1, wherein if one or more BB-CH nodes 4102- 1 is at least two BB-CH nodes 4102-1, then the position of the waypoint is the average position of one or more BB-CH nodes 4102-1; and/or select the next hop towards the waypoint. In some embodiments, node 4102 of plurality of nodes 4102 configured to select the next hop towards the waypoint may further comprise node 4102 configured to: check that BB-CH node 4102-1 is connectivity capabilities for routing; and/or forwarding communication data packets along the route towards a first relay node 4102 of at least one relay node 4102 located near a connected BB-CH node 4102-1, at least one of which Each of the relay nodes 4102 is configured to forward the communication data packet towards the best hop towards the destination node 4102, wherein a relay node 4102 within a beacon range of the destination node 4102 is configured to forward the communication data packet via Intra-cluster routing routes the communication data packet towards the destination node 4102 .

在一些實施例中,在判定目的地節點4102在節點4102之信標範圍內之後,或在判定目的地節點4102不在節點4102之信標範圍內之後,節點4102經進一步組態以:判定叢集間路由及叢集內路由不可用於將通信資料封包路由朝向目的地節點4102;在判定叢集內路由及叢集內路由不可用之後,判定通信資料封包係高優先級;及/或在判定通信資料封包係高優先級之後,利用泛流路由(F2R)將通信資料封包遞送至目的地節點4102。In some embodiments, after determining that the destination node 4102 is within the beacon range of the node 4102, or after determining that the destination node 4102 is not within the beacon range of the node 4102, the node 4102 is further configured to: determine an inter-cluster Routing and intra-cluster routing are unavailable to route the communication data packet towards the destination node 4102; after determining that intra-cluster routing and intra-cluster routing are unavailable, determining that the communication data packet is high priority; and/or after determining that the communication data packet is After high priority, the communication data packet is delivered to the destination node 4102 by flood routing (F2R).

在一些實施例中,僅容許BB-CH節點4102-1經由泛流起始經編譯空間覺知資訊之一廣播。在一些實施例中,對於具有成員(例如,4102-2、4102-3及/或4102-4)之至少一些BB-CH節點4102-1之各者,BB-CH節點4102可經進一步組態以經由來自BB-CH節點4102-1之成員(例如,4102-2、4102-3及/或4102-4)之各成員之空間覺知訊息被動地編譯空間覺知資訊。在一些實施例中,MANET利用被動空間覺知、基於信標之被動叢集化之態樣及零附加項高效泛流(ZOEF)以將至少一些經編譯空間覺知資訊分佈至MANET之複數個節點4102之每一所連接節點4102。在一些實施例中,高效泛流係零附加項高效泛流(ZOEF)或具有被動叢集化之高效泛流(EFPC)。In some embodiments, only the BB-CH node 4102-1 is allowed to initiate broadcasting of one of the encoded spatially aware information via flooding. In some embodiments, the BB-CH node 4102 may be further configured for each of at least some of the BB-CH nodes 4102-1 having members (e.g., 4102-2, 4102-3, and/or 4102-4) Spatial awareness information is passively compiled with spatial awareness information via each member from members of BB-CH node 4102-1 (eg, 4102-2, 4102-3, and/or 4102-4). In some embodiments, the MANET utilizes passive space awareness, aspects of beacon-based passive clustering, and zero-additional efficient flooding (ZOEF) to distribute at least some encoded space-aware information to multiple nodes of the MANET Each connected node 4102 of 4102. In some embodiments, the high-efficiency flooding is zero-additional high-efficiency flooding (ZOEF) or high-efficiency flooding with passive clustering (EFPC).

現參考圖20、圖21及圖22,根據本文中揭示之發明概念之一方法5000 (例如,一SaNR方法)之一例示性實施例可包含以下步驟之一或多者。另外,例如,一些實施例可包含反覆、同時及/或循序執行方法5000之一或多個例項。另外,例如,方法5000之至少一些步驟可並行及/或同時執行。另外,在一些實施例中,方法5000之至少一些步驟可非循序執行。Referring now to FIG. 20 , FIG. 21 and FIG. 22 , an exemplary embodiment of a method 5000 (eg, a SaNR method) according to the inventive concepts disclosed herein may include one or more of the following steps. Additionally, for example, some embodiments may include iterative, simultaneous, and/or sequential execution of one or more instances of method 5000 . Additionally, for example, at least some steps of method 5000 may be performed in parallel and/or simultaneously. Additionally, in some embodiments, at least some steps of method 5000 may be performed out of sequence.

步驟5002可包含在判定需要一路由之後,藉由利用PSA來判定一目的地節點是否在一信標範圍內。Step 5002 may include determining whether a destination node is within range of a beacon by utilizing the PSA after determining that a route is needed.

步驟5004可包含在判定目的地在一信標範圍內之後,經由叢集內路由進行路由。例如,如圖21中展示,步驟5004可進一步包含:基於信標鄰近者之位置計算一拓撲之一步驟5102;判定拓撲是否已改變之一步驟5104;及/或在判定拓撲已改變之後將路由表更新至信標範圍內之目的地及至目的地節點之下一跳躍之一步驟5106。Step 5004 may include routing via intra-cluster routing after determining that the destination is within range of a beacon. For example, as shown in FIG. 21, step 5004 may further include: a step 5102 of calculating a topology based on the positions of beacon neighbors; a step 5104 of determining whether the topology has changed; The table is updated to a destination within range of the beacon and to a step 5106 of the next hop to the destination node.

一步驟5006可包含在判定目的地不在一信標範圍內之後,經由叢集間路由進行路由。例如,如圖22中展示,步驟5006可進一步包含:基於目的地之位置計算路由之一步驟5202 (例如,若使用適應性空間覺知且目的地之PLI並非最新的,則使用目的地之近似位置且建構至全部已知目的地之路由);及/或使用經計算路由更新路由表之一步驟5204。A step 5006 may include routing via inter-cluster routing after determining that the destination is not within range of a beacon. For example, as shown in FIG. 22, step 5006 may further include a step 5202 of computing a route based on the location of the destination (e.g., using an approximation of the destination if adaptive spatial awareness is used and the destination's PLI is not up-to-date. location and construct routes to all known destinations); and/or a step 5204 of updating the routing table with the calculated route.

步驟5008可包含在步驟5004或5006完成之後,判定路由是否工作。若路由正在工作,則方法5000可完成。Step 5008 may include determining whether the routing works after step 5004 or 5006 is completed. If routing is working, Method 5000 can complete.

步驟5010可包含在判定路由未在工作之後,判定一通信資料封包是否係時間關鍵訊務。Step 5010 may include determining whether a communication data packet is time critical traffic after determining that the route is not working.

步驟5012可包含在判定通信資料封包係時間關鍵訊務之後,使用F2R來遞送通信資料封包。Step 5012 may include using F2R to deliver the communication data packet after determining that the communication data packet is time critical traffic.

步驟5014可包含在判定通信資料封包並非時間關鍵訊務之後,將目的地標記為不可到達。Step 5014 may include marking the destination as unreachable after determining that the communication data packet is not time critical traffic.

此外,方法5000可包含貫穿全文揭示之任何操作。Additionally, method 5000 may include any of the operations disclosed throughout.

現參考圖23,根據本文中揭示之發明概念之一方法5100之一例示性實施例可包含以下步驟之一或多者。另外,例如,一些實施例可包含反覆、同時及/或循序執行方法5100之一或多個例項。另外,例如,方法5100之至少一些步驟可並行及/或同時執行。另外,在一些實施例中,方法5100之至少一些步驟可非循序執行。Referring now to FIG. 23 , an exemplary embodiment of a method 5100 according to the inventive concepts disclosed herein may include one or more of the following steps. Additionally, for example, some embodiments may include iterative, simultaneous, and/or sequential execution of one or more instances of method 5100 . Additionally, for example, at least some steps of method 5100 may be performed in parallel and/or simultaneously. Additionally, in some embodiments, at least some steps of method 5100 may be performed out of sequence.

一步驟5102可包含提供包含複數個節點之一行動特用網路(MANET),其中複數個節點之各者包括一通信介面及一控制器,其中複數個節點包括基於信標之叢集頭(BB-CH)節點及成員,其中複數個節點之各者係一BB-CH節點或至少一個BB-CH節點之一成員之一者,其中複數個節點之各者經組態以發射通信資料封包且發射信標,其中各信標之一範圍大於各通信資料封包之一範圍,其中複數個節點之各者具有被動空間覺知。A step 5102 may include providing a mobile ad hoc network (MANET) comprising a plurality of nodes, wherein each of the plurality of nodes comprises a communication interface and a controller, wherein the plurality of nodes comprises a beacon-based cluster header (BB -CH) nodes and members, wherein each of the plurality of nodes is a BB-CH node or one of at least one member of a BB-CH node, wherein each of the plurality of nodes is configured to transmit communication data packets and Transmitting beacons, wherein a range of each beacon is greater than a range of each communication data packet, wherein each of the plurality of nodes has passive spatial awareness.

步驟5104可包含對於具有成員之BB-CH節點之各者,藉由一BB-CH節點至少基於來自BB-CH節點之成員之各成員之一信標經由被動空間覺知(PSA)來編譯空間覺知資訊,其中來自成員之一給定成員之空間覺知資訊包含給定成員之一成員識別符之資訊,其中經編譯空間覺知資訊包含BB-CH節點之一BB-CH節點識別、BB-CH節點之定位資訊(PLI)、BB-CH節點之成員之一數量及包含成員之成員識別符之一成員清單。Step 5104 may include, for each of the BB-CH nodes that have members, compiling the space via Passive Space Awareness (PSA) by a BB-CH node based on at least one beacon from each of the members of the BB-CH nodes awareness information, wherein the spatial awareness information from a given member of a member comprises information of a member identifier of a given member, wherein the compiled spatial awareness information comprises a BB-CH node identification of a BB-CH node, a BB - Location information (PLI) of the CH node, a number of members of the BB-CH node and a member list including member identifiers of the members.

步驟5106可包含對於BB-CH節點之各者,藉由BB-CH節點經由高效泛流將至少一些經編譯空間覺知資訊廣播至複數個節點之每一所連接節點。Step 5106 may include, for each of the BB-CH nodes, broadcasting, by the BB-CH node via efficient flooding, at least some of the encoded space-aware information to each connected node of the plurality of nodes.

此外,方法5100可包含貫穿全文揭示之任何操作。Additionally, method 5100 may include any of the operations disclosed throughout.

在一些實施例中,一固定接收器可藉由在兩個維度中使用一都卜勒零掃描方法來判定一合作發射器之方向及速度向量。該方法之一益處係無需交換顯式位置資訊之空間覺知。其他益處包含發現、同步及都卜勒校正,此等對通信係重要的。一些實施例可將經協調發射器頻移與發射器之運動引發都卜勒頻移組合以產生可使用一固定接收器解析之獨有淨頻移信號特性以達成空間覺知。此外,一些實施例可包含一三維(3D)方法,其中接收器及發射器處於運動中。In some embodiments, a fixed receiver can determine the direction and velocity vector of a cooperating transmitter by using a Doppler zero-scan method in two dimensions. One benefit of this approach is that spatial awareness does not require the exchange of explicit positional information. Other benefits include discovery, synchronization, and Doppler correction, which are important to communication systems. Some embodiments may combine coordinated transmitter frequency shifts with motion-induced Doppler shifts of the transmitters to produce unique net frequency shifted signal characteristics that can be resolved using a fixed receiver for spatial awareness. Additionally, some embodiments may include a three-dimensional (3D) approach where the receiver and transmitter are in motion.

一些實施例可使用在一共同參考系(例如,一共同慣性參考系,諸如地球,其可忽略地球之曲率)中執行之分析,且假定用於發射器及接收器之各者之通信系統由平台通知其自身之速度及定向。本文中描述之方法可用於發現及追蹤,但此處之論述集中於發現,其通常係最具挑戰性之態樣。Some embodiments may use analyzes performed in a common frame of reference (e.g., a common inertial frame of reference, such as the Earth, which negligible the curvature of the Earth), and assume that the communication systems for each of the transmitter and receiver are composed of The platform informs itself of its speed and orientation. The methods described in this article can be used for both discovery and tracking, but the discussion here focuses on discovery, which is often the most challenging aspect.

「都卜勒零」之含義可透過回顧不具有接收器運動之二維(2D)情況來部分說明,且接著可藉由回顧將接收器運動添加至2D情況,且接著在3D情況中包含接收器運動來闡述。The meaning of "Doppler zero" can be partially explained by reviewing the two-dimensional (2D) case without receiver motion, and then adding receiver motion to the 2D case by reviewing, and then including receiving in the 3D case To explain the movement of the device.

一通信信號之都卜勒頻移與發射器與接收器之間之徑向速度成比例,且任何顯著都卜勒頻移通常係系統設計者應考量之一障礙。相反地,一些實施例利用都卜勒效應以依由選定設計參數指示之解析度來區分方向。此外,當預定「零」方向掃描通過角度空間時,此等實施例使用淨頻移之輪廓。所得輪廓係正弦曲線,其具有提供發射器之速率之一振幅、當「零」方向與接收器對準時之一零淨頻移及指示發射器之速度之方向之一最小值。應注意,發射器無法同時校正全部方向上之都卜勒,因此信號特性在各方向上係不同的,且對於不同發射器速度亦係不同的。正是此等特性被接收器用於判定空間覺知。所接收信號具有可映射至發射器之方向及速度之時空特性。此方法利用一「零」之概念,其僅係發射器完美校正其自身都卜勒頻移之方向。相同「調零」協定在各節點上運行,且掃描通過全部方向。此處,吾人任意地但在一真實系統中繪示具有10度之離散連續步階之掃描;然而,應理解,任何適合度數步階大小皆可用於都卜勒零掃描。The Doppler shift of a communication signal is proportional to the radial velocity between the transmitter and receiver, and any significant Doppler shift is usually a hindrance that should be considered by the system designer. Conversely, some embodiments exploit the Doppler effect to distinguish directions depending on the resolution dictated by selected design parameters. In addition, these embodiments use a profile of net frequency shift as the predetermined "zero" direction is scanned through angular space. The resulting profile is a sinusoid with an amplitude providing the velocity of the transmitter, a zero net frequency shift when the "zero" direction is aligned with the receiver, and a minimum in direction indicating the velocity of the transmitter. It should be noted that the transmitter cannot correct Doppler in all directions simultaneously, so the signal characteristics are different in each direction and also different for different transmitter speeds. It is these characteristics that are used by the receiver to determine spatial awareness. The received signal has spatiotemporal properties that can be mapped to the direction and velocity of the transmitter. This method utilizes the notion of a "null", which is only the direction in which the transmitter perfectly corrects its own Doppler shift. The same "zeroing" protocol runs on each node and scans through all directions. Here we arbitrarily but in a real system show sweeps with discrete sequential steps of 10 degrees; however, it should be understood that any suitable degree step size may be used for the Doppler zero sweep.

如已提及,一些實施例之貢獻之一者係被動空間覺知。傳統地,鄰近節點之空間資訊(基於一全球定位系統(GPS)及/或陀螺儀及加速率計)可經由資料通信來學習。不幸地,經由資料通信之空間覺知(被稱為主動空間覺知)僅在通信已建立之後才係可能的,而非在發現該等鄰近節點時。僅在鄰近節點之信號已被發現、同步及都卜勒校正之後,資料通信才係可能的。相反地,在一些實施例中,本文中描述之被動空間覺知可僅使用與獲取相關聯之同步位元來執行。此程序可被視為實體層附加項,且與顯式資料傳送相比,通常需要低得多之頻寬。用於發現、同步及都卜勒校正之實體層附加項先前從未用於上層之拓撲學習。As already mentioned, one of the contributions of some embodiments is passive spatial awareness. Traditionally, spatial information of neighboring nodes (based on a global positioning system (GPS) and/or gyroscopes and accelerometers) can be learned through data communication. Unfortunately, spatial awareness via data communication (referred to as active spatial awareness) is only possible after communication has been established, not when the neighboring nodes are discovered. Data communication is only possible after the signals of neighboring nodes have been found, synchronized and Doppler corrected. Conversely, in some embodiments, the passive spatial awareness described herein can be performed using only sync bits associated with acquisition. This procedure can be considered a physical layer add-on and typically requires much lower bandwidth than explicit data transfers. Physical layer additions for discovery, synchronization and Doppler correction have never been used for topology learning in upper layers before.

傳統地,經由一系列資料封包交換(例如,招呼訊息傳遞及鏈路狀態通告)來收穫網路拓撲。被動空間覺知可完全消除招呼訊息傳遞,且提供超出招呼訊息傳遞之覆蓋範圍之一更寬區域拓撲。藉由利用被動空間覺知,高效行動特用網路(MANET)成為可能。實施例可改良一網路自身之運作。Traditionally, network topology is harvested through a series of data packet exchanges (eg, hello messaging and link state advertisement). Passive spatial awareness can completely eliminate hello messaging and provide a wider area topology beyond the coverage of hello messaging. By exploiting passive spatial awareness, highly efficient mobile ad hoc networks (MANETs) are possible. Embodiments may improve the operation of a network itself.

參考圖24,揭示一多節點通信網路100。多節點通信網路100可包含多個通信節點,例如,一發射器(Tx)節點102及一接收器(Rx)節點104。申請人應注意,本文中先前在圖1中展示之多節點通信網路100之內容脈絡中描述之實施例及實現技術應被解釋為延伸至圖24中展示之多節點通信網路100。Referring to FIG. 24, a multi-node communication network 100 is disclosed. The multi-node communication network 100 may include a plurality of communication nodes, such as a transmitter (Tx) node 102 and a receiver (Rx) node 104 . Applicants should note that the embodiments and implementation techniques previously described herein in the context of the multi-node communication network 100 shown in FIG. 1 should be interpreted as extending to the multi-node communication network 100 shown in FIG. 24 .

為了繪示一些實施例之態樣,吾人展示依據跨水平之零方向而變化之一固定接收器之淨頻移之2D相依性,如圖24之一俯視圖中展示,其中接收器節點104係固定的,且相對於發射器自東方定位成θ,發射器節點102以一速率 及自東方之方向α及掃描ϕ之一快照(其係「零」方向,在此圖像中例示性地展示為100度)移動。 To illustrate aspects of some embodiments, we show the 2D dependence of the net frequency shift as a function of a fixed receiver varying across the zero direction across the horizon, as shown in the top view of Figure 24, where receiver node 104 is fixed , and relative to the transmitter positioned at θ from the east, the transmitter node 102 moves at a rate And move in direction α from east and scan a snapshot of ϕ (which is the "zero" direction, illustratively shown as 100 degrees in this image).

都卜勒頻移係歸因於運動之一實體現象,且可被視為一頻道效應。在此實例中,發射器節點102係唯一移動物件,因此其係都卜勒頻移之唯一來源。由接收器節點104所見之歸因於發射器節點102運動之都卜勒頻移係:Doppler shift is a physical phenomenon due to motion and can be viewed as a channel effect. In this example, transmitter node 102 is the only moving object, and thus it is the only source of Doppler shift. The Doppler shift system seen by the receiver node 104 due to the motion of the transmitter node 102:

,其中c係光速 , where c is the speed of light

另一因素係當「零」方向與接收器方向對準時應精確補償都卜勒頻移之發射器頻率調整項。發射器節點102之工作係根據其自身速率( )及速度方向(α)來調整其發射頻率。該發射器頻率調整(∆f T)與至「零」方向上之速度投影(ф)成比例,且係: Another factor is the transmitter frequency adjustment that should accurately compensate for Doppler shift when the "null" direction is aligned with the receiver direction. Transmitter node 102 operates according to its own rate ( ) and speed direction (α) to adjust its emission frequency. The transmitter frequency adjustment (∆f T ) is proportional to the velocity projection (ф) in the "zero" direction and is:

由接收器所見之淨頻移係兩項之總和:The net frequency shift seen by the receiver is the sum of two terms:

假定速度向量及方向與∆f net之週期性量測相比緩慢地改變。在該等條件下,α、 及θ之未知參數(從接收器節點104之角度而言)係常數。 The velocity vector and direction are assumed to change slowly compared to the periodic measurements of Δf net . Under these conditions, α, The unknown parameters of and θ (from the perspective of the receiver node 104) are constants.

此外,假定接收器節點104具有解析傳入信號之頻率之一實施方案,如一般技術者將理解。Furthermore, it is assumed that the receiver node 104 has an implementation that resolves the frequency of the incoming signal, as will be understood by those of ordinary skill.

圖25A展示針對一固定接收器位於發射器之東方(θ=0)且具有1500米/秒(m/s)之一發射器速率之案例中依據「零」方向而變化之所得淨頻移。圖25B展示針對一固定接收器及針對具有一東方發射器節點速度方向(α=0)之若干方向之結果。頻移以百萬分率(ppm)為單位。如圖25A及圖25B中展示,無論速度方向或位置如何,振幅與發射器節點102之 之速率一致,當「零」角度在接收器方向上時(當φ=θ時),淨頻移為零,且當「零」與發射器節點102之速度方向對準時(當φ=α時),出現最小值。 Figure 25A shows the resulting net frequency shift as a function of "zero" direction for the case of a fixed receiver located east of the transmitter (θ = 0) with a transmitter velocity of 1500 meters per second (m/s). Figure 25B shows the results for a fixed receiver and for several directions with an east transmitter node velocity direction (α = 0). Frequency shift is in parts per million (ppm). As shown in Figures 25A and 25B, regardless of velocity direction or position, the amplitude and transmitter node 102 The velocities are consistent, when the "zero" angle is in the direction of the receiver (when φ=θ), the net frequency shift is zero, and when the "zero" is aligned with the velocity direction of the transmitter node 102 (when φ=α ), the minimum value appears.

因此,接收器節點104可從該輪廓判定發射器節點102之速率、發射器節點102之航向,且發射器節點102之方向已知最多為兩個位置之一者(由於一些輪廓具有兩個零交叉點)。應注意,兩個曲線與y軸交叉兩次(圖25A中之0度及180度,及圖25B中之±90度),因此最初在位置方向上存在一歧義例項。在此情況下,接收器節點104知道發射器節點102在接收器節點104之東方或西方。Thus, from this profile, the receiver node 104 can determine the velocity of the transmitter node 102, the heading of the transmitter node 102, and the direction of the transmitter node 102 is known to be at most one of two positions (since some profiles have two zeros intersection). Note that the two curves cross the y-axis twice (0 degrees and 180 degrees in Figure 25A, and ±90 degrees in Figure 25B), so initially there is an ambiguous instance in the position direction. In this case, the receiver node 104 knows that the transmitter node 102 is east or west of the receiver node 104 .

參考圖26,揭示一多節點通信網路100。多節點通信網路100可包含多個通信節點,例如,一發射器(Tx)節點102及一接收器(Rx)節點104。如圖26中展示,發射器節點102及接收器節點104兩者在兩個維度中運動。Referring to FIG. 26, a multi-node communication network 100 is disclosed. The multi-node communication network 100 may include a plurality of communication nodes, such as a transmitter (Tx) node 102 and a receiver (Rx) node 104 . As shown in FIG. 26, both the transmitter node 102 and the receiver node 104 move in two dimensions.

在圖26中描繪同時移動案例,其中接收器節點104亦以由一速率 及方向β特性化之一般速度移動。用於移動接收器節點104之協定在接收器節點104之側上併入一頻率調整以亦補償接收器節點104之運動。方程式具有兩個額外項。一個係接收器之運動之一都卜勒項,且第二個係接收器之頻率補償。 Simultaneous mobility case is depicted in FIG. 26, where receiver node 104 also moves at a rate And general speed movement characterized by direction β. The protocol for moving the receiver node 104 incorporates a frequency adjustment on the receiver node 104 side to also compensate for receiver node 104 motion. The equation has two extra terms. One is a Doppler term for the motion of the receiver and the second is the frequency compensation of the receiver.

再者,都卜勒頻移係歸因於運動之一實體現象,且可被視為一頻道效應,但在此情況下,發射器節點102及接收器節點104兩者皆在移動,因此存在兩個都卜勒頻移項。由接收器所見之歸因於相對徑向速度之真實都卜勒頻移係:Again, the Doppler shift is due to a physical phenomenon of motion and can be viewed as a channel effect, but in this case both the transmitter node 102 and the receiver node 104 are moving, so there is Two Doppler shift terms. The true Doppler shift seen by the receiver due to the relative radial velocity is:

其他因素係當「零」方向與接收器方向對準時精確補償都卜勒頻移之發射器節點102及接收器節點104頻率調整項。發射器節點102之工作係根據其自身速率( )及速度方向(α)來調整發射器節點102之發射頻率。該發射器節點頻率調整與至「零」方向上之速度投影(ф)成比例,且係下文方程式中之第一項。 Other factors are transmitter node 102 and receiver node 104 frequency adjustments that accurately compensate for Doppler shift when the "null" direction is aligned with the receiver direction. Transmitter node 102 operates according to its own rate ( ) and velocity direction (α) to adjust the transmit frequency of the transmitter node 102. The transmitter node frequency adjustment is proportional to the velocity projection (ф) into the "zero" direction and is the first term in the equation below.

接收器節點104之工作係根據接收器節點104自身之速率( )及速度方向(β)來調整接收器節點頻率。該接收器節點頻率調整與至「零」方向上之速度投影(ф)成比例,且係下文方程式中之第二項。接收器節點頻率調整可在頻率解析演算法之前對接收信號進行,或可在演算法內進行。 The operation of the receiver node 104 is based on the speed of the receiver node 104 itself ( ) and velocity direction (β) to adjust the receiver node frequency. The receiver node frequency adjustment is proportional to the velocity projection (ф) into the "zero" direction and is the second term in the equation below. The receiver node frequency adjustment can be performed on the received signal prior to the frequency resolution algorithm, or can be performed within the algorithm.

由接收器所見之淨頻移係全部項之總和:The net frequency shift seen by the receiver is the sum of all terms:

再者,假定接收器節點104具有解析傳入信號之頻率之一實施方案,如此項技術中將理解。Again, it is assumed that the receiver node 104 has an implementation that resolves the frequency of the incoming signal, as will be understood in the art.

此外,假定速度向量及方向與∆f net之週期性量測相比緩慢地改變。再者,在此等條件下,未知參數(從接收器節點104之角度而言) α、 及θ係常數。 Furthermore, the velocity vector and direction are assumed to change slowly compared to the periodic measurements of Δf net . Again, under these conditions, the unknown parameters (from the perspective of the receiver node 104) α, and θ constants.

針對接收器節點位置θ及發射器節點及接收器節點速率( )以及發射器節點及接收器節點速度方向(α及β)之若干案例情況,在圖27A及圖27B中展示二維(2D)移動接收器節點104方法之淨頻移。圖27A針對發射器節點102及接收器節點104以及接收器節點位置θ=0具有不同速率。圖27B針對發射器節點及接收器節點具有相同速率。類似地,此處存在三個概念需要注意: For the position of the receiver node θ and the velocity of the transmitter node and the receiver node ( and ) and some case cases of transmitter node and receiver node velocity directions (α and β), the net frequency shift of the two-dimensional (2D) moving receiver node 104 approach is shown in FIGS. 27A and 27B . FIG. 27A has different rates for transmitter node 102 and receiver node 104 and receiver node position θ=0. Figure 27B has the same rate for the transmitter node and the receiver node. Similarly, there are three concepts to note here:

*振幅與發射器節點102與接收器節點104之間之相對速度 一致。 *Amplitude versus relative velocity between transmitter node 102 and receiver node 104 unanimous.

*當「零」角度在接收器方向上時(當φ=θ時),淨頻移為零。*When the "zero" angle is in the direction of the receiver (when φ=θ), the net frequency shift is zero.

*當「零」與相對速度方向對準時(當 時),出現最小值。 *When "zero" is aligned with the direction of relative velocity (when ), the minimum value appears.

再者,存在具有位置θ之一初始雙點歧義性,但發射器節點102之速率及速度向量係已知的。Again, there is an initial two-point ambiguity with position [theta], but the velocity and velocity vector of the transmitter node 102 are known.

現參考圖28,雖然2D圖像更容易可視化,但相同原理適用於3D情況。圖28展示跨越具有不同錐體大小(錐體大小為全寬)之3D及2D空間所需之數個方向組。在深入方程式之前,當包含另一維度時,值得評論空間之大小。例如,當在先前實例中使用10度之一「零」步階大小時,在2D中跨越360度需要36個組。因此,若使用10度之一例示性偵測角度(例如,具有10度錐體之一定向天線),則將需要36個組來覆蓋2D空間。可藉由計算一錐體相較於完整4π球面度之覆蓋率來運算3D分數覆蓋率。分數等於積分Referring now to Figure 28, while 2D images are easier to visualize, the same principles apply to the 3D case. Figure 28 shows several sets of directions needed to span 3D and 2D spaces with different cone sizes (the cone size is full width). Before diving into the equation, it's worth commenting on the size of the space when another dimension is included. For example, when using a "zero" step size of 10 degrees in the previous example, 36 groups are required to span 360 degrees in 2D. Thus, using an exemplary detection angle of 10 degrees (eg, a directional antenna with a 10 degree cone), 36 groups would be required to cover the 2D space. 3D fractional coverage can be computed by computing the coverage of a cone compared to a full 4π steradians. points equal points

FractionCoverage2D =2π/ConeSizeFractionCoverage2D =2π/ConeSize

對於與發現時間互關聯之2D及3D情況兩者,在圖28中展示跨越空間之組之數目。除了窄錐體大小之外,對於3D情況,組之數目並不非常大(例如,在10度處約15倍,在20度處約7.3倍,在30度處約4.9倍)。除非系統受限於非常窄錐體大小,否則與一2D搜尋相比,3D搜尋之發現時間並非壓倒性的。The number of groups spanning space is shown in FIG. 28 for both the 2D and 3D cases correlated with discovery time. Except for the narrow cone size, the number of groups is not very large for the 3D case (eg, about 15 times at 10 degrees, about 7.3 times at 20 degrees, about 4.9 times at 30 degrees). Unless the system is limited to very narrow cone sizes, the discovery time of a 3D search is not overwhelming compared to a 2D search.

現參考圖29,揭示一多節點通信網路100。多節點通信網路100可包含多個通信節點,例如,一發射器(Tx)節點102及一接收器(Rx)節點104。如圖29中展示,發射器節點102及接收器節點104兩者在三個維度中運動。Referring now to FIG. 29, a multi-node communication network 100 is disclosed. The multi-node communication network 100 may include a plurality of communication nodes, such as a transmitter (Tx) node 102 and a receiver (Rx) node 104 . As shown in FIG. 29, both the transmitter node 102 and the receiver node 104 move in three dimensions.

都卜勒調零之3D方法遵循2D方法,但為了簡單起見,其在此處用角度繪示且以向量方式運算。The 3D method of Doppler nulling follows the 2D method, but for simplicity it is drawn here with angles and operates as vectors.

在三個維度中,以對2個維度或3個維度皆有效之向量形式表達方程式係方便的。圖29展示3個維度中之幾何形狀,其中 係從發射器指向接收器之單位向量,且 係指向由協定定義之「零」方向之單位向量。 In three dimensions, it is convenient to express the equations in vector form valid for 2 or 3 dimensions. Figure 29 shows geometric shapes in 3 dimensions, where is the unit vector pointing from the transmitter to the receiver, and is the unit vector pointing in the "zero" direction defined by the convention.

由接收器節點104所見之歸因於相對徑向速度之真實都卜勒頻移係至 向量上之投影: The true Doppler shift seen by receiver node 104 due to relative radial velocity is given by Projection onto a vector:

調零協定歸因於發射節點頻率及接收器節點頻率至 方向上之速度投影來調整發射節點頻率及接收器節點頻率 Nulling agreement due to transmitting node frequency and receiver node frequency to Velocity projection in direction to adjust transmitter node frequency and receiver node frequency

由接收器節點104所見之淨頻移係全部項之總和:The net frequency shift seen by the receiver node 104 is the sum of all terms:

3D移動接收器節點104方法之淨頻移不容易用圖形展示,但可用數學方程式來檢測以得出有用結論。前兩項係都卜勒校正(DC)偏移,且後兩項係零相依項。由於 係自變數,因此當 平行時出現最大值,且當其等反平行時出現一最小值。此外,由振幅判定相對速率, The net frequency shift of the 3D mobile receiver node 104 approach is not easy to show graphically, but can be detected with mathematical equations to draw useful conclusions. The first two terms are Doppler corrected (DC) offsets, and the last two terms are zero dependent terms. because is an independent variable, so when and A maximum occurs when they are parallel, and a minimum occurs when they are antiparallel. In addition, the relative velocity is determined from the amplitude,

振幅= Amplitude =

最後,當 平行(即,在相同方向上平行,而非反平行)於 時,淨頻率為零。 Finally, when Parallel (that is, parallel in the same direction, not antiparallel) to , the net frequency is zero.

when hour

或,當 時, or when hour,

對於3D情況:For 3D case:

*振幅與發射器節點102與接收器節點104之間之相對速度 一致。 *Amplitude versus relative velocity between transmitter node 102 and receiver node 104 unanimous.

*當「零」角度在接收器節點方向上時,( ),淨頻移為零。 *When the "zero" angle is in the direction of the receiver node, ( ), the net frequency shift is zero.

*當「零」與相對速度方向對準時,出現最小值。*Minimum value occurs when "zero" is aligned with relative velocity direction.

仍參考圖29,在一些實施例中,系統(例如,多節點通信網路100)可包含一發射器節點102及一接收器節點104。發射器節點102及接收器節點104之各節點可包含:一通信介面110,其包含至少一個天線元件112,及一控制器,其可操作地耦合至通信介面,控制器106包含一或多個處理器,其中控制器106具有自身節點速度及自身節點定向之資訊。發射器節點102及接收器節點104可處於運動中(例如,在兩個維度中或在三個維度中)。發射器節點102及接收器節點104可經時間同步以應用與該節點自身相對於一共同參考系(例如,一共同慣性參考系(例如,運動中之一共同慣性參考系或一固定共同慣性參考系))之運動相關聯之都卜勒校正。在發射器節點102將信號發射至接收器節點104之前且在接收器節點104從發射器節點102接收信號之前,共同參考系對於發射器節點102及接收器節點104可係已知的。在一些實施例中,系統係包括發射器節點102及接收器節點104之一行動特用網路(MANET)。Still referring to FIG. 29 , in some embodiments, a system (eg, multi-node communication network 100 ) may include a transmitter node 102 and a receiver node 104 . Each of the transmitter node 102 and the receiver node 104 may include a communication interface 110 including at least one antenna element 112, and a controller operatively coupled to the communication interface, the controller 106 including one or more processor, wherein the controller 106 has the information of its own node speed and its own node orientation. Transmitter node 102 and receiver node 104 may be in motion (eg, in two dimensions or in three dimensions). The transmitter node 102 and the receiver node 104 may be time synchronized to apply a common reference frame (e.g., a common inertial reference frame in motion or a fixed common inertial reference frame) relative to the node itself. Department of)) motion-related Doppler correction. The common reference frame may be known to the transmitter node 102 and the receiver node 104 before the transmitter node 102 transmits a signal to the receiver node 104 and before the receiver node 104 receives the signal from the transmitter node 102 . In some embodiments, the system is a mobile ad hoc network (MANET) including the transmitter node 102 and the receiver node 104 .

在一些實施例中,發射器節點102及接收器節點104經由與獲取相關聯之同步位元進行時間同步。例如,同步位元可作為實體層附加項來操作。In some embodiments, the transmitter node 102 and receiver node 104 are time synchronized via sync bits associated with acquisition. For example, sync bits can be manipulated as physical layer additions.

在一些實施例中,發射器節點102經組態以根據發射器節點102之一自身速率及一自身速度方向來調整一發射頻率,以便執行一發射器側都卜勒校正。在一些實施例中,接收器節點104經組態以根據接收器節點104之一自身速率及一自身速度方向來調整接收器節點104之一接收器頻率,以便執行一接收器側都卜勒校正。在一些實施例中,經調整發射頻率之一調整量與至一都卜勒零方向上之一發射器節點102速度投影成比例,其中經調整接收器頻率之一調整量與至都卜勒零方向上之一接收器節點104速度投影成比例。在一些實施例中,接收器節點102經組態以判定發射器節點102與接收器節點104之間之一相對速率。在一些實施例中,接收器節點104經組態以判定發射器節點102運動之一方向及發射器節點102之一速度向量。在一些實施例中,當一合成向量平行於都卜勒零方向時,發生接收器節點104之一都卜勒校正之一最大淨頻移,其中合成向量等於接收器節點104之一速度向量減去發射器節點102之速度向量。在一些實施例中,當一合成向量反平行於都卜勒零方向時,發生接收器節點104之一都卜勒校正之一最小淨頻移,其中合成向量等於接收器節點104之一速度向量減去發射器節點102之速度向量。在一些實施例中,當從發射器節點102指向接收器節點之一向量平行於都卜勒零方向時,接收器節點104之一都卜勒校正之一淨頻移為零。In some embodiments, the transmitter node 102 is configured to adjust a transmit frequency according to an own velocity and an own velocity direction of the transmitter node 102 in order to perform a transmitter-side Doppler correction. In some embodiments, the receiver node 104 is configured to adjust a receiver frequency of the receiver node 104 according to an own velocity of the receiver node 104 and an own velocity direction in order to perform a receiver-side Doppler correction . In some embodiments, an adjustment of the adjusted transmit frequency is proportional to a velocity projection of the transmitter node 102 in a direction to a Doppler zero, wherein an adjustment of the adjusted receiver frequency is proportional to a Doppler zero. Direction is proportional to a receiver node 104 velocity projection. In some embodiments, the receiver node 102 is configured to determine a relative rate between the transmitter node 102 and the receiver node 104 . In some embodiments, the receiver node 104 is configured to determine a direction of motion of the transmitter node 102 and a velocity vector of the transmitter node 102 . In some embodiments, a maximum net frequency shift of the Doppler correction of the receiver node 104 occurs when a resultant vector equal to a speed vector of the receiver node 104 minus Velocity vector to transmitter node 102. In some embodiments, a minimum net frequency shift of the Doppler correction of the receiver node 104 occurs when a resultant vector is antiparallel to the Doppler null direction, where the resultant vector is equal to a velocity vector of the receiver node 104 The velocity vector of the transmitter node 102 is subtracted. In some embodiments, when a vector pointing from the transmitter node 102 to the receiver node is parallel to the Doppler zero direction, a net frequency shift of the Doppler correction of the receiver node 104 is zero.

現參考圖30,根據本文中揭示之發明概念之一方法6000之一例示性實施例可包含以下步驟之一或多者。另外,例如,一些實施例可包含反覆、同時及/或循序執行方法6000之一或多個例項。另外,例如,方法6000之至少一些步驟可並行及/或同時執行。另外,在一些實施例中,方法6000之至少一些步驟可非循序執行。Referring now to FIG. 30 , an exemplary embodiment of a method 6000 according to the inventive concepts disclosed herein may include one or more of the following steps. Additionally, for example, some embodiments may include iterative, simultaneous, and/or sequential execution of one or more instances of method 6000 . Additionally, for example, at least some steps of method 6000 may be performed in parallel and/or simultaneously. Additionally, in some embodiments, at least some steps of method 6000 may be performed out of sequence.

步驟6002可包含提供一發射器節點及一接收器節點,其中發射器節點及接收器節點之各節點經時間同步,其中發射器節點及接收器節點之各節點處於運動中,其中發射器節點及接收器節點之各節點包括包含至少一個天線元件之一通信介面,其中發射器節點及接收器節點之各節點進一步包括可操作地耦合至通信介面之一控制器,該控制器包含一或多個處理器,其中控制器具有自身節點速度及自身節點定向之資訊。Step 6002 may comprise providing a transmitter node and a receiver node, wherein each of the transmitter node and the receiver node are time synchronized, wherein each of the transmitter node and the receiver node is in motion, wherein the transmitter node and Each of the receiver nodes includes a communication interface comprising at least one antenna element, wherein each of the transmitter node and the receiver node further includes a controller operably coupled to the communication interface, the controller comprising one or more A processor, wherein the controller has information about its own node speed and its own node orientation.

步驟6004可包含至少基於時間同步,由發射器節點對發射器節點自身相對於一共同參考系之運動應用都卜勒校正。Step 6004 may comprise applying, by the transmitter node, a Doppler correction to the motion of the transmitter node itself relative to a common reference frame, based at least on time synchronization.

步驟6006可包含至少基於時間同步,由接收器節點對接收器節點自身相對於共同參考系之運動應用都卜勒校正,其中在發射器節點將信號發射至接收器節點之前且在接收器節點從發射器節點接收信號之前,共同參考系對於發射器節點及接收器節點係已知的。Step 6006 may comprise applying, by the receiver node, a Doppler correction to the motion of the receiver node itself relative to a common reference frame, based at least on time synchronization, where the signal is transmitted by the transmitter node to the receiver node and before the receiver node is from Before the transmitter node receives the signal, the common reference frame is known to the transmitter node and the receiver node.

此外,方法6000可包含貫穿全文揭示之任何操作。Additionally, method 6000 may include any of the operations disclosed throughout.

本文中論述之零掃描技術繪示用於從解析發射器節點102輻射之時空特性來進行空間覺知之一系統及一方法。此方法向接收器節點104通知發射器節點102與接收器節點104之間之相對速率以及發射器節點方向及發射器節點速度向量。此方法包含掃描通過全部方向,且當零方向與發射器節點方向對準時具有一高靈敏度(例如,低淨頻移)。此方法可在一高度靈敏獲取訊框上實施,該獲取訊框通常比容許具有相對低功率之超靈敏空間覺知之顯式資料傳送靈敏得多。The zero-scan technique discussed herein illustrates a system and a method for spatial awareness from resolving the spatio-temporal characteristics of emitter node 102 radiation. This method informs the receiver node 104 of the relative velocity between the transmitter node 102 and the receiver node 104 as well as the transmitter node direction and transmitter node velocity vector. This method involves scanning through all directions, and has a high sensitivity (eg, low net frequency shift) when the null direction is aligned with the transmitter node direction. This approach can be implemented on a highly sensitive acquisition frame, which is typically much more sensitive than explicit data transmission allowing ultra-sensitive spatial awareness with relatively low power.

大體上參考圖31至圖43,揭示一多節點通信網路7000。在一些實施例中,系統(例如,多節點通信網路7000)可包含複數個節點7002。複數個節點7002可包含一第一節點7004 (例如,源節點)。複數個節點7002之各節點7002可包含一通信介面110及可操作地耦合至通信介面110之一控制器106,且可經進一步組態以發射通信資料封包及/或發射信標。信標之各者可具有大於通信資料封包之各者之一通信範圍7010之一信標範圍7012。節點7002可各具有被動空間覺知(PSA)。第一節點7004可具有自身節點速度、自身節點定向及/或一目的地7006之資訊。目的地7006可為一目的地區域或一目的地節點7008。目的地7006可在通信範圍7010之外,且視情況在第一節點7004之信標範圍7012之外。第一節點7004可經組態以計算從第一節點7004至目的地7006之一直線7014或一彎曲弧線。例如,一曲線可用於避免一已知障礙,諸如山區或類似物。第一節點7004可經進一步組態以利用被動空間覺知(PSA)來編譯第一節點7004之信標範圍7012內之節點7002之空間覺知。第一節點7004可經進一步組態以評估超出通信範圍7010且在第一節點7004之信標範圍7012內之可能中繼路由。第一節點7004可經進一步組態以判定複數個節點7002中位於可能中繼路由之一者上之下一中繼節點7016a (例如,第二節點)。可能中繼路由之該一者可最接近直線7014或彎曲弧線,而不被判定為一終端路由之部分。第一節點可經組態以將一通信資料封包發射至下一中繼節點7016a。Referring generally to FIGS. 31-43 , a multi-node communication network 7000 is disclosed. In some embodiments, a system (eg, multi-node communication network 7000 ) may include a plurality of nodes 7002 . The plurality of nodes 7002 may include a first node 7004 (eg, source node). Each node 7002 of the plurality of nodes 7002 can include a communication interface 110 and a controller 106 operatively coupled to the communication interface 110, and can be further configured to transmit communication packets and/or transmit beacons. Each of the beacons may have a beacon range 7012 that is greater than the communication range 7010 of each of the communication data packets. Nodes 7002 may each have passive spatial awareness (PSA). The first node 7004 may have information about its own node speed, its own node orientation, and/or a destination 7006 . Destination 7006 may be a destination area or a destination node 7008 . The destination 7006 may be outside the communication range 7010, and optionally outside the beacon range 7012 of the first node 7004. The first node 7004 can be configured to calculate a straight line 7014 or a curved arc from the first node 7004 to the destination 7006 . For example, a curve can be used to avoid a known obstacle, such as a mountain or the like. The first node 7004 can be further configured to utilize Passive Spatial Awareness (PSA) to compile the spatial awareness of the nodes 7002 within the beacon range 7012 of the first node 7004. The first node 7004 may be further configured to evaluate possible relay routes beyond the communication range 7010 and within the beacon range 7012 of the first node 7004 . The first node 7004 may be further configured to determine the next relay node 7016a (eg, the second node) of the plurality of nodes 7002 on one of the possible relay routes. The one of the possible relay routes may be closest to a straight line 7014 or a curved arc and not be determined to be part of a terminal route. The first node can be configured to transmit a communication data packet to the next relay node 7016a.

在一些實施例中,可使用兩個或更多個直線,且可以至少一個中間目的地及一最終目的地執行直線解決方案之兩次反覆。In some embodiments, two or more lines may be used, and two iterations of the line solution may be performed with at least one intermediate destination and a final destination.

在一些實施例中,多節點通信網路7000可包含此項技術中已知之任何多節點通信網路。例如,多節點通信網路7000可包含一行動特用網路(MANET),其中複數個節點7002之各節點7002可能夠自由且獨立地移動。類似地,複數個節點7002可包含此項技術中已知之可通信地耦合之任何通信節點。就此而言,複數個節點7002可包含此項技術中已知之用於發射/收發通信資料封包之任何通信節點。例如,複數個節點7002可包含但不限於無線電(諸如在一載具上或在一人身上)、行動電話、智慧型電話、平板電腦、智慧型手錶、膝上型電腦及類似物。在實施例(未展示)中,節點7002可各包含但不限於各自控制器106 (例如,控制處理器)、記憶體108、通信介面110及天線元件112。申請人應注意,複數個節點7002之節點7002之各者可包含但不限於圖1等之Tx及Rx節點102、104之任何或全部實施例及實現技術。In some embodiments, multi-node communication network 7000 may comprise any multi-node communication network known in the art. For example, the multi-node communication network 7000 may comprise a mobile ad hoc network (MANET), wherein each node 7002 of the plurality of nodes 7002 may be able to move freely and independently. Similarly, plurality of nodes 7002 may comprise any communicatively coupled communication nodes known in the art. In this regard, plurality of nodes 7002 may include any communication node known in the art for transmitting/receiving communication data packets. For example, the plurality of nodes 7002 may include, but is not limited to, radios (such as on a vehicle or on a person), mobile phones, smartphones, tablets, smart watches, laptops, and the like. In an embodiment (not shown), nodes 7002 may each include, but are not limited to, a respective controller 106 (eg, a control processor), memory 108 , communication interface 110 , and antenna element 112 . Applicants should note that each of the nodes 7002 of the plurality 7002 may include, but is not limited to, any or all of the embodiments and implementation techniques of the Tx and Rx nodes 102, 104 of FIG. 1 et al.

在一些實施例中,控制器106可為節點7002提供處理功能性,且可包含任何數目個處理器、微控制器、電路、場可程式化閘陣列(FPGA)或其他處理系統及用於儲存由節點7002存取或產生之資料、可執行碼及其他資訊之駐留或外部記憶體。控制器106可執行體現在一非暫時性電腦可讀媒體(例如,記憶體108)中之實施本文中描述之技術之一或多個軟體程式。控制器106不受限於形成其之材料或其中採用之處理機制,且因而可經由(若干)半導體及/或電晶體(例如,使用電子積體電路(IC)組件)等實施。在一些實施例中,節點7002之各者之控制器106可具有自身節點速度、自身節點定向及/或目的地7006之資訊。In some embodiments, controller 106 may provide processing functionality for node 7002 and may include any number of processors, microcontrollers, circuits, field programmable gate arrays (FPGAs) or other processing systems and for storage Resident or external memory for data, executable code, and other information accessed or generated by node 7002. Controller 106 may execute one or more software programs embodied in a non-transitory computer-readable medium (eg, memory 108 ) that implement one or more of the techniques described herein. Controller 106 is not limited by the materials from which it is formed or the processing mechanisms employed therein, and thus may be implemented via semiconductor(s) and/or transistors (eg, using electronic integrated circuit (IC) components), or the like. In some embodiments, the controller 106 of each of the nodes 7002 may have its own node speed, its own node orientation, and/or its destination 7006 information.

在一些實施例中,通信介面110可操作地組態以與節點7002之組件通信。例如,通信介面110可經組態以從節點7002之一者之控制器106擷取資料,發射資料以儲存於一記憶體108中,從記憶體108中之儲存器擷取資料等。通信介面110亦可與控制器106通信地耦合以促進節點7002之組件與控制器106之間之資料傳送。應注意,雖然通信介面110被描述為節點7002之一組件,但通信介面110之一或多個組件可實施為經由一有線及/或無線連接通信地耦合至節點7002之外部組件。節點7002亦可包含及/或連接至一或多個輸入/輸出(I/O)裝置。在實施例中,通信介面110包含或耦合至一發射器、接收器、收發器、實體連接介面或其等之任何組合。本文中經考慮,節點7002之通信介面110可經組態以使用此項技術中已知之任何無線通信技術(包含但不限於GSM、GPRS、CDMA、EV-DO、EDGE、WiMAX、3G、4G、4G LTE、5G、WiFi協定、RF、LoRa及類似物)通信地耦合至多節點通信網路7000之額外節點7002之額外通信介面110。In some embodiments, communication interface 110 is operably configured to communicate with components of node 7002 . For example, communication interface 110 may be configured to retrieve data from controller 106 of one of nodes 7002, transmit data for storage in a memory 108, retrieve data from storage in memory 108, etc. Communication interface 110 may also be communicatively coupled with controller 106 to facilitate data transfer between components of node 7002 and controller 106 . It should be noted that although communication interface 110 is described as a component of node 7002, one or more components of communication interface 110 may be implemented as external components communicatively coupled to node 7002 via a wired and/or wireless connection. Node 7002 may also include and/or be connected to one or more input/output (I/O) devices. In an embodiment, the communication interface 110 includes or is coupled to a transmitter, receiver, transceiver, physical connection interface, or any combination thereof. It is contemplated herein that the communication interface 110 of node 7002 may be configured to use any wireless communication technology known in the art (including but not limited to GSM, GPRS, CDMA, EV-DO, EDGE, WiMAX, 3G, 4G, 4G LTE, 5G, WiFi protocol, RF, LoRa, and the like) communicatively coupled to the additional communication interface 110 of the additional node 7002 of the multi-node communication network 7000.

在一些實施例中,多節點通信網路7000可利用被動空間覺知(PSA)之態樣。例如,一些實施例可包含被動空間覺知之態樣,其等可判定多節點通信網路7000之節點7002之間之相對速度向量、方向及時脈頻率偏移。例如,經由使用全向天線進行都卜勒零掃描(或在一些實施例中,需要經由空間掃描進行定向追蹤之定向天線112),如本文中先前論述,可判定高動態網路環境中之鄰近節點之定向拓撲。此外,若都卜勒零掃描知識為全部節點7002所共有,則接收節點(例如,節點7002之任一者)可調諧至適當都卜勒頻移以維持完全相干靈敏度。在一些實施例中,類似於圖1中體現之Tx及Rx節點102、104,當從另一節點7002 (例如,第一節點7004或下一中繼節點7016a至7016j之一者)接收通信資料封包時,節點7002可經時間同步以應用與其等自身相對於一共同參考系(例如,一共同慣性參考系,諸如地球,其可忽略地球之曲率)之運動(例如,速度或定向)相關聯之都卜勒校正。申請人應注意,節點7002亦可包含應用於圖1等中體現之Tx及Rx節點102、104之都卜勒校正及調零技術。In some embodiments, multi-node communication network 7000 may utilize an aspect of passive spatial awareness (PSA). For example, some embodiments may include aspects of passive spatial awareness that can determine relative velocity vectors, directions, and clock frequency offsets between nodes 7002 of the multi-node communication network 7000 . For example, by using an omnidirectional antenna for Doppler zero scan (or in some embodiments, a directional antenna 112 that requires directional tracking via spatial scanning), as previously discussed herein, it is possible to determine proximity in a highly dynamic network environment. Oriented topology of nodes. Furthermore, if Doppler zero-scan knowledge is shared by all nodes 7002, then a receiving node (eg, any of nodes 7002) can tune to an appropriate Doppler shift to maintain full coherent sensitivity. In some embodiments, similar to the Tx and Rx nodes 102, 104 embodied in FIG. When wrapping, nodes 7002 may be time-synchronized to apply relative to their own motion (e.g., velocity or orientation) relative to a common reference frame (e.g., a common inertial reference frame, such as the Earth, which negligible the curvature of the Earth) Capital Buller correction. Applicants should note that node 7002 may also include Doppler correction and nulling techniques applied to Tx and Rx nodes 102, 104 embodied in FIG. 1 et al.

在一些實施例中,目的地7006可為一單一目的地節點7008。在一些實施例中,目的地7006可為一區域,其僅具有定位於該區域內之一單一目的地節點7008。在一些實施例中,目的地7006可為包含兩個或更多個目的地節點7008之一區域。例如,目的地7006可為一區域,其具有定位於該區域內之兩個目的地節點7008。在一些實施例中,目的地7006之位置(例如,基於GPS或定位資訊)對於第一節點7004可係已知的。In some embodiments, destination 7006 may be a single destination node 7008 . In some embodiments, the destination 7006 may be an area that has only a single destination node 7008 located within the area. In some embodiments, the destination 7006 may be an area containing two or more destination nodes 7008 . For example, destination 7006 may be an area with two destination nodes 7008 positioned within the area. In some embodiments, the location of the destination 7006 may be known to the first node 7004 (eg, based on GPS or positioning information).

參考圖32,揭示多節點通信網路7000。多節點通信網路7000可進一步包含直線7014或彎曲弧線、下一中繼節點7016a及一或多個終端節點7018。Referring to Figure 32, a multi-node communication network 7000 is disclosed. The multi-node communication network 7000 may further include a straight line 7014 or a curved arc, a next relay node 7016 a and one or more terminal nodes 7018 .

在一些實施例中,第一節點7004可經組態以計算從第一節點7004至目的地7006之直線7014或彎曲弧線。直線7014可為第一節點7004與目的地7006之間之最短線路;通常,發射路由可能不完全遵循完全沿著直線7014之一路徑,但下一中繼節點7016之一或多者(例如,下一中繼節點7016a)可經配置得更靠近直線7014以將通信資料封包轉發至目的地7006。在一些實施例中,兩個或更多個目的地節點7008可定位於目的地7006內,且直線7014或彎曲弧線可經建構以從第一節點7004延伸至定位於目的地7006內之兩個或更多個目的地節點7008之一經計算質心(COM)點。In some embodiments, the first node 7004 can be configured to calculate a straight line 7014 or a curved arc from the first node 7004 to the destination 7006 . A straight line 7014 may be the shortest route between a first node 7004 and a destination 7006; in general, a transmit route may not exactly follow a path exactly along a straight line 7014, but one or more of the next relay nodes 7016 (e.g., The next relay node 7016 a ) may be configured closer to the line 7014 to forward the communication data packet to the destination 7006 . In some embodiments, two or more destination nodes 7008 may be located within destination 7006, and a straight line 7014 or curved arc may be constructed to extend from a first node 7004 to two nodes located within destination 7006. One or more destination nodes 7008 calculate a center of mass (COM) point.

在一些實施例中,第一節點7004可經組態以利用被動空間覺知(PSA)來編譯第一節點7004之信標範圍7012內之節點7002之空間覺知。例如,第一節點7004可利用被動空間覺知(PSA)來編譯來自第一節點7004之信標範圍7012內之複數個節點7002之一給定節點7002之空間覺知資訊。定位資訊(PLI)係可經由被動空間覺知(PSA)收穫之資訊之一實例。每一節點7002可在其信標範圍7012內具有空間覺知,而無需任何資料封包通信。當節點7002之間之資料封包通信必須在發射目標通信資料封包以獲得鄰近節點7002之基於位置之資訊(例如,基於GPS或PLI)之前發生時,節點7002之頻寬(例如,容量)受到更多限制。利用被動空間覺知(PSA)無需節點7002發送及接收包含鄰近節點7002之基於位置之資訊之通信封包,且容許節點7002從若干跳躍之外之節點7002獲得基於位置之資訊,而不限制節點7002之頻寬。In some embodiments, the first node 7004 can be configured to utilize Passive Spatial Awareness (PSA) to compile the spatial awareness of the nodes 7002 within the beacon range 7012 of the first node 7004. For example, the first node 7004 may utilize passive spatial awareness (PSA) to compile spatial awareness information from a given node 7002 of the plurality of nodes 7002 within the beacon range 7012 of the first node 7004 . Positioning information (PLI) is one example of information that can be harvested through passive spatial awareness (PSA). Each node 7002 can be spatially aware within its beacon range 7012 without any data packet communication. The bandwidth (e.g., capacity) of nodes 7002 is limited when data packet communication between nodes 7002 must occur prior to transmitting targeted communication data packets to obtain location-based information (e.g., GPS or PLI-based) of neighboring nodes 7002 Many restrictions. Utilizing passive spatial awareness (PSA) eliminates the need for node 7002 to send and receive communication packets containing location-based information for neighboring nodes 7002, and allows node 7002 to obtain location-based information from nodes 7002 several hops away without limiting node 7002 The bandwidth.

在一些實施例中,第一節點7004可經組態以評估超出通信範圍7010且在第一節點7004之信標範圍7012內之可能中繼路由。可能中繼路由可為多節點通信網路7000內之可容許第一節點7004經由節點7002之一或多者(例如,下一中繼節點7016a)將通信資料封包發射朝向目的地7006之任何路由。在一些實施例中,第一節點7004可評估多節點通信網路7000內之將容許第一節點7004將通信資料封包發射朝向目的地7006之多於一個可能中繼路由。例如,第一中繼節點7004可評估下一中繼節點7016a將用於幫助將通信資料封包從第一節點7004朝向目的地7006傳送之可能中繼路由。另外,第一中繼節點7004亦可評估終端節點7018a可被識別為無法完成朝向目的地7006之一路由之可能中繼路由。第一節點7004可利用被動空間覺知(PSA)來評估超出通信範圍7010且在信標範圍7012內之此等可能中繼路由,該等可能中繼路由可用於將通信資料封包路由朝向目的地7006。被動空間覺知(PSA)容許第一節點7004在發送通信資料封包之前預見且判定一終端路由,而非沿著一可能路由發送通信資料封包,直至通信資料封包到達一終端節點(例如,終端節點7018a至7018b或類似物)。第一節點7004可利用經編譯空間覺知資訊來判定此等終端路由。In some embodiments, the first node 7004 may be configured to evaluate possible relay routes beyond the communication range 7010 and within the beacon range 7012 of the first node 7004 . A possible relay route may be any route within the multi-node communication network 7000 that would allow the first node 7004 to transmit the communication data packet towards the destination 7006 via one or more of the nodes 7002 (e.g., the next relay node 7016a) . In some embodiments, the first node 7004 may evaluate more than one possible relay route within the multi-node communication network 7000 that would allow the first node 7004 to transmit the communication data packet towards the destination 7006 . For example, the first relay node 7004 may evaluate a possible relay route that the next relay node 7016a will use to facilitate the transfer of the communication packet from the first node 7004 toward the destination 7006 . Additionally, first relay node 7004 may also evaluate possible relay routes for which terminal node 7018a may be identified as unable to complete a route toward destination 7006 . The first node 7004 may utilize passive spatial awareness (PSA) to evaluate possible relay routes beyond the communication range 7010 and within the beacon range 7012, which may be used to route communication data packets towards the destination 7006. Passive Spatial Awareness (PSA) allows the first node 7004 to anticipate and determine a terminal route before sending the communication data packet, rather than sending the communication data packet along a possible route until the communication data packet reaches a terminal node (e.g., the terminal node 7018a to 7018b or similar). The first node 7004 can utilize the compiled spatially aware information to determine such terminal routes.

在一些實施例中,第一節點7004可經組態以判定複數個節點7002中位於可能中繼路由之一者上之下一中繼節點7016a,其中可能中繼路由之一者最接近直線7014或彎曲弧線,而不被判定為一終端路由之部分。例如,第一節點7004可判定下一中繼節點7016a在最接近直線7014或彎曲弧線之一個可能中繼路由上,且並非一終端路由之部分。例如,第一節點7004可基於利用被動空間覺知(PSA)來編譯用於待作出的判定之資訊(例如,若路由含有一終端節點7018)來判定終端節點7018a至7018b不在最接近直線7014或彎曲弧線之一個可能中繼路由上。In some embodiments, the first node 7004 may be configured to determine the next relay node 7016a of the plurality of nodes 7002 located on one of the possible relay routes that is closest to the line 7014 or curved arcs that are not judged to be part of a terminal route. For example, the first node 7004 may determine that the next relay node 7016a is on one of the possible relay routes closest to the straight line 7014 or curved arc, and is not part of a terminal route. For example, the first node 7004 may determine that the terminal nodes 7018a-7018b are not on the closest line 7014 or One of the curved arcs may relay on the route.

在一些實施例中,第一節點7004可判定位於最接近直線7014或彎曲弧線而並非一終端路由之部分可能中繼路由之一者上之下一中繼節點7016a,且不必編譯來自超出第一節點7004之通信範圍7010之節點7002之基於全球定位系統(基於GPS)之定位資訊(PLI)。例如,第一節點7004可利用被動空間覺知(PSA)來判定下一中繼節點7016a,其中第一節點7004尚未編譯來自超出第一節點7004之通信範圍7010之節點7002之基於全球定位系統(基於GPS)之定位資訊(PLI)。In some embodiments, the first node 7004 may determine the next relay node 7016a that lies closest to a straight line 7014 or a curved arc rather than one of the possible relay routes that are part of a terminal route, and it is not necessary to compile data from beyond the first relay node 7016a. Global Positioning System (GPS-based) positioning information (PLI) of node 7002 in communication range 7010 of node 7004. For example, the first node 7004 may utilize Passive Spatial Awareness (PSA) to determine the next relay node 7016a, where the first node 7004 has not yet compiled GPS-based ( Positioning information (PLI) based on GPS).

在一些實施例中,第一節點7004可經組態以將通信資料封包發射至所判定之下一中繼節點7016a。例如,在判定下一中繼節點7016a之後,第一節點7004可經由此項技術中已知之任何發射方法將通信資料封包發射至下一中繼節點7016a。In some embodiments, the first node 7004 may be configured to transmit the communication data packet to the determined next relay node 7016a. For example, after determining the next relay node 7016a, the first node 7004 can transmit the communication data packet to the next relay node 7016a via any transmission method known in the art.

在一些實施例中,多節點通信網路7000可經組態用於多跳空間覺知(MHSA)。例如,利用多跳空間覺知(MHSA),第一節點7004可將來自被動空間覺知(PSA)之其經編譯資訊連同其自身定位資訊(PLI)泛流至多節點通信網路7000中之每一節點7002。多跳空間覺知(MHSA)容許第一節點7004延伸其信標範圍7010以覆蓋整個多節點通信網路7000。例如,多跳空間覺知(MHSA)可容許第一節點7004評估超出信標範圍7012之可能中繼路由,如本文中先前論述。此將容許經由一或多個下一中繼節點7016將通信資料封包從第一節點7004更高效地路由朝向目的地7006,此係因為當評估超出通信範圍7010及信標範圍7012之可能中繼路由時,第一中繼節點7004將具有哪些可能中繼路由係一終端路由之部分(例如,由終端節點7018組成)及哪些可能中繼路由最接近直線7014或彎曲弧線之一擴展視圖。In some embodiments, multi-node communication network 7000 may be configured for Multi-Hop Spatial Awareness (MHSA). For example, using Multi-Hop Spatial Awareness (MHSA), the first node 7004 can flood its compiled information from Passive Spatial Awareness (PSA) along with its own Positioning Information (PLI) to each node in the multi-node communication network 7000 One node 7002. Multi-Hop Spatial Awareness (MHSA) allows the first node 7004 to extend its beacon range 7010 to cover the entire multi-node communication network 7000 . For example, Multi-Hop Spatial Awareness (MHSA) may allow the first node 7004 to evaluate possible relay routes beyond the beacon range 7012, as previously discussed herein. This will allow communication data packets to be more efficiently routed from the first node 7004 towards the destination 7006 via one or more next relay nodes 7016 because when evaluating possible relays beyond the communication range 7010 and beacon range 7012 When routing, the first relay node 7004 will have an expanded view of which possible relay routes are part of a terminal route (e.g., consisting of terminal nodes 7018) and which are closest to a straight line 7014 or curved arc.

在一些實施例中,第一節點7004可經組態以從下一中繼節點7016a (例如,第二節點)接收指示出現一終端路由之一否定認可(NAK),且判定複數個節點7002中位於可能中繼路由之一第二可能路由上之一替代第二下一中繼節點7016,其中第二可能中繼路由第二接近直線7014或彎曲弧線,而並非一終端路由之部分。一否定認可(NAK)係用於資料發射之一誤差控制機制,其在判定一不可靠通信鏈路(例如,一不可靠節點7002或一不可靠可能中繼路由)之後進行發射。例如,下一中繼節點7016a可經組態以將指示出現一終端路由之否定認可(NAK)發射至第一節點7004,其中第一節點7004經組態以接收否定認可(NAK),其中第一節點7004可接著判定替代第二下一中繼節點7016。例如,替代第二下一中繼節點7016可為位於可能中繼路由上之第二遠離於直線7014或彎曲弧線之節點7002,如由第一節點7004經由被動空間覺知(PSA)或多跳空間覺知(MHSA)評估及判定。In some embodiments, the first node 7004 may be configured to receive a negative acknowledgment (NAK) from the next relay node 7016a (e.g., the second node) indicating the occurrence of a terminating route, and determine that among the plurality of nodes 7002 The second next-relay node 7016 is replaced by one located on a second possible route of one of the possible relay routes, wherein the second possible relay route is second approximately a straight line 7014 or a curved arc that is not part of a terminal route. A negative acknowledgment (NAK) is an error control mechanism for data transmission that is transmitted after determining an unreliable communication link (eg, an unreliable node 7002 or an unreliable possible relay route). For example, the next-hop node 7016a may be configured to transmit a negative acknowledgment (NAK) indicating the occurrence of a terminating route to the first node 7004, wherein the first node 7004 is configured to receive the negative acknowledgment (NAK), where the first A node 7004 may then decide to replace the second next-relay node 7016 . For example, instead of the second next-relay node 7016 may be a second node 7002 located on a possible relay route away from the straight line 7014 or curved arc, such as from the first node 7004 via Passive Spatial Awareness (PSA) or multi-hop Spatial awareness (MHSA) assessment and judgment.

在一些實施例中,第一節點7004可經組態以在識別通信資料封包之路由已導致預定數目個終端路由之後經由泛流路由(F2R)將通信資料封包廣播(例如,多播)至目的地7006。例如,第一節點7004可從一或多個可能中繼路由(例如,第二可能中繼路由、第三可能中繼路由或類似物)之一節點7002接收一或多個否定認可(NAK),其中所接收否定認可(NAK)之數目等於或大於終端路由之預定數目,其中第一節點7004接著經組態以經由泛流路由(F2R)將通信資料封包廣播至目的地7006。如本文中先前論述,泛流路由(F2R)可容許第一節點7004在經編譯空間覺知資訊不完整或不穩定時將資料發送至目的地7006。例如,如本文中先前論述,在識別通信資料封包之路由已導致預定數目個終端路由(例如,不穩定資訊)之後,可使用泛流路由(F2R)。In some embodiments, the first node 7004 may be configured to broadcast (e.g., multicast) the communication data packet to the destination via flood routing (F2R) after identifying that the routing of the communication data packet has resulted in routing to a predetermined number of endpoints land 7006. For example, a first node 7004 may receive one or more negative acknowledgments (NAK) from a node 7002 of one or more possible relay routes (e.g., a second possible relay route, a third possible relay route, or the like). , wherein the number of negative acknowledgments (NAKs) received is equal to or greater than a predetermined number of terminating routes, wherein the first node 7004 is then configured to broadcast the communication data packet to the destination 7006 via flood routing (F2R). As previously discussed herein, flood routing (F2R) may allow a first node 7004 to send data to a destination 7006 when the compiled spatially aware information is incomplete or unstable. For example, as previously discussed herein, flood routing (F2R) may be used after identifying that routing of communication data packets has resulted in a predetermined number of terminal routes (eg, unstable information).

大體上參考圖33至圖41,一些實施例可包含經組態用於經由下一中繼節點7016之一或多者沿著用於在第一節點7004與目的地7006之間發射之一路由發射通信資料封包之多節點通信網路7000。多節點通信網路7000可包含將通信資料封包從第一節點7004發射至目的地7006所需之任何數目個下一中繼節點7016 (例如,一或多個下一中繼節點7016a至7016j),且所揭示實施例不限制可使用之下一中繼節點7016之數目。Referring generally to FIGS. 33-41 , some embodiments may include configurations for following a route for transmitting between a first node 7004 and a destination 7006 via one or more next relay nodes 7016 A multi-node communication network 7000 for transmitting communication data packets. The multi-node communication network 7000 can include any number of next relay nodes 7016 (e.g., one or more next relay nodes 7016a through 7016j) needed to transmit a communication data packet from a first node 7004 to a destination 7006 , and the disclosed embodiments do not limit the number of next relay nodes 7016 that may be used.

仍大體上參考圖33至圖41,在一些實施例中,一或多個下一中繼節點7016a至7016j (例如,下一中繼節點7016a、第二下一中繼節點7016b、第三下一中繼節點7016c或類似物)可具有自身節點速度、自身節點定向及目的地7006之資訊。目的地7006可在一或多個下一中繼節點7016a至7016j之通信範圍7010之外,且視情況在一或多個下一中繼節點7016a至7016j之信標範圍7012之外。一或多個下一中繼節點7016a至7016j可經組態以接收通信資料封包。一或多個下一中繼節點7016a至7016j可經組態以利用被動空間覺知(PSA)來編譯一或多個下一中繼節點7016a至7016j之信標範圍7012內之節點7002之空間覺知。一或多個下一中繼節點7016a至7016j可經組態以評估超出通信範圍7010且在一或多個下一中繼節點7016a至7016j之信標範圍7012內之一或多個可能中繼路由(例如,第二可能中繼路由、第三可能中繼路由或類似物)。一或多個下一中繼節點7016a至7016j可經組態以判定一或多個下一中繼節點7016a至7016j中位於可能中繼路由之一者(例如,第二可能中繼路由)上之下一中繼節點7016a至7016j之一者(例如,第二下一中繼節點7016b),其中可能中繼路由之一者最接近直線7014或彎曲弧線,而不被判定為一終端路由之部分。一或多個下一中繼節點7016可經組態以將通信資料封包發射至下一中繼節點7016之所判定者(例如,第二下一中繼節點7016b)。Still referring generally to FIGS. 33-41, in some embodiments, one or more next-relay nodes 7016a-7016j (e.g., next- A relay node 7016c or the like) may have its own node speed, own node orientation and destination 7006 information. Destination 7006 may be outside communication range 7010 of one or more next-relay nodes 7016a-7016j, and optionally outside beacon range 7012 of one or more next-relay nodes 7016a-7016j. One or more next relay nodes 7016a-7016j may be configured to receive communication data packets. One or more next-relay nodes 7016a-7016j may be configured to utilize passive spatial awareness (PSA) to compile the space of nodes 7002 within the beacon range 7012 of one or more next-relay nodes 7016a-7016j awareness. The one or more next-relay nodes 7016a-7016j may be configured to evaluate one or more possible relays beyond the communication range 7010 and within the beacon range 7012 of the one or more next-relay nodes 7016a-7016j route (eg, second possible relay route, third possible relay route, or similar). One or more next-relay nodes 7016a-7016j may be configured to determine that one or more next-relay nodes 7016a-7016j are on one of the possible relay routes (e.g., a second possible relay route) One of the next-next-hop nodes 7016a-7016j (e.g., the second next-hop node 7016b) for which one of the possible relay routes is closest to the straight line 7014 or curved arc and is not determined to be a terminal route part. One or more next relay nodes 7016 may be configured to transmit communication data packets to a determined one of the next relay nodes 7016 (eg, the second next relay node 7016b).

在一些實施例中,一或多個下一中繼節點7016a至7016j (例如,下一中繼節點7016a、第二下一中繼節點7016b、第三下一中繼節點7016c或類似物)可具有自身節點速度、自身節點定向及/或目的地7006之資訊。目的地7006可在一或多個下一中繼節點7016a至7016j之通信範圍7010之外,且視情況在一或多個下一中繼節點7016a至7016j之信標範圍7012之外。一或多個下一中繼節點7016a至7016j可經組態以接收通信資料封包。接收通信資料封包之一或多個下一中繼節點7016a至7016j可經組態以計算從各自下一中繼節點7016至目的地7006之一第二直線7014或一第二彎曲弧線。一或多個下一中繼節點7016a至7016j可經組態以利用被動空間覺知(PSA)來編譯一或多個下一中繼節點7016a至7016j之信標範圍7012內之節點7002之空間覺知。一或多個下一中繼節點7016a至7016j可經組態以評估超出通信範圍7010且在一或多個下一中繼節點7016a至7016j之信標範圍7012內之一或多個可能中繼路由(例如,第二可能中繼路由、第三可能中繼路由或類似物)。一或多個下一中繼節點7016a至7016j可經組態以判定節點7002中位於可能中繼路由之一者(例如,第二可能中繼路由)上之下一中繼節點7016a至7016j之一者(例如,第二下一中繼節點7016b),其中可能中繼路由之一者最接近第二直線7014或第二彎曲弧線,而不被判定為一終端路由之部分。一或多個下一中繼節點7016可經組態以將通信資料封包發射至下一中繼節點7016之所判定者(例如,第二下一中繼節點7016b)。In some embodiments, one or more next-relay nodes 7016a through 7016j (e.g., next-relay node 7016a, second next-relay node 7016b, third next-relay node 7016c, or the like) may With own node speed, own node orientation and/or destination 7006 information. Destination 7006 may be outside communication range 7010 of one or more next-relay nodes 7016a-7016j, and optionally outside beacon range 7012 of one or more next-relay nodes 7016a-7016j. One or more next relay nodes 7016a-7016j may be configured to receive communication data packets. One or more of the next hop nodes 7016a - 7016j receiving the communication data packet may be configured to calculate a second straight line 7014 or a second curved arc from the respective next hop node 7016 to the destination 7006 . One or more next-relay nodes 7016a-7016j may be configured to utilize passive spatial awareness (PSA) to compile the space of nodes 7002 within the beacon range 7012 of one or more next-relay nodes 7016a-7016j awareness. The one or more next-relay nodes 7016a-7016j may be configured to evaluate one or more possible relays beyond the communication range 7010 and within the beacon range 7012 of the one or more next-relay nodes 7016a-7016j route (eg, second possible relay route, third possible relay route, or similar). One or more next-relay nodes 7016a-7016j may be configured to determine the next-relay node 7016a-7016j of nodes 7002 on one of the possible relay routes (e.g., a second possible relay route). One (eg, the second next-hop node 7016b ), where one of the possible relay routes is closest to the second straight line 7014 or the second curved arc, is not determined to be part of a terminal route. One or more next relay nodes 7016 may be configured to transmit communication data packets to a determined one of the next relay nodes 7016 (eg, the second next relay node 7016b).

在一些實施例中,一或多個下一中繼節點7016a至7016j可經組態以利用多跳空間覺知(MHSA)來評估超出一或多個下一中繼節點7016a至7016j之信標範圍之一或多個可能中繼路由。例如,利用多跳空間覺知(MHSA),一或多個下一中繼節點7016a至7016j之各者可將其來自被動空間覺知(PSA)之經編譯資訊連同其自身定位資訊(PLI)泛流至多節點通信網路7000中之每一節點7002。例如,多跳空間覺知(MHSA)可容許一或多個下一中繼節點7016a至7016j評估超出信標範圍7012之一或多個可能中繼路由。此將容許在一或多個下一中繼節點7016a至7016j之間朝著目的地7006更高效地路由通信資料封包,此係因為當評估超出通信範圍7010及信標範圍7012之可能中繼路由時,一或多個下一中繼節點7016a至7016j將具有哪些可能中繼路由係一終端路由之部分(例如,由終端節點7018組成)及哪些可能中繼路由最接近直線7014或第二直線7014之一擴展視圖。In some embodiments, the one or more next-relay nodes 7016a-7016j may be configured to utilize Multi-Hop Spatial Awareness (MHSA) to evaluate beacons beyond the one or more next-relay nodes 7016a-7016j A range of one or more possible relay routes. For example, using Multi-Hop Spatial Awareness (MHSA), each of the one or more next-relay nodes 7016a-7016j can combine its compiled information from Passive Spatial Awareness (PSA) with its own Positioning Information (PLI) Flood to each node 7002 in the multi-node communication network 7000. For example, Multi-Hop Spatial Awareness (MHSA) may allow one or more next-relay nodes 7016a-7016j to evaluate one or more possible relay routes beyond beacon range 7012. This will allow communication data packets to be more efficiently routed towards destination 7006 between one or more next relay nodes 7016a-7016j, because when evaluating possible relay routes beyond communication range 7010 and beacon range 7012 , one or more next relay nodes 7016a to 7016j will have which possible relay routes are part of a terminal route (e.g., consisting of terminal node 7018) and which possible relay routes are closest to straight line 7014 or the second straight line One of the 7014 extended views.

在一些實施例中,一或多個下一中繼節點7016a至7016j之各者可經組態以計算從各自下一中繼節點7016a至7016j至目的地7006之第二直線7014或第二彎曲弧線。第二直線7014可為各自下一中繼節點7016a至7016j與目的地7006之間之最短線路;通常,發射路由可能不完全遵循沿著第二直線7014之一路徑,但下一中繼節點7016之一或多者(例如,下一中繼節點7016b)可經配置得更靠近第二直線7014以將通信資料封包轉發至目的地7006。例如,下一中繼節點7016a可從第一節點7004接收通信資料封包。接著,下一中繼節點7016a可計算從下一中繼節點7016a至目的地7006之第二直線7014或第二彎曲弧線。在一些實施例中,第二直線7014可用於產生從各自下一中繼節點7016a至7016j至一單一目的地節點7008之一最短線路。例如,一單一目的地節點7008可定位於目的地7006內,且第二直線7014或第二曲線可經建構以從各自下一中繼節點7016a至7016j延伸至單一目的地節點7008。在一些實施例中,第二直線7014可用於產生從各自下一中繼節點7016a至7016j至兩個或更多個目的地節點7008之一最短線路。例如,兩個或更多個目的地節點7008可定位於目的地7006內,且第二直線7014可經建構以從各自下一中繼節點7016a至7016j延伸至定位於目的地7006內之兩個或更多個目的地節點7008之一經計算質心(COM)點。In some embodiments, each of the one or more next-hop nodes 7016a-7016j can be configured to calculate a second straight line 7014 or a second bend from the respective next-hop node 7016a-7016j to the destination 7006 arc. The second straight line 7014 may be the shortest route between the respective next relay nodes 7016a to 7016j and the destination 7006; in general, the transmit route may not follow exactly a path along the second straight line 7014, but the next relay node 7016 One or more (eg, next relay node 7016b ) may be configured closer to second line 7014 to forward the communication data packet to destination 7006 . For example, the next relay node 7016a may receive a communication packet from the first node 7004 . Next, the next hop node 7016a can calculate a second straight line 7014 or a second curved arc from the next hop node 7016a to the destination 7006 . In some embodiments, the second straight line 7014 can be used to generate the shortest route from the respective next-hop nodes 7016 a - 7016 j to a single destination node 7008 . For example, a single destination node 7008 can be located within the destination 7006, and the second straight line 7014 or second curved line can be constructed to extend from the respective next hop nodes 7016a-7016j to the single destination node 7008. In some embodiments, the second straight line 7014 may be used to generate the shortest route from a respective next-hop node 7016a - 7016j to one of the two or more destination nodes 7008 . For example, two or more destination nodes 7008 may be located within destination 7006, and second straight line 7014 may be constructed to extend from respective next-hop nodes 7016a through 7016j to two nodes located within destination 7006. One or more destination nodes 7008 calculate a center of mass (COM) point.

在一些實施例中,第二直線7014可用於產生從各自下一中繼節點7016a至7016j至一單一目的地節點7008之一最短線路。例如,一單一目的地節點7008可定位於目的地7006內,且第二直線7014可經建構以從各自下一中繼節點7016a至7016j延伸至單一目的地節點7008。在一些實施例中,第二直線7014可用於產生從各自下一中繼節點7016a至7016j至兩個或更多個目的地節點7008之一最短線路。例如,兩個或更多個目的地節點7008可定位於目的地7006內,且第二直線7014可經建構以從各自下一中繼節點7016a至7016j延伸至定位於目的地7006內之兩個或更多個目的地節點7008之一經計算質心(COM)點。In some embodiments, the second straight line 7014 can be used to generate the shortest route from the respective next-hop nodes 7016 a - 7016 j to a single destination node 7008 . For example, a single destination node 7008 can be located within destination 7006, and second straight line 7014 can be constructed to extend from respective next-hop nodes 7016a-7016j to single destination node 7008. In some embodiments, the second straight line 7014 may be used to generate the shortest route from a respective next-hop node 7016a - 7016j to one of the two or more destination nodes 7008 . For example, two or more destination nodes 7008 may be located within destination 7006, and second straight line 7014 may be constructed to extend from respective next-hop nodes 7016a through 7016j to two nodes located within destination 7006. One or more destination nodes 7008 calculate a center of mass (COM) point.

在一些實施例中,一或多個下一中繼節點7016a至7016j之各者可經組態以從下一中繼節點7016a至7016j之任一者接收指示出現一終端路由之一否定認可(NAK),且判定複數個節點7002中位於可能中繼路由之一第二可能路由上之一替代下一中繼節點7016,其中第二可能中繼路由第二接近直線7014或第二直線7014,而並非一終端路由之部分。例如,第二下一中繼節點7016b可經組態以將指示出現一終端路由之否定認可(NAK)發射至下一中繼節點7016a,其中下一中繼節點7016a經組態以接收否定認可(NAK),其中下一中繼節點7016a可接著判定替代第二下一中繼節點7016。例如,替代第二下一中繼節點7016可為位於可能中繼路由上之第二遠離於直線7014或第二直線7014之節點7002,如由下一中繼節點7016a經由被動空間覺知(PSA)或多跳空間覺知(MHSA)評估及判定。In some embodiments, each of the one or more next-relay nodes 7016a-7016j may be configured to receive a negative acknowledgment ( NAK), and it is determined that one of the plurality of nodes 7002 located on a second possible route of the possible relay route replaces the next relay node 7016, wherein the second possible relay route is second close to a straight line 7014 or a second straight line 7014, It is not part of a terminal route. For example, the second next-hop node 7016b may be configured to transmit a negative acknowledgment (NAK) indicating the occurrence of a terminal route to the next-hop node 7016a, where the next-hop node 7016a is configured to receive the negative acknowledgment (NAK), where the next-relay node 7016a may then decide to replace the second next-relay node 7016 . For example, instead of the second next-relay node 7016, it may be a second node 7002 located on a possible relay route away from the straight line 7014 or the second straight line 7014, such as by the next-relay node 7016a via Passive Spatial Awareness (PSA ) or multi-hop spatial awareness (MHSA) assessment and judgment.

在一些實施例中,一或多個下一中繼節點7016a至7016j之各者可判定位於最接近直線7014或第二直線7014而並非一終端路由之部分之可能中繼路由之一者上之下一中繼節點7016a至7016j,且不必編譯來自超出一或多個下一中繼節點7016a至7016j之通信範圍7010之節點7002之基於全球定位系統(基於GPS)之定位資訊(PLI)。例如,下一中繼節點7016a可利用被動空間覺知(PSA)來判定第二下一中繼節點7016b,其中下一中繼節點7016a尚未編譯來自超出第一節點7004之通信範圍7010之節點7002之基於全球定位系統(基於GPS)之定位資訊(PLI)。In some embodiments, each of the one or more next-relay nodes 7016a-7016j may be determined to be on one of the possible relay routes that are closest to straight line 7014 or second straight line 7014 and are not part of a terminal route Next-relay nodes 7016a-7016j, and without having to compile Global Positioning System (GPS-based) positioning information (PLI) from nodes 7002 beyond the communication range 7010 of one or more next-relay nodes 7016a-7016j. For example, the next-relay node 7016a may utilize Passive Spatial Awareness (PSA) to determine a second next-relay node 7016b, where the next-relay node 7016a has not compiled a node 7002 from beyond the communication range 7010 of the first node 7004 Positioning Information (PLI) based on the Global Positioning System (GPS).

在一些實施例中,一或多個下一中繼節點7016a至7016j之各者可經組態以在識別通信資料封包之路由已導致預定數目個終端路由之後經由泛流路由(F2R)將通信資料封包廣播(例如,多播)至目的地7006。例如,下一中繼節點7016a可從一或多個可能中繼路由(例如,第二可能中繼路由或類似物)之一節點7002接收一或多個否定認可(NAK),其中所接收否定認可(NAK)之數目等於或大於終端路由之預定數目,其中下一中繼節點7016a接著經組態以經由泛流路由(F2R)將通信資料封包廣播至目的地7006。如本文中先前論述,泛流路由(F2R)可容許下一中繼節點7016a在經編譯空間覺知資訊不完整或不穩定時將資料發送至目的地7006。例如,如本文中先前論述,在識別通信資料封包之路由已導致預定數目個終端路由(例如,不穩定資訊)之後,可使用泛流路由(F2R)。In some embodiments, each of the one or more next-relay nodes 7016a through 7016j may be configured to route the communication via flood routing (F2R) after identifying that the routing of the communication data packet has resulted in a predetermined number of terminating routes. The data packet is broadcast (eg, multicast) to a destination 7006. For example, next-relay node 7016a may receive one or more negative acknowledgments (NAKs) from node 7002 of one or more possible relay routes (e.g., a second possible relay route or the like), wherein the received negative The number of acknowledgments (NAKs) is equal to or greater than the predetermined number of end routes, where the next hop node 7016a is then configured to broadcast the traffic packet to the destination 7006 via flood routing (F2R). As previously discussed herein, flood routing (F2R) may allow the next relay node 7016a to send data to the destination 7006 when the compiled spatially aware information is incomplete or unstable. For example, as previously discussed herein, flood routing (F2R) may be used after identifying that routing of communication data packets has resulted in a predetermined number of terminal routes (eg, unstable information).

參考圖33,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,下一中繼節點7016a可經組態以從第一節點7004接收通信資料封包(例如,如圖32中展示)。接著,下一中繼節點7016a可經組態以判定位於第二可能中繼路由之一者上之一第二下一中繼節點7016b,該等第二可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,下一中繼節點7016a可經組態以將通信資料封包發射至第二下一中繼節點7016b。接著,第二下一中繼節點7016b可經組態以從下一中繼節點7016a接收通信資料封包。Referring to Figure 33, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes, according to an example embodiment of the invention. In some embodiments, the next relay node 7016a may be configured to receive communication data packets from the first node 7004 (eg, as shown in FIG. 32 ). Next, the next-hop node 7016a may be configured to determine a second next-hop node 7016b located on one of the second possible relay routes that is closest to The straight line 7014 or the second straight line 7014 are not determined to be part of a terminal route. Then, the next relay node 7016a can be configured to transmit the communication data packet to the second next relay node 7016b. Next, the second next-relay node 7016b can be configured to receive the communication data packet from the next-relay node 7016a.

參考圖34,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,第二下一中繼節點7016b可經組態以從下一中繼節點7016a接收通信資料封包(例如,如圖33中展示)。接著,第二下一中繼節點7016b可經組態以判定位於第三可能中繼路由之一者上之一第三下一中繼節點7016c,該等第三可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,第二下一中繼節點7016b可經組態以將通信資料封包發射至第三下一中繼節點7016c。接著,第三下一中繼節點7016c可經組態以從第二下一中繼節點7016b接收通信資料封包。Referring to Figure 34, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes according to an example embodiment of the present invention. In some embodiments, the second next-relay node 7016b may be configured to receive communication data packets from the next-relay node 7016a (eg, as shown in FIG. 33 ). Next, the second next-hop node 7016b can be configured to determine a third next-hop node 7016c located on one of the third possible relay routes, the one of the third possible relay routes The closest line 7014 or the second line 7014 is not determined as part of a terminal route. Next, the second next-relay node 7016b can be configured to transmit the communication data packet to the third next-relay node 7016c. Next, the third next-relay node 7016c can be configured to receive the communication data packet from the second next-relay node 7016b.

參考圖35,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,第三下一中繼節點7016c可經組態以從第二下一中繼節點7016b接收通信資料封包(例如,如圖34中展示)。接著,第三下一中繼節點7016c可經組態以判定位於第四可能中繼路由之一者上之一第四下一中繼節點7016d,該等第四可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,第三下一中繼節點7016c可經組態以將通信資料封包發射至第四下一中繼節點7016d。接著,第四下一中繼節點7016d可經組態以從第三下一中繼節點7016c接收通信資料封包。Referring to Figure 35, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes, according to an example embodiment of the invention. In some embodiments, the third next-relay node 7016c may be configured to receive communication packets from the second next-relay node 7016b (eg, as shown in FIG. 34 ). Next, the third next-hop node 7016c may be configured to determine a fourth next-hop node 7016d located on one of the fourth possible relay routes, the one of the fourth possible relay routes The closest line 7014 or the second line 7014 is not determined as part of a terminal route. Next, the third next-relay node 7016c can be configured to transmit the communication data packet to the fourth next-relay node 7016d. Next, the fourth next RN node 7016d can be configured to receive the communication data packet from the third next RN node 7016c.

參考圖36,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,第四下一中繼節點7016d可經組態以從第三下一中繼節點7016c接收通信資料封包(例如,如圖35中展示)。接著,第四下一中繼節點7016d可經組態以判定位於第五可能中繼路由之一者上之一第五下一中繼節點7016e,該等第五可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,第四下一中繼節點7016d可經組態以將通信資料封包發射至第五下一中繼節點7016e。接著,第五下一中繼節點7016e可經組態以從第四下一中繼節點7016d接收通信資料封包。Referring to Figure 36, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes, according to an example embodiment of the invention. In some embodiments, the fourth next-relay node 7016d may be configured to receive communication packets from the third next-relay node 7016c (eg, as shown in FIG. 35 ). Next, the fourth next-hop node 7016d may be configured to determine a fifth next-hop node 7016e located on one of the fifth possible relay routes, the one of the fifth possible relay routes The closest line 7014 or the second line 7014 is not determined as part of a terminal route. Next, the fourth next-relay node 7016d may be configured to transmit the communication data packet to the fifth next-relay node 7016e. Next, the fifth next RN 7016e may be configured to receive the communication data packet from the fourth next RN 7016d.

參考圖37,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,第五下一中繼節點7016e可經組態以從第四下一中繼節點7016d接收通信資料封包(例如,如圖36中展示)。接著,第五下一中繼節點7016e可經組態以判定位於第六可能中繼路由之一者上之一第六下一中繼節點7016f,該等第六可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,第五下一中繼節點7016e可經組態以將通信資料封包發射至第六下一中繼節點7016f。接著,第六下一中繼節點7016f可經組態以從第五下一中繼節點7016e接收通信資料封包。Referring to Figure 37, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes according to an example embodiment of the invention. In some embodiments, the fifth next-relay node 7016e may be configured to receive communication packets from the fourth next-relay node 7016d (eg, as shown in FIG. 36 ). Next, the fifth next-relay node 7016e may be configured to determine a sixth next-relay node 7016f located on one of the sixth possible relay routes, the one of the sixth possible relay routes The closest line 7014 or the second line 7014 is not determined as part of a terminal route. Next, the fifth next relay node 7016e may be configured to transmit the communication data packet to the sixth next relay node 7016f. Next, the sixth next RN 7016f may be configured to receive the communication data packet from the fifth next RN 7016e.

參考圖38,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,第六下一中繼節點7016f可經組態以從第五下一中繼節點7016e接收通信資料封包(例如,如圖37中展示)。接著,第六下一中繼節點7016f可經組態以判定位於第七可能中繼路由之一者上之一第七下一中繼節點7016g,該等第七可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,第六下一中繼節點7016f可經組態以將通信資料封包發射至第七下一中繼節點7016g。接著,第七下一中繼節點7016g可經組態以從第六下一中繼節點7016f接收通信資料封包。Referring to Figure 38, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes according to an example embodiment of the invention. In some embodiments, the sixth next-relay node 7016f may be configured to receive communication packets from the fifth next-relay node 7016e (eg, as shown in FIG. 37 ). Next, the sixth next-hop node 7016f can be configured to determine a seventh next-hop node 7016g located on one of the seventh possible relay routes, the one of the seventh possible relay routes The closest line 7014 or the second line 7014 is not determined as part of a terminal route. Next, the sixth next RN 7016f may be configured to transmit the communication data packet to the seventh next RN 7016g. Next, the seventh next RN 7016g may be configured to receive the communication data packet from the sixth next RN 7016f.

參考圖39,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,第七下一中繼節點7016g可經組態以從第六下一中繼節點7016f接收通信資料封包(例如,如圖38中展示)。接著,第七下一中繼節點7016g可經組態以判定位於第八可能中繼路由之一者上之一第八下一中繼節點7016h,該等第八可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,第七下一中繼節點7016g可經組態以將通信資料封包發射至第八下一中繼節點7016h。接著,第八下一中繼節點7016h可經組態以從第七下一中繼節點7016g接收通信資料封包。Referring to Figure 39, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes according to an example embodiment of the present invention. In some embodiments, the seventh next-relay node 7016g may be configured to receive communication packets from the sixth next-relay node 7016f (eg, as shown in FIG. 38 ). Next, the seventh next-relay node 7016g may be configured to determine an eighth next-relay node 7016h located on one of the eighth possible relay routes, the one of the eighth possible relay routes The closest line 7014 or the second line 7014 is not determined as part of a terminal route. Next, the seventh next RN 7016g may be configured to transmit the communication data packet to the eighth next RN 7016h. Next, the eighth next RN 7016h may be configured to receive the communication data packet from the seventh next RN 7016g.

參考圖40,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,第八下一中繼節點7016h可經組態以從第七下一中繼節點7016g接收通信資料封包(例如,如圖39中展示)。接著,第八下一中繼節點7016h可經組態以判定位於第九可能中繼路由之一者上之一第九下一中繼節點7016i,該等第九可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,第八下一中繼節點7016h可經組態以將通信資料封包發射至第九下一中繼節點7016i。接著,第九下一中繼節點7016i可經組態以從第八下一中繼節點7016h接收通信資料封包。Referring to Figure 40, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes according to an example embodiment of the present invention. In some embodiments, the eighth next-relay node 7016h may be configured to receive communication data packets from the seventh next-relay node 7016g (eg, as shown in FIG. 39 ). Next, the eighth next-relay node 7016h may be configured to determine a ninth next-relay node 7016i located on one of the ninth possible relay routes, the one of the ninth possible relay routes The closest line 7014 or the second line 7014 is not determined as part of a terminal route. Next, the eighth next RN 7016h may be configured to transmit the communication data packet to the ninth next RN 7016i. Next, the ninth next RN 7016i can be configured to receive the communication data packet from the eighth next RN 7016h.

參考圖41,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,第九下一中繼節點7016i可經組態以從第八下一中繼節點7016h接收通信資料封包(例如,如圖40中展示)。接著,第九下一中繼節點7016i可經組態以判定位於第十可能中繼路由之一者上之一第十下一中繼節點7016j,該等第十可能中繼路由之該一者最接近直線7014或第二直線7014而不被判定為一終端路由之部分。接著,第九下一中繼節點7016i可經組態以將通信資料封包發射至第十下一中繼節點7016i。接著,第十下一中繼節點7016j可經組態以從第九下一中繼節點7016i接收通信資料封包。Referring to Figure 41, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes according to an example embodiment of the present invention. In some embodiments, the ninth next relay node 7016i may be configured to receive communication data packets from the eighth next relay node 7016h (eg, as shown in FIG. 40 ). Next, the ninth next relay node 7016i may be configured to determine a tenth next relay node 7016j located on one of the tenth possible relay routes, the one of the tenth possible relay routes The closest line 7014 or the second line 7014 is not determined as part of a terminal route. Next, the ninth next relay node 7016i may be configured to transmit the communication data packet to the tenth next relay node 7016i. Next, the tenth next relay node 7016j may be configured to receive the communication data packet from the ninth next relay node 7016i.

參考圖42,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,一或多個下一中繼節點7016a至7016j之一者可經組態以將通信資料封包發射至複數個節點7002之一最終中繼節點7020。最終中繼節點7020可為下一中繼節點7016a至7016j之一者,其中目的地節點7008之至少一者在下一中繼節點7016a至7016j之一者之通信範圍7010內。例如,第十下一中繼節點7016j可經組態以從第九下一中繼節點7016i接收通信資料封包(例如,如圖41中展示)。接著,第十下一中繼節點7016j可經組態以判定最終中繼節點7020,其中目的地節點7008之至少一者在最終中繼節點7020之通信範圍7010內。接著,最終中繼節點7020可經組態以從第十下一中繼節點7016j接收通信資料封包。接著,最終中繼節點7020可經組態以將通信資料封包發射(例如,單播或多播)至目的地節點7008之至少一者。接著,目的地節點7008之至少一者可經組態以從最終中繼節點7020接收通信資料封包。Referring to Figure 42, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes, according to an example embodiment of the present invention. In some embodiments, one of the one or more next relay nodes 7016a - 7016j may be configured to transmit the communication data packet to a final relay node 7020 of the plurality of nodes 7002 . The final relay node 7020 may be one of the next relay nodes 7016a-7016j, wherein at least one of the destination nodes 7008 is within the communication range 7010 of one of the next relay nodes 7016a-7016j. For example, the tenth next relay node 7016j may be configured to receive communication data packets from the ninth next relay node 7016i (eg, as shown in FIG. 41 ). Then, the tenth next relay node 7016j can be configured to determine the final relay node 7020 where at least one of the destination nodes 7008 is within the communication range 7010 of the final relay node 7020 . Next, the final relay node 7020 can be configured to receive the communication data packet from the tenth next relay node 7016j. The final relay node 7020 can then be configured to transmit (eg, unicast or multicast) the communication data packet to at least one of the destination nodes 7008 . Next, at least one of the destination nodes 7008 can be configured to receive the communication data packet from the final relay node 7020 .

在一些實施例中,最終中繼節點7020可將通信資料封包廣播(例如,多播)朝向目的地節點7008之至少一者,使得最終中繼節點7020之通信範圍內之每一目的地節點7008可接收通信資料封包。In some embodiments, the final relay node 7020 may broadcast (e.g., multicast) the communication data packet towards at least one of the destination nodes 7008 such that each destination node 7008 within communication range of the final relay node 7020 Communication data packets can be received.

參考圖43,展示根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。在一些實施例中,一或多個目的地節點7008可從最終中繼節點7020接收通信資料封包(例如,如圖42中展示)。接著,接收通信資料封包之一或多個目的地節點7008可經組態以將通信資料封包廣播(例如,多播)至一或多個廣播目的地節點7008之各者之通信範圍7010內之目的地節點7008。例如,從最終中繼節點7020接收資料通信資料封包之第一目的地節點7008可為最終中繼節點7020之通信範圍內之唯一目的地節點7008。接著,第一目的地節點7008可將通信資料封包廣播(例如,多播)至第一目的地節點7008之通信範圍7010內之任何額外目的地節點7008。此外,額外目的地節點7008可接著繼續廣播(例如,多播)通信資料封包,直至目的地7006內之每一目的地節點7008已接收到通信資料封包。Referring to Figure 43, there is shown a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes according to an example embodiment of the present invention. In some embodiments, one or more destination nodes 7008 may receive communication data packets from a final relay node 7020 (eg, as shown in FIG. 42 ). The one or more destination nodes 7008 receiving the communication data packet may then be configured to broadcast (e.g., multicast) the communication data packet to within the communication range 7010 of each of the one or more broadcast destination nodes 7008 Destination node 7008. For example, the first destination node 7008 receiving the data communication data packet from the final relay node 7020 may be the only destination node 7008 within communication range of the final relay node 7020 . The first destination node 7008 may then broadcast (eg, multicast) the communication data packet to any additional destination nodes 7008 within communication range 7010 of the first destination node 7008 . Furthermore, the additional destination nodes 7008 may then continue to broadcast (eg, multicast) the communication data packets until each destination node 7008 within the destinations 7006 has received the communication data packets.

參考圖44,根據本文中揭示之發明概念之一方法8000之一例示性實施例可包含以下步驟之一或多者。另外,例如,一些實施例可包含反覆、同時及/或循序執行方法8000之一或多個例項。另外,例如,方法8000之至少一些步驟可並行及/或同時執行。另外,在一些實施例中,方法8000之至少一些步驟可非循序執行。Referring to FIG. 44 , an exemplary embodiment of a method 8000 according to the inventive concepts disclosed herein may include one or more of the following steps. Additionally, for example, some embodiments may include performing one or more instances of method 8000 iteratively, concurrently, and/or sequentially. Additionally, for example, at least some steps of method 8000 may be performed in parallel and/or simultaneously. Additionally, in some embodiments, at least some steps of method 8000 may be performed out of sequence.

步驟8002可包含在判定一通信資料封包需要從一第一節點發送至下一中繼節點之後,判定通信資料封包是否係高優先級。Step 8002 may include, after determining that a communication data packet needs to be sent from a first node to a next relay node, determining whether the communication data packet is a high priority.

步驟8004可包含在判定通信資料封包係高優先級之後,發生泛流路由(F2R)。例如,在判定通信資料封包係高優先級之後,可經由泛流路由(F2R)將通信資料封包廣播至一或多個目的地節點。Step 8004 may include flood routing (F2R) after determining that the communication data packet is of high priority. For example, after determining that the communication data packet is of high priority, the communication data packet may be broadcast to one or more destination nodes via flood routing (F2R).

步驟8006可包含在判定通信資料封包並非高優先級之後,將一終端計數設定為0。Step 8006 may include setting a terminal count to 0 after determining that the communication data packet is not of high priority.

步驟8008可包含在將一終端計數設定為0之後,判定是否存在朝向目的地之一新下一中繼節點。如圖44中展示,在判定不存在朝向目的地之新下一中繼節點可用之後,步驟8008可進一步包含:經由泛流路由(F2R)將通信資料封包廣播至一或多個目的地節點之一步驟8004。Step 8008 may include determining whether there is a new next hop towards the destination after setting a terminal count to 0. As shown in FIG. 44 , after determining that there is no new next relay node toward the destination available, step 8008 may further include: broadcasting the communication data packet to one or more destination nodes via flood routing (F2R) A step 8004.

步驟8010可包含在判定存在朝向目的地之一新下一中繼節點可用之後,將通信資料封包從第一節點轉發至新下一中繼節點。Step 8010 may comprise forwarding the communication data packet from the first node to the new next hop after determining that there is a new next hop available towards the destination.

步驟8012可包含在將通信資料封包從第一節點轉發至新下一中繼節點之後,判定第一節點是否已從新下一中繼節點接收一否定認可(NAK)。如圖44中展示,在判定第一節點尚未從新下一中繼節點接收一否定認可(NAK)之後,方法8000完成。Step 8012 may include determining whether the first node has received a negative acknowledgment (NAK) from the new next-RN after forwarding the communication data packet from the first node to the new-next-RN. As shown in FIG. 44, the method 8000 completes after determining that the first node has not received a negative acknowledgment (NAK) from the new next RN.

步驟8014可包含在判定第一節點從新下一中繼節點接收一否定認可(NAK)之後,使終端計數遞增。Step 8014 may include incrementing the terminal count after determining that the first node received a negative acknowledgment (NAK) from the new next-RN.

步驟8016可包含在使終端計數遞增之後,判定終端計數是否大於一預定最大終端計數。如圖44中展示,在判定終端計數不大於最大終端計數之後,步驟8016可進一步包含:判定是否存在朝向目的地之一新下一中繼節點之一步驟8008。在判定終端計數大於最大終端計數時,步驟8016可進一步包含:經由泛流路由(F2R)將通信資料封包廣播至一或多個目的地節點之一步驟8004。Step 8016 may include, after incrementing the terminal count, determining whether the terminal count is greater than a predetermined maximum terminal count. As shown in FIG. 44, after determining that the terminal count is not greater than the maximum terminal count, step 8016 may further include a step 8008 of determining whether there is a new next-hop node towards the destination. When it is determined that the terminal count is greater than the maximum terminal count, step 8016 may further include: a step 8004 of broadcasting the communication data packet to one or more destination nodes via flood routing (F2R).

參考圖45,根據本文中揭示之發明概念之一方法8100之一例示性實施例可包含以下步驟之一或多者。另外,例如,一些實施例可包含反覆、同時及/或循序執行方法8100之一或多個例項。另外,例如,方法8100之至少一些步驟可並行及/或同時執行。另外,在一些實施例中,方法8100之至少一些步驟可非循序執行。Referring to FIG. 45 , an exemplary embodiment of a method 8100 according to the inventive concepts disclosed herein may include one or more of the following steps. Additionally, for example, some embodiments may include iterative, simultaneous, and/or sequential execution of one or more instances of method 8100 . Additionally, for example, at least some steps of method 8100 may be performed in parallel and/or concurrently. Additionally, in some embodiments, at least some steps of method 8100 may be performed out of sequence.

步驟8102可包含在判定一通信資料封包需要從下一中繼節點發送至一新下一中繼節點之後,將一重試計數設定為0。Step 8102 may include setting a retry count to 0 after determining that a communication data packet needs to be sent from the next RN to a new next RN.

步驟8104可包含在將一重試計數設定為0之後,判定是否存在朝向目的地之一新下一中繼節點。如圖45中展示,在判定不存在朝向目的地之新下一中繼節點可用之後,步驟8104可進一步包含:下一中繼節點將一否定認可(NAK)發送至先前下一中繼節點之一步驟8106。Step 8104 may comprise, after setting a retry count to 0, determining whether there is a new next hop towards the destination. As shown in FIG. 45 , after determining that there is no new NRN toward the destination available, step 8104 may further include: the next RN sending a negative acknowledgment (NAK) to the previous NRN. A step 8106.

步驟8108可包含在判定存在朝向目的地之一新下一中繼節點可用之後,將通信資料封包從下一中繼節點轉發至新下一中繼節點。Step 8108 may comprise forwarding the communication data packet from the next relay node to the new next relay node after determining that there is a new next relay node available towards the destination.

步驟8110可包含在將通信資料封包從下一中繼節點轉發至新下一中繼節點之後,判定下一中繼節點是否已從新下一中繼節點接收一否定認可(NAK)。如圖44中展示,在判定第一節點尚未從新下一中繼節點接收一否定認可(NAK)之後,方法8100完成。Step 8110 may include determining whether the next RN has received a negative acknowledgment (NAK) from the new next RN after forwarding the communication data packet from the next RN to the new next RN. As shown in FIG. 44, the method 8100 is complete after determining that the first node has not received a negative acknowledgment (NAK) from the new next RN.

步驟8112可包含在判定下一中繼節點已從新下一中繼節點接收一否定認可(NAK)之後,使一終端計數及重試計數兩者遞增。Step 8112 may include incrementing both a terminal count and a retry count after determining that the next RN has received a negative acknowledgment (NAK) from the new next RN.

步驟8114可包含在使終端計數及重試計數兩者遞增之後,判定終端計數是否大於一預定最大終端計數。Step 8114 may include, after incrementing both the terminal count and the retry count, determining whether the terminal count is greater than a predetermined maximum terminal count.

步驟8116可包含在判定終端計數大於最大終端計數之後,可經由泛流路由(F2R)將通信資料封包廣播至一或多個目的地節點。Step 8116 may include broadcasting the communication data packet to one or more destination nodes via flood routing (F2R) after determining that the terminal count is greater than the maximum terminal count.

步驟8118可包含在判定終端計數不大於最大終端計數之後,判定重試計數是否大於一最大重試計數。如圖45中展示,在判定重試計數不大於最大重試計數之後,步驟8118可進一步包含:判定是否存在朝向目的地之一新下一中繼節點之一步驟8104。在判定重試計數大於最大重試計數之後,步驟8118可進一步包含:將一否定認可(NAK)發送至先前下一中繼節點之一步驟8106。Step 8118 may include determining whether the retry count is greater than a maximum retry count after determining that the terminal count is not greater than the maximum terminal count. As shown in FIG. 45, after determining that the retry count is not greater than the maximum retry count, step 8118 may further include a step 8104 of determining whether there is a new next hop towards the destination. After determining that the retry count is greater than the maximum retry count, step 8118 may further include: a step 8106 of sending a negative acknowledgment (NAK) to the previous next RN.

參考圖46,根據本文中揭示之發明概念之一方法9000之一例示性實施例可包含以下步驟之一或多者。另外,例如,一些實施例可包含反覆、同時及/或循序執行方法9000之一或多個例項。另外,例如,方法9000之至少一些步驟可並行及/或同時執行。另外,在一些實施例中,方法9000之至少一些步驟可非循序執行。Referring to FIG. 46 , an exemplary embodiment of a method 9000 according to the inventive concepts disclosed herein may include one or more of the following steps. Additionally, for example, some embodiments may include iterative, simultaneous, and/or sequential execution of one or more instances of method 9000 . Additionally, for example, at least some steps of method 9000 may be performed in parallel and/or simultaneously. Additionally, in some embodiments, at least some steps of method 9000 may be performed out of sequence.

步驟9002可包含提供包含複數個節點之一行動特用網路(MANET),其中複數個節點之各者包括一通信介面及一控制器,其中複數個節點之各者經組態以發射通信資料封包且發射信標,其中各信標之一信標範圍大於各通信資料封包之一通信範圍,其中複數個節點之各者具有被動空間覺知,其中複數個節點之一第一節點具有自身節點速度、自身節點定向及一目的地之資訊,目的地係一目的地區域或一目的地節點,其中目的地在第一節點之通信範圍之外且視情況在第一節點之信標範圍之外。Step 9002 may include providing a mobile ad hoc network (MANET) comprising a plurality of nodes, wherein each of the plurality of nodes includes a communication interface and a controller, wherein each of the plurality of nodes is configured to transmit communication data packetizing and transmitting beacons, wherein a beacon range of each beacon is greater than a communication range of each communication data packet, wherein each of the plurality of nodes has passive spatial awareness, wherein a first node of the plurality of nodes has its own node Information on speed, own node orientation and a destination, the destination being a destination area or a destination node, wherein the destination is outside the communication range of the first node and optionally outside the beacon range of the first node .

步驟9004可包含藉由第一節點計算從第一節點至目的地之一直線。Step 9004 may include calculating a straight line from the first node to the destination via the first node.

步驟9006可包含藉由第一節點利用被動空間覺知來編譯第一節點之信標範圍內之節點之空間覺知。Step 9006 may include utilizing passive spatial awareness by the first node to compile spatial awareness of nodes within range of the first node's beacon.

步驟9008可包含藉由第一節點評估超出通信範圍且在第一節點之信標範圍內之可能中繼路由。Step 9008 may comprise evaluating, by the first node, possible relay routes out of communication range and within range of a beacon of the first node.

步驟9010可包含藉由第一節點判定複數個節點中位於可能中繼路由之一者上之下一中繼節點,該等可能中繼路由之該一者最接近直線而不被判定為一終端路由之部分。Step 9010 may include determining, by the first node, the next relay node of the plurality of nodes located on one of the possible relay routes that is closest to a straight line and is not determined to be a terminal part of the route.

步驟9012可包含藉由第一節點將一通信資料封包發射至下一中繼節點。Step 9012 may include transmitting, by the first node, a communication data packet to a next relay node.

如從上文將瞭解,本文中揭示之發明概念之實施例係關於一種方法及系統,其包含具有複數個節點之一網路,該複數個節點經組態以編譯空間覺知資訊且利用經編譯空間覺知資訊將一通信資料封包沿著一最短線路從一第一節點路由至一目的地。As will be appreciated from the above, embodiments of the inventive concepts disclosed herein relate to a method and system comprising a network of nodes configured to compile spatially aware information and utilize Compiling space-aware information to route a communication data packet from a first node to a destination along a shortest path.

應理解,本文中揭示之方法之實施例可包含本文中描述之一或多個步驟。此外,此等步驟可以任何所要順序實行,且兩個或更多個步驟可彼此同時實行。本文中揭示之兩個或更多個步驟可組合為一單一步驟,且在一些實施例中,一或多個步驟可作為兩個或更多個子步驟來實行。此外,除了本文中揭示之一或多個步驟之外,或作為本文中揭示之一或多個步驟之替代方案,可實行其他步驟或子步驟。It should be understood that embodiments of the methods disclosed herein may include one or more of the steps described herein. Furthermore, the steps can be performed in any desired order, and two or more steps can be performed concurrently with each other. Two or more steps disclosed herein may be combined into a single step, and in some embodiments, one or more steps may be performed as two or more sub-steps. Furthermore, other steps or sub-steps may be performed in addition to, or as an alternative to, one or more steps disclosed herein.

儘管已參考隨附圖式中繪示之實施例描述發明概念,然在不脫離發明申請專利範圍之範疇之情況下,可採用等效物且在本文中進行替換。本文中繪示及描述之組件僅係可用於實施發明概念之實施例之一系統/裝置及組件之實例,且可在不脫離發明申請專利範圍之範疇之情況下替換為其他裝置及組件。此外,本文中提供之任何尺寸、度數及/或數值範圍應被理解為非限制性實例,除非發明申請專利範圍中另有規定。While the inventive concepts have been described with reference to the embodiments illustrated in the accompanying drawings, equivalents may be employed and substitutions may be made herein without departing from the scope of the claimed invention. The components shown and described herein are only examples of systems/devices and components that can be used to implement the embodiments of the inventive concept, and can be replaced with other devices and components without departing from the scope of the patent application of the invention. Furthermore, any dimensions, degrees and/or numerical ranges provided herein should be understood as non-limiting examples unless otherwise specified in the claims.

100:多節點通信網路 100a:多節點通信網路 102:發射器(Tx)節點 104:接收器(Rx)節點 104a至104d:接收器(Rx)節點 106:控制器 108:記憶體 110:通信介面 112:天線元件 114:360度弧 116:速度向量 118:任意方向 120:都卜勒調零方向 200:圖表 202a至202c:都卜勒調零方向 204a至204c:頻移點 206:頻移輪廓 208:最小相對速度 210:最大相對速度 212:正西方 214:相位偏移頻移輪廓 216:頻移輪廓 220:正北方 222:正南方 300:圖表 302:頻率輪廓 304:頻率輪廓 306:頻率輪廓 308:頻率輪廓 400:方法 402:步驟 404:步驟 406:步驟 408:步驟 410:步驟 412:步驟 414:步驟 1900:方法 1902:步驟 1904:步驟 1906:步驟 2100:多節點通信網路 2102:通信節點 2102a至2102e:通信節點 2104:控制器 2106:記憶體 2108:通信介面 2202:叢集頭節點 2202a:叢集頭節點 2202b:叢集頭節點 2204:叢集 2204a至2204c:叢集 2206:鄰近節點 2206a:經認可鄰近節點 2302:閘道節點 2302a:閘道節點 2304:普通節點 2304a:普通節點 2306:關鍵任務資訊(MCI)請求封包 2306a:關鍵任務資訊(MCI)請求封包 2308:源節點 2310:廣播 2314:關鍵任務資訊(MCI)報告封包 2316:關鍵任務資訊(MCI)發佈封包 2316a:關鍵任務資訊(MCI)發佈封包 2400:方法 2402:步驟 2404:步驟 2406:步驟 2408:步驟 2410:步驟 2412:步驟 2414:步驟 2416:步驟 3100:多節點通信網路 3100a:多節點通信網路 3102:通信節點 3104:控制器 3106:記憶體 3108:通信介面 3110:叢集 3110a至3110f:叢集 3112:叢集頭節點 3114:閘道節點 3116:普通節點 3116a:普通節點 3116b:普通節點 3204:部分鄰近者清單 3206:部分鄰近者清單 3206a:部分鄰近者清單/組 3208:經合併清單/單一組 3210:關鍵路徑 3400:方法 3402:步驟 3404:步驟 3406:步驟 3408:步驟 3410:步驟 3412:步驟 4100:多節點通信網路 4102a:第一通信節點 4102b:第二通信節點 4102c:第三通信節點 4102-1:基於信標之叢集頭(BB-CH)節點 4102-2:普通節點 4102-3:閘道節點(GW) 4102-4:叢集頭(CH)節點 4104a至4104c:控制器 4106a至4106c:記憶體 4108a至4108c:通信介面 4110:通信叢集 4112:基於信標之叢集 5000:方法 5002:步驟 5004:步驟 5006:步驟 5008:步驟 5010:步驟 5012:步驟 5014:步驟 5100:方法 5102:步驟 5104:步驟 5106:步驟 5202:步驟 5204:步驟 7000:多節點通信網路 7002:節點 7004:第一節點 7006:目的地 7008:目的地節點 7010:通信範圍 7012:信標範圍 7014:直線 7016a至7016j:下一中繼節點 7018a:終端節點 8000:方法 8002:步驟 8004:步驟 8006:步驟 8008:步驟 8010:步驟 8012:步驟 8014:步驟 8016:步驟 8100:方法 8102:步驟 8104:步驟 8106:步驟 8108:步驟 8110:步驟 8112:步驟 8114:步驟 8116:步驟 8118:步驟 100: multi-node communication network 100a: multi-node communication network 102: Transmitter (Tx) node 104: Receiver (Rx) node 104a to 104d: Receiver (Rx) nodes 106: Controller 108: memory 110: communication interface 112: Antenna element 114: 360 degree arc 116:Velocity vector 118:Any direction 120: Doppler zeroing direction 200:Charts 202a to 202c: Doppler zeroing direction 204a to 204c: frequency shift point 206: Frequency shift profile 208: Minimum relative speed 210: Maximum relative speed 212: True West 214: Phase shift frequency shift profile 216: Frequency shift profile 220: true north 222: True South 300:Charts 302: Frequency profile 304: Frequency profile 306: Frequency profile 308: Frequency profile 400: method 402: step 404: step 406: step 408: Step 410: Step 412: Step 414:step 1900: Method 1902: step 1904: steps 1906: steps 2100: multi-node communication network 2102: communication node 2102a to 2102e: communication nodes 2104: Controller 2106: Memory 2108: communication interface 2202: cluster head node 2202a: cluster head node 2202b: Cluster head node 2204: Cluster 2204a to 2204c: Clusters 2206: Adjacent node 2206a: Approved neighboring nodes 2302: Gateway node 2302a: Gateway node 2304: common node 2304a: common node 2306: Mission critical information (MCI) request packet 2306a: Mission Critical Information (MCI) Request Packet 2308: source node 2310: broadcast 2314: Mission Critical Information (MCI) Report Packet 2316: Mission Critical Information (MCI) release packet 2316a: Mission Critical Information (MCI) release packet 2400: method 2402: Step 2404: step 2406: step 2408: step 2410: step 2412:step 2414:step 2416:step 3100: multi-node communication network 3100a: Multi-node communication network 3102: communication node 3104: controller 3106: memory 3108: communication interface 3110:cluster 3110a to 3110f: Clusters 3112: Cluster head node 3114: Gateway node 3116: common node 3116a: common node 3116b: Normal node 3204: Partial neighbor list 3206: Partial neighbor list 3206a: Partial neighbor list/group 3208: Consolidated List/Single Group 3210: critical path 3400: method 3402:step 3404:step 3406:step 3408:step 3410:step 3412:step 4100: multi-node communication network 4102a: the first communication node 4102b: the second communication node 4102c: the third communication node 4102-1: Beacon-Based Cluster Head (BB-CH) Nodes 4102-2: Common Node 4102-3: Gateway node (GW) 4102-4: Cluster Head (CH) Node 4104a to 4104c: Controllers 4106a to 4106c: memory 4108a to 4108c: communication interface 4110: Communication cluster 4112: Beacon-based clustering 5000: method 5002: step 5004: step 5006: step 5008: step 5010: step 5012: step 5014: step 5100: method 5102:step 5104:step 5106:step 5202:step 5204:step 7000: multi-node communication network 7002: node 7004: the first node 7006: destination 7008: Destination node 7010: communication range 7012: Beacon range 7014: Straight line 7016a to 7016j: the next relay node 7018a: Terminal node 8000: method 8002: step 8004: step 8006: step 8008: step 8010: step 8012: step 8014: step 8016: step 8100: method 8102: step 8104:step 8106:step 8108:step 8110:step 8112:step 8114:step 8116:step 8118:step

參考附圖描述[實施方式]。描述及圖中之不同例項中之相同元件符號之使用可指示類似或相同項目。在以下[實施方式]及隨附圖式中揭示本發明之各種實施例或實例(「實例」)。圖式不必按比例。一般言之,所揭示程序之操作可以一任意順序執行,除非發明申請專利範圍中另有規定。在圖式中:[Embodiment] is described with reference to the drawings. The use of the same reference numbers in different instances in the description and figures may indicate similar or identical items. Various embodiments or examples ("Examples") of the present invention are disclosed in the following [Embodiments] and the accompanying drawings. The drawings are not necessarily to scale. In general, the operations of the disclosed programs may be performed in any order, unless otherwise specified in the claims. In the schema:

圖1係根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解。Figure 1 is a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes, according to an example embodiment of the invention.

圖2A係圖1之MANET內之頻移輪廓之一圖形表示。FIG. 2A is a graphical representation of a frequency shift profile within the MANET of FIG. 1. FIG.

圖2B係相對於圖2A之圖形表示改變一發射節點Tx之速度向量之方向分量α之一示意性圖解。Fig. 2B is a schematic illustration of varying the directional component a of the velocity vector of a transmitting node Tx with respect to the graphical representation of Fig. 2A.

圖3A係圖1之MANET內之頻移輪廓之一圖形表示。FIG. 3A is a graphical representation of a frequency shift profile within the MANET of FIG. 1. FIG.

圖3B係相對於圖3A之圖形表示改變一接收節點Rx之角方向θ之一示意性圖解。Fig. 3B is a schematic illustration of changing the angular direction Θ of a receiving node Rx with respect to the graphical representation of Fig. 3A.

圖4A、圖4B及圖4C係繪示根據本發明之實例實施例之用於都卜勒頻率偏移判定之一方法之流程圖。4A , 4B and 4C are flowcharts illustrating a method for Doppler frequency offset determination according to an example embodiment of the present invention.

圖5係根據本發明之實例實施例之一多節點通信網路之一示意性圖解。Figure 5 is a schematic illustration of a multi-node communication network according to an example embodiment of the invention.

圖6係圖5之多節點通信網路之叢集化操作之一示意性圖解。FIG. 6 is a schematic illustration of a clustering operation of the multi-node communication network of FIG. 5 .

圖7A係圖5之多節點通信網路內之一節點叢集之一示意性圖解。FIG. 7A is a schematic illustration of a cluster of nodes within the multi-node communication network of FIG. 5 .

圖7B係圖7A之叢集之關鍵任務資訊(MCI)請求封包分佈操作之一示意性圖解。FIG. 7B is a schematic illustration of the mission critical information (MCI) request packet distribution operation of the cluster of FIG. 7A.

圖7C係圖7A之叢集之關鍵任務資訊(MCI)報告封包收集操作之一示意性圖解。FIG. 7C is a schematic illustration of the clustered mission critical information (MCI) report packet collection operation of FIG. 7A.

圖7D係圖7A之叢集之關鍵任務資訊(MCI)報告封包轉播及重新收集操作之一示意性圖解。FIG. 7D is a schematic illustration of the mission critical information (MCI) report packet rebroadcast and recollect operation of the cluster of FIG. 7A.

圖7E係圖7A之叢集之關鍵任務資訊(MCI)發佈封包發射操作之一示意性圖解。Figure 7E is a schematic illustration of the mission critical information (MCI) publication packet transmission operation of the cluster of Figure 7A.

圖8A及圖8B係繪示根據本發明之實例實施例之用於MCI之高效收集及分佈之一方法之一程序流程圖。8A and 8B are flowcharts illustrating a procedure of a method for efficient collection and distribution of MCI according to example embodiments of the present invention.

圖9係根據本發明之實例實施例之一多節點通信網路之一示意性圖解。Fig. 9 is a schematic illustration of a multi-node communication network according to an example embodiment of the invention.

圖10A係圖9之多節點通信網路之出站信標操作之一示意性圖解。FIG. 10A is a schematic illustration of one of the outbound beacon operations of the multi-node communication network of FIG. 9 .

圖10B係圖9之多節點通信網路之入站信標操作之一示意性圖解。FIG. 10B is a schematic illustration of one of the inbound beacon operations of the multi-node communication network of FIG. 9 .

圖10C及圖10D係圖9之多節點通信網路之成員通信節點之關鍵路徑偵測操作之示意性圖解。10C and 10D are schematic illustrations of critical path detection operations of member communication nodes of the multi-node communication network of FIG. 9 .

圖10E係圖9之多節點通信網路之關鍵路徑之一示意性圖解。FIG. 10E is a schematic illustration of one of the critical paths of the multi-node communication network of FIG. 9 .

圖10F係圖9之多節點通信網路之一普通節點之一提升/狀態轉變之一示意性圖解。FIG. 10F is a schematic illustration of a promotion/state transition of a common node in the multi-node communication network of FIG. 9 .

圖11係圖9之多節點通信網路之一節點狀態轉變圖。FIG. 11 is a node state transition diagram of the multi-node communication network in FIG. 9 .

圖12A、圖12B、圖12C及圖12D係繪示根據本發明之實例實施例之用於基於信標之被動叢集化之一方法之流程圖。12A, 12B, 12C, and 12D are flowcharts illustrating a method for beacon-based passive clustering, according to an example embodiment of the invention.

圖13繪示根據本發明之一或多項實施例之一多節點通信網路。Figure 13 illustrates a multi-node communication network according to one or more embodiments of the invention.

圖14係根據本發明之實例實施例之一網路及其之個別節點之一示意性圖解。Figure 14 is a schematic illustration of a network and its individual nodes, according to an example embodiment of the invention.

圖15係根據本發明之實例實施例之一網路及其之個別節點之一示意性圖解。Figure 15 is a schematic illustration of a network and its individual nodes, according to an example embodiment of the invention.

圖16A係根據本發明之實例實施例之一網路及其之個別節點之一示意性圖解。Figure 16A is a schematic illustration of a network and its individual nodes, according to an example embodiment of the invention.

圖16B係根據本發明之實例實施例之一網路及其之個別節點之一示意性圖解。Figure 16B is a schematic illustration of a network and its individual nodes, according to an example embodiment of the invention.

圖17係根據本發明之實例實施例之一網路及其之個別節點之一示意性圖解。Figure 17 is a schematic illustration of a network and its individual nodes, according to an example embodiment of the invention.

圖18係根據本發明之實例實施例之一網路及其之個別節點之一示意性圖解。Figure 18 is a schematic illustration of a network and its individual nodes, according to an example embodiment of the invention.

圖19繪示根據本發明之一或多項實施例之一方法之一流程圖。FIG. 19 is a flow diagram of a method according to one or more embodiments of the present invention.

圖20、圖21及圖22繪示根據本發明之一或多項實施例之一方法之一流程圖。20, 21 and 22 illustrate a flowchart of a method according to one or more embodiments of the present invention.

圖23繪示根據本發明之一或多項實施例之一方法之一流程圖。Fig. 23 is a flow diagram of a method according to one or more embodiments of the present invention.

圖24係根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之一示意性圖解;Figure 24 is a schematic illustration of a mobile ad hoc network (MANET) and its individual nodes, according to an example embodiment of the invention;

圖25A係圖24之MANET內之頻移輪廓之一圖形表示;Figure 25A is a graphical representation of a frequency shift profile within the MANET of Figure 24;

圖25B係圖24之MANET內之頻移輪廓之一圖形表示;Figure 25B is a graphical representation of a frequency shift profile within the MANET of Figure 24;

圖26係根據本發明之實例實施例之一發射器節點及一接收器節點之一示意性圖解;Figure 26 is a schematic illustration of a transmitter node and a receiver node according to an example embodiment of the invention;

圖27A係圖26之MANET內之頻移輪廓之一圖形表示;Figure 27A is a graphical representation of a frequency shift profile within the MANET of Figure 26;

圖27B係圖26之MANET內之頻移輪廓之一圖形表示;Figure 27B is a graphical representation of a frequency shift profile within the MANET of Figure 26;

圖28係用於覆蓋空間之組之一例示性圖表;Figure 28 is an exemplary chart for one of the sets of coverage spaces;

圖29係根據本發明之實例實施例之一發射器節點及一接收器節點之一示意性圖解;Figure 29 is a schematic illustration of a transmitter node and a receiver node according to an example embodiment of the invention;

及圖30係繪示根據本發明之實例實施例之一方法之一流程圖。And FIG. 30 is a flowchart illustrating a method according to an example embodiment of the present invention.

圖31、圖32、圖33、圖34、圖35、圖36、圖37、圖38、圖39、圖40、圖41、圖42及圖43係根據本發明之實例實施例之一行動特用網路(MANET)及其個別節點之示意性圖解。Fig. 31, Fig. 32, Fig. 33, Fig. 34, Fig. 35, Fig. 36, Fig. 37, Fig. 38, Fig. 39, Fig. 40, Fig. 41, Fig. 42 and Fig. 43 are action characteristics according to example embodiments of the present invention. A schematic illustration of a network (MANET) and its individual nodes.

圖44係根據本發明之實例實施例之一方法之一流程圖。Figure 44 is a flowchart of a method according to an example embodiment of the invention.

圖45係根據本發明之實例實施例之一方法之一流程圖。Figure 45 is a flowchart of a method according to an example embodiment of the invention.

圖46係繪示根據本發明之實例實施例之一方法之一流程圖。Figure 46 is a flowchart illustrating a method according to an example embodiment of the invention.

100:多節點通信網路 100: multi-node communication network

102:發射器(Tx)節點 102: Transmitter (Tx) node

104:接收器(Rx)節點 104: Receiver (Rx) node

106:控制器 106: Controller

108:記憶體 108: memory

110:通信介面 110: communication interface

112:天線元件 112: Antenna element

114:360度弧 114: 360 degree arc

116:速度向量 116:Velocity vector

118:任意方向 118:Any direction

120:都卜勒調零方向 120: Doppler zeroing direction

Claims (20)

一種系統,其包括: 一行動特用網路(MANET),其包含複數個節點,其中該複數個節點之各者包括一通信介面及一控制器,其中該複數個節點之各者經組態以發射通信資料封包且發射信標,其中各信標之一信標範圍大於各通信資料封包之一通信範圍,其中該複數個節點之各者具有被動空間覺知, 其中該複數個節點之一第一節點具有自身節點速度、自身節點定向及一目的地之資訊,該目的地係一目的地區域或一目的地節點,其中該目的地在該第一節點之該通信範圍之外且視情況在該第一節點之該信標範圍之外, 其中該第一節點經組態以: 計算從該第一節點至該目的地之一直線或一彎曲弧線; 利用被動空間覺知來編譯該第一節點之該信標範圍內之節點之空間覺知; 評估超出該通信範圍且在該第一節點之該信標範圍內之可能中繼路由; 判定該複數個節點中位於該等可能中繼路由之一者上之一下一中繼節點,該等可能中繼路由之該一者最接近該直線或該彎曲弧線,而不被判定為一終端路由之部分;及 將一通信資料封包發射至該下一中繼節點。 A system comprising: A mobile ad hoc network (MANET) comprising a plurality of nodes, wherein each of the plurality of nodes includes a communication interface and a controller, wherein each of the plurality of nodes is configured to transmit communication data packets and transmitting beacons, wherein a beacon range of each beacon is greater than a communication range of each communication data packet, wherein each of the plurality of nodes has passive spatial awareness, Wherein the first node of the plurality of nodes has its own node speed, its own node orientation and information of a destination, the destination is a destination area or a destination node, wherein the destination is at the first node of the first node out of communication range and optionally out of range of the beacon of the first node, where the first node is configured to: calculating a straight line or a curved arc from the first node to the destination; utilizing passive spatial awareness to encode spatial awareness of nodes within range of the beacon of the first node; evaluating possible relay routes beyond the communication range and within range of the beacon of the first node; determining a next relay node of the plurality of nodes located on one of the possible relay routes, the one of the possible relay routes being closest to the straight line or the curved arc without being determined as a terminal part of the routing; and A communication data packet is transmitted to the next relay node. 如請求項1之系統,其中該第一節點無需已編譯來自超出該第一節點之該通信範圍之節點之基於全球定位系統(基於GPS)之定位資訊(PLI)來判定位於該等可能中繼路由之該一者上之該下一中繼節點。The system of claim 1, wherein the first node does not need to have compiled Global Positioning System (GPS-based) positioning information (PLI) from nodes beyond the communication range of the first node to determine the location on the possible relays The next hop node on the one of the routes. 如請求項1之系統,其中該複數個節點之各節點經時間同步以應用與該節點自身相對於一共同參考系之運動相關聯之都卜勒校正,該節點係一信標接收節點,其中在該複數個節點之一信標發射節點將一信標發射至該節點之前且在該節點從該信標發射節點接收該信標之前,該共同參考系對於該信標發射節點及該節點係已知的。The system of claim 1, wherein each node of the plurality of nodes is time-synchronized to apply a Doppler correction associated with the node's own motion relative to a common reference frame, the node being a beacon receiving node, wherein Before a beacon transmitting node of the plurality of nodes transmits a beacon to the node and before the node receives the beacon from the beacon transmitting node, the common reference frame is for the beacon transmitting node and the node system known. 如請求項1之系統,其中該下一中繼節點係一第二節點,其中該第二節點具有自身節點速度、自身節點定向及該目的地之資訊,其中該目的地在該第二節點之該通信範圍之外且視情況在該第二節點之該信標範圍之外, 其中該第二節點經組態以: 接收該通信資料封包; 計算從該第二節點至該目的地之一第二直線或一第二彎曲弧線; 利用被動空間覺知來編譯該第二節點之該信標範圍內之節點之空間覺知; 評估超出該通信範圍且在該第二節點之該信標範圍內之第二可能中繼路由, 判定該複數個節點中位於該等第二可能中繼路由之一者上之一第二下一中繼節點,該等第二可能中繼路由之該一者最接近該第二直線或該第二彎曲弧線,而不被判定為一終端路由之部分;及 將該通信資料封包發射至該第二下一中繼節點。 The system as claimed in claim 1, wherein the next relay node is a second node, wherein the second node has its own node speed, its own node orientation and information of the destination, wherein the destination is within the second node outside the communication range and optionally outside the beacon range of the second node, where the second node is configured to: receiving the communication data packet; calculating a second straight line or a second curved arc from the second node to the destination; utilizing passive spatial awareness to encode spatial awareness of nodes within range of the beacon of the second node; evaluating a second possible relay route beyond the communication range and within range of the beacon of the second node, determining a second next relay node among the plurality of nodes located on one of the second possible relay routes, the one of the second possible relay routes being closest to the second straight line or the first 2 curved arcs which are not considered part of a terminal route; and The communication data packet is transmitted to the second NRN. 如請求項4之系統,其中該第二節點經進一步組態以利用多跳空間覺知(MHSA)來評估超出該第二節點之該信標範圍之該等第二可能中繼路由。The system of claim 4, wherein the second node is further configured to utilize multi-hop space awareness (MHSA) to evaluate the second possible relay routes beyond the beacon range of the second node. 如請求項4之系統,其中該目的地係該目的地區域,其中該第二直線或該第二彎曲弧線係使用該目的地區域之一質心來計算,其中該第二直線或該第二彎曲弧線從該第二節點延伸至該目的地區域之該質心。The system of claim 4, wherein the destination is the destination area, wherein the second straight line or the second curved arc is calculated using a centroid of the destination area, wherein the second straight line or the second A curved arc extends from the second node to the centroid of the destination area. 如請求項4之系統,其中該第二節點經進一步組態以:從任何特定中繼節點接收指示出現一終端路由之一否定認可(NAK);及判定該複數個節點中位於該等第二可能中繼路由之一第二可能路由上之一替代第二下一中繼節點,該等第二可能中繼路由之該第二可能路由第二接近該第二直線或該第二彎曲弧線,而不被判定為一終端路由之部分。The system of claim 4, wherein the second node is further configured to: receive a negative acknowledgment (NAK) indicating the occurrence of a terminating route from any particular relay node; and determine that one of the plurality of nodes is located in the second replacing a second next relay node on one of the second possible routes of the possible relay routes, the second possible route of the second possible relay routes being second closer to the second straight line or the second curved arc, It is not judged to be part of a terminal route. 如請求項4之系統,其中該第二節點無需已編譯來自超出該第二節點之該通信範圍之節點之基於全球定位系統(基於GPS)之定位資訊(PLI)來判定位於該等第二可能中繼路由之該一者上之該第二下一中繼節點。The system of claim 4, wherein the second node does not need to have compiled Global Positioning System (GPS-based) positioning information (PLI) from nodes beyond the communication range of the second node to determine that it is located in the second possible The second next-hop node on the one of the relay routes. 如請求項1之系統,其中該下一中繼節點係一第二節點,其中該第二節點具有自身節點速度、自身節點定向及該目的地之資訊,其中該目的地在該第二節點之該通信範圍之外且視情況在該第二節點之該信標範圍之外, 其中該第二節點經組態以: 接收該通信資料封包; 利用被動空間覺知來編譯該第二節點之該信標範圍內之節點之空間覺知; 評估超出該通信範圍且在該第二節點之該信標範圍內之第二可能中繼路由, 判定該複數個節點中位於該等第二可能中繼路由之一者上之一第二下一中繼節點,該等第二可能中繼路由之該一者最接近該直線或該彎曲弧線,而不被判定為一終端路由之部分;及 將該通信資料封包發射至該第二下一中繼節點。 The system as claimed in claim 1, wherein the next relay node is a second node, wherein the second node has its own node speed, its own node orientation and information of the destination, wherein the destination is within the second node outside the communication range and optionally outside the beacon range of the second node, where the second node is configured to: receiving the communication data packet; utilizing passive spatial awareness to encode spatial awareness of nodes within range of the beacon of the second node; evaluating a second possible relay route beyond the communication range and within range of the beacon of the second node, determining a second next relay node of the plurality of nodes located on one of the second possible relay routes, the one of the second possible relay routes being closest to the straight line or the curved arc, is not deemed to be part of a terminal route; and The communication data packet is transmitted to the second NRN. 如請求項9之系統,其中該第二節點經進一步組態以利用多跳空間覺知(MHSA)來評估超出該第二節點之該信標範圍之該等第二可能中繼路由。The system of claim 9, wherein the second node is further configured to utilize multi-hop space awareness (MHSA) to evaluate the second possible relay routes beyond the beacon range of the second node. 如請求項9之系統,其中該目的地係該目的地區域,其中該直線或該彎曲弧線係使用該目的地區域之一質心來計算,其中該直線或該彎曲弧線從該第二節點延伸至該目的地區域之該質心。The system of claim 9, wherein the destination is the destination area, wherein the straight line or the curved arc is calculated using a centroid of the destination area, wherein the straight line or the curved arc extends from the second node to the centroid of the destination area. 如請求項9之系統,其中該第二節點經進一步組態以:從任何特定中繼節點接收指示出現一終端路由之一否定認可(NAK);及判定該複數個節點中位於該等第二可能中繼路由之一第二可能路由上之一替代第二下一中繼節點,該等第二可能中繼路由之該第二可能路由第二接近該直線或該彎曲弧線,而不被判定為一終端路由之部分。The system of claim 9, wherein the second node is further configured to: receive a negative acknowledgment (NAK) from any particular relay node indicating the occurrence of a terminating route; and determine that one of the plurality of nodes is located at the second one of the second possible routes of the possible relay routes is substituted for the second next relay node, and the second possible route of the second possible relay routes is second close to the straight line or the curved arc without being determined Part of a terminal route. 如請求項12之系統,其中該第一節點、該第二節點或該任何特定中繼節點經組態以在識別通信資料封包路由已導致預定數目個終端路由之後經由泛流路由(F2R)將該通信資料封包廣播至該目的地。The system of claim 12, wherein the first node, the second node, or any specific relay node is configured to route the communication data packet via flood routing (F2R) after identifying that the routing of the communication data packet has resulted in a predetermined number of terminating routes The communication data packet is broadcast to the destination. 如請求項1之系統,其中該複數個節點之一最終中繼節點經組態以接收該通信資料封包且將該通信資料封包發射至該目的地。The system of claim 1, wherein a final relay node of the plurality of nodes is configured to receive the communication data packet and transmit the communication data packet to the destination. 如請求項14之系統,其中該最終中繼節點經進一步組態以將該通信資料封包單播至該目的地。The system of claim 14, wherein the final relay node is further configured to unicast the communication data packet to the destination. 如請求項14之系統,其中該最終中繼節點經進一步組態以將該通信資料封包廣播至該目的地。The system of claim 14, wherein the final relay node is further configured to broadcast the communication data packet to the destination. 如請求項1之系統,其中該第一節點經進一步組態以利用多跳空間覺知(MHSA)來評估超出該第一節點之該信標範圍之該等可能中繼路由。The system of claim 1, wherein the first node is further configured to utilize multi-hop space awareness (MHSA) to evaluate the possible relay routes beyond the beacon range of the first node. 如請求項1之系統,其中該目的地係該目的地區域,其中該直線或該彎曲弧線係使用該目的地區域之一質心來計算,其中該直線或該彎曲弧線從該第一節點延伸至該目的地區域之該質心。The system of claim 1, wherein the destination is the destination area, wherein the straight line or the curved arc is calculated using a centroid of the destination area, wherein the straight line or the curved arc extends from the first node to the centroid of the destination area. 如請求項1之系統,其中該第一節點經進一步組態以:從該第二節點接收指示出現一終端路由之一否定認可(NAK);及判定該複數個節點中位於該等可能中繼路由之一第二可能路由上之一替代第二下一中繼節點,該等可能中繼路由之該第二可能路由第二接近該直線或該彎曲弧線,而不被判定為一終端路由之部分。The system of claim 1, wherein the first node is further configured to: receive a negative acknowledgment (NAK) from the second node indicating the occurrence of a terminating route; and determine the plurality of nodes at the possible relays One of the second possible routes on one of the second possible routes replaces the second next relay node, and the second possible route of the possible relay routes is second closest to the straight line or the curved arc and is not determined to be a terminal route part. 一種方法,其包括: 提供包含複數個節點之一行動特用網路(MANET),其中該複數個節點之各者包括一通信介面及一控制器,其中該複數個節點之各者經組態以發射通信資料封包且發射信標,其中各信標之一信標範圍大於各通信資料封包之一通信範圍,其中該複數個節點之各者具有被動空間覺知,其中該複數個節點之一第一節點具有自身節點速度、自身節點定向及一目的地之資訊,該目的地係一目的地區域或一目的地節點,其中該目的地在該第一節點之該通信範圍之外且視情況在該第一節點之該信標範圍之外; 藉由該第一節點計算從該第一節點至該目的地之一直線或一彎曲弧線; 藉由該第一節點利用被動空間覺知來編譯該第一節點之該信標範圍內之節點之空間覺知; 藉由該第一節點評估超出該通信範圍且在該第一節點之該信標範圍內之可能中繼路由; 藉由該第一節點判定該複數個節點中位於該等可能中繼路由之一者上之一下一中繼節點,該等可能中繼路由之該一者最接近該直線或該彎曲弧線,而不被判定為一終端路由之部分;及 藉由該第一節點將一通信資料封包發射至該下一中繼節點。 A method comprising: providing a mobile ad hoc network (MANET) comprising a plurality of nodes, wherein each of the plurality of nodes includes a communication interface and a controller, wherein each of the plurality of nodes is configured to transmit communication data packets and transmitting beacons, wherein a beacon range of each beacon is greater than a communication range of each communication data packet, wherein each of the plurality of nodes has passive spatial awareness, wherein a first node of the plurality of nodes has its own node information on speed, own node orientation, and a destination, the destination being a destination area or a destination node, wherein the destination is outside the communication range of the first node and optionally within the first node outside the range of the beacon; calculating a straight line or a curved arc from the first node to the destination via the first node; utilizing passive spatial awareness by the first node to encode spatial awareness of nodes within range of the beacon of the first node; evaluating, by the first node, possible relay routes beyond the communication range and within the beacon range of the first node; by the first node determining a next relay node of the plurality of nodes located on one of the possible relay routes that is closest to the straight line or the curved arc, and is not deemed to be part of a terminal route; and A communication data packet is transmitted to the next relay node by the first node.
TW111144797A 2021-11-23 2022-11-23 System and method using passive spatial awareness for geo network routing TW202331290A (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US17/534,061 US11665658B1 (en) 2021-04-16 2021-11-23 System and method for application of doppler corrections for time synchronized transmitter and receiver
US17/534,061 2021-11-23
US17/541,703 2021-12-03
US17/541,703 US20220094634A1 (en) 2019-11-27 2021-12-03 System and method for spatial awareness network routing
WOPCT/US22/24653 2022-04-13
PCT/US2022/024653 WO2022221429A1 (en) 2021-04-16 2022-04-13 System and method for neighbor direction and relative velocity determination via doppler nulling techniques
US202263344445P 2022-05-20 2022-05-20
US63/344,445 2022-05-20
US17/857,920 2022-07-05
US17/857,920 US20220342027A1 (en) 2021-04-16 2022-07-05 System and method for application of doppler corrections for time synchronized transmitter and receiver in motion
US202263400138P 2022-08-23 2022-08-23
US63/400,138 2022-08-23
US17/940,898 US20230081728A1 (en) 2019-11-27 2022-09-08 System and method using passive spatial awareness for geo network routing
US17/940,898 2022-09-08

Publications (1)

Publication Number Publication Date
TW202331290A true TW202331290A (en) 2023-08-01

Family

ID=88559255

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111144797A TW202331290A (en) 2021-11-23 2022-11-23 System and method using passive spatial awareness for geo network routing

Country Status (1)

Country Link
TW (1) TW202331290A (en)

Similar Documents

Publication Publication Date Title
US11811642B2 (en) Vine™: zero-control routing using data packet inspection for wireless mesh networks
Dhenakaran et al. An overview of routing protocols in mobile ad-hoc network
US20220094634A1 (en) System and method for spatial awareness network routing
Mikki Energy efficient location aided routing protocol for wireless MANETs
Heissenbüttel et al. BLR: beacon-less routing algorithm for mobile ad hoc networks
Badarneh et al. Multicast routing protocols in mobile ad hoc networks: A comparative survey and taxonomy
US11737121B2 (en) System and method to compile and distribute spatial awareness information for network
US9838943B2 (en) Method of routing for wireless ad hoc and sensor networks
US20100014444A1 (en) Adaptive message routing for mobile ad hoc networks
Kaur et al. Geographic routing protocol: A review
Abdulleh et al. Comparative study of proactive, reactive and geographical manet routing protocols
Vijayakumar et al. Efficient location management of mobile node in wireless mobile ad-hoc network
US20230081728A1 (en) System and method using passive spatial awareness for geo network routing
Parvin et al. A survey on void handling techniques for geographic routing in VANET network
TW202331290A (en) System and method using passive spatial awareness for geo network routing
Kant et al. Stable link based multicast routing scheme for MANET
TW202332231A (en) System and method for spatial awareness network routing
Anand et al. Enhanced reliable reactive routing (ER3) protocol for multimedia applications in 3D wireless sensor networks
WO2023096948A1 (en) System and method using passive spatial awareness for geo network routing
WO2023096942A1 (en) System and method for spatial awareness network routing
Kalaivani et al. Dynamic Data Routing in manet using position based opportunistic Routing Protocol
Bahloul et al. A Simple Proactive Routing Protocol with Multiple Base Stations Deployment for Unmanned Aerial Vehicular Networks
Sundaram et al. A Performance Comparison study of Unicast and Multicast Routing Protocols for Mobile Ad hoc Networks
KR20130083639A (en) Method for routing in mobile ad-hoc network
Kavitha et al. Performance analysis of efficient position-based opportunistic routing for MANET