TW202328319A - 用於生產聚酯解聚合物的設備及方法與用於生產聚酯的設備及方法 - Google Patents

用於生產聚酯解聚合物的設備及方法與用於生產聚酯的設備及方法 Download PDF

Info

Publication number
TW202328319A
TW202328319A TW111143019A TW111143019A TW202328319A TW 202328319 A TW202328319 A TW 202328319A TW 111143019 A TW111143019 A TW 111143019A TW 111143019 A TW111143019 A TW 111143019A TW 202328319 A TW202328319 A TW 202328319A
Authority
TW
Taiwan
Prior art keywords
polyester
depolymerization
rpet
mixing
recyclate
Prior art date
Application number
TW111143019A
Other languages
English (en)
Inventor
馬蒂亞斯 肖納格爾
克里斯多夫 希斯
馬汀 希托夫
邁克爾 舒伯特
亞歷山大 包威爾斯基
希恩瑞曲 寇區
Original Assignee
德商伍德英汎達 費雪有限責任公司
德商帝森克魯伯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商伍德英汎達 費雪有限責任公司, 德商帝森克魯伯公司 filed Critical 德商伍德英汎達 費雪有限責任公司
Publication of TW202328319A publication Critical patent/TW202328319A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

由於可取得大量的PET,PET的回收(聚對苯二甲酸乙二酯廢料的再處理)已經以各種不同方式實施了數十年。然而,環境保護及資源永續利用呼籲在未來幾十年內有更高的回收率。若想要實現循環經濟概念,回收率遲早必須達到最終100%的量。

Description

用於生產聚酯解聚合物的設備及方法與用於生產聚酯的設備及方法
由於可取得大量的PET,PET的回收(聚對苯二甲酸乙二酯廢料的再處理)已經以各種不同方式實施了數十年。然而,環境保護及資源永續利用呼籲在未來幾十年內有更高的回收率。若想要實現循環經濟概念,回收率遲早必須達到最終100%的量。
用於食品包裝部門的回收PET產品需要特殊的回收製程,且需要主管機關核可。
一種此類核可的回收製程為PET的化學解聚合及隨後的再聚合。解聚合可例如以水(水解)或以乙二醇(醣解)完成,其中長鏈PET起始材料被***成較短的鏈(單體、寡聚物、預聚合物)。水或乙二醇的分率愈高,則平均鏈長愈短,且再聚合的成本及複雜度愈高。針對優化的再聚合,由水解產生的COOH端基必須再酯化,其較佳地可以乙二醇完成。在該情況下,解聚合的回收材料可在相應於先前技術之特定聚縮合設備中的高溫及減壓條件下再次聚縮合。
DE 10 2018 202 547 A1指定了一種使用聚酯回收物聚酯回收物薄片生產聚酯的方法,其中聚酯回收物聚酯回收物薄片在動態混合器中與來自粗聚酯生產過程之中間階段的中間產物流混合,接著將混合物再次添加至下游粗聚酯生產過程的下游階段中。典型中間產物為來自酯化或後酯化階段之單體或來自初步縮合階段之預聚合物。此技術之缺點為需要大量的中間產物以混合摻入回收材料,使得用於提高品質的精密過濾變得相當複雜。在回收材料被外來物質污染之情況下,進一步之缺點為PET裝置中大量中間產物及終產物的污染。
EP 0 942 035 B1描述了一種回收線型聚酯的方法,其中在擠製機中將回收材料熔化,並藉由同時水解及醣解而獲得預聚合物。隨後,將熔體再次供應至粗聚酯生產製程以進行聚縮合。此技術之缺點為使用擠製機以熔化回收材料。擠製機受限於容量,具有高的購置成本,且必須以電能操作。
在DE 10 2006 023 354 B4中,來自EP 0 942 035 B1之方法與隨後的造粒有關。於此,再次為使用擠製機以熔化回收材料的缺點。
WO 2020/149798 A1同樣地在擠製機中熔化rPET,接著以乙二醇(EG)進行醣化。
在US 8 969 488 B2中,在混合器中將側流中粉碎的rPET與糊漿(原料對苯二甲酸與乙二醇之混合物)混合,並將混合物進料至酯化階段。由於混合摻入之可能性受限,因此不可能達到大的容量,且在回收材料被外來物質污染之情況下,大量的中間產物及終產物以及複數個製程階段再次被污染。
在DE 196 43 479 B4中,PET廢料在解聚合觸媒存在下以高的EG過量分解而獲得BHET,接著將BHET純化及再聚合。此方法需要大量昂貴且不便的製程步驟及設備,因此成本高且效率低。
GB 610 136 A描述了在乙二醇之沸點溫度或稍高溫度的反應槽中以乙二醇將芳族聚酯解聚合,隨後再聚合。然而,在彼等溫度下,對於大容量而言反應速率太低,且當使用更高的溫度時,乙二醇從製程中逸出。
US 3 222 299描述了在乙二醇之沸點溫度(196°C)的反應槽中以乙二醇及金屬鹽觸媒將線型對苯二甲酸酯聚酯解聚合,隨後再聚合。此方法亦需要大量乙二醇,其在隨後的再聚合中必須藉由昂貴且不便的設備將其再次去除。此外,大量的乙二醇需要低的反應溫度,使得所添加的乙二醇不會不成比例地從製程中逸出。低的反應溫度又導致高的停留時間以及高的成本及設備複雜度。
EP 0 174 062 A2描述了在中等反應溫度(215至250°C)下的熔融單體(BHET及寡聚物)中添加乙二醇(rPET與EG之比率 = 1:1.3-2.0)而將聚酯廢料解聚合,隨後再聚合。同時,由於此製程,仍需要大量的乙二醇,並在隨後的再聚合中必須藉由昂貴且不便的設備再次去除。此外,乙二醇的量需要適度的反應溫度,使得所添加的乙二醇不會不成比例地從製程中逸出。適度的反應溫度又導致高的停留時間以及高的成本及設備複雜度。
US 3 884 850描述了高分子質量聚酯在連續操作中的解聚合,其具有最小所需之乙二醇化學計量的量(10-15%),以在大氣條件下獲得低分子質量寡聚物混合物(平均鏈長單元 = 3),隨後再聚合。由於乙二醇之低添加量,反應溫度(220-250°C)可保持在遠高於乙二醇之沸點(196°C),而蒸發乙二醇之損失為約10%。此外,對於低鏈長與低熔點之間的關係給出了理論解釋。再者,此操作之缺點為容量有限。鑑於所需之停留時間為1.5至3小時,大量聚酯之熔化亦需要大的反應體積。
John Scheirs及Timothy E. Long在Modern Polyesters (2006年5月版,第565-587頁)中總結了醣解製程的現狀:醣解製程可在具有熔融PET及EG在壓力下供應之攪拌的反應器中進行;可透過特定觸媒增加反應速率;PET可熔化在PET薄片與EG之混合物中;PET可熔化在部分醣解之PET的寡聚混合物中;PET可在擠製機中藉由添加小量EG並通過反應性解聚合擠製而熔化;所有陳述之製程亦可連續進行。
在所有解聚合製程中,簡單醣解在資金及操作成本方面為最有效的製程,但缺點為大量回收的PET僅在大氣下添加至反應器中,而無複雜且昂貴的技術。然而,同時,所添加之乙二醇的量限制了最大的可能反應溫度,係因乙二醇將另外通過填充設備逸出。原則上,所有解聚合製程皆需要大量單一類型及無污染的PET廢料,以便在沒有昂貴且不便的純化製程下達到高品質的良好再聚合結果。
在某種程度上,目前全世界PET廢料處理的發展已滿足彼等需求,且就環保觀點而言,在不久的將來可能會有進一步的改進。
在工業PET裝置中,即使回收材料受到外來物質(例如,其他塑料、添加劑)的低水平污染,亦可能危及整個裝置輸出的產物品質(尤其是顏色及/或黏度),其相應於長時間段內的停留時間。據此,許多公司已開發出使用技術設備從解聚合製程中去除所有類型污染物的方法。
長久以來的常規方法為精密過濾或粗過濾。以活性碳脫色為一種新的方法。一種技術上不同的方法為及早辨識出所供應之rPET中不需要的污染,並對其做出快速反應,並將產生的廢料量降至最低,並識別rPET批次供應。
因此,始於上述之先前技術,本發明之目的在於指定生產聚酯解聚物(depolymer)之設備及方法。所述設備及方法將能以極為成本有效及技術簡單從而可靠之方式實現。此外,本發明之目的在於指定生產聚酯之設備,該設備允許將根據本發明生成的聚酯解聚合物(depolymerizate)進一步加工成聚酯。更特別是,目標為一種在能源及物質方面被優化的方法,該方法能涵蓋25%至100%之回收率,能生產高品質產物,並具有低資金成本及營運成本的特點。
此目的由於獨立項之特徵而實現,而附屬項則有關有利之發展。
隨後,根據第一態樣,本發明係有關一種生產聚酯解聚物之設備,其包含 一混合容器,其具有用於固體聚酯回收物聚酯回收物之注入口、用於液體聚酯解聚合物之注入口,以及用於包含聚酯回收物聚酯回收物與聚酯解聚物之混合物或由聚酯回收物聚酯回收物與聚酯解聚物組成之混合物的排出口, 在混合容器之排出口下游,至少一用於解聚合劑之進料設施,以及 在進料設施下游,用於將聚酯解聚合物流***成至少兩個子流的切換點,其中一個子流與混合容器之聚酯解聚合物的注入口連通,且另一個子流或多個子流用於從設備排出聚酯解聚合物, 其中設備之所有組成部分皆透過導管以流體連通。
在切換點上游有一較佳為用於暫時儲存聚酯解聚物的貯藏容器。
根據進一步之較佳實施例,在用於解聚合劑之進料設施下游有一混合器,更特別是靜態混合器。
解聚合劑可包含進一步之試劑及/或添加劑,其等有利於由其產生之聚酯的後續修飾。
在解聚合劑之進料設施下游可能有利地有一加熱設備,較佳為熱交換器,更特別是管殼式熱交換器,較佳為在前述請求項之混合器下游。
此外,較佳為,若用於聚酯回收物之注入口上游有至少一用於儲存聚酯的儲存設備,例如至少一筒倉,其與混合容器之用於聚酯回收物的注入口連通,更特別是經由輸送設備,例如螺旋輸送器、星形輪、稱重裝置及/或供應軸。
混合容器及/或貯藏容器較佳為具有至少一用於施加減壓的設施,該減壓設備較佳為具有噴霧冷凝器。
此外,有利的是,若設備具有至少一惰性氣體供應,則其通向例如儲存設備、輸送設備及/或貯藏容器。
導管較佳為可具有至少一輸送泵。
此外,較佳的是,若混合容器 具有至少一用於混合聚酯回收物與聚酯解聚物的設備,例如動態混合器、螺旋泵及/或噴射式混合器,則其特別具有扁平噴嘴,及/或 不具有主動機械混合裝置,例如攪拌構件。
在導管內較佳為有至少一用於去除顆粒及/或化學雜質的設備,更特別是在從設備排出聚酯解聚合物之上游及/或在貯藏容器上游。
至少一用於去除顆粒及/或化學雜質的設備較佳為選自於由顆粒過濾器(更特別是用於去除具有直徑< 10 µm之顆粒)、活性碳過濾器、離子交換器、蒸發設備及結晶設備及其組合組成之群組。
混合容器、切換點、導管及可選地貯藏容器、混合器及加熱設備可為可加熱及/或隔熱設計,例如透過雙壁結構,其中可攜帶液態或氣態傳熱介質。
混合容器及/或輸送設備較佳為具有釋壓設備,在規定壓力下從該設備轉移多餘壓力,例如超壓閥及/或迸裂碟(bursting disc)。
根據第二態樣,本發明係有關一種生產聚酯解聚物之方法,其中將固體聚酯回收物與液體聚酯解聚合物混合,並將混合物轉化為熔體,將解聚合劑至少一次添加至熔體中並與熔體反應,以生成聚酯解聚物,接著將生成的聚酯解聚合物之子流用於與聚酯回收物混合,且其餘之聚酯解聚合物係獲得作為產物。
更特別是,本發明之方法可以上述本發明之設備進行。
在本方法之一較佳實施例中, 液體聚酯解聚合物在與聚酯回收物混合時在240至320°C,較佳為250至300°C,更佳為260至290°C之溫度下進料,及/或 聚酯回收物在與聚酯解聚合物混合時在-40°C至230°C,較佳為0°C至100°C,更佳為10°C至50°C之溫度下進料。
令人驚訝的是,已理解到,由於在遠高於聚酯回收物之熔點的溫度下顯著更快的熔化而造成的熱損害在透過極短的停留時間而有利地降低。於此所需之更高溫度可通過使用僅小量的解聚合劑而實現。同時使用安全裝置操作所需之惰性氮氣,以在所需之製程溫度下將熱氧化損害最小化。
混合較佳為透過動態混合器、螺旋泵、攪拌機構及/或噴射式混合器實現,特別是偏好噴射式混合器。
本發明方法中所選之聚酯回收物與聚酯解聚合物之混合比率(重量/重量)為至少1:5,較佳為至少1:2或更高,或更佳為不超過1:1.4。
基於聚酯回收物之質量分率,解聚合劑以不超過1:0.1 (解聚合劑),較佳為不超過0.05 (解聚合劑),更佳為不超過0.01 (解聚合劑)之質量分率添加。
有利的是,所添加之解聚合劑的量越低,則後續必須在增加的成本及設備複雜度下再去除之解聚合劑的量越低。
較佳地,在本發明之方法中, 混合物之停留時間,從聚酯回收物與聚酯解聚合物之混合至添加解聚合劑,設定在0.5至30分鐘,較佳為1至10分鐘,更佳為2至5分鐘,及/或 設定總停留時間為≤ 1.5小時,較佳為≤ 60分鐘,更佳為≤ 30分鐘。
作為產物取出的聚酯解聚合物之COOH端基濃度有利地為不超過250 mmol/kg,較佳為不超過150 mmol/kg,更佳為不超過50 mmol/kg。
最遲在添加解聚合劑之情況下,熔體可調整為小於50,較佳為小於30,更佳為小於20之平均聚合度。
較佳地,在添加二醇之後及在分開成子流之前,將熔體混合,例如透過靜態混合器。
亦有可能將熔體加熱至較佳為240至320°C,較佳為250至300°C,更佳為260至280°C之溫度,更特別是透過熱交換器,且在加熱期間熔體之進一步偏好停留時間為1至30分鐘,較佳為2至20分鐘,更佳為5至10分鐘。
特別偏好之解聚合劑係選自於由二醇,例如單乙二醇、二乙二醇、三乙二醇、聚乙二醇、1,3-丙二醇、1,4-丁二醇、環己烷二甲醇及/或乙二甘醇,更特別是相應於用於生產原始聚酯之二醇的二醇,或來自不同二醇之混合物、水、有機酸(更特別是乳酸)及其混合物組成之群組,其中解聚合劑可包含進一步之添加劑。相應於用於生產原始聚酯之二醇的二醇為在相關之聚酯中衍生出相應之醇重複單元的二醇 – 換言之,例如,用於聚對苯二甲酸乙二酯之乙二醇。在代表聚內酯之聚酯的情況下,例如聚乳酸,例如,同樣有可能使用二醇或衍生自母內酯之相應(開鏈)羥酸 – 換言之,例如,用於聚乳酸之乳酸等。
較佳地,混合在減壓或大氣壓下進行,較佳為在藉由施加一真空之減壓下,其中更特別是由該真空抽出之蒸氣係透過噴霧冷凝器洗去。
有利地,將作為產物取出的聚酯解聚合物純化,較佳為過濾及/或化學純化,其中分離出顆粒及/或化學雜質。此可例如透過顆粒過濾器及/或離子交換器完成。進一步可能的清潔步驟為以活性碳處理聚酯解聚合物,在例如在薄膜蒸發器中蒸餾聚酯解聚合物,及/或將聚酯解聚物結晶。
混合、熔化及反應較佳為在具有< 5體積%,較佳為< 1體積%,更佳為< 0.1體積%之含氧量的惰性氣氛中,更特別是氮氣氣氛中進行。
所生成的聚酯解聚合物較佳為在分成子流之前暫時儲存及/或收集及/或過濾。
較佳地,聚酯回收物為rPET且解聚合劑為二醇乙二醇,聚酯回收物為rPBT (回收的聚對苯二甲酸丁二酯)且水解試劑為二醇 1,4-丁二醇,聚酯回收物為rPTT (回收的聚對苯二甲酸三亞甲基酯)且水解試劑為二醇 1,3-丙二醇,聚酯回收物為rPBS (回收的聚丁二酸丁二酯)且水解試劑為二醇 1,4-丁二醇,聚酯回收物為rPEN (回收的聚萘二甲酸乙二酯)且水解試劑為二醇乙二醇,聚酯回收物為rPEF (回收的聚乙烯呋喃酸酯)且水解試劑為二醇乙二醇,或聚酯回收物為rPLA (回收的聚乳酸)且水解試劑為水及/或乳酸。
聚酯回收物較佳為以丸粒及/或薄片之形式進料。
本方法可特別以連續方式操作。
一種說明性且尤其較佳之多階段獨立解聚合方法,其中rPET通過混合摻入而在容器中部分水解成熱解聚物、單體或預聚合物,接著在熱交換器中以小量EG熔化期間醣解,且所得的解聚合物經純化並聚合成高級聚酯,其特徵為 a) 藉由N 2惰化而提高安全性及品質以排除大氣中之氧氣, b) 在幾乎大氣條件之260至290°C,更佳為270°C之高熔化及解聚合溫度下添加rPET, c) rPET與EG之質量比率為不超過1:0.25,較佳為小於1:0.1,更佳為小於1:0.05, d) 在解聚合中之停留時間為不超過1.5小時,較佳為小於60分鐘,更佳為小於30分鐘, e) 在解聚合物中之低COOH端基濃度為不超過150 mmol/kg,較佳為小於50 mmol/kg, f) 透過過濾純化解聚合物,可選地藉由活性碳、離子交換、蒸餾/結晶而進一步純化, g) 將純化之解聚合物進行聚縮合或聚合,以獲得高品質聚酯,或 h) 摻入PET裝置的多種可能性,諸如,例如,使用來自ES階段之具有有機加熱介質的能源供應。在此情況下,所採用之rPET的分率降低了ES階段中PTA及EG之需求量,從而所釋放之能量可用於熔化rPET。可使用摻入現有的減壓系統,以生成所需之減壓。可實踐摻入現有的EG計量系統。現有的單體或預聚合物導管可用於填充解聚合裝置。 i) 在PET裝置中使用針對水及EG的現有加工階段, j) 對rPET品質問題的反應時間短,且污染體積之水平低, k) 連同較佳之連續操作模式及批次模式的可能性/操作模式意指分批。 l) 最小的啟動及停止體積,以及針對成本效益並有效將大量rPET混合摻入熱單體的設備(rPET單體噴射式混合器), •利用rPET與液體單體彼此黏附的傾向 •一般的混合器(例如,攪拌機構、動態混合器、螺旋輸送器)且較佳為伴隨利用一次噴射流或二或多次噴射流之液體單體、預聚合物或解聚物的衝擊能量;落入及/或壓入彼等液體噴射流中的rPET藉由混合而夾帶及摻入,因此所得的部分熔化之rPET與液體解聚合物的混合物可使用標準商用輸送泵從小型貯藏容器中輸送,其中rPET及液體解聚合物之最小混合溫度總是建立在此混合物之固化範圍之上。
根據第三態樣,本發明係有關一種生產聚酯之設備,其包含串聯之上述本發明之生產聚酯解聚物的設備,以及至少一聚縮合階段。
本發明使得有可能例如以生產聚酯解聚物之設備改裝生產聚酯 之現有設備,或建構個別生產聚酯之設備。
生產聚酯之設備較佳為包含上述之階段,彼等為,例如, 至少一落膜式反應器或預聚合器, 至少一盤式反應器或最終聚合器,以及 可選地一或多個用於進行固相後縮合的設備。
在第四態樣中,本發明係有關一種生產聚酯之方法,其中最初聚酯解聚合物以如上述本發明之方式生產,且此解聚合物接著聚合成聚酯。
在此方法中,可選地,可跳過預聚合階段。
參考以下實施例而更詳細地描述本發明,並參考使用rPET之說明性回收物操作,且本發明未侷限於所呈現之具體實施例。 術語、定義:
以下使用之定義普遍有效,且亦用於描述本發明。
PET意指聚對苯二甲酸乙二酯,一種可在PET裝置中生產的聚酯,其係藉由原料PTA (純化的對苯二甲酸)及EG (乙二醇)的酯化或在較小程度上藉由原料DMT (對苯二甲酸二甲酯)及EG的轉酯化,隨後在任一情況下聚縮合。亦可能採用純度較低或不純的對苯二甲酸,而非純化的對苯二甲酸,前提為終產物達到所需品質且PET裝置的物理性質不會受到不良影響。PET為由許多相同基本建構組元組成的巨分子。平均聚合度,在下文中亦稱為Pn或平均鏈長,表示每一PET分子之基本建構組元的數量。聚合度在本發明之意義上與聚縮合度同義。針對PET,單體建構組元為-[OOC-C 6H 4-COO-(CH 2) 2]– ,其中莫耳重量為192 g/mol。Pn為5意指在PET分子中有五個基本建構組元排列成鏈。在該情況下,Pn為5之PET的莫耳重量為5 x 192 g/mol,加上相結合之兩個端基的莫耳重量。該兩個端基可各為來自乙二醇的一個-OH或來自對苯二甲酸的一個-COOH,或相同的端基兩次。聚合度愈高,則PET愈黏。只有在Pn足夠且黏度亦足夠時,PET才能加工成終產物,例如薄膜、纖維或包裝材料。在此情況下,線型AA/BB系統的華萊士-休姆-卡羅瑟斯(Wallace-Hume-Carothers)反應式是有效的,其表明只有在反應的COOH端基之轉化率足夠高時,換言之,只有在仍存在小量未反應的COOH端基時,才能達到足夠高的鏈長。PET之黏度通常報導為本質黏度(intrinsic viscosity),以下稱為IV,其單位為dl/g。針對PET生產,必須添加有效的觸媒(例如,銻、鈦或鋁化合物),以便反應時間及容器尺寸保持在經濟界限內。亦添加多種不同的添加劑,例如安定劑、染料、染色劑或其他助劑,以達到特定性質。
PTA DMT EG意指單體反應物。化學反應首先生產中間物,亦稱為單體。此外,亦可能藉由添加其他二羧酸及其他二醇而生成共單體,以達到偏離該等純的PET不同但在子範圍內有用的性質。在該情況下,所形成的PET亦稱為共PET。
回收的 PET,以下稱為rPET,或「消費後的回收PET」 (PCR-PET),為收集、清潔及造粒或粉碎的PET,或通常為在PET裝置中生產後,在第一次或重複使用後之任何形式的PET。rPET較佳為非常單一類型且不含外來物質,係因應用當前的加工方法。rPET的粉碎可藉由常用的粉碎方法達成,例如撕碎或磨碎;撕碎的瓶子廢料係特別較佳(係因其等目前佔了可用rPET體積的最大部分)。然而,rPET亦可指來自PET裝置的粉碎中間物(單體、寡聚物、預聚合物)。
解聚合物:解聚合物或PET解聚合物意指> 70%來自短鏈PET巨分子(亦即,具有通常為1至25之PET單體基本單元C 10H 8O 4之聚合度的單體)的混合物,此外,可能含有其他單體的殘基、有機或無機添加劑,以及外來物質。其他可能的單體可由其他添加的二羧酸(例如,間苯二甲酸或己二酸)形成,或由其他二醇(例如,二乙二醇、環己烷二甲醇或丁二醇)形成。在該情況下,聚酯解聚物相當於由任何所需及任何所需數量之不同二羧酸以及任何所需及任何所需數量之不同二醇組成的聚酯之短鏈巨分子。解聚物或聚酯解聚物較佳為藉由水解及醣解而獲得,或者通常藉由在高加工溫度下之聚酯溶劑分解而獲得。
熔體可為rPET與解聚合物之可泵送混合物,或可僅由解聚物之可泵送混合物組成。 PET 裝置
從初單體反應物PTA及EG生產PET之先前技術的典型PET裝置基本上包含六個生產階段。於此,多個生產階段可併入單獨的反應器中。舉例而言,一個範例為來自Uhde Inventa-Fischer的2R-PET裝置,以生產用於薄膜、纖維或包裝材料的PET。製程參數及產物性質的所有細節,例如溫度、壓力、IV、COOH端基含量及聚合度,皆為指示值。根據配方及容量,輕微的偏差是可能且必要的。
除了酯化、轉酯化及聚縮合階段之外,PET裝置亦含有針對產生之反應產物(例如,水、甲醇、EG及其他副產物)的加工階段。其等隨後同樣地可為將聚縮合產物加工成可銷售產品的階段,例如造粒裝置,更特別是條式或水下造粒裝置,或直接連接紡絲機、預成型機或用於生產PET薄膜或其他PET終產物的生產線。亦可能有下游調節裝置及固相聚縮合裝置,目的在於減少不需要的伴隨產物,例如乙醛,並用於增加黏度。
第一個生產階段簡稱為酯化階段(ES階段),係因其主要涉及COOH端基與OH端基的酯化,其產生水。取決於PTA (HOOC-C 6H 4-COOH)與EG (HO-[CH 2] 2-OH)彼此反應的比率及普遍的反應條件,獲得具有不同基本建構組元數量及不同端基之水與PET分子的混合物。範例包括以下: 1) HOOC-C 6H 4-COOH + HO-[CH 2] 2-OH ⇄ H 2O + HOOC-C 6H 4-COO-[CH 2] 2-OH (Pn=1,MW=210 g/mol) 2) HOOC-C 6H 4-COO-[CH 2] 2-OH + HO-[CH 2] 2-OH ⇄ H 2O + HO-[CH 2] 2-OOC-C 6H 4-COO-[CH 2] 2-OH (Pn=1,MG=245 g/mol) 3) HOOC-C 6H 4-COO-[CH 2] 2-OH + HO-[CH 2] 2-OOC-C 6H 4-COO-[CH 2] 2-OH ⇄ H 2O + HO-[CH 2] 2-OOC-C 6H 4-COO-[CH 2] 2-OOC-C 6H 4-COO-[CH 2] 2-OH (Pn=2,MW=446 g/mol) 4) HOOC-C 6H 4-COOH + HOOC-C 6H 4-COO-[CH 2] 2-OH ⇄ H 2O + HOOC-C 6H 4-COO-[CH 2] 2-OOC-C 6H 4-COOH (Pn=1,MW=358 g/mol) 5) 等等。
將來自ES階段之具有不同端基之不同PET分子的混合物稱為單體,不與PTA及EG原料混淆,其同樣稱為單體反應物。在文獻中,具體而言Pn=1之對苯二甲酸雙羥基伸乙酯(BHET)被稱為單體。
短鏈 PET分子,尤其是Pn為3之分子,亦稱為寡聚物。由於酯化反應為平衡反應,必須從反應混合物中排出產生的水以達到高轉化速率。於此,100% 轉化速率相應於所有可用之COOH端基的完全反應。與水的逆反應稱為水解。在ES階段的典型製程條件下,所供應的PTA與EG之莫耳比率為約1:1.6、產物溫度為約265°C及絕對壓力為約250 kPa,單體具有平均Pn為約4.2,其中COOH端基之殘留濃度為約600 mmol/kg。根據ASTM,本質黏度(IV)為約0.05-0.10 dl/g。
圖1顯示來自ES階段之單體之GPC分析的典型結果。平均莫耳質量(Mn)發現為802 g/mol。隨後,若將Mn除以基本單元(C 10H 8O 4)之莫耳重量192 g/mol,則獲得平均聚合度4.2。
從ES階段,將反應中形成的水與一部分供應的EG一起抽出,且為了分離,將此混合物供應至附接水處理及廢氣處理的蒸餾塔。酯化反應不需要任何額外的觸媒,係因酯化反應為藉由對苯二甲酸單元的酸性H +離子而自動催化。
第二個生產階段稱為後酯化(亦稱為後酯或PE階段),係因在此階段中,藉由將壓力降至約60 kPa的絕對壓力並將溫度升至約275°C,酯化之轉化速率進一步增加,明顯從平均聚合度之增加可以看出,本質黏度增至約0.10-0.15 dl/g,且COOH端基濃度進一步減至約200 mmol/kg。藉由真空系統產生約60 kPa的絕對壓力,並將抽出的反應水量及釋放的EG量再次供應至附接水及廢氣處理的蒸餾塔以進行分離。來自PE階段之各種PET分子的混合物同樣稱為單體。若欲將此單體與ES階段之單體進行區分,則有可能例如包括參考生產階段或指明鏈長。來自PE階段之此單體的典型平均鏈長為5至15之間。
圖2顯示PE階段之單體之GPC分析的典型結果。平均莫耳質量(Mn)發現為2310 g/mol。隨後,若將Mn除以基本單元之莫耳重量192 g/mol,則獲得平均聚合度12.0。
第三個生產階段稱為初步聚合或預聚合或預縮合,簡稱為PP階段。在此情況下,主要的反應不再是COOH端基與OH端基之酯化,而是藉由酯基轉酯化並釋放乙二醇的聚合或聚縮合反應。然而,隨著反應之水的釋放,酯化反應仍在小的程度上發生,從COOH端基的進一步減少可看出。聚縮合反應需要觸媒以達到適用的反應速率。已建立的觸媒為Sb、Ti或Al化合物。為了達到適用的反應速率,聚縮合亦需要非常低的壓力,進一步增加的溫度,以及薄的擴散層,以允許去除所產生的EG。
聚縮合反應亦為平衡反應,而與EG的逆反應稱為醣解。聚縮合反應之結果為進一步增加聚合度,並增加本質黏度。所需之低壓由真空系統產生,且去除的EG量與微量的水再次一起供應至附接水及廢氣處理的蒸餾塔以進行分離。在PP階段中,由於製程條件為0.5-2 kPa且溫度為275-285°C,達到COOH端基進一步降至60 mmol/kg且本質黏度增至約0.30 dl/g。
來自PP階段之各種PET分子的混合物稱為預聚合物。
圖3顯示PP階段之預聚合物之GPC分析的典型結果。
平均莫耳質量(Mn)發現為6330 g/mol。隨後,若將Mn除以基本單元之莫耳重量192 g/mol,則獲得平均聚合度33。
第四個生產階段稱為聚合、聚縮合或最終聚合(以下稱為DIS階段)。於此,再次,主要的反應為藉由酯基轉酯化並釋放EG的聚縮合反應。所需之低壓由真空系統產生,且去除的EG量與微量的水再次一起供應至附接水及廢氣處理的蒸餾塔以進行分離。所需之薄擴散層典型上在具有轉盤的特定反應器中產生。
就此目的所需之反應器通常稱為加工機(finisher)或最終聚合器或特別是DISCAGE ®反應器,用於在聚合物熔體中生成特別高的本質黏度及/或特別高的聚合度。來自DIS階段之各種PET分子的混合物稱為聚合物。
在DIS階段中,隨著0.05-0.1 kPa之製程條件且280-290°C之溫度,達到將COOH端基進一步降至10-30 mmol/kg。取決於PET之意欲用途,確定了本質黏度增至0.55-0.85 dl/g,及/或莫耳質量為約15 000-30 000 g/mol。
第五個生產階段為透過條式或水下造粒裝置將聚合物熔體加工成固體及均勻丸粒。第五個生產階段亦可為將聚酯熔體直接進一步加工以形成紡絲纖維、薄膜、箔、預製件或其他典型PET終產物。
第六個生產階段包含丸粒之後處理,以增加本質黏度及/或降低伴隨物質(例如,乙醛)的水平。第六個生產階段之典型名稱的範例為後縮合裝置、固相縮合、SSP或調節。
圖4顯示用於執行聚酯生產的整體設備1,其始於聚酯回收物。
生產聚酯解聚合物(解聚合單元)之設備由多個階段組成。 a) 階段1包含針對rPET之儲存(筒倉90)及供應裝置(螺旋輸送器91),其連接至具有氮氣惰化110之混合階段(混合容器10), b) 階段2為混合階段(混合容器10),用於將rPET摻入輸送泵之貯藏器中的液體聚酯解聚合物。附接階段2的是水噴霧系統(噴霧冷凝器101),用於沉積排出的蒸氣,主要為水及低沸物,並附接至真空單元100, c) 階段3包含EG計量(用於解聚合劑之進料設施20), d) 階段4包含具有可能的下游粗過濾140之熱交換器80, e) 階段5包含聚酯解聚合物貯藏容器60,其作為混合設備10,其中熔體過剩物被取出至現有的PET裝置中,可選地具有精細過濾及緊急排放設備。
階段1包含rPET之儲存及供應裝置。就此目的,以說明方式,本階段可包含筒倉90、具有稱重裝置之計量螺桿91,以及連接混合階段10之供應軸。針對不同的rPET – 例如,丸粒或薄片 – 階段1亦可以二重複或多重複之方式存在,每一者皆特定針對所使用的不同種類之rPET的儲存及計量功能定制。
偏好為添加足夠的氮氣以作為惰性氣體(透過在不同點提供的進料設施110)以最小化由rPET導入的任何可能的氧氣。在存在足夠量之乙二醇或其他易燃氣體的情況下,在高溫下導入氧氣會導致火災及***風險。在低於5體積%之氧氣下可確保固有裝置安全性;若超過此量,則必須立即停止供應rPET及乙二醇。即使是小量導入的氧氣亦可能導致在所使用溫度下可達到的顯著顏色變化。因此,導入的殘餘氧氣應較佳為保持在低於0.1體積%。為了監控所供應之rPET中的殘餘含氧量,有可能在rPET供應線及在階段2之廢氣中安裝氧氣測量單元。所需之氮氣量主要由所供應之rPET量及在階段2中用於抽吸產生之蒸氣量所需之減壓而定。
為了能安全地管理由偶然過濕之rPET引起的短期超壓 – 例如,被雨淋過、未被注意到、濕的PET廢料  – 有可能,較佳為在供應軸及在階段2之貯藏容器,以提供安全閥或迸裂碟或類似的釋壓設施。
rPET之數位光學線上輸入控制具有優勢,係因將rPET批次數據及品質參數併入整個解聚合單元之操作數據的連續捕獲及評估中。
同樣可取的是筒倉90上的緊急排放設備,以便能再次排放已被導入解聚合單元外部的rPET。
筒倉90有利地配備排氣過濾器以及位準、溫度及壓力測量裝置。供應軸有利地配備窺鏡及開口設施以及位準、溫度及壓力測量裝置。
階段2包含在混合容器10中將室溫之未經乾燥的rPET混入溫度為約270°C的液體解聚合物中。據此,例如,接著可能以適用的標準商用輸送泵通過附接的導管將此混合物往前輸送而不中斷。階段2亦包括附接的噴霧系統101,用於沉積排出的蒸氣(主要為水及其他低沸物),並連接至真空系統100。
藉由混合而將大量rPET摻入液體聚酯解聚合物可透過使用商用動態混合器或優化的螺旋泵或優化的攪拌機構達成,或者,最成本效益地,藉由利用rPET與液體聚酯解聚物之黏附傾向,並利用一或多個熱液體聚酯解聚物噴射流之衝擊能量的設備,挾帶掉落及/或加壓至彼等解聚合噴射流中的rPET並藉由混合而將其摻入 – 此設備在下文中稱為rPET解聚合物噴射式混合器131。
階段2可有利地配備窺鏡及檢修孔,以及位準、溫度及壓力測量裝置。從階段2至階段5,解聚合單元(包括導管50)在夾套側上被加熱。特別適用於此目的的是雙夾套設計的容器及導管,其接著可以液體或較佳為蒸氣形式之有機傳熱介質加熱。
在非常小的裝置中,rPET與液體聚酯解聚合物在容器中的充分混合將有可能另外藉由適用的攪拌機構或藉由強力循環泵而完成;在目標規模的裝置中,從經濟及技術角度而言,此程序是不利的。
在藉由混合而將rPET摻入液體聚酯解聚合物期間,意欲為生產未溶解或微溶之rPET及液體聚酯解聚合物的可泵送混合物,其可使用標準商用輸送泵從小型貯藏容器輸送。就此目的,rPET較佳為存在於液體聚酯解聚合物中而無顯著空隙。存在於混合物中之空隙將破壞或妨礙標準商用輸送泵的輸送效果。
在藉由混合而將rPET摻入熱液體聚酯解聚合物中而不顯著進一步導入熱時,亦必須確保將熱聚酯解聚合物之較高熱能轉移至冷rPET (約室溫)。 只要熱解聚合物或混合物之溫度高於rPET的熔點或熔化範圍(通常為約245-250°C),後者將迅速熔化。若混合溫度低於rPET的熔點,則rPET保持部分熔化但仍為固態,直至達到常見的最低混合溫度。於此,rPET顆粒的部分熔化使得rPET顆粒變小,並導致生產可輸送混合物所需之rPET與聚酯解聚合物的質量比率降低,並減少輸送過程中的摩擦損失。rPET與聚酯解聚合物之混合溫度可使用Riechmann混合律進行近似計算: Tmix = (m 1*c 1*T 1+ m 2*c 2*T 2) / (m 1*c 1+ m 2*T 2) 其中m = 質量,單位為kg, c = 比熱容量,單位為kJ/kg,以及 T = 溫度,單位為°C)。
就本發明而言重要的是,不論rPET及聚酯解聚合物多快達到所設定的混合溫度,該混合溫度始終保持在高於混合物的固化點或固化範圍,以便能排除隨之而來的裝置破壞或裝置損壞事件。實驗已發現,各種聚酯解聚合物rPET混合物之固化範圍為約185至195°C。
可近似計算出以下混合溫度,取rPET在20°C之比熱容量為1.05 kJ/kg/K,及聚酯解聚合物在270°C之比熱容量為1.95 kJ/kg/K (C.W. Smith/M. Dole, J. Polymer Sci. 20, 1956):
rPET與聚酯解聚物之質量比率 1.0:1.0 1.0:1.3 1.0:1.4 1.0:1.5 1.0:2.0
混合溫度 183°C 197°C 201°C 204°C 217°C
據此,在無安全措施之下,rPET與聚酯解聚合物之最小質量比率不應低於1:1.4,以便提供保證避免意外但可能發生的固化,從而有相當大的製程破壞及可能的裝置損壞。
為了及早辨識出輸送泵/多個輸送泵120上的負載增加或可能的損壞,其/其等應配備泵振動及振盪警報器,此外,應監控驅動馬達的功率消耗。
混合貯藏容器60有利地以短的停留時間(2-5分鐘)運行,以便一方面確保以標準商用輸送泵120的連續輸送流,另一方面保持溫度盡可能降低,直至在熱交換器階段中發生再加熱。短的停留時間不僅意味著容器尺寸小及資本成本低,還意味著由於隨著時間推移的絕對最低熱負荷而提高產物品質。於此,解聚合單元中之整體停留時間及製程之一般溫度輪廓類似於PET裝置中單體或預聚合物通常亦經受的條件。藉由rPET與聚酯解聚物之質量比率的操作參數,結合所達到及設定的溫度、熱交換器的設計及最低要求的EG比率,有可能進行進一步製程優化。
PET或rPET具有高度吸濕性,且通常含有0.1-0.4重量%的水。隨後,若未經乾燥之rPET與熱聚酯解聚物接觸,則存在的大部分水將在270°C下的混合階段10中蒸發,且小部分水將水解rPET。在該情況下,長鏈PET分子隨機裂解,聚合度下降,並生成新的COOH端基。此外,rPET中存在但不需要的任何低沸物(雜質)亦將蒸發或由蒸發的水挾帶。
一個範例的平均莫耳質量(Mn),其中rPET薄片溶解在聚酯解聚物中,發現為1290 g/mol。隨後,若將Mn除以基本單元之莫耳重量192 g/mol,則獲得平均聚合度6.7。低的鏈長及黏度為聚酯解聚物-rPET混合物之有效流動性及低熔點的基礎。然而,由於水解產生的平均莫耳質量在很大程度上取決於rPET中吸濕結合的水量或rPET的整體供水量。此外,水解程度受供應之水的多寡所導致之與rPET反應的影響,此亦受裝置設計及操作模式的影響。
噴霧冷凝器101附接在混合階段10,其具有用於沉積水蒸氣的水迴路,並連接至現有PET裝置的真空階段100,例如,較佳為後酯化階段之真空階段。
因此,在混合階段中有可能以針對性方式生成減壓,其去除混合階段中所產生的水蒸氣以及其他低沸物及過量氮氣。可設置減壓,使得沒有水蒸氣或低沸物通過進料部分返回rPET供應線及筒倉中。如先前技術中常見的,噴霧冷凝器101較佳為連接至收集容器102。在收集容器102底部有輸送泵103,其具有用於過濾的附加過濾器104,以及隨後用於充分冷卻水迴路的熱交換器105。隨後,可將具有可能的低沸物之過量的水供應至例如附加之PET裝置的廢水處理階段106或供應至專用的廢水處理階段。
圖5中表示以rPET解聚合物噴射式混合器131形式之混合設備130的一個可能的型式,並包含以重量分析的rPET供應線133形式之混合容器10注入口11,以及兩個互相對置且向下傾斜的扁平噴嘴132,熱聚酯解聚合物通過該扁平噴嘴而被迫噴出。噴出的聚酯解聚合物與落入混合容器10中之rPET接觸。
於此,rPET供應線11、133有利地設計成垂直的圓形、方形或矩形供應導管。於此,所選擇的直徑至少足以允許全部rPET的量以自由落體方式供應而不被破壞。額外的氮氣進料可能有助於增加rPET的供應,並在未經乾燥之rPET混合於熱聚酯解聚物中時發展出與所生成之水蒸氣相反的壓力。兩個扁平噴嘴132的佈置尺寸應根據rPET供應導管的直徑設計,以允許所有的rPET以自由落體方式衝擊平面噴射流。於此,兩個平面噴射流的速度必須足以容納rPET的體積流量。兩個平面噴射流的速度愈快,則rPET與聚酯解聚物混合的衝擊力將愈大。平面噴射流在兩側以容器壁為界。另一型式為具有四個聚酯解聚合物噴射流的漏斗狀佈置。
聚酯解聚合物噴射流可容納的rPET體積流量為聚酯解聚合噴射流上rPET之平均層厚度乘以聚酯解聚合物噴射流(rPET可落在其上)的寬度,再乘以聚酯解聚合物噴射流之速度的積: V‘ = h * w * v V‘ = rPET體積流量,單位為m³/s h = 聚酯解聚合物噴射流上rPET之平均挾帶層的厚度,單位為m b =聚酯解聚合物噴射流(rPET可落在其上)的寬度,單位為m v = 聚酯解聚合物噴射流的速度,單位為m/s
在聚酯解聚合物噴射流上建立的rPET平均層厚度由於rPET與熱液體聚酯解聚合物彼此黏附的高度傾向而受到正面青睞。另一個積極因素為立於聚酯解聚合物噴射流上之rPET管柱的重力。若加料螺桿上方的壓力損失較高,則向供應軸添加氮氣可增加將rPET混合至聚酯解聚物中的壓力。亦有可能經由螺桿進料器101以針對性方式將rPET壓入聚酯解聚合物噴射流或噴射流中。交叉且向下定向之噴霧方向連同向下作用的重力一起設置混合物的方向。於此,一個有利型式為扁平噴嘴132之45°向下定向傾斜。出現的聚酯解聚合物噴射流之速度取決於聚酯解聚合物之體積流量及噴嘴幾何形狀之狹縫寬度與狹縫高度, 其中最後選擇的狹縫高度決定了rPET中固體及可溶性組成部分的最大許可尺寸,或至少針對此rPET所需之粗過濾細度。 v = V‘/A v = 聚酯解聚合物噴射流的速度,單位為m/s V‘ = rPET體積流量,單位為m³/s A = 噴嘴排出口面積(以m為單位的狹縫寬度 x 以m為單位的狹縫高度)
狹縫排出口面積連同噴嘴132的入口幾何形狀一起決定了噴嘴132上的壓降,該壓降必須藉由泵從聚酯解聚合物貯藏容器施加至第二階段。狹縫噴嘴132應有利地以易於更換之方式安裝在單元上,以便能響應不同的容量及rPET等級。亦有利的是,噴嘴132使用堅固且耐磨的材料,例如硬化不銹鋼。
階段3包含在發生水解時經由解聚合劑,更特別是二醇(在範例情況下,EG)之進料設施20添加極小量,每公斤rPET不超過0.1,較佳為小於0.05,更佳為小於0.01 公斤的EG,黏度及/或聚合度已低於最初存在於rPET中之該等。於此, EG的添加僅用於進一步降低聚合度,而非主要用於控制COOH端基之酯化,使得隨後的再聚合迅速地導致高聚合度,且所產生的聚酯解聚合物較佳為可添加至附接之PET裝置的PP階段。EG與rPET/聚酯解聚合物混合物之反應較佳為在高加工溫度下通過酯化反應而在幾分鐘內發生。在此情況下,隨著反應的進行,壓力亦再次升高,此壓力係由於熱聚酯解聚合物中EG之蒸發產生 – 溫度最高為270°C,絕對壓力約6.4巴。所需之EG可從PET裝置的適用分接點(tapping point)取出。可在藉由混合EG之摻入的上游及/或下游提供取樣點。
為了改進EG在rPET/聚酯解聚合物混合物中的分佈,有可能在注射的下游(在一或較佳為二或多個注射位置處)包括具有短的停留時間的適用混合部分(混合器70),儘管混合部分必須不阻礙所含的尚未熔化之rPET或雜質的通過。
階段3可有利地配備流量、溫度及壓力測量裝置。
階段4包含熱交換器80,其可提供rPET所需之熔化能量。熱交換器80可成本有效地配置成管殼式熱交換器,係因聚酯解聚合物之低黏度允許有效的傳熱。熱交換器之尺度化由所需之最短的停留時間及每單位時間供應之能量的量決定。所需之最短的停留時間為將rPET/聚酯解聚合物混合物再加熱至約270°C所需之時間加上剩餘之未熔化rPET熔體之熔化時間的積。在270°C下,給予足夠的熱供應,rPET在約5至10分鐘內完全溶解。於此有利的是,在運輸過程及/或流動過程中混合,及/或使用小的rPET顆粒。藉由配備不規則表面(例如,凹陷)的管,尤其是當此類管用於熱交換器時,可達到流動過程中的強力混合。然而,部分地及短期內,混合物亦可能過熱。
取樣閥可安裝在熱交換器下游。熔化rPET所需之熱力由熱交換器供應;該單元之其餘部分則微量加熱。由酯化階段釋放之熱力(由於添加的rPET部分而減少了添加的PTA及EG)可以液體、熱的、有機傳熱油之形式直接用於操作熱交換器80。然而,若熱交換器80要在特別高的加熱介質溫度(例如,320°C以上)下操作,則亦有可能使用專用的加熱階段,以便盡可能減少所需之加熱面積。階段4可有利地配備黏度、溫度及壓力測量裝置。
熱交換器80可有利地配置成多個階段,以便控制不同容量所需之不同熱導入。在該情況下,每一階段可具有不同幾何形狀、加熱溫度及加熱面積,從而可單獨加熱。有利地,在此情況下,在階段3之後的第一個內部熱交換器階段具有最高的加熱溫度,且在適當時,有最大的加熱面積,且在階段5之前的最後一個內部熱交換器階段具有最低的加熱溫度。
若在階段2中使用rPET-聚酯解聚合物噴射式混合器131,則可在熱交換器80下游安裝粗過濾器140。在此情況下,過濾細度140必須比所使用之噴嘴的狹縫寬度更細。
階段5包含一容器(聚酯解聚合物貯藏容器60),其中來自熱交換器80之rPET及聚酯解聚合物的熔融混合物被加熱至約270°C並減壓,並以最短的停留時間暫時儲存。階段2使用專用於此目的之輸送泵120從聚酯解聚合物貯藏容器60供應。根據體積所需比率、相對於固化溫度之安全裕量及rPET之形式/稠度,基於最小所需之混合比率,該泵120之輸送體積確定/控制所供應之rPET的最大允許量。
從連續操作之解聚合物貯藏容器中之位準的穩定上升可看出,由於rPET熔化而形成的過量聚酯解聚合物經由切換點30及輸出線40而分離,並以進一步之泵120輸送至可選地附接的PET裝置。在此情況下,可將進一步之過濾階段或純化階段140 (例如,精細過濾器)***製程流程中。該泵120可有利地設置在解聚合單元中之最低點處,從而當該單元關閉時允許該單元之低點處及殘餘材料被清空。將過量聚酯解聚合物進料至附接之PET裝置的階段中,其相應於所達到的聚合度 – 例如,直接進入PP階段。
在給予定期取樣時,取樣位置允許對產物品質構成風險的污染,可被及時以目測方式或藉由光學測量方法檢測。在該情況下,可為整個解聚合單元提供清空設施。清空可發生在例如容量為約1 m³的廢料車中,並在填充前向其中導入約200 L的水。藉由抽吸而抽出所產生的水蒸氣,並排至大氣中。隨後,聚酯解聚合物必須在廢料車中冷卻以供進一步使用。短的停留時間及解聚合單元之聚酯解聚合物體積將廢料的量限制在最低限度。因此,具有更大容量及更長停留時間之附接的PET生產裝置在很大程度上可能免於污染。此外,在該情況下,亦需要從rPET供應筒倉90中去除有缺陷的批次,之後可恢復正常操作。
聚酯解聚合物貯藏容器60亦可特別用於裝置的啟動。從可選地附接之PET裝置中,可取出熱的、液體單體或預聚合物,直至解聚合單元充滿並開始循環製程為止。隨後,開始添加rPET,產生聚酯解聚合物,並將多餘的聚酯解聚合物運送至PET裝置。
階段5較佳為連接至可選地附接之PET裝置之後酯化階段的真空階段。此允許在單體貯藏容器中產生輕微減壓,並用於任何剩餘之低沸物或小量釋放之乙二醇的抽出及加工。階段5可有利地配備窺鏡及檢修孔,且亦配備位準、溫度及壓力測量裝置以及氮氣惰化裝置。 所使用之分析方法數均莫耳質量Mn之測定:
凝膠滲透層析術(GPC)允許根據流體動力學體積分離溶解之化合物的分子。藉由比較莫耳質量未知之分子的滯留時間或溶析體積,有可能通過與莫耳質量已知之分子的滯留時間/溶析體積的比較而確定未知之莫耳質量及莫耳質量分佈。在適當校準之後,從溶析曲線獲得莫耳質量的分佈曲線,亦可計算不同權重的平均莫耳質量。於此,Mn代表數均莫耳質量,並顯示聚合物樣品的平均莫耳質量。若將Mn除以聚合物之單體基本單元的莫耳重量,則獲得單體基本單元的平均數量,其亦稱為聚合度(Pn)。 GPC方法:
在以聚甲基丙烯酸甲酯標準品(PMMA)校準之後,根據DIN 55672-1 (2007),透過GPC測定莫耳質量。 分析條件: 溶析液:六氟異丙醇(HFIP) / 0.05 M三氟乙酸鉀(KTFAC) 管柱:PSS PFG,7 μm,100Å,ID 8.0 mm x 300 mm,PSS PFG,7 μm,100Å,ID 8.0 mm x 300 mm,PSS PFG,7 μm,300Å,ID 8.0 mm x 300 mm。
泵調節至流速為1.0 mL/min;50 μL注射體積,其中樣品濃度為3.0 g/L。以微差折射器(RID)檢測,並以WinGPC軟體評估。
透過以電腦輔助之長條法(strip method),並基於PMMA校準曲線,計算莫耳質量平均值及其等之分佈。於此,確定莫耳質量不是絕對莫耳質量,而是PMMA等價之莫耳質量。 本質黏度(IV)之測定
本質黏度之測定亦稱為相對溶液黏度之測定,且為PET生產全程中品質管制的標準方法。經確定之本質黏度與聚合度及平均分子量相關。
根據ASTM 4603-03 (2003),測定含有六個質量分率之酚及四個質量分率之1,1,2,2-四氯乙烷之混合物的0.5重量%樣品溶液的本質黏度,其係藉由在30°C下之DIN型1a烏氏(Ubbelohde)毛細管黏度計(毛細管直徑0.95 mm)中測定溶劑混合物及溶液的傳輸時間。
下列反應式給定樣品的相對黏度η rel
t:樣品傳輸時間[s] Δt:樣品之哈根巴赫(Hagenbach)校正時間[s] t 0:溶劑混合物傳輸時間[s] Δt 0:溶劑混合物之哈根巴赫校正時間[s]
樣品之本質黏度由下列反應式給定:
c:樣品濃度[g/dl] COOH端基之測定
COOH端基之測定亦稱為羧端基之測定,且為PET生產全程中品質管制的標準方法。
根據ASTM D7409-15測定COOH端基,藉由在80°C下將0.25-0.5 g之聚酯溶解於15 mL之鄰甲酚中,接著以60 mL之二氯甲烷稀釋,並以含有0.01 KOH標準溶液之甲醇滴定,藉由使用附接光學傳感器之自動化滴定儀測定所添加之四溴酚藍指示劑的轉換點。
羧基(COOH)量之測定係根據下列反應式給定: COOH = (Vs – Vb)*1000*M*f/W     [mmol/kg] Vs:滴定樣品所需之KOH溶液體積 Vb:滴定溶劑混合物所需之KOH溶液體積(空白值) M:KOH溶液在甲醇中之莫耳濃度 f:KOH溶液在甲醇中之因數 W:稱得的樣品質量 範例之實驗設備
所提供的實驗設備為具有攪拌器之可加熱5L高壓釜。所述加熱以具有4 kW加熱功率之有機傳熱油(Marlotherm SH)操作。高壓釜可充填氮氣。攪拌器專為低黏度及高黏度PET產物設計,且通過高效表面更新,能在適用之真空及溫度條件下產生高達1500 Pas動態黏度的PET黏度,大約相當於275°C下之IV為0.85 dl/g。兩個冷凝器串聯附接至高壓釜。第一個冷凝器作為混合物的簡單分離階段,例如,以便將乙二醇保留在反應器中並允許所產生的水逸出。隨後,第二個冷凝器根據所使用的冷卻介質溫度將所有排出的氣體冷凝。冷凝器下游可能有真空泵,以實現單體聚縮合成聚合物所需之真空。為了改進真空泵的真空性能,可另外在泵前方加裝以低溫液態氮操作的冷阱。位於高壓釜之蓋上的是M36取樣螺桿,其亦使能以肉眼方式觀察到反應器中的事件。 範例 範例1
來自碎瓶廢料的1000 g標準商用rPET薄片在165°C之加熱溫度且充入氮氣的高壓釜中乾燥過夜。攪拌器以20 rpm運行,其中波動扭矩為2-8 Nm。為了從薄片生產解聚合物,將100 g的乙二醇導入高壓釜中。高壓釜中之壓力以N 2調節至4.0巴(絕對壓力)。將第一冷凝器設定在200°C,因此基本上僅水可蒸發,而乙二醇冷凝並滴回高壓釜中。第二冷凝器以約10°C之冷卻水操作。
隨後,該加熱(高壓釜壁)從165°C調節至300°C目標溫度。僅10分鐘後,扭矩發生巨大變化,從2-8 Nm變為9.4-10.5 Nm,表明薄片開始熔化。在10分鐘後,加熱溫度為262°C,而產物溫度(熔化及未溶解薄片之混合物)為僅196°C。
在20分鐘後,加熱溫度升至300°C,且產物溫度為254°C,已高於典型薄片熔化範圍245-251°C。在50 rpm時扭矩已急劇降至0.2-0.3 Nm,此亦表明此時薄片已大部分熔化的事實。
在50分鐘後,在產物溫度為268°C時降低壓力,並從高壓釜中取出樣品。實驗室分析給出0.142 dl/g之黏度。
隨後,在一分鐘內另外將500 g之薄片添加至解聚合的薄片中。在此情況下,扭矩無變化。然而,在第6分鐘時,該添加導致產物溫度降至257°C,並且同時加熱溫度從298降至297°C。在此情況下之製程狀態為等溫;熱損失藉由進一步加熱而補償。在6分鐘後,所有薄片皆已熔化,係因產物溫度及加熱溫度開始再次攀升。在添加500 g之薄片後20分鐘,從高壓釜中取出樣品。實驗室分析給出0.158 dl/g之黏度。藉由GPC測量,發現此樣品之平均莫耳質量(Mn)為1290 g/mol,相應於平均Pn為約7。
隨後,所獲得的解聚合物在約270°C及0.7 mbar的高壓釜中進行聚縮合。不添加額外的觸媒或其他進一步之添加劑或助劑。隨著黏度增加,攪拌器之速度從150降低至50至10 rpm。在1.75小時之過程中,黏度以明顯的線性方式從0.158增至0.492至0.626至0.918 dl/g。 範例 2
針對範例2,使用平均丸粒重量為16 mg且黏度為0.84 dl/g的標準商用MTR ®球形PET丸粒。
在空的高壓釜中裝入1000 g之丸粒及100 g之乙二醇。其後,攪拌器在100 rpm時之扭矩為約0.7 Nm。高壓釜中之壓力以N 2調節至4.0巴(絕對壓力)。將第一冷凝器設定在200°C,因此基本上僅水可蒸發,而乙二醇冷凝並滴回高壓釜中。第二冷凝器以約10°C之冷卻水操作。
隨後,該加熱從25°C調節至290°C目標溫度。加熱溫度達到250°C僅需20分鐘。此時,由於初期的熔化製程,扭矩從約0.7 Nm升至4 Nm。在另外10分鐘後,扭矩之增加結束,並在產物溫度為約260°C時達到低的、穩定的呈現出0.3 Nm。
隨後,降低壓力並打開高壓釜以進行取樣。可以看出,丸粒已完全熔化。解聚合物之實驗室分析給出0.082 dl/g之本質黏度及25 mmol/kg之COOH端基。
隨後,停止加熱以進入絕熱狀態,並通過打開的取樣口進一步添加500 g之丸粒。在添加後,取樣口保持開啟,允許可目視觀察進一步之熔化程序。
在262°C將丸粒添加至熱解聚合物中後,可清楚看到粒狀丸粒漂浮在澄清熔體中,且在最初數分鐘內亦明顯變小。隨著開始添加丸粒,產物溫度持續降低。當產物溫度降至低於約245°C時,粒狀丸粒之尺寸不再有任何變化。在添加後15分鐘,產物溫度降至約200°C,且單體與粒狀丸粒之混合物變得混濁。在添加後20分鐘,溫度達到183°C,且至此時顯示為穩定的0.35 Nm之扭矩突然穩定攀升至1.2 Nm。此時,重新加熱,並在添加後25分鐘降溫停止於176°C。在添加後40分鐘,產物溫度再次達到260°C,粒狀丸粒全部充分溶解,且熔體再次澄清。從高壓釜中取出樣品。實驗室分析給出0.087 dl/g之解聚合物本質黏度及25 mmol/kg之COOH端基。
所獲得的解聚合物在約270°C及0.7 mbar的高壓釜中進行聚縮合。不添加額外的觸媒或其他進一步之添加劑或助劑。隨著黏度增加,攪拌器之速度從150降低至50至10 rpm。在1.5小時之過程中,本質黏度從0.087增至0.203至0.407至0.570至0.672至0.787至0.886 dl/g。 範例 3
針對範例3,使用平均丸粒重量為16 mg且黏度為0.84 dl/g的標準商用MTR ®球形PET丸粒。
在空的高壓釜(加熱至290°C)中裝入溫度為約25°C之1000 g的未經乾燥丸粒。在添加丸粒後,添加口保持開啟,允許可目視觀察進一步之熔化程序。
在僅5分鐘後,第一粒狀丸粒經歷顯著部分熔化,導致短時間內達到高達25 Nm的極高扭矩。在添加後10分鐘,在247°C之產物溫度下,大部分的粒狀丸粒已發生大量熔化,且扭矩已降至2 Nm。在添加後15分鐘,所有丸粒皆熔化,產物溫度為261°C,且扭矩為0.7 Nm。
從高壓釜中取出樣品。實驗室分析給出0.26 dl/g之本質黏度及41 mmol/kg之COOH端基。
對比先前兩個實驗,本實驗清楚表明,rPET在熱單體中的溶解速率主要取決於所使用的溫度,且此溫度在每一情況下皆必須高於所使用之rPET的熔化範圍。在高於熔點之溫度及壓力下(EG在所使用熔化溫度下的蒸氣壓),小量添加的EG可在數分鐘內轉化為額外的rPET斷鏈,並進一步降低黏度及減少COOH端基。EG之添加亦降低rPET/單體混合物在熔化期間的內摩擦,其在實驗中顯而易見,係因當rPET在壓力下與小量EG一起熔化時會出現較低的扭矩。 範例 4
針對範例4,標準商用PTA及標準商用EG係用於PET生產,首先生產約1000 g之相應於解聚物的低分子質量PET,接著在290°C下將rPET薄片溶解於其中,隨後通過減少加熱而測定此混合物的固化點。
高壓釜在室溫下裝入778 g之PTA及422 g之EG,其等在100 rpm下混合以形成漿糊。不添加額外的觸媒或其他進一步之添加劑或助劑。隨後,以N 2將反應器中之壓力調節至2.6巴(絕對壓力),並以290°C之目標溫度開始加熱。第一冷凝器設定為160°C,使得在2.6巴下形成的水可被排出,而蒸發乙二醇可在很大程度上再次冷凝回到反應器中。第二冷凝器以溫度約10°C之冷卻水操作。
在開始加熱後30分鐘,加熱溫度為恆溫290°C,且產物溫度為223°C,且第一餾出液從冷凝器1滴回,表明酯化反應開始。在110分鐘後,冷凝器2之餾出液生產停止,酯化反應結束,且產物溫度為264°C。隨後,將加熱溫度調節至325°C,並將冷凝器1調節至210°C。在15分鐘後,加熱溫度為325°C,產物溫度為295°C,且冷凝器2之溫度為210°C。隨後,將高壓釜中之壓力降至大氣條件,並通過取樣口打開高壓釜。從高壓釜中取出樣品。實驗室分析給出0.078 dl/g之本質黏度及82 mmol/kg之COOH端基。
隨後,在大氣條件下,在一分鐘內添加500 g之薄片;通過取樣可觀察到熔化操作。藉由輕微減壓而抽出所形成的水蒸氣。薄片在5分鐘內完全溶解,導致產物溫度降至279°C,之後在接下來5分鐘內再次攀升至287°C。從高壓釜中取出樣品。實驗室分析給出0.103 dl/g之本質黏度及100 mmol/kg之COOH端基。
隨後,將加熱溫度調節至設定點200°C,且加熱溫度及產物溫度開始穩定下降。在40分鐘後,加熱溫度已降至202°C,且產物溫度已降至194°C。此時,熔體變得混濁,且攪拌器之扭矩開始上升,其先前始終顯示出恆定的0.4 Nm。在進一步6分鐘後,在184°C之產物溫度下,解聚合物已整體固化,並以凝塊形式由攪拌器循環。此可能係因攪拌器之功率大,且固化之解聚合物易於散開。 範例 5
如範例4之實施,藉由在12分鐘過程中之攪拌,將2000 g之薄片摻入所產生的約1000 g之低分子質量 PET中,並溶解於其中。
薄片在開始添加後15分鐘內溶解,但扭矩短暫上升至2 Nm。當薄片熔化時,重新建立0.35 Nm之穩定扭矩。
隨後,將加熱溫度調節至設定點200°C,且加熱溫度及產物溫度開始穩定下降。在32分鐘後,加熱溫度已降至203°C,產物溫度降至196°C,且解聚合物突然整體固化。
1:設備 10:混合容器,混合設備,混合階段 11:注入口,rPET供應線 12:注入口 13:排出口 20:進料設施 30:切換點 40:輸出線,排出 50:導管 60:貯藏容器 70:混合器 80:加熱設備,熱交換器 90:儲存設備,筒倉 91:輸送設備,螺旋輸送器,計量螺桿 100:減壓,真空單元,真空系統,真空階段 101:噴霧冷凝器,噴霧系統,螺桿進料器 102:收集容器 103:輸送泵 104:過濾器 105:熱交換器 106:廢水處理階段 110:惰性氣體供應,進料設施,氮氣惰化 120:泵 130:(混合)設備 131:噴射式混合器 132:噴嘴 133:rPET供應線 140:設備,粗過濾器,過濾細度,純化階段150  :裝置
圖1顯示來自酯化階段(ES階段)之單體之凝膠滲透層析術(GPC)分析的典型結果。
圖2顯示後酯化階段(PE階段)之單體之GPC分析的典型結果。
圖3顯示初步聚合階段(PP階段)之預聚合物之GPC分析的典型結果。
圖4顯示根據本發明用於執行始於聚酯回收物之聚酯生產的整體設備。
圖5表示以rPET解聚合物噴射式混合器形式之混合設備的一個可能的型式。
10:混合容器,混合設備,混合階段
11:注入口,rPET供應線
12:注入口
13:排出口
20:進料設施
30:切換點
40:輸出線
50:導管
60:貯藏容器
70:混合器
80:熱交換器
90:筒倉
91:螺旋輸送器,計量螺桿
100:真空單元,真空系統,真空階段
101:噴霧冷凝器,噴霧系統,螺桿進料器
102:收集容器
103:輸送泵
104:過濾器
105:熱交換器
106:廢水處理階段
110:進料設施,氮氣惰化
120:泵
130:(混合)設備
131:噴射式混合器
133:rPET供應線
140:粗過濾器,過濾細度,純化階段
150:裝置

Claims (34)

  1. 一種用於生產聚酯解聚合物之設備,其包含 一混合容器(10),其具有一用於固體聚酯回收物之注入口(11)、一用於液體聚酯解聚合物之注入口(12),以及一用於包含該聚酯回收物與該聚酯解聚合物之混合物或由該聚酯回收物與該聚酯解聚合物組成之混合物的排出口(13), 在該混合容器(10)之該排出口(13)下游,至少一用於解聚合劑之進料設施(20),以及 在該進料設施(20)下游,一用於將聚酯解聚合物流***成至少兩個子流的切換點(30),其中一個子流與該注入口(11)及/或該混合容器(10)之用於聚酯解聚合物的該注入口(12)連通,且另一個子流或多個子流用於從該設備排出(40)聚酯解聚合物, 其中該設備之所有組成部分皆透過一導管(50)流體連通。
  2. 如請求項1之設備,其特徵為在該切換點(30)上游有一用於暫時儲存該聚酯解聚合物的貯藏容器(60)。
  3. 如前述請求項中任一項之設備,其特徵為在用於解聚合劑之該進料設施(20)下游有一混合器(70),更特別是一靜態混合器。
  4. 如前述請求項中任一項之設備,其特徵為在用於解聚合劑之該進料設施(20)下游有一加熱設備(80),較佳為一熱交換器,更特別是一管殼式(shell-and-tube)熱交換器,較佳為在前述請求項之該混合器(70)下游,且經由該導管(50)連接至該混合器。
  5. 如前述請求項中任一項之設備,其特徵為在用於聚酯回收物之該注入口(11)上游有至少一用於儲存聚酯的儲存設備(90),例如至少一筒倉,其與該混合容器(10)之用於聚酯回收物的該注入口連通,更特別是經由一輸送設備(91),例如一螺旋輸送器、星形輪、稱重裝置及/或供應軸。
  6. 如前述請求項中任一項之設備,其特徵為該混合容器(10)及/或該貯藏容器(60)具有至少一用於施加減壓(100)的設施,更特別是一減壓設備,其較佳為具備一噴霧冷凝器(101)。
  7. 如前述請求項中任一項之設備,其特徵為該設備具備至少一惰性氣體供應(110),其通向例如該儲存設備(90)、該輸送設備(91)及/或該混合容器(10)。
  8. 如前述請求項中任一項之設備,其特徵為該導管(50)具備至少一輸送泵(120)。
  9. 如前述請求項中任一項之設備,其特徵為該混合容器(10)具備至少一用於混合聚酯回收物與聚酯解聚合物的設備(130),例如一動態混合器、一螺旋泵、一攪拌構件及/或一噴射式混合器(131),其特別具有扁平噴嘴(132)。
  10. 如前述請求項中任一項之設備,其特徵為在該導管(50)內,更特別是在該貯藏容器(60)上游,有至少一用於去除顆粒及/或化學雜質的設備(140)。
  11. 如前述請求項之設備,其特徵為該至少一用於去除顆粒及/或化學雜質的設備(140)係選自於由顆粒過濾器,更特別是用於去除具有直徑< 10 µm之顆粒、活性碳過濾器、離子交換器、蒸發器、結晶器,及其組合組成之群組。
  12. 如前述請求項中任一項之設備,其特徵為混合容器(10)、切換點(30)、導管(50)及可選地貯藏容器(60)、混合器(70)及加熱設備(80)為具有可加熱及/或隔熱設計,例如透過一雙壁結構,其中可攜帶一液態或氣態傳熱介質。
  13. 如前述請求項中任一項之設備,其特徵為該混合容器(10)及/或該輸送設備(91)包含一在一規定壓力下從該設備轉移多餘壓力的釋壓設備,例如一超壓閥及/或一迸裂碟(bursting disc)。
  14. 一種用於生產聚酯解聚合物之方法,其中固體聚酯回收物係與一液體聚酯解聚合物混合,且該混合物被轉化為一熔體,一解聚合劑係被至少一次加至該熔體並與該熔體反應,以生成一聚酯解聚合物,並且接著具有所生成的聚酯解聚合物之一子流係被用於與該聚酯回收物混合,且其餘聚酯解聚合物係獲得作為產物。
  15. 如前述請求項之方法,其特徵為 該液體聚酯解聚合物在與該聚酯回收物混合係在240至320°C,較佳為250至300°C,更佳為260至290°C之溫度下進料,及/或 該聚酯回收物在與該聚酯解聚合物混合係在-40°C至230°C,較佳為0°C至100°C,更佳為10°C至50°C之溫度下進料。
  16. 如兩前述請求項中之任一者之方法,其特徵為該混合係透過一動態混合器、一螺旋泵及/或一噴射式混合器實現。
  17. 如請求項14至16中任一項之方法,其特徵為聚酯回收物與聚酯解聚合物之混合比率(重量/重量)為至少1:5,較佳為至少1:2或更高,較佳為不超過1:1.4。
  18. 如請求項14至17中任一項之方法,其特徵為基於聚酯回收物之一重量分率,該解聚合劑以不超過1:0.25 (解聚合劑),較佳為不超過0.1 (解聚合劑),更佳為不超過0.05 (解聚合劑)之重量分率被添加。
  19. 如請求項14至18中任一項之方法,其特徵為 該混合物之一停留時間,從該聚酯回收物與該聚酯解聚合物之混合至添加該解聚合劑,被設定在0.5至30分鐘,較佳為1至10分鐘,更佳為2至5分鐘,及/或 被設定有一總停留時間為≤ 1.5小時,較佳為≤ 60分鐘,更佳為≤ 30分鐘。
  20. 如請求項14至19中任一項之方法,其特徵為作為產物取出的該聚酯解聚合物之COOH端基濃度為不超過250 mmol/kg,較佳為不超過150 mmol/kg,更佳為不超過50 mmol/kg。
  21. 如請求項14至20中任一項之方法,其特徵為在添加解聚合劑之前,該聚酯回收物與該聚酯解聚合物之混合物的熔體係調整為3至50,較佳為4至30,更佳為5至15之一平均聚合度。
  22. 如請求項14至21中任一項之方法,其特徵為該熔體在添加該解聚合劑之後及在分開成子流之前, 被混合,例如透過一靜態混合器, 及/或 被加熱,較佳為至240至320°C,較佳為250至300°C,更佳為260至280°C之溫度,更特別是透過一熱交換器,且更佳為該熔體在加熱期間之停留時間為1至30分鐘,較佳為2至20分鐘,更佳為5至10分鐘。
  23. 如請求項14至22中任一項之方法,其中該解聚合劑係選自於由二醇類,例如單乙二醇、二乙二醇、三乙二醇、聚乙二醇、1,3-丙二醇、1,4-丁二醇、環己烷二甲醇,更特別是相應於用於生產原始聚酯之二醇的二醇,或來自不同二醇類之混合物、水、有機酸,更特別是乳酸,及其混合物組成之群組,其中該解聚合劑可包含進一步之添加劑。
  24. 如請求項14至23中任一項之方法,其特徵為該混合係在減壓或大氣壓下進行,較佳為在藉由施加一真空之減壓下,其中更特別是由該真空抽出之蒸氣係透過一噴霧冷凝器洗去。
  25. 如請求項14至24中任一項之方法,其特徵為該作為產物取出的聚酯解聚合物被純化,較佳為被過濾及/或被化學純化、被蒸餾或被結晶,且顆粒及/或化學雜質被分離出。
  26. 如請求項14至25中任一項之方法,其特徵為該混合、熔化及反應係在具有< 5體積%,較佳為< 1體積%,更佳為< 0.1體積%之一含氧量的惰性氣氛中,更特別是一氮氣氣氛中進行。
  27. 如請求項14至26中任一項之方法,其特徵為該生成的聚酯解聚合物在分成子流之前被暫時儲存及/或收集。
  28. 如請求項14至27中任一項之方法,其特徵為該生成的聚酯解聚合物被過濾。
  29. 如請求項14至28中任一項之方法,其特徵為該聚酯回收物為rPET且該解聚合劑為二醇乙二醇,該聚酯回收物為rPBT (回收的聚對苯二甲酸丁二酯)且該解聚合劑為二醇 1,4-丁二醇,該聚酯回收物為rPTT (聚對苯二甲酸三亞甲基酯)且該解聚合劑為二醇 1,3-丙二醇,該聚酯回收物為rPBS (回收的聚丁二酸丁二酯)且該解聚合劑為二醇 1,4-丁二醇,該聚酯回收物為rPEN (回收的聚萘二甲酸乙二酯)且該解聚合劑為二醇乙二醇,該聚酯回收物為rPEF (回收的聚乙烯呋喃酸酯)且該解聚合劑為二醇乙二醇,或該聚酯回收物為rPLA (回收的聚乳酸)且該解聚合劑為水及/或乳酸。
  30. 如請求項14至29中任一項之方法,其特徵為該聚酯回收物係以丸粒及/或薄片及/或粉碎的rPET之形式進料。
  31. 如請求項14至30中任一項之方法,其特徵為其係連續或分批操作。
  32. 一種用於生產聚酯之設備(1),其包含串聯之如請求項1至13中任一項之用於生產聚酯解聚合物的設備以及至少一用於生成聚酯的聚縮合階段。
  33. 如前述請求項之設備,其特徵為至少一聚縮合階段包含 一或多個落膜式反應器或預聚合器(preliminary polymerizer), 一或多個盤式反應器(disc reactor)或最終聚合器,以及 可選地一或多個用於進行一固相後縮合的設備。
  34. 一種用於生產聚酯之方法,其中聚酯解聚合物係透過如請求項14至31中任一項之方法生產,並且接著被聚合成聚酯。
TW111143019A 2021-11-11 2022-11-10 用於生產聚酯解聚合物的設備及方法與用於生產聚酯的設備及方法 TW202328319A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021212695.2 2021-11-11
DE102021212695.2A DE102021212695A1 (de) 2021-11-11 2021-11-11 Vorrichtung und verfahren zur herstellung eines polyester-depolymerisats sowie vorrichtung und verfahren zur herstellung eines polyesters

Publications (1)

Publication Number Publication Date
TW202328319A true TW202328319A (zh) 2023-07-16

Family

ID=84365559

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111143019A TW202328319A (zh) 2021-11-11 2022-11-10 用於生產聚酯解聚合物的設備及方法與用於生產聚酯的設備及方法

Country Status (5)

Country Link
KR (1) KR20240090274A (zh)
CN (1) CN118215535A (zh)
DE (1) DE102021212695A1 (zh)
TW (1) TW202328319A (zh)
WO (1) WO2023083692A2 (zh)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB610136A (en) 1946-03-28 1948-10-12 Royden Lewis Heath Degradation of aromatic linear polyesters
US3222299A (en) 1961-10-16 1965-12-07 Du Pont Process of reclaiming linear terephthalate polyester
US3884850A (en) 1970-02-13 1975-05-20 Fiber Industries Inc Continuous atmospheric depolymerization of polyester
JPS60248646A (ja) 1984-05-25 1985-12-09 Toray Ind Inc ポリエステル屑の解重合方法
US5298530A (en) * 1992-11-25 1994-03-29 Eastman Kodak Company Process of recovering components from scrap polyester
US5414022A (en) * 1994-03-10 1995-05-09 Eastman Kodak Company Process of recovering components from polyester resins
DE19643479B4 (de) 1996-10-22 2006-04-20 Zimmer Ag Verfahren zur Herstellung von Polyethylenterephthalat aus Polyethylenterephthalat-Abfall
US6136869A (en) * 1997-10-17 2000-10-24 Eastman Chemical Company Depolymerization process for recycling polyesters
DE19811280C2 (de) 1998-03-12 2002-06-27 Inventa Fischer Gmbh Verfahren und Vorrichtung zur Rückgewinnung von linearem Polyester
US6472557B1 (en) * 1999-02-10 2002-10-29 Eastman Chemical Company Process for recycling polyesters
JP4008214B2 (ja) * 2001-08-03 2007-11-14 三菱重工業株式会社 ポリエステルのモノマー化反応容器
DE102006023354B4 (de) 2006-05-17 2015-12-03 Lurgi Zimmer Gmbh Verfahren und Vorrichtung zur Wiederverwertung von Polyestermaterial
CN104785136A (zh) 2010-09-30 2015-07-22 伊奎聚合物有限公司 混合方法和可用于其的装置
CN107459788B (zh) * 2017-07-20 2019-05-24 东华大学 一种聚酯回收料的再生利用方法
DE102018202547A1 (de) 2018-02-20 2019-10-02 Thyssenkrupp Ag Vorrichtung und Verfahren zum Einmischen von Recyclingmaterial in eine Polyesterschmelze
WO2020149798A1 (en) 2019-01-15 2020-07-23 Köksan Pet Ve Plasti̇k Ambalaj Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Chemical glycolysis method in which transparent pet wastes are recycled to be used in bottle-grade pet resin production
FR3092324B1 (fr) * 2019-02-01 2021-04-23 Ifp Energies Now Procédé de production d’un polyester téréphtalate intégrant un procédé de dépolymérisation
US11518865B2 (en) * 2019-05-20 2022-12-06 Octal Saoc Fzc Process for reclamation of polyester by reactor addition
FR3106134B1 (fr) * 2020-01-09 2022-12-16 Ifp Energies Now Procédé optimisé de dépolymérisation par glycolyse d’un polyester comprenant du polyéthylène téréphtalate
EP3875523A1 (en) * 2020-03-03 2021-09-08 UAB Neo Group Processes for recycling polyethylene terephthalate
EP4136160A1 (en) * 2020-04-13 2023-02-22 Eastman Chemical Company Chemical recycling of waste plastics from various sources, including wet fines

Also Published As

Publication number Publication date
CN118215535A (zh) 2024-06-18
DE102021212695A1 (de) 2023-05-11
WO2023083692A2 (de) 2023-05-19
WO2023083692A3 (de) 2023-07-20
KR20240090274A (ko) 2024-06-21

Similar Documents

Publication Publication Date Title
EP2252643B1 (en) Dryer configuration for production of polyester particles
US5811496A (en) Process for polymerization of polyester oligomers
EP0866821B1 (en) Process of making polyester prepolymer
US11814486B2 (en) Apparatus and method for mixing recycling material into a polyester melt
JP2005120372A (ja) 流体中での溶融ポリエステルポリマーの熱結晶化
TWI282799B (en) Polyester polymer particles having a small surface to center molecular weight gradient
US20140316097A1 (en) Method and apparatus for recovering lactide from polylactide or glycolide from polyglycolide
TW200524970A (en) Thermal crystallization of polyester pellets in liquid
TW202328319A (zh) 用於生產聚酯解聚合物的設備及方法與用於生產聚酯的設備及方法
JP5567977B2 (ja) ポリトリメチレンテレフタレートの製造装置及び製造方法並びにアクロレイン除去装置
JP5272511B2 (ja) ポリブチレンテレフタレートの製造方法
TW200302237A (en) Method for treating polyester polymers and polyester polymers with low content of low-boiling components
EP4200355A1 (en) Process and system to utilize waste polyester in a continuous polyester polymerization process