TW202320378A - Preparation method of all-solid composite polymer electrolyte film and all-solid lithium battery advantageous in having fast manufacturing process and excellent performance, and capable of being perfectly applied to all-solid lithium batteries with high voltage and high energy density - Google Patents

Preparation method of all-solid composite polymer electrolyte film and all-solid lithium battery advantageous in having fast manufacturing process and excellent performance, and capable of being perfectly applied to all-solid lithium batteries with high voltage and high energy density Download PDF

Info

Publication number
TW202320378A
TW202320378A TW110141273A TW110141273A TW202320378A TW 202320378 A TW202320378 A TW 202320378A TW 110141273 A TW110141273 A TW 110141273A TW 110141273 A TW110141273 A TW 110141273A TW 202320378 A TW202320378 A TW 202320378A
Authority
TW
Taiwan
Prior art keywords
oligomer
polymer electrolyte
solid
composite polymer
pegdma
Prior art date
Application number
TW110141273A
Other languages
Chinese (zh)
Other versions
TWI756162B (en
Inventor
楊純誠
吳宜萱
懷康 陳
Original Assignee
明志科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明志科技大學 filed Critical 明志科技大學
Priority to TW110141273A priority Critical patent/TWI756162B/en
Application granted granted Critical
Publication of TWI756162B publication Critical patent/TWI756162B/en
Publication of TW202320378A publication Critical patent/TW202320378A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention provides a method for preparing an all-solid composite polymer electrolyte film and an all-solid lithium battery. The preparation method includes the steps of: (1) mixing a precursor material, LiTFSI and SN, wherein the precursor material is selected from at least one of the group consisting of: PEGDMA oligomer in combination with PEGMA oligomer, PEGDMA oligomer in combination with Jeffamine oligomer, PEGDA oligomer in combination with PEGMA oligomer, PEGDA oligomer in combination with Jeffamine oligomer, and ETPTA oligomer; (2) uniformly stirring the mixed material at room temperature for 8 hours, and then adding PMDA and continuing to stir for 2 hours; (3) uniformly applying the mixed solution obtained from stirring for 2 hours onto glass to form a coating layer, and placing a non-woven fabric film with a thickness of 5 to 300 <mu>m on the coating layer; and (4) using ultraviolet light for irradiation to form an all-solid composite polymer electrolyte film. The all-solid composite polymer electrolyte film of the present invention is advantageous in having fast manufacturing process and excellent performance, which can be perfectly applied to all-solid lithium batteries with high voltage and high energy density.

Description

全固態複合式高分子電解質膜的製備方法及全固態鋰電池Preparation method of all-solid composite polymer electrolyte membrane and all-solid lithium battery

本發明係關於一種全固態複合式高分子電解質膜的製備方法及全固態鋰電池,特別關於一種使用光交聯聚合技術合成全固態複合式高分子電解質膜的製備方法及全固態鋰電池。The invention relates to a preparation method of an all-solid composite polymer electrolyte membrane and an all-solid lithium battery, in particular to a preparation method of an all-solid composite polymer electrolyte membrane synthesized by photocrosslinking polymerization technology and an all-solid lithium battery.

幾十年以來,鋰離子電池(Lithium-ion batteries, LIBs)因具有高能量密度、高輸出電壓和長循環壽命等優勢而引起了廣泛地關注。然而,該電池的液體電解質的使用可能會導致揮發性、洩漏、甚至***等安全性問題,因而限制在電子產品、電動車與儲能系統等方面的應用。相對地,固態高分子電解質(Solid polymer electrolyte, SPE)具有無液體洩漏(無溶劑)、可撓性和設計多樣性等優點,具備取代傳統液體電解液與隔離膜的潛力。For decades, Lithium-ion batteries (LIBs) have attracted extensive attention due to their advantages of high energy density, high output voltage, and long cycle life. However, the use of liquid electrolytes in this battery may lead to safety issues such as volatility, leakage, and even explosion, thus limiting applications in electronic products, electric vehicles, and energy storage systems. In contrast, Solid polymer electrolyte (SPE) has the advantages of no liquid leakage (no solvent), flexibility and design diversity, and has the potential to replace traditional liquid electrolytes and separators.

在固態高分子電解質膜之製備上,近年來,聚環氧乙烷(PEO)、聚偏二氟乙烯-六氟丙烯(PVDF-HFP)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯腈(PAN)及其衍生物受到了廣泛地研究,例如於專利文獻1所開示之聚合物固態電解質膜及其製備方法。然而,高成本、複雜的製作工程技術和室溫下的低鋰離子導電率等問題,阻礙了該等固態高分子電解質膜的大規模商業化生產與其應用。 [先前技術文獻] [專利文獻] In the preparation of solid polymer electrolyte membranes, in recent years, polyethylene oxide (PEO), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), polymethyl methacrylate (PMMA), polyacrylonitrile (PAN) and its derivatives have been widely studied, for example, the polymer solid electrolyte membrane disclosed in Patent Document 1 and its preparation method. However, problems such as high cost, complex manufacturing engineering technology and low lithium ion conductivity at room temperature hinder the large-scale commercial production and application of these solid polymer electrolyte membranes. [Prior Technical Literature] [Patent Document]

[專利文獻1]中國公開CN112993396A[Patent Document 1] Chinese Publication CN112993396A

[發明所欲解決之技術問題][Technical problem to be solved by the invention]

據此,本發明開發新型的全固態複合式高分子電解質(Composite polymer electrolyte, CPE)膜,以克服上述問題,並達到未來全固態鋰電池之高能量密度與高安全性的應用需求。 [技術手段] Accordingly, the present invention develops a new all-solid-state composite polymer electrolyte (CPE) membrane to overcome the above-mentioned problems and meet the application requirements of high energy density and high safety of all-solid-state lithium batteries in the future. [Technical means]

近年來,聚乙二醇二甲基丙烯酸酯(Polyethylene glycol dimethacrylate, PEGDMA)寡聚物(Oligomer)或乙氧基化三羥甲基丙烷三丙烯酸酯(Ethoxylated trimethylolpropane triacrylate, ETPTA)寡聚物等作為骨架材料在高分子塗佈層、軟機械和生物醫學科學領域得到了廣泛地研究及注意,其具有無毒且可生物降解、具有環境友善等優點。據此,本發明以PEGDMA寡聚物、ETPTA寡聚物或聚乙二醇二丙烯酸酯(PEGDA)寡聚物為基質材料,使用簡單的溶液混合方式合成無溶劑的CPE膜,即將含前驅物的無溶劑CPE膜透過紫外光的交聯聚合成一全固態高分子電解質膜,其中也使用不織布膜作為中間結構增強層,以提高高分子電解質膜的機械強度。本發明藉由交聯聚合方法所獲得PEGDMA寡聚物基、ETPTA寡聚物基或PEGDA寡聚物基的CPE膜應用在全固態鋰電池。In recent years, polyethylene glycol dimethacrylate (Polyethylene glycol dimethacrylate, PEGDMA) oligomer (Oligomer) or ethoxylated trimethylolpropane triacrylate (Ethoxylated trimethylolpropane triacrylate, ETPTA) oligomer, etc. have been used as Skeleton materials have been widely studied and paid attention to in the fields of polymer coating layer, soft machinery and biomedical science, and they have the advantages of non-toxic, biodegradable, and environmental friendliness. Accordingly, the present invention uses PEGDMA oligomers, ETPTA oligomers or polyethylene glycol diacrylate (PEGDA) oligomers as matrix materials, and uses a simple solution mixing method to synthesize a solvent-free CPE film, which is to contain the precursor The solvent-free CPE membrane is cross-linked and polymerized by ultraviolet light to form an all-solid polymer electrolyte membrane. The non-woven fabric membrane is also used as the intermediate structural reinforcement layer to improve the mechanical strength of the polymer electrolyte membrane. The PEGDMA oligomer-based, ETPTA oligomer-based or PEGDA oligomer-based CPE film obtained by the cross-linking polymerization method of the present invention is applied to an all-solid-state lithium battery.

具體而言,本發明使用簡單的溶液混合方式來製備PEGDMA寡聚物基、ETPTA寡聚物基或PEGDA寡聚物基的固態高分子電解質膜(Solid polymer electrolyte membrane, SPE膜),PEGDMA寡聚物基的SPE膜包括第二高分子聚乙二醇甲基丙烯酸酯(PEGMA)寡聚物或聚醚胺(Jeffamine)寡聚物、偏苯二酚二酐(Pyromellitic dianhydride,PMDA)光起始劑、雙三氟甲烷磺醯亞胺鋰(LiTFSI)鋰鹽、Al-LLZO陶瓷填料以及丁二腈(SN)增塑劑;ETPTA寡聚物基的SPE膜則包括PMDA光起始劑、LiTFSI鋰鹽、Al-LLZO陶瓷填料以及SN增塑劑,並將含前趨物的CPE膜(無溶劑)透過紫外光(UV)的交聯聚合成一全固態高分子電解質膜。透過光化學交聯,其製備速度快、常溫製程,且可以節省大量能源。Specifically, the present invention uses a simple solution mixing method to prepare a PEGDMA oligomer-based, ETPTA oligomer-based or PEGDA oligomer-based solid polymer electrolyte membrane (Solid polymer electrolyte membrane, SPE membrane), PEGDMA oligomer The material-based SPE film includes the second polymer polyethylene glycol methacrylate (PEGMA) oligomer or polyetheramine (Jeffamine) oligomer, pyromellitic dianhydride (Pyromellitic dianhydride, PMDA) photoinitiator agent, lithium bistrifluoromethanesulfonylimide (LiTFSI) lithium salt, Al-LLZO ceramic filler, and succinonitrile (SN) plasticizer; ETPTA oligomer-based SPE membranes include PMDA photoinitiator, LiTFSI Lithium salt, Al-LLZO ceramic filler and SN plasticizer, and the CPE film (solvent-free) containing the precursor is cross-linked and polymerized by ultraviolet light (UV) to form an all-solid-state polymer electrolyte membrane. Through photochemical cross-linking, the preparation speed is fast, the process is normal temperature, and a lot of energy can be saved.

其中也使用聚對苯二甲酸乙二酯(PET)、聚乙烯胺(PVAM,即聚乙烯醇及三聚氰胺)或聚偏二氟乙烯/聚醯亞胺(PVDF/PI)電紡不織布膜作為中間結構增強層,以提高高分子電解質膜的機械強度。Among them, polyethylene terephthalate (PET), polyvinylamine (PVAM, namely polyvinyl alcohol and melamine) or polyvinylidene fluoride/polyimide (PVDF/PI) electrospun non-woven film is also used as the intermediate Structural reinforcement layer to improve the mechanical strength of the polymer electrolyte membrane.

藉此,本發明之全固態複合式高分子電解質膜的製備方法,其藉由光聚合交聯反應合成,其包含以下步驟: (A)           將前驅物材料、雙三氟甲烷磺醯亞胺鋰(LiTFSI)及丁二腈(SN)依各組成之重量百分比進行混合,其中,該前驅物材料係選自:聚乙二醇二甲基丙烯酸酯(PEGDMA)寡聚物搭配聚乙二醇甲基丙烯酸酯(PEGMA)寡聚物、PEGDMA寡聚物搭配聚醚胺(Jeffamine)寡聚物、聚乙二醇二丙烯酸酯(PEGDA)寡聚物搭配PEGMA寡聚物、PEGDA寡聚物搭配Jeffamine寡聚物、或乙氧基化三羥甲基丙烷三丙烯酸酯(ETPTA)寡聚物所成群中之至少一種; (B)           將該步驟(A)混合後之材料在室溫下均勻攪拌後,加入偏苯二酚二酐(PMDA)並持續攪拌均勻成一混合溶液;其中,該PMDA相對於該前驅物材料為0.5至5 wt.%; (C)           將該混合溶液均勻塗佈在玻璃上形成一塗佈層,並將一不織布膜放置在該塗佈層上方,使該混合溶液滲透至該不織布膜內,以形成一複合式高分子電解質層; (D)           使用紫外光照射使該複合式高分子電解質層進行交聯反應,形成一全固態複合式高分子電解質膜。 Thus, the method for preparing the all-solid composite polymer electrolyte membrane of the present invention is synthesized by photopolymerization and crosslinking reaction, which includes the following steps: (A) Mix the precursor material, lithium bistrifluoromethanesulfonyl imide (LiTFSI) and succinonitrile (SN) according to the weight percentage of each composition, wherein the precursor material is selected from: polyethylene glycol Dimethacrylate (PEGDMA) oligomer with polyethylene glycol methacrylate (PEGMA) oligomer, PEGDMA oligomer with polyetheramine (Jeffamine) oligomer, polyethylene glycol diacrylate ( PEGDA) oligomer with PEGMA oligomer, PEGDA oligomer with Jeffamine oligomer, or at least one of the group consisting of ethoxylated trimethylolpropane triacrylate (ETPTA) oligomer; (B) After the mixed material in the step (A) is uniformly stirred at room temperature, add pyroquinone dianhydride (PMDA) and continue to stir to form a mixed solution; wherein, the PMDA is relative to the precursor material. 0.5 to 5 wt.%; (C) The mixed solution is evenly coated on the glass to form a coating layer, and a non-woven fabric film is placed on the coating layer, so that the mixed solution penetrates into the non-woven fabric film to form a composite polymer Electrolyte layer; (D) Use ultraviolet light to irradiate the composite polymer electrolyte layer to undergo a cross-linking reaction to form an all-solid composite polymer electrolyte membrane.

理想地,該前驅物材料係PEGDMA寡聚物搭配PEGMA寡聚物或PEGDA寡聚物搭配PEGMA寡聚物,該PEGDMA寡聚物或該PEGDA寡聚物之重量百分比為1至50 wt.%,該PEGMA寡聚物之重量百分比為1至60 wt.%,該LiTFSI之重量百分比為1至50 wt.%,該SN之重量百分比為1至60 wt.%。Ideally, the precursor material is a PEGDMA oligomer with a PEGMA oligomer or a PEGDA oligomer with a PEGMA oligomer, and the weight percentage of the PEGDMA oligomer or the PEGDA oligomer is 1 to 50 wt.%, The weight percentage of the PEGMA oligomer is 1 to 60 wt.%, the weight percentage of the LiTFSI is 1 to 50 wt.%, and the weight percentage of the SN is 1 to 60 wt.%.

理想地,該前驅物材料係PEGDMA寡聚物搭配Jeffamine寡聚物或PEGDA寡聚物搭配Jeffamine寡聚物,該PEGDMA寡聚物或該PEGDA寡聚物之重量百分比為1至50 wt.%,該Jeffamine寡聚物之重量百分比為1至30 wt.%,該LiTFSI之重量百分比為1至50 wt.%,該SN之重量百分比為1至60 wt.%。Ideally, the precursor material is a PEGDMA oligomer with a Jeffamine oligomer or a PEGDA oligomer with a Jeffamine oligomer, and the weight percentage of the PEGDMA oligomer or the PEGDA oligomer is 1 to 50 wt.%, The weight percentage of the Jeffamine oligomer is 1 to 30 wt.%, the weight percentage of the LiTFSI is 1 to 50 wt.%, and the weight percentage of the SN is 1 to 60 wt.%.

理想地,該前驅物材料係ETPTA寡聚物,該ETPTA寡聚物之重量百分比為1至50 wt.%,該LiTFSI之重量百分比為1至50 wt.%,該SN之重量百分比為1至60 wt.%。Ideally, the precursor material is an ETPTA oligomer, the weight percentage of the ETPTA oligomer is 1 to 50 wt.%, the weight percentage of the LiTFSI is 1 to 50 wt.%, and the weight percentage of the SN is 1 to 50 wt.%. 60 wt.%.

理想地,該前驅物材料中進一步包含自製鋁摻雜的鋰鑭鋯氧氧化物Li 6.25Al 0.25La 3Zr 2O 12(Al-LLZO),該Al-LLZO之重量百分比為1至30 wt.%。 Ideally, the precursor material further includes self-made aluminum-doped lithium lanthanum zirconium oxyoxide Li 6.25 Al 0.25 La 3 Zr 2 O 12 (Al-LLZO), and the weight percentage of the Al-LLZO is 1 to 30 wt. %.

理想地,該PMDA相對於該前驅物材料為1 wt.%。Ideally, the PMDA is 1 wt.% relative to the precursor material.

理想地,該不織布膜之厚度為5至300

Figure 02_image001
m。 Ideally, the thickness of the nonwoven film is 5 to 300
Figure 02_image001
m.

理想地,該不織布膜係選自聚對苯二甲酸乙二酯、聚乙烯醇、聚丙烯、聚乙烯、耐綸、聚醯亞胺、聚丙烯及聚對苯二甲酸乙二酯、聚偏二氟乙烯及聚醯亞胺,或聚乙烯醇及三聚氰胺所成群中之至少一種之不織布膜。Ideally, the nonwoven film is selected from the group consisting of polyethylene terephthalate, polyvinyl alcohol, polypropylene, polyethylene, nylon, polyimide, polypropylene and polyethylene terephthalate, polyvinylidene A nonwoven film of at least one of the group consisting of vinyl difluoride and polyimide, or polyvinyl alcohol and melamine.

理想地,該紫外光照射之時間為1至60分鐘。Ideally, the irradiation time of the ultraviolet light is 1 to 60 minutes.

進一步地,本發明亦提供一種一種全固態鋰電池,其包含:高鎳正極、負極及如上所述之全固態複合式高分子電解質膜的製備方法所製備之全固態複合式高分子電解質膜;其中, 該全固態複合式高分子電解質膜設置在該正極及該負極之間,同時作為隔離膜及電解質來使用;該負極為鋰金屬箔或鋰合金;該正極係藉由一包含活性材料、導電劑及黏合劑的組成物於集電層上所製成。 [發明之效果] Further, the present invention also provides an all-solid lithium battery, which includes: a high-nickel positive electrode, a negative electrode, and an all-solid composite polymer electrolyte membrane prepared by the above-mentioned method for preparing an all-solid composite polymer electrolyte membrane; in, The all-solid composite polymer electrolyte membrane is arranged between the positive electrode and the negative electrode, and is used as a separator and an electrolyte at the same time; the negative electrode is lithium metal foil or lithium alloy; And the composition of binder is made on the collector layer. [Effect of the invention]

本發明所提供之製備方法透過光化學交聯反應,製備速度快,且可於常溫下進行完整製程,得以節省大量能源;此外,採用不織布膜作為中間結構增強層,更能進一步提高全固態複合式高分子電解質膜之機械強度。The preparation method provided by the present invention has a fast preparation speed through photochemical cross-linking reaction, and can carry out a complete manufacturing process at room temperature, which can save a lot of energy; in addition, the non-woven fabric film is used as the intermediate structural reinforcement layer, which can further improve the performance of the all-solid composite. The mechanical strength of the polymer electrolyte membrane.

本發明所提供之全固態複合式高分子電解質膜,在室溫(25 oC)下可達高鋰離子導電率,且應用該自製的CPE膜組裝成之鈕扣型電池,在45 oC下,能夠表現出優異的電池性能與電化學穩定性。 The all-solid-state composite polymer electrolyte membrane provided by the present invention can achieve high lithium ion conductivity at room temperature (25 o C), and the button-type battery assembled with the self-made CPE membrane can achieve high lithium ion conductivity at 45 o C , can exhibit excellent battery performance and electrochemical stability.

綜上所述,藉由本發明製備方法合成之全固態複合式高分子電解質膜的製程快速、性能優良,可極佳地應用於具高電壓與高能量密度的全固態鋰電池。To sum up, the all-solid-state composite polymer electrolyte membrane synthesized by the preparation method of the present invention has fast manufacturing process and excellent performance, and can be excellently applied to all-solid-state lithium batteries with high voltage and high energy density.

以下藉由示例性實施方式說明本發明之製備步驟、產物鑑定方式與結果,及所製備電池之性能測試。應注意,下述示例性實施方式僅用以說明本發明,而非用以限制本發明之範圍。 [全固態複合式高分子電解質膜製備] The preparation steps, product identification methods and results of the present invention, and the performance test of the prepared battery are described below by means of exemplary embodiments. It should be noted that the following exemplary embodiments are only used to illustrate the present invention, but not to limit the scope of the present invention. [Preparation of all-solid composite polymer electrolyte membrane]

前驅物材料可選用下述成分: 聚乙二醇二甲基丙烯酸酯(以下亦稱作PEGDMA) 寡聚物、乙氧基化三羥甲基丙烷三丙烯酸酯(以下亦稱作ETPTA)寡聚物、聚乙二醇二丙烯酸酯(以下亦稱作PEGDA)寡聚物、聚乙二醇甲基丙烯酸酯(以下亦稱作PEGMA)寡聚物、聚醚胺(商品名Jeffamine M-1000,以下簡稱Jeffamine)寡聚物、雙三氟甲烷磺醯亞胺鋰(LiTFSI ,99.95%,以下亦稱作LiTFSI)、鋁摻雜的鋰鑭鋯氧氧化物Li 6.25Al 0.25La 3Zr 2O 12陶瓷填料(Al-doped LLZO,以下亦稱作Al-LLZO)、作為增塑劑之丁二腈(SN,99%,以下亦稱作SN),及作為光起始劑之偏苯二酚二酐(Pyromellitic dianhydride,PMDA)。其中 LiTFSI 在使用前,先在 130°C下乾燥至少 24 小時。 Precursor materials can be selected from the following components: polyethylene glycol dimethacrylate (hereinafter also referred to as PEGDMA) oligomer, ethoxylated trimethylolpropane triacrylate (hereinafter also referred to as ETPTA) oligomer Polyethylene glycol diacrylate (hereinafter also referred to as PEGDA) oligomer, polyethylene glycol methacrylate (hereinafter also referred to as PEGMA) oligomer, polyetheramine (trade name Jeffamine M-1000, hereinafter referred to as Jeffamine) oligomer, lithium bistrifluoromethanesulfonyl imide (LiTFSI, 99.95%, hereinafter also referred to as LiTFSI), aluminum-doped lithium lanthanum zirconium oxide Li 6.25 Al 0.25 La 3 Zr 2 O 12 Ceramic filler (Al-doped LLZO, hereinafter also referred to as Al-LLZO), as a plasticizer, succinonitrile (SN, 99%, hereinafter also referred to as SN), and as a photoinitiator, pyroquinone bis Anhydride (Pyromellitic dianhydride, PMDA). The LiTFSI was dried at 130°C for at least 24 hours before use.

示例性地,可選用上述部分成分混合作為前驅物組合物。例如,以下述示例性實施方式進行說明:Exemplarily, some of the above components may be mixed as the precursor composition. For example, the following exemplary implementations are used for description:

實施方式一: 含鋰離子的PEGDMA寡聚物/PEGMA寡聚物+PET或PEGDMA寡聚物/Jeffamine寡聚物+PET複合式高分子電解質膜: 在一實施例中,選用10 wt.% PEGDMA寡聚物、30 wt.% PEGMA寡聚物、20 wt.% LiTFSI和 40 wt.% SN,在充滿氬氣的手套箱中進行混合,在室溫下,均勻攪拌 8 小時後,然後在該混合溶液中加入相對於PEGDMA寡聚物為 1 wt.% 的PMDA,並持續攪拌 2 小時,使得PMDA可以充分地溶解在混合溶液中。將此攪拌後之混合溶液命名為溶液(1),且本發明所屬技術領域中具通常知識者應可理解,採用此種方式製備得之混合溶液將不含任何溶劑。 在另一實施例中,選用10 wt.% PEGDMA寡聚物、30 wt.% Jeffamine寡聚物、20 wt.% LiTFSI和 40 wt.% SN,在充滿氬氣的手套箱中進行混合,在室溫下,均勻攪拌 8 小時後,然後在該混合溶液中加入相對於PEGDMA寡聚物為 1 wt.% 的PMDA,並持續攪拌 2 小時,使得PMDA可以充分地溶解在混合溶液中。將此攪拌後之混合溶液命名為溶液(2),且本發明所屬技術領域中具通常知識者應可理解,採用此種方式製備得之混合溶液將不含任何溶劑。 Embodiment 1: Lithium-ion-containing PEGDMA oligomer/PEGMA oligomer+PET or PEGDMA oligomer/Jeffamine oligomer+PET composite polymer electrolyte membrane: In one embodiment, 10 wt.% PEGDMA oligomer, 30 wt.% PEGMA oligomer, 20 wt.% LiTFSI and 40 wt.% SN were selected and mixed in a glove box filled with argon, and the After stirring uniformly for 8 hours at room temperature, 1 wt.% PMDA relative to the PEGDMA oligomer was added to the mixed solution, and the stirring was continued for 2 hours, so that PMDA could be fully dissolved in the mixed solution. The mixed solution after stirring is named solution (1), and those skilled in the art of the present invention should understand that the mixed solution prepared in this way will not contain any solvent. In another example, 10 wt.% PEGDMA oligomer, 30 wt.% Jeffamine oligomer, 20 wt.% LiTFSI and 40 wt.% SN were selected and mixed in a glove box filled with argon, and After uniform stirring at room temperature for 8 hours, 1 wt.% PMDA relative to the PEGDMA oligomer was added to the mixed solution, and the stirring was continued for 2 hours, so that PMDA could be fully dissolved in the mixed solution. The mixed solution after stirring is named solution (2), and those skilled in the art of the present invention should understand that the mixed solution prepared in this way will not contain any solvent.

接著,將溶液(1)或溶液(2)均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約20

Figure 02_image001
m 之聚對苯二甲酸乙二酯(PET)電紡不織布膜放置在該塗佈層上方,使該溶液(1)或溶液(2)滲透至PET不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的複合式高分子電解質層。 Next, the solution (1) or the solution (2) is evenly coated on the glass to form a coating layer, and then a layer with a thickness of about 20
Figure 02_image001
m The polyethylene terephthalate (PET) electrospun non-woven fabric film is placed on the coating layer, so that the solution (1) or solution (2) penetrates into the PET non-woven fabric film to achieve the strengthening of the mixture layer purpose of mechanical strength. Accordingly, a composite polymer electrolyte layer containing lithium ions is prepared.

接著,在手套箱內,使用波長為 365 nm、 強度為30 mW/cm 2的紫外光照射上述的複合式高分子電解質層約15分鐘,以使其產生光聚合反應(photo-polymerization)後,即可獲得一透明、無溶劑(solvent free)且含鋰離子的全固態複合式高分子電解質膜(Composite polymer electrolyte, CPE)。將藉由上述溶液(1)或溶液(2)製備得之CPE膜分別命名為「PEGDMA寡聚物/PEGMA寡聚物+PET」膜或「PEGDMA寡聚物/Jeffamine寡聚物+PET」膜。 Next, in the glove box, use ultraviolet light with a wavelength of 365 nm and an intensity of 30 mW/cm 2 to irradiate the above-mentioned composite polymer electrolyte layer for about 15 minutes to cause photopolymerization (photo-polymerization), A transparent, solvent-free and lithium-ion-containing all-solid-state composite polymer electrolyte membrane (Composite polymer electrolyte, CPE) can be obtained. The CPE film prepared by the above solution (1) or solution (2) is named as "PEGDMA oligomer/PEGMA oligomer+PET" film or "PEGDMA oligomer/Jeffamine oligomer+PET" film respectively .

實施方式二: 含鋰離子的PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI或PEGDMA寡聚物/PEGMA寡聚物+PVAM複合式高分子電解質膜: 選用10 wt.% PEGDMA寡聚物、30 wt.% PEGMA寡聚物、20 wt.% LiTFSI和 40 wt.% SN,在充滿氬氣的手套箱中進行混合,在室溫下,均勻攪拌 8 小時後,然後在該混合溶液中加入相對於PEGDMA寡聚物為 1 wt.% 的PMDA,並持續攪拌 2 小時,使得PMDA可以充分地溶解在混合溶液中。 Embodiment 2: Lithium-ion-containing PEGDMA oligomer/PEGMA oligomer+PVDF/PI or PEGDMA oligomer/PEGMA oligomer+PVAM composite polymer electrolyte membrane: 10 wt.% PEGDMA oligomer, 30 wt.% PEGMA oligomer, 20 wt.% LiTFSI and 40 wt.% SN were selected, mixed in an argon-filled glove box, and stirred uniformly at room temperature for 8 After 1 hour, then add PMDA that is 1 wt.% relative to the PEGDMA oligomer in this mixed solution, and keep stirring for 2 hours, so that PMDA can be fully dissolved in the mixed solution.

接著,在一實施例中,將該混合溶液均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約180

Figure 02_image001
m 之PVDF/PI電紡不織布膜放置在該塗佈層上方,使該混合溶液滲透至PVDF/PI不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI複合式高分子電解質層。 Then, in one embodiment, the mixed solution is evenly coated on the glass to form a coating layer, and then a thickness of about 180
Figure 02_image001
The PVDF/PI electrospun non-woven fabric membrane of m is placed on the coating layer, so that the mixed solution penetrates into the PVDF/PI non-woven fabric membrane to achieve the purpose of strengthening the mechanical strength of the mixture layer. Accordingly, a lithium-ion-containing PEGDMA oligomer/PEGMA oligomer+PVDF/PI composite polymer electrolyte layer was prepared.

在另一實施例中,將該混合溶液均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約120

Figure 02_image001
m 之PVAM電紡不織布膜放置在該塗佈層上方,使該混合溶液滲透至PVAM不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的PEGDMA寡聚物/PEGMA寡聚物+PVAM複合式高分子電解質層。 In another embodiment, the mixed solution is evenly coated on the glass to form a coating layer, and then a thickness of about 120
Figure 02_image001
The PVAM electrospun non-woven fabric membrane of m is placed on the coating layer, so that the mixed solution penetrates into the PVAM non-woven fabric membrane to achieve the purpose of strengthening the mechanical strength of the mixture layer. Accordingly, a lithium-ion-containing PEGDMA oligomer/PEGMA oligomer+PVAM composite polymer electrolyte layer was prepared.

接著,在手套箱內,使用波長為 365 nm、 強度為30 mW/cm 2的紫外光照射上述的複合式高分子電解質層約15分鐘,以使其產生光聚合反應(photo-polymerization)後,即可獲得一透明、無溶劑(solvent free)且含鋰離子的全固態複合式高分子電解質膜(Composite polymer electrolyte, CPE)。將上述製備得之CPE膜分別命名為「PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI」膜或「PEGDMA寡聚物/PEGMA寡聚物+PVAM」膜。 Next, in the glove box, use ultraviolet light with a wavelength of 365 nm and an intensity of 30 mW/cm 2 to irradiate the above-mentioned composite polymer electrolyte layer for about 15 minutes to cause photopolymerization (photo-polymerization), A transparent, solvent-free and lithium-ion-containing all-solid-state composite polymer electrolyte membrane (Composite polymer electrolyte, CPE) can be obtained. The CPE films prepared above were respectively named "PEGDMA oligomer/PEGMA oligomer+PVDF/PI" film or "PEGDMA oligomer/PEGMA oligomer+PVAM" film.

實施方式三: 含鋰離子的PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI+Al-LLZO或PEGDMA寡聚物/PEGMA寡聚物+PVAM+Al-LLZO複合式高分子電解質膜: 選用10 wt.% PEGDMA寡聚物、30 wt.% PEGMA寡聚物、20 wt.% LiTFSI和 40 wt.% SN,並添加相對於PEGDMA寡聚物/PEGMA寡聚物為 2 wt.% 的導鋰離子Al-LLZO陶瓷填料,在充滿氬氣的手套箱中進行混合,在室溫下,均勻攪拌 8 小時後,然後在該混合溶液中加入相對於PEGDMA寡聚物為 1 wt.% 的PMDA,並持續攪拌 2 小時,使得PMDA可以充分地溶解在混合溶液中。 Embodiment 3: PEGDMA oligomer/PEGMA oligomer+PVDF/PI+Al-LLZO or PEGDMA oligomer/PEGMA oligomer+PVAM+Al-LLZO composite polymer electrolyte membrane containing lithium ions: Select 10 wt.% PEGDMA oligomer, 30 wt.% PEGMA oligomer, 20 wt.% LiTFSI and 40 wt.% SN, and add 2 wt.% of PEGDMA oligomer/PEGMA oligomer Lithium-ion-conducting Al-LLZO ceramic fillers were mixed in an argon-filled glove box. After stirring uniformly for 8 hours at room temperature, 1 wt.% of PEGDMA oligomer was added to the mixed solution. PMDA, and continued stirring for 2 hours, so that PMDA can be fully dissolved in the mixed solution.

接著,在一實施例中,將該混合溶液均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約180

Figure 02_image001
m 之PVDF/PI電紡不織布膜放置在該塗佈層上方,使該混合溶液滲透至PVDF/PI不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的PEGDMA寡聚物/PEGMA寡聚物+Al-LLZO+PVDF/PI複合式高分子電解質層。 Then, in one embodiment, the mixed solution is evenly coated on the glass to form a coating layer, and then a thickness of about 180
Figure 02_image001
The PVDF/PI electrospun non-woven fabric membrane of m is placed on the coating layer, so that the mixed solution penetrates into the PVDF/PI non-woven fabric membrane to achieve the purpose of strengthening the mechanical strength of the mixture layer. Accordingly, a lithium-ion-containing PEGDMA oligomer/PEGMA oligomer+Al-LLZO+PVDF/PI composite polymer electrolyte layer was prepared.

在另一實施例中,將該混合溶液均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約120

Figure 02_image001
m 之PVAM電紡不織布膜放置在該塗佈層上方,使該混合溶液滲透至PVAM不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的PEGDMA寡聚物/PEGMA寡聚物 +Al-LLZO+PVAM複合式高分子電解質層。 In another embodiment, the mixed solution is evenly coated on the glass to form a coating layer, and then a thickness of about 120
Figure 02_image001
The PVAM electrospun non-woven fabric membrane of m is placed on the coating layer, so that the mixed solution penetrates into the PVAM non-woven fabric membrane to achieve the purpose of strengthening the mechanical strength of the mixture layer. Accordingly, a lithium-ion-containing PEGDMA oligomer/PEGMA oligomer+Al-LLZO+PVAM composite polymer electrolyte layer was prepared.

接著,在手套箱內,使用波長為 365 nm、 強度為30 mW/cm 2的紫外光照射上述的複合式高分子電解質層約15分鐘,以使其產生光聚合反應(photo-polymerization)後,即可獲得一透明、無溶劑(solvent free)且含鋰離子的全固態複合式高分子電解質膜(Composite polymer electrolyte, CPE)。將上述製備得之CPE膜分別命名為「PEGDMA寡聚物/PEGMA寡聚物+Al-LLZO+PVDF/PI」膜或「PEGDMA寡聚物/PEGMA寡聚物 +Al-LLZO+PVAM」膜。 Next, in the glove box, use ultraviolet light with a wavelength of 365 nm and an intensity of 30 mW/cm 2 to irradiate the above-mentioned composite polymer electrolyte layer for about 15 minutes to cause photopolymerization (photo-polymerization), A transparent, solvent-free and lithium-ion-containing all-solid-state composite polymer electrolyte membrane (Composite polymer electrolyte, CPE) can be obtained. The CPE films prepared above were respectively named "PEGDMA oligomer/PEGMA oligomer+Al-LLZO+PVDF/PI" film or "PEGDMA oligomer/PEGMA oligomer+Al-LLZO+PVAM" film.

實施方式四: 含鋰離子的ETPTA寡聚物+PVDF/PI或ETPTA寡聚物+PVAM複合式高分子電解質膜: 選用19 wt.% ETPTA寡聚物、38 wt.% LiTFSI和 43 wt.% SN,在充滿氬氣的手套箱中進行混合,在室溫下,均勻攪拌 8 小時後,然後在該混合溶液中加入相對於ETPTA寡聚物為 0.6 wt.% 的PMDA,並持續攪拌 2 小時,使得PMDA可以充分地溶解在混合溶液中。 Embodiment 4: Lithium-ion-containing ETPTA oligomer+PVDF/PI or ETPTA oligomer+PVAM composite polymer electrolyte membrane: 19 wt.% ETPTA oligomer, 38 wt.% LiTFSI and 43 wt.% SN were selected and mixed in an argon-filled glove box. After uniform stirring for 8 hours at room temperature, then in the mixed solution Add 0.6 wt.% PMDA relative to ETPTA oligomer, and keep stirring for 2 hours, so that PMDA can be fully dissolved in the mixed solution.

接著,在一實施例中,將該混合溶液均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約180

Figure 02_image001
m 之PVDF/PI電紡不織布膜放置在該塗佈層上方,使該混合溶液滲透至PVDF/PI不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的ETPTA寡聚物+PVDF/PI複合式高分子電解質層。 Then, in one embodiment, the mixed solution is evenly coated on the glass to form a coating layer, and then a thickness of about 180
Figure 02_image001
The PVDF/PI electrospun non-woven fabric membrane of m is placed on the coating layer, so that the mixed solution penetrates into the PVDF/PI non-woven fabric membrane to achieve the purpose of strengthening the mechanical strength of the mixture layer. Accordingly, a lithium-ion-containing ETPTA oligomer+PVDF/PI composite polymer electrolyte layer was prepared.

在另一實施例中,將該混合溶液均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約120

Figure 02_image001
m 之PVAM電紡不織布膜放置在該塗佈層上方,使該混合溶液滲透至PVAM不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的ETPTA寡聚物+PVAM複合式高分子電解質層。 In another embodiment, the mixed solution is evenly coated on the glass to form a coating layer, and then a thickness of about 120
Figure 02_image001
The PVAM electrospun non-woven fabric membrane of m is placed on the coating layer, so that the mixed solution penetrates into the PVAM non-woven fabric membrane to achieve the purpose of strengthening the mechanical strength of the mixture layer. Accordingly, the lithium-ion-containing ETPTA oligomer+PVAM composite polymer electrolyte layer was prepared.

接著,在手套箱內,使用波長為 365 nm、 強度為30 mW/cm 2的紫外光照射上述的複合式高分子電解質層約20至30分鐘,以使其產生光聚合反應(photo-polymerization)後,即可獲得一透明、無溶劑(solvent free)且含鋰離子的全固態複合式高分子電解質膜(Composite polymer electrolyte, CPE)。將上述製備得之CPE膜分別命名為「ETPTA寡聚物+PVDF/PI」膜或「ETPTA寡聚物+PVAM」膜。 Next, in the glove box, irradiate the above-mentioned composite polymer electrolyte layer with ultraviolet light with a wavelength of 365 nm and an intensity of 30 mW/ cm2 for about 20 to 30 minutes to cause photopolymerization (photo-polymerization) After that, a transparent, solvent-free (solvent free) and all-solid-state composite polymer electrolyte membrane (Composite polymer electrolyte, CPE) containing lithium ions can be obtained. The CPE films prepared above were respectively named as "ETPTA oligomer+PVDF/PI" film or "ETPTA oligomer+PVAM" film.

實施方式五: 含鋰離子的ETPTA寡聚物+PVDF/PI+Al-LLZO或ETPTA寡聚物+PVAM+Al-LLZO複合式高分子電解質膜: 選用19 wt.% ETPTA寡聚物、38 wt.% LiTFSI和 43 wt.% SN,並添加相對於ETPTA寡聚物為 2 wt.% 的導鋰離子Al-LLZO陶瓷填料,在充滿氬氣的手套箱中進行混合,在室溫下,均勻攪拌 8 小時後,然後在該混合溶液中加入相對於ETPTA寡聚物為 0.6 wt.% 的PMDA,並持續攪拌 2 小時,使得PMDA可以充分地溶解在混合溶液中。 Embodiment 5: ETPTA oligomer+PVDF/PI+Al-LLZO or ETPTA oligomer+PVAM+Al-LLZO composite polymer electrolyte membrane containing lithium ions: Select 19 wt.% ETPTA oligomer, 38 wt.% LiTFSI and 43 wt.% SN, and add 2 wt.% lithium-ion-conducting Al-LLZO ceramic filler relative to ETPTA oligomer, in argon-filled Mix in the glove box, at room temperature, after 8 hours of uniform stirring, then add the PMDA that is 0.6 wt.% relative to the ETPTA oligomer in this mixed solution, and continue stirring for 2 hours, so that PMDA can be fully dissolved in the mixed solution.

接著,在一實施例中,將該混合溶液均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約180

Figure 02_image001
m 之PVDF/PI電紡不織布膜放置在該塗佈層上方,使該混合溶液滲透至PVDF/PI不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的ETPTA寡聚物+PVDF/PI+Al-LLZO複合式高分子電解質層。 Then, in one embodiment, the mixed solution is evenly coated on the glass to form a coating layer, and then a thickness of about 180
Figure 02_image001
The PVDF/PI electrospun non-woven fabric membrane of m is placed on the coating layer, so that the mixed solution penetrates into the PVDF/PI non-woven fabric membrane to achieve the purpose of strengthening the mechanical strength of the mixture layer. Accordingly, a lithium-ion-containing ETPTA oligomer+PVDF/PI+Al-LLZO composite polymer electrolyte layer was prepared.

在另一實施例中,將該混合溶液均勻地塗佈在玻璃上形成一塗佈層,再將一厚度約120

Figure 02_image001
m 之PVAM電紡不織布膜放置在該塗佈層上方,使該混合溶液滲透至PVAM不織布膜內部,以達到強化該混合物層的機械強度的目的。據此,製備得含鋰離子的ETPTA寡聚物+PVAM+Al-LLZO複合式高分子電解質層。 In another embodiment, the mixed solution is evenly coated on the glass to form a coating layer, and then a thickness of about 120
Figure 02_image001
The PVAM electrospun non-woven fabric membrane of m is placed on the coating layer, so that the mixed solution penetrates into the PVAM non-woven fabric membrane to achieve the purpose of strengthening the mechanical strength of the mixture layer. Accordingly, a lithium-ion-containing ETPTA oligomer+PVAM+Al-LLZO composite polymer electrolyte layer was prepared.

接著,在手套箱內,使用波長為 365 nm、 強度為30 mW/cm 2的紫外光照射上述的複合式高分子電解質層約20至30分鐘,以使其產生光聚合反應(photo-polymerization)後,即可獲得一透明、無溶劑(solvent free)且含鋰離子的全固態複合式高分子電解質膜(Composite polymer electrolyte, CPE)。將上述製備得之CPE膜分別命名為「ETPTA寡聚物+PVDF/PI+Al-LLZO」膜或「ETPTA寡聚物+PVAM+Al-LLZO」膜。 [鈕扣型全固態鋰電池製備與組裝] Next, in the glove box, irradiate the above-mentioned composite polymer electrolyte layer with ultraviolet light with a wavelength of 365 nm and an intensity of 30 mW/ cm2 for about 20 to 30 minutes to cause photopolymerization (photo-polymerization) After that, a transparent, solvent-free (solvent free) and all-solid-state composite polymer electrolyte membrane (Composite polymer electrolyte, CPE) containing lithium ions can be obtained. The CPE films prepared above were respectively named "ETPTA oligomer+PVDF/PI+Al-LLZO" film or "ETPTA oligomer+PVAM+Al-LLZO" film. [Preparation and assembly of button-type all-solid-state lithium battery]

於此實施型態中,以鋰金屬箔為負極、自製的PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜或PEGDMA寡聚物/Jeffamine寡聚物+PET之CPE膜為全固態電解質膜,並以自製改質的Li-Nafion@NCM811極片為正極;製備過程如下所述。In this embodiment, lithium metal foil is used as the negative electrode, and the self-made PEGDMA oligomer/PEGMA oligomer+PET CPE membrane or PEGDMA oligomer/Jeffamine oligomer+PET CPE membrane is the all-solid electrolyte membrane , and the self-made modified Li-Nafion@NCM811 pole piece is used as the positive electrode; the preparation process is as follows.

正極極片Li-Nafion@NCM811之製作:將1 wt.% Li-Nafion高分子塗覆在LiNi 0.8Co 0.1Mn 0.1O 2材料表面做改質(Li-Nafion@NCM811,佔75 wt.%)作為活性物質,添加作為助導劑之導電碳黑(Super P,10 wt.% )、作為黏著劑之聚偏二氟乙烯(PVDF,9 wt.% )、氣相成長碳纖維(VGCF,1 wt.% )和 LiTFSI鋰鹽(5 wt.% ),於N,N-二甲基甲醯胺(DMF)溶劑中均勻攪拌混合以形成正極漿料(Slurry)。 接著,所述漿料於球磨機(瑪瑙球;FRITSCH PULVERISETTE, Germany)進行轉速400 rpm、研磨2小時,再將該漿料塗佈在鋁箔(集電層,厚度為20 µm)上。最後,將該塗佈後之正極材料先在 60-80°C 下進行真空乾燥12小時,接著在 120°C 下加熱 12 小時以完全蒸發掉DMF溶劑。為了確保漿料與鋁箔的良好接觸,使用輾壓機將上述已乾燥的正極極片進行滾壓,該正極的活性材料的負載量約2.8 mg/cm 2。製備而得Li-Nafion@NCM811的正極極片。 Production of positive electrode sheet Li-Nafion@NCM811: Coating 1 wt.% Li-Nafion polymer on the surface of LiNi 0.8 Co 0.1 Mn 0.1 O 2 material for modification (Li-Nafion@NCM811, accounting for 75 wt.%) As the active material, add conductive carbon black (Super P, 10 wt.%) as a co-conductor, polyvinylidene fluoride (PVDF, 9 wt.%) as a binder, vapor-phase grown carbon fiber (VGCF, 1 wt. .% ) and LiTFSI lithium salt (5 wt.%) were uniformly stirred and mixed in N,N-dimethylformamide (DMF) solvent to form positive electrode slurry (Slurry). Next, the slurry was ground in a ball mill (agate ball; FRITSCH PULVERISETTE, Germany) at a speed of 400 rpm for 2 hours, and then the slurry was coated on an aluminum foil (collector layer, thickness 20 μm). Finally, the coated positive electrode material was vacuum-dried at 60-80° C. for 12 hours, and then heated at 120° C. for 12 hours to completely evaporate the DMF solvent. In order to ensure good contact between the slurry and the aluminum foil, the above-mentioned dried positive electrode sheet was rolled using a rolling machine, and the active material loading of the positive electrode was about 2.8 mg/cm 2 . The positive electrode sheet of Li-Nafion@NCM811 was prepared.

鈕扣型全固態鋰電池之製作:將上述Li-Nafion@NCM811的正極極片裁切成面積為1.33 cm 2的圓片,與做為負極之鋰金屬箔、及上述自製之CPE膜,組裝成CR2032鈕扣型全固態鋰電池Li-Nafion@NCM811//Li。 [CPE膜表面形貌分析 (SEM)] Production of button-type all-solid-state lithium battery: Cut the positive pole piece of the above-mentioned Li-Nafion@NCM811 into a disc with an area of 1.33 cm 2 , and assemble it into CR2032 with the lithium metal foil as the negative pole and the above-mentioned self-made CPE film Button-type all-solid-state lithium battery Li-Nafion@NCM811//Li. [CPE film surface morphology analysis (SEM)]

圖 1為PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜的SEM上視圖。如圖1所示,製備完成的PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜的表面是連續的、沒有空隙或裂縫。這表面形態將有助於增加該全固態電解質膜與電極之間的接觸程度,並降低界面阻抗。 [CPE膜材料結構分析 (XRD)] Figure 1 is the SEM top view of the CPE film of PEGDMA oligomer/PEGMA oligomer+PET. As shown in Figure 1, the surface of the prepared PEGDMA oligomer/PEGMA oligomer+PET CPE film is continuous without gaps or cracks. This surface morphology will help to increase the degree of contact between the all-solid-state electrolyte membrane and the electrodes, and reduce the interfacial impedance. [CPE film structure analysis (XRD)]

圖 2為PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜的XRD圖。如圖2所示,該膜的特徵峰約在2θ = 20°附近,且該峰寬且強度低,此表示該膜中存在較多非結晶區和部分低結晶區,而PEGDMA寡聚物/PEGMA寡聚物+PET膜的鋰離子導電率,會因含有較多非結晶區而因此提高。 [電化學性質分析 (LSV)] Figure 2 is the XRD pattern of the CPE film of PEGDMA oligomer/PEGMA oligomer+PET. As shown in Figure 2, the characteristic peak of the film is around 2θ=20°, and the peak is wide and low in intensity, which means that there are more amorphous regions and partially low-crystalline regions in the film, while PEGDMA oligomer/ The lithium ion conductivity of the PEGMA oligomer+PET film will increase because it contains more amorphous regions. [Electrochemical property analysis (LSV)]

透過線性掃描伏安法(LSV)來瞭解自製含鋰離子的PEGDMA寡聚物/PEGMA寡聚物+PET與PEGDMA寡聚物/Jeffamine寡聚物+PET全固態CPE膜的電化學穩定窗口。使用不鏽鋼/CPE膜/鋰箔金屬的電池結構進行測試,電壓範圍為2.0 至 5.5 V(相對於 Li/Li +)、以 0.1 mV/s 的掃描速率進行LSV的測試分析。PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜之測試結果如圖3(a)所示,其電化學穩定窗口約在4.8 V左右(相對於 Li/Li +);另外, PEGDMA寡聚物/Jeffamine寡聚物+PET膜之測試結果如圖3(b)所示,其電化學穩定窗口約在4.85 V(相對於 Li/Li +)。 The electrochemical stability window of self-made lithium-ion-containing PEGDMA oligomer/PEGMA oligomer+PET and PEGDMA oligomer/Jeffamine oligomer+PET all-solid-state CPE membrane was studied by linear sweep voltammetry (LSV). The battery structure of stainless steel/CPE film/lithium foil metal was used for testing, and the voltage range was 2.0 to 5.5 V (relative to Li/Li + ), and the LSV test analysis was performed at a scan rate of 0.1 mV/s. The test results of PEGDMA oligomer/PEGMA oligomer+PET CPE film are shown in Figure 3(a), and its electrochemical stability window is about 4.8 V (relative to Li/Li + ); in addition, PEGDMA oligomer Figure 3(b) shows the test results of the compound/Jeffamine oligomer+PET film, and its electrochemical stability window is about 4.85 V (relative to Li/Li + ).

由以上實驗結果可知, PEGDMA寡聚物/PEGMA寡聚物+PET與PEGDMA寡聚物/Jeffamine寡聚物+PET之CPE膜皆可與全固態鋰電池中所採用的高電壓正極材料來搭配使用,如: NCM811,其截止上限電壓 ≧4.2 V,以達成未來全固態鋰電池之高電壓、高能量密度及高安全性的目標。From the above experimental results, it can be seen that the CPE films of PEGDMA oligomer/PEGMA oligomer+PET and PEGDMA oligomer/Jeffamine oligomer+PET can be used together with the high-voltage cathode materials used in all-solid-state lithium batteries , such as: NCM811, its cut-off upper limit voltage ≧ 4.2 V, in order to achieve the goals of high voltage, high energy density and high safety of all solid-state lithium batteries in the future.

亦使用LSV來瞭解自製含鋰離子的PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI、PEGDMA寡聚物/PEGMA寡聚物+PVAM、PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI+Al-LLZO或PEGDMA寡聚物/PEGMA寡聚物+PVAM+Al-LLZO全固態CPE膜的電化學穩定窗口。如圖4所示,上述CPE膜的電化學穩定窗口約在4.9 V左右(相對於 Li/Li +)。 Also use LSV to understand homemade PEGDMA oligomer/PEGMA oligomer+PVDF/PI, PEGDMA oligomer/PEGMA oligomer+PVAM, PEGDMA oligomer/PEGMA oligomer+PVDF/PI+ Electrochemical stability window of Al-LLZO or PEGDMA oligomer/PEGMA oligomer+PVAM+Al-LLZO all-solid-state CPE film. As shown in Figure 4, the electrochemical stability window of the above-mentioned CPE film is about 4.9 V (relative to Li/Li + ).

亦使用LSV來瞭解自製含鋰離子的ETPTA寡聚物 +PVDF/PI、ETPTA寡聚物 +PVAM、ETPTA寡聚物 +PVDF/PI+Al-LLZO或ETPTA寡聚物 +PVAM+Al-LLZO全固態CPE膜的電化學穩定窗口。如圖5所示,上述CPE膜的電化學穩定窗口也約在4.9 V左右(相對於 Li/Li +)。 [熱性質分析 (TGA)] LSV was also used to understand the full range of lithium ion-containing ETPTA oligomer+PVDF/PI, ETPTA oligomer+PVAM, ETPTA oligomer+PVDF/PI+Al-LLZO or ETPTA oligomer+PVAM+Al-LLZO Electrochemically stable window of solid-state CPE membranes. As shown in Figure 5, the electrochemical stability window of the above CPE film is also around 4.9 V (relative to Li/Li + ). [Thermal Property Analysis (TGA)]

使用 TGA 熱重分析法來測試所製備的PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜的熱性質及穩定性。圖6顯示該PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜,在溫度約100°C 時發生了些微的重量損失,其熱重損失率約為5%,可能來自於該複合膜內有少許的吸附水分蒸發所致。而第二次熱重量損失發生在溫度在150至264 oC附近,該熱重損失率約38%左右,這可能是來自於SN增塑劑的分解(SN之熱裂解溫度大約為175 oC)。而第三次熱重量損失約在300~461 oC之間,該熱重損失率大約 50%,此可能是由於高分子和LiTFSI鋰鹽分解所造成的。 [官能基分析 (FTIR)] TGA thermogravimetric analysis was used to test the thermal properties and stability of the prepared PEGDMA oligomer/PEGMA oligomer+PET CPE film. Figure 6 shows that the CPE film of the PEGDMA oligomer/PEGMA oligomer+PET has a slight weight loss at a temperature of about 100°C, and its thermogravimetric loss rate is about 5%, which may come from the composite film A small amount of adsorbed water evaporates. The second thermogravimetric loss occurs at temperatures around 150 to 264 o C, and the thermogravimetric loss rate is about 38%, which may be from the decomposition of SN plasticizer (the thermal cracking temperature of SN is about 175 o C ). The third thermogravimetric loss is between 300 and 461 o C, and the thermogravimetric loss rate is about 50%, which may be caused by the decomposition of polymer and LiTFSI lithium salt. [Functional group analysis (FTIR)]

本發明所製備之CPE膜透過紫外光的固化交聯聚合反應的機制,可以透過FTIR檢測其特定的官能基特徵訊號變化來證實,其分析圖譜如圖7所示。在進行紫外光固化反應前,在丙烯酸的C=C雙鍵的峰值,約在1600 cm -1附近;經過紫外光照射後,該C=C 雙鍵的峰則消失。這結果可證明在PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜上發生了光聚合交聯反應。 [鋰離子導電率測試 (EIS)] The mechanism of the curing cross-linking polymerization reaction of the CPE film prepared by the present invention through ultraviolet light can be confirmed by FTIR detection of the characteristic signal changes of its specific functional groups, and its analysis spectrum is shown in FIG. 7 . Before the UV curing reaction, the peak of the C=C double bond in acrylic acid is around 1600 cm -1 ; after being irradiated with UV light, the peak of the C=C double bond disappears. This result can prove that the photopolymerization crosslinking reaction occurred on the CPE film of PEGDMA oligomer/PEGMA oligomer+PET. [Lithium ion conductivity test (EIS)]

於此實施例中,除了依上述步驟合成之PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜外,進一步使用電化學阻抗分析儀(Electrochemical impedance spectroscopy (EIS), Metrohm Autolab B. V., The Netherlands),測量依不同重量比例所製備出PEGDMA寡聚物/PEGMA寡聚物+PET及PEGDMA寡聚物/ Jeffamine寡聚物 +PET之CPE膜的鋰離子導電率(

Figure 02_image003
i),電化學阻抗分析儀的阻抗量測之頻率範圍約在10 6至10 -2Hz之間,電壓幅度為5 mV。 In this example, in addition to the PEGDMA oligomer/PEGMA oligomer+PET CPE film synthesized according to the above steps, an electrochemical impedance analyzer (Electrochemical impedance spectroscopy (EIS), Metrohm Autolab BV, The Netherlands) was further used , measure the lithium ion conductivity (
Figure 02_image003
i ), the frequency range of the impedance measurement of the electrochemical impedance analyzer is about 10 6 to 10 -2 Hz, and the voltage amplitude is 5 mV.

首先,針對PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜,分別固定不同CPE膜樣品中的LITFSI 和 SN 的比例依序為 20 wt.% 和 40 wt.%,即設計該PEGDMA寡聚物/PEGMA寡聚物的重量比例分別為: 30/10、20/20與10/30(wt.%)。其實驗結果如圖8(a)與表1所示。在室溫下,該PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜的鋰離子導電率,會隨著PEGMA寡聚物的添加量增加而增加,而發現以PEGDMA寡聚物/PEGMA寡聚物 = 10/30的重量比例組合,其導電率可達到最高值 (

Figure 02_image003
i= 2.92
Figure 02_image005
10 -4S/cm)。 表1 PEGDMA寡聚物/PEGMA寡聚物 重量比例 阻抗R b(Ohm) 厚度 (cm) 面積 (cm 2) 離子導電率
Figure 02_image007
i(S/cm)
30/10 87.15 0.020 1.27 1.81
Figure 02_image009
 10 -4
20/20 81.83 0.024 1.27 2.31
Figure 02_image009
 10 -4
10/30 67.47 0.025 1.27 2.92
Figure 02_image009
 10 -4
First, for the CPE film of PEGDMA oligomer/PEGMA oligomer+PET, the proportions of LITFSI and SN in different CPE film samples were respectively fixed at 20 wt.% and 40 wt.%, that is, the PEGDMA oligomer was designed The weight ratios of polymer/PEGMA oligomer are: 30/10, 20/20 and 10/30 (wt.%), respectively. The experimental results are shown in Figure 8(a) and Table 1. At room temperature, the lithium ion conductivity of the PEGDMA oligomer/PEGMA oligomer+PET CPE film will increase with the addition of PEGMA oligomer, and it is found that the PEGDMA oligomer/PEGMA oligomer Polymer = 10/30 weight ratio combination, its conductivity can reach the highest value (
Figure 02_image003
i = 2.92
Figure 02_image005
10 -4 S/cm). Table 1 PEGDMA oligomer/PEGMA oligomer weight ratio Impedance R b (Ohm) Thickness (cm) Area (cm 2 ) Ionic conductivity
Figure 02_image007
i (S/cm)
30/10 87.15 0.020 1.27 1.81
Figure 02_image009
10-4
20/20 81.83 0.024 1.27 2.31
Figure 02_image009
10-4
10/30 67.47 0.025 1.27 2.92
Figure 02_image009
10-4

此外,圖9進一步顯示出該 PEGDMA寡聚物/PEGMA寡聚物 = 10/30條件下的鋰離子導電率與溫度的關係,當溫度升高至75 oC時,其鋰離子導電率可提升至1.86

Figure 02_image005
10 -3S/cm。 In addition, Figure 9 further shows the relationship between the lithium ion conductivity and temperature under the condition of PEGDMA oligomer/PEGMA oligomer = 10/30, when the temperature rises to 75 o C, the lithium ion conductivity can be improved to 1.86
Figure 02_image005
10 -3 S/cm.

此外,亦測試得PEGDMA寡聚物/Jeffamine寡聚物 +PET之CPE膜,在PEGDMA寡聚物/ Jeffamine寡聚物為18/12(wt.%),LITFSI 和 SN 的比例依序為 35 wt.% 和 35 wt.%的重量比例下,鋰離子導電率可達到約為2.15

Figure 02_image005
10 -4S/cm,其結果及量測數據如圖8(b)與表 2所示。 表2 PEGDMA寡聚物/Jeffamine寡聚物 阻抗R b  (Ohm) 厚度 (cm) 面積 (cm 2) 離子導電率
Figure 02_image007
i(S/cm)
18/12 81.52 0.022 1.27 2.15
Figure 02_image009
 10 -4
 
In addition, the CPE film of PEGDMA oligomer/Jeffamine oligomer+PET was also tested, and the ratio of PEGDMA oligomer/Jeffamine oligomer was 18/12 (wt.%), and the ratio of LITFSI and SN was 35 wt .% and 35 wt.%, the lithium ion conductivity can reach about 2.15
Figure 02_image005
10 -4 S/cm, the results and measurement data are shown in Figure 8(b) and Table 2. Table 2 PEGDMA oligomer/Jeffamine oligomer Impedance R b (Ohm) Thickness (cm) Area (cm 2 ) Ionic conductivity
Figure 02_image007
i (S/cm)
18/12 81.52 0.022 1.27 2.15
Figure 02_image009
10-4

另外,如表3所示,在室溫下,PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI或PEGDMA寡聚物/PEGMA寡聚物+PVAM,搭配有/無添加2 % Al-LLZO陶瓷填料之所有組合之CPE膜的鋰離子導電率皆可達1

Figure 02_image005
10 -4S/cm以上,其中以有添加2 % Al-LLZO比未添加者的CPE膜之鋰離子導電率較為高,如PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI+Al-LLZO之CPE膜的鋰離子導電率約為1.80
Figure 02_image005
10 -4S/cm為最高。 表3 CPE膜 阻抗R b  (Ohm) 厚度 (cm) 面積 (cm 2) 離子導電率
Figure 02_image007
i(S/cm)
PEGDMA寡聚物/PEGMA寡聚物+PVAM 90.1 0.012 1.27 1.04
Figure 02_image009
10 -4
PEGDMA寡聚物/PEGMA寡聚物+ PVAM +Al-LLZO 69.7 0.012 1.27 1.30
Figure 02_image009
10 -4
PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI 91.1 0.018 1.27 1.52
Figure 02_image009
10 -4
PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI+Al-LLZO 80.1 0.018 1.27 1.80
Figure 02_image009
10 -4
In addition, as shown in Table 3, at room temperature, PEGDMA oligomer/PEGMA oligomer+PVDF/PI or PEGDMA oligomer/PEGMA oligomer+PVAM with/without addition of 2% Al-LLZO ceramic The lithium ion conductivity of the CPE film of all combinations of fillers can reach 1
Figure 02_image005
More than 10 -4 S/cm, among them, the lithium ion conductivity of the CPE film with 2 % Al-LLZO added is higher than that without it, such as PEGDMA oligomer/PEGMA oligomer+PVDF/PI+Al-LLZO The lithium ion conductivity of the CPE film is about 1.80
Figure 02_image005
10 -4 S/cm is the highest. table 3 CPE film Impedance R b (Ohm) Thickness (cm) Area (cm 2 ) Ionic conductivity
Figure 02_image007
i (S/cm)
PEGDMA oligomer/PEGMA oligomer+PVAM 90.1 0.012 1.27 1.04
Figure 02_image009
10-4
PEGDMA oligomer/PEGMA oligomer+PVAM+Al-LLZO 69.7 0.012 1.27 1.30
Figure 02_image009
10-4
PEGDMA oligomer/PEGMA oligomer+PVDF/PI 91.1 0.018 1.27 1.52
Figure 02_image009
10-4
PEGDMA oligomer/PEGMA oligomer+PVDF/PI+Al-LLZO 80.1 0.018 1.27 1.80
Figure 02_image009
10-4

另外,如表4所示,在室溫下, ETPTA寡聚物 +PVDF/PI、ETPTA寡聚物 +PVAM、ETPTA寡聚物 +PVDF/PI+Al-LLZO或ETPTA寡聚物 +PVAM+Al-LLZO之CPE膜之鋰離子導電率皆可達約4

Figure 02_image005
10 -4S/cm以上,其中以有添加2 % Al-LLZO比未添加者的CPE膜之鋰離子導電率較為高,如ETPTA寡聚物 +PVDF/PI+Al-LLZO之CPE膜的鋰離子導電率約1.72
Figure 02_image005
10 -3S/cm為最高。其主要原因是添加適量的導鋰離子的陶瓷填料可增加與高分子基材間界面的鋰離子傳輸路徑,進而提高鋰離子的傳輸能力。 表4 CPE膜 阻抗R b  (Ohm) 厚度 (cm) 面積 (cm 2) 離子導電率
Figure 02_image007
i(S/cm)
ETPTA寡聚物 +PVAM 23.5 0.013 1.27 4.19
Figure 02_image009
10 -4
ETPTA寡聚物 + PVAM +Al-LLZO 10.3 0.012 1.27 9.17
Figure 02_image009
10 -4
ETPTA寡聚物 +PVDF/PI 31.6 0.019 1.27 4.61
Figure 02_image009
10 -4
ETPTA寡聚物 +PVDF/PI+Al-LLZO 8.2 0.018 1.27 1.72
Figure 02_image009
10 -3
[全固態鋰電池之電化學性能分析] In addition, as shown in Table 4, at room temperature, ETPTA oligomer+PVDF/PI, ETPTA oligomer+PVAM, ETPTA oligomer+PVDF/PI+Al-LLZO or ETPTA oligomer+PVAM+Al -The lithium ion conductivity of the CPE film of LLZO can reach about 4
Figure 02_image005
10 -4 S/cm or more, among them, the lithium ion conductivity of the CPE film with 2 % Al-LLZO added is higher than that without the addition, such as the lithium ion conductivity of the CPE film of ETPTA oligomer + PVDF/PI + Al-LLZO Ionic conductivity about 1.72
Figure 02_image005
10 -3 S/cm is the highest. The main reason is that adding an appropriate amount of lithium-ion-conducting ceramic filler can increase the lithium-ion transmission path at the interface with the polymer substrate, thereby improving the lithium-ion transmission capacity. Table 4 CPE film Impedance R b (Ohm) Thickness (cm) Area (cm 2 ) Ionic conductivity
Figure 02_image007
i (S/cm)
ETPTA oligomer+PVAM 23.5 0.013 1.27 4.19
Figure 02_image009
10-4
ETPTA oligomer+PVAM+Al-LLZO 10.3 0.012 1.27 9.17
Figure 02_image009
10-4
ETPTA oligomer+PVDF/PI 31.6 0.019 1.27 4.61
Figure 02_image009
10-4
ETPTA oligomer+PVDF/PI+Al-LLZO 8.2 0.018 1.27 1.72
Figure 02_image009
10-3
[Electrochemical performance analysis of all-solid-state lithium batteries]

以鋰金屬箔為負極、自製PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜為全固態電解質膜、自製改質的Li-Nafion@NCM811為正極所組成的全固態鈕扣型電池,其性能分析結果如圖10(a)及表5所示,該鈕扣型電池在 0.2C電流速率、45 oC及截止上限電壓 為4.2 V的條件下,首次放電克電容量可達到153.00 mAh/g,經過5次循環後,其放電克電容量仍可維持在149.56 mAh/g,而其電容維持率約為97.75%。 表5 0.2C/0.2C 充電 放電 平均庫侖效率CE avg 活性材料 放電克電容量Q sp Cycle No. (mAh) (mAh) (%) (g) (mAh/g) Cycle 01 0.644 0.623 96.74 0.00407 153.00 Cycle 02 0.635 0.619 97.48 0.00407 152.01 Cycle 03 0.628 0.616 98.09 0.00407 151.28 Cycle 04 0.623 0.612 98.23 0.00407 150.29 Cycle 05 0.619 0.609 98.38 0.00407 149.56 The all-solid-state button battery is composed of lithium metal foil as the negative electrode, self-made PEGDMA oligomer/PEGMA oligomer + PET CPE film as the all-solid electrolyte membrane, and self-made modified Li-Nafion@NCM811 as the positive electrode. The analysis results are shown in Figure 10(a) and Table 5. Under the conditions of 0.2C current rate, 45 o C and cut-off upper limit voltage of 4.2 V, the first discharge gram capacity of the button battery can reach 153.00 mAh/g. After 5 cycles, its discharge gram capacity can still be maintained at 149.56 mAh/g, and its capacity retention rate is about 97.75%. table 5 0.2C/0.2C Charge discharge Average Coulombic Efficiency CE avg active material Discharge gram capacity Q sp Cycle No. (mAh) (mAh) (%) (g) (mAh/g) Cycle 01 0.644 0.623 96.74 0.00407 153.00 Cycle 02 0.635 0.619 97.48 0.00407 152.01 Cycle 03 0.628 0.616 98.09 0.00407 151.28 Cycle 04 0.623 0.612 98.23 0.00407 150.29 Cycle 05 0.619 0.609 98.38 0.00407 149.56

另外,以鋰金屬箔為負極、PEGDMA寡聚物/Jeffamine寡聚物+PET之CPE膜為全固態電解質膜、自製改質的Li-Nafion@NCM811為正極所組成的全固態鈕扣型電池,其性能分析結果如圖10(b)及表6所示,該鈕扣型電池在0.2C電流速率、45 oC及截止上限電壓 為4.2 V的條件下,首次放電克電容量可達到 154.27 mAh/g,經過5 次循環後,其放電克電容量仍保持在 153.69 mAh/g左右,而其電容維持率約為99.62%。 表6 0.2C/0.2C 充電   放電 平均庫侖效率CE avg 活性材料 放電克電容量Q sp Cycle No. (mAh) (mAh) (%) (g) (mAh/g) Cycle01 0.612 0.527 86.11 0.00342 154.27 Cycle02 0.537 0.528 98.32 0.00342 154.57 Cycle03 0.533 0.527 98.87 0.00342 154.27 Cycle04 0.531 0.525 98.87 0.00342 153.69 Cycle05 0.529 0.525 99.24 0.00342 153.69 In addition, the all-solid-state button battery is composed of lithium metal foil as the negative electrode, PEGDMA oligomer/Jeffamine oligomer+PET CPE film as the all-solid electrolyte membrane, and self-modified Li-Nafion@NCM811 as the positive electrode. The performance analysis results are shown in Figure 10(b) and Table 6. Under the conditions of 0.2C current rate, 45 o C and cut-off upper limit voltage of 4.2 V, the first discharge gram capacity of the button battery can reach 154.27 mAh/g , after 5 cycles, its discharge gram capacity still remains at about 153.69 mAh/g, and its capacity retention rate is about 99.62%. Table 6 0.2C/0.2C Charge discharge Average Coulombic Efficiency CE avg active material Discharge gram capacity Q sp Cycle No. (mAh) (mAh) (%) (g) (mAh/g) Cycle01 0.612 0.527 86.11 0.00342 154.27 Cycle02 0.537 0.528 98.32 0.00342 154.57 Cycle03 0.533 0.527 98.87 0.00342 154.27 Cycle04 0.531 0.525 98.87 0.00342 153.69 Cycle05 0.529 0.525 99.24 0.00342 153.69

以上結果證明該自製PEGDMA寡聚物/PEGMA寡聚物+PET與PEGDMA寡聚物/Jeffamine寡聚物+PET之CPE膜,皆可應用於高電壓 (≧4.2 V)的高鎳正極材料上。The above results prove that the self-made CPE films of PEGDMA oligomer/PEGMA oligomer+PET and PEGDMA oligomer/Jeffamine oligomer+PET can be applied to high-voltage (≧4.2 V) high-nickel cathode materials.

進一步,圖11顯示出依上述PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜所組成的Li-Nafion@NCM811//Li鈕扣型電池於充/放電循環前的交流阻抗圖,該電池的體阻抗(Bulk resistance, R b) 約為 21.0

Figure 02_image011
、電荷轉移阻抗(Charge transfer resistance, R ct) 約為 25.5
Figure 02_image011
,該結果顯示出此電池中的PEGDMA寡聚物/PEGMA寡聚物+PET之全固態CPE膜和電極之間有良好的接觸,故具有低的界面阻抗值。 Further, Figure 11 shows the AC impedance diagram of the Li-Nafion@NCM811//Li button cell before the charge/discharge cycle, which is composed of the above-mentioned PEGDMA oligomer/PEGMA oligomer+PET CPE film. Body impedance (Bulk resistance, R b ) is about 21.0
Figure 02_image011
, Charge transfer resistance (Charge transfer resistance, R ct ) is about 25.5
Figure 02_image011
, the results show that there is good contact between the all-solid CPE film of PEGDMA oligomer/PEGMA oligomer+PET in this battery and the electrode, so it has a low interfacial impedance value.

綜上所述,本發明之全固態複合式高分子電解質膜具高鋰離子導電率,且應用該自製的CPE膜組裝成之CR2032鈕扣型電池,在45 oC下,能夠表現出優異的電池性能與電化學穩定性,證明其可極佳地應用於具高電壓與高能量密度的全固態鋰電池。 In summary, the all-solid composite polymer electrolyte membrane of the present invention has high lithium ion conductivity, and the CR2032 button battery assembled with the self-made CPE membrane can exhibit excellent battery performance at 45 o C. The performance and electrochemical stability prove that it can be excellently applied to all-solid-state lithium batteries with high voltage and high energy density.

〔圖1〕PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜的SEM上視圖。 〔圖2〕PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜的XRD圖。 〔圖3〕(a) PEGDMA寡聚物/PEGMA寡聚物+PET與(b) PEGDMA寡聚物/Jeffamine寡聚物+PET之CPE膜的LSV圖。 〔圖4〕PEGDMA寡聚物/PEGMA寡聚物+PVAM、PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI、PEGDMA寡聚物/PEGMA寡聚物+PVDF/PI+Al-LLZO與PEGDMA寡聚物/PEGMA寡聚物+PVAM+Al-LLZO之CPE膜的LSV圖。 〔圖5〕ETPTA寡聚物+PVAM、ETPTA寡聚物 +PVDF/PI、ETPTA寡聚物 +PVDF/PI+Al-LLZO與ETPTA寡聚物+PVAM+Al-LLZO之CPE膜的LSV圖。 〔圖6〕PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜的熱重損失分析圖。 〔圖7〕PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜,經紫外光交聯反應前後的 FTIR圖。 〔圖8〕(a)不同組成比例的 PEGDMA寡聚物/PEGMA寡聚物+PET與(b)PEGDMA寡聚物/Jeffamine寡聚物+PET之CPE膜的交流阻抗圖。 〔圖9〕PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜(PEGDMA寡聚物/PEGMA寡聚物 = 10/30 )之鋰離子導電率與溫度的關係圖。 〔圖10〕在0.2C、45 oC條件下,(a)PEGDMA寡聚物/PEGMA寡聚物+PET與(b)PEGDMA寡聚物/Jeffamine寡聚物+PET之CPE膜所組成Li-Nafion@NCM811//Li鈕扣型電池的充/放電曲線圖。 〔圖11〕應用PEGDMA寡聚物/PEGMA寡聚物+PET之CPE膜所組成Li-Nafion@NCM811//Li鈕扣型電池於充/放電循環前的交流阻抗圖。 [Fig. 1] SEM top view of CPE film of PEGDMA oligomer/PEGMA oligomer+PET. [Fig. 2] XRD pattern of PEGDMA oligomer/PEGMA oligomer+PET CPE film. [Fig. 3] LSV diagrams of CPE films of (a) PEGDMA oligomer/PEGMA oligomer+PET and (b) PEGDMA oligomer/Jeffamine oligomer+PET. [Figure 4] PEGDMA oligomer/PEGMA oligomer+PVAM, PEGDMA oligomer/PEGMA oligomer+PVDF/PI, PEGDMA oligomer/PEGMA oligomer+PVDF/PI+Al-LLZO and PEGDMA oligomer LSV diagram of CPE film of polymer/PEGMA oligomer+PVAM+Al-LLZO. [Fig. 5] LSV diagrams of CPE films of ETPTA oligomer+PVAM, ETPTA oligomer+PVDF/PI, ETPTA oligomer+PVDF/PI+Al-LLZO, and ETPTA oligomer+PVAM+Al-LLZO. [Fig. 6] Thermogravimetric loss analysis graph of PEGDMA oligomer/PEGMA oligomer+PET CPE film. [Fig. 7] FTIR images of PEGDMA oligomer/PEGMA oligomer+PET CPE film before and after UV crosslinking reaction. [Figure 8] (a) AC impedance diagrams of CPE films with different composition ratios of PEGDMA oligomer/PEGMA oligomer+PET and (b) PEGDMA oligomer/Jeffamine oligomer+PET. [Fig. 9] Lithium ion conductivity versus temperature for a CPE film of PEGDMA oligomer/PEGMA oligomer + PET (PEGDMA oligomer/PEGMA oligomer = 10/30). [Figure 10] Under the conditions of 0.2C and 45 oC , Li- Charge/discharge curve of Nafion@NCM811//Li button cell. [Figure 11] The AC impedance diagram of Li-Nafion@NCM811//Li button cell before charge/discharge cycles composed of PEGDMA oligomer/PEGMA oligomer+PET CPE film.

Claims (10)

一種全固態複合式高分子電解質膜的製備方法,其藉由光聚合交聯反應合成,其特徵係包含以下步驟: (A) 將前驅物材料、雙三氟甲烷磺醯亞胺鋰(LiTFSI)及丁二腈(SN)依各組成之重量百分比進行混合,其中,該前驅物材料係選自:聚乙二醇二甲基丙烯酸酯(PEGDMA)寡聚物搭配聚乙二醇甲基丙烯酸酯(PEGMA)寡聚物、PEGDMA寡聚物搭配聚醚胺(Jeffamine)寡聚物、聚乙二醇二丙烯酸酯(PEGDA)寡聚物搭配PEGMA寡聚物、PEGDA寡聚物搭配Jeffamine寡聚物、或乙氧基化三羥甲基丙烷三丙烯酸酯(ETPTA)寡聚物所成群中之至少一種; (B)  將該步驟(A)混合後之材料在室溫下均勻攪拌後,加入偏苯二酚二酐(PMDA)並持續攪拌均勻成一混合溶液;其中,該PMDA相對於該前驅物材料為0.5至5 wt.%; (C)  將該混合溶液均勻塗佈在玻璃上形成一塗佈層,並將一不織布膜放置在該塗佈層上方,使該混合溶液滲透至該不織布膜內,以形成一複合式高分子電解質層; (D) 使用紫外光照射使該複合式高分子電解質層進行交聯反應,形成一全固態複合式高分子電解質膜。 A method for preparing an all-solid-state composite polymer electrolyte membrane, which is synthesized by photopolymerization and crosslinking reaction, is characterized by comprising the following steps: (A) Mix the precursor material, lithium bistrifluoromethanesulfonyl imide (LiTFSI) and succinonitrile (SN) according to the weight percentage of each composition, wherein the precursor material is selected from: polyethylene glycol Dimethacrylate (PEGDMA) oligomer with polyethylene glycol methacrylate (PEGMA) oligomer, PEGDMA oligomer with polyetheramine (Jeffamine) oligomer, polyethylene glycol diacrylate ( PEGDA) oligomer with PEGMA oligomer, PEGDA oligomer with Jeffamine oligomer, or at least one of the group consisting of ethoxylated trimethylolpropane triacrylate (ETPTA) oligomer; (B) After the material mixed in the step (A) is uniformly stirred at room temperature, add pyroquinone dianhydride (PMDA) and continue to stir to form a mixed solution; wherein, the PMDA is relative to the precursor material. 0.5 to 5 wt.%; (C) Apply the mixed solution evenly on the glass to form a coating layer, and place a non-woven fabric film on the top of the coating layer, so that the mixed solution penetrates into the non-woven film to form a composite polymer Electrolyte layer; (D) Using ultraviolet light to irradiate the composite polymer electrolyte layer to undergo a cross-linking reaction to form an all-solid composite polymer electrolyte membrane. 如請求項1所述之全固態複合式高分子電解質膜的製備方法,其中,該前驅物材料係PEGDMA寡聚物搭配PEGMA寡聚物或PEGDA寡聚物搭配PEGMA寡聚物,該PEGDMA寡聚物或該PEGDA寡聚物之重量百分比為1至50 wt.%,該PEGMA寡聚物之重量百分比為1至60 wt.%,該LiTFSI之重量百分比為1至50 wt.%,該SN之重量百分比為1至60 wt.%。The preparation method of the all-solid-state composite polymer electrolyte membrane as described in Claim 1, wherein the precursor material is a PEGDMA oligomer with a PEGMA oligomer or a PEGDA oligomer with a PEGMA oligomer, and the PEGDMA oligomer is The weight percentage of the object or the PEGDA oligomer is 1 to 50 wt.%, the weight percentage of the PEGMA oligomer is 1 to 60 wt.%, the weight percentage of the LiTFSI is 1 to 50 wt.%, the SN The weight percentage is 1 to 60 wt.%. 如請求項1所述之全固態複合式高分子電解質膜的製備方法,其中,該前驅物材料係PEGDMA寡聚物搭配Jeffamine寡聚物或PEGDA寡聚物搭配Jeffamine寡聚物,該PEGDMA寡聚物或該PEGDA寡聚物之重量百分比為1至50 wt.%,該Jeffamine寡聚物之重量百分比為1至30 wt.%,該LiTFSI之重量百分比為1至50 wt.%,該SN之重量百分比為1至60 wt.%。The preparation method of the all-solid-state composite polymer electrolyte membrane as described in claim 1, wherein the precursor material is a PEGDMA oligomer with a Jeffamine oligomer or a PEGDA oligomer with a Jeffamine oligomer, and the PEGDMA oligomer The weight percentage of the object or the PEGDA oligomer is 1 to 50 wt.%, the weight percentage of the Jeffamine oligomer is 1 to 30 wt.%, the weight percentage of the LiTFSI is 1 to 50 wt.%, the SN The weight percentage is 1 to 60 wt.%. 如請求項1所述之全固態複合式高分子電解質膜的製備方法,其中,該前驅物材料係ETPTA寡聚物,該ETPTA寡聚物之重量百分比為1至50 wt.%,該LiTFSI之重量百分比為1至50 wt.%,該SN之重量百分比為1至60 wt.%。The method for preparing an all-solid composite polymer electrolyte membrane as described in claim 1, wherein the precursor material is an ETPTA oligomer, the weight percentage of the ETPTA oligomer is 1 to 50 wt.%, and the LiTFSI The weight percentage is 1 to 50 wt.%, and the weight percentage of the SN is 1 to 60 wt.%. 如請求項1所述之全固態複合式高分子電解質膜的製備方法,其中,該前驅物材料進一步包含鋁摻雜的鋰鑭鋯氧氧化物Li 6.25Al 0.25La 3Zr 2O 12(Al-LLZO),該Al-LLZO之重量百分比為1至30 wt.%。 The method for preparing an all-solid-state composite polymer electrolyte membrane according to Claim 1, wherein the precursor material further comprises aluminum-doped lithium lanthanum zirconium oxide Li 6.25 Al 0.25 La 3 Zr 2 O 12 (Al- LLZO), the weight percentage of the Al-LLZO is 1 to 30 wt.%. 如請求項1所述之全固態複合式高分子電解質膜的製備方法,其中,該PMDA相對於該前驅物材料為1 wt.%。The method for preparing an all-solid-state composite polymer electrolyte membrane as described in Claim 1, wherein the PMDA is 1 wt.% relative to the precursor material. 如請求項1所述之全固態複合式高分子電解質膜的製備方法,其中,該不織布膜之厚度為5至300
Figure 03_image001
m。
The preparation method of the all-solid composite polymer electrolyte membrane as described in Claim 1, wherein the thickness of the non-woven membrane is 5 to 300
Figure 03_image001
m.
如請求項1所述之全固態複合式高分子電解質膜的製備方法,其中,該不織布膜係選自聚對苯二甲酸乙二酯、聚乙烯醇、聚丙烯、聚乙烯、耐綸、聚醯亞胺、聚丙烯及聚對苯二甲酸乙二酯、聚偏二氟乙烯及聚醯亞胺,或聚乙烯醇及三聚氰胺電紡不織布膜所成群中之至少一種之不織布膜。The preparation method of the all-solid-state composite polymer electrolyte membrane as described in Claim 1, wherein the non-woven fabric is selected from polyethylene terephthalate, polyvinyl alcohol, polypropylene, polyethylene, nylon, poly A nonwoven film of at least one of the group consisting of imide, polypropylene and polyethylene terephthalate, polyvinylidene fluoride and polyimide, or polyvinyl alcohol and melamine electrospun nonwoven film. 如請求項1所述之全固態複合式高分子電解質膜的製備方法,其中,該紫外光照射之時間為1至60分鐘。The method for preparing an all-solid composite polymer electrolyte membrane according to claim 1, wherein the ultraviolet light irradiation time is 1 to 60 minutes. 一種全固態鋰電池,其特徵係其包含:高鎳正極、負極及如請求項1至9中任一項所述之全固態複合式高分子電解質膜的製備方法所製備之全固態複合式高分子電解質膜;其中, 該全固態複合式高分子電解質膜設置在該正極及該負極之間,同時作為隔離膜及電解質來使用;該負極為鋰金屬箔或鋰合金;該正極係藉由一包含活性材料、導電劑及黏合劑的組成物於集電層上所製成。 An all-solid-state lithium battery, characterized in that it comprises: a high-nickel positive electrode, a negative electrode, and an all-solid-state composite high-molecular electrolyte membrane prepared by the method for preparing an all-solid-state composite polymer electrolyte membrane as described in any one of Claims 1 to 9. Molecular electrolyte membrane; where, The all-solid composite polymer electrolyte membrane is arranged between the positive electrode and the negative electrode, and is used as a separator and an electrolyte at the same time; the negative electrode is lithium metal foil or lithium alloy; And the composition of binder is made on the collector layer.
TW110141273A 2021-11-05 2021-11-05 Preparation method of all-solid-state composite polymer electrolyte membrane and all-solid-state lithium battery TWI756162B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110141273A TWI756162B (en) 2021-11-05 2021-11-05 Preparation method of all-solid-state composite polymer electrolyte membrane and all-solid-state lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110141273A TWI756162B (en) 2021-11-05 2021-11-05 Preparation method of all-solid-state composite polymer electrolyte membrane and all-solid-state lithium battery

Publications (2)

Publication Number Publication Date
TWI756162B TWI756162B (en) 2022-02-21
TW202320378A true TW202320378A (en) 2023-05-16

Family

ID=81329358

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110141273A TWI756162B (en) 2021-11-05 2021-11-05 Preparation method of all-solid-state composite polymer electrolyte membrane and all-solid-state lithium battery

Country Status (1)

Country Link
TW (1) TWI756162B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022204975A1 (en) * 2022-05-18 2023-11-23 Technische Universität Braunschweig - Körperschaft des öffentlichen Rechts Solid electrolyte for lithium-based rechargeable batteries
TWI784918B (en) * 2022-06-27 2022-11-21 明志科技大學 Solid-state composite polymer electrolyte membrane and all-solid-state lithium battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620370B (en) * 2016-10-14 2018-04-01 行政院原子能委員會核能硏究所 Lithium battery, solid electrolyte membrane and their manufacturing methods thereof
KR102420593B1 (en) * 2018-05-24 2022-07-13 주식회사 엘지에너지솔루션 Seperator for lithium sulfur battery and lithium sulfur battery comprising the same
TWI725904B (en) * 2020-08-04 2021-04-21 明志科技大學 Preparation method of composite solid electrolyte membrane and all-solid lithium battery using the composite solid electrolyte membrane

Also Published As

Publication number Publication date
TWI756162B (en) 2022-02-21

Similar Documents

Publication Publication Date Title
CN107482221B (en) Polymer crosslinked binder and preparation method and application thereof
CN109802174A (en) A kind of preparation and its application of polycarbonate base polymer electrolyte
CN111326789B (en) Semi-interpenetrating network flame-retardant solid lithium ion electrolyte, solid lithium battery and preparation method
CN108232286B (en) Preparation method of composite positive electrode added with polymer and application of composite positive electrode in solid-state battery
Li et al. A water-soluble, adhesive and 3D cross-linked polyelectrolyte binder for high-performance lithium–sulfur batteries
Cao et al. Molecular design of a multifunctional binder via grafting and crosslinking for high performance silicon anodes
CN111533851A (en) Preparation method of polymer electrolyte and application of polymer electrolyte in all-solid-state battery
Xu et al. Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries
TWI756162B (en) Preparation method of all-solid-state composite polymer electrolyte membrane and all-solid-state lithium battery
Gou et al. A renewable gel polymer electrolyte based on the different sized carboxylated cellulose with satisfactory comprehensive performance for rechargeable lithium ion battery
Feng et al. A three-dimensional crosslinked chitosan sulfate network binder for high-performance Li–S batteries
Wu et al. Ionic network for aqueous-polymer binders to enhance the electrochemical performance of Li-Ion batteries
Jia et al. Multifunctional polymer bottlebrush-based gel polymer electrolytes for lithium metal batteries
CN109888369A (en) A kind of all solid state electrolyte and preparation method thereof and a kind of lithium battery
Guo et al. One‐Pot Synthesis of a Copolymer Micelle Crosslinked Binder with Multiple Lithium‐Ion Diffusion Pathways for Lithium–Sulfur Batteries
Yu et al. Cathode/gel polymer electrolyte integration design based on continuous composition and preparation technique for high performance lithium ion batteries
CN108365263B (en) Microgel solid electrolyte membrane, preparation method and lithium battery
Zhou et al. An Asymmetric Cross‐Linked Ionic Copolymer Hybrid Solid Electrolyte with Super Stretchability for Lithium‐Ion Batteries
Libo et al. Gel polymer electrolytes containing ionic liquids prepared by radical polymerization
CN116731635A (en) Conductive adhesive and preparation method and application thereof
CN114464880B (en) Self-repairing composite solid lithium ion battery electrolyte and preparation method thereof
CN113206252B (en) Soybean protein-based multifunctional double-chain cross-linked sulfur cathode aqueous binder and preparation method and application thereof
CN115275096A (en) Self-repairing flexible electrode, preparation method thereof and lithium-sulfur battery
TWI784918B (en) Solid-state composite polymer electrolyte membrane and all-solid-state lithium battery
CN111900459A (en) PEO-based composite solid electrolyte and preparation method thereof