TW202312509A - Advanced quantum power collector - Google Patents

Advanced quantum power collector Download PDF

Info

Publication number
TW202312509A
TW202312509A TW110135292A TW110135292A TW202312509A TW 202312509 A TW202312509 A TW 202312509A TW 110135292 A TW110135292 A TW 110135292A TW 110135292 A TW110135292 A TW 110135292A TW 202312509 A TW202312509 A TW 202312509A
Authority
TW
Taiwan
Prior art keywords
photovoltaic
layer
collector
connector
conductive layer
Prior art date
Application number
TW110135292A
Other languages
Chinese (zh)
Inventor
蘭道夫艾倫 聖詹姆士
明樺 李
Original Assignee
英商量子網格實驗室有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/467,786 external-priority patent/US20210408966A1/en
Application filed by 英商量子網格實驗室有限公司 filed Critical 英商量子網格實驗室有限公司
Publication of TW202312509A publication Critical patent/TW202312509A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photovoltaic collector includes a photovoltaic cell including a first conduction layer, a second conduction layer, and a photovoltaic layer absorbing incident light and generating electric current. The photovoltaic layer is electrically connected to the first conduction layer on a first side of the photovoltaic layer and to the second conduction layer on a second side opposite to the first side. The first conduction layer is an ultrastatic conducting layer being made using ultrasonic spray technology. The photovoltaic collector further includes a plurality of connection units disposed along on an outer peripheral edge of the photovoltaic collector. Each connection unit is adapted to connect with an adjacent connection unit of an adjacent photovoltaic collector to tessellate and electrically interconnect and interlock the photovoltaic collector with a plurality of adjacent photovoltaic collectors without requiring additional cable wires.

Description

先進的量子能量收集器Advanced Quantum Energy Harvesters

本申請案對應於2020年1月17日所申請之題為「能量收集器(POWER COLLECTOR)」的美國專利申請案號16/632,220的部分繼續申請案;本申請案要求2018年7月17日所申請之題為「能量收集器(POWER COLLECTOR)」的 PCT/GB2018/052022 的益處及優先權,PCT/GB2018/052022要求2017年 7月18日所申請之題為「能量收集器(POWER COLLECTOR)」的GB申請案GB1711546.0的優先權,所有上述這些申請案均以引用方式併入本文中,如同對其全文進行了複製。This application corresponds to a continuation-in-part of U.S. Patent Application Serial No. 16/632,220, filed January 17, 2020, entitled "POWER COLLECTOR"; Benefits and Priority of PCT/GB2018/052022 Application Entitled "Power Collector (POWER COLLECTOR)", PCT/GB2018/052022 Requires July 18, 2017 Application Entitled "Energy Collector (POWER COLLECTOR) )”, all of which are hereby incorporated by reference as if reproduced in their entirety.

本申請案大體上涉及能量收集器,更具體來說,本申請案涉及能夠將可見光能量及/或紅外能量轉換成電能的先進的量子能量收集器。The present application relates generally to energy harvesters, and more specifically, the present application relates to advanced quantum energy harvesters capable of converting visible light energy and/or infrared energy into electrical energy.

使用塊狀半導體材料(如矽)產生電力以實現典型的光伏電池。這種塊狀半導體材料的發電依賴於吸收能量大於塊狀半導體材料帶隙的光子,這對應於大於紅外光譜中的電磁能的能量。因此,由傳統塊狀半導體材料製成的光伏電池既不吸收紅外能量也不產生電能。值得注意的是,到達地球的太陽能中有一半太陽能的波長係在紅外光譜中,這意味著傳統的光伏電池忽略了到達地球的太陽能中的一半太陽能。挑戰在於開發一種光伏電池來捕獲紅外光譜內的電磁能。Electricity is generated using bulk semiconductor materials such as silicon to realize a typical photovoltaic cell. Power generation from such bulk semiconductor materials relies on absorbing photons with energies greater than the bandgap of the bulk semiconductor material, which corresponds to energies greater than electromagnetic energy in the infrared spectrum. As a result, photovoltaic cells made of traditional bulk semiconductor materials neither absorb infrared energy nor generate electricity. It is worth noting that half of the solar energy that reaches the earth has wavelengths in the infrared spectrum, which means that traditional photovoltaic cells ignore half of the solar energy that reaches the earth. The challenge was to develop a photovoltaic cell to capture electromagnetic energy in the infrared spectrum.

以下呈現了一個或多個示例的簡化概述,以提供對此類示例的基本理解。本[發明內容]不是對所有預期示例的廣泛概述,且既不旨在識別所有示例的關鍵或關鍵要素,也不旨在描繪任何或所有示例的範圍。本[發明內容]的目的是以簡化形式呈現一個或多個示例的一些概念,以作為下文所呈現的[實施方式]的前奏。A simplified overview of one or more examples is presented below to provide a basic understanding of such examples. This [Summary] is not an extensive overview of all contemplated examples, and is intended to neither identify key or critical elements of all examples nor delineate the scope of any or all examples. The purpose of this [Summary] is to present some concepts of one or more examples in a simplified form as a prelude to the [Implementation] presented below.

在一個實施例中,提供了一種光伏收集器,其包括:經配置成吸收入射光並產生電流的光伏電池;沿著光伏電池的周邊設置的電力軸環,電力軸環電耦合到光伏電池的至少一個傳導層;電連接到電力軸環的連接單元,連接單元包括:電連接到電力軸環的正極端子的第一連接器及電連接到電力軸環的負極端子的第二連接器,其中第一連接器和第二連接器設置在光伏收集器的外周邊緣,且其中第一連接器和第二連接器經配置為將光伏收集器與第一相鄰的光伏收集器互連。In one embodiment, there is provided a photovoltaic collector comprising: a photovoltaic cell configured to absorb incident light and generate an electric current; an electrical collar disposed along a perimeter of the photovoltaic cell, the electrical collar being electrically coupled to the photovoltaic cell at least one conductive layer; a connection unit electrically connected to the power collar, the connection unit comprising: a first connector electrically connected to a positive terminal of the power collar and a second connector electrically connected to a negative terminal of the power collar, wherein A first connector and a second connector are disposed on a peripheral edge of the photovoltaic collector, and wherein the first connector and the second connector are configured to interconnect the photovoltaic collector with a first adjacent photovoltaic collector.

在另一個實施例中,光伏收集器進一步包括沿著光伏電池的周邊設置的能量電池,且其中電力軸環電連接到能量電池且經配置為將帶電載流子引導至能量電池。連接單元電連接到能量電池,使得第一連接器電連接到能量電池的陽極,而第二連接器電連接到能量電池的陰極。在另一實施例中,第一連接器為公針連接器且第二連接器為母插座連接器,且第一連接器和第二連接器經設置在光伏收集器的外周邊緣,使得公針連接器與對應的第一相鄰的光伏收集器的母插座連接器可電連接,及母插座連接器與對應的第一相鄰的光伏收集器的公針連接器可電連接。在另一個實施例中,公針連接器是扁平針連接器或圓形針連接器,而母插座連接器是扁平插座連接器或圓形插座連接器。In another embodiment, the photovoltaic collector further includes an energy cell disposed along a perimeter of the photovoltaic cell, and wherein the power collar is electrically connected to the energy cell and configured to direct charge carriers to the energy cell. The connection unit is electrically connected to the energy cell such that the first connector is electrically connected to the anode of the energy cell and the second connector is electrically connected to the cathode of the energy cell. In another embodiment, the first connector is a male pin connector and the second connector is a female socket connector, and the first connector and the second connector are arranged on the peripheral edge of the photovoltaic collector such that the male pin The connector is electrically connectable with the female socket connector of the corresponding first adjacent photovoltaic collector, and the female socket connector is electrically connectable with the male pin connector of the corresponding first adjacent photovoltaic collector. In another embodiment, the male pin connector is a flat pin connector or a round pin connector and the female receptacle connector is a flat receptacle connector or a round receptacle connector.

在另一個實施例中,光伏電池是三角形的光伏電池,且沿著三角形的光伏電池之沿外周邊表面的第一邊緣設置第一連接器和第二連接器。在另一個實施例中,沿著三角形的光伏電池的第一邊緣設置的第一連接器和第二連接器在三角形的光伏電池的第一邊緣的第一頂點附近彼此相鄰地定位。在另一個實施例中,沿著三角形的光伏電池的第一邊緣設置的第一連接器和第二連接器彼此遠離定位,使得第一連接器接近三角形的光伏電池的第一邊緣的一個頂點且第二連接器接近三角形的光伏電池的第一邊的另一個頂點。在另一實施例中,光伏收集器進一步包括:電連接到電力軸環的第二連接單元及電連接至電力軸環的第三連接單元,第二連接單元包括分別電連接到電力軸環的正極端子和負極端子的第一連接器和第二連接器,及第三連接單元包括分別電連接到電力軸環的正極端子和負極端子的的第一連接器和第二連接器。沿著三角形的光伏電池之沿外周邊表面的第二邊緣設置第二連接單元的第一連接器和第二連接器,及沿著三角形的光伏電池之沿外周邊表面的第三邊緣設置第三連接單元的第一連接器和第二連接器。In another embodiment, the photovoltaic cell is a triangular photovoltaic cell, and the first connector and the second connector are disposed along a first edge of the triangular photovoltaic cell along the outer peripheral surface. In another embodiment, the first connector and the second connector disposed along the first edge of the triangular photovoltaic cell are positioned adjacent to each other near the first vertex of the first edge of the triangular photovoltaic cell. In another embodiment, the first connector and the second connector disposed along the first edge of the triangular-shaped photovoltaic cell are located away from each other such that the first connector is close to a vertex of the first edge of the triangular-shaped photovoltaic cell and The second connector is proximate to another vertex of the first side of the triangular photovoltaic cell. In another embodiment, the photovoltaic collector further includes: a second connection unit electrically connected to the power collar and a third connection unit electrically connected to the power collar, the second connection unit includes a second connection unit electrically connected to the power collar, respectively The first connector and the second connector of the positive terminal and the negative terminal, and the third connection unit include the first connector and the second connector electrically connected to the positive terminal and the negative terminal of the power collar, respectively. The first connector and the second connector of the second connection unit are arranged along the second edge of the triangular photovoltaic cell along the outer peripheral surface, and the third connector is arranged along the third edge of the triangular photovoltaic cell along the outer peripheral surface. The first connector and the second connector of the connection unit.

在另一個實施例中,對於第二連接單元和第三連接單元中的每一者,沿著三角形的光伏電池的相應邊緣設置第一連接器和第二連接器,以便彼此相鄰地定位在三角形的光伏電池的相應頂點附近。在另一實施例中,對於第二連接單元和第三連接單元中的每一者,沿著三角形的光伏電池的對應邊緣設置第一連接器和第二連接器,使得第一連接器和第二連接器彼此遠離地定位,且使得第一連接器接近三角形的光伏電池的對應邊緣的一個頂點及第二連接器接近三角形的光伏電池的對應邊緣的另一個頂點。在另一個實施例中,第二連接單元的第一連接器和第二連接器經配置為將光伏收集器與第二相鄰的光伏收集器電連接和互鎖,且其中第三連接單元的第一連接器和第二連接器經配置為將光伏收集器與第三相鄰的光伏收集器電連接和互鎖。In another embodiment, for each of the second connection unit and the third connection unit, the first connector and the second connector are arranged along the corresponding edges of the triangular photovoltaic cell so as to be positioned adjacent to each other at near the corresponding vertices of the photovoltaic cells of the triangle. In another embodiment, for each of the second connection unit and the third connection unit, the first connector and the second connector are arranged along the corresponding edges of the triangular photovoltaic cells, so that the first connector and the third connection unit The two connectors are positioned away from each other such that the first connector is proximate to one vertex of the corresponding edge of the triangular photovoltaic cell and the second connector is proximate to the other vertex of the corresponding edge of the triangular photovoltaic cell. In another embodiment, the first connector and the second connector of the second connection unit are configured to electrically connect and interlock the photovoltaic collector with a second adjacent photovoltaic collector, and wherein the third connection unit The first connector and the second connector are configured to electrically connect and interlock the photovoltaic collector with a third adjacent photovoltaic collector.

在又一個實施例中,光伏電池是矩形光伏電池、五邊形光伏電池、六邊形光伏電池、橢圓形光伏電池和圓形光伏電池中的一者。在又一個實施例中,光伏收集器進一步包括第二連接單元,第二連接單元電連接到電力軸環且包括分別電連接到電力軸環的正極端子和負極端子的第一連接器和第二連接器。在又一個實施例中,第一連接器通過第一互連跡線電連接到電力軸環的正極端子,且第二連接器通過第二互連跡線電連接到電力軸環的負極端子。在又一實施例中,嵌入第一互連跡線和第二互連跡線以便被氣密地密封在光伏收集器的一個或多個保護層內,且其中第一互連跡線和第二互連跡線分別在光伏收集器的外周邊緣處提供從電力軸環的正極端子和負極端子到第一連接器和第二連接器的電氣管線。In yet another embodiment, the photovoltaic cell is one of a rectangular photovoltaic cell, a pentagonal photovoltaic cell, a hexagonal photovoltaic cell, an oval photovoltaic cell, and a circular photovoltaic cell. In yet another embodiment, the photovoltaic collector further comprises a second connection unit electrically connected to the power collar and comprising a first connector and a second connector electrically connected to the positive terminal and the negative terminal of the power collar, respectively. Connector. In yet another embodiment, the first connector is electrically connected to the positive terminal of the power collar by a first interconnection trace, and the second connector is electrically connected to the negative terminal of the power collar by a second interconnection trace. In yet another embodiment, the first interconnect trace and the second interconnect trace are embedded so as to be hermetically sealed within one or more protective layers of the photovoltaic collector, and wherein the first interconnect trace and the second interconnect trace Two interconnecting traces provide electrical conduits from the positive and negative terminals of the power collar to the first and second connectors, respectively, at the peripheral edge of the photovoltaic collector.

在又一實施例中,光伏收集器陣列包括:複數個光伏收集器,每個光伏收集器包括:經配置成吸收入射光並產生電流的光伏電池;沿著光伏電池的周邊設置的電力軸環;複數個電連接至電力軸環的連接單元,其中將每個連接單元設置於光伏收集器的外周邊緣,且每個連接單元經配置成與複數個光伏收集器中的相鄰的光伏收集器電互連,且其中複數個光伏收集器通過複數個光伏收集器的複數個連接單元彼此互連來完全嵌合。In yet another embodiment, a photovoltaic collector array comprises: a plurality of photovoltaic collectors, each photovoltaic collector comprising: a photovoltaic cell configured to absorb incident light and generate electrical current; an electrical collar disposed along the perimeter of the photovoltaic cell a plurality of connection units electrically connected to the power collar, wherein each connection unit is disposed on the outer peripheral edge of the photovoltaic collector, and each connection unit is configured to be connected to an adjacent photovoltaic collector in the plurality of photovoltaic collectors The plurality of photovoltaic collectors are interconnected to each other through the plurality of connection units of the plurality of photovoltaic collectors to be completely embedded.

在又一實施例中,複數個光伏收集器中的每一者是三角形的光伏收集器、矩形光伏收集器、五邊形光伏收集器、六邊形光伏收集器、橢圓形光伏收集器和圓形光伏收集器中的一者。在又一實施例中,複數個完全嵌合的光伏收集器僅通過複數個光伏收集器的複數個連接單元彼此電連接和互鎖,而不需要額外的電纜線。In yet another embodiment, each of the plurality of photovoltaic collectors is a triangular photovoltaic collector, a rectangular photovoltaic collector, a pentagonal photovoltaic collector, a hexagonal photovoltaic collector, an elliptical photovoltaic collector, and a circular photovoltaic collector. One of the shaped photovoltaic collectors. In yet another embodiment, the plurality of fully fitted photovoltaic collectors are electrically connected and interlocked with each other only through the plurality of connection units of the plurality of photovoltaic collectors, without additional cables.

在又一個實施例中,光伏收集器包括光伏電池,光伏電池包括:第一傳導層;第二傳導層;經配置為吸收入射光並產生電流的光伏層,其中光伏層在光伏層的第一側上電連接到第一傳導層且在與第一側相對的第二側上電連接到第二傳導層,其中第一傳導層是超靜電傳導層。在又一個或多個實施例中,超靜電傳導層採用超聲波噴塗技術製成;超靜電傳導層為透明或半透明塗層;超靜電傳導層包括銀奈米線及/或石墨烯;超靜電傳導層的厚度為約200奈米,及第二傳導層是另一個使用超聲波噴塗技術製成的超靜電傳導層。In yet another embodiment, a photovoltaic collector includes a photovoltaic cell comprising: a first conductive layer; a second conductive layer; a photovoltaic layer configured to absorb incident light and generate electrical current, wherein the photovoltaic layer is on the first side of the photovoltaic layer. electrically connected to the first conductive layer on one side and to the second conductive layer on a second side opposite the first side, wherein the first conductive layer is a superstatic conductive layer. In another one or more embodiments, the superstatic conductive layer is made by ultrasonic spraying technology; the superstatic conductive layer is a transparent or translucent coating; the superstatic conductive layer includes silver nanowires and/or graphene; The thickness of the conductive layer is about 200 nm, and the second conductive layer is another superstatic conductive layer made by ultrasonic spraying technique.

在又一個實施例中,光伏層是包括分散有奈米顆粒的聚合物的電漿子(plasmonic)層,其中將奈米顆粒調諧到預定波長的入射光,預定波長的入射光誘導電子在奈米顆粒的表面處振盪,且第一傳導層和第二傳導層經配置為沿著奈米顆粒的表面捕獲振盪電子以產生交流電。光伏層是光子吸收層,光子吸收層經調諧以吸收入射光以沿第一傳導層或第二傳導層產生直流電。光伏層的第二側是入射光從其進入光伏收集器的入射表面側,且其中光伏層的第一側是與入射表面側相對的遠側表面側。In yet another embodiment, the photovoltaic layer is a plasmonic layer comprising a polymer dispersed with nanoparticles, wherein the nanoparticles are tuned to incident light of a predetermined wavelength that induces electrons in the nanoparticle. The surface of the nanoparticle oscillates, and the first conductive layer and the second conductive layer are configured to trap oscillating electrons along the surface of the nanoparticle to generate an alternating current. The photovoltaic layer is a photon-absorbing layer tuned to absorb incident light to generate direct current along the first conducting layer or the second conducting layer. The second side of the photovoltaic layer is the incident surface side from which incident light enters the photovoltaic collector, and wherein the first side of the photovoltaic layer is the distal surface side opposite the incident surface side.

在又一個實施例中,光伏電池是電漿子光伏電池,且光伏層是包括分散有奈米顆粒的聚合物的電漿子層,奈米顆粒經調諧到預定波長的入射光,預定波長的入射光誘導電子在奈米顆粒的表面處振盪,且其中第一傳導層和第二傳導層經配置為沿著奈米顆粒的表面捕獲振盪電子以產生交流電,且其中光伏收集器進一步包括光子光伏電池,光子光伏電池包括:第三傳導層及光子吸收層,光子吸收層與入射表面側上的第一傳導層和遠側表面側上的第三傳導層電連接,其中第三傳導層為另一超靜電傳導層。在又一實施例中,調諧光子吸收層以吸收入射光以產生沿第一傳導層或第三傳導層的直流電,第二傳導層由導電材料或半金屬材料製成,其中第二傳導層沒有採用超聲波噴塗技術製成,第一傳導層和第三傳導層由導電銀奈米線製成,且第一傳導層和第三傳導層採用超聲波噴塗技術。In yet another embodiment, the photovoltaic cell is a plasmonic photovoltaic cell and the photovoltaic layer is a plasmonic layer comprising a polymer dispersed with nanoparticles tuned to incident light of a predetermined wavelength, the predetermined wavelength of Incident light induces electrons to oscillate at the surface of the nanoparticle, and wherein the first conductive layer and the second conductive layer are configured to trap the oscillating electrons along the surface of the nanoparticle to generate an alternating current, and wherein the photovoltaic collector further comprises a photonic photovoltaic The battery, the photon photovoltaic cell comprises: a third conducting layer and a photon absorbing layer, the photon absorbing layer is electrically connected with the first conducting layer on the incident surface side and the third conducting layer on the far side surface side, wherein the third conducting layer is another A superstatic conductive layer. In yet another embodiment, the photon-absorbing layer is tuned to absorb incident light to generate a direct current along the first conducting layer or the third conducting layer, the second conducting layer is made of a conductive material or a semi-metallic material, wherein the second conducting layer has no It is made by ultrasonic spraying technology, the first conductive layer and the third conductive layer are made of conductive silver nanowires, and the first conductive layer and the third conductive layer are made by ultrasonic spraying technology.

在又一個實施例中,光伏電池包括:第一傳導層;第二傳導層;經配置為吸收入射光並產生電流的光伏層,其中光伏層電連接到光伏層的入射表面側上的第二傳導層,入射表面側是入射光由此進入光伏層的一側,且其中光伏層進一步電連接至在光伏層的遠側表面側上的第一傳導層,遠側表面側與入射表面側相對,其中第一傳導層為超靜電傳導層,此超靜電傳導層採用超聲波噴塗技術製成。在又一實施例中,超靜電傳導層:(i)是透明或半透明的,(ii)包括銀奈米線和石墨烯中的至少一者,以及(iii)具有約200奈米的厚度,且第二傳導層是由導電或半金屬材料製成的透明傳導層,第二傳導層不是採用超聲波噴塗技術製成。In yet another embodiment, a photovoltaic cell includes: a first conductive layer; a second conductive layer; a photovoltaic layer configured to absorb incident light and generate electrical current, wherein the photovoltaic layer is electrically connected to the second conductive layer on the incident surface side of the photovoltaic layer; The conductive layer, the incident surface side is the side from which incident light enters the photovoltaic layer, and wherein the photovoltaic layer is further electrically connected to the first conductive layer on the far side surface side of the photovoltaic layer, the far side surface side being opposite to the incident surface side , wherein the first conductive layer is a super-static conductive layer, and the super-static conductive layer is made by ultrasonic spraying technology. In yet another embodiment, the superstatic conductive layer: (i) is transparent or translucent, (ii) includes at least one of silver nanowires and graphene, and (iii) has a thickness of about 200 nanometers , and the second conductive layer is a transparent conductive layer made of conductive or semi-metallic material, and the second conductive layer is not made by ultrasonic spraying technology.

在又一個實施例中,光伏電池進一步包括第一二極體層及第二二極體層,第一二極體層夾在第一傳導層和光伏層之間且第二二極體層夾在光伏層和第二傳導層之間,其中光伏層是具有分散在其中的奈米顆粒的聚合物層,其中聚合物層從入射光產生交流電,且其中光伏層是實現量子點且經配置為從入射光產生直流電的半導體層。In yet another embodiment, the photovoltaic cell further comprises a first diode layer sandwiched between the first conductive layer and the photovoltaic layer and a second diode layer sandwiched between the photovoltaic layer and the photovoltaic layer. Between the second conductive layer, wherein the photovoltaic layer is a polymer layer having nanoparticles dispersed therein, wherein the polymer layer generates alternating current from incident light, and wherein the photovoltaic layer is quantum dot-implemented and configured to generate alternating current from incident light DC semiconductor layer.

在又一個實施例中,光伏電池進一步包括:連接到第一傳導層和第二傳導層以基於被光伏層吸收的入射光汲取電流的電力軸環;電耦合至電力軸環的能量電池,能量電池經配置為儲存由光伏電池產生的電流,及複數個連接單元,每個連接單元包括公針連接器和母插座連接器,沿著光伏電池的外周邊緣設置複數個連接單元,其中每個連接單元與電力軸環和能量電池電連接,且其中每個連接單元經調適成與相鄰的光伏電池的相鄰連接單元連接,以將光伏電池與複數個相鄰的光伏電池完全嵌合及電氣互連和互鎖,而不需要額外的電纜線。In yet another embodiment, the photovoltaic cell further comprises: a power collar connected to the first conductive layer and the second conductive layer to draw current based on incident light absorbed by the photovoltaic layer; an energy cell electrically coupled to the power collar, the energy The battery is configured to store the current generated by the photovoltaic cell, and a plurality of connection units, each connection unit includes a male pin connector and a female socket connector, and a plurality of connection units are arranged along the peripheral edge of the photovoltaic cell, wherein each connection unit The units are electrically connected to the power collar and the energy cell, and wherein each connection unit is adapted to connect to an adjacent connection unit of an adjacent photovoltaic cell to fully interlock and electrically connect the photovoltaic cell to the plurality of adjacent photovoltaic cells. Interconnect and interlock without the need for additional cables.

根據第一態樣,提供了一種光伏電池,其包括:第一傳導層;第二傳導層;電耦合至第一傳導層的光子吸收層,調諧光子吸收層以吸收第一波長的入射光以沿第一傳導層產生第一電流,及電耦合到光子吸收層和第二傳導層的電漿聲波(plasma-sonic)(也稱為電漿子)層,電漿聲波層包括奈米顆粒,將奈米顆粒調諧到入射光的第二波長,從而誘導電子在奈米顆粒的表面處振盪。According to a first aspect, there is provided a photovoltaic cell comprising: a first conducting layer; a second conducting layer; a photon absorbing layer electrically coupled to the first conducting layer, the photon absorbing layer being tuned to absorb incident light of a first wavelength to generating a first electrical current along the first conducting layer, and electrically coupling to the photon-absorbing layer and a plasma-sonic (also referred to as plasmonic) layer of the second conducting layer, the plasmonic layer comprising nanoparticles, The nanoparticles are tuned to a second wavelength of incident light, thereby inducing electrons to oscillate at the surface of the nanoparticles.

根據第二態樣,提供了一種太陽能光伏收集器,其包括:第一態樣的光伏電池;電耦合到第一傳導層的第一電極,及電耦合到電漿聲波層和光子吸收層的第二電極,其中第一電極與第二電極電隔離。According to a second aspect, there is provided a solar photovoltaic collector comprising: the photovoltaic cell of the first aspect; a first electrode electrically coupled to the first conductive layer, and a plasmonic layer electrically coupled to the photon absorbing layer. A second electrode, wherein the first electrode is electrically isolated from the second electrode.

根據第三態樣,提供了一種太陽能光伏陣列,其包括:複數個第二態樣的太陽能光伏收集器,此等太陽能光伏收集器經配置為彼此完全嵌合。According to a third aspect, there is provided a solar photovoltaic array comprising: a plurality of solar photovoltaic collectors of the second aspect, the solar photovoltaic collectors being configured to be fully interlocked with each other.

根據一些示例,光伏電池包括第一傳導層;第二傳導層;電耦合到第一傳導層的光子吸收層(經配置為吸收短於入射光的第一波長的入射光以沿第一傳導層產生第一電流的光子吸收層),及電耦合到光子吸收層和第二傳導層的電漿聲波層,且電漿聲波層包括奈米顆粒,奈米顆粒經配置為誘導電子在比入射光的第二波長短的奈米顆粒的表面處振盪。According to some examples, a photovoltaic cell includes a first conducting layer; a second conducting layer; a photon-absorbing layer (configured to absorb incident light shorter than a first wavelength of the incident light to travel along the first conducting layer) electrically coupled to the first conducting layer; a photon-absorbing layer generating a first current), and a plasmonic layer electrically coupled to the photon-absorbing layer and the second conducting layer, and the plasmonic layer includes nanoparticles configured to induce electrons to flow faster than incident light A second wavelength shorter than that of the nanoparticles oscillates at the surface.

在一些示例中,光伏電池進一步包括整流器橋,整流器橋經配置為針對第一輸入或第二輸入處的任何極性提供相對於參考接地的相同極性的輸出,其中第一輸入電耦合到第二傳導層,且第二輸入端電耦合到電漿聲波層。在一些示例中,光伏電池進一步包括跨整流器橋的輸出和參考接地電耦合的能量電池。在一些示例中,光伏電池進一步包括經配置為氣密密封光子吸收層、電漿聲波層和第二傳導層的基板。In some examples, the photovoltaic cell further includes a rectifier bridge configured to provide an output of the same polarity with respect to a reference ground for any polarity at the first input or the second input, wherein the first input is electrically coupled to the second conductive layer, and the second input terminal is electrically coupled to the plasmonic wave layer. In some examples, the photovoltaic cell further includes an energy cell electrically coupled across the output of the rectifier bridge and the reference ground. In some examples, the photovoltaic cell further includes a substrate configured to hermetically seal the photon absorbing layer, the plasmonic layer, and the second conductive layer.

根據一些示例,太陽能光伏收集器包括至少一個光伏電池,至少一個光伏電池具有第一傳導層和電漿聲波層、電連接到第一傳導層的第一電極和電連接到電漿聲波層和光子吸收層的第二電極。第一電極與第二電極電絕緣。至少一個光伏電池進一步包括第二傳導層和電耦合到第一傳導層的光子吸收層。光子吸收層經配置為吸收比入射光的第一波長短的入射光以沿著第一傳導層產生第一電流,且其中電漿聲波層電耦合到光子吸收層和第二傳導層,電漿聲波層包括奈米顆粒,奈米顆粒經配置為誘導電子在比入射光的第二波長短的奈米顆粒的表面處振盪。According to some examples, a solar photovoltaic collector includes at least one photovoltaic cell having a first conducting layer and a plasmonic layer, a first electrode electrically connected to the first conducting layer and electrically connected to the plasmonic layer and the photon The second electrode of the absorbing layer. The first electrode is electrically insulated from the second electrode. At least one photovoltaic cell further includes a second conducting layer and a photon absorbing layer electrically coupled to the first conducting layer. The photon absorbing layer is configured to absorb incident light shorter than the first wavelength of the incident light to generate a first current along the first conducting layer, and wherein the plasmonic wave layer is electrically coupled to the photon absorbing layer and the second conducting layer, the plasmonic The acoustic layer includes nanoparticles configured to induce electrons to oscillate at the surface of the nanoparticles at a shorter wavelength than the incident light.

在一些示例中,太陽能光伏收集器進一步包括整流器橋,整流器橋經配置為針對第一輸入或第二輸入處的任何極性提供相對於參考接地的相同極性的輸出,其中第一輸入電耦合到第二傳導層,且第二輸入電耦合到電漿聲波層。在一些示例中,太陽能光伏收集器進一步包括跨整流器橋的輸出和參考接地電耦合的能量電池。在一些示例中,太陽能光伏收集器進一步包括經配置為氣密密封光子吸收層、電漿聲波層和第二傳導層的基板。In some examples, the solar photovoltaic collector further includes a rectifier bridge configured to provide an output of the same polarity relative to a reference ground for any polarity at the first input or the second input, wherein the first input is electrically coupled to the second two conductive layers, and the second input is electrically coupled to the plasmonic layer. In some examples, the solar photovoltaic collector further includes an energy cell electrically coupled across the output of the rectifier bridge and the reference ground. In some examples, the solar photovoltaic collector further includes a substrate configured to hermetically seal the photon absorbing layer, the plasmonic layer, and the second conducting layer.

在一些示例中,太陽能光伏收集器進一步包括附接到光伏收集器且電耦合到第一電極和第二電極的電力傳輸電路,其中電力傳輸電路經配置為感測電網的瞬時功率、感測光伏收集器產生的瞬時功率,及將光伏收集器產生的電能掃入電網。In some examples, the solar photovoltaic collector further includes a power transfer circuit attached to the photovoltaic collector and electrically coupled to the first electrode and the second electrode, wherein the power transfer circuit is configured to sense instantaneous power of the grid, sense photovoltaic The instantaneous power generated by the collector, and the electric energy generated by the photovoltaic collector is swept into the grid.

根據一些示例,太陽能光伏收集器陣列包括複數個經配置為彼此完全嵌合的太陽能光伏收集器,且每個光伏收集器包括:具有第一傳導層和電漿聲波的至少一個光伏電池,電連接至第一傳導層的第一電極,及電連接至電漿聲波層和光子吸收層的第二電極。第一電極與第二電極電絕緣。至少一個光伏電池進一步包括第二傳導層和電耦合到第一傳導層和第二傳導層的光子吸收層。光子吸收層經配置為吸收比入射光的第一波長短的入射光以沿著第一傳導層產生第一電流,且其中電漿聲波層電耦合到光子吸收層和第二傳導層,電漿聲波層包括奈米顆粒,奈米顆粒經配置為誘導電子在比入射光的第二波長短的奈米顆粒的表面處振盪。According to some examples, a solar photovoltaic collector array includes a plurality of solar photovoltaic collectors configured to be fully interlocked with each other, and each photovoltaic collector includes at least one photovoltaic cell having a first conductive layer and a plasmonic wave, electrically connected A first electrode to the first conducting layer, and a second electrode electrically connected to the plasmonic layer and the photon absorbing layer. The first electrode is electrically insulated from the second electrode. At least one photovoltaic cell further includes a second conducting layer and a photon absorbing layer electrically coupled to the first conducting layer and the second conducting layer. The photon absorbing layer is configured to absorb incident light shorter than the first wavelength of the incident light to generate a first current along the first conducting layer, and wherein the plasmonic wave layer is electrically coupled to the photon absorbing layer and the second conducting layer, the plasmonic The acoustic layer includes nanoparticles configured to induce electrons to oscillate at the surface of the nanoparticles at a shorter wavelength than the incident light.

在一些示例中,太陽能光伏收集器陣列進一步包括整流器橋,整流器橋經配置為針對第一輸入或第二輸入處的任何極性提供相對於參考接地的相同極性的輸出,其中第一輸入電耦合到第二傳導層且第二輸入電耦合到電漿聲波層。在一些示例中,太陽能光伏收集器陣列進一步包括跨整流器橋的輸出和參考接地電耦合的能量電池。在一些示例中,每個光伏收集器進一步包括經配置為氣密密封光子吸收層、電漿聲波層和第二傳導層的基板。In some examples, the solar photovoltaic collector array further includes a rectifier bridge configured to provide an output of the same polarity relative to a reference ground for any polarity at the first input or the second input, wherein the first input is electrically coupled to The second conductive layer and the second input are electrically coupled to the plasmonic layer. In some examples, the solar photovoltaic collector array further includes an energy cell electrically coupled across the output of the rectifier bridge and the reference ground. In some examples, each photovoltaic collector further includes a substrate configured to hermetically seal the photon absorbing layer, the plasmonic layer, and the second conducting layer.

在一些示例中,每個相應的太陽能光伏收集器進一步包括附接到太陽能光伏收集器且電耦合到第一電極和第二電極的電力傳輸電路,其中電力傳輸電路經配置為感測電網的瞬時功率、感測光伏收集器產生的瞬時功率,及將光伏收集器產生的電能掃入電網。在一些示例中,太陽能光伏收集器陣列進一步包括經配置為支撐建築物的複數個太陽能光伏收集器的安裝組件。光伏電池、光伏收集器和光伏陣列可用於多種應用,例如建築物、人行道、牆壁、家庭、車輛、飛機、火車和輪船。In some examples, each respective solar photovoltaic collector further includes a power transfer circuit attached to the solar photovoltaic collector and electrically coupled to the first electrode and the second electrode, wherein the power transfer circuit is configured to sense a momentary Power, sensing the instantaneous power generated by the photovoltaic collector, and sweeping the electric energy generated by the photovoltaic collector into the grid. In some examples, the solar photovoltaic collector array further includes a mounting assembly configured to support a plurality of solar photovoltaic collectors of a building. Photovoltaic cells, photovoltaic collectors and photovoltaic arrays are used in a variety of applications such as buildings, sidewalks, walls, homes, vehicles, airplanes, trains and ships.

下文結合附圖闡述的[實施方式]旨在作為對各種配置的描述,並不旨在表示可實施本文描述的概念的唯一配置。[實施方式]包括用於提供對各種概念的透徹理解的特定細節。然而,對於所屬技術領域中具有通常知識者將顯而易見的是,可在沒有這些具體細節的情況下實施這些概念。在某些情況下,眾所周知的結構和組件以方框圖形式顯示以避免混淆這些概念。[Embodiments] set forth below with reference to the drawings are intended as descriptions of various configurations, and are not intended to represent the only configurations in which the concepts described herein may be implemented. [The detailed description] includes specific details to provide a thorough understanding of various concepts. It will be apparent, however, to one of ordinary skill in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form to avoid obscuring the concepts.

現在將參考各種電子元件呈現光伏收集器的示例。將在以下詳細說明中描述這些電子元件,並在附圖中藉由各種方塊、組件、電路、步驟等(統稱為「元件」)進行說明。舉例來說,可使用一個或多個處理器來實施微控制器/處理器102(圖1A)的元件、或元件的任何部分或元件的任何組合。處理器的示例包括微處理器、微控制器、圖形處理單元(GPU)、中央處理單元(CPU)、應用處理器、數位信號處理器(DSP)、精簡指令集計算 (RISC)處理器、系統單晶片(SoC)、基帶處理器、現場可程式化閘陣列(FPGA)、可程式化邏輯裝置 (PLD)、狀態機、邏輯閘、分立硬體電路和其他經配置成執行本申請案通篇描述的各種功能的合適硬體。處理系統中的一個或多個處理器可執行軟體。軟體應廣義地解釋為指令、指令集、代碼、代碼段、程式代碼、程式、子程式、軟體組件、應用程式、軟體應用程式、套裝軟體、常式、子常式、物件、可執行文件、執行緒、程序及函數等,無論是指軟體、韌體、中介軟體、微指令、硬體描述語言或其他。Examples of photovoltaic collectors will now be presented with reference to various electronic components. These electronic components will be described in the following detailed description and illustrated by various blocks, components, circuits, steps, etc. (collectively referred to as "components") in the accompanying drawings. For example, one or more processors may be used to implement the elements of microcontroller/processor 102 (FIG. 1A), or any portion of the elements or any combination of elements. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs), central processing units (CPUs), applications processors, digital signal processors (DSPs), reduced instruction set computing (RISC) processors, system Single Chips (SoCs), baseband processors, Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (PLDs), state machines, logic gates, discrete hardware circuits, and other Suitable hardware for the various functions described. One or more processors in the processing system may execute software. Software shall be construed broadly as instructions, sets of instructions, code, code segments, program code, programs, subroutines, software components, applications, software applications, packages, routines, subroutines, objects, executables, Threads, programs, and functions, whether referring to software, firmware, middleware, microinstructions, hardware description languages, or otherwise.

因此,在一個或多個示例中,可用硬體、軟體或其任何組合來實施光伏收集器的態樣。可將在軟體中實施的態樣存儲成或編碼成電腦可讀取媒體上的一個或多個指令或代碼。電腦可讀取媒體可包括用於承載或具有存儲在其上的電腦可執行指令或資料結構的暫時性或非暫時性的電腦存儲媒體。暫時性和非暫時性的存儲媒體兩者皆可以是作為處理系統一部分的電腦可存取的任何可用媒體。作為示例而非限制,此類電腦可讀取媒體可包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子抹除式可程式化ROM(EEPROM)、光碟存儲器、磁碟存儲器、其他磁性存儲裝置、上述類型的電腦可讀取媒體的組合,或可用於以電腦可存取的指令或資料結構的形式存儲電腦可執行代碼的任何其他媒體。此外,當通過網路或其他通訊連接(硬連線、無線或上述的組合)傳輸資訊或將資訊提供到電腦時,電腦或處理系統正確地將連接確定為暫時性或非暫時性電腦可讀取媒體,這取決於特定的媒體。因此,任何此類連接都被適當地稱為電腦可讀取媒體。上述的組合也應包括在電腦可讀取媒體的範圍內。非暫時性電腦可讀取媒體不包括信號本身和空中界面。Thus, in one or more examples, aspects of a photovoltaic collector may be implemented in hardware, software, or any combination thereof. Aspects implemented in software may be stored or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media may include transitory or non-transitory computer storage media for carrying or having computer-executable instructions or data structures stored thereon. Both transitory and non-transitory storage media can be any available media that can be accessed by a computer that is part of the processing system. By way of example and not limitation, such computer-readable media may include random access memory (RAM), read only memory (ROM), electronically erasable programmable ROM (EEPROM), optical disk storage, magnetic disk storage , other magnetic storage devices, combinations of computer-readable media of the above types, or any other medium that can be used to store computer-executable code in the form of computer-accessible instructions or data structures. In addition, when information is transmitted over a network or other communication link (hardwired, wireless, or a combination of the above) or provided to a computer, the computer or processing system correctly identifies the connection as either temporary or non-transitory computer-readable Take the media, depending on the specific media. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of computer-readable media. Non-transitory computer readable media do not include the signal itself and the air interface.

本申請案描述了一種混合的光伏收集器,其包括光子吸收層和電漿聲波層(或稱為電漿子(plasmonic)層)。光子吸收層經配置為從入射光產生電子-空穴對。在一些配置中,光子吸收層經配置為從波長短於700奈米的入射光產生電子-空穴對,波長短於700奈米的入射光對應於可見光和紫外光譜中的頻率。在一些配置中,光子吸收層經配置為從波長大於700奈米的入射光產生電子-空穴對,波長大於700奈米的入射光對應於紅外光譜中的頻率。光子吸收層的電子-空穴對的產生在傳導層中感應出直流,傳導層係電耦合到在混合的光伏收集器的周邊處的電力軸環。除了光子吸收層之外,電漿子層還平行地向電力軸環提供電流。具體來說,具有電漿子類型特性的電漿子層經配置為誘導來自入射光的帶電載流子(例如,電子、空穴等)振盪。在一些配置中,電漿子層經配置為從短於700奈米的入射光誘導帶電載流子(例如,電子、空穴等)振盪,短於700奈米的入射光對應於可見光和紫外光譜中的頻率。在一些配置中,電漿層經配置為從大於700奈米的入射光誘導帶電載流子(例如,電子、空穴等)振盪,大於700奈米的入射光對應於紅外光譜中的頻率。帶電載流子(例如電子、空穴等)產生交流電,當耦合到混合的光伏收集器周邊的電力軸環時,交流電將電流整流並引導電流至能量電池或逆變器以備將來使用。The present application describes a hybrid photovoltaic collector comprising a photon absorbing layer and a plasmonic layer (or called a plasmonic layer). The photon absorbing layer is configured to generate electron-hole pairs from incident light. In some configurations, the photon-absorbing layer is configured to generate electron-hole pairs from incident light having wavelengths shorter than 700 nanometers, corresponding to frequencies in the visible and ultraviolet spectra. In some configurations, the photon-absorbing layer is configured to generate electron-hole pairs from incident light having a wavelength greater than 700 nanometers, which corresponds to frequencies in the infrared spectrum. The generation of electron-hole pairs in the photon-absorbing layer induces a direct current in the conducting layer, which is electrically coupled to an electrical collar at the periphery of the hybrid photovoltaic collector. In addition to the photon-absorbing layer, the plasmonic layer supplies current to the electric collar in parallel. Specifically, the plasmonic layer having plasmonic-type properties is configured to induce oscillation of charge carriers (eg, electrons, holes, etc.) from incident light. In some configurations, the plasmonic layer is configured to induce charge carrier (e.g., electrons, holes, etc.) oscillations from incident light shorter than 700 nm, which corresponds to visible and ultraviolet frequencies in the spectrum. In some configurations, the plasmonic layer is configured to induce charge carrier (eg, electrons, holes, etc.) oscillations from incident light greater than 700 nm corresponding to frequencies in the infrared spectrum. Charged carriers (e.g. electrons, holes, etc.) generate an alternating current which, when coupled to an electrical collar around the hybrid photovoltaic collector, rectifies and directs the current to an energy cell or inverter for future use.

圖1A和1B圖示了示例性的基於電漿子的光伏收集器100的前視圖和側視圖。在此示例中,光伏收集器100具有三角形形狀且包括微控制器/處理器102、電力軸環104、連接單元105和能量電池106。光伏收集器100可以是其中三個邊中的每一個邊都具有相同的長度的等邊三角形、其中三個邊中的兩個邊具有相同的長度的等腰三角形,或其中三個邊的長度都不相同的不等邊三角形。1A and 1B illustrate front and side views of an exemplary plasmon-based photovoltaic collector 100 . In this example the photovoltaic collector 100 has a triangular shape and comprises a microcontroller/processor 102 , a power collar 104 , a connection unit 105 and an energy cell 106 . Photovoltaic collector 100 can be an equilateral triangle in which each of the three sides has the same length, an isosceles triangle in which two of the three sides have the same length, or in which the length of the three sides is Scale triangles that are all different.

如圖1A所示,微控制器/處理器102位於三角形角的頂點附近。在這種情況下,將微控制器/處理器102嵌入在光伏收集器100內。也就是說,將微控制器/處理器102製造在光伏收集器100的一個或多個保護層內以便被氣密地密封在光伏收集器100內,光伏收集器100保護微控制器/處理器102免受元素(例如,雨、雪、風、灰塵等)的影響且確保微控制器/處理器102的周邊在製造時正確連接。在一些配置中,將微控制器/處理器102設置在絕緣表面上且電耦合到光伏收集器100的部分。As shown in FIG. 1A, the microcontroller/processor 102 is located near the vertices of the triangle corners. In this case, a microcontroller/processor 102 is embedded within the photovoltaic collector 100 . That is, the microcontroller/processor 102 is fabricated within one or more protective layers of the photovoltaic collector 100 so as to be hermetically sealed within the photovoltaic collector 100, which protects the microcontroller/processor 102 is protected from the elements (eg, rain, snow, wind, dust, etc.) and ensures that the perimeter of microcontroller/processor 102 is properly connected at the time of manufacture. In some configurations, microcontroller/processor 102 is disposed on an insulating surface and electrically coupled to portions of photovoltaic collector 100 .

如此一來,微控制器/處理器102獨立於光伏收集器100且可被單獨修改。在一些配置中,微控制器/處理器102包括冗餘。例如,在一些情況下,可將第一微控制器/處理器102嵌入在且可將第二微控制器/處理器102設置在絕緣表面上,且將第二微控制器/處理器102電耦合到光伏收集器100的部分。在其他配置中,微控制器/處理器102位於三角形角的兩個或多個頂點處。As such, the microcontroller/processor 102 is independent of the photovoltaic collector 100 and can be modified individually. In some configurations, microcontroller/processor 102 includes redundancy. For example, in some cases, the first microcontroller/processor 102 may be embedded and the second microcontroller/processor 102 may be disposed on an insulating surface, and the second microcontroller/processor 102 may be electrically Coupled to the part of the photovoltaic collector 100 . In other configurations, the microcontroller/processor 102 is located at two or more vertices of the triangle corners.

此外,微控制器/處理器102包括電耦合到一個或多個處理器的記憶體。一般而言,微控制器/處理器102包括一個或多個可程式化的輸入/輸出周邊裝置1104(見圖11)。例如,至少一個可程式化的輸入/輸出周邊裝置可以是位於能量電池106的陽極及/或陰極處的電壓感測器。在這樣的配置中,電壓感測器經配置為檢測光伏收集器100或能量電池106的陽極及/或陰極處的瞬時電壓。在一些示例中,至少一個可程式化輸入/輸出周邊裝置是電流感測器,電流感測器經配置為檢測來自光伏收集器100或能量電池106的陽極及/或陰極的電流。在一些示例中,至少一個可程式化輸入/輸出周邊裝置是阻抗感測器,阻抗感測器經配置為檢測電網的阻抗。在一些示例中,至少一個可程式化輸入/輸出周邊裝置是與電力橋或電力逆變器通訊的通訊介面電路。在一些情況下,通訊介面電路包括通用序列匯流排(USB),通用序列匯流排(USB)經配置為與能量電池、電力橋、電力逆變器、並網或其他電子元件相接以平衡負載並促進配電。Additionally, microcontroller/processor 102 includes memory electrically coupled to one or more processors. In general, microcontroller/processor 102 includes one or more programmable input/output peripherals 1104 (see FIG. 11 ). For example, the at least one programmable input/output peripheral device may be a voltage sensor located at the anode and/or cathode of the energy cell 106 . In such a configuration, the voltage sensor is configured to detect the instantaneous voltage at the anode and/or cathode of the photovoltaic collector 100 or energy cell 106 . In some examples, at least one programmable input/output peripheral device is a current sensor configured to detect current from the anode and/or cathode of photovoltaic collector 100 or energy cell 106 . In some examples, the at least one programmable input/output peripheral device is an impedance sensor configured to detect an impedance of a power grid. In some examples, the at least one programmable input/output peripheral device is a communication interface circuit that communicates with a power bridge or a power inverter. In some cases, the communication interface circuitry includes a Universal Serial Bus (USB) configured to interface with energy cells, power bridges, power inverters, grid tie, or other electronic components to balance loads and facilitate power distribution.

如圖1A所示,電力軸環104位於三角形的光伏收集器100的周邊周圍。電力軸環104經配置為將帶電載流子(例如,電子、空穴等)引導至能量電池106或逆變器1130(圖11)。將電力軸環104電性耦接到至少一傳導層,且電力軸環104由半導體材料製成,半導體材料如矽(多晶矽或單晶矽)、鍺、碲化鎘、銅銦鎵硒、砷化鎵(GaAs)及砷化銦鎵等。電力軸環104進一步經配置為與一個或多個相鄰的光伏收集器電耦合。如下文結合圖12和圖13更詳細地示出,電力軸環104可包括插座特徵,如用於與相鄰的光伏收集器連接(例如,電耦合)的公連接器和母連接器。即,第一光伏收集器100可沿著光伏收集器100的相應邊緣與第二光伏收集器100互鎖,以便電耦合每個相應光伏收集器100的電力軸環104。在一些情況下,一個或多個相鄰的光伏收集器與光伏收集器100完全嵌合(例如,相鄰的光伏收集器之間幾乎沒有間隙或沒有間隙)。As shown in FIG. 1A , a power collar 104 is positioned around the perimeter of the triangular-shaped photovoltaic collector 100 . Power collar 104 is configured to direct charge carriers (eg, electrons, holes, etc.) to energy cell 106 or inverter 1130 ( FIG. 11 ). The power collar 104 is electrically coupled to at least one conductive layer, and the power collar 104 is made of a semiconductor material such as silicon (polysilicon or monocrystalline silicon), germanium, cadmium telluride, copper indium gallium selenide, arsenic Gallium (GaAs) and Indium Gallium Arsenide, etc. The power collar 104 is further configured to electrically couple with one or more adjacent photovoltaic collectors. As shown in more detail below in conjunction with FIGS. 12 and 13 , the power collar 104 may include receptacle features such as male and female connectors for connecting (eg, electrically coupling) with adjacent photovoltaic collectors. That is, the first photovoltaic collector 100 may interlock with the second photovoltaic collector 100 along respective edges of the photovoltaic collector 100 so as to electrically couple the power collar 104 of each respective photovoltaic collector 100 . In some cases, one or more adjacent photovoltaic collectors are fully mated with photovoltaic collector 100 (eg, with little or no gaps between adjacent photovoltaic collectors).

如圖1A所示,能量電池106位於光伏收集器100的邊緣。能量電池106包括陽極(例如,正極端子)和陰極(例如,負極端子)。能量電池106可以是電池、電容器或其他能夠儲存電荷的電能儲存裝置。能量電池106提供蓄電器並提供到交流電(例如,IAC)的低阻抗路徑,從而消除循環電荷(例如,漣波)。在一些示例中,能量電池106是鋰離子(Li-ion)電池。在一些情況下,能量電池106是具有一個或多個能量電池的電池。在一些情況下,能量電池106是Li-ion電池。在一些情況下,能量電池106是鋰聚合物電池。在一些示例中,能量電池l06基於鈷酸鋰(LiCoO 2)、磷酸鐵鋰(LiFePO 4)、鋰離子錳氧化物(LiMn 2O 4、Li 2MnO 3或LMO)、鋰鎳錳鈷氧化物(LiNiMnCoO 2或NMC)、鋰鎳鈷鋁氧化物(LiNiCoAlO 2或NCA)、鈦酸鋰(Li 4Ti 5O 12或LTO)和鋰硫 (LS)中的至少一者。在一些示例中,能量電池106是鎳金屬氫化物(NiMH)電池。 As shown in FIG. 1A , an energy cell 106 is located at the edge of the photovoltaic collector 100 . The energy cell 106 includes an anode (eg, a positive terminal) and a cathode (eg, a negative terminal). The energy cell 106 may be a battery, capacitor, or other electrical energy storage device capable of storing electrical charge. The energy battery 106 provides an electrical accumulator and provides a low impedance path to alternating current (eg, IAC), eliminating circulating charge (eg, ripple). In some examples, energy battery 106 is a lithium-ion (Li-ion) battery. In some cases, energy cell 106 is a battery having one or more energy cells. In some cases, energy battery 106 is a Li-ion battery. In some cases, energy battery 106 is a lithium polymer battery. In some examples, the energy cell 106 is based on lithium cobalt oxide (LiCoO 2 ), lithium iron phosphate (LiFePO 4 ), lithium ion manganese oxide (LiMn 2 O 4 , Li 2 MnO 3 or LMO), lithium nickel manganese cobalt oxide (LiNiMnCoO 2 or NMC), lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 or NCA), lithium titanate (Li 4 Ti 5 O 12 or LTO) and lithium sulfur (LS). In some examples, energy battery 106 is a nickel metal hydride (NiMH) battery.

能量電池106和電力軸環104的位置在光伏收集器100的周邊和邊緣處,以便與相鄰的光伏收集器完全嵌合而沒有重疊或間隙。圖2示出了用於完全嵌合光伏收集器陣列的示例性的基於電漿子的光伏電池(例如,光伏收集器100A-100G)的各種形狀的前視圖。例如,當從正面看時,光伏收集器100可以是多邊形。例如,光伏收集器可以是等邊/等腰三角形的光伏收集器100或不等邊三角形的光伏收集器100A。在一些情況下,光伏收集器100是正方形/矩形的光伏收集器100B。在一些情況下,光伏收集器100是菱形/鑽石形的光伏收集器100C。在一些情況下,光伏收集器100是六邊形的光伏收集器100D。在一些情況下,光伏收集器100是箭頭形的光伏收集器100E。在其他示例中,當從正面看時,光伏收集器100是彎曲的。例如,光伏收集器100可具有圓形的光伏收集器100F或環形的光伏收集器100G。應當理解的是,一個或多個不同形狀的光伏收集器100可完全嵌合在一起。例如,圓形的光伏收集器100F可互鎖(例如,完全嵌合、電耦合)到環形的光伏收集器100G的開口中。同樣地,六邊形的光伏收集器100D可與三角形的光伏收集器100、不等邊三角形的光伏收集器100A、正方形/矩形的光伏收集器100B、菱形/鑽石形的光伏收集器100C和箭頭形的光伏收集器100E中的任何一者互鎖(例如,完全嵌合、電耦合)。The energy cell 106 and power collar 104 are positioned at the perimeter and edge of the photovoltaic collector 100 so as to fully fit adjacent photovoltaic collectors without overlap or gaps. FIG. 2 illustrates front views of various shapes of exemplary plasmon-based photovoltaic cells (eg, photovoltaic collectors 100A- 100G ) for fully fitting photovoltaic collector arrays. For example, photovoltaic collector 100 may be polygonal when viewed from the front. For example, the photovoltaic collector may be an equilateral/isosceles triangle photovoltaic collector 100 or a scalene triangle photovoltaic collector 100A. In some cases, photovoltaic collector 100 is a square/rectangular photovoltaic collector 100B. In some cases, photovoltaic collector 100 is a rhombus/diamond shaped photovoltaic collector 100C. In some cases, photovoltaic collector 100 is hexagonal photovoltaic collector 100D. In some cases, photovoltaic collector 100 is arrow-shaped photovoltaic collector 100E. In other examples, photovoltaic collector 100 is curved when viewed from the front. For example, the photovoltaic collector 100 may have a circular photovoltaic collector 100F or a circular photovoltaic collector 100G. It should be understood that one or more photovoltaic collectors 100 of different shapes may be fully fitted together. For example, a circular photovoltaic collector 100F may interlock (eg, fully fit, electrically couple) into an opening of a circular photovoltaic collector 100G. Likewise, the hexagonal photovoltaic collector 100D can be compared with the triangular photovoltaic collector 100, the scalene triangle photovoltaic collector 100A, the square/rectangular photovoltaic collector 100B, the rhombus/diamond photovoltaic collector 100C and the arrow Any one of the photovoltaic collectors 100E in the shape interlocks (eg, fully fitted, electrically coupled).

如圖1B所示,光伏收集器100也可以是非平面的(例如,彎曲的)。彎曲的(例如,角度為23.5°)光伏收集器可使入射光透鏡化,從而提高光子吸收層上的吸收效率或提高電漿子層(電漿聲波層)中帶電載流子(例如,電子、空穴等)振盪提取的效率。其他彎曲及/或鋸齒狀的形狀也被考慮在內。例如,圖3圖示了示例性的基於電漿子的光伏收集器(例如,電池、面板)的各種側視圖。具體來說,光伏收集器可以是平面的或平坦的,如平面的光伏收集器100'(圖3)所示。在一些示例中,當從側面觀察時,光伏收集器可朝著入射光的入射表面231伸長,如三角形的光伏收集器100(例如,凸出的)所示;或光伏收集器可遠離入射表面231伸長,如凹形的光伏收集器100*(圖3)所示。As shown in Figure IB, photovoltaic collector 100 may also be non-planar (eg, curved). Curved (e.g., at an angle of 23.5°) photovoltaic collectors can lens the incident light, increasing the absorption efficiency on the photon-absorbing layer or increasing the charge carriers (e.g., electrons) in the plasmonic layer (plasmonic layer). , holes, etc.) the efficiency of oscillation extraction. Other curved and/or jagged shapes are also contemplated. For example, FIG. 3 illustrates various side views of an exemplary plasmon-based photovoltaic collector (eg, cell, panel). In particular, photovoltaic collectors may be planar or planar, as shown in planar photovoltaic collector 100' (FIG. 3). In some examples, when viewed from the side, the photovoltaic collector can be elongated toward the incident surface 231 for incident light, as shown by the triangular photovoltaic collector 100 (e.g., convex); or the photovoltaic collector can be away from the incident surface 231 is elongated as shown in the concave photovoltaic collector 100* (FIG. 3).

在一些示例中,當從側面觀察時,光伏收集器可包括單個起伏,如單起伏形的光伏收集器100 #(圖3)所示。在一些示例中,當從側面觀察時,光伏收集器可包括多個起伏,如多起伏形的光伏收集器100"(圖3)所示。在一些示例中,當從側面觀察時,光伏收集器可以是鋸齒狀的,如鋸齒狀的光伏收集器1000†所示。在一些配置中,太陽能光伏收集器100沿著光入射表面是非平面的。在一些配置中,太陽能光伏收集器100沿著光入射表面是以0到23.5度之間的弧角彎曲的。 In some examples, a photovoltaic collector may comprise a single undulation when viewed from the side, as shown in single undulation-shaped photovoltaic collector 100 # (FIG. 3). In some examples, when viewed from the side, the photovoltaic collector can include multiple undulations, as shown in multi-relief shaped photovoltaic collector 100" (FIG. 3). In some examples, when viewed from the side, the photovoltaic collector The solar photovoltaic collector 100 may be serrated, as shown in the serrated photovoltaic collector 1000†. In some configurations, the solar photovoltaic collector 100 is non-planar along the light incident surface. In some configurations, the solar photovoltaic collector 100 is non-planar along the The light incident surface is curved at an arc angle between 0 and 23.5 degrees.

光伏收集器100的各種側視圖的曲率或表面可以隨著方向而改變。例如,表面可朝向入射光伸長,如圖3的三角形的光伏收集器100(例如,凸出的)所示,且表面可在x-y平面和y-z平面上延伸以形成拋物面或球面等(圖8)。亦應當理解的是,可設想上述形狀的各種組合。例如,光伏收集器可具有多個起伏(例如,100”(圖3))且為六邊形(例如,100D(圖2))。The curvature or surface of the various side views of photovoltaic collector 100 may change with orientation. For example, the surface can be elongated towards the incident light, as shown in the triangular photovoltaic collector 100 (e.g., convex) of FIG. . It should also be understood that various combinations of the above shapes are contemplated. For example, a photovoltaic collector may have multiple undulations (eg, 100" (Fig. 3)) and be hexagonal (eg, 100D (Fig. 2)).

如圖1至圖3中所示的一個或多個光伏收集器所示的每個光伏收集器100可包括用於互連(例如,完全嵌合、電耦合、電連接及互鎖等)彼此相鄰的多個光伏收集器100的結構和對應電路系統。Each of the photovoltaic collectors 100 shown as one or more photovoltaic collectors as shown in FIGS. The structure and corresponding circuit system of multiple adjacent photovoltaic collectors 100 .

互連多個光伏收集器的一種機制(例如,模組)可以是為每個光伏收集器100實施經由橋接電路耦合到電力軸環104及/或能量電池106的陽極和陰極的電纜線,並將接線盒連接到電纜線。然而,這種與電纜線和接線盒的互連機制會導致成本增加並使每個光伏模組體積更大。此外,這種互連機制會導致不引人注目的外觀,並增加安裝和互連的勞動力成本。One mechanism (e.g., modules) for interconnecting multiple photovoltaic collectors may be to implement a cable for each photovoltaic collector 100 coupled to the anode and cathode of the power collar 104 and/or energy cell 106 via a bridge circuit, and Connect the junction box to the cable wires. However, this interconnection mechanism with cables and junction boxes results in increased cost and makes each PV module bulkier. In addition, such interconnection mechanisms can result in an unobtrusive appearance and increase labor costs for installation and interconnection.

為了克服上述問題,光伏收集器100配備有一個或多個連接單元105,如圖1A、圖12A至圖12D及圖13所示。圖12A至圖12D示出了配備有一個或多個連接單元105的示例性的光伏收集器100的前視圖。縱然未於圖1A和圖12A至圖12D中具體示出,可嵌入由導電材料(例如,銅、鋁、多晶矽、不銹鋼及石墨烯等)製成的互連跡線(例如,電耦合跡線)以便在一個或多個光伏收集器100的保護層內製造且被氣密地密封在光伏收集器100內。互連跡線可經配置為提供電氣管線,電器管線從經嵌入在光伏收集器100的層內的電力軸環104或能量電池106的正極端子(陽極)及經嵌入在光伏收集器100的層內的電力軸環104或能量電池106的負極端子(陰極)到一個或多個連接單元105,使得電力軸環104或能量電池106的正極端子(陽極)連接到公針連接器105A,且電力軸環104或能量電池106的負極端子在光伏收集器100的邊緣處經連接到母插座連接器105B。In order to overcome the above-mentioned problems, the photovoltaic collector 100 is equipped with one or more connection units 105 , as shown in FIGS. 1A , 12A-12D and 13 . 12A-12D show front views of an exemplary photovoltaic collector 100 equipped with one or more connection units 105 . Although not specifically shown in FIGS. 1A and 12A-12D , interconnecting traces (eg, electrically coupled traces) made of conductive materials (eg, copper, aluminum, polysilicon, stainless steel, graphene, etc.) may be embedded. ) in order to be fabricated within the protective layer of one or more photovoltaic collectors 100 and to be hermetically sealed within the photovoltaic collectors 100 . The interconnect traces may be configured to provide electrical conduits from the positive terminal (anode) of the power collar 104 or energy cell 106 embedded in the layers of the photovoltaic collector 100 to the The negative terminal (cathode) of the power collar 104 or energy cell 106 within the power collar 104 to one or more connection units 105, so that the positive terminal (anode) of the power collar 104 or energy cell 106 is connected to the male pin connector 105A, and the power The collar 104 or the negative terminal of the energy cell 106 is connected to the female socket connector 105B at the edge of the photovoltaic collector 100 .

因此,如圖12A所示,公針連接器105A和母插座連接器105B電耦合到光伏收集器100的電力軸環104(或能量電池106),且連接單元105(其包括連接器105A和連接器105B)提供連接機制以互連(例如,電耦合)光伏收集器100和相鄰的光伏收集器。Thus, as shown in FIG. 12A, the male pin connector 105A and the female receptacle connector 105B are electrically coupled to the power collar 104 (or energy cell 106) of the photovoltaic collector 100, and the connection unit 105 (which includes the connector 105A and the connection 105B) provide a connection mechanism to interconnect (eg, electrically couple) photovoltaic collectors 100 and adjacent photovoltaic collectors.

公針連接器105A可以是微型公針連接器,且母插座連接器105B可以是經設置在收集器100的邊緣處的微型配合插座母連接器,如圖12A至圖12D和圖13所示。例如,微型公針連接器和微型配合母連接器可以是廣泛用於IoT和智慧型電子裝置的迷你USB連接器。公針連接器105A和母插座連接器105B的設計、形狀和類型不旨在進行限制。例如,連接器105A和連接器105B可以是扁平的或圓形的針連接器和插座連接器。The male pin connector 105A may be a miniature male pin connector and the female receptacle connector 105B may be a miniature mating receptacle female connector provided at the edge of the collector 100 as shown in FIGS. 12A-12D and 13 . For example, a micro male pin connector and a micro mating female connector can be a mini USB connector widely used in IoT and smart electronic devices. The design, shape and type of male pin connector 105A and female receptacle connector 105B are not intended to be limiting. For example, connectors 105A and 105B may be flat or circular pin and socket connectors.

如圖12A至圖12B所示,設置在每個光伏收集器100上的連接單元105的位置和數量並不旨在限制。例如,圖12A圖示了具有沿光伏收集器100的三個邊緣之一個邊緣設置的連接單元105(其包括連接器105A和連接器105B)的光伏收集器100。如圖12A所示,沿著邊緣且靠近三角形角122的頂點定位連接單元105。作為另一示例,圖12B圖示了具有分別沿著光伏收集器100的三個邊緣中的每一者設置的連接單元105(每個連接單元105包括連接器105A和105B)的光伏收集器100。如圖12B所示,分別沿著三角形的光伏收集器100的三個邊緣且靠近三個三角形角定位連接單元105。As shown in FIGS. 12A-12B , the location and number of connection units 105 provided on each photovoltaic collector 100 are not intended to be limiting. For example, FIG. 12A illustrates a photovoltaic collector 100 having a connection unit 105 (which includes a connector 105A and a connector 105B) disposed along one of three edges of the photovoltaic collector 100 . As shown in FIG. 12A , the connection elements 105 are positioned along the edges and near the vertices of the triangle corners 122 . As another example, FIG. 12B illustrates a photovoltaic collector 100 having connection units 105 (each connection unit 105 including connectors 105A and 105B) disposed along each of the three edges of the photovoltaic collector 100, respectively. . As shown in FIG. 12B , the connecting units 105 are respectively positioned along three edges of the triangular photovoltaic collector 100 and close to three triangular corners.

進一步地,如圖12A至圖12D所示,每個連接單元105的連接器105A和連接器150B之間的距離不旨在限制。例如,如圖12A至圖12B所示,可沿著邊緣設置每個連接單元105的連接器105A和連接器150B以使彼此接近。替代地,如圖12C至圖12D所示,可沿著邊緣設置每個連接單元105的連接器105A和連接器150B以使彼此間隔開來。Further, as shown in FIGS. 12A to 12D , the distance between the connector 105A and the connector 150B of each connection unit 105 is not intended to be limited. For example, as shown in FIGS. 12A to 12B , the connector 105A and the connector 150B of each connection unit 105 may be arranged along the edge so as to be close to each other. Alternatively, as shown in FIGS. 12C to 12D , the connector 105A and the connector 150B of each connection unit 105 may be arranged along the edge so as to be spaced apart from each other.

圖13圖示了互連以形成完全嵌合的光伏陣列1300的六個光伏收集器100-1至100-6的透視圖。如圖13所示,光伏收集器100-1至100-6中的每一者具有沿其每個邊緣佈置的連接器105A和連接器150B。公針連接器105A經調適成與相鄰的光伏收集器100的母插座連接器105B配合,使得光伏收集器100-1至100-6通過連接器105A和連接器150B互連,以將光伏收集器100-1至100-6彼此電耦合且將光伏收集器100-1至100-6 相對於彼此固定就位。儘管圖13中的完全嵌合的光伏陣列 1300為六邊形,但可設計其他所需的形狀成各種形狀的光伏收集器100,如方形/矩形的光伏收集器、菱形/鑽石形的光伏收集器等。FIG. 13 illustrates a perspective view of six photovoltaic collectors 100 - 1 to 100 - 6 interconnected to form a fully fitted photovoltaic array 1300 . As shown in Figure 13, each of the photovoltaic collectors 100-1 to 100-6 has a connector 105A and a connector 150B arranged along each edge thereof. Male pin connector 105A is adapted to mate with female receptacle connector 105B of an adjacent photovoltaic collector 100 such that photovoltaic collectors 100-1 to 100-6 are interconnected by connector 105A and connector 150B to connect photovoltaic collectors The photovoltaic collectors 100-1 to 100-6 are electrically coupled to each other and secure the photovoltaic collectors 100-1 to 100-6 in position relative to each other. Although the fully fitted photovoltaic array 1300 in FIG. 13 is hexagonal, other desired shapes can be designed into photovoltaic collectors 100 of various shapes, such as square/rectangular photovoltaic collectors, rhombus/diamond photovoltaic collectors. device etc.

藉由實施電源跡線並將電力軸環104或能量電池106的正極端子和負極端子帶到模組的邊緣,且為邊緣配備微型公插頭和母插座連接器,可實施一種簡單且有效的用以電耦合相鄰模組的互連機制。具有如圖12A至圖12D和圖13所示的互連機制的模組可在沒有硬連線電纜的情況下互連,且在沒有任何可見的電線或電纜的情況下實施用於完全嵌合模塊陣列的任何期望形狀。By implementing the power traces and bringing the positive and negative terminals of the power collar 104 or energy cell 106 to the edge of the module, and equipping the edge with miniature male plug and female socket connectors, a simple and effective use of An interconnection mechanism to electrically couple adjacent modules. Modules with interconnection mechanisms as shown in Figures 12A-12D and 13 can be interconnected without hardwired cables and implemented for full mating without any visible wires or cables Any desired shape for the array of modules.

如圖 1A、圖12A至圖12D及圖13所示的配備有一個或多個連接單元105的光伏收集器100產生了幾個優勢。首先,由於公插頭105A和母插座連接器105B在製造過程中被內置到每個光伏收集器100中,故在完全嵌合模組陣列的安裝和創建過程中不需要外部佈線或連接器部件。其次,連接器105A至105B可根據用於電源電壓和電流承載的模組100的尺寸製成不同的尺寸。第三,可將連接器105A至105B設置在模組100的每個邊緣上以用於每個互連,從而形成任何期望的形狀。第四,為光伏收集器100配備連接單元105導致勞動力和材料成本降低。A photovoltaic collector 100 equipped with one or more connection units 105 as shown in Figures 1A, 12A-12D and 13 yields several advantages. First, since the male plug 105A and female receptacle connector 105B are built into each photovoltaic collector 100 during manufacturing, no external wiring or connector components are required during installation and creation of a fully mated module array. Second, the connectors 105A to 105B can be made in different sizes according to the size of the module 100 for supply voltage and current carrying. Third, connectors 105A-105B can be provided on each edge of the module 100 for each interconnection, forming any desired shape. Fourth, equipping the photovoltaic collector 100 with the connection unit 105 results in reduced labor and material costs.

圖4A至圖4C示出了示例性的基於電漿子(基於電漿聲波)的光伏電池的各種橫截面圖。圖4A中描繪的電漿子光伏電池橫截面200包括第一傳導層202A、電漿子(電漿聲波)層204(例如光伏層)和第二傳導層202B。第一傳導層202A和第二傳導層202B可由導電材料製成,如金屬、合金或半導體(例如,銅、鋁、多晶矽及不銹鋼等)。第一傳導層202A和第二傳導層202B也可由半金屬製成,如石墨烯、砷及銻等。在一些示例中,第一傳導層202A及/或第二傳導層202B由p摻雜或n摻雜的半金屬(例如,石墨烯、砷及銻等)製成。4A-4C show various cross-sectional views of exemplary plasmon-based (plasmon-acoustic-based) photovoltaic cells. The plasmonic photovoltaic cell cross-section 200 depicted in FIG. 4A includes a first conducting layer 202A, a plasmonic (plasmonic) layer 204 (eg, a photovoltaic layer), and a second conducting layer 202B. The first conductive layer 202A and the second conductive layer 202B can be made of conductive materials, such as metals, alloys or semiconductors (eg, copper, aluminum, polysilicon, stainless steel, etc.). The first conductive layer 202A and the second conductive layer 202B can also be made of semi-metals, such as graphene, arsenic, and antimony. In some examples, the first conductive layer 202A and/or the second conductive layer 202B are made of p-doped or n-doped semi-metals (eg, graphene, arsenic, antimony, etc.).

在一些實施例中,第一傳導層202A和第二傳導層202B中的一者或兩者可以是超靜電傳導層。如本文所使用地,術語「超靜電傳導層」是指使用超聲波噴嘴超聲波地噴塗到基板上的傳導層。超靜電傳導層可包括導電材料或半金屬材料,如導電奈米線(例如,金屬奈米線、半金屬奈米線及摻雜的半金屬奈米線)、奈米管(例如,碳奈米管)或石墨烯。例如,第一傳導層202A可以是使用超聲波噴塗技術施加到電漿子層204的遠側表面側的第一超靜電傳導層,且第二傳導層202B可以是由使用除超聲波噴塗技術外的其他噴塗技術施加的導電或半金屬材料製成的層。作為另一個示例,第一傳導層202A和第二傳導層202B都可以是塗覆在電漿子層204上的超靜電傳導層。如圖4A所示,第一傳導層202A和第二傳導層202B兩者的表面沿橫向界面(例如,x-y平面)電耦合到電漿子層204。In some embodiments, one or both of the first conductive layer 202A and the second conductive layer 202B may be a superstatic conductive layer. As used herein, the term "superstatic conductive layer" refers to a conductive layer ultrasonically sprayed onto a substrate using an ultrasonic nozzle. The superstatic conductive layer can include conductive or semi-metallic materials, such as conductive nanowires (for example, metal nanowires, half-metal nanowires, and doped half-metal nanowires), nanotubes (for example, carbon nanowires rice tubes) or graphene. For example, the first conductive layer 202A may be a first superstatic conductive layer applied to the distal surface side of the plasmonic sublayer 204 using an ultrasonic spraying technique, and the second conductive layer 202B may be formed by using other than ultrasonic spraying techniques. A layer of conductive or semi-metallic material applied by spraying techniques. As another example, both the first conductive layer 202A and the second conductive layer 202B may be superstatic conductive layers coated on the plasmonic sublayer 204 . As shown in FIG. 4A , the surfaces of both the first conductive layer 202A and the second conductive layer 202B are electrically coupled to the plasmonic sublayer 204 along a lateral interface (eg, x-y plane).

與傳統的噴塗系統(例如,基於氣壓的塗覆系統)相比,超聲波噴塗技術提供了更精確、更可控、更可重複和更環保的傳導層塗層的優點。超聲波噴塗技術使用發射無壓且低速的噴霧的超聲波噴嘴,無壓且低速的噴霧易於控制且顯著減少過噴量(因液滴沉澱在基板上而不是從基板上彈開)。這轉化為大量的材料節省和減少排放到環境中的離子。由於連續的超聲波振動及其相對較大的孔口,超聲波噴嘴本質上是無堵塞的自清潔裝置。超聲波噴嘴可由鈦製成,其使用壽命長且聲學性能優異。在應用和創建超靜電傳導層時,超聲波噴塗技術可實現極低的流速。此外,採用超聲波噴塗技術施加超靜電傳導層的好處是,在懸浮中噴塗傳導層顆粒且通過超聲波噴嘴的超聲波作用在整個噴塗過程中保持顆粒均勻懸浮。這導致顆粒更均勻地分散在更薄的層中。Ultrasonic spray technology offers the advantages of more precise, controllable, repeatable and environmentally friendly coating of conductive layers compared to conventional spray systems (eg, air pressure-based coating systems). Ultrasonic spraying technology uses ultrasonic nozzles that emit a pressureless, low velocity spray that is easier to control and significantly reduces overspray (due to droplets settling on the substrate rather than bouncing off it). This translates into substantial material savings and reduced emissions of ions into the environment. Due to the continuous ultrasonic vibrations and their relatively large orifice, ultrasonic nozzles are essentially non-clogging self-cleaning devices. Ultrasonic nozzles can be made of titanium, which has a long service life and excellent acoustic performance. Ultrasonic spray technology allows for extremely low flow rates when applying and creating superstatically conductive layers. In addition, the advantage of using ultrasonic spraying technology to apply the superstatic conductive layer is that the particles of the conductive layer are sprayed in suspension and the particles are kept uniformly suspended during the entire spraying process by the ultrasonic action of the ultrasonic nozzle. This results in a more even dispersion of the particles in thinner layers.

在超靜電傳導層的塗覆期間(例如,使用Sono-Tek公司的超聲波噴嘴技術),使用超聲波噴嘴和霧化裝置將噴射或懸浮的流體(例如,超靜(ultrastatic)流體)以非常高的準確度塗覆在目標表面上(例如,在圖4A的電漿子層204上)。超聲波噴嘴是一種基於喇叭換能器原理的超聲波霧化裝置。超聲波噴嘴用於應用奈米或亞微米功能塗層及其他應用,如超聲波噴霧熱解及超聲波噴霧乾燥等。超聲波噴嘴具有霧化顆粒均勻、精度高、氣壓極低、原料轉移效率高及不堵塞等優點。與傳統的壓力噴嘴不同,超聲波噴嘴不會使用高壓來迫使液體通過小孔以產生噴霧。相反,是在沒有壓力的情況下使液體(例如,超靜電流體)通過具有相對較大孔口的噴嘴的中心來供給液體,且液體由於噴嘴中的超聲波振動而被霧化。精密的超聲波產生器提供在噴嘴中產生振動所需的機械能。During the application of an ultrastatic conductive layer (e.g., using Sono-Tek's ultrasonic nozzle technology), the sprayed or suspended fluid (e.g., an ultrastatic fluid) is sprayed at a very high Accuracy is coated on the target surface (eg, on the plasmonic sublayer 204 of FIG. 4A ). Ultrasonic nozzle is an ultrasonic atomization device based on the principle of horn transducer. Ultrasonic nozzles are used to apply nano or sub-micron functional coatings and other applications such as ultrasonic spray pyrolysis and ultrasonic spray drying etc. The ultrasonic nozzle has the advantages of uniform atomized particles, high precision, extremely low air pressure, high material transfer efficiency and no clogging. Unlike traditional pressure nozzles, ultrasonic nozzles do not use high pressure to force liquid through small holes to create a spray. Instead, the liquid (eg, superstatic fluid) is fed through the center of a nozzle with a relatively large orifice without pressure, and the liquid is atomized due to ultrasonic vibrations in the nozzle. A sophisticated ultrasonic generator provides the mechanical energy required to generate vibrations in the nozzle.

用於產生超靜電傳導層的超靜電流體的導電或半金屬材料可以是包括奈米線(例如,金屬奈米線、銀奈米線、半金屬奈米線、摻雜的半金屬奈米線)、奈米管(例如,碳奈米管)及/或石墨烯的導電材料。例如,從超聲噴嘴噴射的超靜電流體可包括4H結構銀奈米線(4H-AgNW)、面心立方(FCC)銀奈米線(FCC-AgNW)及石墨烯等中的一者或多者。銀奈米線的中值直徑可為約30nm。作為另一個示例,超靜電流體可僅包括石墨烯。Conductive or semi-metallic materials for superstatic fluids used to create superstatic conductive layers can be nanowires (e.g., metal nanowires, silver nanowires, half-metal nanowires, doped half-metal nanowires ), nanotubes (for example, carbon nanotubes) and/or graphene conductive materials. For example, the super electrostatic fluid sprayed from the ultrasonic nozzle may include one or more of 4H structured silver nanowires (4H-AgNW), face-centered cubic (FCC) silver nanowires (FCC-AgNW), graphene, etc. . The median diameter of the silver nanowires may be about 30 nm. As another example, a superelectrostatic fluid may include only graphene.

石墨烯是一種形式的碳,其存在於一個原子厚的薄片中且具有有用的電特性。石墨烯很容易導電且有多餘的可輕鬆移動的電子。石墨烯柔韌、堅固且透明,且石墨烯由廉價且無處不在的碳製成。石墨烯具有比矽快 100 倍的高電子遷移率;石墨烯導熱比金剛石好2倍;石墨烯導電性比銅好13倍;石墨烯僅吸收2.3%的反射光;石墨烯為不滲透的,即使是最小的原子(氦)也不能通過無缺陷的單層石墨烯片。為了使光伏電池能夠更有效地發電,超靜電傳導層(例如,第一傳導層202A)可以是石墨烯薄層。在這種情況下,從超聲波噴嘴超聲波噴射的超靜電流體可包括作為活性元素的石墨烯,且塗覆的超靜電傳導層可以是石墨烯層。由石墨烯製成的超靜電傳導層的厚度可僅為1奈米厚-與傳統的氧化銦錫(ITO)傳導層相比只有其幾分之一厚。石墨烯的高電導率、柔韌性和透明度使其可用於異質結合太陽能電池,其中可用多種不同方式應用石墨烯,多種不同方式包括電極(陰極和陽極兩者)、施體層、緩衝層、受體層和活性層。Graphene is a form of carbon that exists in one-atom-thick sheets and has useful electrical properties. Graphene conducts electricity easily and has a surplus of electrons that can move easily. Graphene is flexible, strong and transparent, and graphene is made from cheap and ubiquitous carbon. Graphene has high electron mobility 100 times faster than silicon; graphene conducts heat 2 times better than diamond; graphene conducts electricity 13 times better than copper; graphene absorbs only 2.3% of reflected light; graphene is impermeable, Even the tiniest atom (helium) cannot pass through a defect-free single-layer graphene sheet. In order for the photovoltaic cell to generate electricity more efficiently, the superstatic conductive layer (eg, the first conductive layer 202A) may be a thin layer of graphene. In this case, the superstatic fluid jetted ultrasonically from the ultrasonic nozzle may include graphene as an active element, and the coated superstatic conductive layer may be a graphene layer. Superstatic conductive layers made of graphene can be as thin as 1 nanometer thick—a fraction of the thickness of conventional indium tin oxide (ITO) conductive layers. Graphene's high conductivity, flexibility and transparency make it useful in heterojunction solar cells, where graphene can be applied in many different ways including electrodes (both cathode and anode), donor layers, buffer layers, acceptors layer and active layer.

由於用於塗覆超靜電傳導層的超聲波噴嘴在特定共振頻率下操作,故超聲噴嘴的頻率規定了從噴嘴噴射的超靜電流體的中值液滴尺寸。液滴尺寸具有很小的變異性,且液滴尺寸可通過數學計算落入嚴格的預測液滴分佈範圍內。例如,120 kHz的噴嘴產生18微米的中值液滴尺寸(噴水時)。頻率越高,中值液滴尺寸越小。噴嘴由非常高強度的鈦合金和其他專有金屬製成,使其具有出色的抗化學腐蝕能力並提供卓越的聲學特性。電活性元件包含在密封外殼內,密封外殼保護噴嘴組件免受外部汙染。液體進料管貫穿噴嘴的整個長度。噴嘴的設計確保超靜電流體僅與噴嘴內的鈦接觸。Since the ultrasonic nozzle used to coat the superstatic conductive layer operates at a specific resonant frequency, the frequency of the ultrasonic nozzle dictates the median droplet size of the superstatic fluid ejected from the nozzle. There is little variability in droplet size, and droplet sizes can be mathematically calculated to fall within tight predicted droplet distributions. For example, a 120 kHz nozzle produces a median droplet size (when spraying water) of 18 microns. The higher the frequency, the smaller the median droplet size. The nozzles are constructed of very high-strength titanium alloys and other proprietary metals, which give them excellent chemical resistance and provide excellent acoustic characteristics. The electroactive components are contained within a sealed housing which protects the nozzle assembly from external contamination. The liquid feed tube runs the entire length of the nozzle. The design of the nozzle ensures that the super-static fluid only comes into contact with the titanium inside the nozzle.

使用上述超聲波噴塗技術來產生超靜電傳導層導致在超聲波奈米塗覆處理期間所需的噴塗材料減少 80%、噴塗浪費和能源使用量減少50%(與使用習知的塗覆或施加光伏收集器的傳導層的技術的當前行業標準相比),同時仍保持高水平的精度(例如,在大約100至400奈米的範圍內)。The use of the ultrasonic spraying technique described above to create a superstatically conductive layer results in an 80% reduction in spray material required during the ultrasonic nanocoating process, a 50% reduction in spraying waste and energy usage (compared to using conventional coatings or applying photovoltaic harvesting compared to the current industry standard for the technology of the conductive layer of the device), while still maintaining a high level of precision (eg, in the range of approximately 100 to 400 nanometers).

利用上述超聲噴嘴技術,將超靜電傳導層施加到圖4A的電漿子層204的遠側表面側來作為第一傳導層202A。可選地,將第二超靜電傳導層施加到圖4A的電漿子層204的前表面側來作為第二傳導層202B。超靜電傳導層可以是透明的。超靜電傳導層的厚度可在80-300nm(奈米)的範圍內;超靜電傳導層的厚度較佳地為約200nm。Using the ultrasonic nozzle technique described above, a superstatic conductive layer is applied to the distal surface side of the plasmonic sublayer 204 of FIG. 4A as the first conductive layer 202A. Optionally, a second superstatic conductive layer is applied to the front surface side of the plasmonic sublayer 204 of FIG. 4A as the second conductive layer 202B. The superstatic conductive layer can be transparent. The thickness of the superstatic conductive layer can be in the range of 80-300nm (nanometer); the thickness of the superstatic conductive layer is preferably about 200nm.

由於是在分子水平上施加表面材料,故使用上超聲波噴塗技術產生超靜電傳導層提供了更高程度的準確度。使用超聲波噴塗技術創建傳導層 202A 及/或 202B 作為超靜電傳導層的其他優勢包括:減少材料消耗和高達 80% 的過度噴塗,同時提高產量並提供均勻的層應用;高度可控的噴塗模式以獲得可靠、一致的結果;耐腐蝕的超聲波噴嘴結構;超低流量能力;超聲波噴嘴的低維護和無堵塞設計;減少製造過程中的停機時間,及沒有移動部件的高可靠性。更進一步來說,超聲波噴塗技術帶來了額外的優勢,包括:藉由選擇性地設置噴嘴頻率來精確控制霧化液滴尺寸(及由此產生的超靜電傳導層的厚度)的能力,並實施允許最佳化塗層形態的緊密液滴分佈。更進一步,利用超聲波噴塗技術塗覆超靜電傳導層帶來了額外的優勢,包括:奈米顆粒溶液的噴塗比習知方法顯著減少聚集、相較於習知塗覆技術最佳化塗層從5μ(微米)到0.1μ、相較於習知塗覆技術增加了均勻性(從 ±10%降至±2%,且最佳化了從粒狀(多孔)結構到連續(光澤)光滑層的塗層形態。The use of ultrasonic spray technology to create superstatically conductive layers offers a higher degree of accuracy since the surface material is applied at the molecular level. Additional advantages of using ultrasonic spray technology to create conductive layers 202A and/or 202B as superstatic conductive layers include: reduced material consumption and up to 80% overspray while increasing throughput and providing uniform layer application; highly controllable spray patterns to Get reliable, consistent results; corrosion-resistant ultrasonic nozzle construction; ultra-low flow capability; low-maintenance and clog-free design of the ultrasonic nozzle; reduced downtime during manufacturing; and high reliability with no moving parts. Further, ultrasonic spray technology brings additional advantages, including: the ability to precisely control the atomized droplet size (and thus the thickness of the superstatically conductive layer) by selectively setting the nozzle frequency, and Enforces a tight droplet distribution that allows for optimized coating morphology. Furthermore, the use of ultrasonic spraying technology to coat the superstatic conductive layer brings additional advantages, including: spraying of nanoparticle solutions significantly reduces aggregation compared to conventional methods, and optimizes coating from 5μ (micrometer) to 0.1μ, increased uniformity (from ±10% to ±2%) compared to conventional coating technology, and optimized from granular (porous) structure to continuous (glossy) smooth layer coating form.

電漿子層204可由介電質(例如,電絕緣體)或半導體製成。電漿子層204可以是聚合物或陶瓷。在一些示例中,電漿子層204是聚碳酸酯。通常來說,電漿子層204對直流電(例如,IDc)是不導電的,但對交流電(例如,IAc)是導電的。因此,電漿子層204經配置為在存在電場的情況下被極化。這種極化導致正電荷移向電場且負電荷移離電場,這會產生內部電場,從而降低介電質本身內的整體電場。電漿子層204包括奈米顆粒,奈米顆粒與介電質的極化耦合且針對特定波長的入射光誘導電子在介電質內的奈米顆粒的表面處振盪。應當理解的是,誘導電子振盪發生在整個介電質中,而不是簡單地集中在介電質與相鄰傳導層(例如,第一傳導層202A(例如,第一超靜電傳導層)和第二傳導層202B(例如,第二超靜電傳導層))之間的界面處。在一些情況下,入射光的波長處於帶電載流子(例如,電子、空穴等)的共振波長。The plasmonic layer 204 may be made of a dielectric (eg, an electrical insulator) or a semiconductor. The plasmonic sublayer 204 may be a polymer or a ceramic. In some examples, plasmonic layer 204 is polycarbonate. Generally, the plasmonic sublayer 204 is non-conductive to direct current (eg, IDc), but conductive to alternating current (eg, IAc). Accordingly, the plasmonic layer 204 is configured to be polarized in the presence of an electric field. This polarization causes positive charges to move towards the electric field and negative charges to move away from the electric field, which creates an internal electric field that reduces the overall electric field within the dielectric itself. The plasmonic sublayer 204 includes nanoparticles that are polarization-coupled to a dielectric and that incident light of a particular wavelength induces electrons to oscillate at the surface of the nanoparticles within the dielectric. It should be appreciated that induced electronic oscillations occur throughout the dielectric, rather than simply being concentrated between the dielectric and adjacent conducting layers (e.g., first conducting layer 202A (e.g., first superstatic conducting layer) and second At the interface between the two conductive layers 202B (for example, the second superstatic conductive layer). In some cases, the wavelength of the incident light is at the resonant wavelength of charge carriers (eg, electrons, holes, etc.).

誘導電子在奈米顆粒表面振蕩的入射光的波長與奈米顆粒的尺寸相關。因此,可藉由增加或減少奈米顆粒的尺寸來調整入射光的波長。在一些示例中,將入射光的波長調諧為大於700奈米,這對應於紅外光譜中的頻率。在一些示例中,將入射光的波長調諧為短於700奈米,這對應於可見光和紫外光譜中的頻率。The wavelength of incident light that induces electron oscillations on the nanoparticle surface is related to the size of the nanoparticle. Therefore, the wavelength of incident light can be adjusted by increasing or decreasing the size of nanoparticles. In some examples, the wavelength of the incident light is tuned to be greater than 700 nanometers, which corresponds to a frequency in the infrared spectrum. In some examples, the wavelength of the incident light is tuned to be shorter than 700 nanometers, which corresponds to frequencies in the visible and ultraviolet spectrum.

在一些示例中,電漿子層204是電絕緣體。在一些示例中,電漿子層204是具有復介電常數的介電質。在一些示例中,奈米顆粒有助於具有復介電常數的電漿子層204。奈米顆粒可均勻地分散(例如,混合)整個電漿子層204,且奈米顆粒可以是介電質、半導體、半金屬或金屬。奈米顆粒的形狀可以大體上相似或變化。形狀可具有圓錐形、矩形、雙錐體、四面體、立方體、八面體、圓柱形、橢圓體或球形中的任何一者。在一些示例中,奈米顆粒是懸浮在聚合物基質中的介電質。在一些示例中,奈米顆粒是懸浮在聚碳酸酯中的介電質。在一些示例中,奈米顆粒是懸浮在陶瓷基質中的介電質。In some examples, plasmonic layer 204 is an electrical insulator. In some examples, plasmonic layer 204 is a dielectric having a complex permittivity. In some examples, the nanoparticles contribute to the plasmonic sublayer 204 having a complex permittivity. Nanoparticles may be uniformly dispersed (eg, mixed) throughout the plasmonic sublayer 204, and the nanoparticles may be dielectrics, semiconductors, semi-metals, or metals. The shapes of the nanoparticles can be substantially similar or vary. The shape may have any one of cone, rectangle, bipyramid, tetrahedron, cube, octahedron, cylinder, ellipsoid, or sphere. In some examples, nanoparticles are dielectrics suspended in a polymer matrix. In some examples, the nanoparticles are a dielectric suspended in polycarbonate. In some examples, the nanoparticles are dielectrics suspended in a ceramic matrix.

第一傳導層202A(例如,第一超靜電傳導層)的表面沿橫向方向(例如,x-y平面)的界面電耦合到電漿子層204。這種配置有助於在第一傳導層202A處捕獲電漿子層204中奈米顆粒的帶電載流子(例如,電子、空穴等)的振盪,以沿第一傳導層202A產生交流電。同樣地,第二傳導層202B(例如,第二超靜電傳導層)的表面沿橫向方向(例如,x-y平面)的界面電耦合到電漿子層204。這種配置有助於在第二傳導層202B處捕獲電漿層204中奈米顆粒的帶電載流子(例如,電子、空穴等)的振盪,以沿第二傳導層202B產生交流電,如測試探針A所示。The surface of the first conductive layer 202A (eg, first superstatic conductive layer) is electrically coupled to the plasmonic sublayer 204 along the interface in the lateral direction (eg, x-y plane). This configuration facilitates trapping oscillations of charged carriers (eg, electrons, holes, etc.) of the nanoparticles in the plasmonic sublayer 204 at the first conducting layer 202A to generate an alternating current along the first conducting layer 202A. Likewise, the surface of the second conducting layer 202B (eg, the second superstatic conducting layer) is electrically coupled to the plasmonic sublayer 204 along the interface in the lateral direction (eg, the x-y plane). This configuration facilitates trapping the oscillations of charged carriers (e.g., electrons, holes, etc.) of the nanoparticles in the plasmonic layer 204 at the second conductive layer 202B to generate an alternating current along the second conductive layer 202B, as Test Probe A is shown.

為了從第一傳導層202A和第二傳導層202B提取帶電載流子(例如,電子、空穴等)以給能量電池106充電,將整流器橋電路系統220實施為對於任何輸入極性(例如,在第一輸入或第二輸入處的輸入極性)提供相對於參考接地的相同極性的輸出。整流器橋電路系統220的第一輸入端電耦合到第二傳導層202B,且整流器橋電路系統220的第二輸入端電耦合到第一傳導層202A。如圖4A所示,半波的整流器橋222包括第一二極體226及可選的第二二極體227,第一二極體226以反向偏壓跨第二傳導層202B和負極端子(電力軸環104或能量電池106的負極端子;負極端子進一步在光伏收集器100的邊緣處電耦合到連接單元105的母插座連接器105B)連接,且可選的第二二極體227以反向偏壓跨第一傳導層202A和正極端子(電力軸環104或能量電池106的正極端子;正極端子進一步在光伏收集器100的邊緣處電耦合到連接單元105的公針連接器105A)連接。圖4A的半波的整流器橋222從電漿聲波光伏電池橫截面200將半波的整流器橋222的輸入處(在測試探針A處)的AC電力信號410轉換為半波的整流器橋222輸出處(在測試探針B處)的脈衝的DC電力信號412。在一些示例中,能量電池106跨半波整流器橋222的輸出和參考接地電耦合,從而捕獲振盪的電荷載流子(例如,電子、空穴等)和存儲該等振盪的電荷載流子至能量電池106中以供將來使用。在一些配置中,電力軸環104包括整流器橋電路系統220。To extract charge carriers (e.g., electrons, holes, etc.) from the first conductive layer 202A and the second conductive layer 202B to charge the energy battery 106, the rectifier bridge circuitry 220 is implemented for any input polarity (e.g., at input polarity at the first or second input) provides an output of the same polarity with respect to reference ground. A first input terminal of rectifier bridge circuitry 220 is electrically coupled to second conductive layer 202B, and a second input terminal of rectifier bridge circuitry 220 is electrically coupled to first conductive layer 202A. As shown in FIG. 4A, the half-wave rectifier bridge 222 includes a first diode 226 and an optional second diode 227, the first diode 226 is reverse biased across the second conductive layer 202B and the negative terminal (the negative terminal of the power collar 104 or the energy cell 106; the negative terminal is further electrically coupled to the female socket connector 105B of the connection unit 105 at the edge of the photovoltaic collector 100) and the optional second diode 227 in Reverse bias across the first conductive layer 202A and the positive terminal (positive terminal of the power collar 104 or energy cell 106; the positive terminal is further electrically coupled to the male pin connector 105A of the connection unit 105 at the edge of the photovoltaic collector 100) connect. The half-wave rectifier bridge 222 of FIG. 4A converts the AC power signal 410 at the input of the half-wave rectifier bridge 222 (at test probe A) from the plasmonic acoustic wave photovoltaic cell cross-section 200 to the half-wave rectifier bridge 222 output A pulsed DC power signal 412 at (at test probe B). In some examples, the energy cell 106 is electrically coupled across the output of the half-wave rectifier bridge 222 and the reference ground, thereby capturing oscillating charge carriers (e.g., electrons, holes, etc.) and storing the oscillating charge carriers to Energy battery 106 for future use. In some configurations, power collar 104 includes rectifier bridge circuitry 220 .

應當理解的是,整流器橋電路系統220可包括一個或多個電路元件以極化電流。例如,整流器橋電路系統220可以是全波的整流器橋,其包括互連的四個二極體以將電漿聲波光伏電池橫截面200的AC電力信號410(圖4B的測試探針A處所示)轉換為脈衝的DC電力信號412(在圖4B的測試探針B處)。還應當理解的是,沿著針對波長大於700奈米的入射光的奈米顆粒的表面捕獲帶電載流子(例如,電子、空穴等)導致第一傳導層202A和第二傳導層202B的溫度減少,因為從電漿聲波光伏電池截面200去除帶電載流子(例如,電子、空穴等)係從將以其他方式貢獻熱的系統提取能量。也就是說,從系統中去除振蕩的帶電載流子(例如,電子、空穴等)會減慢分子/原子的整體運動,從而轉化為減少熱能。熱能的這種減少導致熱耦合到第一傳導層202A和第二傳導層202B的相鄰層也冷卻。It should be appreciated that rectifier bridge circuitry 220 may include one or more circuit elements to polarize current. For example, the rectifier bridge circuitry 220 may be a full-wave rectifier bridge that includes four diodes interconnected to convert the AC power signal 410 of the plasmonic photovoltaic cell cross-section 200 (at test probe A location of FIG. 4B ). shown) into a pulsed DC power signal 412 (at test probe B of FIG. 4B ). It should also be understood that the capture of charge carriers (e.g., electrons, holes, etc.) along the surface of the nanoparticles for incident light having a wavelength greater than 700 nanometers results in The temperature is reduced because the removal of charge carriers (eg, electrons, holes, etc.) from the plasmonic photovoltaic cell cross-section 200 extracts energy from the system that would otherwise contribute heat. That is, the removal of oscillating charge carriers (e.g., electrons, holes, etc.) from the system slows down the overall molecular/atomic motion, which translates into reduced thermal energy. This reduction in thermal energy causes adjacent layers thermally coupled to the first conductive layer 202A and the second conductive layer 202B to also cool.

圖4B中描繪的電漿子光伏電池橫截面225包括第一傳導層202A(例如,第一超靜電傳導層)、二極體層208、電漿子層204和第二傳導層202B(例如,第二超靜電傳導層)。第一傳導層202A和第二傳導層202B均可由導電材料製成,如金屬、合金或半導體(例如,銅、鋁、多晶矽及不銹鋼等)。第一傳導層202A及/或第二傳導層202B也可由半金屬製成,如石墨烯、砷及銻等。在一些示例中,第一傳導層202A及/或第二傳導層202B由p 摻雜或 n 摻雜的半金屬(例如,石墨烯、砷、銻等)製成。在一些配置中,第一傳導層202A電耦合到第二傳導層202B。The plasmonic photovoltaic cell cross-section 225 depicted in FIG. 4B includes a first conducting layer 202A (e.g., a first superelectrostatic conducting layer), a diode layer 208, a plasmonic layer 204, and a second conducting layer 202B (e.g., a first superstatic conducting layer). Two super electrostatic conduction layer). Both the first conductive layer 202A and the second conductive layer 202B can be made of conductive materials, such as metals, alloys or semiconductors (eg, copper, aluminum, polysilicon, stainless steel, etc.). The first conductive layer 202A and/or the second conductive layer 202B can also be made of semi-metals, such as graphene, arsenic, and antimony. In some examples, the first conductive layer 202A and/or the second conductive layer 202B are made of a p-doped or n-doped semi-metal (eg, graphene, arsenic, antimony, etc.). In some configurations, the first conductive layer 202A is electrically coupled to the second conductive layer 202B.

在一些配置中,如圖4A所示,整流器橋電路系統220包括串聯電耦合在第二傳導層202B和能量電池106或電力軸環104的陰極之間的一個或多個二極體,及串聯電耦合在第一傳導層202B和能量電池106的陽極之間的一個或多個二極體。在一些配置中,整流器橋電路系統220包括電耦合到電漿子層204的一個或多個二極體層。例如,如圖4B的電漿子光伏電池橫截面225所示,二極體層208電耦合在電漿子層204和第二傳導層202B之間。二極體層208是具有與n摻雜部分相鄰的p摻雜部分以形成p-n結的半導體層。p-n結有效地替代了圖4A中描繪的電漿子光伏電池橫截面200的第一二極體226。In some configurations, as shown in FIG. 4A , rectifier bridge circuitry 220 includes one or more diodes electrically coupled in series between second conductive layer 202B and the cathode of energy cell 106 or power collar 104 , and the series One or more diodes are electrically coupled between the first conductive layer 202B and the anode of the energy cell 106 . In some configurations, rectifier bridge circuitry 220 includes one or more diode layers electrically coupled to plasmonic layer 204 . For example, as shown in plasmonic photovoltaic cell cross-section 225 of FIG. 4B , diode layer 208 is electrically coupled between plasmonic layer 204 and second conductive layer 202B. The diode layer 208 is a semiconductor layer having a p-doped portion adjacent to an n-doped portion to form a pn junction. The pn junction effectively replaces the first diode 226 of the plasmonic photovoltaic cell cross-section 200 depicted in Figure 4A.

在一些配置中,如圖4C所示,整流器橋電路系統220包括電耦合在電漿子層204和第一傳導層202A(例如,第一超靜電傳導層)之間的第一二極體層208A和電耦合在電漿子層204和第二傳導層傳導層202B(例如,第二超靜電傳導層)之間的第二二極體層208B。第一二極體層208A和第二傳導層202B都是半導體層,第一二極體層208A和第二傳導層202B每者都具有與n摻雜部分相鄰的p摻雜部分以形成p-n結。如圖4C的電漿子光伏電池橫截面250所示,第一二極體層208A的p-n結配置有效地替代了圖4A的電漿子光伏電池橫截面200的第二二極體227。如圖4C的電漿子光伏電池橫截面250所示,第二二極體層208B的p-n結配置有效地替代了圖4A的電漿子光伏電池橫截面200的第一二極體226。In some configurations, as shown in FIG. 4C , the rectifier bridge circuitry 220 includes a first diode layer 208A electrically coupled between the plasmonic sublayer 204 and a first conducting layer 202A (eg, a first superelectrostatic conducting layer). and second diode layer 208B electrically coupled between plasmonic sublayer 204 and second conducting layer conducting layer 202B (eg, second superstatic conducting layer). Both the first diode layer 208A and the second conductive layer 202B are semiconductor layers, and each of the first diode layer 208A and the second conductive layer 202B has a p-doped portion adjacent to an n-doped portion to form a p-n Knot. As shown in the plasmonic photovoltaic cell cross-section 250 of FIG. 4C , the pn junction configuration of the first diode layer 208A effectively replaces the second diode 227 of the plasmonic photovoltaic cell cross-section 200 of FIG. 4A . As shown in the plasmonic photovoltaic cell cross section 250 of FIG. 4C , the pn junction configuration of the second diode layer 208B effectively replaces the first diode 226 of the plasmonic photovoltaic cell cross section 200 of FIG. 4A .

圖5A和圖5B示出了示例性的混合的基於電漿子的光伏收集器的各種橫截面圖。混合的基於電漿子的光伏收集器可包括與光子光伏電池堆疊(例如,並聯)的電漿子光伏電池。例如,如圖5A所示,電漿子光伏電池橫截面200包括與光子光伏電池橫截面201堆疊(例如,並聯)的電漿子光伏電池橫截面200(圖4A)。電漿子光伏電池橫截面200的佈局包括如上所述的第一傳導層202A、電漿子層204和第二傳導層202B。如上所述,第一傳導層202A可以是透明的超靜電傳導層(使用利用超聲波噴塗技術的超聲波噴嘴塗覆),而第二傳導層可以是常規傳導層(例如透明ITO層)。5A and 5B show various cross-sectional views of an exemplary hybrid plasmon-based photovoltaic collector. A hybrid plasmonic-based photovoltaic collector may include a plasmonic photovoltaic cell stacked (eg, in parallel) with a photonic photovoltaic cell. For example, as shown in FIG. 5A , plasmonic photovoltaic cell cross-section 200 includes plasmonic photovoltaic cell cross-section 200 ( FIG. 4A ) stacked (eg, in parallel) with photonic photovoltaic cell cross-section 201 . The layout of the plasmonic photovoltaic cell cross section 200 includes the first conducting layer 202A, the plasmonic layer 204 and the second conducting layer 202B as described above. As mentioned above, the first conductive layer 202A may be a transparent superstatic conductive layer (applied using an ultrasonic nozzle utilizing ultrasonic spraying techniques), while the second conductive layer may be a conventional conductive layer (eg, a transparent ITO layer).

光子光伏電池橫截面201包括光子吸收層206(例如,光伏層),光子吸收層206電耦合到第一傳導層202A(例如,第一超靜電傳導層)和第三傳導層202C(例如,第三超靜電層)。如圖5A所示,光子吸收層206沿橫向方向(例如,x-y平面)電耦合在第一傳導層202A和第三傳導層202C之間。光子吸收層206經配置為吸收比入射光的第一波長短的入射光230且沿著第一傳導層202A產生第一電流。比入射光的第一波長更短的入射光230的吸收產生電子-空穴對,其引起從第三傳導層202C通過光子吸收層206流至第一傳導層202A的直流電流(例如,第一電流)。在一些示例中,第一電流是直流電(例如,foe)。The photonic photovoltaic cell cross-section 201 includes a photon absorbing layer 206 (e.g., a photovoltaic layer) electrically coupled to a first conducting layer 202A (e.g., a first superelectrostatic conducting layer) and a third conducting layer 202C (e.g., a first superelectrostatic conducting layer). Three super electrostatic layers). As shown in FIG. 5A , photon absorbing layer 206 is electrically coupled between first conducting layer 202A and third conducting layer 202C in a lateral direction (eg, x-y plane). The photon absorbing layer 206 is configured to absorb incident light 230 that is shorter than the first wavelength of the incident light and generate a first current along the first conductive layer 202A. Absorption of incident light 230 that is shorter than the first wavelength of the incident light creates electron-hole pairs that induce a direct current flow from third conducting layer 202C through photon absorbing layer 206 to first conducting layer 202A (eg, first current). In some examples, the first current is direct current (eg, foe).

在一些配置中,光子吸收層206是半導體,如矽(多晶矽或單晶矽)、鍺、碲化鎘、銅銦鎵硒、砷化鎵(GaAs)及砷化銦鎵等。在一些配置中,光子光伏電池實施量子點。量子點是奈米尺寸的半導體顆粒,其尺寸與入射光的吸收波長成正比且可具有多種形狀。例如,一個或多個量子點可具有圓錐形、矩形、雙錐體、四面體、立方體、八面體、圓柱形、橢圓體或球形中的任何一個形狀。這種量子點可由多種半導體材料製成,多種半導體材料如CdS、CdSe、Sb 2S 3及PbS等。在一些示例中,光子吸收層206是有機物,如釕金屬有機染料。一般來說,光子吸收層206中量子點的尺寸與入射光的第一波長成正比。因此,可藉由增加或減少每個量子點的尺寸來調諧入射光的第一波長。在一些示例中,將入射光的第一波長調諧成大於700奈米,這對應於紅外光譜中的頻率。在一些示例中,將入射光的第一波長調諧成短於700奈米,這對應於可見光和紫外光譜中的頻率。 In some configurations, the photon absorbing layer 206 is a semiconductor such as silicon (polysilicon or monocrystalline silicon), germanium, cadmium telluride, copper indium gallium selenide, gallium arsenide (GaAs), indium gallium arsenide, and the like. In some configurations, photonic photovoltaic cells implement quantum dots. Quantum dots are nanometer-sized semiconductor particles whose size is proportional to the absorption wavelength of incident light and can have a variety of shapes. For example, one or more quantum dots may have any of the shapes of a cone, rectangle, bicone, tetrahedron, cube, octahedron, cylinder, ellipsoid, or sphere. Such quantum dots can be made of various semiconductor materials, such as CdS, CdSe, Sb 2 S 3 and PbS. In some examples, photon absorbing layer 206 is an organic material, such as a ruthenium metal organic dye. In general, the size of the quantum dots in the photon absorbing layer 206 is proportional to the first wavelength of incident light. Therefore, the first wavelength of incident light can be tuned by increasing or decreasing the size of each quantum dot. In some examples, the first wavelength of the incident light is tuned to be greater than 700 nanometers, which corresponds to a frequency in the infrared spectrum. In some examples, the first wavelength of incident light is tuned to be shorter than 700 nanometers, which corresponds to frequencies in the visible and ultraviolet spectrum.

如圖5A所示,電漿子層204的表面沿著橫向方向(例如,x-y平面)的界面電耦合在第一傳導層202A和第二傳導層202B之間。電漿子層204可由電絕緣體、介電質或半導體製成。電漿子層204可以是聚合物或陶瓷。電漿子層204可以是聚碳酸酯。通常,電漿子層204對直流電(例如,IDc)是不導電的,但對交流電(例如,IAc)是導電的。因此,電漿子層204經配置成在存在電場的情況下被極化。這種極化導致正電荷移向電場而負電荷移離電場,這會產生內部電場,從而降低介電質本身內的整體電場。電漿子層204包括奈米顆粒,其與介電質的極化耦合且誘導帶電載流子(例如電子)在介電質內的奈米顆粒的表面處針對特定(第二)波長的入射光振盪。應當理解的是,誘導電子振盪是發生在整個介電質中,而不是簡單集中在介電質和相鄰傳導層(例如,第一傳導層202A和第二傳導層202B)之間的界面處。在一些情況下,入射光的第二波長處於振蕩的帶電載流子(例如,電子、空穴等)的共振波長。As shown in FIG. 5A , the surface of the plasmonic layer 204 is electrically coupled between the first conductive layer 202A and the second conductive layer 202B along an interface in a lateral direction (eg, x-y plane). The plasmonic layer 204 may be made of an electrical insulator, a dielectric, or a semiconductor. The plasmonic sublayer 204 may be a polymer or a ceramic. The plasmonic layer 204 may be polycarbonate. Typically, the plasmonic sublayer 204 is non-conductive to direct current (eg, IDc) but conductive to alternating current (eg, IAc). Accordingly, the plasmonic layer 204 is configured to be polarized in the presence of an electric field. This polarization causes positive charges to move towards the electric field and negative charges to move away from it, which creates an internal electric field that reduces the overall electric field within the dielectric itself. The plasmonic layer 204 includes nanoparticles that couple to the polarization of the dielectric and induce the incidence of charge carriers (eg, electrons) at the surface of the nanoparticles within the dielectric for a specific (second) wavelength. Light oscillates. It should be understood that the induced electronic oscillations occur throughout the dielectric, rather than simply being concentrated at the interface between the dielectric and adjacent conducting layers (eg, first conducting layer 202A and second conducting layer 202B). . In some cases, the second wavelength of incident light is at a resonant wavelength of oscillating charge carriers (eg, electrons, holes, etc.).

誘導帶電載體(例如,電子、空穴等)在奈米顆粒的表面振蕩的入射光的第二波長與電漿子層204內的奈米顆粒的尺寸相關。因此,可藉由增加或減少電漿子層204內奈米顆粒的尺寸來調整入射光的第二波長。在一些示例中,將第二波長調諧成大於700奈米,這對應於紅外光譜中的頻率。在一些示例中,將入射光的第二波長調諧成短於700奈米,這對應於可見光和紫外光譜中的頻率。在一些示例中,將入射光的第一波長調諧成大於入射光的第二波長。在一些示例中,將入射光的第一波長調諧成比入射光的第二波長短。The second wavelength of incident light that induces charged carriers (eg, electrons, holes, etc.) to oscillate at the surface of the nanoparticles is related to the size of the nanoparticles within the plasmonic layer 204 . Therefore, the second wavelength of the incident light can be adjusted by increasing or decreasing the size of the nanoparticles in the plasmonic sublayer 204 . In some examples, the second wavelength is tuned to be greater than 700 nanometers, which corresponds to a frequency in the infrared spectrum. In some examples, the second wavelength of the incident light is tuned to be shorter than 700 nanometers, which corresponds to frequencies in the visible and ultraviolet spectrum. In some examples, the first wavelength of the incident light is tuned to be greater than the second wavelength of the incident light. In some examples, the first wavelength of incident light is tuned to be shorter than the second wavelength of incident light.

在一些示例中,電漿子層204是電絕緣體。在一些示例中,電漿子層204是具有復介電常數的介電質。在一些示例中,奈米顆粒有助於具有復介電常數的電漿子層204。電漿子層204內的奈米顆粒可均勻地分散(例如,混合)整個電漿子層204,且電漿子層204內的奈米顆粒可以是介電質、半導體、半金屬或金屬。奈米顆粒的形狀可以基本上相似或變化。形狀可為圓錐形、矩形、雙錐體、四面體、立方體、八面體、圓柱形、橢圓體或球形中的任何一個形狀。在一些示例中,介電奈米顆粒是懸浮在聚合物基質中的介電粒子。在一些示例中,介電奈米顆粒是懸浮在聚碳酸酯中的介電粒子。在一些示例中,介電奈米顆粒是懸浮在陶瓷基體中的介電粒子。In some examples, plasmonic layer 204 is an electrical insulator. In some examples, plasmonic layer 204 is a dielectric having a complex permittivity. In some examples, the nanoparticles contribute to the plasmonic sublayer 204 having a complex permittivity. The nanoparticles in the plasmonic layer 204 may be uniformly dispersed (eg, mixed) throughout the plasmonic layer 204, and the nanoparticles in the plasmonic layer 204 may be dielectrics, semiconductors, semi-metals, or metals. The nanoparticles can be substantially similar or vary in shape. The shape can be any one of cone, rectangle, bicone, tetrahedron, cube, octahedron, cylinder, ellipsoid or sphere. In some examples, the dielectric nanoparticles are dielectric particles suspended in a polymer matrix. In some examples, the dielectric nanoparticles are dielectric particles suspended in polycarbonate. In some examples, the dielectric nanoparticles are dielectric particles suspended in a ceramic matrix.

如圖5A所示,第二傳導層202B(例如,第二超靜電傳導層)的表面沿橫向方向(例如,x-y平面)的界面電耦合到電漿子層204。此配置有助於捕獲電漿子層204中奈米顆粒的帶電載流子(例如,電子、空穴等) 在第二傳導層202B處的振盪,以沿第二傳導層202B產生第二電流。在一些示例中,第二電流是交流電(例如,IAc),如圖5A中的測試探針A所示。As shown in FIG. 5A , the surface of the second conductive layer 202B (eg, second superstatic conductive layer) is electrically coupled to the plasmonic sublayer 204 along the interface in the lateral direction (eg, x-y plane). This configuration helps to capture the oscillations of charged carriers (e.g., electrons, holes, etc.) of the nanoparticles in the plasmonic layer 204 at the second conducting layer 202B to generate a second current along the second conducting layer 202B. . In some examples, the second current is an alternating current (eg, IAc), as shown by test probe A in FIG. 5A .

為了從第二傳導層202B提取帶電載流子(例如,電子、空穴等)以給能量電池106充電,實施整流器橋電路系統220以對於任何輸入極性(例如,在第一輸入或第二輸入處的輸入極性),提供相對於參考接地的相同極性的整流器橋電路系統220的輸出。整流器橋電路系統220的第一輸入端與第二傳導層202B電耦合,整流器橋電路系統220的第二輸入端與第一傳導層202A電耦合。值得注意的是,在整流器橋電路系統220的輸出端(例如,在測試探針B處)處提供脈衝的直流(例如,IDc)。如圖5A所示,第一傳導層202A電耦合到整流器橋電路系統220的輸入。In order to extract charge carriers (e.g., electrons, holes, etc.) from the second conducting layer 202B to charge the energy cell 106, the rectifier bridge circuitry 220 is implemented for input polarity at ), providing the output of rectifier bridge circuitry 220 of the same polarity with respect to reference ground. A first input terminal of rectifier bridge circuitry 220 is electrically coupled to second conductive layer 202B, and a second input terminal of rectifier bridge circuitry 220 is electrically coupled to first conductive layer 202A. Notably, a pulsed direct current (eg, IDc) is provided at the output of rectifier bridge circuitry 220 (eg, at test probe B). As shown in FIG. 5A , first conductive layer 202A is electrically coupled to the input of rectifier bridge circuitry 220 .

如圖5A所示,半波的整流器橋222包括第一二極體226和可選的第二二極體 227,第一二極體226以反向偏壓跨第二傳導層202B和負極端子(電力軸環104或能量電池106的負極端子;負極端子進一步在對應於圖5A的光伏收集器 100 的邊緣處電耦合到連接單元 105 的母插座連接器 105B)連接,可選的第二二極體 227 以反向偏壓跨第一傳導層 202A 和正極端子 (電力軸環 104 或能量電池106的正極端子;正極端子進一步在對應於圖5A的光伏收集器100的邊緣處電耦合到連接單元105的公針連接器105A)連接。圖5A的半波的整流器橋222從電漿子光伏電池的橫截面200將在半波的整流器橋222的輸入處(在測試探針A處)的AC電力信號410轉換為在半波的整流器橋222的輸出處(在測試探針 B 處)的脈衝的DC電力信號412。在一些示例中,能量電池106跨半波的整流器橋222的輸出和參考接地電耦合,從而捕獲振盪的電荷載流子(例如,電子、空穴等)且將該等振盪電荷載流子存儲至能量電池106中以供將來使用。As shown in FIG. 5A, the half-wave rectifier bridge 222 includes a first diode 226 and an optional second diode 227, the first diode 226 is reverse biased across the second conductive layer 202B and the negative terminal (the negative terminal of the power collar 104 or the energy cell 106; the negative terminal is further electrically coupled to the female receptacle connector 105B of the connection unit 105 at the edge corresponding to the photovoltaic collector 100 of FIG. 5A ) connection, optional second The pole body 227 is reverse biased across the first conductive layer 202A and the positive terminal (of the power collar 104 or energy cell 106; the positive terminal is further electrically coupled to the connection at the edge of the photovoltaic collector 100 corresponding to FIG. 5A ). The male pin connector 105A) of the unit 105 is connected. The half-wave rectifier bridge 222 of FIG. 5A converts the AC power signal 410 at the input of the half-wave rectifier bridge 222 (at test probe A) from the cross-section 200 of the plasmonic photovoltaic cell to the half-wave rectifier bridge 222 of FIG. Pulsed DC power signal 412 at the output of bridge 222 (at test probe B). In some examples, the energy cell 106 is electrically coupled across the output of the half-wave rectifier bridge 222 and the reference ground, thereby capturing and storing oscillating charge carriers (e.g., electrons, holes, etc.) to the energy battery 106 for future use.

應當理解的是,半波的整流器橋222可以是全波的整流器橋,其包括四個互連的二極體,以便從混合的電漿子光伏電池的橫截面 300將AC電力信號410(圖5A的測試探針A處所示)轉換為脈衝的DC電力信號412。亦應理解的是,沿著針對大於700奈米的入射光波長的奈米顆粒的表面捕獲帶電載流子(例如,電子、空穴等)導致第一傳導層202A和第二傳導層202B的溫度降低,因為從電漿子光伏電池橫截面200去除帶電載流子(例如,電子、空穴等)係從將以其他方式貢獻熱的系統提取能量。也就是說,從系統中去除振蕩的帶電載流子(例如,電子、空穴等)會減慢分子/原子的整體運動,從而轉化為減少熱能。熱能的這種減少導致熱耦合到第一傳導層202A和第二傳導層202B的相鄰層也冷卻。在這種情況下,光子吸收層206熱耦合到第一傳導層202A且使光子吸收層206冷卻。由於量子效率隨著溫度降低而增加,因此第二傳導層202A對光子吸收層206的冷卻增加了光子吸收層206的效率。It should be appreciated that the half-wave rectifier bridge 222 may be a full-wave rectifier bridge comprising four interconnected diodes to convert the AC power signal 410 from the cross-section 300 of the hybrid plasmonic photovoltaic cell (Fig. 5A shown at test probe A) into a pulsed DC power signal 412 . It should also be understood that trapping charge carriers (e.g., electrons, holes, etc.) along the surface of the nanoparticles for incident light wavelengths greater than 700 nanometers results in The temperature is reduced because the removal of charge carriers (eg, electrons, holes, etc.) from the plasmonic photovoltaic cell cross-section 200 extracts energy from the system that would otherwise contribute heat. That is, the removal of oscillating charge carriers (e.g., electrons, holes, etc.) from the system slows down the overall molecular/atomic motion, which translates into reduced thermal energy. This reduction in thermal energy causes adjacent layers thermally coupled to the first conductive layer 202A and the second conductive layer 202B to also cool. In this case, photon absorbing layer 206 is thermally coupled to first conductive layer 202A and cools photon absorbing layer 206 . Since quantum efficiency increases with decreasing temperature, cooling of the photon absorbing layer 206 by the second conducting layer 202A increases the efficiency of the photon absorbing layer 206 .

一般而言,第二傳導層202B和電漿子層204對於大於700奈米的波長是半透明或透明的,從而為入射光230提供光路以由光子吸收層206吸收。因此,來自光子吸收層206的電子空穴產生的直流電(例如,第一電流,IDc)和來自電漿子層204的振蕩的帶電載流子(例如,電子,空穴等)所捕獲的交流電(例如,IAc)兩者可並聯地向能量電池106提供電能。In general, second conductive layer 202B and plasmonic layer 204 are translucent or transparent for wavelengths greater than 700 nanometers, thereby providing an optical path for incident light 230 to be absorbed by photon absorbing layer 206 . Thus, a direct current (e.g., first current, IDc) generated by electron holes from the photon-absorbing layer 206 and an alternating current captured by oscillating charge carriers (e.g., electrons, holes, etc.) from the plasmonic layer 204 (eg, IAc) may provide electrical energy to the energy cell 106 in parallel.

在一些示例中,每一層(例如,第二傳導層202B、電漿子層204和光子吸收層206等)對於在零度入射角處的可見光譜(例如,390奈米到700奈米)內的入射光來說是半透明的或透明的。在一些示例中,每一層(例如,第二傳導層202B、電漿子層204和光子吸收層206等)的組合在零度入射角處具有大於0.76的可見光譜內的光的透射率。在一些示例中,光子吸收層206包括光散射粒子。在一些示例中,電流(例如,第一電流和第二電流)疊加。In some examples, each layer (e.g., second conducting layer 202B, plasmonic layer 204, and photon-absorbing layer 206, etc.) Translucent or transparent to incident light. In some examples, the combination of each layer (eg, second conducting layer 202B, plasmonic layer 204 , and photon-absorbing layer 206 , etc.) has a transmittance of light in the visible spectrum greater than 0.76 at a zero degree angle of incidence. In some examples, photon absorbing layer 206 includes light scattering particles. In some examples, the currents (eg, the first current and the second current) are superimposed.

在一些示例中,將一個或多個半透明層設置成圍繞第一傳導層202A、光子吸收層206、電漿子層204和第二傳導層202B的基板(圖6A至圖6R)。在一些配置中,一個或多個半透明層經配置成氣密密封第三傳導層202C(例如,第三超靜電傳導層)、光子吸收層206、第一傳導層202A(例如,第一超靜電傳導層)、電漿子層204和第二傳導層202B。在一些示例中,在入射光230的遠側表面232上,鄰近第三傳導層202C設置反射器。在這樣的配置中,反射器經配置為將入射光230反射回穿過第三傳導層202C、光子吸收層206、第一傳導層202A、電漿子層204和第二傳導層202B,以增加吸收機會且增加誘導帶電載流子(例如,電子、空穴等)在奈米顆粒表面處的振盪。反射器可由金屬製成,如鋁、銀、金及銅等。在一些配置中,反射器層212(例如,圖6B)是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。In some examples, one or more translucent layers are disposed as a substrate surrounding the first conductive layer 202A, the photon absorbing layer 206, the plasmonic layer 204, and the second conductive layer 202B (FIGS. 6A-6R). In some configurations, the one or more translucent layers are configured to hermetically seal third conducting layer 202C (e.g., third superstatic conducting layer), photon absorbing layer 206, first conducting layer 202A (e.g., first superstatic conducting layer). electrostatic conductive layer), the plasmonic sublayer 204 and the second conductive layer 202B. In some examples, a reflector is disposed adjacent to third conductive layer 202C on distal surface 232 of incident light 230 . In such a configuration, the reflector is configured to reflect incident light 230 back through third conducting layer 202C, photon absorbing layer 206, first conducting layer 202A, plasmonic layer 204, and second conducting layer 202B to increase Absorbs opportunities and increases the oscillations of induced charge carriers (eg, electrons, holes, etc.) at the nanoparticle surface. Reflectors can be made of metals such as aluminum, silver, gold, and copper. In some configurations, reflector layer 212 (eg, FIG. 6B ) is a composite material that includes a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

在一些配置中,半波的整流器橋222包括第一二極體層208A,第一二極體層208A電耦合在電漿子層204與第一傳導層202A(例如,第一超靜電傳導層)之間。例如,如圖5B的增強型的混合的電漿子光伏電池橫截面350所示,第一二極體層208A的p-n結配置有效地替代了圖5A的混合的電漿子光伏電池截面300的第二二極體227。在這樣的配置中,第一二極體層208A經配置為引導電荷載流子(例如,電子、空穴等)由第一傳導層202A捕獲。在一些配置中,半波的整流器橋222包括第二二極體層208B,第二二極體層208B電耦合在電漿子層204與第二傳導層202B之間。例如,如圖5B的增強型的混合的電漿子光伏電池橫截面350所示,第二二極體層208B的p-n結配置有效地替代了圖5A的混合的電漿子光伏電池截面300的第一二極體226。在這樣的配置中,第二二極體層208B經配置為引導電荷載流子(例如,電子、空穴等)由第二傳導層202B捕獲。第一二極體層208A和第二傳導層202B兩者都是半導體層,每層都具有與n摻雜部分相鄰的p摻雜部分以形成p-n結。In some configurations, the half-wave rectifier bridge 222 includes a first diode layer 208A electrically coupled between the plasmonic sublayer 204 and a first conducting layer 202A (e.g., a first superelectrostatic conducting layer). between. For example, as shown in the enhanced hybrid plasmonic photovoltaic cell cross section 350 of FIG. 5B , the pn junction configuration of the first diode layer 208A effectively replaces the hybrid plasmonic photovoltaic cell cross section 300 of FIG. 5A The second diode 227. In such a configuration, the first diode layer 208A is configured to direct charge carriers (eg, electrons, holes, etc.) to be captured by the first conductive layer 202A. In some configurations, the half-wave rectifier bridge 222 includes a second diode layer 208B electrically coupled between the plasmonic sublayer 204 and the second conductive layer 202B. For example, as shown in the enhanced hybrid plasmonic photovoltaic cell cross section 350 of FIG. 5B , the pn junction configuration of the second diode layer 208B effectively replaces the hybrid plasmonic photovoltaic cell cross section 300 of FIG. 5A The first diode 226. In such a configuration, the second diode layer 208B is configured to direct charge carriers (eg, electrons, holes, etc.) to be captured by the second conductive layer 202B. Both the first diode layer 208A and the second conductive layer 202B are semiconductor layers each having a p-doped portion adjacent to an n-doped portion to form a pn junction.

在一些配置中,光子光伏電池橫截面201包括第三二極體層208C,第三二極體層208C電耦合在光子吸收層206和第三傳導層202C(例如,第三超靜電傳導層)之間。第三二極體層208C是具有與n摻雜部分相鄰的p摻雜部分以形成p-n結的半導體層。如圖5B所示,第三二極體層208C基本上形成以反向偏壓跨第三傳導層202C和光子吸收層206的第三二極體223。在這樣的反向偏壓配置中,第三二極體層208C的p-n結的內置電勢引導帶電載流子(例如,電子、空穴等)由第三傳導層202C捕獲。In some configurations, the photonic photovoltaic cell cross section 201 includes a third diode layer 208C electrically coupled between the photon absorbing layer 206 and a third conducting layer 202C (e.g., a third superelectrostatic conducting layer) . The third diode layer 208C is a semiconductor layer having a p-doped portion adjacent to an n-doped portion to form a pn junction. As shown in FIG. 5B , the third diode layer 208C substantially forms a third diode 223 that is reverse biased across the third conductive layer 202C and the photon absorbing layer 206 . In such a reverse bias configuration, the built-in potential of the pn junction of the third diode layer 208C guides charge carriers (eg, electrons, holes, etc.) to be captured by the third conductive layer 202C.

在一些配置中,光子光伏電池橫截面201包括第四二極體層208D,第四二極體層208D電耦合在光子吸收層206和第一傳導層202A(例如,第一超靜電傳導層)之間。第四二極體層208D是具有與n摻雜部分相鄰的p摻雜部分以形成p-n結的半導體層。如圖5B所示,第四二極體層208D基本上以反向偏壓跨第一傳導層202A和光子吸收層206形成第四二極體224。在這樣的反向偏壓配置中,第四二極體層208D的p-n結的內置電勢引導帶電載流子(例如,電子、空穴等)由第一傳導層202A捕獲。In some configurations, the photonic photovoltaic cell cross section 201 includes a fourth diode layer 208D electrically coupled between the photon absorbing layer 206 and the first conducting layer 202A (e.g., a first superelectrostatic conducting layer) . The fourth diode layer 208D is a semiconductor layer having a p-doped portion adjacent to an n-doped portion to form a p-n junction. As shown in FIG. 5B , the fourth diode layer 208D substantially forms a fourth diode 224 across the first conductive layer 202A and the photon absorbing layer 206 in reverse bias. In such a reverse bias configuration, the built-in potential of the pn junction of the fourth diode layer 208D guides charge carriers (eg, electrons, holes, etc.) to be captured by the first conductive layer 202A.

一般而言,第二傳導層202B、第二二極體層208B、電漿子層204和第一二極體層208A對於大於700奈米的波長是半透明的或透明的,從而為入射光230提供光路以由光子吸收層206吸收。因此,自光子吸收層206的電子-空穴所產生的直流電(例如,第一電流,IDc)和自電漿子層204中的振盪的帶電載流子(例如,電子、空穴等)捕獲的交流電(例如,第二電流,IAc)兩者可彼此並聯地向能量電池106提供電能。In general, second conductive layer 202B, second diode layer 208B, plasmonic sublayer 204, and first diode layer 208A are translucent or transparent for wavelengths greater than 700 nm, thereby providing incident light 230 with The light path can be absorbed by the photon absorbing layer 206 . Thus, direct current (e.g., first current, IDc) generated from electron-holes in photon-absorbing layer 206 and captured from oscillating charged carriers (e.g., electrons, holes, etc.) in plasmonic layer 204 The alternating current (eg, the second current, IAc) can both provide power to the energy battery 106 in parallel with each other.

在一些示例中,每一層(例如,第二傳導層 202B、第二二極體層208B、電漿子層204、第一二極體層208A、第一傳導層202A、第四二極體層208D、光子吸收層206、第三二極體層208C和第三傳導層202C等)對於在零度入射角處的可見光譜(例如,390奈米到700奈米)內的入射光是半透明的或透明的。在一些示例中,每一層(例如,第二傳導層202B、第二二極體層 208B、電漿子層204、第一二極體層208A、第一傳導層202A、第四二極體層208D、光子吸收層206、第三二極體層208C和第三傳導層202C等)的組合在零度入射角處具有大於0.76的可見光譜內的光的透射率。在一些示例中,光子吸收層206包括光散射粒子。在一些示例中,電流(例如,第一電流和第二電流)藉由使第二傳導層202B電耦合到第三傳導層202C而疊加。In some examples, each layer (e.g., second conducting layer 202B, second diode layer 208B, plasmonic sublayer 204, first diode layer 208A, first conducting layer 202A, fourth diode layer 208D, photon Absorbing layer 206, third diode layer 208C, and third conducting layer 202C, etc.) are translucent or transparent to incident light within the visible spectrum (eg, 390 nm to 700 nm) at a zero degree angle of incidence. In some examples, each layer (e.g., second conducting layer 202B, second diode layer 208B, plasmonic sublayer 204, first diode layer 208A, first conducting layer 202A, fourth diode layer 208D, photon The combination of absorbing layer 206, third diode layer 208C, and third conducting layer 202C, etc.) has a transmittance of light in the visible spectrum greater than 0.76 at a zero degree angle of incidence. In some examples, photon absorbing layer 206 includes light scattering particles. In some examples, the currents (eg, the first current and the second current) are superimposed by electrically coupling the second conductive layer 202B to the third conductive layer 202C.

在一些示例中,一個或多個半透明層經設置為圍繞第二傳導層202B、第二二極體層208B、電漿子層204、第一二極體層208A、第一傳導層202A、第四二極體層208D、光子吸收層206、第三二極體層208C和第三傳導層202C (圖6A至圖6R)。在一些配置中,一個或多個半透明層經配置為氣密密封第二傳導層202B、第二二極體層208B、電漿子層204、第一二極體層208A、第一傳導層202A、第四二極體層208D、光子吸收層206、第三二極體層208C和第三傳導層202C。In some examples, one or more translucent layers are disposed around second conductive layer 202B, second diode layer 208B, plasmonic layer 204, first diode layer 208A, first conductive layer 202A, fourth Diode layer 208D, photon absorbing layer 206, third diode layer 208C, and third conductive layer 202C (FIGS. 6A-6R). In some configurations, the one or more translucent layers are configured to hermetically seal second conductive layer 202B, second diode layer 208B, plasmonic layer 204, first diode layer 208A, first conductive layer 202A, The fourth diode layer 208D, the photon absorbing layer 206, the third diode layer 208C, and the third conductive layer 202C.

在一些配置中,將反射器層212(例如,圖 6B) 設置在入射光230的遠側表面232上。在這種配置中,反射器層212經配置為將入射光230反射回通過第二傳導層202B、第二二極體層208B、電漿子層204、第一二極體層208A、第一傳導層202A、第四二極體層208D、光子吸收層206、第三二極體層208C和第三傳導層202C,以增加吸收機會且增加誘導帶電載流子(例如,電子、空穴等)在奈米顆粒表面處的振盪。反射器層212可以是金屬層,如鋁、銀、金及銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。In some configurations, reflector layer 212 (eg, FIG. 6B ) is disposed on distal surface 232 of incident light 230. In this configuration, reflector layer 212 is configured to reflect incident light 230 back through second conducting layer 202B, second diode layer 208B, plasmonic layer 204, first diode layer 208A, first conducting layer 202A, fourth diode layer 208D, photon absorbing layer 206, third diode layer 208C, and third conducting layer 202C, to increase the chance of absorption and increase the induced charge carriers (eg, electrons, holes, etc.) Oscillations at the particle surface. The reflector layer 212 can be a metal layer, such as aluminum, silver, gold and copper. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖6A至圖6R圖示了各種基於電漿子及/或基於光子的光伏收集器的橫截面圖。圖6A中描繪的第一增強型混合電漿子光伏收集器橫截面600A包括半透明層210,半透明層210包圍第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104和互連跡線103。第一增強型混合電漿子光伏收集器橫截面600A具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。6A-6R illustrate cross-sectional views of various plasmonic-based and/or photon-based photovoltaic collectors. The first enhanced hybrid plasmonic photovoltaic collector cross-section 600A depicted in FIG. 6A includes a semitransparent layer 210 surrounding the third conducting layer 202C, the third diode layer 208C, the photon absorbing layer 206, the first Conductive layer 202A, plasmonic sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 and interconnect trace 103 . The first enhanced hybrid plasmonic photovoltaic collector cross-section 600A has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector.

第一增強型混合電漿子光伏收集器橫截面600A的功能包括如上文所述的增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層。這些層包括第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B和第二傳導層202B。互連跡線103可由導電材料製成,導電材料如銅、鋁、多晶矽、不銹鋼及石墨烯等。將互連跡線103的部分氣密地密封在半透明層210內。互連跡線103經配置為提供到電力軸環104的陽極和電力軸環104的陰極的電氣管線。在一些配置中,互連跡線103是連接到插座特徵,如經配置為與相鄰的光伏收集器連接(例如,電耦合)的公連接器或母連接器。在一些配置中,互連跡線103是電力軸環104的一部分。在上文結合圖1A、圖12A至圖12D和圖13對連接到互連跡線103的插座特徵進行了描述。也就是說,互連跡線103可提供從電力軸環104(或能量電池106)的正極端子(陽極)和電力軸環104(或能量)的負極端子(陰極)到一個或多個連接單元105的電氣管線,使得電力軸環104的正極端子(陽極) 在光伏收集器100的邊緣處連接到公針連接器105A且電力軸環104的負極端子(陰極)連接到母插座連接器105B(圖1A、圖12A至圖12D和圖13)。整流器橋電路系統220的功能態樣如上所述。整流器橋電路系統220可經氣密密封在半透明層210內,或可經由互連跡線103電耦合到半透明層210的外部。在一些配置中,整流器橋電路系統220是全波的整流器。在一些配置中,整流器橋電路系統220是具有一個或多個二極體的半波的整流器222,如圖4A至圖4C中的任一者所示。The functionality of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350 (FIG. 5B) as described above. These layers include third conducting layer 202C, third diode layer 208C, photon absorbing layer 206, first conducting layer 202A, plasmonic layer 204, second diode layer 208B, and second conducting layer 202B. The interconnection traces 103 can be made of conductive materials such as copper, aluminum, polysilicon, stainless steel, and graphene. Portions of interconnect traces 103 are hermetically sealed within translucent layer 210 . The interconnect traces 103 are configured to provide electrical lines to the anode of the power collar 104 and the cathode of the power collar 104 . In some configurations, the interconnect trace 103 is connected to a receptacle feature, such as a male or female connector configured to connect (eg, electrically couple) with an adjacent photovoltaic collector. In some configurations, interconnect trace 103 is part of power collar 104 . Receptacle features connected to interconnect traces 103 are described above in connection with FIGS. 1A , 12A-12D and 13 . That is, interconnect traces 103 may provide connections from the positive terminal (anode) of the power collar 104 (or energy cell 106 ) and the negative terminal (cathode) of the power collar 104 (or energy cell 106 ) to one or more connection units. 105 so that the positive terminal (anode) of the power collar 104 is connected to the male pin connector 105A at the edge of the photovoltaic collector 100 and the negative terminal (cathode) of the power collar 104 is connected to the female socket connector 105B ( 1A, 12A-12D and 13). The functional aspects of the rectifier bridge circuitry 220 are as described above. Rectifier bridge circuitry 220 may be hermetically sealed within translucent layer 210 , or may be electrically coupled to the exterior of translucent layer 210 via interconnect traces 103 . In some configurations, rectifier bridge circuitry 220 is a full wave rectifier. In some configurations, rectifier bridge circuitry 220 is a half-wave rectifier 222 having one or more diodes, as shown in any of FIGS. 4A-4C .

電力軸環104位於第一增強型混合電漿子光伏收集器橫截面600A的周邊周圍。電力軸環104經配置為通過一個或多個連接單元105將帶電載流子(例如,電子、空穴等)引導至能量電池或逆變器或相鄰的收集器100。電力軸環104由半導體材料製成,半導體材料如矽(多晶矽或單晶矽)、鍺、碲化鎘、銅銦鎵硒、砷化鎵(GaAs)及砷化銦鎵等。在一些配置中,電力軸環104包括整流器橋電路系統220。在一些配置中,電力軸環104經配置為通過連接單元105與一個或多個相鄰的光伏收集器電耦合。例如,電力軸環104可包括公插座特徵或母插座特徵(參見圖1A、圖12A至圖12D和圖13)以與相鄰的光伏收集器連接(例如,電耦合)。The power collar 104 is located around the perimeter of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. The power collar 104 is configured to direct charge carriers (eg, electrons, holes, etc.) to an energy cell or inverter or adjacent collector 100 through one or more connection units 105 . The power collar 104 is made of semiconductor materials such as silicon (polysilicon or monocrystalline silicon), germanium, cadmium telluride, copper indium gallium selenide, gallium arsenide (GaAs), and indium gallium arsenide. In some configurations, power collar 104 includes rectifier bridge circuitry 220 . In some configurations, the power collar 104 is configured to be electrically coupled with one or more adjacent photovoltaic collectors through the connection unit 105 . For example, the power collar 104 may include male or female socket features (see FIGS. 1A , 12A-12D and 13 ) to connect (eg, electrically couple) with adjacent photovoltaic collectors.

半透明層210包圍第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B和第二傳導層202B。半透明層210可以可選地包圍或部分包圍互連跡線103、整流器橋電路系統220、電力軸環104和一個或多個連接單元105(圖6A中未示出)。Translucent layer 210 surrounds third conducting layer 202C, third diode layer 208C, photon absorbing layer 206, first conducting layer 202A, plasmonic layer 204, second diode layer 208B, and second conducting layer 202B. The translucent layer 210 may optionally surround or partially surround the interconnect traces 103, the rectifier bridge circuitry 220, the power collar 104, and one or more connection units 105 (not shown in FIG. 6A).

半透明層210提供氣密密封以保護光伏電池免受元素(例如,雨、雪、風及灰塵等)的影響。半透明層210亦提供結構支撐以保護光伏電池免受衝擊損壞(例如,冰雹、岩石及沙子等)。半透明層210可由對於大於700奈米的波長半透明或透明的任何材料製成,從而為紅外光譜中的入射光230提供光路以由光子吸收層206吸收。半透明層210可由對於小於700奈米的波長半透明或透明的任何材料製成,從而為可見光或紫外光譜中的入射光230提供光路以由光子吸收層206吸收。在一些示例中,半透明層210由在跨越部分紅外、可見光和紫外光譜的區域為半透明或透明的任何材料製成。在一些示例中,半透明層210是聚合物或陶瓷。The translucent layer 210 provides a hermetic seal to protect the photovoltaic cells from the elements (eg, rain, snow, wind, dust, etc.). The translucent layer 210 also provides structural support to protect the photovoltaic cells from impact damage (eg, hail, rocks, sand, etc.). Translucent layer 210 may be made of any material that is translucent or transparent for wavelengths greater than 700 nanometers, thereby providing a light path for incident light 230 in the infrared spectrum to be absorbed by photon absorbing layer 206 . Translucent layer 210 may be made of any material that is translucent or transparent for wavelengths less than 700 nanometers, thereby providing a light path for incident light 230 in the visible or ultraviolet spectrum to be absorbed by photon absorbing layer 206 . In some examples, translucent layer 210 is made of any material that is translucent or transparent across portions of the infrared, visible, and ultraviolet spectrum. In some examples, translucent layer 210 is a polymer or ceramic.

在一些示例中,第一增強型混合電漿子光伏收集器橫截面600A是半透明的或透明的,使得一些入射光230穿過第一增強型混合電漿子光伏收集器橫截面600A且從入射光230的遠側表面232射出。In some examples, first enhanced hybrid plasmonic photovoltaic collector cross-section 600A is translucent or transparent such that some incident light 230 passes through first enhanced hybrid plasmonic photovoltaic collector cross-section 600A and from The distal surface 232 of the incident light 230 exits.

圖6B描繪了作為第一增強型混合電漿子光伏收集器橫截面600A的變體的第二增強型混合電漿子光伏收集器橫截面600B。第二增強型混合電漿子光伏收集器截面600B包括半透明層210及反射器層212,半透明層210沿入射光230的入射表面231與第二傳導層202B相鄰,且反射器層212沿入射光230的遠側表面232與第一傳導層202A相鄰設置。半透明層210和反射器層212夾著增強型混合電漿子光伏電池截面350(圖5B)的一層或多層,如第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104和互連跡線103。可包括一個或多個可選層,如第三二極體層208C及第四二極體層208D等。第二增強型混合電漿子光伏收集器截面600B的功能包括如上文關於圖5B和圖6A所述的增強型混合電漿子光伏電池橫截面350的一層或多層。亦在上文關於圖5B和圖6A對附加層的功能態樣進行了描述,附加層的功能態樣可包括互連跡線103、整流器橋電路系統220和電力軸環104。第二增強型混合電漿子光伏收集器截面600B具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。Figure 6B depicts a second enhanced hybrid plasmonic photovoltaic collector cross section 600B that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross section 600A. The second enhanced hybrid plasmonic photovoltaic collector section 600B includes a semitransparent layer 210 adjacent to the second conductive layer 202B along the incident surface 231 of the incident light 230 and a reflector layer 212 . Distal surface 232 along incident light 230 is disposed adjacent to first conductive layer 202A. Translucent layer 210 and reflector layer 212 sandwich one or more layers of enhanced hybrid plasmonic photovoltaic cell section 350 (FIG. A conductive layer 202A, plasmonic sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 and interconnect trace 103 . One or more optional layers may be included, such as third diode layer 208C, fourth diode layer 208D, and so on. The functionality of the second enhanced hybrid plasmonic photovoltaic collector section 600B includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross section 350 as described above with respect to FIGS. 5B and 6A . Functional aspects of additional layers, which may include interconnect traces 103 , rectifier bridge circuitry 220 , and power collar 104 , are also described above with respect to FIGS. 5B and 6A . The second enhanced hybrid plasmonic photovoltaic collector section 600B has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of the incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector.

反射器212經配置為將入射光230反射回通過第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、和第二傳導層202B,以增加吸收機會和增加誘導帶電載流子(例如,電子、空穴等)在奈米顆粒表面處的振盪。在一些配置中,反射器層212包括電絕緣層以將反射器層212與其他層絕緣。在一些配置中,反射器層212由金屬製成,鋁、銀、金及銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些實例中,金屬反射器層經配置為反射熱。在一些實例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。Reflector 212 is configured to reflect incident light 230 back through third conducting layer 202C, third diode layer 208C, photon absorbing layer 206, first conducting layer 202A, plasmonic layer 204, second diode layer 208B, and the second conductive layer 202B to increase the chance of absorption and increase the oscillation of induced charge carriers (eg, electrons, holes, etc.) at the nanoparticle surface. In some configurations, reflector layer 212 includes an electrically insulating layer to insulate reflector layer 212 from other layers. In some configurations, the reflector layer 212 is made of metal, such as aluminum, silver, gold, copper, and the like. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some examples, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖6C描繪了作為第一增強型混合電漿子光伏收集器橫截面600A的變體的第三增強型混合電漿子光伏收集器橫截面600C。第三增強型混合電漿子光伏收集器截面600C包括半透明層210,半透明層210包圍第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104和互連跡線103。可包括一個或多個可選層,如第三二極體層208C及第四二極體層208D等。第三增強型混合電漿子光伏收集器橫截面600C具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。第三增強型混合電漿子光伏收集器橫截面600C的功能包括如上文關於圖5B和圖6A所述的增強型混合電漿聲波光伏電池橫截面350的一層或多層。亦在上文關於圖5B和圖6A對附加層的功能態樣進行了描述,附加層的功能態樣可包括互連跡線103、整流器橋電路系統220和電力軸環104。FIG. 6C depicts a third enhanced hybrid plasmonic photovoltaic collector cross section 600C that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross section 600A. Third enhanced hybrid plasmonic photovoltaic collector section 600C includes a translucent layer 210 surrounding third conducting layer 202C, third diode layer 208C, photon absorbing layer 206, first conducting layer 202A, plasmonic Sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 and interconnect trace 103 . One or more optional layers may be included, such as third diode layer 208C, fourth diode layer 208D, and so on. The third enhanced hybrid plasmonic photovoltaic collector cross section 600C has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The functionality of the third enhanced plasmonic photovoltaic collector cross-section 600C includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350 as described above with respect to FIGS. 5B and 6A . Functional aspects of additional layers, which may include interconnect traces 103 , rectifier bridge circuitry 220 , and power collar 104 , are also described above with respect to FIGS. 5B and 6A .

整流器橋電路系統220進一步包括發光二極體 (LED)235。在一些示例中,整流器橋電路系統220經配置為當將電力輸送到能量電池106(及/或經由相應的一個或多個連接單元105將電力輸送到相鄰的一個或多個光伏收集器100)時,點亮LED 235。在一些示例中,整流器橋電路系統220經配置為當沒有將電力輸送到能量電池106(及/或經由相應的一個或多個連接單元105沒有將電力輸送到相鄰的一個或多個光伏收集器100)時,點亮LED 235。在一些示例中,整流器橋電路系統220經配置為在夜間點亮LED 235以作為對建築物/結構/交通/人行道的背光照明。在一些情況下,LED 235是高強度LED。Rectifier bridge circuitry 220 further includes light emitting diodes (LEDs) 235 . In some examples, the rectifier bridge circuitry 220 is configured to deliver power to the energy cell 106 (and/or to adjacent one or more photovoltaic collectors 100 via the corresponding one or more connection units 105) ), the LED 235 is turned on. In some examples, the rectifier bridge circuitry 220 is configured to deliver power to the energy cell 106 (and/or to adjacent one or more photovoltaic collectors via the corresponding one or more connection units 105 ) when power is not being delivered to the energy cell 106 device 100), the LED 235 is turned on. In some examples, rectifier bridge circuitry 220 is configured to illuminate LEDs 235 at night as backlighting for buildings/structures/traffic/sidewalks. In some cases, LEDs 235 are high intensity LEDs.

圖6D描繪了作為第一增強型混合電漿子光伏收集器橫截面600A的變體的第四增強型混合電漿子光伏收集器橫截面600D。第四增強型混合電漿子光伏收集器截面600D包括半透明層210和反射器層212,半透明層210沿入射光230的入射表面231與第二傳導層202B相鄰,且反射器層212沿入射光230的遠側表面232與第一傳導層202A相鄰設置。FIG. 6D depicts a fourth enhanced hybrid plasmonic photovoltaic collector cross-section 600D that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. The fourth enhanced hybrid plasmonic photovoltaic collector section 600D includes a semitransparent layer 210 adjacent to the second conductive layer 202B along the incident surface 231 of the incident light 230 and a reflector layer 212 Distal surface 232 along incident light 230 is disposed adjacent to first conductive layer 202A.

半透明層210和反射器層212夾著增強型混合電漿子光伏電池截面350(圖5B)的一層或多層,如第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104和互連跡線103。可包括一個或多個可選層,如第三二極體層208C及第四二極體層208D等。第四增強型混合電漿子光伏收集器橫截面600D具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。第四增強型混合電漿子光伏收集器橫截面600D的功能包括如上文關於圖5B和圖6A至圖6C所述的增強型混合電漿子光伏電池橫截面350的一層或多層。也在上文關於圖5B和圖6A至圖6C對附加層的功能態樣進行了描述,附加層的功能態樣可包括互連跡線103、整流器橋電路系統220和電力軸環104。Translucent layer 210 and reflector layer 212 sandwich one or more layers of enhanced hybrid plasmonic photovoltaic cell section 350 (FIG. 5B), such as third conducting layer 202C, third diode layer 208C, photon absorbing layer 206, A conductive layer 202A, plasmonic sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 and interconnect trace 103 . One or more optional layers may be included, such as third diode layer 208C, fourth diode layer 208D, and so on. The fourth enhanced hybrid plasmonic photovoltaic collector cross-section 600D has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The functionality of the fourth enhanced hybrid plasmonic photovoltaic collector cross-section 600D includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350 as described above with respect to FIGS. 5B and 6A-6C . Functional aspects of additional layers, which may include interconnect traces 103 , rectifier bridge circuitry 220 , and power collar 104 , are also described above with respect to FIGS. 5B and 6A-6C .

將反射器層212沿著入射光230的遠側表面 232設置在第一傳導層202A附近。在這種配置中,反射器層212經配置為將入射光230反射回通過第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿聲波層204、第二二極體層 208B和第二傳導層202B,以增加吸收機會且增加引導電荷載流子(例如,電子、空穴等)在奈米顆粒表面處的振盪。在一些配置中,反射器層212包括電絕緣層,以將反射器層212與層絕緣。在一些配置中,反射器層212由金屬製成,如鋁、銀、金、銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。The reflector layer 212 is disposed adjacent the first conductive layer 202A along the distal surface 232 of the incident light 230. In this configuration, reflector layer 212 is configured to reflect incident light 230 back through third conducting layer 202C, third diode layer 208C, photon absorbing layer 206, first conducting layer 202A, plasmonic acoustic wave layer 204, The second diode layer 208B and the second conductive layer 202B to increase the chance of absorption and increase the oscillation of guided charge carriers (eg, electrons, holes, etc.) at the nanoparticle surface. In some configurations, the reflector layer 212 includes an electrically insulating layer to insulate the reflector layer 212 from layers. In some configurations, reflector layer 212 is made of a metal, such as aluminum, silver, gold, copper, or the like. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖6E描繪了第五增強型混合電漿子光伏收集器橫截面600E,其是第一增強型混合電漿子光伏收集器橫截面600A的變體。第五增強型混合電漿子光伏收集器橫截面600E包括第一半透明層210A和第二半透明層210B,第一半透明層210A沿入射光230的遠側表面232與第一傳導層202A相鄰設置,第二半透明層210B沿入射光230的入射表面231與第二傳導層202B相鄰。FIG. 6E depicts a fifth enhanced hybrid plasmonic photovoltaic collector cross-section 600E that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. The fifth enhanced hybrid plasmonic photovoltaic collector cross-section 600E includes a first semitransparent layer 210A and a second semitransparent layer 210B, the first semitransparent layer 210A is in contact with the first conductive layer 202A along the distal surface 232 of the incident light 230 Adjacently disposed, the second translucent layer 210B is adjacent to the second conductive layer 202B along the incident surface 231 of the incident light 230 .

第一半透明層210A和第二半透明層210B夾著增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層,如第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104、互連跡線103和能量電池106。可包括一個或多個可選層,如第三二極體層208C及第四二極體層208D等。第五增強型混合電漿子光伏收集器橫截面600E具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣具有最大的曲率角α。第五增強型混合電漿聲波光伏收集器橫截面600E的功能包括增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層,如上文關於圖5B和圖6A至圖6D所述。也在上文關於圖5B和圖6A至圖6D對可包括整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。First translucent layer 210A and second translucent layer 210B sandwich one or more layers of enhanced hybrid plasmonic photovoltaic cell cross-section 350 ( FIG. 5B ), such as third conductive layer 202C, third diode layer 208C, photon Absorber layer 206 , first conductive layer 202A, plasmonic sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 , interconnect trace 103 and energy cell 106 . One or more optional layers may be included, such as third diode layer 208C, fourth diode layer 208D, and so on. The fifth enhanced hybrid plasmonic photovoltaic collector cross-section 600E has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with the largest curvature angle α at the edge of the photovoltaic collector. The function of the fifth enhanced plasmonic photovoltaic collector cross-section 600E includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350 (FIG. 5B), as described above with respect to FIG. 5B and FIGS. 6A-6D . Functional aspects of additional layers that may include rectifier bridge circuitry 220 and power collar 104 are also described above with respect to FIGS. 5B and 6A-6D .

如圖6E所示,能量電池106位於第五增強型混合電漿子光伏收集器橫截面600E的整流器橋電路系統220或電力軸環104附近。能量電池106可以是電池(例如,離子聚合物電池)或是能夠存儲電荷且提供到交流電(例如,IAc)的低阻抗路徑從而取消循環電荷的電容器。第五增強型混合電漿子光伏收集器橫截面600E具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。雖然沒有在圖6E中具體示出,能量電池106的正極和負極端子可通過互連跡線電耦合到一個或多個連接單元105,使得單元106的正極端子(陽極)連接到公針連接器105A且單元106的負極端子(陰極)在光伏收集器100的邊緣處連接到母插座連接器105B,光伏收集器100的邊緣對應第五增強型混合電漿子光伏收集器橫截面600E(圖1A、圖12A至圖12D和圖13)。As shown in FIG. 6E , the energy cell 106 is located near the rectifier bridge circuitry 220 or the power collar 104 of the fifth enhanced hybrid plasmonic photovoltaic collector cross-section 600E. The energy cell 106 may be a battery (eg, an ionic polymer battery) or a capacitor capable of storing charge and providing a low impedance path to an alternating current (eg, IAc), thereby canceling circulating charge. The fifth enhanced hybrid plasmonic photovoltaic collector cross-section 600E has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. Although not specifically shown in FIG. 6E, the positive and negative terminals of the energy cell 106 may be electrically coupled to one or more connection units 105 via interconnect traces such that the positive terminal (anode) of the unit 106 is connected to a male pin connector 105A and the negative terminal (cathode) of unit 106 is connected to the female socket connector 105B at the edge of the photovoltaic collector 100 corresponding to the fifth enhanced hybrid plasmonic photovoltaic collector cross-section 600E (FIG. 1A , Figure 12A to Figure 12D and Figure 13).

圖6F描繪了第六增強型混合電漿子光伏收集器橫截面600F,其是第一增強型混合電漿子光伏收集器橫截面600A的變體且包括第二增強型混合電漿子光伏收集器橫截面600B和第五增強型混合電漿子光伏收集器橫截面600E的態樣。第六增強型混合電漿子光伏收集器橫截面600F包括反射器層212和半透明層210,反射器層212沿入射光230的遠側表面232與第三傳導層202C相鄰設置,且半透明層210沿入射光230的入射表面231與第二傳導層202B相鄰。FIG. 6F depicts a sixth enhanced hybrid plasmonic photovoltaic collector cross-section 600F that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A and includes a second enhanced hybrid plasmonic photovoltaic collector. collector cross section 600B and fifth enhanced hybrid plasmonic photovoltaic collector cross section 600E. The sixth enhanced hybrid plasmonic photovoltaic collector cross-section 600F includes a reflector layer 212 disposed adjacent to the third conductive layer 202C along the distal surface 232 of the incident light 230 and a semi-transparent layer 210. Transparent layer 210 is adjacent to second conductive layer 202B along incident surface 231 of incident light 230 .

半透明層210和反射器層212夾著增強型混合電漿子光伏電池截面350(圖5B)的一層或多層,如第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104、互連跡線103和能量電池106。可包括一個或多個可選層,如第三二極體層208C及第四二極體層208D等。第六增強型混合電漿子光伏收集器截面600F具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。第六增強型混合電漿子光伏收集器橫截面600F的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6E所述。也在上文關於圖5B和圖6A至圖6E對於可包括能量電池106、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。Translucent layer 210 and reflector layer 212 sandwich one or more layers of enhanced hybrid plasmonic photovoltaic cell section 350 (FIG. 5B), such as third conducting layer 202C, third diode layer 208C, photon absorbing layer 206, A conductive layer 202A, plasmonic sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 , interconnect traces 103 and energy cell 106 . One or more optional layers may be included, such as third diode layer 208C, fourth diode layer 208D, and so on. The sixth enhanced hybrid plasmonic photovoltaic collector section 600F has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The sixth enhanced hybrid plasmonic photovoltaic collector cross-section 600F functions to include one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350, as described above with respect to Figures 5B and 6A-6E. Functional aspects of additional layers that may include energy cell 106 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6E .

圖6G描繪了第七增強型混合電漿子光伏收集器橫截面600G,其為第一增強型混合電漿子光伏收集器橫截面600A的變體。第七增強型混合電漿子光伏收集器截面600G包括第一半透明層210A和第二半透明層210B,第一半透明層210A沿入射光230的遠側表面232與第三傳導層202C相鄰設置,且第二半透明層210B沿入射光230的遠側表面231與第二傳導層202B相鄰。FIG. 6G depicts a seventh enhanced hybrid plasmonic photovoltaic collector cross-section 600G that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. The seventh enhanced hybrid plasmonic photovoltaic collector section 600G includes a first semitransparent layer 210A and a second semitransparent layer 210B, the first semitransparent layer 210A is in contact with the third conductive layer 202C along the distal surface 232 of the incident light 230 The second translucent layer 210B is adjacent to the second conductive layer 202B along the distal surface 231 of the incident light 230 .

第一半透明層210A和第二半透明層210B夾著增強型混合電漿子光伏電池截面350(圖5B)的一層或多層,如第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104、互連跡線103、發光二極體(LED)235和能量電池106。可包括一個或多個可選層,如第三二極體層 208C及第四二極體層208D等。第七增強型混合電漿子光伏收集器截面600G具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。第七增強型混合電漿子光伏收集器橫截面600G的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6F所述。也在上文關於圖5B和圖6A至圖6F對可包括能量電池106、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。First translucent layer 210A and second translucent layer 210B sandwich one or more layers of enhanced hybrid plasmonic photovoltaic cell section 350 (FIG. 5B), such as third conductive layer 202C, third diode layer 208C, photon absorbing Layer 206, first conductive layer 202A, plasmonic sublayer 204, second diode layer 208B, second conductive layer 202B, power collar 104, interconnect traces 103, light emitting diodes (LEDs) 235, and energy cells 106. One or more optional layers may be included, such as third diode layer 208C, fourth diode layer 208D, and so on. The seventh enhanced hybrid plasmonic photovoltaic collector section 600G has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The seventh enhanced hybrid plasmonic photovoltaic collector cross-section 600G functions to include one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350, as described above with respect to Figures 5B and 6A-6F. Functional aspects of additional layers that may include energy cell 106 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6F .

圖6H描繪了第八增強型混合電漿子光伏收集器橫截面600H,其為第一增強型混合電漿子光伏收集器橫截面600A的變體。第八增強型混合電漿子光伏收集器橫截面600H包括反射器層212和半透明層210,反射器層212沿入射光230的遠側表面232與第三傳導層 202c相鄰設置,且半透明層210沿入射光230的入射表面231與第二傳導層202B相鄰。FIG. 6H depicts an eighth enhanced hybrid plasmonic photovoltaic collector cross-section 600H that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. The eighth enhanced hybrid plasmonic photovoltaic collector cross-section 600H includes a reflector layer 212 disposed adjacent to the third conductive layer 202c along the distal surface 232 of the incident light 230 and a semitransparent layer 210, and the semitransparent layer 210 Transparent layer 210 is adjacent to second conductive layer 202B along incident surface 231 of incident light 230 .

反射器層212和半透明層210夾著增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層,如第三傳導層202C、第三二極體層208C、光子吸收層206、第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104、互連跡線103、LED 235和能量電池106。可包括一個或多個可選層,如第三二極體層208C及第四二極體層208D等。第八增強型混合電漿子光伏收集器橫截面600H具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣具有最大的曲率角α。第八增強型混合電漿子光伏收集器橫截面600H的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6G所述。也在上文關於圖5B和圖6A至圖6G對可包括能量電池106、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。Reflector layer 212 and translucent layer 210 sandwich one or more layers of enhanced hybrid plasmonic photovoltaic cell cross section 350 (FIG. 5B), such as third conductive layer 202C, third diode layer 208C, photon absorbing layer 206, First conductive layer 202A, plasmonic sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 , interconnect traces 103 , LED 235 and energy cell 106 . One or more optional layers may be included, such as third diode layer 208C, fourth diode layer 208D, and so on. The eighth enhanced hybrid plasmonic photovoltaic collector cross-section 600H has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with the greatest curvature angle α at the edge of the photovoltaic collector. The function of the eighth enhanced hybrid plasmonic photovoltaic collector cross-section 600H includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350 as described above with respect to FIG. 5B and FIGS. 6A-6G . Aspects of functionality of additional layers that may include energy cell 106 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6G .

圖6I描繪了第九增強型混合電漿子光伏收集器橫截面600I,其為第一增強型混合電漿子光伏收集器橫截面600A的變體。第九增強型混合電漿子光伏收集器截面600I包括圍繞增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層的半透明層210,增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層如第三傳導層202C、第三二極體層208C、光子吸收層206、第四二極體層208D、第一傳導層202A、第一二極體層208A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104和互連跡線103。第九增強型混合電漿子光伏收集器橫截面600I具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大的曲率角α。第九增強型混合電漿子光伏收集器橫截面600I的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6H所述。也在上文關於圖5B和圖6A至圖6H對可包括互連跡線103、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。FIG. 6I depicts a ninth enhanced hybrid plasmonic photovoltaic collector cross-section 600I that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. The ninth enhanced hybrid plasmonic photovoltaic collector section 600I includes one or more translucent layers 210 surrounding the enhanced hybrid plasmonic photovoltaic cell cross section 350 ( FIG. 5B ), the enhanced hybrid plasmonic photovoltaic cell cross section 350 (FIG. 5B) of one or more layers such as third conductive layer 202C, third diode layer 208C, photon absorbing layer 206, fourth diode layer 208D, first conductive layer 202A, first diode layer 208A, plasma Sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 and interconnect trace 103 . The ninth enhanced hybrid plasmonic photovoltaic collector cross-section 600I has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of the incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The function of the ninth enhanced hybrid plasmonic photovoltaic collector cross-section 600I includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350 , as described above with respect to FIGS. 5B and 6A-6H . Functional aspects of additional layers that may include interconnect traces 103 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6H .

圖6J描繪了第十增強型混合電漿子光伏收集器橫截面600J,其是第一增強型混合電漿子光伏收集器橫截面600A的變體。第十增強型混合電漿子光伏收集器橫截面600J包括包圍增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層的半透明層210,增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層如第三傳導層202C、第三二極體層208C、光子吸收層206、第四二極體層208D、第一傳導層202A、第一二極體層208A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104、發光二極體(LED)235和互連跡線103。第十增強型混合電漿子光伏收集器橫截面600J具有凸面形狀,其中光伏收集器朝向入射光230的入射表面23l伸長,在光伏收集器的邊緣具有最大曲率角α。第十增強型混合電漿子光伏收集器橫截面600J的功能包括增強型混合電漿聲波光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A-6I所述。也在上文關於圖5B和圖6A至圖6I對可包括互連跡線103、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。FIG. 6J depicts a tenth enhanced hybrid plasmonic photovoltaic collector cross-section 600J that is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. The tenth enhanced hybrid plasmonic photovoltaic collector cross-section 600J includes one or more translucent layers 210 surrounding the enhanced hybrid plasmonic photovoltaic cell cross-section 350 ( FIG. 5B ), the enhanced hybrid plasmonic photovoltaic cell cross-section One or more layers of section 350 (FIG. 5B) such as third conductive layer 202C, third diode layer 208C, photon absorbing layer 206, fourth diode layer 208D, first conductive layer 202A, first diode layer 208A, electrical Plasma layer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 , light emitting diodes (LEDs) 235 and interconnect traces 103 . The tenth enhanced hybrid plasmonic photovoltaic collector cross-section 600J has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The function of the tenth enhanced plasmonic photovoltaic collector cross-section 600J includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350, as described above with respect to FIG. 5B and FIGS. 6A-6I. Functional aspects of additional layers that may include interconnect traces 103 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6I .

圖6K描繪了第十一增強型混合電漿子光伏收集器橫截面600K,其是第一增強型混合電漿子光伏收集器橫截面600A的變體。第十一增強型混合電漿子光伏收集器橫截面600K包括第一半透明層210A和第二半透明層210B,第一半透明層210A和第二半透明層210B夾著增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層,如第三層傳導層202C、第三二極體層208C、光子吸收層206、第四二極體層208D、第一傳導層202A、第一二極體層208A、電漿子層204、第二二極體層208B、第二傳導層202B 、電力軸環104、能量電池106、LED 235和互連跡線103。第十一增強型混合電漿子光伏收集器橫截面600K具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣具有最大的曲率角α。第十一增強型混合電漿子光伏收集器橫截面600K的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6J所述。也在上文關於圖5B和圖6A至圖6J對可包括能量電池106、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。FIG. 6K depicts an eleventh enhanced hybrid plasmonic photovoltaic collector cross-section 600K, which is a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. An eleventh enhanced hybrid plasmonic photovoltaic collector cross-section 600K includes a first semitransparent layer 210A and a second semitransparent layer 210B sandwiching an enhanced hybrid plasmonic One or more layers of sub-photovoltaic cell cross section 350 (FIG. 5B), such as third conductive layer 202C, third diode layer 208C, photon absorbing layer 206, fourth diode layer 208D, first conductive layer 202A, first Diode layer 208A, plasmonic sublayer 204 , second diode layer 208B, second conductive layer 202B, power collar 104 , energy cell 106 , LED 235 and interconnect trace 103 . The eleventh enhanced hybrid plasmonic photovoltaic collector cross-section 600K has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with the largest curvature angle α at the edge of the photovoltaic collector. The function of the eleventh enhanced hybrid plasmonic photovoltaic collector cross-section 600K includes one or more layers of enhanced hybrid plasmonic photovoltaic cell cross-section 350 , as described above with respect to FIGS. 5B and 6A-6J . Functional aspects of additional layers that may include energy cell 106 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6J .

圖6L描繪了第十二增強型混合電漿子光伏收集器橫截面600L,其作為第一增強型混合電漿子光伏收集器橫截面600A的變體。第十二增強型混合電漿子光伏收集器橫截面600L包括反射器層212和半透明層210,反射器層212沿入射光230的遠側表面232與第三傳導層202C相鄰設置,且半透明層210沿入射光230的入射表面231與第二傳導層202B相鄰。FIG. 6L depicts a twelfth enhanced hybrid plasmonic photovoltaic collector cross-section 600L as a variation of the first enhanced hybrid plasmonic photovoltaic collector cross-section 600A. The twelfth enhanced hybrid plasmonic photovoltaic collector cross-section 600L includes a reflector layer 212 disposed adjacent to the third conductive layer 202C along the distal surface 232 of the incident light 230 and a translucent layer 210, and The translucent layer 210 is adjacent to the second conductive layer 202B along the incident surface 231 of the incident light 230 .

反射器層212和半透明層210夾著增強型混合電漿子光伏電池截面350(圖5B)的一層或多層,如第三傳導層202C、第三二極體層208C、光子吸收層206、第四二極體層208D、第一傳導層202A、第一二極體層208A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104、能量電池106、發光二極體(LED)235和互連跡線103。第十二增強型混合電漿子光伏收集器橫截面600L具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣具有最大曲率角α。第十二增強型混合電漿子光伏收集器橫截面600L的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6K所述。也在上文關於圖5B和圖6A至圖6K對可包括能量電池106、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。Reflector layer 212 and translucent layer 210 sandwich one or more layers of enhanced hybrid plasmonic photovoltaic cell section 350 (FIG. 5B), such as third conductive layer 202C, third diode layer 208C, photon absorbing layer 206, first Quadruple diode layer 208D, first conductive layer 202A, first diode layer 208A, plasmonic sublayer 204, second diode layer 208B, second conductive layer 202B, power collar 104, energy cell 106, light emitting diode Body (LED) 235 and interconnection trace 103. The twelfth enhanced hybrid plasmonic photovoltaic collector cross-section 600L has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The function of the twelfth enhanced hybrid plasmonic photovoltaic collector cross-section 600L includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350, as described above with respect to FIGS. 5B and 6A-6K. Functional aspects of additional layers that may include energy cell 106 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6K .

圖6M描繪了第十三增強型混合電漿子光伏收集器橫截面600M,其包括半透明層210,半透明層210包圍第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104和互連跡線103。第十三增強型混合電漿子光伏收集器橫截面600M具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大的曲率角α。第十三增強型混合電漿子光伏收集器橫截面600M的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6L所述。也在上文關於圖5B和圖6A至圖6L對可包括互連跡線103、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。Figure 6M depicts a thirteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600M comprising a translucent layer 210 surrounding the first conductive layer 202A, the plasmonic layer 204, the second diode layer 208B , the second conductive layer 202B, the power collar 104 and the interconnection trace 103 . The thirteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600M has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with the largest curvature angle α at the edge of the photovoltaic collector. The function of the thirteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600M includes one or more layers of enhanced hybrid plasmonic photovoltaic cell cross-section 350 , as described above with respect to FIGS. 5B and 6A-6L . Functional aspects of additional layers that may include interconnect traces 103 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6L .

在一些配置中,第十三增強型混合電漿子光伏收集器截面600M包括反射器層212,反射器層212經設置在入射光230的遠側表面232上。在這樣的配置中,反射器層212經配置為反射入射光230回到電漿子層204的表面以增加吸收機會。反射器層212可以是金屬層,如鋁、銀、金及銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。In some configurations, thirteenth enhanced hybrid plasmonic photovoltaic collector section 600M includes reflector layer 212 disposed on distal surface 232 of incident light 230 . In such a configuration, reflector layer 212 is configured to reflect incident light 230 back to the surface of plasmonic layer 204 to increase the chance of absorption. The reflector layer 212 can be a metal layer, such as aluminum, silver, gold and copper. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖6N描繪了第十四增強型混合電漿子光伏收集器橫截面600N,其包括第一半透明層210A和第二半透明層210B,第一半透明層210A和第二半透明層210B夾著增強型混合電漿子光伏電池橫截面350(圖5B)的一層或多層,如第一傳導層202A、電漿子層204、第二二極體層208B、第二傳導層202B、電力軸環104、互連跡線103和能量電池106。第十四增強型混合電漿子光伏收集器橫截面600N具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。第十四增強型混合電漿子光伏收集器橫截面600N的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6M所述。也在上文關於圖5B和圖6A至圖6M對可包括能量電池106、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。FIG. 6N depicts a fourteenth enhanced hybrid plasmonic photovoltaic collector cross section 600N comprising a first semitransparent layer 210A and a second semitransparent layer 210B sandwiched between the first semitransparent layer 210A and the second semitransparent layer 210B. One or more layers of enhanced hybrid plasmonic photovoltaic cell cross-section 350 (FIG. 5B), such as first conducting layer 202A, plasmonic layer 204, second diode layer 208B, second conducting layer 202B, power collar 104 , interconnecting traces 103 and energy cells 106 . The fourteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600N has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The function of the fourteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600N includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350 , as described above with respect to FIGS. 5B and 6A-6M . Aspects of functionality of additional layers that may include energy cell 106 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6M .

在一些配置中,第十四增強型混合電漿子光伏收集器橫截面600N包括反射器層212,反射器層212經設置在入射光230的遠側表面232上。在這樣的配置中,反射器層212經配置為反射入射光230回到電漿子層204的表面以增加吸收機會。反射器層212可以是金屬層,如鋁、銀、金及銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。In some configurations, fourteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600N includes reflector layer 212 disposed on distal surface 232 of incident light 230 . In such a configuration, reflector layer 212 is configured to reflect incident light 230 back to the surface of plasmonic layer 204 to increase the chance of absorption. The reflector layer 212 can be a metal layer, such as aluminum, silver, gold and copper. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖6O描繪了第十五增強型混合電漿子光伏收集器橫截面600O,其包括半透明層210,半透明層210包圍第三傳導層202C、第三二極體層208C、第一電漿子層204A、第一傳導層202A、第二電漿子層204B、第二二極體層208B、第二傳導層202B、電力軸環104和互連跡線103。第十五增強型混合電漿子光伏收集器橫截面600O具有凸面形狀,其中光伏收集器朝向入射光的入射表面231伸長230,在光伏收集器的邊緣處具有最大的曲率角α。第十五增強型混合電漿子光伏收集器橫截面600M的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6N所述。也在上文關於圖5B和圖6A至圖6N對可包括互連跡線103、整流器橋電路系統220和電力軸環104附加層的功能態樣進行了描述。6O depicts a fifteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600O comprising a semitransparent layer 210 surrounding the third conductive layer 202C, the third diode layer 208C, the first plasmonic layer 204A, first conductive layer 202A, second plasmonic sublayer 204B, second diode layer 208B, second conductive layer 202B, power collar 104 and interconnect trace 103 . The fifteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600O has a convex shape in which the photovoltaic collector is elongated 230 towards the incident surface 231 of the incident light, with the greatest curvature angle α at the edge of the photovoltaic collector. The function of the fifteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600M includes one or more layers of enhanced hybrid plasmonic photovoltaic cell cross-section 350 , as described above with respect to FIGS. 5B and 6A-6N . Functional aspects that may include interconnect traces 103 , rectifier bridge circuitry 220 , and additional layers of power collar 104 are also described above with respect to FIGS. 5B and 6A-6N .

在一些配置中,第十五增強型混合電漿子光伏收集器截面600O包括反射器層212,反射器層212經設置在入射光230的遠側表面232上。在這樣的配置中,反射器層212經配置為反射入射光230回到電漿子層204A和204B以增加吸收機會。反射器層212可以是金屬層,如鋁、銀、金及銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。In some configurations, fifteenth enhanced hybrid plasmonic photovoltaic collector section 600O includes reflector layer 212 disposed on distal surface 232 of incident light 230 . In such a configuration, reflector layer 212 is configured to reflect incident light 230 back to plasmonic layers 204A and 204B to increase the chance of absorption. The reflector layer 212 can be a metal layer, such as aluminum, silver, gold and copper. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖6P描繪了第十六增強型混合電漿子光伏收集器橫截面600P,其包括半透明層210A和半透明層210B,半透明層210A和半透明層210B包圍第三傳導層202C、第三二極體層208C、第一電漿子層204A、第一傳導層202A、第二電漿層204B、第二二極體層208B、第二傳導層202B、電力軸環104、能量電池106和互連跡線103。第十六增強型混合電漿子光伏收集器橫截面600P具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。第十六增強型混合電漿子光伏收集器橫截面600M的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6O所述。也在上文關於關於圖5B和圖6A至圖6O對可包括能量電池106、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。FIG. 6P depicts a sixteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600P comprising a semitransparent layer 210A and a semitransparent layer 210B surrounding a third conductive layer 202C, a third Diode layer 208C, first plasmonic sublayer 204A, first conductive layer 202A, second plasmonic layer 204B, second diode layer 208B, second conductive layer 202B, power collar 104, energy cell 106, and interconnects Trace 103. The sixteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600P has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The function of the sixteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600M includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350, as described above with respect to FIGS. 5B and 6A-6O. Functional aspects of additional layers that may include energy cell 106 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6O .

在一些配置中,第十六增強型混合電漿子光伏收集器截面600P包括反射器層212,反射器層212經設置在入射光230的遠側表面232上。在這樣的配置中,反射器層212將配置為反射入射光230回到電漿子層204A和204B以增加吸收機會。反射器層212可以是金屬層,如鋁、銀、金及銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。In some configurations, sixteenth enhanced hybrid plasmonic photovoltaic collector section 600P includes reflector layer 212 disposed on distal surface 232 of incident light 230 . In such a configuration, reflector layer 212 would be configured to reflect incident light 230 back to plasmonic layers 204A and 204B to increase the chance of absorption. The reflector layer 212 can be a metal layer, such as aluminum, silver, gold and copper. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖6Q描繪了第十七增強型混合電漿子光伏收集器橫截面600Q,其包括半透明層210,半透明層210包圍第一傳導層202A、光子吸收層206、第二二極體層208B、第二傳導層202B、電力軸環104及互連跡線103。第十七增強型混合電漿子光伏收集器橫截面600Q具有凸起形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣處具有最大曲率角α。第十七增強型混合電漿子光伏收集器橫截面600Q的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6P所述。也在上文關於圖5B和圖6A至圖6P對可包括互連跡線103、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。6Q depicts a seventeenth enhanced hybrid plasmonic photovoltaic collector cross-section 600Q comprising a translucent layer 210 surrounding the first conducting layer 202A, the photon absorbing layer 206, the second diode layer 208B, The second conductive layer 202B, the power collar 104 and the interconnect trace 103 . The seventeenth enhanced hybrid plasmonic photovoltaic collector cross-section 600Q has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with a maximum curvature angle α at the edge of the photovoltaic collector. The function of the seventeenth enhanced hybrid plasmonic photovoltaic collector cross-section 600Q includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350, as described above with respect to Figures 5B and 6A-6P. Functional aspects of additional layers that may include interconnect traces 103 , rectifier bridge circuitry 220 , and power collar 104 are also described above with respect to FIGS. 5B and 6A-6P .

在一些配置中,第十七增強型混合電漿子光伏收集器截面600Q包括反射器層212,反射器層212經設置在入射光230的遠側表面232上。在這樣的配置中,反射器層212經配置為反射入射光230回到光子吸收層206以增加吸收機會。反射器層212可以是金屬層,例如鋁、銀、金及銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。In some configurations, seventeenth enhanced hybrid plasmonic photovoltaic collector section 600Q includes reflector layer 212 disposed on distal surface 232 of incident light 230 . In such a configuration, reflector layer 212 is configured to reflect incident light 230 back to photon absorbing layer 206 to increase the chance of absorption. The reflector layer 212 may be a metal layer, such as aluminum, silver, gold, copper, and the like. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖6R描繪了第十八增強型混合電漿子光伏收集器橫截面600R,其包括半透明層210,半透明層210包括第一半透明層210A和第二半透明層210B,第一半透明層210A經設置成沿著入射光230的遠側表面232在第一傳導層202A附近,且第二半透明層210B沿著入射光230的入射表面231與第二傳導層202B相鄰。第一半透明層210A和第二半透明層210B夾著增強型混合電漿子光伏電池截面350(圖5B)的一層或多層,如第一傳導層202A、光子吸收層206、第二二極體層208B、第二傳導層202B、電力軸環104、能量電池106和互連跡線103。 第十八增強型混合電漿子光伏收集器橫截面600R具有凸面形狀,其中光伏收集器朝向入射光230的入射表面231伸長,在光伏收集器的邊緣具有最大的曲率角α。第十八增強型混合電漿子光伏收集器橫截面600R的功能包括增強型混合電漿子光伏電池橫截面350的一層或多層,如上文關於圖5B和圖6A至圖6Q所述。在上文關於圖5B和圖6A至圖6Q對可包括互連跡線103、整流器橋電路系統220和電力軸環104的附加層的功能態樣進行了描述。6R depicts an eighteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600R comprising a semitransparent layer 210 comprising a first semitransparent layer 210A and a second semitransparent layer 210B, the first semitransparent layer Layer 210A is disposed adjacent to first conductive layer 202A along distal surface 232 of incident light 230 , and second translucent layer 210B is adjacent to second conductive layer 202B along incident surface 231 of incident light 230 . The first translucent layer 210A and the second translucent layer 210B sandwich one or more layers of the enhanced hybrid plasmonic photovoltaic cell section 350 (FIG. 5B), such as the first conducting layer 202A, the photon absorbing layer 206, the second diode Bulk layer 208B, second conductive layer 202B, power collar 104 , energy cell 106 and interconnect trace 103 . The eighteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600R has a convex shape in which the photovoltaic collector is elongated towards the incident surface 231 of incident light 230 with the largest curvature angle α at the edge of the photovoltaic collector. The function of the eighteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600R includes one or more layers of the enhanced hybrid plasmonic photovoltaic cell cross-section 350 , as described above with respect to FIGS. 5B and 6A-6Q . Functional aspects of additional layers that may include interconnect traces 103 , rectifier bridge circuitry 220 , and power collar 104 are described above with respect to FIGS. 5B and 6A-6Q .

在一些配置中,第十八增強型混合電漿子光伏收集器截面600R包括反射器層212,反射器層212經設置在入射光230的遠側表面232上。在這樣的配置中,反射器層212經配置為反射入射光230回到光子吸收層206以增加吸收機會。反射器層212可以是金屬層,例如鋁、銀、金及銅等。在一些配置中,反射器層212是包括金屬反射器層的複合材料。在一些情況下,金屬反射器層經配置為反射熱。在一些示例中,反射器層212是熱屏障。在一些情況下,反射器層212是熱絕緣體。In some configurations, eighteenth enhanced hybrid plasmonic photovoltaic collector section 600R includes reflector layer 212 disposed on distal surface 232 of incident light 230 . In such a configuration, reflector layer 212 is configured to reflect incident light 230 back to photon absorbing layer 206 to increase the chance of absorption. The reflector layer 212 may be a metal layer, such as aluminum, silver, gold, copper, and the like. In some configurations, reflector layer 212 is a composite material including a metal reflector layer. In some cases, the metal reflector layer is configured to reflect heat. In some examples, reflector layer 212 is a thermal barrier. In some cases, reflector layer 212 is a thermal insulator.

圖7示出示例性的基於電漿子的光伏收集器100的分解圖。光伏收集器100包括第一半透明層210A、第一傳導層202A、第一二極體層208A、光子吸收層206、電漿子層204、第二層二極體層208B、第二傳導層202B、電力軸環104、能量電池106和第二半透明層210B。在這種情況下,電力軸環104包括整流器橋電路系統220,以從光子吸收層206和電漿子層204引導電力。同樣地,能量電池106包括經電耦合到電力軸環104的陽極和陰極,因此以儲存電荷以備後用。雖然圖7未展示,但光伏收集器100可進一步包括一個或多個連接單元105(圖1A、圖12A至圖12D和圖13),以將光伏收集器100的電力軸環104及/或能量電池106電耦合到一個或多個相鄰的光伏收集器的相應的電力軸環104及/或能量電池106。FIG. 7 shows an exploded view of an exemplary plasmon-based photovoltaic collector 100 . The photovoltaic collector 100 includes a first translucent layer 210A, a first conducting layer 202A, a first diode layer 208A, a photon absorbing layer 206, a plasmonic layer 204, a second diode layer 208B, a second conducting layer 202B, Power collar 104, energy cell 106, and second translucent layer 210B. In this case, power collar 104 includes rectifier bridge circuitry 220 to direct power from photon absorbing layer 206 and plasmonic layer 204 . Likewise, the energy cell 106 includes an anode and a cathode electrically coupled to the power collar 104, thereby storing charge for later use. Although not shown in FIG. 7 , the photovoltaic collector 100 may further include one or more connection units 105 ( FIGS. 1A , 12A-12D and 13 ) to connect the power collar 104 and/or energy The cells 106 are electrically coupled to corresponding power collars 104 and/or energy cells 106 of one or more adjacent photovoltaic collectors.

圖8圖示了具有支架耦合器120的示例性的基於混合電漿的光伏收集器100的ISO視圖。光伏收集器100是三角形形狀,且光伏收集器100包括微控制器/處理器102以調節從能量電池106到逆變器或電網的電力傳輸。微控制器/處理器102包括一個或多個可程式化的輸入/輸出的周邊裝置1104((圖11),例如位於能量電池106的陽極及/或陰極處的電壓感測器及與電力橋或電源逆變器進行通訊的通訊介面電路),以平衡負載並促進向電網的配電。微控制器/處理器102位於或靠近三角形角122的頂點。FIG. 8 illustrates an ISO view of an exemplary hybrid plasma-based photovoltaic collector 100 with support coupler 120 . The photovoltaic collector 100 is triangular in shape, and the photovoltaic collector 100 includes a microcontroller/processor 102 to regulate power transfer from an energy cell 106 to an inverter or grid. Microcontroller/processor 102 includes one or more programmable input/output peripheral devices 1104 ((FIG. 11 ), such as voltage sensors and power bridges at the anode and/or cathode of energy cell 106 or power inverter communication interface circuit) to balance loads and facilitate power distribution to the grid. Microcontroller/processor 102 is located at or near the apex of triangle corner 122 .

支架耦合器120為「I」形,以便在結構上與光伏收集器100的邊緣互連。支架耦合器120沿光伏收集器100的邊緣長度延伸。在一些示例中,支架耦合器120經配置為與能量電池106電耦合,以在三角形角122的頂點附近的邊緣處分配電力。在一些情況下,支架耦合器120經配置有電力電纜/耦合器,以從能量電池 106 傳輸電力到逆變器或併網。在一些示例中,支架耦合器120是電絕緣的,以防止來自相鄰的光伏收集器100的電力傳輸。例如,支架耦合器120是電絕緣的,且位於遠離微控制器/處理器102的三角形頂點處。這種配置將相鄰的光伏收集器100電隔離,使得一個或多個光伏收集器100在不妨礙陣列中剩餘光伏收集器100的能量收集的情況下可失效或斷開。The bracket coupler 120 is "I" shaped so as to structurally interconnect with the edge of the photovoltaic collector 100 . The support coupler 120 extends along the edge length of the photovoltaic collector 100 . In some examples, stand coupler 120 is configured to electrically couple with energy cell 106 to distribute power at the edges near the vertices of triangle corner 122 . In some cases, stand coupler 120 is configured with a power cable/coupler to transfer power from energy cell 106 to an inverter or grid connection. In some examples, support coupler 120 is electrically isolated to prevent power transmission from adjacent photovoltaic collectors 100 . For example, standoff coupler 120 is electrically isolated and located at the apex of the triangle away from microcontroller/processor 102 . This configuration electrically isolates adjacent photovoltaic collectors 100 such that one or more photovoltaic collectors 100 can be disabled or disconnected without interfering with energy collection by the remaining photovoltaic collectors 100 in the array.

在一些示例中,支架耦合器120包括電氣開關以便從一個或多個相鄰的光伏收集器引導電力。例如,相鄰的微控制器/處理器102A(圖9A和圖9B)可與微控制器/處理器102通訊,並指示第一相鄰光伏電池100X的能量電池未達完整容量。進而,微控制器/處理器102A可(例如,經由一個或多個可程式化的輸入/輸出周邊裝置1104(圖11))轉動支架耦合器120的開關(例如,繼電器及電晶體等),且引導來自光伏收集器100的能量電池的電力或引導自光伏收集器100的光子吸收層206(圖6A至圖6L、圖6Q和圖6R)及/或電漿子層204(圖6A至圖6P)所產生的電力,以給第一相鄰光伏電池100 X的能量電池充電。如前所述,每個光伏收集器100可包括一個或多個連接單元105(圖1A、圖12A至圖12D和圖13)以將光伏收集器100的電力軸環104及/或能量電池106電耦合到一個或多個相鄰的光伏收集器的相應的電力軸環104及/或能量電池106。In some examples, rack coupler 120 includes an electrical switch to direct power from one or more adjacent photovoltaic collectors. For example, adjacent microcontroller/processor 102A ( FIGS. 9A and 9B ) may communicate with microcontroller/processor 102 and indicate that the energy cell of first adjacent photovoltaic cell 100X is not at full capacity. In turn, microcontroller/processor 102A may (e.g., via one or more programmable input/output peripherals 1104 (FIG. 11)) turn switches (e.g., relays, transistors, etc.) of bracket coupler 120, and directs power from the energy cells of the photovoltaic collector 100 or from the photon absorbing layer 206 ( FIGS. 6A-6L , 6Q and 6R ) and/or the plasmonic layer 204 ( FIGS. 6P) to charge the energy cell of the first adjacent photovoltaic cell 100X. As previously mentioned, each photovoltaic collector 100 may include one or more connection units 105 ( FIGS. Electrically coupled to respective power collars 104 and/or energy cells 106 of one or more adjacent photovoltaic collectors.

圖9A和圖9B示出了完全嵌合的基於電漿子的收集器(例如,100、100X、100Y、100Z)的陣列900。如圖9A所示,三角形的光伏收集器100經配置為通過多個連接單元105與第一相鄰三角形的光伏收集器100X、第二相鄰三角形的光伏收集器100Y和第三相鄰三角形的光伏收集器100Z一起定位,且,三角形的光伏收集器100經配置為在一些情況下通過多個連接單元105與第一相鄰三角形的光伏收集器100X、第二相鄰三角形的光伏收集器100Y和第三相鄰三角形的光伏收集器100Z電連接,多個連接單元105經設置在光伏收集器100、100X、100Y、100Z的每一者上以將收集器100、100X、100Y、100Z電耦合、互鎖及完全嵌合成陣列。相鄰三角形的光伏收集器100的三角形角的頂點經定位成與彼此接近的微控制器/處理器102一起。接近的微控制器/處理器102促進第一相鄰三角形的光伏收集器100X、第二相鄰三角形的光伏收集器100Y與第三相鄰三角形的光伏收集器100Z之間的通訊。9A and 9B illustrate an array 900 of fully fitted plasmon-based collectors (eg, 100, 100X, 100Y, 100Z). As shown in FIG. 9A , the triangular photovoltaic collector 100 is configured to be connected to the first adjacent triangular photovoltaic collector 100X, the second adjacent triangular photovoltaic collector 100Y and the third adjacent triangular photovoltaic collector 100Y through a plurality of connecting units 105. The photovoltaic collectors 100Z are positioned together, and the triangular photovoltaic collector 100 is configured to communicate with a first adjacent triangular photovoltaic collector 100X, a second adjacent triangular photovoltaic collector 100Y, in some cases through a plurality of connection units 105 It is electrically connected to the photovoltaic collector 100Z of the third adjacent triangle, and a plurality of connection units 105 are arranged on each of the photovoltaic collectors 100, 100X, 100Y, 100Z to electrically couple the collectors 100, 100X, 100Y, 100Z , interlocked and fully embedded into arrays. The vertices of the triangle corners of adjacent triangles of photovoltaic collectors 100 are positioned with microcontrollers/processors 102 close to each other. The proximate microcontroller/processor 102 facilitates communication between a first adjacent triangular photovoltaic collector 100X, a second adjacent triangular photovoltaic collector 100Y, and a third adjacent triangular photovoltaic collector 100Z.

圖9B描繪了與第一相鄰三角形的光伏收集器100X、第二相鄰三角形的光伏收集器100Y和第三相鄰三角形的光伏收集器100Z完全嵌合的三角形的光伏收集器100。應當理解的是,光伏收集器100可包括各種形狀。例如,類似的陣列可與複數個具有三角形、矩形、五邊形、六邊形、八邊形或與圖2中描繪的形狀類似的其他形狀的光伏收集器中的一者或多者完全嵌合。FIG. 9B depicts a triangular-shaped photovoltaic collector 100 fully fitted with a first adjacent triangular-shaped photovoltaic collector 100X, a second adjacent triangular-shaped photovoltaic collector 100Y, and a third adjacent triangular-shaped photovoltaic collector 100Z. It should be understood that photovoltaic collector 100 may include various shapes. For example, a similar array can be fully embedded with one or more of a plurality of photovoltaic collectors having a triangular, rectangular, pentagonal, hexagonal, octagonal, or other shape similar to that depicted in FIG. combine.

圖10示出了包圍一個或多個建築物1000的完全嵌合式陣列900的一種應用。在這種情況下,完全嵌合式陣列900是複數個太陽能光伏收集器(例如,100、100X、100Y、100Z),其形成偏離建築物的外表面的額外的外牆。如圖10所示,多個三角形的光伏收集器(例如,100、100X、100Y、100Z)形成圍繞建築物外牆的覆蓋物(例如,表皮),此圍繞建築物外牆的覆蓋物包圍建築物的至少一部分。在一些配置中,三角形的光伏收集器(例如,100、100X、100Y、100Z)中的一者或多者是透明的,以便提供觀察建築物900外部的特徵。在一些示例中,三角形的光伏收集器(例如,100、100X、100Y、100Z)中的一者或多者是半透明的,以在提供建築物1000內的隱私的同時還提供進入建築物900的陽光。FIG. 10 illustrates one application of a fully mosaic array 900 enclosing one or more buildings 1000 . In this case, the fully mosaic array 900 is a plurality of solar photovoltaic collectors (eg, 100, 100X, 100Y, 100Z) that form an additional exterior wall offset from the exterior surface of the building. As shown in Figure 10, a plurality of triangular photovoltaic collectors (e.g., 100, 100X, 100Y, 100Z) form a covering (e.g., a skin) around the building's outer wall, which surrounds the building at least part of the object. In some configurations, one or more of the triangular photovoltaic collectors (eg, 100 , 100X, 100Y, 100Z ) are transparent to provide a feature for viewing the exterior of building 900 . In some examples, one or more of the triangular photovoltaic collectors (e.g., 100, 100X, 100Y, 100Z) are translucent to provide privacy within building 1000 while also providing access to building 900. sunshine.

在一些配置中,將完全嵌合式陣列900改裝在現有建築物1000的外牆/屋頂之外。在一些情況下,完全嵌合式陣列900包括安裝組件(例如,支架耦合器120、連接單元105及施工架等),安裝組件經配置為將支撐建築物1000的複數個太陽能光伏收集器,及將建築物1000的複數個太陽能光伏收集器互連和互鎖。在一些示例中,完全嵌合式陣列900的覆蓋物經整合到建築物1000的現有牆壁/屋頂中。例如,複數個太陽能光伏收集器(例如,100、100X、100Y、100Z)中的一者或多者是將建築物1000的內部與外部分開的窗戶或面板。In some configurations, the fully recessed array 900 is retrofitted onto the exterior walls/roof of an existing building 1000 . In some cases, fully mosaic array 900 includes mounting components (e.g., bracket couplers 120, connection units 105, construction frames, etc.) configured to support a plurality of solar photovoltaic collectors of building 1000, and to The plurality of solar photovoltaic collectors of the building 1000 are interconnected and interlocked. In some examples, the covering of fully fitted array 900 is integrated into the existing walls/roof of building 1000 . For example, one or more of the plurality of solar photovoltaic collectors (eg, 100, 100X, 100Y, 100Z) are windows or panels that separate the interior of building 1000 from the exterior.

圖11圖示了概念資料流圖,其圖示了基於混合電漿子的光伏收集器100的不同硬體之間的資料流,基於混合電漿子的光伏收集器100係實施電漿子產生器205與光子產生器207。電漿聲波產生器205大體描述了一個或多個電漿聲波層(204A、204B……204N等),一個或多個電漿聲波層有助於在第二傳導層202B處捕獲電漿子層204中的奈米顆粒的電荷載流子(例如,電子及空穴等)的振盪。電漿聲波產生器205可包括電耦合到第一傳導層202A的第一電漿聲波層204A,如圖6O 和圖 6P所示。電漿聲波產生器205亦可包括第二電漿聲波層204B,第二電漿聲波層204B與第一電漿聲波層204A並聯且電耦合到第二傳導層202B,如圖6O和圖6P所示。預期可在光伏收集器100中提供三個或更多個電漿聲波層(例如,第N電漿聲波層)。Figure 11 illustrates a conceptual data flow diagram illustrating the data flow between the different hardware of a hybrid plasmonic based photovoltaic collector 100 implementing plasmonic generation device 205 and photon generator 207. Plasmaacoustic generator 205 generally depicts one or more plasmonic wave layers (204A, 204B ... 204N, etc.) that facilitate trapping of plasmonic sublayers at second conductive layer 202B Oscillation of charge carriers (eg, electrons and holes, etc.) of the nanoparticles in 204 . The plasmonic wave generator 205 may include a first plasmonic wave layer 204A electrically coupled to a first conductive layer 202A, as shown in FIGS. 6O and 6P . The plasmonic acoustic wave generator 205 may also include a second plasmonic acoustic wave layer 204B connected in parallel with the first plasmonic acoustic wave layer 204A and electrically coupled to the second conductive layer 202B, as shown in FIGS. 6O and 6P Show. It is contemplated that three or more plasmonic layers (eg, an Nth plasmonic layer) may be provided in the photovoltaic collector 100 .

光子產生器207大體上描述了一個或多個光子吸收層(206A、206B……206N等),一個或多個光子吸收層從比特定波長更長的入射光產生電子-空穴對,進而感應出直流電。光子產生器207可包括與電漿聲波產生器205並聯的第一光子吸收層206A。例如,圖5A、圖5B和圖6A至圖6L描繪了與電漿子層204並聯堆疊的光子吸收層206。光子產生器207亦可包括與第一光子吸收層206A並聯的第二光子吸收層206B,這類似於在圖6O和圖6P中所示的第一電漿聲波層204A和第二電漿聲波層204B的並聯配置。預期可在光伏收集器100中提供兩個或更多個光子吸收層 (例如,第N光子吸收層206)。Photon generator 207 generally describes one or more photon-absorbing layers (206A, 206B ... 206N, etc.) that generate electron-hole pairs from incident light longer than a specified wavelength, thereby inducing out direct current. The photon generator 207 may include a first photon absorbing layer 206A connected in parallel with the plasmonic wave generator 205 . For example, FIGS. 5A , 5B and 6A-6L depict photon absorbing layer 206 stacked in parallel with plasmonic layer 204 . The photon generator 207 may also include a second photon absorbing layer 206B in parallel with the first photon absorbing layer 206A, similar to the first plasmonic layer 204A and the second plasmonic layer shown in FIGS. 6O and 6P Parallel configuration of 204B. It is contemplated that two or more photon absorbing layers (e.g., Nth photon absorbing layer 206) may be provided in photovoltaic collector 100.

電力軸環104電耦合到來自微控制器/處理器102的一個或多個可程式化的輸入/輸出周邊裝置1104。在一些配置中,電力軸環104包括整流器橋電路系統220,如半波橋式整流器222或全波整流器橋。半波橋式整流器222包括一個或多個互連的二極體,以便將來自電漿子光伏電池橫截面200的AC電力信號410(示於圖4B的測試探針A處)轉換為脈衝的DC電力信號412(示於圖4B的測試探針B處)到光伏收集器100周邊處的電力軸環104。如上所述,電力軸環104可在光伏收集器100的邊緣處與連接單元105電耦合,以將光伏收集器100與相鄰的收集器物理互鎖,且將光伏收集器100電互連到相鄰的收集器。如上所述,微控制器/處理器102包括一個或多個可程式化的輸入/輸出周邊裝置1104(例如,位於能量電池106的陽極及/或陰極處的電壓感測器及與電力橋或電力逆變器通訊的通訊介面電路)。輸入/輸出周邊裝置1104經配置為感測來自電力軸環104、能量電池106、電力橋1120和逆變器1130的負載參數,並將每個負載參數存儲到記憶體1102。The power collar 104 is electrically coupled to one or more programmable input/output peripherals 1104 from the microcontroller/processor 102 . In some configurations, the power collar 104 includes rectifier bridge circuitry 220 , such as a half-wave bridge rectifier 222 or a full-wave rectifier bridge. The half-wave bridge rectifier 222 includes one or more interconnected diodes to convert the AC power signal 410 (shown at test probe A of FIG. 4B ) from the plasmonic photovoltaic cell cross-section 200 into pulsed DC power signal 412 (shown at test probe B in FIG. 4B ) to power collar 104 at the perimeter of photovoltaic collector 100. As described above, the power collar 104 can be electrically coupled with the connection unit 105 at the edge of the photovoltaic collector 100 to physically interlock the photovoltaic collector 100 with adjacent collectors and to electrically interconnect the photovoltaic collector 100 to Adjacent collectors. As noted above, the microcontroller/processor 102 includes one or more programmable input/output peripherals 1104 (e.g., voltage sensors at the anode and/or cathode of the energy cell 106 and interfaces with a power bridge or communication interface circuit for power inverter communication). Input/output peripheral 1104 is configured to sense load parameters from power collar 104 , energy battery 106 , power bridge 1120 , and inverter 1130 and store each load parameter to memory 1102 .

在一種配置中,電力軸環104經配置為將來自電漿聲波產生器205及/或光子產生器207的DC電力提供給逆變器1130。在這樣的配置中,從電漿聲波產生器205及/或光子產生器207產生的DC電力經轉換成適合離網應用的AC電力。如圖11所示,逆變器1130可進一步向電網連接1140提供AC電力,電網連接1140經配置為提供適合於電網1150的AC電力。在一些示例中,電網連接1140包括安全特徵,以在感測到電網1150的瞬時功率(例如,電壓、電流)中斷時停止電力傳輸且使電網通電。例如,在一些情況下,電網連接1140包括不連接/中斷 1142,不連接/中斷1142經配置為在檢測到來自電網 1150 的瞬時功率(例如,電壓、電流)中斷的情況下將電力切至電網。In one configuration, power collar 104 is configured to provide DC power from plasmonic generator 205 and/or photon generator 207 to inverter 1130 . In such a configuration, DC power generated from plasmonic generator 205 and/or photon generator 207 is converted to AC power suitable for off-grid applications. As shown in FIG. 11 , inverter 1130 may further provide AC power to grid connection 1140 configured to provide AC power suitable for grid 1150 . In some examples, grid connection 1140 includes a safety feature to stop power transmission and energize the grid 1150 upon sensing an interruption in instantaneous power (eg, voltage, current) of grid 1150 . For example, in some cases, grid connection 1140 includes disconnect/interrupt 1142 configured to cut power to the grid if a momentary power (e.g., voltage, current) interruption from grid 1150 is detected .

在一種可選配置中,電力軸環104經配置為向能量電池106提供DC電力。例如,能量電池 106 提供電荷載流子(例如,電子、空穴等)的儲存器,其減少了來自整流器橋電路系統220的經整流的脈衝的DC電力信號412(如圖4B的測試探針B處所示)的變化。接著,提供給逆變器1130的DC電力經調節(例如,平滑),這可促進從DC電力轉換到適用於離網和並網應用的AC電力的轉換。In one optional configuration, the power collar 104 is configured to provide DC power to the energy battery 106 . For example, the energy cell 106 provides a reservoir of charge carriers (e.g., electrons, holes, etc.), which reduces the rectified pulsed DC power signal 412 from the rectifier bridge circuitry 220 (as in the test probes of FIG. 4B ). shown at B). Next, the DC power provided to the inverter 1130 is conditioned (eg, smoothed), which can facilitate conversion from DC power to AC power suitable for both off-grid and grid-tied applications.

在一種可選配置中,電力軸環104及/或能量電池106經配置為向電力橋1120提供DC電力。電力橋1120經配置為平衡電力軸環104及/或能量電池106與逆變器1130之間的阻抗,以最佳化電力傳輸。在一些示例中,電力橋1120從微控制器/處理器102的記憶體1102檢索負載參數,且調整電力橋1120的阻抗以減少來自逆變器1130的信號反射。在一些示例中,電力橋1120電耦合到逆變器1130。In one optional configuration, the power collar 104 and/or the energy battery 106 are configured to provide DC power to the power bridge 1120 . Power bridge 1120 is configured to balance the impedance between power collar 104 and/or energy cell 106 and inverter 1130 to optimize power transfer. In some examples, the power bridge 1120 retrieves load parameters from the memory 1102 of the microcontroller/processor 102 and adjusts the impedance of the power bridge 1120 to reduce signal reflections from the inverter 1130 . In some examples, power bridge 1120 is electrically coupled to inverter 1130 .

在一些示例中,電力橋1120是固定到太陽能光伏收集器100且電耦合到電力軸環104(例如,在第一電極和第二電極處)的電力傳輸電路。例如,電力橋1120可包括微控制器/處理器102和輸入/輸出周邊裝置1104以感測電網1150的瞬時功率、感測從光伏收集器100產生的瞬時功率,及將從光伏收集器100產生的電力掃到電網1150。在一些情況下,電力橋1120包括無線傳輸電路系統以使用時變電場、磁場或電磁場將電能從電力橋1120傳輸到逆變器1130。In some examples, power bridge 1120 is a power transmission circuit secured to solar photovoltaic collector 100 and electrically coupled to power collar 104 (eg, at the first and second electrodes). For example, power bridge 1120 may include microcontroller/processor 102 and input/output peripherals 1104 to sense instantaneous power from grid 1150, sense instantaneous power generated from photovoltaic collector 100, and convert power generated from photovoltaic collector 100 The electricity is swept to the grid 1150 . In some cases, power bridge 1120 includes wireless transfer circuitry to transfer electrical energy from power bridge 1120 to inverter 1130 using a time-varying electric, magnetic, or electromagnetic field.

根據第一實施例,一種光伏電池包括:第一傳導層;第二傳導層;電耦合至第一傳導層的光子吸收層,調諧光子吸收層以吸收第一波長的入射光以產生沿第一傳導層的第一電流;及電耦合到光子吸收層和第二傳導層的電漿聲波層,電漿聲波層包括奈米顆粒,將奈米顆粒調諧到誘導電子在奈米顆粒表面振盪的入射光的第二波長。According to a first embodiment, a photovoltaic cell includes: a first conducting layer; a second conducting layer; a photon-absorbing layer electrically coupled to the first conducting layer, the photon-absorbing layer being tuned to absorb incident light of a first wavelength to generate light along the first a first electric current of the conducting layer; and a plasmonic layer electrically coupled to the photon-absorbing layer and the second conducting layer, the plasmonic layer comprising nanoparticles tuned to incident electrons induced to oscillate at the surface of the nanoparticles The second wavelength of light.

在另一個實施例中,第二傳導層經配置為沿著奈米顆粒的表面捕獲振盪電子以產生第二電流。在另一個實施例中,第一電流是直流電而第二電流是交流電。在另一個實施例中,第一傳導層電耦合到第二傳導層。在另一個實施例中,根據第一實施例的光伏電池進一步包括整流器橋,整流器橋經配置為針對第一輸入或第二輸入處的任何極性提供相對於參考接地的相同極性的輸出,其中第一輸入電耦合到第二傳導層且第二輸入電耦合到電漿聲波層。在另一個實施例中,整流器橋為全波整流器或半波整流器。在另一個實施例中,根據第五態樣的光伏電池進一步包括跨整流器橋的輸出和參考接地電耦合的能量電池。在另一個實施例中,整流器橋包括跨越電漿聲波層和能量電池的二極體反向偏置。在另一個實施例中,能量電池是鎳鎘(NiCd)電池、鎳金屬氫化物(NiMH)電池、鋰離子(Ii-on)電池或鋰聚合物電池。在另一個實施例中,能量電池是超級電容器、電解電容器、陶瓷電容器或薄膜電容器。在另一個實施例中,整流器橋包括以反向偏置電耦合在第一傳導層和光子吸收層之間的第一二極體層。在另一個實施例中,整流器橋包括以反向偏置電耦合在第二傳導層和電漿聲波層之間的第二二極體層。In another embodiment, the second conductive layer is configured to trap oscillating electrons along the surface of the nanoparticles to generate a second electrical current. In another embodiment, the first current is direct current and the second current is alternating current. In another embodiment, the first conductive layer is electrically coupled to the second conductive layer. In another embodiment, the photovoltaic cell according to the first embodiment further comprises a rectifier bridge configured to provide an output of the same polarity with respect to a reference ground for any polarity at the first input or the second input, wherein the second An input is electrically coupled to the second conductive layer and a second input is electrically coupled to the plasmonic layer. In another embodiment, the rectifier bridge is a full wave rectifier or a half wave rectifier. In another embodiment, the photovoltaic cell according to the fifth aspect further comprises an energy cell electrically coupled across the output of the rectifier bridge and the reference ground. In another embodiment, the rectifier bridge includes diodes reverse biased across the plasmonic layer and the energy cell. In another embodiment, the energy battery is a nickel cadmium (NiCd) battery, a nickel metal hydride (NiMH) battery, a lithium ion (Ii-on) battery, or a lithium polymer battery. In another embodiment, the energy battery is a supercapacitor, electrolytic capacitor, ceramic capacitor or film capacitor. In another embodiment, the rectifier bridge includes a first diode layer electrically coupled in reverse bias between the first conductive layer and the photon absorbing layer. In another embodiment, the rectifier bridge includes a second diode layer electrically coupled in reverse bias between the second conductive layer and the plasmonic layer.

在另一個實施例中,根據第一實施例的光伏電池進一步包括經配置為氣密密封光子吸收層、電漿聲波層和第二傳導層的基板。在另一個實施例中,第一傳導層和第二傳導層中的一者或兩者包括石墨烯。在另一個實施例中,石墨烯是p摻雜的或n摻雜的。在另一個實施例中,沿著奈米顆粒的表面捕獲振盪電子導致第二傳導層的溫度降低。在另一個實施例中,第一傳導層和第二傳導層中的一者或兩者包括導電奈米線。In another embodiment, the photovoltaic cell according to the first embodiment further comprises a substrate configured to hermetically seal the photon absorbing layer, the plasmonic layer and the second conducting layer. In another embodiment, one or both of the first conductive layer and the second conductive layer includes graphene. In another embodiment, the graphene is p-doped or n-doped. In another embodiment, trapping oscillating electrons along the surface of the nanoparticles results in a decrease in the temperature of the second conducting layer. In another embodiment, one or both of the first conductive layer and the second conductive layer includes conductive nanowires.

在另一個實施例中,根據第一實施例的光伏電池進一步包括電力間隙層,電力間隙層通過導電奈米線電耦合到第一傳導層和第二傳導層中的一者或兩者。在另一實施例中,入射光的第二波長為振盪電子的共振波長。在另一實施例中,入射光的第一波長或入射光的第二波長大於700奈米。在另一實施例中,入射光的第一波長長於入射光的第二波長。在另一實施例中,入射光的第一波長短於入射光的第二波長。在另一個實施例中,電漿聲波層是電絕緣體。在另一個實施例中,電漿聲波層是具有復介電常數的介電質。在另一個實施例中,電漿聲波層是聚合物或陶瓷。在另一個實施例中,電漿聲波層是聚碳酸酯。在另一個實施例中,奈米顆粒均勻地懸浮在電漿聲波層中。在另一個實施例中,奈米顆粒具有圓錐形、矩形、雙錐體、四面體、立方體、八面體、圓柱形、橢圓體或球形形狀。在另一個實施例中,奈米顆粒是電絕緣的或電半導的。在另一個實施例中,第一波長與光子吸收層中量子點的尺寸成正比。在另一個實施例中,光子吸收層包括光散射粒子。在另一實施例中,第一傳導層、第二傳導層、電漿聲波層和光子吸收層對於零度入射角的可見光譜內的入射光是半透明的或透明的。在另一實施例中,第一傳導層、第二傳導層、電漿聲波層和光子吸收層的組合在零度入射角處具有大於0.76的可見光譜內的光的透射率。In another embodiment, the photovoltaic cell according to the first embodiment further comprises an electrical gap layer electrically coupled to one or both of the first conductive layer and the second conductive layer through conductive nanowires. In another embodiment, the second wavelength of the incident light is a resonant wavelength of oscillating electrons. In another embodiment, the first wavelength of the incident light or the second wavelength of the incident light is greater than 700 nanometers. In another embodiment, the first wavelength of the incident light is longer than the second wavelength of the incident light. In another embodiment, the first wavelength of the incident light is shorter than the second wavelength of the incident light. In another embodiment, the plasmonic layer is an electrical insulator. In another embodiment, the plasmonic acoustic layer is a dielectric with a complex permittivity. In another embodiment, the plasmonic layer is a polymer or ceramic. In another embodiment, the plasmonic layer is polycarbonate. In another embodiment, the nanoparticles are uniformly suspended in the plasmonic layer. In another embodiment, the nanoparticles have a conical, rectangular, bipyramidal, tetrahedral, cubic, octahedral, cylindrical, ellipsoidal or spherical shape. In another embodiment, the nanoparticles are electrically insulating or electrically semiconducting. In another embodiment, the first wavelength is proportional to the size of the quantum dots in the photon absorbing layer. In another embodiment, the photon absorbing layer includes light scattering particles. In another embodiment, the first conductive layer, the second conductive layer, the plasmonic layer, and the photon absorbing layer are translucent or transparent to incident light within the visible spectrum at a zero degree incidence angle. In another embodiment, the combination of the first conducting layer, the second conducting layer, the plasmonic layer, and the photon absorbing layer has a transmittance of light in the visible spectrum greater than 0.76 at a zero degree angle of incidence.

在另一個實施例中,根據第一實施例的光伏電池進一步包括經設置在光伏電池之與入射光表面相對的遠側表面上的反射器,其中反射器經配置為將入射光反射回入射光的表面。在另一個實施例中,光伏電池是平坦的或平面的。在另一個實施例中,光伏電池沿著光入射表面是非平面的。在另一個實施例中,光伏電池沿著光入射表面以0至23.5度之間的弧度角彎曲。在另一個實施例中,光伏電池具有三角形、矩形、五邊形、六邊形、橢圓形或圓形形狀。In another embodiment, the photovoltaic cell according to the first embodiment further comprises a reflector disposed on a far side surface of the photovoltaic cell opposite the incident light surface, wherein the reflector is configured to reflect incident light back into the incident light s surface. In another embodiment, the photovoltaic cell is flat or planar. In another embodiment, the photovoltaic cell is non-planar along the light incident surface. In another embodiment, the photovoltaic cell is curved at an arc angle between 0 and 23.5 degrees along the light incident surface. In another embodiment, the photovoltaic cell has a triangular, rectangular, pentagonal, hexagonal, oval or circular shape.

在另一個實施例中,太陽能光伏收集器包括:第一實施例的光伏電池;電耦合到第一傳導層的第一電極,及電耦合到電漿聲波層和光子吸收層的第二電極,其中第一電極與第二電極電隔離。在另一個實施例中,第一電極和第二電極位於太陽能光伏收集器的周邊表面周圍。In another embodiment, a solar photovoltaic collector comprises: the photovoltaic cell of the first embodiment; a first electrode electrically coupled to the first conductive layer, and a second electrode electrically coupled to the plasmonic layer and the photon absorbing layer, Wherein the first electrode is electrically isolated from the second electrode. In another embodiment, the first electrode and the second electrode are located around the perimeter surface of the solar photovoltaic collector.

在另一個實施例中,另一個實施例的太陽能光伏收集器進一步包括:電力傳輸電路,其固定在光伏收集器上且電耦合到第一電極和第二電極,其中電力傳輸電路經配置為:感測電網的瞬時功率、感測光伏收集器產生的瞬時功率,及將光伏收集器產生的電力掃入電網。在另一個實施例中,電力傳輸電路包括用於將電力無線傳輸到電網的電路。在另一個實施例中,太陽能光伏收集器陣列包括:複數個其他實施例的太陽能光伏收集器,該複數個其他實施例的太陽能光伏收集器經配置為彼此完全嵌合。在另一實施例中,複數個光伏收集器中的一者或多者具有三角形、矩形、五邊形、六邊形或八邊形形狀。在另一個實施例中,其他實施例的太陽能光伏收集器陣列進一步包括安裝組件,安裝組件經配置為支撐建築物的複數個太陽能光伏收集器。在另一實施例中,複數個太陽能光伏收集器中的一者或多者是將建築物的內部與外部分隔開的窗戶或面板。在另一個實施例中,複數個太陽能光伏收集器形成偏離建築物外表面的附加的外牆。在另一個實施例中,附加的外牆包圍建築物的一部分。In another embodiment, the solar photovoltaic collector of another embodiment further comprises: a power transfer circuit affixed to the photovoltaic collector and electrically coupled to the first electrode and the second electrode, wherein the power transfer circuit is configured to: Sense the instantaneous power of the grid, sense the instantaneous power generated by the photovoltaic collector, and sweep the power generated by the photovoltaic collector into the grid. In another embodiment, the power transfer circuit includes circuitry for wirelessly transferring power to a grid. In another embodiment, a solar photovoltaic collector array includes: a plurality of other embodiment solar photovoltaic collectors configured to fully interlock with each other. In another embodiment, one or more of the plurality of photovoltaic collectors has a triangular, rectangular, pentagonal, hexagonal or octagonal shape. In another embodiment, the solar photovoltaic collector array of other embodiments further includes a mounting assembly configured to support the plurality of solar photovoltaic collectors of a building. In another embodiment, one or more of the plurality of solar photovoltaic collectors is a window or panel that separates the interior of the building from the exterior. In another embodiment, the plurality of solar photovoltaic collectors form additional facades offset from the exterior surface of the building. In another embodiment, an additional exterior wall surrounds a portion of the building.

應當理解的是,所揭露的處理/流程圖中的方塊的特定順序或階層是對示例性方法的說明。根據設計偏好,可理解可重新排列處理/流程圖中的方塊的特定順序或階層。此外,可組合或省略一些方塊。隨附的方法請求項以樣本順序呈現各種方塊的元素,並不意味著限於所呈現的特定順序或階層。It is understood that the specific order or hierarchy of blocks in the processes/flow diagrams disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the process/flow diagrams may be rearranged. Also, some blocks may be combined or omitted. The accompanying method claims present elements of the various squares in a sample order, and are not meant to be limited to the specific order or hierarchy presented.

提供先前的描述以使所屬技術領域中具有通常知識者能夠實施本文所描述的各種示例。對這些示例的各種修改對於所屬技術領域中具有通常知識者來說將是顯而易見的,且這裡定義的一般原理可應用於其他示例。因此,申請專利範圍不旨在限於此處所示的示例,而是符合與申請專利範圍的語言一致的全部範圍,其中除非特別說明,否則對單數形式的元素的引用不旨在表示「一個且僅一個」,而是「一個或多個」。詞語「示例性」在本文中用於表示「用作示例、實例或說明」。本文描述為「示例性」的任何示例不一定被解釋為優於其他示例或相較於其他示例有優勢。除非另有特別說明,否則術語「一些」是指一個或多個。如「A、B或C中的至少一者」、「A、B 或 C 中的一者或多者」、「A、B和C中的至少一者」、「A、B和C中的一者或多者」及「A、B、C或其任何組合」的組合包括A、B及/或C的任何組合,且可包括A的倍數、B的倍數或C的倍數。具體來說,如「A、B或C中的至少一者」、「A、B或C中的一者或多者」、「A、B和C中的至少一者」、「A、B和C中的一者或多者」及「A、B、C或其任何組合」的組合可以是僅A、僅B、僅C、A和B、A和C、B和C,或A和B和C,其中任何此類組合可包含A、B或C中的一個或多個成員。本申請案中通篇描述的各種示例的元素的所有結構和功能等效物(其為所屬技術領域中具有通常知識者已知的或後來將變得已知的)均通過引用明確地併入本文中,且旨在由申請專利範圍所涵蓋。此外,無論申請專利範圍中是否明確陳述本文所公開的任何內容,本文所公開的任何內容均不旨在專供公眾使用。「模組(module)」、「機制(mechanism)」、「元素(element)」、「裝置/元件(device)」等詞不能替代「構件(means)」這個詞。因此,除非使用短語「用於……的構件」來明確敘述元素,否則不得根據 35 U.S.C § 112(f) 來解釋任何請求項元素。The preceding description is provided to enable one of ordinary skill in the art to implement the various examples described herein. Various modifications to these examples will be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other examples. Accordingly, the claims are not intended to be limited to the examples shown herein, but are to be accorded the full scope consistent with claim language where reference to an element in the singular is not intended to mean "one and only one", but "one or more". The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any example described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other examples. Unless specifically stated otherwise, the term "some" means one or more. Such as "at least one of A, B or C", "one or more of A, B or C", "at least one of A, B and C", "of A, B and C The combination of "one or more" and "A, B, C, or any combination thereof" includes any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, such as "at least one of A, B, or C", "one or more of A, B, or C", "at least one of A, B, and C", "A, B and one or more of C" and "A, B, C or any combination thereof" may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, wherein any such combination may comprise one or more members of A, B or C. All structural and functional equivalents to the various exemplified elements described throughout this application that are known or later become known to those of ordinary skill in the art are expressly incorporated by reference herein, and are intended to be covered by the patent claims. Furthermore, nothing disclosed herein is intended to be exclusively available to the public, whether or not it is expressly stated in the claims. The words "module", "mechanism", "element", "device" are not intended to replace the word "means". Accordingly, no claim element shall be construed under 35 U.S.C § 112(f) unless the element is expressly recited using the phrase "means for."

100:光伏收集器 100-1~100-6:光伏收集器 100A~100G:光伏收集器 100X~100Z:光伏收集器 100':光伏收集器 100":光伏收集器 100*:光伏收集器 100 #:光伏收集器 100†:光伏收集器 102:微控制器/處理器 103:互連跡線 104:電力軸環 105:連接單元 105A:公針連接器 105B:母插座連接器 106:能量電池 120:支架耦合器120 122:三角形角 200:電漿聲波光伏電池橫截面 201:光子光伏電池橫截面 202A:第一傳導層 202B:第二傳導層 202C:第三傳導層 204:電漿子層 204A:第一電漿子層 204B:第二電漿子層 204N:第N電漿子層 205:電漿子產生器/電漿聲波產生器 206:光子吸收層 206A:第一光子吸收層 206B:第二光子吸收層 206N:第N光子吸收層 207:光子產生器 208:二極體層 208A:第一二極體層 208B:第二二極體層 208C:第三二極體層 208D:第四二極體層 210:半透明層 210A:第一半透明層 210B:第二半透明層 212:反射器層 220:整流器橋電路系統 222:半波的整流器橋 225:電漿子光伏電池橫截面 226:第一二極體 227:第二二極體 230:入射光 231:入射表面 232:遠側表面 235:發光二極體 (LED) 250:電漿子光伏電池橫截面 300:混合的電漿子光伏電池的橫截面 350:增強型的混合的電漿子光伏電池的橫截面 410:AC電力信號 412:DC電力信號 600A:第一增強型混合電漿子光伏收集器橫截面 600B:第二增強型混合電漿子光伏收集器橫截面 600C:第三增強型混合電漿子光伏收集器橫截面 600D:第四增強型混合電漿子光伏收集器橫截面 600E:第五增強型混合電漿子光伏收集器橫截面 600F:第六增強型混合電漿子光伏收集器橫截面 600G:第七增強型混合電漿子光伏收集器橫截面 600H:第八增強型混合電漿子光伏收集器橫截面 600I:第九增強型混合電漿子光伏收集器橫截面 600J:第十增強型混合電漿子光伏收集器橫截面 600K:第十一增強型混合電漿子光伏收集器橫截面 600L:第十二增強型混合電漿子光伏收集器橫截面 600M:第十三增強型混合電漿子光伏收集器橫截面 600N:第十四增強型混合電漿子光伏收集器橫截面 600O:第十五增強型混合電漿子光伏收集器橫截面 600P:第十六增強型混合電漿子光伏收集器橫截面 600Q:第十七強型混合電漿子光伏收集器橫截面 600R:第十八強型混合電漿子光伏收集器橫截面 900:陣列 1102:記憶體 1104:輸入/輸出周邊裝置 1120:電力橋 1130:逆變器 1140:電網連接 1142:不連接/中斷 1150:電網 1300:光伏陣列 100: Photovoltaic collector 100-1~100-6: Photovoltaic collector 100A~100G: Photovoltaic collector 100X~100Z: Photovoltaic collector 100': Photovoltaic collector 100": Photovoltaic collector 100*: Photovoltaic collector 100 # : Photovoltaic Collector 100†: Photovoltaic Collector 102: Microcontroller/Processor 103: Interconnect Trace 104: Power Collar 105: Connection Unit 105A: Male Pin Connector 105B: Female Socket Connector 106: Energy Cell 120 : Bracket coupler 120 122: Triangular corner 200: Plasma acoustic photovoltaic cell cross section 201: Photonic photovoltaic cell cross section 202A: First conducting layer 202B: Second conducting layer 202C: Third conducting layer 204: Plasma sublayer 204A : first plasma sublayer 204B: second plasma sublayer 204N: Nth plasma sublayer 205: plasmon generator/plasma acoustic wave generator 206: photon absorption layer 206A: first photon absorption layer 206B: The second photon absorption layer 206N: the Nth photon absorption layer 207: the photon generator 208: the diode layer 208A: the first diode layer 208B: the second diode layer 208C: the third diode layer 208D: the fourth diode layer 210: translucent layer 210A: first translucent layer 210B: second translucent layer 212: reflector layer 220: rectifier bridge circuitry 222: half-wave rectifier bridge 225: plasmonic photovoltaic cell cross section 226: first Diode 227: second diode 230: incident light 231: incident surface 232: distal surface 235: light emitting diode (LED) 250: plasmonic photovoltaic cell cross section 300: hybrid plasmonic photovoltaic cell Cross Section 350: Cross Section of Enhanced Hybrid Plasma Photovoltaic Cell 410: AC Power Signal 412: DC Power Signal 600A: First Enhanced Hybrid Plasmon Photovoltaic Collector Cross Section 600B: Second Enhanced Hybrid Plasma Photovoltaic Collector Cross Section 600C: Third Enhanced Hybrid Plasma Photovoltaic Collector Cross Section 600D: Fourth Enhanced Hybrid Plasma Photovoltaic Collector Cross Section 600E: Fifth Enhanced Hybrid Plasma Photovoltaic Collector Device cross section 600F: sixth enhanced hybrid plasmonic photovoltaic collector cross section 600G: seventh enhanced hybrid plasma photovoltaic collector cross section 600H: eighth enhanced hybrid plasma photovoltaic collector cross section 600I: Ninth Enhanced Hybrid Plasma Photovoltaic Collector Cross Section 600J: Tenth Enhanced Hybrid Plasma Photovoltaic Collector Cross Section 600K: Eleventh Enhanced Hybrid Plasma Photovoltaic Collector Cross Section 600L: Twelfth Enhancement Hybrid plasmonic photovoltaic collector cross-section 600M: the thirteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600N: the fourteenth enhanced hybrid plasmonic photovoltaic collector cross-section 600O: the fifteenth enhanced hybrid Plasma photovoltaic collector cross section 600P: sixteenth enhanced hybrid plasma photovoltaic collector cross section 600Q: seventeenth strong hybrid plasma photovoltaic collector cross section 600R: eighteenth strong hybrid plasma photovoltaic collector Sub-PV collector cross section 900: array 1102: memory 1104: input/output peripherals 1120: power bridge 1130: inverter 1140: grid connection 1142: disconnected/interrupted 1150: grid 1300: photovoltaic array

為了更好地理解所描述的各種示例,應當參考以下描述並結合附圖,其中相同的元件符號在所有附圖中表示對應的部分。For a better understanding of the various examples described, reference should be made to the following description taken in conjunction with the accompanying drawings, wherein like reference characters indicate corresponding parts throughout.

圖1A和圖1B示出了示例性的基於電漿子的光伏收集器的前視圖和側視圖。1A and 1B show front and side views of an exemplary plasmon-based photovoltaic collector.

圖2示出了用於完全嵌合光伏收集器陣列的示例性的基於電漿子的光伏電池的各種形狀的前視圖。Figure 2 shows front views of various shapes of exemplary plasmon-based photovoltaic cells for fully fitting photovoltaic collector arrays.

圖3示出了示例性的基於電漿子的光伏收集器的各種側視圖。Figure 3 shows various side views of an exemplary plasmon-based photovoltaic collector.

圖4A至圖4C示出了示例性的基於電漿子的光伏收集器的各種橫截面視圖。4A-4C illustrate various cross-sectional views of exemplary plasmon-based photovoltaic collectors.

圖5A和圖5B示出了示例性的基於混合電漿子的光伏收集器的各種橫截面視圖。5A and 5B show various cross-sectional views of an exemplary hybrid plasmon-based photovoltaic collector.

圖6A至圖6R示出了各種基於電漿子及/或基於光子的光伏收集器的橫截面視圖。6A-6R show cross-sectional views of various plasmonic-based and/or photon-based photovoltaic collectors.

圖7示出了示例性的基於電漿子的光伏收集器的分解圖。Figure 7 shows an exploded view of an exemplary plasmon-based photovoltaic collector.

圖8示出了示例性的基於混合電漿子的光伏收集器的ISO視圖和支架耦合器。Figure 8 shows an ISO view and bracket coupler of an exemplary hybrid plasmon based photovoltaic collector.

圖9A和圖9B示出了完全嵌合的基於電漿子的收集器的陣列。Figures 9A and 9B show arrays of fully fitted plasmon-based collectors.

圖10示出了包圍一個或多個建築物的完全嵌合陣列。Figure 10 shows a fully fitted array enclosing one or more buildings.

圖11示出了概念的資料流圖,其圖示了實現電漿子(plasmonic)產生器和光子產生器的基於混合電漿子的光伏收集器的不同硬體之間的資料流。Figure 11 shows a conceptual data flow diagram illustrating the data flow between different hardware implementing a hybrid plasmonic based photovoltaic collector of plasmonic and photon generators.

圖12A至圖12D示出了根據一個或多個實施例之具有一個或多個用於互連的連接單元的示例性光伏收集器的前視圖。12A-12D illustrate front views of exemplary photovoltaic collectors with one or more connection units for interconnection, according to one or more embodiments.

圖13示出了根據一個或多個實施例之多個互連以形成完全嵌合的光伏陣列的光伏收集器的透視圖。Figure 13 illustrates a perspective view of multiple photovoltaic collectors interconnected to form a fully fitted photovoltaic array according to one or more embodiments.

雖然將結合本文所示的說明性實施例來描述某些實施例,但本申請案的標的不限於這些實施例。相反,所有替代、修改和等同物均包括在由申請專利範圍限定的所揭露標的之精神和範圍內。在未按比例繪製的附圖中,在篇說明書和附圖中對於具有相同結構的部件和元件使用相同的元件符號。While certain embodiments will be described in conjunction with the illustrative embodiments shown herein, the subject matter of the present application is not limited to these embodiments. On the contrary, all alternatives, modifications and equivalents are included within the spirit and scope of the disclosed subject matter as defined by the claims. In the drawings, which are not drawn to scale, the same reference numerals are used for parts and elements of the same structure throughout the description and the drawings.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

100:光伏收集器 100: Photovoltaic collector

102:微控制器/處理器 102: Microcontroller/Processor

104:電力軸環 104: power collar

105:連接單元 105: Connection unit

106:能量電池 106: Energy battery

Claims (41)

一種光伏收集器,包括: 一光伏電池,該光伏電池經配置為吸收入射光並產生電流; 一電力軸環,該電力軸環沿著該光伏電池的一周邊設置,該電力軸環電耦合到該光伏電池的至少一個傳導層;及 一連接單元,該連接單元經電連接至該電力軸環,該連接單元包括: 一第一連接器,該第一連接器電連接至該電力軸環的一正極端子;及 一第二連接器,該第二連接器電連接至該電力軸環的一負極端子; 其中該第一連接器和該第二連接器經設置在該光伏收集器的一外周邊緣處,及 其中該第一連接器和該第二連接器經配置為將該光伏收集器與一第一相鄰的光伏收集器互連。 A photovoltaic collector comprising: a photovoltaic cell configured to absorb incident light and generate electrical current; an electrical collar disposed along a perimeter of the photovoltaic cell, the electrical collar electrically coupled to at least one conductive layer of the photovoltaic cell; and A connection unit electrically connected to the power collar, the connection unit comprising: a first connector electrically connected to a positive terminal of the power collar; and a second connector electrically connected to a negative terminal of the power collar; wherein the first connector and the second connector are disposed at a peripheral edge of the photovoltaic collector, and Wherein the first connector and the second connector are configured to interconnect the photovoltaic collector with a first adjacent photovoltaic collector. 如請求項1所述的光伏收集器,進一步包括一能量電池,該能量電池沿著該光伏電池的該周邊設置,且其中該電力軸環電連接到該能量電池且經配置成將帶電載流子引導至該能量電池。The photovoltaic collector of claim 1, further comprising an energy cell disposed along the perimeter of the photovoltaic cell, and wherein the power collar is electrically connected to the energy cell and configured to carry an electrical current The sub leads to the energy cell. 如請求項2所述的光伏收集器,其中連接單元電連接到該能量電池,使得該第一連接器電耦合到該能量電池的一陽極,而該第二連接器電連接到該能量電池的一陰極。The photovoltaic collector as claimed in claim 2, wherein the connection unit is electrically connected to the energy cell such that the first connector is electrically coupled to an anode of the energy cell, and the second connector is electrically connected to an anode of the energy cell a cathode. 如請求項1所述的光伏收集器,其中該第一連接器為一公針連接器且該第二連接器為一母插座連接器,及 其中該第一連接器和該第二連接器經設置在該光伏收集器的該外周邊緣,使得該公針連接器與該第一相鄰的光伏收集器的一相應母插座連接器可電連接,且該母插座連接器與該第一相鄰的光伏收集器的一相應的公針連接器可電連接。 The photovoltaic collector as claimed in claim 1, wherein the first connector is a male pin connector and the second connector is a female socket connector, and Wherein the first connector and the second connector are arranged on the peripheral edge of the photovoltaic collector, so that the male pin connector can be electrically connected with a corresponding female socket connector of the first adjacent photovoltaic collector , and the female socket connector is electrically connectable with a corresponding male pin connector of the first adjacent photovoltaic collector. 如請求項4所述的光伏收集器,其中該公針連接器為一扁平的針連接器或為一圓形的針連接器,及該母插座連接器為一扁平的插座連接器或為一圓形的插座連接器。The photovoltaic collector as described in claim 4, wherein the male pin connector is a flat pin connector or a circular pin connector, and the female socket connector is a flat socket connector or a Round socket connector. 如請求項1所述的光伏收集器,其中該光伏電池為一三角形的光伏電池,且其中沿著該三角形的光伏電池之沿一外周邊表面的一第一邊緣設置該第一連接器和該第二連接器。The photovoltaic collector as claimed in claim 1, wherein the photovoltaic cell is a triangular photovoltaic cell, and wherein the first connector and the first connector are disposed along a first edge of the triangular photovoltaic cell along an outer peripheral surface Second connector. 如請求項6所述的光伏收集器,其中沿著該三角形的光伏電池的該第一邊緣設置的該第一連接器和該第二連接器接近該三角形的光伏電池的該第一邊緣的一第一頂點來彼此相鄰地定位。The photovoltaic collector of claim 6, wherein the first connector and the second connector disposed along the first edge of the triangular photovoltaic cell are proximate to one of the first edges of the triangular photovoltaic cell The first vertices are positioned adjacent to each other. 如請求項6所述的光伏收集器,其中沿著該三角形的光伏電池的該第一邊緣設置的該第一連接器和該第二連接器彼此遠離定位,使得該第一連接器接近該三角形的光伏電池的該第一邊緣的一個頂點,而該第二連接器接近該三角形的光伏電池的該第一邊緣的另一個頂點。The photovoltaic collector of claim 6, wherein the first connector and the second connector disposed along the first edge of the triangular photovoltaic cell are positioned away from each other such that the first connector is close to the triangle A vertex of the first edge of the photovoltaic cell, and the second connector is close to the other vertex of the first edge of the triangular photovoltaic cell. 如請求項6所述的光伏收集器,進一步包括: 一第二連接單元,該第二連接單元電連接至該電力軸環且包括分別電連接至該電力軸環的該正極端子和該負極端子的第一連接器和第二連接器;及 一第三連接單元,該第三連接單元電連接至電力軸環且包括分別電連接至該電力軸環的該正極端子和該負極端子的第一連接器和第二連接器。 The photovoltaic collector as described in claim 6, further comprising: a second connection unit electrically connected to the power collar and including first and second connectors electrically connected to the positive terminal and the negative terminal of the power collar, respectively; and A third connection unit electrically connected to the power collar and including a first connector and a second connector electrically connected to the positive terminal and the negative terminal of the power collar, respectively. 如請求項9所述的光伏收集器,其中沿著該三角形的光伏電池之沿該外周邊表面的一第二邊緣設置該第二連接單元的該第一連接器和該第二連接器,且沿著該三角形的光伏電池之沿該外周邊表面的一第三邊緣設置該第三連接單元的該第一連接器和該第二連接器。The photovoltaic collector as claimed in claim 9, wherein the first connector and the second connector of the second connection unit are arranged along a second edge of the triangular photovoltaic cell along the outer peripheral surface, and The first connector and the second connector of the third connection unit are disposed along a third edge of the triangular photovoltaic cell along the outer peripheral surface. 如請求項10所述的光伏收集器,其中對於該第二連接單元和該第三連接單元中的每一者,沿著該三角形的光伏電池的一對應邊緣設置該第一連接器和該第二連接器,以使彼此接近該三角形的光伏電池的一相應頂點相鄰地定位。The photovoltaic collector as claimed in claim 10, wherein for each of the second connection unit and the third connection unit, the first connector and the second connection unit are arranged along a corresponding edge of the triangular photovoltaic cell Two connectors are adjacently positioned so as to be adjacent to each other and a corresponding vertex of the triangular photovoltaic cell. 如請求項10所述的光伏收集器,其中對於該第二連接單元和該第三連接單元中的每一者,沿著該三角形的光伏電池的一對應邊緣設置該第一連接器和該第二連接器,以使彼此遠離且使得該第一連接器接近該三角形的光伏電池的該相應邊緣的一個頂點而該第二連接器接近該三角形的光伏電池的該相應邊緣的另一個頂點。The photovoltaic collector as claimed in claim 10, wherein for each of the second connection unit and the third connection unit, the first connector and the second connection unit are arranged along a corresponding edge of the triangular photovoltaic cell The two connectors are separated from each other such that the first connector is close to one vertex of the corresponding edge of the triangular photovoltaic cell and the second connector is close to the other vertex of the corresponding edge of the triangular photovoltaic cell. 如請求項10所述的光伏收集器,其中該第二連接單元的該第一連接器和該第二連接器經配置為將該光伏收集器與一相鄰的第二光伏收集器電連接和互鎖,且其中該第三連接單元的該第一連接器和該第二連接器經配置為將該光伏收集器與一第三相鄰的光伏收集器電連接和互鎖。The photovoltaic collector as claimed in claim 10, wherein the first connector and the second connector of the second connection unit are configured to electrically connect the photovoltaic collector to an adjacent second photovoltaic collector and interlocking, and wherein the first connector and the second connector of the third connection unit are configured to electrically connect and interlock the photovoltaic collector with a third adjacent photovoltaic collector. 如請求項1所述的光伏收集器,其中該光伏電池為一矩形光伏電池、一五邊形光伏電池、一六邊形光伏電池、一橢圓形光伏電池及一圓形光伏電池中的一者。The photovoltaic collector of claim 1, wherein the photovoltaic cell is one of a rectangular photovoltaic cell, a pentagonal photovoltaic cell, a hexagonal photovoltaic cell, an elliptical photovoltaic cell, and a circular photovoltaic cell . 如請求項1所述的光伏收集器,進一步包括一第二連接單元,該第二連接單元電連接到該電力軸環且包括分別電連接至該電力軸環的該正極端子和該負極端子的第一連接器和第二連接器。The photovoltaic collector as claimed in claim 1, further comprising a second connection unit electrically connected to the power collar and including the positive terminal and the negative terminal respectively electrically connected to the power collar first connector and second connector. 如請求項1所述的光伏收集器,其中該第一連接器通過一第一互連跡線電連接到該電力軸環的該正極端子,且該第二連接器通過一第二互連跡線電連接到該電力軸環的該負極端子。The photovoltaic collector of claim 1, wherein the first connector is electrically connected to the positive terminal of the power collar through a first interconnection trace, and the second connector is electrically connected to the positive terminal through a second interconnection trace A wire is electrically connected to the negative terminal of the power collar. 如請求項16所述的光伏收集器,其中嵌入該第一互連跡線和該第二互連跡線以氣密地密封在該光伏收集器的一個或多個保護層內,且其中該第一互連跡線和該第二互連跡線分別在該光伏收集器的該外周邊緣處提供從該電力軸環的該正極端子和該負極端子到該第一連接器和該第二連接器的電氣管線。The photovoltaic collector of claim 16, wherein the first interconnect trace and the second interconnect trace are embedded to be hermetically sealed within one or more protective layers of the photovoltaic collector, and wherein the First interconnection trace and the second interconnection trace provide connections from the positive terminal and the negative terminal of the power collar to the first connector and the second connection respectively at the peripheral edge of the photovoltaic collector The electrical pipeline of the device. 一種光伏收集器陣列,包括: 複數個光伏收集器,每個光伏收集器包括: 一光伏電池,該光伏電池經配置為吸收入射光並產生電流; 一電力軸環,該電力軸環沿著該光伏電池的一周邊設置;及 複數個連接單元,該複數個連接單元電連接到該電力軸環,其中每個連接單元經設置在該光伏收集器的一外周邊緣處且經配置為與該複數個光伏收集器中的一相鄰的光伏收集器電互連,及 其中該複數個光伏收集器通過該複數個光伏收集器的該複數個連接單元彼此互連而完全嵌合。 A photovoltaic collector array comprising: A plurality of photovoltaic collectors, each photovoltaic collector comprising: a photovoltaic cell configured to absorb incident light and generate electrical current; an electrical collar disposed along a perimeter of the photovoltaic cell; and a plurality of connection units electrically connected to the power collar, wherein each connection unit is disposed at a peripheral edge of the photovoltaic collector and is configured to be in phase with one of the plurality of photovoltaic collectors electrical interconnection of adjacent photovoltaic collectors, and Wherein the plurality of photovoltaic collectors are interconnected to each other through the plurality of connecting units of the plurality of photovoltaic collectors so as to be completely embedded. 如請求項18所述的光伏收集器陣列,其中該複數個光伏收集器中的每一者是一三角形的光伏收集器、一矩形光伏收集器、一五邊形光伏收集器、一六邊形光伏收集器、一橢圓形光伏收集器和一圓形光伏收集器中的一者。The photovoltaic collector array of claim 18, wherein each of the plurality of photovoltaic collectors is a triangular photovoltaic collector, a rectangular photovoltaic collector, a pentagonal photovoltaic collector, a hexagonal One of a photovoltaic collector, an elliptical photovoltaic collector, and a circular photovoltaic collector. 如請求項18所述的光伏收集器陣列,其中該複數個完全嵌合的光伏收集器僅通過該複數個光伏收集器的該複數個連接單元彼此電連接和互鎖,而不需要額外的電纜線。The photovoltaic collector array as claimed in claim 18, wherein the plurality of fully fitted photovoltaic collectors are electrically connected and interlocked to each other only through the plurality of connection units of the plurality of photovoltaic collectors, without requiring additional cables Wire. 一種光伏收集器,包括: 一光伏電池,包括: 一第一傳導層; 一第二傳導層;及 一光伏層,該光伏層經配置為吸收入射光並產生電流,其中該光伏層在該光伏層的一第一側上電連接到該第一傳導層且在與該第一側相對的一第二側上電連接到該第二傳導層; 其中該第一傳導層是一超靜電傳導層。 A photovoltaic collector comprising: A photovoltaic cell, comprising: a first conductive layer; a second conductive layer; and A photovoltaic layer configured to absorb incident light and generate current, wherein the photovoltaic layer is electrically connected to the first conductive layer on a first side of the photovoltaic layer and on a first side opposite the first side two sides are electrically connected to the second conductive layer; Wherein the first conduction layer is a superstatic conduction layer. 如請求項21所述的光伏收集器,其中使用超聲波噴塗技術製成該超靜電傳導層。The photovoltaic collector as claimed in claim 21, wherein the superstatic conductive layer is made by ultrasonic spraying technology. 如權利要求22所述的光伏收集器,其中該超靜電傳導層為透明或半透明塗層。The photovoltaic collector of claim 22, wherein the superstatic conductive layer is a transparent or translucent coating. 如請求項22所述的光伏收集器,其中該超靜電傳導層包括銀奈米線。The photovoltaic collector of claim 22, wherein the superstatic conductive layer comprises silver nanowires. 如請求項22所述的光伏收集器,其中該超靜電傳導層包括石墨烯。The photovoltaic collector of claim 22, wherein the superstatic conductive layer comprises graphene. 如請求項22所述的光伏收集器,其中該超靜電傳導層的一厚度為約200奈米。The photovoltaic collector of claim 22, wherein the superstatic conductive layer has a thickness of about 200 nanometers. 如請求項21所述的光伏收集器,其中該第二傳導層為採用超聲波噴塗技術製成的另一超靜電傳導層。The photovoltaic collector as claimed in claim 21, wherein the second conductive layer is another super-static conductive layer made by ultrasonic spraying technology. 如請求項21所述的光伏收集器,其中該光伏層是一電漿子層,該電漿子層包括分散有奈米顆粒的聚合物,其中將該等奈米顆粒調諧到一預定波長的入射光,該預定波長的入射光誘導電子在該等奈米顆粒的一表面處振盪,及 其中該第一傳導層和該第二傳導層經配置為沿著該等奈米顆粒的該表面捕獲振盪電子以產生一交流電。 The photovoltaic collector of claim 21, wherein the photovoltaic layer is a plasmonic layer comprising a polymer dispersed with nanoparticles wherein the nanoparticles are tuned to a predetermined wavelength incident light, the incident light of the predetermined wavelength induces electrons to oscillate at a surface of the nanoparticles, and Wherein the first conductive layer and the second conductive layer are configured to capture oscillating electrons along the surface of the nanoparticles to generate an alternating current. 如請求項21所述的光伏收集器,其中該光伏層是一光子吸收層,該光子吸收層經調諧以吸收入射光以沿該第一傳導層或該第二傳導層產生一直流電。The photovoltaic collector of claim 21, wherein the photovoltaic layer is a photon absorbing layer tuned to absorb incident light to generate a direct current along the first conducting layer or the second conducting layer. 如請求項21所述的光伏收集器,其中該光伏層的該第二側是入射光從其進入該光伏收集器的一入射表面側,且其中該光伏層的該第一側是與該入射表面側相對的一遠側表面側。The photovoltaic collector of claim 21, wherein the second side of the photovoltaic layer is an incident surface side from which incident light enters the photovoltaic collector, and wherein the first side of the photovoltaic layer is the incident surface side from which the incident light enters the photovoltaic collector. A distal surface side opposite the surface side. 如請求項30所述的光伏收集器,其中該光伏電池是一電漿子光伏電池,且該光伏層是一電漿子層,該電漿子層包括分散有奈米顆粒的聚合物, 其中將該等奈米顆粒調諧到一預定波長的入射光,該預定波長的入射光誘導電子在該等奈米顆粒的一表面處振盪,且其中該第一傳導層和該第二傳導層經配置為沿著該等奈米顆粒的該表面捕獲振蕩電子以產生一交流電, 及 其中該光伏收集器進一步包括: 一光子光伏電池,該光子光伏電池包括: 一第三傳導層;及 一光子吸收層,該光子吸收層電連接到該入射表面側上的該第一傳導層和該遠側表面側上的該第三傳導層, 其中該第三傳導層為另一超靜電傳導層。 The photovoltaic collector of claim 30, wherein the photovoltaic cell is a plasmonic photovoltaic cell and the photovoltaic layer is a plasmonic layer comprising a polymer dispersed with nanoparticles, wherein the nanoparticles are tuned to incident light of a predetermined wavelength that induces electrons to oscillate at a surface of the nanoparticles, and wherein the first conducting layer and the second conducting layer are passed through configured to trap oscillating electrons along the surface of the nanoparticles to generate an alternating current, and Wherein the photovoltaic collector further comprises: A photonic photovoltaic cell, the photonic photovoltaic cell comprising: a third conductive layer; and a photon absorbing layer electrically connected to the first conductive layer on the incident surface side and the third conductive layer on the far side surface side, Wherein the third conductive layer is another superstatic conductive layer. 如請求項31所述的光伏收集器,其中該光子吸收層經調諧以吸收該入射光以沿該第一傳導層或該第三傳導層產生一直流電。The photovoltaic collector of claim 31, wherein the photon absorbing layer is tuned to absorb the incident light to generate a direct current along the first conducting layer or the third conducting layer. 如請求項31所述的光伏收集器,其中該第二傳導層由一導電材料或一半金屬材料製成,其中該第二傳導層不採用超聲波噴塗技術製成,及 其中該第一傳導層和該第三傳導層由導電銀奈米線製成,該第一傳導層和該第三傳導層採用超聲波噴塗技術製成。 The photovoltaic collector of claim 31, wherein the second conductive layer is made of a conductive material or semi-metallic material, wherein the second conductive layer is not made by ultrasonic spraying technology, and Wherein the first conductive layer and the third conductive layer are made of conductive silver nanowires, and the first conductive layer and the third conductive layer are made by ultrasonic spraying technology. 一種光伏電池,包括: 一第一傳導層; 一第二傳導層;及 一光伏層,該光伏層經配置為吸收入射光並產生電流,其中該光伏層在該光伏層的一入射表面側與該第二傳導層電連接,該入射表面側為入射光從其進入該光伏層的一側,且其中該光伏層進一步電連接至該光伏層的一遠側表面側上的該第一傳導層,該遠側表面側與該入射表面側相對, 其中該第一傳導層為一超靜電傳導層,該超靜電傳導層採用超聲波噴塗技術製成。 A photovoltaic cell comprising: a first conductive layer; a second conductive layer; and a photovoltaic layer configured to absorb incident light and generate electrical current, wherein the photovoltaic layer is electrically connected to the second conductive layer on an incident surface side of the photovoltaic layer from which incident light enters the one side of the photovoltaic layer, and wherein the photovoltaic layer is further electrically connected to the first conductive layer on a distal surface side of the photovoltaic layer opposite the incident surface side, Wherein the first conducting layer is a super-static conducting layer, and the super-static conducting layer is made by ultrasonic spraying technology. 如請求項34所述的光伏電池,其中該超靜電傳導層: (i)是透明或半透明的, (ii)包括銀奈米線和石墨烯中的至少一者,且(iii)具有約200奈米的一厚度。The photovoltaic cell of claim 34, wherein the superstatic conductive layer: (i) is transparent or translucent, (ii) includes at least one of silver nanowires and graphene, and (iii) has about A thickness of 200 nm. 如請求項34所述的光伏電池,其中該第二傳導層為一透明傳導層,該透明傳導層由一導電材料或半金屬材料製成,該第二傳導層不是採用超聲波噴塗技術製成。The photovoltaic cell as claimed in claim 34, wherein the second conductive layer is a transparent conductive layer made of a conductive material or a semi-metallic material, and the second conductive layer is not made by ultrasonic spraying technology. 如請求項34的光伏電池,進一步包括一第一二極體層及一第二二極體層,該第一二極體層夾在該第一傳導層與該光伏層之間及該第二二極體層夾在該光伏層與該第二傳導層之間。The photovoltaic cell according to claim 34, further comprising a first diode layer and a second diode layer, the first diode layer being sandwiched between the first conductive layer and the photovoltaic layer and the second diode layer Sandwiched between the photovoltaic layer and the second conductive layer. 如請求項34所述的光伏電池,其中該光伏層是其中分散有奈米顆粒的一聚合物層,其中該聚合物層從該入射光產生交流電。The photovoltaic cell of claim 34, wherein the photovoltaic layer is a polymer layer having nanoparticles dispersed therein, wherein the polymer layer generates alternating current from the incident light. 如請求項34所述的光伏電池,其中該光伏層是一半導體層,該半導體層實施量子點且經配置為從該入射光產生直流電。The photovoltaic cell of claim 34, wherein the photovoltaic layer is a semiconductor layer implementing quantum dots and configured to generate direct current from the incident light. 如請求項34所述的光伏電池,進一步包括: 一電力軸環,該電力軸環連接到該第一傳導層和該第二傳導層,以基於被該光伏層吸收的該入射光來汲取電流;及 一能量電池,該能量電池經電耦合到該電力軸環,該能量電池經配置為存儲由該光伏電池產生的該電流。 The photovoltaic cell of claim 34, further comprising: an electrical collar connected to the first conductive layer and the second conductive layer to draw current based on the incident light absorbed by the photovoltaic layer; and An energy cell is electrically coupled to the power collar, the energy cell configured to store the electrical current generated by the photovoltaic cell. 如請求項40所述的光伏電池,進一步包括複數個連接單元,每個連接單元包括一公針連接器和一母插座連接器,沿該光伏電池的一外周邊緣設置該複數個連接單元, 其中每個連接單元與該電力軸環和該能量電池電連接,及 其中每個連接單元經調適成與一相鄰光伏電池的一相鄰連接單元連接,以將該光伏電池與複數個相鄰光伏電池完全嵌合及電互連和互鎖,而不需要額外的電纜線。 The photovoltaic cell as described in claim 40, further comprising a plurality of connection units, each connection unit including a male pin connector and a female socket connector, the plurality of connection units are arranged along a peripheral edge of the photovoltaic cell, wherein each connection unit is electrically connected to the power collar and the energy cell, and wherein each connection unit is adapted to be connected to an adjacent connection unit of an adjacent photovoltaic cell, so that the photovoltaic cell is fully fitted and electrically interconnected and interlocked with a plurality of adjacent photovoltaic cells without additional Cable.
TW110135292A 2021-09-07 2021-09-23 Advanced quantum power collector TW202312509A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/467,786 US20210408966A1 (en) 2017-07-18 2021-09-07 Advanced quantum power collector
US17/467,786 2021-09-07

Publications (1)

Publication Number Publication Date
TW202312509A true TW202312509A (en) 2023-03-16

Family

ID=78149396

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110135292A TW202312509A (en) 2021-09-07 2021-09-23 Advanced quantum power collector

Country Status (2)

Country Link
GB (1) GB2610441A (en)
TW (1) TW202312509A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140272199A1 (en) * 2013-03-14 2014-09-18 Yi-Jun Lin Ultrasonic spray coating of conducting and transparent films from combined graphene and conductive nano filaments
GB201711546D0 (en) * 2017-07-18 2017-08-30 Freschfield Power collector

Also Published As

Publication number Publication date
GB202113093D0 (en) 2021-10-27
GB2610441A (en) 2023-03-08

Similar Documents

Publication Publication Date Title
US8071931B2 (en) Structures, systems and methods for harvesting energy from electromagnetic radiation
US9433336B2 (en) Self-cleaning solar panels and concentrators with transparent electrodynamic screens
Zhou et al. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement
US9348078B2 (en) Optical antennas with enhanced fields and electron emission
US20180122962A1 (en) Diffuse omni-directional back reflectors and methods of manufacturing the same
US20110226317A1 (en) Surface Plasmon Resonance Enhanced Solar Cell Structure with Broad Spectral and Angular Bandwidth and Polarization Insensitivity
US10727602B2 (en) Electromagnetic reception using metamaterial
CA2921290A1 (en) Radial p-n junction nanowire solar cells
US20150221785A1 (en) Solar module with wireless power transfer
US20140158198A1 (en) Thin film photovoltaic cell structure, nanoantenna, and method for manufacturing
US20200235250A1 (en) Power collector
Jiang-Tao et al. Broad-spectrum enhanced absorption of graphene-molybdenum disulfide photovoltaic cells in metal-mirror microcavity
US20110000542A1 (en) Hybrid photovoltaic modules
TW202312509A (en) Advanced quantum power collector
US20210408966A1 (en) Advanced quantum power collector
US20220155150A1 (en) Infrared absorption and detection enhancement using plasmonics
KR102085935B1 (en) Multi-junction solar cell and method of manufacturing the same
US9853171B2 (en) Photovoltaic devices with three dimensional surface features and methods of making the same
Pritom et al. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells
TWI467785B (en) A solar cell substrate
KR102574926B1 (en) Perovskite silicon tandem solar cell and method for manufacturing the same
CN208077991U (en) A kind of rectangular combined type core-shell electrode semiconductor detector
Radder et al. FDTD based plasmonic light trapping analysis in thin film hydrogenated amorphous silicon solar cells
KR101976918B1 (en) Lossless Photovoltaic System using Patterned Array and Method of Manufacturing thereof
Bashirpour et al. Solar cell efficiency enhancement using a hemisphere texture containing metal nanostructures