TW202308206A - Lithium-sulfur battery cathode formed from multiple carbonaceous regions - Google Patents

Lithium-sulfur battery cathode formed from multiple carbonaceous regions Download PDF

Info

Publication number
TW202308206A
TW202308206A TW111127628A TW111127628A TW202308206A TW 202308206 A TW202308206 A TW 202308206A TW 111127628 A TW111127628 A TW 111127628A TW 111127628 A TW111127628 A TW 111127628A TW 202308206 A TW202308206 A TW 202308206A
Authority
TW
Taiwan
Prior art keywords
battery
anode
cathode
lithium
carbon
Prior art date
Application number
TW111127628A
Other languages
Chinese (zh)
Inventor
布魯斯 蘭寧
麥可 W 史托威爾
安紐拉格 庫瑪
傑佛瑞 貝爾
黄前文
傑西 鮑康
游 李
約翰 索恩
卡雷爾 範赫斯頓
艾蓮娜 羅戈吉那
耶西 加茲達
景寧 單
Original Assignee
美商萊登股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/383,744 external-priority patent/US11342561B2/en
Priority claimed from US17/383,803 external-priority patent/US11309545B2/en
Priority claimed from US17/383,769 external-priority patent/US20210359308A1/en
Priority claimed from US17/383,756 external-priority patent/US20210359306A1/en
Priority claimed from US17/383,793 external-priority patent/US11398622B2/en
Priority claimed from US17/383,735 external-priority patent/US11489161B2/en
Priority claimed from US17/563,183 external-priority patent/US11404692B1/en
Application filed by 美商萊登股份有限公司 filed Critical 美商萊登股份有限公司
Publication of TW202308206A publication Critical patent/TW202308206A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

A composition of matter suitable for incorporation into a battery electrode is disclosed. In some implementations, the composition of matter may include pores that may be defined in size or shape by several carbonaceous particles. Each of the particles may have multiple regions such that adjacent regions are separated from each other by some of the pores. Deformable regions may be distributed throughout a perimeter of each of the particles, for example, to accommodate coalescence of multiple adjacent particles. The composition of matter may also include a plurality of aggregates and a plurality of agglomerates, where each aggregate includes a multitude of the particles joined together, and each agglomerate includes a multitude of the aggregates joined together.

Description

由多個碳質區域形成的鋰硫電池陰極 Lithium-sulfur battery cathode formed from multiple carbonaceous domains

本揭示案一般而言係關於電池,且更詳言之,係關於可補償操作循環損耗之鋰離子電池。 The present disclosure relates generally to batteries, and more particularly to lithium-ion batteries that can compensate for operating cycle losses.

電池之最新發展允許消費者在許多新應用中使用電子裝置。然而,電池技術需要進一步改良。 Recent developments in batteries allow consumers to use electronic devices in many new applications. However, battery technology needs further improvement.

提供此[發明內容]以便以簡化形式介紹下文在[實施方式]中進一步描述的一些概念。此[發明內容]不意欲鑑別所主張標的物之關鍵特徵或基本特徵,亦不意欲限制所主張標的物之範疇。 This [SUMMARY] is provided to introduce a selection of concepts in a simplified form that are further described below in the [EMBODIMENTS]. This [Summary] is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to limit the scope of the claimed subject matter.

本揭示案中描述之標的物的一個創新態樣可經實行為一種包括複數個孔隙之標的組合物。可適用於併入電池電極中的標的組合物包括複數個顆粒,每個顆粒包含第一區段及第二區段,第一區段包括複數個具有均勻孔徑之第一孔隙,第二區段包括複數個第二孔隙。第二區段可相對於第一區段經同心地定位且藉由複數個第一孔隙中之至少一些與第一區段隔開,其中複數個第二孔隙具有沿徑向方向自顆粒中心至顆粒邊界逐漸減小之孔徑。標的組合物亦可包括複數個聚集物,各聚集物包括接合在一起之許多顆粒,以及複數個團聚物,各團聚物包括接合在一起之許多聚集物。 An innovative aspect of the subject matter described in this disclosure can be practiced as a subject composition comprising a plurality of voids. A subject composition suitable for incorporation into a battery electrode comprises a plurality of particles, each particle comprising a first segment and a second segment, the first segment comprising a plurality of first pores having a uniform pore size, the second segment It includes a plurality of second pores. The second section may be concentrically positioned relative to the first section and separated from the first section by at least some of a plurality of first pores, wherein the plurality of second pores have a direction extending from the center of the particle to the first section in a radial direction. The pore size gradually decreases at the grain boundary. The subject composition may also include a plurality of aggregates, each aggregate comprising a plurality of particles joined together, and a plurality of agglomerates, each aggregate comprising a plurality of aggregates joined together.

在一些實行方案中,各顆粒可具有20奈米(nm)與150nm之間的主要尺寸。各聚集物可具有10奈米(nm)與10微米(μm)之間的主要尺寸。各團聚物 可具有0.1μm與1,000μm之間的主要尺寸。至少一些孔隙可分散於一或多個顆粒或聚集物中,其中各孔隙可具有0nm與100nm之間的主要尺寸。 In some implementations, each particle can have a major dimension between 20 nanometers (nm) and 150 nm. Each aggregate may have a major dimension between 10 nanometers (nm) and 10 micrometers (μm). Agglomerates May have major dimensions between 0.1 μm and 1,000 μm. At least some of the pores may be dispersed in one or more particles or aggregates, wherein each pore may have a major dimension between 0 nm and 100 nm.

在一個實行方案中,各顆粒可包括第一孔隙率區域及與第一孔隙率區域相鄰定位之第二孔隙率區域。第一孔隙率區域可具有第一類型之孔隙且第二孔隙率區域可具有第二類型之孔隙,使得第一孔隙率區域具有與第二孔隙率區域不同的孔隙率。因此,第一類型之孔隙可具有第一孔隙密度,而第二類型之孔隙具有第二孔隙密度。例如,第一孔隙率區域可具有0.0立方公分(cc)/g與2.0cc/g之間的第一孔隙密度,且第二孔隙率區域可具有1.5與5.0cc/g之間的第二孔隙密度。在一些態樣中,第二孔隙率區域可至少部分地由第一孔隙率區域封裝。 In one implementation, each particle can include a region of first porosity and a region of second porosity positioned adjacent to the first region of porosity. The first porosity region may have a first type of pores and the second porosity region may have a second type of pores such that the first porosity region has a different porosity than the second porosity region. Thus, pores of a first type may have a first pore density, while pores of a second type have a second pore density. For example, the first porosity region may have a first porosity density between 0.0 cubic centimeter (cc)/g and 2.0 cc/g, and the second porosity region may have a second porosity between 1.5 and 5.0 cc/g density. In some aspects, the second region of porosity can be at least partially encapsulated by the first region of porosity.

在一些實行方案中,一些孔隙可散佈於整個團聚物中,其中至少一些孔隙具有1.3nm與32.3nm之間的主要尺寸。導電添加劑可分散於至少一些孔隙內。在一些態樣中,標的組合物可具有暴露之碳表面,其具有10m2/g至3,000m2/g之間的表面積及/或10m2/g至3,000m2/g之間的複合表面積(例如,包括微觀限定於孔隙內之硫)。在一個實行方案中,標的組合物可在12,000鎊/平方吋(psi)之壓力下具有100S/m至20,000S/m之間的電導率。在一個實行方案中,顆粒、聚集物及/或團聚物可包括可有助於硫成核的暴露碳表面,使得標的組合物具有大約1:5至10:1之間的硫與碳重量比。在一些態樣中,一些團聚物用一或多種基於聚合物之黏合劑彼此連接。 In some implementations, some pores may be dispersed throughout the agglomerate, with at least some of the pores having a major dimension between 1.3 nm and 32.3 nm. Conductive additives may be dispersed within at least some of the pores. In some aspects, the subject composition can have an exposed carbon surface with a surface area between 10 m 2 /g and 3,000 m 2 /g and/or a composite surface area between 10 m 2 /g and 3,000 m 2 /g (eg, including sulfur microscopically confined within pores). In one implementation, the subject composition may have a conductivity between 100 S/m and 20,000 S/m at a pressure of 12,000 pounds per square inch (psi). In one embodiment, the particles, aggregates, and/or agglomerates can include exposed carbon surfaces that can facilitate nucleation of sulfur such that the subject composition has a sulfur to carbon weight ratio of between about 1:5 and 10:1 . In some aspects, agglomerates are attached to each other with one or more polymer-based binders.

本揭示案中描述之標的物的另一個創新態樣可經實行為一種電池。在一些實行方案中,電池可包括陽極;安置在陽極之一或多個暴露表面之上的聚合物網路;與陽極相對定位之陰極;至少部分地分散於整個陰極中且與陽極接觸之電解質,該電解質經組態以在陰極與陽極之間傳輸複數個鹼金屬離子;以及隔板。在一些實行方案中,陽極可包括在電池之操作放電-充電循環期間可釋 放鹼金屬離子之鹼金屬。聚合物網路可包括用彼此交聯之氟化聚合物鏈接枝之碳質材料。氟化聚合物鏈可響應於電池之操作循環而產生含鹼金屬之氟化物。在一個實行方案中,含鹼金屬之氟化物的形成可抑制自陽極之鹼金屬枝晶形成,例如,使得鋰被消耗以形成氟化鋰而非形成含鋰枝晶結構。電解質可至少部分地分散於整個陰極中且與陽極接觸,且可有助於鹼性離子在陰極與陽極之間的傳輸。隔板可定位在陽極與陰極之間。 Another innovative aspect of the subject matter described in this disclosure can be practiced as a battery. In some implementations, a battery can include an anode; a polymeric network disposed over one or more exposed surfaces of the anode; a cathode positioned opposite the anode; an electrolyte at least partially dispersed throughout the cathode and in contact with the anode , the electrolyte configured to transport a plurality of alkali metal ions between the cathode and the anode; and the separator. In some implementations, the anode may include a releasable Release alkali metal ions. The polymer network may comprise a carbonaceous material grafted with fluorinated polymer chains crosslinked with each other. Fluorinated polymer chains can generate alkali metal-containing fluorides in response to operating cycles of the cell. In one embodiment, the formation of alkali metal-containing fluoride can inhibit alkali metal dendrite formation from the anode, eg, such that lithium is consumed to form lithium fluoride instead of forming lithium-containing dendrite structures. An electrolyte can be at least partially dispersed throughout the cathode and in contact with the anode, and can facilitate transport of basic ions between the cathode and anode. A separator can be positioned between the anode and cathode.

在一個實行方案中,碳質材料可包括平坦石墨烯、起皺石墨烯、碳奈米管(CNT)及/或碳奈米洋蔥(CNO)。氟化聚合物鏈可包括單體,包括丙烯酸2,2,3,3,4,4,5,5,6,6,7,7-十二氟庚酯(DFHA)、甲基丙烯酸3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-十七氟癸酯(HDFDMA)、甲基丙烯酸2,2,3,3,4,4,5,5-八氟戊酯(OFPMA)、甲基丙烯酸四氟丙酯(TFPM)、3-[3,3,3-三氟-2-羥基-2-(三氟甲基)丙基]雙環[2.2.1]庚-2-基甲基丙烯酸酯(HFA單體)、或基於乙烯基之單體(包括2,3,4,5,6-五氟苯乙烯(PFSt))。聚合物網路可具有大約0.001μm與5μm之間的厚度。 In one implementation, the carbonaceous material may include flat graphene, corrugated graphene, carbon nanotubes (CNTs), and/or carbon nanoonions (CNOs). Fluorinated polymer chains can include monomers including 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate (DFHA), methacrylate 3, 3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl (HDFDMA), methacrylic acid 2,2,3, 3,4,4,5,5-Octafluoropentyl ester (OFPMA), tetrafluoropropyl methacrylate (TFPM), 3-[3,3,3-trifluoro-2-hydroxy-2-(trifluoro Methyl)propyl]bicyclo[2.2.1]hept-2-yl methacrylate (HFA monomer), or vinyl-based monomers (including 2,3,4,5,6-pentafluorostyrene (PFSt)). The polymer network may have a thickness between approximately 0.001 μm and 5 μm.

在一些態樣中,氟化聚合物鏈可接枝至碳質材料之表面,使得接枝可基於自由基引發劑,該等自由基引發劑包括過氧化苯甲醯(BPO)或偶氮二異丁腈(AIBN)中之至少一種。氟化聚合物鏈可經由伍茲反應(Wurtz reaction)與鹼金屬離子發生化學反應,該伍茲反應可與鹼金屬氟化物之產生相關。石墨烯奈米片可分散在整個聚合物網路中,其中石墨烯奈米片在聚合物網路內彼此隔離。石墨烯奈米片之分散可包括(石墨烯奈米片的)不同濃度水準。在一些態樣中,石墨烯奈米片之分散可包括用至少一些氟化聚合物鏈來官能化之碳質材料。 In some aspects, fluorinated polymer chains can be grafted to the surface of the carbonaceous material such that the grafting can be based on free radical initiators including benzoyl peroxide (BPO) or azobis At least one of isobutyronitrile (AIBN). Fluorinated polymer chains can chemically react with alkali metal ions via the Wurtz reaction, which can be associated with the production of alkali metal fluorides. The graphene nanosheets can be dispersed throughout the polymer network, where the graphene nanosheets are isolated from each other within the polymer network. The dispersion of graphene nanoplatelets may include different concentration levels (of graphene nanoplatelets). In some aspects, the dispersion of graphene nanoplatelets can include a carbonaceous material functionalized with at least some fluorinated polymer chains.

在一個實行方案中,聚合物網路包括大約0.001重量%至2重量%之間的氟化聚合物鏈。在一些態樣中,聚合物網路包括與陽極接觸之界面相層及安置在界面相層頂部之保護層。界面相層可基於陽極與聚合物網路之間的界面處 之伍茲反應。在一些方面中,交聯之聚合物網路可包括大約5重量%至100重量%之間的用氟化聚合物鏈接枝之碳質材料且其餘為氟化聚合物、非氟化聚合物、或可交聯單體、或其組合。在一個實行方案中,用氟化聚合物鏈接枝之碳質材料可包括5重量%至50重量%之氟化聚合物鏈且其餘為碳質材料。 In one embodiment, the polymer network includes between about 0.001% and 2% by weight fluorinated polymer chains. In some aspects, the polymer network includes an interfacial phase layer in contact with the anode and a protective layer disposed on top of the interfacial phase layer. The interfacial phase layer can be based on the interface between the anode and the polymer network Woods' reaction. In some aspects, the crosslinked polymer network may comprise between about 5% and 100% by weight carbonaceous material grafted with fluorinated polymer chains with the remainder being fluorinated polymers, non-fluorinated polymers, or crosslinkable monomers, or combinations thereof. In one implementation, the carbonaceous material grafted with fluorinated polymer chains may comprise 5% to 50% by weight fluorinated polymer chains with the balance being carbonaceous material.

在一些態樣中,聚合物網路可進一步界定與界面相層及/或保護層之自我修復性質相關的密度梯度,且可加強聚合物網路,其可抑制自陽極之枝晶生長。在一個實行方案中,陽極可為鹼金屬層及/或包括暴露於電解質之表面,其中各暴露表面可包括含鹼金屬奈米結構或微結構。在一些態樣中,含鹼金屬奈米結構或微結構可包括碳質顆粒、多個各自包括碳質顆粒之聚集物、或多個各自包括若干聚集物之團聚物。 In some aspects, the polymer network can further define a density gradient related to the self-healing properties of the interfacial layer and/or protective layer, and can strengthen the polymer network, which can inhibit dendrite growth from the anode. In one implementation, the anode can be an alkali metal layer and/or include surfaces exposed to the electrolyte, where each exposed surface can include alkali metal-containing nanostructures or microstructures. In some aspects, an alkali metal-containing nanostructure or microstructure can include carbonaceous particles, a plurality of aggregates each including carbonaceous particles, or a plurality of aggregates each including several aggregates.

在一個實行方案中,各碳質顆粒包括具有第一孔隙密度之第一孔隙率區域及具有第二孔隙密度之第二孔隙率區域。第二孔隙率區域可至少部分地由第一孔隙率區域封裝,且第二密度可小於第一密度。在一些態樣中,第二孔隙率區域可至少暫時地微觀限定元素硫,其可與電池之操作放電-充電循環相關。 In one implementation, each carbonaceous particle includes a region of first porosity having a first pore density and a region of second porosity having a second pore density. The second porosity region can be at least partially encapsulated by the first porosity region, and the second density can be less than the first density. In some aspects, the second porosity region can at least temporarily microscopically confine elemental sulfur, which can be associated with operating discharge-charge cycles of the battery.

在一些實行方案中,陽極可在結構上由三維(3D)支架及/或結構界定,該支架及/或結構可包括可至少嵌入鹼金屬的相鄰石墨烯片。例如,陽極可形成為具有相鄰石墨烯片之晶格,該等石墨烯片具有用於鹼金屬電沉積及/或嵌入之暴露表面。在一個實行方案中,膜可安置在陰極上且包括具有相互化學鍵結之三官能環氧化合物及二胺寡聚物化合物的晶格。該膜可與在電池之操作放電-充電循環期間產生的含鹼金屬之多硫化物中間物鍵結,且補充經安置在陽極上之聚合物鞘。 In some implementations, the anode can be structurally defined by a three-dimensional (3D) scaffold and/or structure that can include adjacent graphene sheets that can embed at least alkali metal. For example, the anode can be formed as a lattice having adjacent graphene sheets with exposed surfaces for alkali metal electrodeposition and/or intercalation. In one implementation, a membrane can be disposed on the cathode and include a lattice of trifunctional epoxy and diamine oligomer compounds chemically bonded to each other. The membrane can bond with alkali-containing polysulfide intermediates produced during the operating discharge-charge cycle of the cell and replenish the polymer sheath disposed on the anode.

本揭示案中描述之標的物的另一個創新態樣可經實行為一種包括陽極、與陽極相對定位之陰極、安置在陰極上之保護鞘、電解質及隔板的電池。聚合物網路可安置在陽極上且可包括用複數個氟化聚合物鏈接枝之碳質材料, 該複數個氟化聚合物鏈經交聯成晶格。在一些態樣中,晶格可響應於電池之操作循環而產生鹼金屬氟化物。鹼金屬氟化物可經組態以抑制自陽極之鹼金屬枝晶形成。另外,陽極可在電池之操作循環期間輸出鹼金屬離子。安置在陰極上之保護鞘可包括三官能環氧化合物及基於二胺寡聚物之化合物,該二者可彼此發生化學反應。電解質可分散在整個陰極中且與陽極接觸。隔板可定位在陽極與陰極之間。 Another innovative aspect of the subject matter described in this disclosure can be practiced as a battery that includes an anode, a cathode positioned opposite the anode, a protective sheath disposed over the cathode, an electrolyte, and a separator. A polymer network can be disposed on the anode and can include a carbonaceous material grafted with a plurality of fluorinated polymer chains, The plurality of fluorinated polymer chains are cross-linked into a lattice. In some aspects, the lattice can generate alkali metal fluoride in response to operating cycles of the cell. Alkali metal fluorides can be configured to inhibit alkali metal dendrite formation from the anode. In addition, the anode can export alkali metal ions during the operating cycle of the cell. The protective sheath disposed on the cathode can include a trifunctional epoxy compound and a diamine oligomer based compound, which can chemically react with each other. An electrolyte may be dispersed throughout the cathode and in contact with the anode. A separator can be positioned between the anode and cathode.

在一些實行方案中,聚合物網路可沉積在陽極之一或多個暴露表面之上。碳質材料可包括平坦石墨烯、起皺石墨烯、複數個碳奈米管(CNT)或複數個碳奈米洋蔥(CNO)中之一或多者。氟化聚合物鏈可包括複數種單體,一或多種單體包括丙烯酸2,2,3,3,4,4,5,5,6,6,7,7-十二氟庚酯(DFHA)、甲基丙烯酸3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-十七氟癸酯(HDFDMA)、甲基丙烯酸2,2,3,3,4,4,5,5-八氟戊酯(OFPMA)、甲基丙烯酸四氟丙酯(TFPM)、3-[3,3,3-三氟-2-羥基-2-(三氟甲基)丙基]雙環[2.2.1]庚-2-基甲基丙烯酸酯(HFA單體)、或基於乙烯基之單體(包括2,3,4,5,6-五氟苯乙烯(PFSt))。聚合物網路可具有大約0.001μm與5μm之間的厚度。氟化聚合物鏈可接枝至碳質材料中之相應一者的表面上。 In some implementations, a polymeric network can be deposited over one or more exposed surfaces of the anode. The carbonaceous material may include one or more of flat graphene, wrinkled graphene, carbon nanotubes (CNTs) or carbon nanoonions (CNOs). Fluorinated polymer chains can include multiple monomers, one or more of which include 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate (DFHA ), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl (HDFDMA), methyl 2,2,3,3,4,4,5,5-Octafluoropentyl acrylate (OFPMA), Tetrafluoropropyl methacrylate (TFPM), 3-[3,3,3-Trifluoro-2- Hydroxy-2-(trifluoromethyl)propyl]bicyclo[2.2.1]hept-2-yl methacrylate (HFA monomer), or vinyl-based monomer (including 2,3,4,5 ,6-pentafluorostyrene (PFSt)). The polymer network may have a thickness between approximately 0.001 μm and 5 μm. Fluorinated polymer chains can be grafted onto the surface of a respective one of the carbonaceous materials.

在各個實行方案中,氟化聚合物鏈可經由伍茲反應與陽極之鹼金屬之一或多個表面發生化學相互作用。在一些態樣中,碳質材料可包括分散在整個聚合物網路中之石墨烯奈米片。石墨烯奈米片可在聚合物網路內彼此隔離。複數個石墨烯奈米片在整個聚合物網路中之分散可具有不同濃度水準。石墨烯奈米片可用氟化聚合物鏈官能化。 In various implementations, the fluorinated polymer chains can chemically interact with one or more surfaces of the alkali metal of the anode via a Woods reaction. In some aspects, the carbonaceous material can include graphene nanosheets dispersed throughout a polymer network. Graphene nanosheets can be isolated from each other within the polymer network. The dispersion of the plurality of graphene nanosheets throughout the polymer network can have different concentration levels. Graphene nanosheets can be functionalized with fluorinated polymer chains.

在一些實行方案中,聚合物網路包括大約0.001重量%至2重量%之間的氟化聚合物鏈。在一個實行方案中,聚合物網路可包括與陽極接觸之界面相區域及安置在界面相區域頂部之保護區域。界面相區域可基於陽極與聚合物網路之間的界面處之伍茲反應。界面相層可包括複數種可交聯單體中之一或多 者,該等單體包括甲基丙烯酸酯(MA)、丙烯酸酯、乙烯基官能基及/或環氧官能基與胺官能基之組合。保護區域可藉由密度梯度表征,該密度梯度可與保護區域之自我修復性質相關。密度梯度可加強聚合物網路。以此方式,聚合物網路可抑制自陽極之枝晶生長。 In some implementations, the polymer network includes between about 0.001% and 2% by weight fluorinated polymer chains. In one implementation, the polymer network can include an interfacial region in contact with the anode and a guard region disposed on top of the interfacial region. The interfacial phase region may be based on Woods reactions at the interface between the anode and the polymer network. The interfacial phase layer may include one or more of a plurality of crosslinkable monomers Alternatively, such monomers include methacrylate (MA), acrylate, vinyl functional groups and/or combinations of epoxy functional groups and amine functional groups. A protected area can be characterized by a density gradient that can be correlated with the self-healing properties of the protected area. Density gradients strengthen the polymer network. In this way, the polymer network can inhibit dendrite growth from the anode.

在各個實行方案中,陽極可包括暴露表面,其中各暴露表面具有含鹼金屬奈米結構及/或微結構,該等結構各自可包括碳質材料。在一個實行方案中,陽極可具有三維(3D)結構,其中一些相鄰石墨烯片可嵌入鹼金屬離子。 In various implementations, the anode can include exposed surfaces, wherein each exposed surface has alkali metal-containing nanostructures and/or microstructures, each of which can include carbonaceous materials. In one implementation, the anode can have a three-dimensional (3D) structure in which some adjacent graphene sheets can intercalate alkali metal ions.

本揭示案中描述之標的物之另一個創新態樣可經實行為一種包括陽極、陰極、安置在陰極上之保護鞘、隔板及電解液之電池。陽極可以晶格組態佈置且包括碳質材料。陰極可與陽極相對定位。隔板可安置在陽極與陰極之間。安置在陰極上之保護鞘可包括三官能環氧化合物及基於二胺寡聚物之化合物,該二者可彼此發生化學反應。以此方式,保護鞘可基於保護鞘與一或多種含鋰多硫化物中間物之間的化學結合來防止電池內的多硫化物遷移。電解質可分散於陰極內且接觸陽極。 Another innovative aspect of the subject matter described in this disclosure can be practiced as a battery that includes an anode, a cathode, a protective sheath disposed over the cathode, a separator, and an electrolyte. The anode can be arranged in a lattice configuration and include a carbonaceous material. The cathode can be positioned opposite the anode. A separator may be disposed between the anode and cathode. The protective sheath disposed on the cathode can include a trifunctional epoxy compound and a diamine oligomer based compound, which can chemically react with each other. In this way, the protective sheath can prevent polysulfide migration within the battery based on the chemical bonding between the protective sheath and one or more lithium-containing polysulfide intermediates. An electrolyte may be dispersed within the cathode and in contact with the anode.

在一個實行方案中,聚合物網路可沉積在陽極之一或多個暴露表面之上。聚合物網路可具有與碳質材料接枝且彼此交聯之氟化聚合物鏈。以此方式,聚合物網路可保持含鹼金屬之氟化物,其反過來可抑制與陽極相關的鹼金屬枝晶形成。 In one implementation, a polymeric network can be deposited over one or more exposed surfaces of the anode. The polymer network may have fluorinated polymer chains grafted to the carbonaceous material and crosslinked to each other. In this way, the polymer network can retain alkali metal-containing fluorides, which in turn can inhibit the formation of alkali metal dendrites associated with the anode.

在各個實行方案中,裂縫可延伸至陰極中,其中保護鞘可分散在整個一或多個裂縫中。以此方式,保護鞘可經佈置以降低陰極對破裂之敏感性。在一個實行方案中,保護鞘具有基於三官能環氧化合物及基於二胺寡聚物之化合物的交聯三維結構。在一些實例中,三官能環氧化合物為三羥甲基丙烷三縮水甘油醚(TMPTE)、參(4-羥苯基)甲烷三縮水甘油醚、或參(2,3-環氧丙基)異氰脲酸酯中之一或多種,且基於二胺寡聚物之化合物為二醯肼亞碸(DHSO)或 JEFFAMINE® D-230聚醚胺中之一或多種。另外或替代地,保護鞘可包括三羥甲基丙烷參[聚(丙二醇)及胺封端之醚。 In various implementations, the slits can extend into the cathode, where a protective sheath can be dispersed throughout the one or more slits. In this way, the protective sheath can be arranged to reduce the susceptibility of the cathode to rupture. In one embodiment, the protective sheath has a cross-linked three-dimensional structure based on a trifunctional epoxy compound and a compound based on a diamine oligomer. In some examples, the trifunctional epoxy compound is trimethylolpropane triglycidyl ether (TMPTE), ginseng(4-hydroxyphenyl)methane triglycidyl ether, or ginseng(2,3-epoxypropyl) One or more of isocyanurates, and the compound based on diamine oligomer is dihydrazine hydrazine (DHSO) or One or more of JEFFAMINE® D-230 polyetheramines. Additionally or alternatively, the protective sheath may comprise trimethylolpropane para[poly(propylene glycol) and amine terminated ethers.

在一些實行方案中,碳質材料可包括平坦石墨烯、起皺石墨烯、複數個碳奈米管(CNT)及/或複數個碳奈米洋蔥(CNO)。在一個實行方案中,陰極可包括主結構,該主結構具有平坦石墨烯、起皺石墨烯、碳奈米管(CNT)或碳奈米洋蔥(CNO)中之一或多者,其中陽極包括固體鋰金屬層。 In some implementations, the carbonaceous material can include flat graphene, wrinkled graphene, carbon nanotubes (CNTs), and/or carbon nanoonions (CNOs). In one implementation, the cathode may comprise a primary structure having one or more of flat graphene, wrinkled graphene, carbon nanotubes (CNTs), or carbon nanoonions (CNOs), wherein the anode comprises solid lithium metal layer.

在一個實行方案中,氟化錫層可安置在陽極上,且氟化鋰層可形成在氟化錫層與陽極之間。氟化鋰層可與氟離子與鋰離子之間的化學反應相關。以此方式,氟化鋰層可抑制自陽極之含鋰枝晶生長。在一些態樣中,固體電解質界面相可安置在陽極上。固體電解質界面相可包括錫、錳、鉬、氟化合物、氟化錫、氟化錳、氮化矽、氮化鋰、硝酸鋰、磷酸鋰、氧化錳及/或氧化鋰鑭鋯(LLZO)。 In one implementation, a tin fluoride layer can be disposed on the anode, and a lithium fluoride layer can be formed between the tin fluoride layer and the anode. The lithium fluoride layer may be associated with a chemical reaction between fluoride ions and lithium ions. In this way, the lithium fluoride layer can inhibit the growth of lithium-containing dendrites from the anode. In some aspects, a solid electrolyte interfacial phase can be disposed on the anode. The solid electrolyte interface phase may include tin, manganese, molybdenum, fluorine compounds, tin fluoride, manganese fluoride, silicon nitride, lithium nitride, lithium nitrate, lithium phosphate, manganese oxide, and/or lithium lanthanum zirconium oxide (LLZO).

本揭示案中描述之標的物的另一個創新態樣可經實行為一種電池。在各個實行方案中,電池可包括經組態以在電池循環期間輸出複數個鋰離子之陽極、安置在陽極上之分級層、與陽極相對定位之陰極、分散在整個陰極及陽極中之電解質、及定位於陽極與陰極之間的隔板。在一些實行方案中,分級層可包括聚合物網路,該聚合物網路包括由與石墨烯奈米片相關的起皺石墨烯形成之密度梯度,該等石墨烯奈米片分散於整個聚合物網路中且在聚合物網路內彼此隔離,至少一些起皺石墨烯經組態以沿一或多個撓曲點在體積上膨脹且保持電池之循環期間產生的多硫化物。在一些情況下,聚合物網路可包括接枝至至少一些起皺石墨烯之一或多個撓曲點上的複數個氟化聚(甲基)丙烯酸酯;聚合物網路內的複數個碳-氟(C-F)鍵,該複數個碳-氟(C-F)鍵中之至少一些經組態以藉由伍茲反應與複數個鋰離子中之至少一些發生化學反應,且藉由置換氟離子(F-)而轉化成碳-鋰(C-Li)鍵;在伍茲反應期間的氟離子(F-)置換過程中形成之複數個碳-碳(C-C)鍵,碳-碳(C-C)鍵之形成與聚合物網路之交聯相關;及響應於氟離子 (F-)置換而形成之氟化鋰(LiF),氟化鋰(LiF)與複數個鋰離子中之至少一些的消耗相關。 Another innovative aspect of the subject matter described in this disclosure can be practiced as a battery. In various implementations, the battery can include an anode configured to output a plurality of lithium ions during cycling of the battery, a hierarchical layer disposed on the anode, a cathode positioned opposite the anode, an electrolyte dispersed throughout the cathode and anode, and a separator positioned between the anode and the cathode. In some implementations, the graded layer can comprise a polymer network comprising a density gradient formed from corrugated graphene associated with graphene nanosheets dispersed throughout the aggregate. In the network of things and isolated from each other within the polymer network, at least some of the wrinkled graphene is configured to expand in volume along one or more flexure points and retain polysulfides produced during cycling of the battery. In some cases, the polymer network may comprise a plurality of fluorinated poly(meth)acrylates grafted to one or more flexure points of at least some of the wrinkled graphene; the plurality of poly(meth)acrylates within the polymer network carbon-fluorine (CF) bonds, at least some of the plurality of carbon-fluorine (CF) bonds configured to chemically react with at least some of the plurality of lithium ions by the Woods reaction, and by displacing the fluorine ions ( F - ) into a carbon-lithium (C-Li) bond; a plurality of carbon-carbon (CC) bonds formed during the fluoride ion (F - ) substitution process during the Woods reaction, between carbon-carbon (CC) bonds formation associated with crosslinks of the polymer network; and formation of lithium fluoride (LiF) in response to displacement of fluoride ions (F ), associated with consumption of at least some of the plurality of lithium ions.

在一些情況下,電池亦可包括在電池之循環期間暴露於電解質之陽極之表面處形成的固體電解質界面相。在其他情況下,分級層可經組態以在電池之循環期間生長固體電解質界面相。在一些方面中,分級層可藉由原子層沉積(ALD)、化學氣相沉積(CVD)、或物理氣相沉積(PVD)中之一或多者沉積於陽極上。 In some cases, the battery may also include a solid electrolyte interfacial phase that forms at the surface of the anode that is exposed to the electrolyte during cycling of the battery. In other cases, the graded layer can be configured to grow a solid electrolyte interfacial phase during cycling of the battery. In some aspects, the graded layer can be deposited on the anode by one or more of atomic layer deposition (ALD), chemical vapor deposition (CVD), or physical vapor deposition (PVD).

本揭示案中描述之標的物的另一個創新態樣可經實行為一種電池。在各個實行方案中,電池可包括經組態以在電池循環期間輸出複數個鋰離子之陽極、安置在陽極上之分級層、與陽極相對定位之陰極、分散在整個陰極及陽極中之電解質、及定位於陽極與陰極之間的隔板。在一些實行方案中,分級層可包括聚合物網路,該聚合物網路包括由與石墨烯奈米片相關的起皺石墨烯形成之密度梯度,該等石墨烯奈米片分散於整個聚合物網路中且在聚合物網路內彼此隔離,至少一些起皺石墨烯經組態以沿一或多個撓曲點在體積上膨脹且保持電池之循環期間產生的多硫化物。在一些情況下,聚合物網路可包括接枝至至少一些起皺石墨烯之一或多個撓曲點上的複數個氟化聚(甲基)丙烯酸酯;聚合物網路內的複數個碳-氟(C-F)鍵,該複數個碳-氟(C-F)鍵中之至少一些經組態以與複數個鋰離子中之至少一些發生化學反應,且藉由置換氟離子(F-)而轉化成碳-鋰(C-Li)鍵;在伍茲反應期間的氟離子(F-)置換過程中形成之複數個碳-碳(C-C)鍵;及響應於複數個碳-碳(C-C)鍵中之至少一些的形成而形成之氟化鋰(LiF),其中氟化鋰(LiF)可與複數個鋰離子中之至少一些的消耗相關。 Another innovative aspect of the subject matter described in this disclosure can be practiced as a battery. In various implementations, the battery can include an anode configured to output a plurality of lithium ions during cycling of the battery, a hierarchical layer disposed on the anode, a cathode positioned opposite the anode, an electrolyte dispersed throughout the cathode and anode, and a separator positioned between the anode and the cathode. In some implementations, the graded layer can comprise a polymer network comprising a density gradient formed from corrugated graphene associated with graphene nanosheets dispersed throughout the aggregate. In the network of things and isolated from each other within the polymer network, at least some of the wrinkled graphene is configured to expand in volume along one or more flexure points and retain polysulfides generated during cycling of the battery. In some cases, the polymer network may comprise a plurality of fluorinated poly(meth)acrylates grafted to one or more flexure points of at least some of the wrinkled graphene; the plurality of poly(meth)acrylates within the polymer network carbon-fluorine (CF) bonds, at least some of the plurality of carbon-fluorine (CF) bonds configured to chemically react with at least some of the plurality of lithium ions, and by displacing fluorine ions (F ) Conversion to carbon-lithium (C-Li) bonds; carbon-carbon (CC) bonds formed during fluoride ion (F-) displacement during the Woods reaction; and response to multiple carbon-carbon (CC) bonds The formation of at least some of them results in the formation of lithium fluoride (LiF), wherein the lithium fluoride (LiF) can be associated with the consumption of at least some of the plurality of lithium ions.

在一些態樣中,第一複數個中孔具有第一中孔密度,且第二複數個中孔具有不同於第一中孔密度之第二中孔密度。在其他態樣中,第一複數個大孔具有第一孔隙密度,且第二複數個大孔具有不同於第一孔隙密度之第二孔隙密 度。在一些其他態樣中,第一多孔碳質區域或第二多孔碳質區域中之一或多者可經組態以使硫成核。 In some aspects, the first plurality of mesopores has a first mesopore density, and the second plurality of mesopores has a second mesopore density different from the first mesopore density. In other aspects, the first plurality of macropores has a first pore density, and the second plurality of macropores has a second pore density different from the first pore density. Spend. In some other aspects, one or more of the first porous carbonaceous region or the second porous carbonaceous region can be configured to nucleate sulfur.

在一些實行方案中,陰極包含複數個孔隙,且可包括複數個非三區段顆粒;複數個三區段顆粒;複數個聚集物,各聚集物包括接合在一起之許多三區段顆粒;複數個中孔,其散佈在整個複數個聚集物中;複數個團聚物,各團聚物包括彼此接合之許多聚集物;及複數個大孔,其散佈在整個複數個聚集物中。在一些情況下,各三區段顆粒可包括彼此交織在一起且藉由中孔彼此隔開之複數個碳片段、及經組態以與一或多個相鄰非三區段顆粒或三區段顆粒聚結之可變形周邊。在一些態樣中,各聚集物可具有10奈米(nm)與10微米(μm)之間的範圍內之主要尺寸,各中孔可具有3.3奈米(nm)與19.3nm之間的主要尺寸,各團聚物可具有在0.1μm與1,000μm之間的近似範圍內之主要尺寸,且各大孔可具有0.1μm與1,000μm之間的主要尺寸。 In some embodiments, the cathode comprises a plurality of pores, and may include a plurality of non-three-segment particles; a plurality of three-segment particles; a plurality of aggregates, each aggregate comprising a plurality of three-segment particles joined together; mesopores dispersed throughout the plurality of aggregates; a plurality of aggregates each comprising many aggregates joined to each other; and macropores dispersed throughout the plurality of aggregates. In some cases, each three-segment particle may comprise a plurality of carbon segments interwoven with one another and separated from each other by mesopores, and configured to interact with one or more adjacent non-three-segment particles or three-region Deformable perimeter of coalescence of segmental particles. In some aspects, each aggregate can have a major dimension in the range between 10 nanometers (nm) and 10 micrometers (μm), and each mesopore can have a major dimension between 3.3 nanometers (nm) and 19.3 nm. Size, each agglomerate can have a major dimension in the approximate range between 0.1 μm and 1,000 μm, and the macropores can have a major dimension between 0.1 μm and 1,000 μm.

在一些情況下,第一多孔碳質區域或第二多孔碳質區域中之一或多者亦可包括選擇性滲透殼,該選擇性滲透殼經組態以分別在第一多孔碳質區域或第二多孔碳質區域上形成分離的液相。在一些態樣中,第一多孔碳質區域在12,000鎊/平方吋(psi)之壓力下具有500S/m至20,000S/m之間的近似範圍內之電導率。在其他態樣中,第二多孔碳質區域在12,000鎊/平方吋(psi)之壓力下具有0S/m至500S/m之間的近似範圍內之電導率。在一些其他態樣中,第一複數個團聚物或第二複數個團聚物中之一或多者可包括用一或多種基於聚合物之黏合劑彼此連接之聚集物。 In some cases, one or more of the first porous carbonaceous region or the second porous carbonaceous region may also include a selectively permeable shell configured to A separate liquid phase forms on the carbonaceous region or the second porous carbonaceous region. In some aspects, the first porous carbonaceous region has a conductivity in an approximate range of between 500 S/m and 20,000 S/m at a pressure of 12,000 pounds per square inch (psi). In other aspects, the second porous carbonaceous region has a conductivity in an approximate range of between 0 S/m and 500 S/m at a pressure of 12,000 pounds per square inch (psi). In some other aspects, one or more of the first plurality of agglomerates or the second plurality of agglomerates can include agglomerates linked to each other with one or more polymer-based binders.

在一些實行方案中,各三區段顆粒可包括圍繞各三區段顆粒之中心定位的第一孔隙率區域,該第一孔隙率區域包括第一孔隙;及包圍第一孔隙率區域的第二孔隙率區域,該第二孔隙率區域包括第二孔隙。在一些情況下,第一孔隙界定第一孔隙密度,且第二孔隙界定不同於第一孔隙密度的第二孔隙密 度。在其他實行方案中,陰極亦可包括一或多個額外多孔碳質區域,至少一個額外多孔碳質區域與第二多孔碳質區域耦合。在一些情況下,一或多個額外多孔碳質區域在遠離第一多孔碳質區域之方向上、以碳質材料之濃度水準逐步降低之次序佈置。 In some implementations, each three-segment particle can include a first porosity region positioned about the center of each three-segment particle, the first porosity region including the first pores; and a second porosity region surrounding the first porosity region. A region of porosity, the region of second porosity includes second pores. In some cases, the first pores define a first pore density and the second pores define a second pore density different from the first pore density. Spend. In other implementations, the cathode may also include one or more additional porous carbonaceous regions, at least one additional porous carbonaceous region coupled to a second porous carbonaceous region. In some cases, the one or more additional porous carbonaceous regions are arranged in an order of decreasing concentration levels of carbonaceous material in a direction away from the first porous carbonaceous region.

本揭示案中描述之標的物的另一個創新態樣可經實行為一種包括複數個孔隙之標的組合物。在各個實行方案中,標的組合物可包括複數個非三區段顆粒;複數個聚集物,各聚集物包括接合在一起之許多三區段顆粒,各聚集物具有在10奈米(nm)與10微米(μm)之間的範圍內之主要尺寸;散佈於整個複數個聚集物中之複數個中孔,各中孔具有3.3奈米(nm)與19.3nm之間的主要尺寸;複數個團聚物,各團聚物包括彼此接合之許多聚集物,各團聚物具有在0.1μm與1,000μm之間的近似範圍內之主要尺寸;及散佈於整個複數個聚集物中之複數個大孔,各大孔具有0.1μm與1,000μm之間的主要尺寸。在一些實行方案中,各三區段顆粒可包括彼此交織在一起且藉由中孔彼此隔開之複數個碳片段、及經組態以與一或多個相鄰非三區段顆粒或三區段顆粒聚結之可變形周邊。在一些態樣中,各孔隙具有在0奈米(nm)與32.3nm之間的近似範圍內之主要尺寸。在其他態樣中,標的組合物在12,000鎊/平方吋(psi)之壓力下具有100S/m至20,000S/m之間的近似範圍內之電導率。 Another innovative aspect of the subject matter described in this disclosure can be practiced as a subject composition comprising a plurality of voids. In various embodiments, the subject composition can include a plurality of non-tri-segmented particles; a plurality of aggregates, each aggregate comprising a plurality of tri-segmented particles joined together, each aggregate having a particle size between 10 nanometers (nm) and Major dimension in the range between 10 micrometers (μm); mesopores dispersed throughout aggregates, each mesopore having a major dimension between 3.3 nanometers (nm) and 19.3 nm; agglomerates objects, each aggregate comprising many aggregates joined to each other, each aggregate having a major dimension in the approximate range between 0.1 μm and 1,000 μm; and a plurality of macropores dispersed throughout the plurality of aggregates, each large The pores have a major dimension between 0.1 μm and 1,000 μm. In some implementations, each three-segment particle can include a plurality of carbon segments interwoven with each other and separated from each other by mesopores, and configured to interact with one or more adjacent non-three-segment particles or three-segment particles. Deformable perimeter of coalescing of segmental particles. In some aspects, each pore has a major dimension within an approximate range between 0 nanometers (nm) and 32.3 nm. In other aspects, the subject composition has a conductivity in the approximate range of between 100 S/m and 20,000 S/m at a pressure of 12,000 pounds per square inch (psi).

在各個實行方案中,標的組合物亦可包括選擇性滲透殼,該選擇性滲透殼經組態以在標的組合物之一或多個暴露表面上形成分離的液相。在其他實行方案中,標的組合物亦可包括分散在標的組合物內之電解質。在一些情況下,至少一些團聚物用一或多種基於聚合物之黏合劑彼此連接。 In various embodiments, the subject composition can also include a selectively permeable shell configured to form a separate liquid phase on one or more exposed surfaces of the subject composition. In other implementations, the subject compositions can also include electrolytes dispersed within the subject compositions. In some cases, at least some of the agglomerates are attached to each other with one or more polymer-based binders.

本揭示案所描述之標的物之一或多個實行方案之細節在隨附圖式及以下實施方式中列出。其他特徵、態樣、及優點自實施方式、圖式、及申請專利範圍變得顯而易知。注意以下圖式之相對尺寸可不按比例繪製。 The details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages become apparent from the embodiments, drawings, and claims. Note that the relative dimensions of the following drawings may not be drawn to scale.

100:電池 100: battery

101:第一基板 101: The first substrate

102:第二基板 102: Second substrate

105:主體 105: subject

110:陰極 110: Cathode

120:陽極 120: anode

125:鋰陽離子 125: lithium cation

130:電解質 130: Electrolyte

111:第一薄膜 111: The first film

112:第二薄膜 112: Second film

150:隔板 150: clapboard

142:障壁層 142: barrier layer

144:機械強度增強劑 144: Mechanical strength enhancer

174:電子 174: Electronics

172:外部負載 172: External load

140:固體電解質界面相層 140: Solid Electrolyte Interface Phase Layer

142:屏障層 142: barrier layer

195:方向 195: direction

200:電池 200: battery

230:電解質 230: Electrolyte

210:陰極 210: Cathode

220:陽極 220: anode

250:隔板 250: clapboard

282:多硫化物 282: Polysulfide

272:負載 272: load

226:起始位置 226: Starting position

227:最終位置 227: final position

285:聚合物網路 285: Polymer Networks

283:界面層 283: interface layer

225:鋰陽離子(Li+) 225: lithium cation (Li + )

240:界面相層 240: interface phase layer

284:保護層 284: protective layer

280:保護性晶格 280: Protective Lattice

300:電極 300: electrode

301:主體 301: subject

305:寬度 305: width

310:第一薄膜 310: First film

320:第二薄膜 320: second film

312:第一聚集物 312: First aggregate

316:第一多孔結構 316: The first porous structure

314:第一奈米顆粒 314:First Nanoparticles

326:第二多孔結構 326:Second Porous Structure

322:第二聚集物 322:Second aggregate

324:第二奈米顆粒 324:Second Nanoparticles

328:主結構 328: Main structure

330:鋰層 330: lithium layer

400:示例性電池 400: Exemplary battery

402:保護性晶格 402: Protective Lattice

404:裂縫 404: crack

500:陽極結構 500: anode structure

A:第一區域 A: The first area

B:第二區域 B: the second area

516:保護層 516: protective layer

502:陽極 502: anode

514:分級層 514: hierarchical layer

5181:第一邊緣 5181: first edge

5182:第二邊緣 5182: second edge

512:錫-鋰合金區域 512: tin-lithium alloy area

510:氟化錫層 510: tin fluoride layer

5301:第一間隔物邊緣保護區域 5301: First spacer edge protection area

5302:第二間隔物邊緣保護區域 5302: Second spacer edge protection area

540:電解質 540: Electrolyte

544:保形塗層 544: Conformal Coating

546:接片 546: splice

600:放大部分 600: Zoom in

610:碳質材料 610: carbonaceous material

620:黏合劑 620: Adhesive

640:導電添加劑 640: conductive additive

714:碳質材料層 714: carbonaceous material layer

702:陽極 702: anode

750:伍茲反應 750:Woods Response

710:聚合物網路 710: Polymer Networks

740:鹼金屬樹枝狀晶形成 740: Alkali Metal Dendrite Formation

716:密度梯度 716: Density Gradient

720:保護層 720: protective layer

718:界面層 718: interface layer

800:碳質顆粒 800: carbonaceous particles

811:第一孔隙率區域 811: First porosity region

812:第二孔隙率區域 812: Second porosity region

801:第一孔隙 801: The first pore

802:第二孔隙 802:Second Pore

810:周邊 810: Surrounding

813:可變形區域 813:Deformable area

820:多硫化物 820: polysulfide

824:硫 824: sulfur

851:第一區段 851: first section

852:第二區段 852:Second segment

853:第三區段 853: the third section

855:滲透性殼層 855: Permeable shell

800C:階梯函數 800C: step function

822:阻擋區域 822: block area

861:孔隙 861: porosity

862:孔隙 862: porosity

863:孔隙 863: porosity

D1:主要尺寸 D1: main dimension

D2:主要尺寸 D2: main dimension

D3:主要尺寸 D3: main dimensions

900:顯微照片 900: photomicrograph

902:碳質結構 902: carbonaceous structure

904:聚集物 904: Aggregates

906:團聚物 906: Agglomerates

960:聚集物 960: Aggregates

952:外部碳質殼型結構 952: External Carbonaceous Shell Structure

1010:聚集物 1010: Aggregates

958:核心區域 958: core area

1000及1050:透射電子顯微鏡(TEM)影像碳質結構956 1000 and 1050: Transmission Electron Microscopy (TEM) Image Carbonaceous Structure 956

1100:圖 1100: Figure

1110:孔隙率I型 1110: Porosity Type I

1120:孔隙率II型 1120: Porosity Type II

1130:孔隙率III型 1130: Porosity Type III

1111:第一孔隙 1111: The first pore

1112:第二孔隙 1112:Second Pore

1113:第三孔隙 1113: The third pore

1200:圖表 1200:chart

1:碳 1: carbon

2:碳 2: Carbon

1300:第一圖表 1300: First chart

1310:第二圖表 1310: second chart

1302:電解質 1302: Electrolyte

1400:條形圖 1400: bar chart

1402:電解質 1402: Electrolyte

1500:第一圖表 1500: First chart

1510:第二圖表 1510:Second chart

1502:電解質 1502: Electrolyte

1600:圖表 1600: Chart

1602:電解質 1602: Electrolyte

1700:圖表 1700: Charts

1702:電解質 1702: Electrolyte

1704:溶劑套裝 1704: Solvent Set

1800:圖表 1800: Charts

1900:第一圖表 1900: First Charts

1910:第二圖表 1910: Second chart

2000:第一圖表 2000: First chart

2010:第二圖表 2010: Second chart

2100:第一圖表 2100: first chart

2110:第二圖表 2110:Second chart

2201:主體 2201: subject

2205:寬度 2205: width

2200:陰極 2200: Cathode

2210:第一多孔碳質區域 2210: First porous carbonaceous region

2218:大孔 2218: big hole

2220:第二多孔碳質區域 2220: Second porous carbonaceous region

2211:第一非三區段顆粒 2211: First non-three-segment particle

2212:第一三區段顆粒 2212: The first three-section particle

2213:第一碳片段 2213: first carbon fragment

2214:中孔 2214: middle hole

2215:第一可變形周邊 2215: The first deformable peripheral

2216:第一聚集物 2216:First aggregate

2217:第一團聚物 2217: First agglomerate

2221:第二非三區段顆粒 2221: the second non-three-segment particle

2222:第二三區段顆粒 2222: Particles of the second and third segments

2223:第二碳片段 2223: second carbon fragment

2225:第二可變形周邊 2225: The second deformable perimeter

2226:第二聚集物 2226:Second aggregate

2227:第二團聚物 2227:Second aggregate

圖1展示描繪根據一些實行方案之示例性電池的圖。 1 shows a diagram depicting an exemplary battery according to some implementations.

圖2展示描繪根據一些實行方案之另一示例性電池的圖。 2 shows a diagram depicting another exemplary battery, according to some implementations.

圖3展示根據一些實行方案之電池之示例性電極的圖。 3 shows a diagram of exemplary electrodes of a battery according to some implementations.

圖4展示根據一些實行方案之包括保護性晶格之示例性電池的一部分的圖。 4 shows a diagram of a portion of an exemplary battery including a protective lattice, according to some implementations.

圖5展示根據一些實行方案之包括氟化錫(SnF2)層之陽極結構的圖。 5 shows a diagram of an anode structure including a tin fluoride (SnF 2 ) layer, according to some implementations.

圖6展示根據一些實行方案之圖5的陽極結構之放大部分的圖。 6 shows a diagram of an enlarged portion of the anode structure of FIG. 5, according to some implementations.

圖7展示根據一些實行方案之電池之聚合物網路的圖。 7 shows a diagram of a polymer network of a battery according to some implementations.

圖8A展示根據一些實行方案之具有分級孔隙率之示例性碳質顆粒的圖。 8A shows a diagram of exemplary carbonaceous particles with graded porosity, according to some implementations.

圖8B展示根據一些實行方案之三區段顆粒之實例的圖。 8B shows a diagram of an example of a three-segment particle, according to some implementations.

圖8C展示代表根據一些實行方案之圖8B之三區段顆粒的示例性階梯函數。 Figure 8C shows an exemplary step function representative of the three-segment grain of Figure 8B, according to some implementations.

圖8D展示描繪根據一些實行方案之示例性碳質顆粒之孔隙體積與孔隙寬度關係之示例性分佈的圖表。 8D shows a graph depicting an exemplary distribution of pore volume versus pore width for exemplary carbonaceous particles, according to some implementations.

圖9A及9B展示根據一些實行方案之圖8A及/或圖8B描繪之示例性碳質顆粒、聚集物、及/或團聚物的電子顯微照片。 Figures 9A and 9B show electron micrographs of exemplary carbonaceous particles, aggregates, and/or agglomerates depicted in Figure 8A and/or Figure 8B, according to some implementations.

圖10A及10B展示根據一些實行方案之用二氧化碳(CO2)處理之碳質顆粒的透射電子顯微鏡(TEM)影像。 10A and 10B show transmission electron microscope (TEM) images of carbonaceous particles treated with carbon dioxide (CO 2 ), according to some implementations.

圖11展示描繪在根據一些實行方案之本揭示案之陽極及/或陰極中佔優勢的碳孔隙率類型的圖。 11 shows a graph depicting the type of carbon porosity that predominates in anodes and/or cathodes of the present disclosure, according to some implementations.

圖12展示描繪根據一些實行方案之電池之陽極或陰極中分散的微孔及中孔之累計孔隙體積與孔隙寬度的圖表。 12 shows a graph depicting the cumulative pore volume and pore width of dispersed micropores and mesopores in the anode or cathode of a battery according to some implementations.

圖13展示描繪根據一些實行方案之按照循環數之電池性能的圖表。 13 shows a graph depicting battery performance by cycle number, according to some implementations.

圖14展示描繪根據一些實行方案之按照循環數之容量的條形圖。 14 shows a bar graph depicting capacity by cycle number, according to some implementations.

圖15展示描繪根據一些實行方案之按照循環數之電池性能的圖表。 15 shows a graph depicting battery performance by cycle number, according to some implementations.

圖16展示描繪根據一些實行方案之按照循環數之電池放電容量的圖表。 16 shows a graph depicting battery discharge capacity by number of cycles, according to some implementations.

圖17展示描繪根據一些實行方案之按照循環數之電池放電容量的圖表。 17 shows a graph depicting battery discharge capacity by number of cycles, according to some implementations.

圖18展示描繪根據一些實行方案之各種含有TBT之電解質混合物的電池比放電容量的圖表。 18 shows a graph depicting the specific discharge capacity of batteries for various TBT-containing electrolyte mixtures, according to some implementations.

圖19展示描繪根據一些實行方案之圖1的電池之按照循環數之電池比放電容量的圖表。 19 shows a graph depicting battery specific discharge capacity by number of cycles for the battery of FIG. 1 , according to some implementations.

圖20展示描繪根據其他實行方案之圖2的電池之按照循環數之電池比放電容量及放電容量保持能力的圖表。 20 shows a graph depicting battery specific discharge capacity and discharge capacity retention capability by number of cycles for the battery of FIG. 2 according to other implementations.

圖21展示描繪根據一些其他實行方案之圖2的電池之按照循環數之電池比放電容量及放電容量保持能力的圖表。 21 shows a graph depicting battery specific discharge capacity and discharge capacity retention capability by number of cycles for the battery of FIG. 2 according to some other implementations.

圖22展示根據一些實行方案之電池之示例性陰極的圖。 22 shows a diagram of an exemplary cathode of a battery according to some implementations.

在各個圖式中,相同參考數字及名稱指示相同元件。 In the various drawings, the same reference numerals and names refer to the same elements.

相關申請案之交互參照Cross-reference to related applications

本專利申請案主張2021年12月28日提交之標題為“LITHIUM-SULFUR BATTERY CATHODE FORMED FROM MULTIPLE CARBONACEOUS REGIONS”之美國專利申請案第17/563,183號之優先權,該美國專利申請案係主張2021年7月23日提交之標題為“CARBONACEOUS MATERIALS FOR LITHIUM-SULFUR BATTERIES”之美國專利申請案第17/383,803號之優先權的部分延續申請案,全部轉讓予本申請案之受讓人。本專利申請亦主張2021年7月23日提交之標題為“POWDERED MATERIALS INCLUDING CARBONACEOUS STRUCTURES FOR LITHIUM-SULFUR BATTERY CATHODES”之美國專利申請案第17/383,735號、2021年7月23日提 交之標題為“PROTECTIVE POLYMERIC LATTICES FOR LITHIUM ANODES IN LITHIUM-SULFUR BATTERIES”之美國專利申請案第17/383,744號、2021年7月23日提交之標題為“BATTERY INCLUDING MULTIPLE PROTECTIVE LAYERS”之美國專利申請案第17/383,756號、2021年7月23日提交之標題為“CARBON-SCAFFOLDED LITHIUM-SULFUR BATTERY CATHODES FEATURING A POLYMERIC PROTECTIVE LAYER”之美國專利申請案第17/383,769號、及2021年7月23日提交之標題為“PROTECTIVE LAYER INCLUDING TIN FLUORIDE DISPOSED ON A LITHIUM ANODE IN A LITHIUM-SULFUR BATTERY”之美國專利申請案第17/383,793號之優先權,全部轉讓予本申請案之受讓人。先前申請案之揭示內容被視為本專利申請案之部分且各自以全文引用方式併入本專利申請案中。 This patent application claims priority to U.S. Patent Application No. 17/563,183, filed December 28, 2021, entitled "LITHIUM-SULFUR BATTERY CATHODE FORMED FROM MULTIPLE CARBONACEOUS REGIONS," which claims 2021 A continuation-in-part of priority to US Patent Application Serial No. 17/383,803, filed July 23, entitled "CARBONACEOUS MATERIALS FOR LITHIUM-SULFUR BATTERIES," is assigned in its entirety to the assignee of the present application. This patent application also asserts U.S. Patent Application Serial No. 17/383,735, filed July 23, 2021, entitled "POWDERED MATERIALS INCLUDING CARBONACEOUS STRUCTURES FOR LITHIUM-SULFUR BATTERY CATHODES," filed July 23, 2021. Filed U.S. Patent Application Serial No. 17/383,744 entitled "PROTECTIVE POLYMERIC LATTICES FOR LITHIUM ANODES IN LITHIUM-SULFUR BATTERIES" and entitled "BATTERY INCLUDING MULTIPLE PROTECTIVE LAYERS" filed on July 23, 2021 U.S. Patent Application No. 17/383,756, filed July 23, 2021, and entitled "CARBON-SCAFFOLDED LITHIUM-SULFUR BATTERY CATHODES FEATURING A POLYMERIC PROTECTIVE LAYER," U.S. Patent Application Serial No. 17/383,769, filed July 23, 2021 The priority of U.S. Patent Application No. 17/383,793, entitled "PROTECTIVE LAYER INCLUDING TIN FLUORIDE DISPOSED ON A LITHIUM ANODE IN A LITHIUM-SULFUR BATTERY", is assigned in its entirety to the assignee of the present application. The disclosures of the prior applications are considered part of this patent application and are each incorporated by reference in their entirety into this patent application.

以下描述係關於出於描述本揭示案之創新態樣之目的之一些示例性實行方案。然而,普通熟習此項技術者容易認識到本文中之教示可以許多不同方式應用。所描述實行方案可在任何類型之電化電池、電池、或電池組中實行,且可用於彌補各種性能相關缺點。因此,所揭示實行方案不受本文提供之實例限制,而是涵蓋由隨附請求項涵蓋之所有實行方案。另外,本揭示案之熟知要素將不予以詳細描述或將予以省略,以不混淆本揭示案之相關細節。 The following description pertains to some exemplary implementations for the purpose of describing innovative aspects of the present disclosure. However, one of ordinary skill in the art readily recognizes that the teachings herein can be applied in many different ways. The described implementations can be practiced in any type of electrochemical cell, battery, or battery, and can be used to remedy various performance-related shortcomings. Accordingly, the disclosed implementations are not limited by the examples provided herein, but encompass all implementations encompassed by the appended claims. In addition, well-known elements of the disclosure will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure.

電池通常包括可彼此連接以便為各種各樣的裝置(諸如(但不限於)行動電話、膝上型電腦、電動車(EV)、工廠、及建築物)提供電力的多個電化電池。某些類型之電池,諸如鋰離子或鋰硫電池,可由於所用電解質之類型或不受控制的電池副反應而導致在性能上受到限制。因此,電解質之優化可改良相應電池之可循環性、比放電容量、放電容量保持能力、安全、及壽命。例如,在未使用的或「新鮮」電池中,鋰離子在活化後以及稍後在初始及後續放電循環期間自由地自陽極傳輸至陰極。然後,在電池充電循環期間,可迫使鋰離子自其 在陰極中之電化學有利位置遷移回到陽極,在陽極處將該等離子儲存供以後使用。與可再充電電池相關之此循環放電-充電過程可導致產生不當化學物質,該等物質可在電池之相應放電及充電期間干擾鋰離子來回陰極之傳輸。具體而言,當鋰離子與存在於陰極中之元素硫(或,在一些組態中,硫化鋰,Li2S)相互作用時,產生含鋰多硫化物中間物質(在本文中稱為「多硫化物」)。此等多硫化物可溶於電解質中且因此在操作循環期間,在整個電池中擴散,由此導致活性材料自陰極中損失。產生過量濃度水準之多硫化物可在操作循環期間導致不當電池容量衰減及電池故障,從而潛在地減少電動車(EV)之可行駛里程且增加此類EV需要再充電之頻率。 Batteries typically include multiple electrochemical cells that can be connected to each other to power a wide variety of devices such as, but not limited to, cell phones, laptops, electric vehicles (EVs), factories, and buildings. Certain types of batteries, such as lithium-ion or lithium-sulfur batteries, can be limited in performance due to the type of electrolyte used or uncontrolled battery side reactions. Therefore, optimization of the electrolyte can improve the cyclability, specific discharge capacity, discharge capacity retention, safety, and lifespan of the corresponding battery. For example, in an unused or "fresh" battery, lithium ions are freely transported from the anode to the cathode after activation and later during the initial and subsequent discharge cycles. Then, during a battery charge cycle, lithium ions can be forced to migrate from their electrochemically favorable position in the cathode back to the anode, where the plasma is stored for later use. This cyclic discharge-charge process associated with rechargeable batteries can result in the production of inappropriate chemicals that can interfere with the transport of lithium ions to and from the cathode during the respective discharge and charge of the battery. Specifically, when lithium ions interact with elemental sulfur (or, in some configurations, lithium sulfide, Li2S ) present in the cathode, a lithium-containing polysulfide intermediate (referred to herein as "polysulfides"). These polysulfides are soluble in the electrolyte and thus diffuse throughout the cell during the operating cycle, thereby causing loss of active material from the cathode. Polysulfides producing excessive concentration levels can lead to undue battery capacity fade and battery failure during operating cycles, potentially reducing the range of electric vehicles (EVs) and increasing the frequency with which such EVs need to be recharged.

在一些情況下,多硫化物參與在電池中提供之固體電解質界面相(SEI)中之無機層形成。在一個實例中,陽極可藉由在電解質中形成且含有0.020M Li2S5(0.10M硫)及5.0重量% LiNO3之穩定無機層來保護。具有氟化鋰及多硫化物(LiF-Li2Sx)之陽極可使SEI富化且在Li-Cu半電池之233個循環之後,產生95%穩定庫侖效率,同時防止形成鋰枝晶或可自陽極延伸至陰極且導致電池故障或破裂的其他不受控制之鋰生長。然而,當多硫化物以某些濃度(諸如大於0.50M硫)產生時,SEI之形成可受阻礙。因此,來自陽極之鋰金屬可不期望地被蝕刻,產生暴露於電解質之粗糙及不完美表面。由於相對高濃度之多硫化物而導致的陽極之此不當劣化(蝕刻)可指示多硫化物溶解及擴散可能限制電池性能。 In some cases, polysulfides participate in the formation of inorganic layers in the solid electrolyte interfacial phase (SEI) provided in the battery. In one example, the anode can be protected by a stable inorganic layer formed in the electrolyte and containing 0.020M Li2S5 (0.10M sulfur) and 5.0 wt% LiNO3 . An anode with lithium fluoride and polysulfide (LiF- Li2Sx ) enriches the SEI and produces a stable Coulombic efficiency of 95% after 233 cycles of a Li-Cu half-cell while preventing the formation of lithium dendrites or Other uncontrolled lithium growth can extend from the anode to the cathode and cause the cell to fail or rupture. However, SEI formation can be hindered when polysulfides are produced at certain concentrations, such as greater than 0.50M sulfur. As a result, the lithium metal from the anode can undesirably be etched, resulting in a rough and imperfect surface exposed to the electrolyte. This undue degradation (etching) of the anode due to the relatively high concentration of polysulfides may indicate that polysulfide dissolution and diffusion may limit cell performance.

在一些實行方案中,可調整碳質陰極之孔隙率,以在使能量密度最大化與抑制多硫化物遷移至及/或遍及電池電解質中之間達成所需平衡。如本文所用,碳質可係指含有一或多種類型或組態之碳或由其形成的材料。例如,與在習知鋰離子電池電極中相比,陰極孔隙率可在硫及碳複合物陰極中更高。具有相對低孔隙率之更緻密電極可使電解質攝入、寄生重量、及成本最小化。硫利用可受到多硫化物之溶解度及彼等多硫化物至硫化鋰(Li2S)之轉化率的限 制。多硫化物至硫化鋰之轉化率可基於陰極之可接近表面積。本揭示案之態樣認識到可基於電解質組成材料調整陰極孔隙率以最大化電池體積能量密度。另外或替代地,可將一或多個保護層或區域添加至陰極及/或陽極之暴露於電解質之表面以調整陰極孔隙率水平。在一些態樣中,此等保護層或區域可抑制多硫化物在整個電池中之不當遷移。 In some implementations, the porosity of the carbonaceous cathode can be tuned to achieve a desired balance between maximizing energy density and inhibiting polysulfide migration into and/or throughout the battery electrolyte. As used herein, carbonaceous may refer to a material containing or formed from one or more types or configurations of carbon. For example, cathode porosity may be higher in sulfur and carbon composite cathodes than in conventional lithium-ion battery electrodes. A denser electrode with relatively low porosity can minimize electrolyte uptake, parasitic weight, and cost. Sulfur utilization can be limited by the solubility of polysulfides and their conversion to lithium sulfide ( Li2S ). The conversion of polysulfides to lithium sulfide can be based on the accessible surface area of the cathode. Aspects of the present disclosure recognize that cathode porosity can be tuned based on electrolyte constituent materials to maximize battery volumetric energy density. Additionally or alternatively, one or more protective layers or regions may be added to the electrolyte-exposed surfaces of the cathode and/or anode to adjust the level of cathode porosity. In some aspects, such protective layers or regions can inhibit unwanted migration of polysulfides throughout the cell.

本文揭示之標的物之各種態樣係關於一種包括液相電解質之鋰硫電池,該電解質可包括三元溶劑套裝及一或多種添加劑。在一些實行方案中,鋰硫電池可包括陰極、與陰極相對定位之陽極、及電解質。陰極可包括多個區域,其中各區域可藉由彼此相鄰及接觸之兩個或兩個以上碳質結構來界定。在一些情況下,電解質可散佈在整個陰極中且與陽極接觸。在一些態樣中,電解質可包括三元溶劑套裝及4,4’-硫代雙苯硫酚(TBT)。在其他情況下,電解質可包括三元溶劑套裝及2-巰基苯并噻唑(MBT)。 Various aspects of the subject matter disclosed herein relate to a lithium-sulfur battery that includes a liquid electrolyte that may include a ternary solvent package and one or more additives. In some implementations, a lithium-sulfur battery can include a cathode, an anode positioned opposite the cathode, and an electrolyte. A cathode can include multiple regions, where each region can be defined by two or more carbonaceous structures adjacent to and in contact with each other. In some cases, the electrolyte may be dispersed throughout the cathode and in contact with the anode. In some aspects, the electrolyte can include a ternary solvent set and 4,4'-thiobisthiophenol (TBT). In other cases, the electrolyte may include a ternary solvent set and 2-mercaptobenzothiazole (MBT).

在各個實行方案中,三元溶劑套裝可包括1,2-二甲氧基乙烷(DME)、1,3-二氧戊環(DOL)、四乙二醇二甲醚(TEGDME)及一或多種添加劑,其可包括硝酸鋰(LiNO3),全部可處於液相中。在一些實行方案中,可藉由將大約5,800微升(μL)DME、2,900微升(μL)DOL及1,300微升(μL)TEGDME彼此混合以產生混合物來製備三元溶劑套裝。可將大約0.01mol雙(三氟甲烷磺醯基)亞胺鋰(LiTFSI)溶解於三元溶劑套裝中,以在體積比為2:1:1之DME:DOL:TEGDME中產生1M LiTFSI之近似稀釋水準,包括大約2重量百分比(wt.%)硝酸鋰。在其他實行方案中,可用2,000微升(μL)DME、8,000微升(μL)DOL及2,000微升(μL)TEGDME製備三元溶劑套裝,且可包括大約0.01mol溶解之雙(三氟甲烷磺醯基)亞胺鋰(LiTFSI)。在一些態樣中,可在DME:DOL:TEGDME之混合物中以1莫耳濃度(M)LiTFSI之第一近似稀釋水準製備三元溶劑套裝。在其他情況下,可在1:4:1之近似體積比之DME:DOL:TEGDME中以大約1M LiTFSI之第二近似 稀釋水準製備三元溶劑套裝,且可包括添加5M TBT溶液或添加5M MBT溶液,或添加其他添加劑及/或化學物質。 In various implementations, a ternary solvent set may include 1,2-dimethoxyethane (DME), 1,3-dioxolane (DOL), tetraethylene glycol dimethyl ether (TEGDME), and a or various additives, which may include lithium nitrate (LiNO 3 ), all may be in the liquid phase. In some implementations, a ternary solvent set can be prepared by mixing approximately 5,800 microliters (μL) of DME, 2,900 microliters (μL) of DOL, and 1,300 microliters (μL) of TEGDME with each other to create a mixture. Approximately 0.01 mol of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) can be dissolved in a ternary solvent set to produce an approximation of 1M LiTFSI in a 2:1:1 volume ratio of DME:DOL:TEGDME Dilution levels, including about 2 weight percent (wt.%) lithium nitrate. In other implementations, a ternary solvent set may be prepared with 2,000 microliters (μL) of DME, 8,000 microliters (μL) of DOL, and 2,000 microliters (μL) of TEGDME, and may include approximately 0.01 mol of bis(trifluoromethanesulfonate) dissolved in Acyl)imide Lithium (LiTFSI). In some aspects, a ternary solvent set can be prepared at a first approximate dilution level of 1 molar (M) LiTFSI in a mixture of DME:DOL:TEGDME. In other cases, a ternary solvent set can be prepared at a second approximate dilution level of approximately 1M LiTFSI in an approximate volume ratio of 1:4:1 DME:DOL:TEGDME and can include addition of 5M TBT solution or addition of 5M MBT solution, or with the addition of other additives and/or chemicals.

在各個實行方案中,各碳質結構可包括相對高密度外殼區域及相對低密度核心區域。在一些態樣中,核心區域可在外殼區域之內部部分內形成。外殼區域可具有在大約1.0克每立方公分(g/cc)與3.5g/cc之間的碳密度。核心區域可具有在大約0.0g/cc與1.0g/cc之間或低於第一碳密度之一些其他範圍內的碳密度。在其他實行方案中,各碳質結構可包括具有相同或類似密度之外殼區域及核心區域,例如,以使得碳質結構不包括分級孔隙率。 In various implementations, each carbonaceous structure can include a relatively high density shell region and a relatively low density core region. In some aspects, the core region can be formed within an inner portion of the shell region. The shell region may have a carbon density between approximately 1.0 grams per cubic centimeter (g/cc) and 3.5 g/cc. The core region may have a carbon density between about 0.0 g/cc and 1.0 g/cc or some other range below the first carbon density. In other implementations, each carbonaceous structure can include a shell region and a core region having the same or similar density, for example, such that the carbonaceous structure does not include graded porosity.

陰極之各種區域可包括彼此互連以形成自外殼區域延伸至核心區域之多孔網路的微孔通道、中孔通道、及大孔通道。例如,在一些態樣中,多孔網路可包括各自具有大約1.5nm之主要尺寸的孔隙。 The various regions of the cathode may include microporous channels, mesoporous channels, and macroporous channels interconnected with each other to form a porous network extending from the shell region to the core region. For example, in some aspects, a porous network can include pores each having a major dimension of about 1.5 nm.

在一些實行方案中,多孔網路之一或多個部分可暫時微觀限定陰極內之電活性材料,諸如(但不限於)元素硫,其可藉由與鋰離子複合來增加電池比容量。在一些態樣中,三元溶劑套裝可具有可調極性、可調溶解度,且能夠傳輸鋰離子。另外,在電池之充電-放電循環期間,三元溶劑套裝可至少暫時懸浮多硫化物(PS)。 In some implementations, one or more portions of the porous network can temporarily microscopically confine electroactive materials within the cathode, such as, but not limited to, elemental sulfur, which can increase the specific capacity of the battery by complexing with lithium ions. In some aspects, a ternary solvent set can have tunable polarity, tunable solubility, and be capable of transporting lithium ions. Additionally, the ternary solvent set can at least temporarily suspend polysulfides (PS) during charge-discharge cycles of the battery.

可實行本揭示案所描述之標的物之特定實行方案以實現一或多個潛在優勢。在一些實行方案中,藉由陰極內微孔、中孔、及大孔通道之互連來形成之多孔網路可包括具有許多不同孔徑的複數個孔隙。在一些實行方案中,複數個孔隙可包括具有小於大約2nm之孔徑的微孔,可包括具有大約5與50nm之間的孔徑的中孔,且可包括具有大於大約50nm之孔徑的大孔。微孔、中孔、及大孔可共同地減輕多硫化物不當遷移或擴散至整個電解質中。由於多硫化物穿梭效應可導致活性材料自陰極中損失,因此減輕或減少多硫化物穿梭效應之能力可增加電池性能。 Certain implementations of the subject matter described in this disclosure can be practiced to realize one or more potential advantages. In some implementations, the porous network formed by the interconnection of micropore, mesopore, and macropore channels within the cathode can include a plurality of pores with many different pore sizes. In some implementations, the plurality of pores can include micropores with a pore size of less than about 2 nm, can include mesopores with a pore size between about 5 and 50 nm, and can include macropores with a pore size greater than about 50 nm. Micropores, mesopores, and macropores collectively mitigate inappropriate migration or diffusion of polysulfides throughout the electrolyte. Since polysulfide shuttling can lead to loss of active material from the cathode, the ability to mitigate or reduce polysulfide shuttling can increase battery performance.

在一個實行方案中,微孔可具有經選擇以微觀限定預負載至陰極中之元素硫(S8,或硫之更小鏈/片段,例如呈S2、S4或S6形式)的大約1.5nm之孔徑。元素硫在陰極內之微觀限定可允許在電池循環期間產生之TBT或MBT錯合物抑制長鏈多硫化物在陰極之中孔內遷移。此等長鏈多硫化物在陰極之中孔內積聚可導致陰極在體積上膨脹以保持多硫化物且由此減少多硫化物穿梭效應。因此,鋰離子可繼續經由電解質在陽極與陰極之間自由地傳輸而不被多硫化物阻擋或阻礙。在無多硫化物干擾之情況下,鋰離子在整個電解質中之自由移動可增加電池性能。 In one implementation , the micropores may have approximately 1.5nm pore size. The microscopic confinement of elemental sulfur within the cathode may allow TBT or MBT complexes generated during cell cycling to inhibit the migration of long-chain polysulfides within the pores of the cathode. Accumulation of such long-chain polysulfides within the pores of the cathode can cause the cathode to expand in volume to retain the polysulfides and thereby reduce polysulfide shuttling. Thus, lithium ions can continue to freely transport between the anode and cathode via the electrolyte without being blocked or impeded by polysulfides. Free movement of lithium ions throughout the electrolyte without interference from polysulfides increases battery performance.

另外地或替代地,一或多個保護層、鞘、膜、及/或區域(在本文中統稱為「保護層」)可安置在陽極及/或陰極及/或隔板上且與電解質接觸。保護層可包括能夠與多硫化物結合以阻礙多硫化物遷移且防止鋰枝晶形成的材料。在一些態樣中,保護層可以不同組態來佈置且與本文揭示之任何電解質化學物質及/或組合物一起使用,進而可產生電池之完全可調性。 Additionally or alternatively, one or more protective layers, sheaths, membranes, and/or regions (collectively referred to herein as "protective layers") may be disposed on the anode and/or cathode and/or separator and in contact with the electrolyte . The protective layer may include a material capable of binding polysulfides to hinder polysulfide migration and prevent lithium dendrite formation. In some aspects, the protective layer can be arranged in different configurations and used with any of the electrolyte chemistries and/or compositions disclosed herein, which in turn can result in complete tunability of the battery.

在一個實行方案中,碳質材料可用氟化聚合物鏈接枝且沉積在陽極之一或多個暴露表面上。氟化聚合物鏈可經由伍茲反應來交聯成與來自陽極表面之鋰金屬接觸之聚合物網路。交聯聚合物網路形成可繼而抑制與陽極相關之鋰金屬枝晶形成,且亦可產生氟化鋰。聚合物網路內之氟化聚合物可參與電池操作循環期間之化學反應以產生氟化鋰。氟化鋰之形成可涉及來自電解質之鋰離子與氟離子之化學結合。 In one implementation, the carbonaceous material can be grafted with fluorinated polymer chains and deposited on one or more exposed surfaces of the anode. Fluorinated polymer chains can be cross-linked via the Woods reaction into a polymer network in contact with lithium metal from the anode surface. The formation of a cross-linked polymer network can in turn suppress the formation of lithium metal dendrites associated with the anode, and can also generate lithium fluoride. Fluorinated polymers within the polymer network can participate in chemical reactions during battery operation cycles to produce lithium fluoride. The formation of lithium fluoride may involve the chemical combination of lithium ions from the electrolyte and fluoride ions.

另外地或替代地,聚合物網路可與本文揭示之任何電解質化學物質及/或組合物及/或安置於陰極上之保護鞘組合。在一個實行方案中,保護鞘可藉由將含有二官能或更高官能度環氧之化合物與胺或醯胺化合物組合來形成。該等化合物之分子間交聯導致形成3D網路,其對於電解質中之溶解具有高化學抗性。組合物,例如,可包括三官能環氧化合物及基於二胺寡聚物之化合物,該 等化合物可彼此反應以產生保護性晶格,該保護性晶格可結合至在陰極中產生之多硫化物且防止其遷移或擴散至電解質中。另外,保護性晶格可透過可由於電池循環而在陰極中形成之一或多個裂縫擴散。保護性晶格當在陰極中形成之此類裂縫中擴散時,可增加陰極之結構完整性,且減少陰極的與體積膨脹相關之潛在破裂。 Additionally or alternatively, the polymer network may be combined with any of the electrolyte chemistries and/or compositions disclosed herein and/or a protective sheath disposed over the cathode. In one embodiment, the protective sheath can be formed by combining a difunctional or higher functionality epoxy-containing compound with an amine or amide compound. The intermolecular crosslinking of these compounds leads to the formation of 3D networks which are highly chemically resistant to dissolution in electrolytes. Compositions, for example, may include trifunctional epoxy compounds and compounds based on diamine oligomers, the Such compounds can react with each other to create a protective lattice that can bind to the polysulfides produced in the cathode and prevent them from migrating or diffusing into the electrolyte. Additionally, the protective lattice can diffuse through one or more cracks that may form in the cathode as a result of battery cycling. The protective lattice, when diffused in such cracks formed in the cathode, can increase the structural integrity of the cathode and reduce potential cracking of the cathode associated with volume expansion.

在各個實行方案中,所揭示電池部件中之一或多者可與安置在暴露於電解質之陽極之邊緣或表面上的保形塗層組合。在一些實行方案中,保形塗層可包括可替換聚合物網路的分級界面層。在一些態樣中,分級界面層可包括氟化錫層及在氟化錫層與陽極之間形成之錫-鋰合金區域。響應於電池之操作循環,錫-鋰合金區域可形成在陽極與氟化錫層之間均勻分散之氟化鋰層。 In various implementations, one or more of the disclosed battery components can be combined with a conformal coating disposed on the edge or surface of the anode exposed to the electrolyte. In some implementations, the conformal coating can include a graded interface layer that replaces the polymer network. In some aspects, the graded interfacial layer can include a tin fluoride layer and a tin-lithium alloy region formed between the tin fluoride layer and the anode. In response to operating cycles of the battery, the tin-lithium alloy regions can form a layer of lithium fluoride uniformly dispersed between the anode and the tin fluoride layer.

在各個實行方案中,使用本揭示案之各種態樣的鋰硫電池可包括自外部來源,例如地下來源及/或外星地下來源提取的電活性材料。在此類實行方案中,陰極可經製備為包括功能性孔隙的不含硫之陰極,該等孔隙可微觀限定陰極內之電活性材料。在一些態樣中,陰極可包括有包括接合在一起之許多碳質顆粒的聚集物,且可包括有包括接合在一起之許多聚集物的團聚物。在一個實行方案中,用於形成陰極(及/或陽極)之碳質材料可經調諧以界定獨特孔徑、孔徑範圍、及體積。在一些實行方案中,碳質顆粒可包括具有及沒有三區段顆粒之非三區段顆粒。在其他實行方案中,碳質顆粒可不包括三區段顆粒。各三區段顆粒可包括微孔、中孔、及大孔,且非三區段及三區段顆粒可各自具有20nm至300nm之近似範圍中之主要尺寸。各碳質顆粒可包括碳質片段,其彼此嵌套且藉由中孔來與直接相鄰碳質片段隔開。在一些態樣中,各碳質顆粒可具有在形狀上變化且與相鄰材料聚結的可變形周邊。 In various implementations, lithium-sulfur batteries using various aspects of the present disclosure can include electroactive materials extracted from external sources, such as subsurface sources and/or extraterrestrial subsurface sources. In such implementations, the cathode can be prepared as a sulfur-free cathode that includes functional pores that microscopically confine the electroactive material within the cathode. In some aspects, the cathode can include an aggregate comprising a plurality of carbonaceous particles joined together, and can include an agglomerate comprising a plurality of aggregates joined together. In one implementation, the carbonaceous material used to form the cathode (and/or anode) can be tuned to define unique pore sizes, pore size ranges, and volumes. In some implementations, the carbonaceous particles can include non-three-zone particles with and without three-zone particles. In other implementations, the carbonaceous particles may not include three-segment particles. Each three-segment particle can include micropores, mesopores, and macropores, and the non-three-segment and three-segment particles can each have a major dimension in the approximate range of 20 nm to 300 nm. Each carbonaceous particle may include carbonaceous segments nested within each other and separated from immediately adjacent carbonaceous segments by mesopores. In some aspects, each carbonaceous particle can have a deformable perimeter that changes in shape and coalesces with adjacent material.

一些孔隙可分佈於複數個碳質片段及/或碳質顆粒之可變形周邊中。在各個實行方案中,中孔可散佈於整個聚集物中,且大孔可散佈於整個複數個 團聚物中。在一個實行方案中,各中孔可具有3.3奈米(nm)與19.3nm之間的主要尺寸,各聚集物可具有10nm與10微米(μm)之間的近似範圍內之主要尺寸,且各團聚物可具有0.1μm與1,000μm之間的近似範圍內之主要尺寸。如以下進一步描述,與獨特電解質調配物及保護層匹配之孔徑之特定組合可用於減少或減輕不當多硫化物擴散之有害影響,從而可進一步增加電池性能。 Some pores may be distributed in the deformable perimeter of the plurality of carbonaceous segments and/or carbonaceous particles. In various implementations, mesopores can be dispersed throughout the aggregate and macropores can be dispersed throughout the plurality in aggregates. In one implementation, each mesopore can have a major dimension between 3.3 nanometers (nm) and 19.3 nm, each aggregate can have a major dimension in the approximate range between 10 nm and 10 micrometers (μm), and each Agglomerates may have a major dimension in the approximate range between 0.1 μm and 1,000 μm. As described further below, specific combinations of pore sizes matched to unique electrolyte formulations and protective layers can be used to reduce or mitigate the detrimental effects of inappropriate polysulfide diffusion, which can further increase battery performance.

圖1展示根據一些實行方案之示例性電池100。電池100可為鋰硫電化電池、鋰離子電池、或鋰硫電池。電池100可具有主體105,其包括第一基板101、第二基板102、陰極110、與陰極110相對定位之陽極120、及電解質130。在一些態樣中,第一基板101可充當陽極120之集電器,且第二基板102可充當陰極110之集電器。陰極110可包括沉積於第二基板102上之第一薄膜111,且可包括沉積於第一薄膜111上之第二薄膜112。在一些實行方案中,電解質130可為液相電解質,其包括一或多種添加劑諸如硝酸鋰、氟化錫、碘化鋰、雙(草酸)硼酸鋰(LiBOB)、硝酸銫、氟化銫、離子液體、氟化鋰、氟化醚、TBT、MBT、DPT及/或類似者。此等示例性添加劑之合適溶劑套裝可包括各種稀釋比率,包括1:1:1之1,3-二氧戊環(DOL)、1,2-二甲氧基乙烷(DME)、四乙二醇二甲醚(TEGDME)、及/或類似者。 FIG. 1 shows an exemplary battery 100 according to some implementations. The battery 100 may be a lithium-sulfur electrochemical battery, a lithium-ion battery, or a lithium-sulfur battery. The battery 100 may have a body 105 including a first substrate 101 , a second substrate 102 , a cathode 110 , an anode 120 positioned opposite to the cathode 110 , and an electrolyte 130 . In some aspects, first substrate 101 can serve as a current collector for anode 120 and second substrate 102 can serve as a current collector for cathode 110 . The cathode 110 may include a first thin film 111 deposited on the second substrate 102 , and may include a second thin film 112 deposited on the first thin film 111 . In some implementations, electrolyte 130 may be a liquid phase electrolyte that includes one or more additives such as lithium nitrate, tin fluoride, lithium iodide, lithium bis(oxalate)borate (LiBOB), cesium nitrate, cesium fluoride, ion Liquid, lithium fluoride, ether fluoride, TBT, MBT, DPT and/or the like. Suitable solvent packages for these exemplary additives may include various dilution ratios including 1:1:1 of 1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), tetraethyl Glycol dimethyl ether (TEGDME), and/or the like.

雖然為了簡單起見未展示,但在一個實行方案中,鋰層可電沉積於陽極120之一或多個暴露碳表面上。在一些情況下,鋰層可包括藉由鋰在陽極120之暴露表面上之異位電沉積來提供的元素鋰。在一些態樣中,鋰層可包括鋰、鈣、鉀、鎂、鈉、及/或銫,其中各金屬可異位沉積於陽極120之暴露碳表面上。在電池100之操作循環期間,鋰層可提供可用於自陰極110來回傳輸之鋰離子。因此,電池100可不需要用於操作之額外鋰來源。代替使用硫化鋰,元素硫(S8)可預負載於陰極110中形成之各種孔隙或多孔網路中。在電池之操作循環期間,元素硫可形成鋰硫錯合物,該等錯合物與習知陰極設計相比,可微觀 限定(至少暫時)更大量之鋰。因此,電池100可在性能上超過依賴於此類習知陰極設計之電池。 Although not shown for simplicity, in one implementation, a lithium layer may be electrodeposited on one or more exposed carbon surfaces of anode 120 . In some cases, the lithium layer may include elemental lithium provided by ex-situ electrodeposition of lithium on the exposed surface of anode 120 . In some aspects, the lithium layer can include lithium, calcium, potassium, magnesium, sodium, and/or cesium, each of which can be deposited ex-situ on the exposed carbon surface of anode 120 . The lithium layer can provide lithium ions available for transport to and from the cathode 110 during operating cycles of the battery 100 . Accordingly, battery 100 may not require an additional source of lithium for operation. Instead of using lithium sulfide, elemental sulfur (S 8 ) can be preloaded in various pores or porous networks formed in cathode 110 . During the operating cycle of the cell, elemental sulfur can form lithium-sulfur complexes that microscopically confine (at least temporarily) larger amounts of lithium than conventional cathode designs. Thus, battery 100 may outperform batteries that rely on such conventional cathode designs.

在各個實行方案中,在電池100之放電循環期間,鋰層可解離且/或分離成鋰離子125及電子174。鋰離子125可通過電解質130自陽極120朝向陰極110遷移到其在陰極110內之電化學有利位置,如圖1之實例中所示。隨著鋰離子125移動通過電解質130,電子174自鋰離子125中釋放並變得可用於攜帶電荷,且因此在陽極120與陰極110之間傳導電流。因此,電子174可通過外部電路自陽極120行進至陰極110,以為負載172供電。負載172可為任何合適電路、裝置、或系統,諸如(但不限於)燈泡、消費性電子產品、或電動車(EV)。 In various implementations, during a discharge cycle of the battery 100 , the lithium layer can dissociate and/or separate into lithium ions 125 and electrons 174 . Lithium ions 125 can migrate from anode 120 towards cathode 110 through electrolyte 130 to their electrochemically favorable locations within cathode 110, as shown in the example of FIG. 1 . As lithium ions 125 move through electrolyte 130 , electrons 174 are released from lithium ions 125 and become available to carry charge and thus conduct electrical current between anode 120 and cathode 110 . Thus, electrons 174 may travel from anode 120 to cathode 110 through an external circuit to power load 172 . Load 172 may be any suitable circuit, device, or system, such as, but not limited to, a light bulb, consumer electronics, or an electric vehicle (EV).

在一些實行方案中,電池100可包括固體電解質界面相層140。在一些情況下,在電池100之操作循環期間,固體電解質界面相層140可人工地在陽極120上形成。在此類情況下,固體電解質界面相層140亦可稱為人工固體電解質界面相或A-SEI。固體電解質界面相層140在形成為A-SEI時可包括錫、錳、鉬、及/或氟化合物。具體而言,鉬可提供陽離子,且氟化合物可提供陰離子。陽離子及陰離子可彼此相互作用以產生鹽,諸如氟化錫、氟化錳、氮化矽、氮化鋰、硝酸鋰、磷酸鋰、氧化錳、氧化鋰鑭鋯(LLZO,Li7La3Zr2O12)等。在一些情況下,A-SEI可響應於鋰離子125暴露於電解質130而形成,該電解質可包括有包括錫及/或氟的基於溶劑之溶液。 In some implementations, the battery 100 may include a solid electrolyte interface phase layer 140 . In some cases, solid electrolyte interface phase layer 140 may be artificially formed on anode 120 during operating cycles of battery 100 . In such cases, the solid electrolyte interfacial phase layer 140 may also be referred to as an artificial solid electrolyte interfacial phase or A-SEI. The solid electrolyte interfacial layer 140 may include tin, manganese, molybdenum, and/or fluorine compounds when formed as A-SEI. Specifically, molybdenum can provide cations, and fluorine compounds can provide anions. Cations and anions can interact with each other to produce salts, such as tin fluoride, manganese fluoride, silicon nitride, lithium nitride, lithium nitrate, lithium phosphate, manganese oxide, lithium lanthanum zirconium oxide ( LLZO , Li 7 La 3 Zr 2 O 12 ) and so on. In some cases, A-SEI may form in response to exposure of lithium ions 125 to electrolyte 130, which may include a solvent-based solution including tin and/or fluorine.

在各個實行方案中,在電池100活化之前,固體電解質界面相層140可人工提供於陽極120上。或者,在一個實行方案中,例如在電池100之操作循環期間,固體電解質界面相層140可自然地形成於陽極120上。在一些情況下,固體電解質界面相層140可包括可作為微塗層施加至陽極120的外部屏蔽材料層。以此方式,在陽極120之面向電解質130之部分上形成固體電解質界面相層140可由於電解質130之電化學還原而引起,進而可減少陽極120之不受控制的 分解。 In various implementations, the solid electrolyte interface phase layer 140 may be artificially provided on the anode 120 prior to activation of the battery 100 . Alternatively, in one implementation, solid electrolyte interface phase layer 140 may form naturally on anode 120 , such as during operating cycles of battery 100 . In some cases, solid electrolyte interface phase layer 140 may include an outer barrier material layer that may be applied to anode 120 as a microcoating. In this way, the formation of a solid electrolyte interface phase layer 140 on the portion of the anode 120 facing the electrolyte 130 can be caused by the electrochemical reduction of the electrolyte 130, thereby reducing uncontrolled depletion of the anode 120. break down.

在一些實行方案中,電池100可包括位於固體電解質界面相層140側面之障壁層142,例如,如圖1所示。障壁層142可包括塗佈及/或沉積在陽極120上之機械強度增強劑144。在一些態樣中,機械強度增強劑144可為電池100提供結構支援,可防止來自陽極120之鋰枝晶形成,且/或可防止鋰枝晶伸出至整個電池100中。在一些實行方案中,機械強度增強劑144可形成為陽極120上之保護塗層,且可包括一或多個碳同素異形體、碳奈米洋蔥(CNO)、奈米管(CNT)、還原氧化石墨烯、氧化石墨烯(GO)、及/或碳奈米鑽石。在一些情況下,固體電解質界面相層140可在機械強度增強劑144內形成。 In some implementations, the battery 100 can include a barrier layer 142 flanking the solid electrolyte interfacial phase layer 140 , eg, as shown in FIG. 1 . The barrier layer 142 may include a mechanical strength enhancer 144 coated and/or deposited on the anode 120 . In some aspects, the mechanical strength enhancer 144 can provide structural support to the battery 100 , can prevent the formation of lithium dendrites from the anode 120 , and/or can prevent the lithium dendrites from protruding throughout the battery 100 . In some implementations, the mechanical strength enhancer 144 can be formed as a protective coating on the anode 120 and can include one or more carbon allotropes, carbon nano-onions (CNO), nanotubes (CNTs), Reduced graphene oxide, graphene oxide (GO), and/or carbon nanodiamonds. In some cases, solid electrolyte interface phase layer 140 may be formed within mechanical strength enhancer 144 .

在一些實行方案中,第一基板101及/或第二基板102可為固體銅金屬箔且可影響電池100之能量容量、倍率性能、壽命、及長期穩定性。例如,為了控制電池100之能量容量及其他性能屬性,第一基板101及/或第二基板102可經受蝕刻、塗碳層、或其他合適處理,以增加電池100之電化學穩定性及/或電導性。在其他實行方案中,根據電池100之最終用途應用及/或性能要求,第一基板101及/或第二基板102可包括一些鋁、銅、鎳、鈦、不銹鋼及/或碳質材料或可由其形成。例如,第一基板101及/或第二基板102可經個別地調諧或定製以使得電池100滿足一或多個性能要求或度量。 In some implementations, the first substrate 101 and/or the second substrate 102 can be a solid copper foil and can affect the energy capacity, rate capability, lifetime, and long-term stability of the battery 100 . For example, in order to control the energy capacity and other performance attributes of the battery 100, the first substrate 101 and/or the second substrate 102 may undergo etching, carbon coating, or other suitable treatments to increase the electrochemical stability and/or conductivity. In other implementations, depending on the end-use application and/or performance requirements of the battery 100, the first substrate 101 and/or the second substrate 102 may include some aluminum, copper, nickel, titanium, stainless steel and/or carbonaceous materials or may be made of its formation. For example, first substrate 101 and/or second substrate 102 may be individually tuned or customized such that battery 100 meets one or more performance requirements or metrics.

在一些態樣中,第一基板101及/或第二基板102可為至少部分地基於發泡體或源自發泡體的,且可選自金屬發泡體、金屬絲網、金屬篩網、有孔金屬、或基於薄片之三維(3D)結構中之任何一者或多者。在其他態樣中,第一基板101及/或第二基板102可為金屬纖維墊、金屬奈米線墊、導電聚合物奈米纖維墊、導電聚合物發泡體、導電聚合物塗層纖維發泡體、碳發泡體、石墨發泡體、或碳氣凝膠。在一些其他態樣中,第一基板101及/或第二基板102可為碳乾凝膠、石墨烯發泡體、氧化石墨烯發泡體、還原氧化石墨烯發泡體、碳纖維 發泡體、石墨纖維發泡體、剝離石墨發泡體、或其任何組合。 In some aspects, the first substrate 101 and/or the second substrate 102 can be at least partially based on or derived from foam, and can be selected from metal foam, wire mesh, metal mesh , porous metal, or any one or more of sheet-based three-dimensional (3D) structures. In other aspects, the first substrate 101 and/or the second substrate 102 can be metal fiber mats, metal nanowire mats, conductive polymer nanofiber mats, conductive polymer foams, conductive polymer coated fibers foam, carbon foam, graphite foam, or carbon aerogel. In some other aspects, the first substrate 101 and/or the second substrate 102 can be carbon xerogel, graphene foam, graphene oxide foam, reduced graphene oxide foam, carbon fiber Foam, graphite fiber foam, exfoliated graphite foam, or any combination thereof.

圖2展示根據一些實行方案之另一示例性電池200。電池200可在許多方面類似於圖1之電池100,使得相同元件之描述在此不予以重複。在一些實行方案中,電池200可為下一代電池,諸如鋰金屬電池及/或具有固態電解質之固態電池。在其他實行方案中,電池200可包括液相電解質230且可因此包括本文揭示之任何保護層及/或電解質化學物質或組合物。 FIG. 2 shows another exemplary battery 200 according to some implementations. Battery 200 may be similar in many respects to battery 100 of FIG. 1 , such that descriptions of identical elements are not repeated here. In some implementations, the battery 200 can be a next generation battery, such as a lithium metal battery and/or a solid state battery with a solid electrolyte. In other implementations, the battery 200 may include a liquid phase electrolyte 230 and may thus include any protective layer and/or electrolyte chemistry or composition disclosed herein.

在一些其他實行方案中,電解質230可為固體或基本上固體。例如,在一些情況下,電解質230可以凝膠相開始,且然後在電池200活化後凝固。電池200可藉由將習知碳支架陽極替換為在最初空的腔體中沉積之單一固體金屬鋰層來減少與多硫化物穿梭效應相關之比容量或能量損耗。例如,雖然圖1之電池100之陽極120可包括碳支架,但圖2之電池200之陽極220可為不含任何碳材料之鋰金屬陽極。在一個實行方案中,鋰金屬陽極可形成為單個固體鋰金屬層且被稱為「鋰金屬陽極」。 In some other implementations, electrolyte 230 may be solid or substantially solid. For example, in some cases, electrolyte 230 may start out in a gel phase and then solidify after battery 200 activation. Cell 200 can reduce the specific capacity or energy loss associated with polysulfide shuttling by replacing the conventional carbon scaffold anode with a single solid metallic lithium layer deposited in the initially empty cavity. For example, while anode 120 of battery 100 of FIG. 1 may include a carbon support, anode 220 of battery 200 of FIG. 2 may be a lithium metal anode that does not contain any carbon material. In one implementation, a lithium metal anode can be formed as a single solid lithium metal layer and is referred to as a "lithium metal anode."

與各種陰極材料相關之能量密度增加可基於是否將鋰金屬預負載於陰極210中及/或該鋰金屬是否在電解質230中佔優勢。陰極210及/或電解質230可提供可用於使陽極220鋰化之鋰。例如,具有高容量陰極之電池可能需要更厚或能量更密集之陽極,以供應高容量陰極使用所需要的增加數量之鋰。在一些實行方案中,陽極220可包括能夠用其中沉積之鋰逐步填充之支架碳質結構。與習知石墨陽極相比,此等碳質結構可能夠在陽極220內保持更大量之鋰,該等習知石墨陽極可限於僅承載被嵌入於交替石墨烯層之間的鋰或可用鋰來電鍍。例如,習知石墨陽極可使用六個碳原子來保持單個鋰原子。相比之下,藉由使用純鋰金屬陽極,諸如陽極220,本文揭示之電池可減少或甚至消除陽極220中之碳使用,這與習知石墨陽極相比,可允許陽極220在相對較小體積中儲存更大量之鋰。以此方式,電池200之能量密度可大於類似大小之習知電池。 The increase in energy density associated with various cathode materials may be based on whether lithium metal is preloaded in cathode 210 and/or whether the lithium metal predominates in electrolyte 230 . Cathode 210 and/or electrolyte 230 may provide lithium that may be used to lithiate anode 220 . For example, a battery with a high capacity cathode may require a thicker or more energy dense anode to supply the increased amount of lithium required for high capacity cathode use. In some implementations, anode 220 can include a scaffolding carbonaceous structure capable of progressively filling with lithium deposited therein. These carbonaceous structures may be able to hold a greater amount of lithium within the anode 220 than conventional graphite anodes, which may be limited to only carrying lithium intercalated between alternating graphene layers or may be available with lithium plating. For example, conventional graphite anodes can use six carbon atoms to hold a single lithium atom. In contrast, by using a pure lithium metal anode, such as anode 220, the cells disclosed herein can reduce or even eliminate carbon usage in anode 220, which can allow anode 220 to be used in a relatively small A larger amount of lithium is stored in the volume. In this way, the energy density of battery 200 can be greater than similarly sized conventional batteries.

可製備鋰金屬陽極,諸如陽極220,以與經設計以抑制自陽極中鋰枝晶之形成及生長的固態電解質一起發揮作用。在一些態樣中,隔板250可進一步限制枝晶形成及生長。當圖1之電解質130仍減少鋰枝晶形成時,隔板250可具有類似離子導電性。在一些態樣中,隔板250可由含有陶瓷之材料形成且因此可能不能與金屬鋰進行化學反應。因此,隔板250可用於控制通過分佈在隔板250中之孔隙進行的鋰離子傳輸,同時藉由阻礙電子流過或穿過電解質230來防止短路。 A lithium metal anode, such as anode 220, can be prepared to function with a solid state electrolyte designed to inhibit the formation and growth of lithium dendrites from the anode. In some aspects, spacers 250 can further limit dendrite formation and growth. While electrolyte 130 of FIG. 1 still reduces lithium dendrite formation, separator 250 may have similar ionic conductivity. In some aspects, the separator 250 may be formed of a ceramic-containing material and thus may not be able to chemically react with lithium metal. Thus, the separator 250 can be used to control the transport of lithium ions through the pores distributed in the separator 250 while preventing short circuits by impeding the flow of electrons through or through the electrolyte 230 .

在一個實行方案中,空隙空間(為簡單起見未展示)可在電池200中在陽極220處或附近形成。在此實行方案中,電池200之操作循環可導致鋰沉積至空隙空間中。因此,空隙空間可變成或轉變成含鋰區域(諸如固體鋰金屬層)且充當陽極220。在一些態樣中,空隙空間可響應於電池200之含有金屬之非電活性組分與含有石墨烯之組分之間的化學反應來產生。具體而言,在操作循環期間,含有石墨烯之組分可與沉積至空隙空間中之鋰進行化學反應且產生鋰化石墨(LiC6)或圖案化鋰金屬。由化學反應產生之鋰化石墨可產生或導致鋰離子及/或電子之產生及/或釋放,該等離子或電子可用於在電池200之放電循環期間在陽極220與陰極210之間載運電荷或「電流」。 In one implementation, void space (not shown for simplicity) may be formed in cell 200 at or near anode 220 . In this implementation, operating cycles of the battery 200 can result in deposition of lithium into the void space. Thus, the void space can become or transform into a lithium-containing region, such as a solid lithium metal layer, and serve as the anode 220 . In some aspects, void space may be created in response to a chemical reaction between the non-electroactive metal-containing component and the graphene-containing component of battery 200 . Specifically, during operation cycles, graphene-containing components can chemically react with lithium deposited into the void space and produce lithiated graphite (LiC 6 ) or patterned lithium metal. The lithiated graphite produced by the chemical reaction can generate or cause the generation and/or release of lithium ions and/or electrons, which can be used to carry charge or "Current".

而且,在陽極220為固體鋰金屬層的實行方案中,電池200可能夠每單位體積保持更多電活性材料及/或鋰(如與具有支架碳及/或嵌入鋰化石墨陽極之電池相比)。在一些態樣中,陽極220當經製備為固體鋰金屬層時,可導致與具有支架碳及/或嵌入鋰化石墨陽極之電池相比,電池200具有更高能量密度及/或比容量,由此產生更長放電循環時間及每單位時間之額外功率輸出。在使用固態電解質並非所期望或並非最佳的情況下,圖2之電池200之電解質230可用本文揭示之任何液相電解質化學物質及/或組合物來製備。另外地或替代地,電解質230可包括鋰及/或鋰離子,其可用於分別在放電及充電循環期間自 陽極220至陰極210以及反過來自陰極至陽極之循環傳輸。 Also, in implementations where anode 220 is a solid lithium metal layer, cell 200 may be able to hold more electroactive material and/or lithium per unit volume (as compared to cells with scaffolded carbon and/or intercalated lithiated graphite anodes. ). In some aspects, the anode 220, when prepared as a solid lithium metal layer, can result in a battery 200 having a higher energy density and/or specific capacity than a battery with a scaffolded carbon and/or intercalated lithiated graphite anode, This results in longer discharge cycle times and additional power output per unit of time. In cases where the use of a solid electrolyte is not desired or optimal, electrolyte 230 of battery 200 of FIG. 2 can be prepared with any of the liquid phase electrolyte chemistries and/or compositions disclosed herein. Additionally or alternatively, electrolyte 230 may include lithium and/or lithium ions, which may be used to self- Cyclical transport from anode 220 to cathode 210 and vice versa.

為了減少自預負載在陰極210中之元素硫281產生之多硫化物282至電解質230中之遷移,電池200可包括一或多個獨特多硫化物保持特徵。例如,鑑於多硫化物可溶解於電解質230中,預期由於電化學電位之差異、化學梯度、及/或其他現象而導致一些多硫化物可自陰極210漂移或遷移至陽極220。多硫化物282(尤其長鏈形式多硫化物)之遷移可能阻礙鋰離子自陽極220傳輸至陰極210,進而可能減少可用於產生可為諸如電動車(EV)之負載272供電之電流的電子數目。在一些態樣中,鋰離子225可自陽極220處或附近之一或多個起始位置226沿著傳輸通道來傳輸至陰極210處或附近之一或多個最終位置227,如圖2之實例中描繪。 To reduce migration of polysulfides 282 generated from elemental sulfur 281 preloaded in cathode 210 into electrolyte 230, cell 200 may include one or more unique polysulfide retention features. For example, given that polysulfides may dissolve in electrolyte 230, it is expected that some polysulfides may drift or migrate from cathode 210 to anode 220 due to differences in electrochemical potential, chemical gradients, and/or other phenomena. Migration of polysulfides 282, especially the long-chain form of polysulfides, may impede the transport of lithium ions from anode 220 to cathode 210, which may reduce the number of electrons available to generate current that can power a load 272, such as an electric vehicle (EV) . In some aspects, lithium ions 225 may be transported from one or more initial locations 226 at or near anode 220 to one or more final locations 227 at or near cathode 210 along a transport channel, as shown in FIG. 2 depicted in the example.

在一些實行方案中,聚合物網路285可安置在陽極220上,以減少多硫化物282自陽極220至陰極210之不受控制的遷移。聚合物網路285可包括一或多種碳質材料層,其用在暴露於鋰陽極表面後經由伍茲反應來彼此交聯之氟化聚合物鏈接枝。可包括(但不限於)石墨烯、少層石墨烯FLG及多層石墨烯MLG之聚合物網路285之碳質材料可用含有碳-氟(C-F)鍵之氟化聚合物鏈化學接枝。此等C-F鍵可與來自陽極220之表面之鋰金屬化學反應,以產生高度離子碳-鋰鍵(C-Li)。此等所形成C-Li鍵進而可與聚合物鏈之C-F鍵反應以形成新的碳-碳鍵,其亦可使聚合物鏈交聯成(且由此形成)聚合物網路並產生氟化鋰(LiF)。 In some implementations, polymer network 285 may be disposed on anode 220 to reduce uncontrolled migration of polysulfides 282 from anode 220 to cathode 210 . Polymer network 285 may include one or more layers of carbonaceous material grafted with fluorinated polymer chains that cross-link with each other via a Woods reaction after exposure to the lithium anode surface. Carbonaceous materials that can include, but are not limited to, polymer networks 285 of graphene, few-layer graphene FLG, and multi-layer graphene MLG can be chemically grafted with fluorinated polymer chains containing carbon-fluorine (C-F) bonds. These C-F bonds can chemically react with lithium metal from the surface of anode 220 to create highly ionic carbon-lithium bonds (C-Li). These formed C-Li bonds can in turn react with the C-F bonds of the polymer chains to form new carbon-carbon bonds, which can also cross-link the polymer chains into (and thus form) the polymer network and generate fluorine Lithium Fe (LiF).

所得氟化鋰可沿著聚合物網路285之整個周邊均勻分佈,以使得在電池循環期間,鋰離子被均勻消耗,從而產生可形成或以其他方式包括氟化鋰的界面層283。界面層283可沿著陽極220的面向陰極210之表面或部分延伸,如圖2所示。因此,鋰離子225不太可能彼此組合及/或反應且更可能與可由聚合物網路285中之氟化聚合物鏈提供之氟原子組合及/或反應。鋰-鋰化學反應之 所得減少使造成不當鋰-金屬枝晶形成的鋰-鋰鍵結降低。另外,在一些實行方案中,聚合物網路285可替換在陽極220與電解質230之間自然地或人工形成之界面相層240。 The resulting lithium fluoride can be evenly distributed along the entire perimeter of the polymer network 285 so that during battery cycling, lithium ions are evenly consumed, resulting in an interfacial layer 283 that can form or otherwise include lithium fluoride. The interfacial layer 283 may extend along the surface or portion of the anode 220 facing the cathode 210 , as shown in FIG. 2 . Thus, lithium ions 225 are less likely to combine and/or react with each other and more likely with fluorine atoms that may be provided by the fluorinated polymer chains in polymer network 285 . Lithium-Lithium Chemical Reaction The resulting reduction reduces lithium-lithium bonding that leads to inappropriate lithium-metal dendrite formation. Additionally, in some implementations, polymer network 285 may replace naturally or artificially formed interfacial phase layer 240 between anode 220 and electrolyte 230 .

在一個實行方案中,聚合物網路285之界面層283與陽極220接觸,且保護層284安置在界面層283之頂部(諸如在界面層283與界面相層240之間)。在一些態樣中,界面層283及保護層284可共同地界定具有不同密度之交聯氟聚合物鏈之梯度,例如,如參考圖7所描述。 In one implementation, interfacial layer 283 of polymer network 285 is in contact with anode 220 , and protective layer 284 is disposed on top of interfacial layer 283 (such as between interfacial layer 283 and interfacial phase layer 240 ). In some aspects, interfacial layer 283 and protective layer 284 can collectively define a gradient of crosslinked fluoropolymer chains having different densities, eg, as described with reference to FIG. 7 .

在一些其他實行方案中,電池200可包括安置在陰極210上之保護性晶格280。保護性晶格280可包括三官能環氧化合物及基於二胺寡聚物之化合物,其可彼此發生化學反應以產生氮及氧原子。可由保護性晶格280提供之氮及氧原子可與多硫化物282結合,由此限定多硫化物282於陰極210及/或保護性晶格280內。陰極210及/或保護性晶格280中之任一者可包括碳-碳鍵及/或能夠在電池200之操作循環期間撓曲及/或在體積上膨脹之區域,從而可將在操作循環期間產生之多硫化物282限定於陰極210。 In some other implementations, the battery 200 can include a protective lattice 280 disposed on the cathode 210 . Protective lattice 280 may include trifunctional epoxy compounds and diamine oligomer-based compounds that can chemically react with each other to produce nitrogen and oxygen atoms. Nitrogen and oxygen atoms that may be provided by protective lattice 280 may bind to polysulfides 282 , thereby confining polysulfides 282 within cathode 210 and/or protective lattice 280 . Either of the cathode 210 and/or the protective lattice 280 may include carbon-carbon bonds and/or regions capable of flexing and/or expanding in volume during operation cycles of the battery 200 such that The polysulfides 282 produced during this period are confined to the cathode 210 .

圖1之電解質130及圖2之電解質230可根據本文揭示之一或多種配方來製備。例如,用於電解質130及/或電解質230中之三元溶劑套裝可包括DME、DOL及TEGDME。在一個實行方案中,溶劑混合物可藉由將5800μL DME、2900μL DOL及1300μL TEGDME混合且在室溫下(77℉或25℃)攪拌來製備。接著,可稱取0.01mol(2,850.75mg)之LiTFSI。之後,可藉由在室溫下攪拌將0.01mol之LiTFSI溶解於溶劑混合物中,以製備大約10mL於DME:DOL:TEGDME(體積:體積:體積1:4:1)中之1M LiTFSI。最後,可將大約223mg LiNO3添加至10mL溶液,以產生10mL具有大約2重量% LiNO3的於DME:DOL:TEGDME(體積:體積:體積=58:29:13)中之1M LiTFSI。 Electrolyte 130 of FIG. 1 and electrolyte 230 of FIG. 2 may be prepared according to one or more formulations disclosed herein. For example, a ternary solvent set for use in electrolyte 130 and/or electrolyte 230 may include DME, DOL, and TEGDME. In one implementation, a solvent mixture can be prepared by mixing 5800 μL DME, 2900 μL DOL, and 1300 μL TEGDME and stirring at room temperature (77°F or 25°C). Next, 0.01 mol (2,850.75 mg) of LiTFSI can be weighed. Afterwards, 0.01 mol of LiTFSI can be dissolved in the solvent mixture by stirring at room temperature to prepare approximately 10 mL of 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol 1:4:1). Finally, approximately 223 mg LiNO3 can be added to 10 mL of solution to yield 10 mL of 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=58:29:13) with approximately 2 wt% LiNO3 .

另外地或替代地,用於電解質130及/或電解質230中之三元溶劑套 裝可包括DME、DOL、TEGDME、及TBT或MBT。溶劑混合物可藉由將2,000μL DME、8,000μL DOL及2,000μL TEGDME混合且在室溫下(68℉或25℃)攪拌來製備。接著,可稱取0.01mol(2,850.75mg)之LiTFSI且藉由在室溫下攪拌來溶解於大約3mL溶劑混合物中。之後,可將經溶解之LiTFSI及額外溶劑混合物(約8,056mg)在10mL容量瓶中混合,以產生於DME:DOL:TEGDME(體積:體積:體積1:4:1)中之大約1M LiTFSI。最後,可將大約0.05mmol(約12.5mg)TBT或MBT添加至10mL溶液,以產生10mL 5M TBT或MBT溶液。 Additionally or alternatively, a ternary solvent jacket for electrolyte 130 and/or electrolyte 230 Packages may include DME, DOL, TEGDME, and TBT or MBT. A solvent mixture can be prepared by mixing 2,000 μL DME, 8,000 μL DOL, and 2,000 μL TEGDME and stirring at room temperature (68°F or 25°C). Next, 0.01 mol (2,850.75 mg) of LiTFSI can be weighed and dissolved in approximately 3 mL of solvent mixture by stirring at room temperature. Afterwards, the dissolved LiTFSI and additional solvent mixture (approximately 8,056 mg) can be mixed in a 10 mL volumetric flask to yield approximately 1 M LiTFSI in DME:DOL:TEGDME (vol:vol:vol 1:4:1). Finally, approximately 0.05 mmol (approximately 12.5 mg) of TBT or MBT can be added to 10 mL of the solution to produce 10 mL of a 5M TBT or MBT solution.

圖3展示根據一些實行方案之示例性電極300。在各個實行方案中,電極300可為圖1之電池100之陰極110及/或陽極120之一個實例。在一些其他實行方案中,電極300可為圖2之電池200之陰極210之一個實例。當電極300經實行為陰極(例如圖1之電池100之陰極110)時,電極300可暫時微觀限定電活性材料諸如元素硫,這可降低可用於與鋰反應以產生多硫化物之硫的量。在一些態樣中,電極300可提供過量供應之鋰及/或鋰離子,從而可彌補與基於鋰之電池相關的第一循環操作損耗。 FIG. 3 shows an exemplary electrode 300 according to some implementations. In various implementations, electrode 300 may be an example of cathode 110 and/or anode 120 of battery 100 of FIG. 1 . In some other implementations, electrode 300 may be an example of cathode 210 of battery 200 of FIG. 2 . When electrode 300 is implemented as a cathode (such as cathode 110 of cell 100 of FIG. 1 ), electrode 300 can temporarily microscopically confine electroactive materials such as elemental sulfur, which can reduce the amount of sulfur available to react with lithium to produce polysulfides . In some aspects, electrode 300 can provide an excess supply of lithium and/or lithium ions that can compensate for first cycle operating losses associated with lithium-based batteries.

在一些實行方案中,電極300可為多孔的且可接受液相電解質,例如圖1之電解質130。懸浮於電解質130中之電活性物質,諸如鋰離子125,可與預負載至電極300之孔隙中之元素硫發生化學反應以產生多硫化物,其進而可在電池循環期間被截留在電極300中。在一些態樣中,電極300可沿著一或多個撓曲點在體積上膨脹以保持在電池循環期間產生之額外數量之多硫化物。藉由限定多硫化物於電極300內,本文揭示之標的物之態樣可允許鋰離子125在電池100之放電循環期間,通過電解質130自陽極120自由流動至陰極110(例如,不受到多硫化物之阻礙)。例如,當鋰離子125到達陰極110且與包含在陰極110內或與陰極相關之元素硫反應時,硫根據以下次序以遞減鏈長被還原為多硫化鋰(Li2S x ):Li2S8→Li2S6→Li2S4→Li2S2→Li2S,其中2

Figure 111127628-A0202-12-0026-30
x
Figure 111127628-A0202-12-0026-31
8)。高階多硫化物 可溶解於各種類型之溶劑及/或電解質中,由此干擾健康電池操作所必需的鋰離子傳輸。由電極300保持此類高階多硫化物由此允許鋰離子125通過電解質130更自由地流動,這進而可增加可用於將電荷自陽極120載運至陰極110的電子之數目。 In some implementations, electrode 300 can be porous and accept a liquid phase electrolyte, such as electrolyte 130 of FIG. 1 . Electroactive species suspended in electrolyte 130, such as lithium ions 125, can chemically react with elemental sulfur preloaded into the pores of electrode 300 to produce polysulfides, which in turn can be trapped in electrode 300 during battery cycling . In some aspects, electrode 300 may expand in volume along one or more flex points to retain additional amounts of polysulfides produced during battery cycling. By confining polysulfides within electrode 300, aspects of the subject matter disclosed herein can allow lithium ions 125 to flow freely from anode 120 to cathode 110 through electrolyte 130 during discharge cycles of battery 100 (e.g., without being affected by polysulfides). obstacles). For example, when lithium ions 125 reach cathode 110 and react with elemental sulfur contained within or associated with cathode 110 , the sulfur is reduced to lithium polysulfides ( Li2Sx ) in decreasing chain length according to the following sequence: Li2S 8 →Li 2 S 6 →Li 2 S 4 →Li 2 S 2 →Li 2 S, where 2
Figure 111127628-A0202-12-0026-30
x
Figure 111127628-A0202-12-0026-31
8). Higher order polysulfides can dissolve in various types of solvents and/or electrolytes, thereby interfering with lithium ion transport necessary for healthy battery operation. Retention of such higher order polysulfides by electrode 300 thereby allows lithium ions 125 to flow more freely through electrolyte 130 , which in turn may increase the number of electrons available to carry charge from anode 120 to cathode 110 .

電極300可包括由寬度305界定之主體301,且可包括第一薄膜310及第二薄膜320。第一薄膜310可包括接合在一起以形成電極300之第一多孔結構316的複數個第一聚集物312。在一些情況下,第一多孔結構316可具有大約0與500S/m之間的電導率。在其他情況下,第一電導率可在大約500與1,000S/m之間。在一些其他實例中,第一電導率可大於1,000S/m。在一些態樣中,第一聚集物312可包括碳奈米管(CNT)、碳奈米洋蔥(CNO)、片狀石墨烯、皺褶石墨烯、在碳質材料上生長之石墨烯、及/或在石墨烯上生長之石墨烯。 The electrode 300 may include a body 301 defined by a width 305 and may include a first thin film 310 and a second thin film 320 . The first membrane 310 may include a plurality of first aggregates 312 bonded together to form a first porous structure 316 of the electrode 300 . In some cases, first porous structure 316 may have an electrical conductivity between approximately 0 and 500 S/m. In other cases, the first conductivity may be between approximately 500 and 1,000 S/m. In some other examples, the first conductivity may be greater than 1,000 S/m. In some aspects, the first aggregate 312 can include carbon nanotubes (CNTs), carbon nanoonions (CNOs), graphene sheets, wrinkled graphene, graphene grown on carbonaceous materials, and /or graphene grown on graphene.

在一些實行方案中,第一聚集物312可用複數個第一奈米顆粒314來修飾。在一些情況下,第一奈米顆粒314可包括錫、鋰合金、鐵、銀、鈷、半導體材料及/或金屬諸如矽及/或類似者。在一些態樣中,CNT由於其提供每單位體積之高暴露表面積及相對高溫(諸如77℉或25℃以上)下之穩定性的能力,可用作第一奈米顆粒314之支撐材料。例如,第一奈米顆粒314可固定(諸如藉由修飾(decoration)、沉積、表面改質或類似方法)於CNT及/或其他碳質材料之暴露表面上。第一奈米顆粒314可與CNT及/或其他碳質材料之暴露表面上之化學可利用碳反應。 In some implementations, the first aggregate 312 can be modified with a plurality of first nanoparticles 314 . In some cases, first nanoparticles 314 may include tin, lithium alloys, iron, silver, cobalt, semiconductor materials, and/or metals such as silicon, and/or the like. In some aspects, CNTs can be used as a support material for the first nanoparticles 314 due to their ability to provide a high exposed surface area per unit volume and stability at relatively high temperatures, such as 77°F or above 25°C. For example, first nanoparticles 314 can be immobilized (such as by decoration, deposition, surface modification, or the like) on exposed surfaces of CNTs and/or other carbonaceous materials. The first nanoparticles 314 can react with chemically available carbon on exposed surfaces of CNTs and/or other carbonaceous materials.

第二薄膜320可包括接合在一起以形成第二多孔結構326的複數個第二聚集物322。在一些情況下,第一多孔結構316及/或第二多孔結構326之電導率可在大約0S/m與250S/m之間。在第一多孔結構316包括比第二多孔結構326更高濃度之聚集物的情況下,第一多孔結構316可具有比第二多孔結構326更高之電導率。在一個實行方案中,第一電導率可在大約250S/m與500S/m 之間,而第二電導率可在大約100S/m與250S/m之間。在另一個實行方案中,第二電導率可在大約250S/m與500S/m之間。在另一個實行方案中,第二電導率可大於500S/m。在一些態樣中,第二聚集物322可包括CNT、CNO、片狀石墨烯、皺褶石墨烯、在碳質材料上生長之石墨烯、及/或在石墨烯上生長之石墨烯。 The second film 320 may include a plurality of second aggregates 322 bonded together to form a second porous structure 326 . In some cases, the conductivity of first porous structure 316 and/or second porous structure 326 may be between approximately 0 S/m and 250 S/m. Where the first porous structure 316 includes a higher concentration of aggregates than the second porous structure 326 , the first porous structure 316 may have a higher electrical conductivity than the second porous structure 326 . In one implementation, the first conductivity may be between about 250 S/m and 500 S/m between, and the second conductivity may be between about 100S/m and 250S/m. In another implementation, the second conductivity may be between about 250 S/m and 500 S/m. In another implementation, the second conductivity may be greater than 500 S/m. In some aspects, the second aggregate 322 can include CNT, CNO, graphene flakes, wrinkled graphene, graphene grown on carbonaceous material, and/or graphene grown on graphene.

第二聚集物322可用複數個第二奈米顆粒324來修飾。在一些實行方案中,第二奈米顆粒324可包括鐵、銀、鈷、半導體材料及/或金屬諸如矽及/或類似者。在一些情況下,CNT亦可用作第二奈米顆粒324之支撐材料。例如,第二奈米顆粒324可固定(諸如藉由修飾、沉積、表面改質或類似方法)於CNT及/或其他碳質材料之暴露表面上。第二奈米顆粒324可與CNT及/或其他碳質材料之暴露表面上之化學可利用碳反應。 The second aggregate 322 can be modified with a plurality of second nanoparticles 324 . In some implementations, the second nanoparticles 324 can include iron, silver, cobalt, semiconductor materials, and/or metals such as silicon, and/or the like. In some cases, CNTs can also be used as a support material for the second nanoparticles 324 . For example, second nanoparticles 324 can be immobilized (such as by modification, deposition, surface modification, or the like) on exposed surfaces of CNTs and/or other carbonaceous materials. Second nanoparticles 324 can react with chemically available carbon on exposed surfaces of CNTs and/or other carbonaceous materials.

在一些態樣中,第一薄膜310及/或第二薄膜320(以及安置於其相應緊鄰前一個薄膜上之任何額外薄膜)可形成為材料及/或聚集物之層或區域。該層或區域可具有幾分之一奈米至幾微米範圍內之厚度,諸如大約0與5微米之間、大約5與10微米之間、大約10與15微米之間、或大於15微米。本文揭示之任何材料及/或聚集物(諸如CNO)可摻入第一薄膜310及/或第二薄膜320中,以產生所描述之厚度水準。 In some aspects, first film 310 and/or second film 320 (and any additional films disposed on their respective immediately preceding films) may be formed as layers or regions of material and/or aggregates. The layer or region may have a thickness in the range of a fraction of a nanometer to several microns, such as between about 0 and 5 microns, between about 5 and 10 microns, between about 10 and 15 microns, or greater than 15 microns. Any of the materials and/or aggregates disclosed herein, such as CNO, can be incorporated into the first film 310 and/or the second film 320 to produce the described thickness levels.

在一些實行方案中,第一薄膜310可藉由化學沉積、物理沉積來沉積至圖1之第二基板102上,或透過諸如Frank-van der Merwe生長、Stranski-Krastonov生長、Volmer-Weber生長及/或類似者之技術來逐層生長。在其他實行方案中,第一薄膜310可藉由磊晶或涉及材料之磊晶生長的其他合適薄膜沉積方法來沉積至第二基板102上。第二薄膜320及/或後續薄膜可與參考第一薄膜310所描述之方式類似的方式沉積於其相應緊鄰前一個薄膜上。 In some implementations, the first thin film 310 can be deposited onto the second substrate 102 of FIG. 1 by chemical deposition, physical deposition, or by methods such as Frank-van der Merwe growth, Stranski-Krastonov growth, Volmer-Weber growth, and /or similar techniques to grow layer by layer. In other implementations, the first thin film 310 may be deposited on the second substrate 102 by epitaxy or other suitable thin film deposition methods involving epitaxial growth of materials. The second film 320 and/or subsequent films may be deposited on their respective immediately preceding films in a manner similar to that described with reference to the first film 310 .

在各個實行方案中,第一聚集物312及/或第二聚集物322中之各者 可為藉由鍵結或融合在一起之許多相對較小顆粒來形成之相對較大顆粒。因此,相對較大顆粒之外表面積可顯著小於許多相對較小顆粒之組合表面積。將聚集物保持在一起之力可為例如共價、離子鍵或由先前初級顆粒之燒結或複雜物理纏結所產生的其他類型之化學鍵。 In various implementations, each of the first aggregate 312 and/or the second aggregate 322 There may be relatively larger particles formed by many relatively smaller particles bonded or fused together. Thus, the outer surface area of a relatively larger particle can be significantly smaller than the combined surface area of many relatively smaller particles. The forces holding the aggregates together can be, for example, covalent, ionic bonds, or other types of chemical bonds resulting from sintering or complex physical entanglement of previous primary particles.

如以上論述,第一聚集物312可接合在一起以形成第一多孔結構316,且第二聚集物322可接合在一起以形成第二多孔結構326。第一多孔結構316之電導率可基於第一多孔結構316內之第一聚集物312之濃度水準,且第二多孔結構326之電導率可基於第二多孔結構326內之第二聚集物322之濃度水準。在一些態樣中,第一聚集物312之濃度水準可導致第一多孔結構316具有相對較高電導率,且第二聚集物322之濃度水準可導致第二多孔結構326具有相對較低電導率(使得第一多孔結構316具有比第二多孔結構326更大之電導率)。第一多孔結構316及第二多孔結構326之電導率之所得差異可產生跨電極300之電導率梯度。在一些實行方案中,電導率梯度可用於控制或調整整個電極300之電導及/或圖1之電池100之一或多次操作。 As discussed above, first aggregates 312 may join together to form first porous structure 316 and second aggregates 322 may join together to form second porous structure 326 . The electrical conductivity of the first porous structure 316 can be based on the concentration level of the first aggregates 312 within the first porous structure 316, and the electrical conductivity of the second porous structure 326 can be based on the second The concentration level of aggregates 322. In some aspects, the concentration level of the first aggregate 312 can result in the first porous structure 316 having a relatively high electrical conductivity, and the concentration level of the second aggregate 322 can cause the second porous structure 326 to have a relatively low electrical conductivity. Conductivity (such that the first porous structure 316 has a greater conductivity than the second porous structure 326). The resulting difference in conductivity of the first porous structure 316 and the second porous structure 326 can create a conductivity gradient across the electrode 300 . In some implementations, the conductivity gradient can be used to control or adjust the conductance across the electrode 300 and/or one or more operations of the battery 100 of FIG. 1 .

如本文所用,相對較小來源顆粒可稱為「初級顆粒」且藉由初級顆粒形成之相對較大聚集物可稱為「次級顆粒」。如圖1、圖8至10及在整個本揭示案中別處所示,初級顆粒可為或包括融合及/或接合在一起之多個石墨烯薄片、層、區域、及/或奈米片。因此,在一些情況下,碳奈米洋蔥(CNO)、碳奈米管(CNT)、及/或其他可調碳材料可用於形成初級顆粒。在一些態樣中,一些聚集物可具有大約500nm與25μm之間的主要尺寸(諸如長度、寬度、及/或直徑)。另外,一些聚集物可包括以正交角度接合在一起之石墨烯薄片、層、區域、及/或奈米片的稱為「天生顆粒」的初級顆粒之天生形成較小集合。在一些情況下,此等天生顆粒可各自具有大約50nm與250nm之間的相應尺寸。 As used herein, relatively small source particles may be referred to as "primary particles" and relatively larger aggregates formed by primary particles may be referred to as "secondary particles." As shown in Figures 1, 8-10, and elsewhere throughout this disclosure, the primary particle can be or include a plurality of graphene flakes, layers, regions, and/or nanosheets fused and/or bonded together. Thus, in some cases, carbon nano-onions (CNOs), carbon nanotubes (CNTs), and/or other tunable carbon materials may be used to form primary particles. In some aspects, some aggregates can have a major dimension (such as length, width, and/or diameter) between about 500 nm and 25 μm. Additionally, some aggregates may include naturally formed smaller collections of primary particles called "native grains" of graphene flakes, layers, regions, and/or nanosheets bonded together at orthogonal angles. In some cases, the native particles can each have a corresponding size between about 50 nm and 250 nm.

此類天生顆粒之表面積及/或孔隙率可藉由次級過程來賦予,諸如藉 由使用單獨或組合之蒸汽、氫氣體、二氧化碳、氧、臭氧、KOH、ZnCl2、H3PO4、或其他類似化學劑中之一或多者的熱、電漿、或組合熱-電漿過程來進行碳活化。在一些實行方案中,第一多孔結構316及/或第二多孔結構326可由碳質氣態物質產生,該等物質可藉由處於不均衡條件下之氣-固反應來控制。以此方式產生第一多孔結構316及/或第二多孔結構326可涉及對於由含碳電漿物質(其可藉由含碳進料氣態及/或電漿物質在合適化學反應器中之激發或壓實來產生)之受控冷卻來形成之含碳基團進行重組。 The surface area and/or porosity of such native particles can be imparted by secondary processes, such as by Carbonation by thermal, plasma, or combined thermo-plasma processes using one or more of steam, hydrogen gas, carbon dioxide, oxygen, ozone, KOH, ZnCl2, H3PO4, or other similar chemical agents alone or in combination activation. In some implementations, the first porous structure 316 and/or the second porous structure 326 can be produced from carbonaceous gaseous species that can be controlled by gas-solid reactions under non-equilibrium conditions. Producing the first porous structure 316 and/or the second porous structure 326 in this manner may involve processing the carbon-containing plasmonic species (which may be obtained by feeding gaseous and/or plasmonic species containing carbon into a suitable chemical reactor). The carbon-containing groups formed by controlled cooling to recombine.

在一些實行方案中,第一聚集物312及/或第二聚集物322可具有大於99%的各相應聚集物內碳與除了氫以外之其他元素之百分比。在一些情況下,各聚集物之中值粒徑可在大約0.1微米與50微米之間。第一聚集物312及/或第二聚集物322亦可包括金屬有機構架(MOF)。 In some implementations, the first aggregate 312 and/or the second aggregate 322 can have a percentage of carbon to elements other than hydrogen within each respective aggregate of greater than 99%. In some cases, the median particle size of each aggregate can be between about 0.1 microns and 50 microns. The first aggregate 312 and/or the second aggregate 322 may also include a metal organic framework (MOF).

在一些實行方案中,第一多孔結構316及第二多孔結構326可共同界定主結構328,例如,如圖3所示。在一些情況下,主結構328可基於碳支架且/或可包括修飾碳,例如,如圖8所示。主結構328可為電極300提供結構界定。在一些情況下,主結構328可經製造為正電極並用於圖1之陰極110。在其他實行方案中,主結構328可經製造為負電極並用於圖1之陽極120。在一些其他實行方案中,主結構328可包括具有不同大小之孔隙,例如由IUPAC定義之微孔、中孔及/或大孔。在一些情況下,至少一些微孔可具有大約1.5nm之寬度,其可足夠大以允許硫預負載至電極300中且仍足夠小以限定多硫化物於電極300內。 In some implementations, the first porous structure 316 and the second porous structure 326 can collectively define a primary structure 328 , eg, as shown in FIG. 3 . In some cases, primary structure 328 may be based on a carbon scaffold and/or may include modified carbon, eg, as shown in FIG. 8 . Primary structure 328 may provide structural definition for electrode 300 . In some cases, primary structure 328 may be fabricated as a positive electrode and used for cathode 110 of FIG. 1 . In other implementations, primary structure 328 may be fabricated as a negative electrode and used for anode 120 of FIG. 1 . In some other implementations, the primary structure 328 can include pores of different sizes, such as micropores, mesopores, and/or macropores as defined by IUPAC. In some cases, at least some of the micropores can have a width of about 1.5 nm, which can be large enough to allow preloading of sulfur into the electrode 300 and still small enough to confine polysulfides within the electrode 300 .

主結構328當提供於如圖3所示之電極300內時,可包括藉由第一多孔結構316及/或第二多孔結構326之暴露表面及/或輪廓來產生之微孔、中孔、及/或大孔通道。此等通道可允許主結構328接收電解質,例如,藉由將鋰離子傳輸至電池100之陰極110。具體而言,電解質130可浸潤主結構328之各 種多孔通道且均勻分散在整個電極300及/或電池100之其他部分中。電解質130浸潤至主結構328之此類區域中可允許自陽極120遷移至陰極110之鋰離子125同與陰極110相關之元素硫發生反應以形成鋰硫錯合物。因此,元素硫可保持額外量之鋰離子,其另外可使用非硫化學物質諸如鋰鈷氧化物(LiCoO)或其他鋰離子電池來達成。 The primary structure 328, when provided in the electrode 300 as shown in FIG. Pores, and/or macroporous channels. These channels may allow the primary structure 328 to receive electrolyte, for example, by transporting lithium ions to the cathode 110 of the battery 100 . Specifically, the electrolyte 130 can wet each of the main structure 328 The porous channels are uniformly dispersed throughout the electrode 300 and/or other parts of the battery 100. Wetting of electrolyte 130 into such regions of primary structure 328 may allow lithium ions 125 migrating from anode 120 to cathode 110 to react with elemental sulfur associated with cathode 110 to form lithium-sulfur complexes. Thus, elemental sulfur can hold an additional amount of lithium ions that could otherwise be achieved using non-sulfur chemistries such as lithium cobalt oxide (LiCoO) or other lithium ion batteries.

在一些態樣中,第一多孔結構316及/或第二多孔結構326中之各者可具有基於單獨或組合使用蒸汽、氫氣體、二氧化碳、氧、臭氧、KOH、ZnCl2、H3PO4、或其他類似化學劑中之一或多者進行的熱、電漿、或組合熱-電漿過程中之一或多者的孔隙率。例如,在一個實行方案中,大孔通道可具有大於50nm之主要尺寸,中孔通道可具有大約20nm與50nm之間的主要尺寸,且微孔通道可具有少於4nm之主要尺寸。因此,大孔通道及中孔通道可提供用於傳輸鋰離子125之可調管路,且微孔通道可限定電極300內之活性材料。 In some aspects, each of the first porous structure 316 and/or the second porous structure 326 may have Porosity in one or more of thermal, plasma, or combined thermal-plasma processes performed by one or more of other similar chemistries. For example, in one implementation, a macroporous channel can have a major dimension greater than 50 nm, a mesoporous channel can have a major dimension between about 20 nm and 50 nm, and a microporous channel can have a major dimension less than 4 nm. Thus, macroporous channels and mesoporous channels can provide tunable conduits for transporting lithium ions 125 , and microporous channels can define the active material within electrode 300 .

在一些實行方案中,電極300可包括一或多個額外薄膜(為簡單起見未展示)。一或多個額外薄膜中之各者可包括跨不同薄膜來彼此互連之個別聚集物,其中至少一些薄膜具有不同濃度水準之聚集物。因此,任何薄膜之濃度水準可經改變(諸如藉由梯度)以達成特定電阻(或電導)值。例如,在一些實行方案中,聚集物之濃度水準可在第一薄膜310與最後一個薄膜之間逐步下降(諸如在圖1描繪之方向195上),且/或個別薄膜可具有大約10微米與大約200微米之間的平均厚度。另外地或替代地,第一薄膜310可具有相對較高濃度之碳質聚集物,且第二薄膜320可具有相對較低濃度之碳質聚集物。在一些態樣中,相對較高濃度之聚集物對應於相對較低電阻,且相對較低濃度之聚集物對應於相對較高電阻。 In some implementations, electrode 300 may include one or more additional films (not shown for simplicity). Each of the one or more additional films may include individual aggregates interconnected to each other across different films, at least some of which have different concentration levels of aggregates. Thus, the concentration level of any thin film can be varied (such as by a gradient) to achieve a particular resistance (or conductance) value. For example, in some implementations, the concentration level of aggregates can be stepped down between the first film 310 and the last film (such as in the direction 195 depicted in FIG. 1 ), and/or individual films can have an Average thickness between approximately 200 microns. Additionally or alternatively, the first thin film 310 may have a relatively higher concentration of carbonaceous aggregates, and the second thin film 320 may have a relatively lower concentration of carbonaceous aggregates. In some aspects, a relatively higher concentration of aggregates corresponds to a relatively lower resistance, and a relatively lower concentration of aggregates corresponds to a relatively higher resistance.

主結構328可經製備成具有第一聚集物312及/或第二聚集物322之暴露表面上之多個活性位點。在將電極300併入電池100中之前,此等活性位點 以及第一聚集物312及/或第二聚集物322之暴露表面可有利於異位電沉積。電鍍為可藉由施加及/或調節電流透過金屬陽離子之化學還原來產生鋰層330(包括主結構328之暴露表面上之鋰)的過程。在電極300充當圖1中之電池100之陽極120的實行方案中,主結構328可經電鍍,使得鋰層330具有大約1與5微米(μm)之間、5μm與20μm之間、或大於20μm之厚度。在一些情況下,在組裝電池100之前,異位電沉積可在獨立於電池100之位置處執行。 Primary structure 328 may be prepared with multiple active sites on exposed surfaces of first aggregate 312 and/or second aggregate 322 . Before the electrode 300 is incorporated into the battery 100, these active sites And the exposed surfaces of the first aggregate 312 and/or the second aggregate 322 may facilitate ex-situ electrodeposition. Electroplating is a process that can produce lithium layer 330 , including lithium on exposed surfaces of main structure 328 , through the chemical reduction of metal cations by applying and/or regulating an electrical current. In implementations where electrode 300 serves as anode 120 of battery 100 in FIG. 1 , primary structure 328 may be plated such that lithium layer 330 has a thickness between about 1 and 5 microns (μm), between 5 μm and 20 μm, or greater than 20 μm. the thickness. In some cases, ex situ electrodeposition may be performed at a location separate from battery 100 prior to battery 100 assembly.

在各個實行方案中,由鋰層330提供之過量鋰可增加可用於在電池100中傳輸之鋰離子125之數目,由此增加電池100之儲存容量、壽命、及性能(與傳統鋰離子及/或鋰硫電池相比較)。 In various implementations, the excess lithium provided by the lithium layer 330 can increase the number of lithium ions 125 available for transport in the battery 100, thereby increasing the storage capacity, life, and performance of the battery 100 (compared to conventional lithium-ion and/or or lithium-sulfur batteries for comparison).

在一些態樣中,基於與第一聚集物312及/或第二聚集物322之化學反應,鋰層330可產生嵌鋰石墨(LiC6)及/或鋰化石墨。由於在電池100之操作循環期間電化學梯度之差異,在交替石墨烯層之間嵌入之鋰可在電極300內遷移或傳輸,這進而可增加電池100之能量儲存及功率輸送。 In some aspects, lithium layer 330 may produce lithium-intercalated graphite (LiC 6 ) and/or lithiated graphite based on a chemical reaction with first aggregate 312 and/or second aggregate 322 . Lithium intercalated between alternating graphene layers can migrate or transport within electrode 300 due to differences in electrochemical gradients during the operating cycles of battery 100 , which in turn can increase energy storage and power delivery of battery 100 .

圖4展示根據一些實行方案之包括保護性晶格402之示例性電池400的部分的圖。在一些實行方案中,保護性晶格402可安置於電池200之陽極220上。在其他實行方案中,保護性晶格402可安置於電池200(或其他合適電池)之陰極210上。在一些態樣中,保護性晶格402可為圖2之保護性晶格280之一個實例。保護性晶格402可與許多部件(例如,陽極、陰極、相關集電器、碳質材料、電解質、及隔板)一起以與圖1之電池100及/或圖2之電池200類似的方式發揮作用。 4 shows a diagram of a portion of an exemplary battery 400 including a protective lattice 402, according to some implementations. In some implementations, a protective lattice 402 can be disposed on the anode 220 of the battery 200 . In other implementations, protective lattice 402 may be disposed on cathode 210 of battery 200 (or other suitable battery). In some aspects, protective lattice 402 may be an example of protective lattice 280 of FIG. 2 . The protective lattice 402 can function in a manner similar to the battery 100 of FIG. 1 and/or the battery 200 of FIG. effect.

保護性晶格402可包括三官能環氧化合物及基於二胺寡聚物之化合物,其可彼此發生化學反應以產生3D晶格結構(例如,如圖6及圖8所示)。在一些態樣中,保護性晶格402可藉由提供可與存在於多硫化物中之鋰化學結合,由此阻礙多硫化物通過電解質130遷移之氮及氧原子來防止多硫化物在電池400 內遷移。因此,鋰離子125可更自由地自圖1之陽極120及陰極110傳輸,由此增加電池性能度量。 The protective lattice 402 can include trifunctional epoxy compounds and diamine oligomer-based compounds that can chemically react with each other to create a 3D lattice structure (eg, as shown in FIGS. 6 and 8 ). In some aspects, protective lattice 402 can prevent polysulfides from accumulating in the battery by providing nitrogen and oxygen atoms that can chemically bond with lithium present in the polysulfides, thereby hindering the migration of polysulfides through electrolyte 130. 400 internal migration. Thus, lithium ions 125 can be transported more freely from anode 120 and cathode 110 of FIG. 1 , thereby increasing battery performance metrics.

陰極110之循環使用可導致形成至少部分地延伸至陰極110中之裂縫404。在一個實行方案中,保護性晶格402可分散在整個裂縫404中,由此減少陰極110對於陰極110之體積膨脹期間之破裂的敏感性,該體積膨脹係由在循環使用期間多硫化物保持在陰極110內所導致的。在一個實行方案中,基於二官能或更高官能度環氧化合物與胺或醯胺化合物之間的化學反應,圖4之保護性晶格402可具有交聯的3D結構。例如,二官能或更高官能度環氧化合物可為三羥甲基丙烷三縮水甘油醚(TMPTE)、參(4-羥苯基)甲烷三縮水甘油醚、或參(2,3-環氧丙基)異氰脲酸酯,且二官能或更高官能度胺化合物可為二醯肼亞碸(DHSO)、或聚醚胺中之一者,例如藉由主鏈中之重複氧丙烯單元來表徵的JEFFAMINE ® D-230。 Cycling of cathode 110 may result in the formation of cracks 404 extending at least partially into cathode 110 . In one implementation, the protective lattice 402 can be dispersed throughout the fractures 404, thereby reducing the susceptibility of the cathode 110 to rupture during the volumetric expansion of the cathode 110 maintained by the polysulfides during cycling. caused within the cathode 110. In one embodiment, the protective lattice 402 of FIG. 4 may have a cross-linked 3D structure based on a chemical reaction between a difunctional or higher functional epoxy compound and an amine or amide compound. For example, the difunctional or higher functional epoxy compound can be trimethylolpropane triglycidyl ether (TMPTE), ginseng (4-hydroxyphenyl) methane triglycidyl ether, or ginseng (2,3-epoxy Propyl) isocyanurate, and the difunctional or higher functional amine compound can be one of dihydrazine hydrazine (DHSO), or polyether amine, such as by repeating oxypropylene units in the main chain To characterize JEFFAMINE ® D-230.

在各個實行方案中,該等化學化合物可以許多數量、量、比率及/或組成來彼此組合及反應,以達成關於與在電池400操作期間產生之多硫化物之結合而言的不同性能能力。例如,在一個實行方案中,113mg TMPTE及134mg JEFFAMINE ® D-230聚醚胺可混合在一起且用1mL至10mL之四氫呋喃(THF)或任何其他溶劑稀釋。以113mg TMPTE/134mg JEFFAMINE ® D-230聚醚胺之示例性比率,可將額外量之TMPTE及/或JEFFAMINE混合在一起且在THF或任何其他溶劑中稀釋。對於該實行方案,概念驗證(POC)資料表明,圖4之保護性晶格402具有圖1之陰極110或圖2之陰極210之大約2.6重量%的界定重量。在其他實行方案中,保護性晶格402可具有陰極110及/或陰極210之大約2重量%至21重量%之重量,其中在保護性晶格402之大約10重量%或更多的重量水準下可預期陰極110及/或陰極210之阻抗增加。 In various implementations, these chemical compounds may be combined and reacted with each other in numerous numbers, amounts, ratios, and/or compositions to achieve different performance capabilities with respect to combination with polysulfides produced during operation of cell 400 . For example, in one implementation, 113 mg TMPTE and 134 mg JEFFAMINE ® D-230 polyetheramine can be mixed together and diluted with 1 mL to 10 mL of tetrahydrofuran (THF) or any other solvent. At an exemplary ratio of 113 mg TMPTE/134 mg JEFFAMINE® D-230 polyetheramine, additional amounts of TMPTE and/or JEFFAMINE can be mixed together and diluted in THF or any other solvent. For this implementation, the proof-of-concept (POC) data indicated that the protective lattice 402 of FIG. 4 has a defined weight of approximately 2.6% by weight of the cathode 110 of FIG. 1 or the cathode 210 of FIG. 2 . In other implementations, protective lattice 402 may have a weight of about 2% to 21% by weight of cathode 110 and/or cathode 210, with a weight level of about 10% by weight or more of protective lattice 402 An increase in the impedance of cathode 110 and/or cathode 210 can then be expected.

在各個實行方案中,保護性晶格402可基於-NH2基團及環氧基團之 莫耳及/或莫耳比來製造,且可進一步適應二官能或更高官能度環氧化合物與胺或醯胺化合物之間的各種交聯形式。在一些態樣中,此類交聯形式可包括完全交聯階段,例如,其中一個-NH2基團與兩個環氧基團化學鍵結且可進一步延伸至包括一個NH2基團與僅一個環氧基團化學鍵結之組態。更進一步,在一或多個實行方案中,可製備包括過度數量(高於在此呈現之比率)之-NH2基團之混合物,以便為保護性晶格402提供額外多硫化物結合能力。 In various implementations, the protective lattice 402 can be fabricated based on moles and/or molar ratios of -NH2 groups and epoxy groups, and can be further adapted to difunctional or higher functionality epoxy compounds and Various forms of crosslinking between amine or amide compounds. In some aspects, such crosslinked forms may include a fully crosslinked stage, for example, where one -NH2 group is chemically bonded to two epoxy groups and may be further extended to include one NH2 group with only one Configuration of epoxy group chemical bonding. Still further, in one or more implementations, a mixture including an excessive amount (higher than the ratio presented here) of —NH 2 groups can be prepared to provide additional polysulfide binding capability to the protective lattice 402 .

在一些其他實行方案中,可藉由將201g TMPTE與109g至283g之間的JEFFAMINE ® D-230聚醚胺混合來製備保護性晶格402。然後,可將所得混合物用1L至20L之所選溶劑(諸如THF)來稀釋。可使所得稀釋溶液沉積及/或以其他方式安置於陰極110上,以達成1重量%至10重量%之間的交聯劑含量。以201g TMPTE/109g至283g JEFFAMINE ® D-230聚醚胺之示例性比率,可將額外TMPTE及/或JEFFAMINE混合在一起且在THF或另一種合適溶劑中稀釋。 In some other implementations, the protective lattice 402 can be prepared by mixing 201 g of TMPTE with between 109 g and 283 g of JEFFAMINE ® D-230 polyetheramine. The resulting mixture can then be diluted with 1 L to 20 L of a solvent of choice such as THF. The resulting dilute solution may be deposited and/or otherwise disposed on cathode 110 to achieve a crosslinker content of between 1% and 10% by weight. At an exemplary ratio of 201 g TMPTE/109 g to 283 g JEFFAMINE® D-230 polyetheramine, additional TMPTE and/or JEFFAMINE can be mixed together and diluted in THF or another suitable solvent.

在又其他實行方案中,可藉由將201g TMPTE與74g至278g之間的DHSO混合來製備保護性晶格402。然後,可將所得混合物用1L至20L之所選溶劑(諸如THF)來稀釋。可使所得稀釋溶液沉積及/或以其他方式安置於陰極110上,以達成1重量%至10重量%之間的交聯劑含量。以201g TMPTE/201g至278g JEFFAMINE ® D-230聚醚胺之示例性比率,可將額外TMPTE及/或JEFFAMINE混合在一起且在THF或另一種合適溶劑中稀釋。 In yet other implementations, the protective lattice 402 can be prepared by mixing 201 g of TMPTE with between 74 g and 278 g of DHSO. The resulting mixture can then be diluted with 1 L to 20 L of a solvent of choice such as THF. The resulting dilute solution may be deposited and/or otherwise disposed on cathode 110 to achieve a crosslinker content of between 1% and 10% by weight. At an exemplary ratio of 201 g TMPTE/201 g to 278 g JEFFAMINE® D-230 polyetheramine, additional TMPTE and/or JEFFAMINE can be mixed together and diluted in THF or another suitable solvent.

在一個實行方案中,二官能或更高官能度環氧化合物可與二官能或更高官能度胺化合物發生化學反應,以產生3D交聯形式之保護性晶格402,其可包括官能性環氧化合物及含胺分子。在一些態樣中,保護性晶格402在沉積於圖1之陰極110或圖2之陰極210上時,可具有大約1nm與5μm之間的厚度。 In one embodiment, a difunctional or higher functional epoxy compound can be chemically reacted with a difunctional or higher functional amine compound to produce a protective lattice 402 in a 3D crosslinked form, which can include functional rings Oxygen compounds and amine-containing molecules. In some aspects, protective lattice 402 may have a thickness between approximately 1 nm and 5 μm when deposited on cathode 110 of FIG. 1 or cathode 210 of FIG. 2 .

在一些實行方案中,保護性晶格402可增加陰極110或陰極210之 結構完整性,可減少表面粗糙度,且可保持多硫化物於陰極中。例如,在一個實行方案中,保護性晶格402可充當陰極之暴露表面上之鞘且與多硫化物結合,以防止其遷移及擴散至電解質130中。以此方式,本文揭示之標的物之態樣可藉由抑制多硫化物穿梭效應來防止(或至少減少)電池容量衰減。在一些態樣中,保護性晶格402亦可填充在圖4之陰極中形成之裂縫404,以改良陰極塗層完整性。在各個實行方案中,保護性晶格402可在溶劑存在下藉由落模鑄造方法來製備,其中所得溶液可滲透至陰極110之裂縫404中且與陰極110中之多硫化物結合以防止其遷移及/或擴散至整個電解質130中。 In some implementations, protective lattice 402 can increase the distance between cathode 110 or cathode 210 Structural integrity reduces surface roughness and keeps polysulfides in the cathode. For example, in one implementation, protective lattice 402 may act as a sheath on the exposed surface of the cathode and bind polysulfides to prevent their migration and diffusion into electrolyte 130 . In this way, aspects of the subject matter disclosed herein can prevent (or at least reduce) battery capacity fade by inhibiting the polysulfide shuttling effect. In some aspects, protective lattice 402 may also fill cracks 404 formed in the cathode of FIG. 4 to improve cathode coating integrity. In various implementations, the protective lattice 402 can be prepared by a drop casting process in the presence of a solvent, wherein the resulting solution can penetrate into the crevices 404 of the cathode 110 and bind to polysulfides in the cathode 110 to prevent them. Migrate and/or diffuse throughout the electrolyte 130 .

在各個實行方案中,保護性晶格402可提供可與在操作電池循環期間產生之多硫化物中之鋰化學鍵結的氮原子及/或氧原子。在一個實例中,多硫化物可與藉由例如DHSO提供之可利用氮原子鍵結。在另一實例中,多硫化物可與藉由例如DHSO提供之可利用氧原子鍵結。在又另一個實例中,多硫化物可與其他可利用氧原子鍵結。 In various implementations, the protective lattice 402 can provide nitrogen atoms and/or oxygen atoms that can chemically bond with lithium in polysulfides produced during operating cell cycling. In one example, polysulfides can be bonded to available nitrogen atoms provided by, for example, DHSO. In another example, polysulfides can be bonded to available oxygen atoms provided by, for example, DHSO. In yet another example, polysulfides can be bonded to other available oxygen atoms.

在一些其他實行方案中,如上所述之配方可藉由將TMPTE替換為參(4-羥苯基)甲烷三縮水甘油醚910及/或參(2,3-環氧丙基)異氰脲酸酯來改變。在各個實行方案中,基於二胺寡聚物之化合物可為(或可包括)JEFFAMINE ® D-230,或含有通常基於環氧丙烷(PO)、環氧乙烷(EO)、或混合PO/EO結構之聚醚主鏈的其他聚醚胺,例如JEFFAMINE ® D-400、JEFFAMINE ® T-403。保護性晶格402亦可包括各種濃度水準之惰性分子,例如,各種長度之聚乙二醇鏈,其可允許微調保護性晶格之機械性質及各種原子與存在於多硫化物中之鋰的化學鍵結。 In some other implementations, the formulation described above can be achieved by replacing TMPTE with ginseng(4-hydroxyphenyl)methane triglycidyl ether 910 and/or ginseng(2,3-epoxypropyl)isocyanurate ester to change. In various embodiments, the diamine oligomer based compound may be (or may include) JEFFAMINE ® D-230, or contain a compound typically based on propylene oxide (PO), ethylene oxide (EO), or mixed PO/ Other polyetheramines with polyether backbones of EO structure, such as JEFFAMINE ® D-400, JEFFAMINE ® T-403. The protective lattice 402 may also include various concentration levels of inert molecules, such as polyethylene glycol chains of various lengths, which may allow fine-tuning of the mechanical properties of the protective lattice and the relationship between the various atoms and the lithium present in the polysulfide. chemical bonding.

圖5展示根據一些實行方案之包括氟化錫(SnF2)層之陽極結構500的圖。具體而言,該圖描繪陽極結構500之剖視示意圖,其中與第一區域A相關之所有部件在第二區域B中具有相同對應物,其中第一區域A及第二區域B具 有圍繞集電器520之相反取向。因此,下文參考第一區域A之部件的描述同樣適用於第二區域B之部件。在一些態樣中,陽極502可為圖1之陽極120及/或圖2之陽極220的一個實例。 5 shows a diagram of an anode structure 500 including a tin fluoride (SnF 2 ) layer, according to some implementations. In particular, the figure depicts a schematic cross-sectional view of an anode structure 500 in which all components associated with the first region A have identical counterparts in the second region B, wherein the first region A and the second region B have surrounding current collectors The opposite orientation of 520. Therefore, the description below with reference to the components of the first region A is also applicable to the components of the second region B. In some aspects, anode 502 may be an example of anode 120 of FIG. 1 and/or anode 220 of FIG. 2 .

正如所論述,鋰硫電池,諸如圖1之電池100及圖2之電池200,作為轉化化學類型電化電池來操作,其中在操作之前及期間,預負載至陰極中之硫可快速溶解至電解質中。可由鋰化陽極提供且/或可在電解質中佔優勢之鋰解離成鋰離子,其適用於通過電解質自陽極傳輸至陰極。鋰離子之產生與電子之相應釋放有關,電子可流過外部電路以便為負載供電,如參考圖1所述。然而,當鋰離解成鋰離子及電子時,一些鋰離子可能會不期望地與陰極中產生之多硫化物發生反應,且因此可能不再可用於產生輸出電流或電壓。多硫化物對鋰離子之此消耗減少主電池(host cell)或電池之總容量,且亦可能有利於陽極之腐蝕,從而可導致電池故障。 As discussed, lithium-sulfur cells, such as cell 100 of FIG. 1 and cell 200 of FIG. 2 , operate as conversion chemistry type electrochemical cells in which sulfur preloaded into the cathode is rapidly dissolved into the electrolyte prior to and during operation. . Lithium, which may be provided by the lithiated anode and/or which may predominate in the electrolyte, dissociates into lithium ions suitable for transport from the anode to the cathode through the electrolyte. The production of lithium ions is associated with the corresponding release of electrons, which can flow through an external circuit to power a load, as described with reference to Figure 1. However, when lithium dissociates into lithium ions and electrons, some of the lithium ions may undesirably react with polysulfides produced in the cathode, and thus may no longer be available to generate output current or voltage. This depletion of lithium ions by polysulfides reduces the overall capacity of the host cell or battery, and may also favor corrosion of the anode, which can lead to battery failure.

在一些實行方案中,保護層516可經提供為可在電池組裝或形成期間減少陽極502之化學反應性的鈍化塗層。在一些態樣中,保護層516可對於鋰離子而言為可滲透的,同時保護陽極502避免由鋰離子與多硫化物之間的化學反應導致的腐蝕。在其他實行方案中,保護層516可為人工固體電解質界面相(A-SEI),其可替換自然存在之SEI及/或其他類型之習知A-SEI。在各個實行方案中,保護層516可經沉積為安置在陽極502上之一或多個膜之頂部上的襯墊。在一些態樣中,保護層516可為在與電池之操作循環相關之電化學反應期間形成的自生層。在一些態樣中,保護層516可具有小於5微米之厚度。在其他態樣中,保護層516可具有0.1與1.0微米之間的厚度。 In some implementations, the protective layer 516 can be provided as a passivating coating that can reduce the chemical reactivity of the anode 502 during cell assembly or formation. In some aspects, protective layer 516 can be permeable to lithium ions while protecting anode 502 from corrosion caused by chemical reactions between lithium ions and polysulfides. In other implementations, the protective layer 516 can be an artificial solid electrolyte interfacial phase (A-SEI), which can replace a naturally occurring SEI and/or other types of conventional A-SEI. In various implementations, the protective layer 516 may be deposited as a liner disposed on top of one or more films on the anode 502 . In some aspects, protective layer 516 may be an autogenous layer formed during electrochemical reactions associated with operating cycles of the battery. In some aspects, protective layer 516 may have a thickness of less than 5 microns. In other aspects, protective layer 516 may have a thickness between 0.1 and 1.0 microns.

在各個實行方案中,可有利於保護層516在陽極502上形成及/或沉積的一或多種工程化添加劑可提供於電池之電解質內。在其他實行方案中,工程化添加劑可為保護層516之活性成分。在一些態樣中,保護層516可提供錫離 子及/或氟離子,其可防止自陽極之第一邊緣5181及第二邊緣5182之不當鋰生長。 In various implementations, one or more engineered additives that can facilitate the formation and/or deposition of protective layer 516 on anode 502 can be provided within the electrolyte of the battery. In other implementations, the engineered additive can be an active ingredient of the protective layer 516 . In some aspects, the protective layer 516 can provide tin ions and/or fluoride ions, which can prevent inappropriate lithium growth from the first edge 518 1 and the second edge 518 2 of the anode.

分級層514可形成及/或沉積於陽極502上處於保護層516下方。在各個實行方案中,分級層514可防止包含在陽極502中或與其相關之鋰參與可導致含鋰枝晶自陽極502生長的與電解質540之不當化學相互作用及/或反應。分級層514亦可有利於基於經解離鋰離子與氟離子之間的化學反應來產生氟化鋰。正如所論述,在陽極502中或附近存在氟化鋰可減少多硫化物穿梭效應。例如,氟化鋰之形成(例如,由可利用鋰離子及氟離子)可跨陽極之全部第一邊緣5181及/或第二邊緣5182均勻發生。以此方式,在陽極502附近之電解質540中高鋰濃度之局部區域基本上得到抑制。因此,導致形成自陽極縱向延伸之含鋰枝晶結構的鋰-鋰鍵相應地得到抑制,由此引起鋰離子自陽極502自由地傳送至電解質中(例如,如在電池操作循環期間遇到的情況)。在一些態樣中,鋰在整個分級層514中之均勻分佈可在電池操作循環期間增加鋰離子通量之均勻性。在一些態樣中,分級層514可為大約5奈米(nm)之厚度。 Grading layer 514 may be formed and/or deposited on anode 502 below protective layer 516 . In various implementations, the graded layer 514 can prevent lithium contained in or associated with the anode 502 from engaging in inappropriate chemical interactions and/or reactions with the electrolyte 540 that could result in the growth of lithium-containing dendrites from the anode 502 . The graded layer 514 may also facilitate the production of lithium fluoride based on the chemical reaction between dissociated lithium ions and fluoride ions. As discussed, the presence of lithium fluoride in or near the anode 502 can reduce polysulfide shuttling. For example, the formation of lithium fluoride (eg, from available lithium ions and fluorine ions) can occur uniformly across all of the first edge 518 1 and/or the second edge 518 2 of the anode. In this way, localized regions of high lithium concentration in electrolyte 540 near anode 502 are substantially suppressed. Accordingly, the lithium-lithium bonds that lead to the formation of lithium-containing dendritic structures extending longitudinally from the anode are correspondingly inhibited, thereby causing free transport of lithium ions from the anode 502 into the electrolyte (e.g., as encountered during battery operation cycles). Condition). In some aspects, uniform distribution of lithium throughout graded layer 514 can increase the uniformity of lithium ion flux during battery operation cycles. In some aspects, the graded layer 514 can be approximately 5 nanometers (nm) thick.

在一或多個實行方案中,分級層514可以一種方式在結構上加強主電池,該方式不僅減少或防止自陽極502之含鋰枝晶生長,而且增加陽極502在主電池之操作循環期間膨脹及收縮而不破裂之能力。在一些態樣中,分級層514具有(例如,一或多種構成性材料及/或成分,包括碳、錫、及/或氟)分級濃度梯度之3D架構,其有利於快速鋰離子傳輸。因此,分級層514顯著地改良總體電池效率及性能。 In one or more implementations, the graded layer 514 can structurally strengthen the main cell in a manner that not only reduces or prevents lithium-containing dendrite growth from the anode 502, but also increases the expansion of the anode 502 during operating cycles of the main cell. And the ability to shrink without breaking. In some aspects, the graded layer 514 has a 3D architecture with graded concentration gradients (eg, of one or more constituent materials and/or components, including carbon, tin, and/or fluorine), which facilitates fast lithium ion transport. Thus, the graded layer 514 significantly improves overall cell efficiency and performance.

在一些實行方案中,分級層514可提供保護層516可生長或沉積之電化學上理想的表面。例如,在一些態樣中,分級層514可包括以下各項之化合物及/或有機金屬化合物,其包括(但不限於)鋁、鎵、銦、鎳、鋅、鉻、釩、鈦、及/或其他金屬。在其他態樣中,分級層514可包括鋁、鎵、銦、鎳、鋅、鉻、釩、鈦、及/或其他金屬之氧化物、碳化物及/或氮化物。 In some implementations, the graded layer 514 can provide an electrochemically desirable surface on which the protective layer 516 can be grown or deposited. For example, in some aspects, the graded layer 514 can include compounds and/or organometallic compounds including, but not limited to, aluminum, gallium, indium, nickel, zinc, chromium, vanadium, titanium, and/or or other metals. In other aspects, the graded layer 514 may include oxides, carbides, and/or nitrides of aluminum, gallium, indium, nickel, zinc, chromium, vanadium, titanium, and/or other metals.

在一些實行方案中,分級層514可包括碳質材料,包括(但不限於)片狀石墨烯、少層石墨烯(FLG)、碳奈米洋蔥(CNO)、石墨烯奈米片、或碳奈米管(CNT)。在其他實行方案中,分級層514可包括碳、氧、氫、錫、氟及/或衍生自氟化錫的其他合適化學化合物及/或分子與一或多種碳質材料。分級層514可以不同濃度水準直接或間接地製備及/或沉積於陽極502上。例如,分級層514可包括5重量%碳質材料,其餘為95重量%氟化錫,其可導致來自氟化錫之氟原子及/或氟離子之相對均勻解離。 In some implementations, hierarchical layer 514 may comprise carbonaceous materials including, but not limited to, graphene flakes, few-layer graphene (FLG), carbon nanoonions (CNO), graphene nanosheets, or carbon Nanotubes (CNTs). In other implementations, the graded layer 514 may include carbon, oxygen, hydrogen, tin, fluorine, and/or other suitable chemical compounds and/or molecules derived from tin fluoride and one or more carbonaceous materials. The graded layer 514 can be prepared and/or deposited on the anode 502 directly or indirectly at different concentration levels. For example, the graded layer 514 may include 5% by weight carbonaceous material with the balance being 95% by weight tin fluoride, which may result in a relatively uniform dissociation of fluorine atoms and/or fluorine ions from the tin fluoride.

其他合適比率包括:5%碳質材料與95%氟化錫;10%碳質材料與90%氟化錫、15%碳質材料與85%氟化錫、20%碳質材料與80%氟化錫、25%碳質材料與75%氟化錫、30%碳質材料與70%氟化錫、35%碳質材料與65%氟化錫、40%碳質材料與60%氟化錫、45%碳質材料與55%氟化錫、50%碳質材料與50%氟化錫、55%碳質材料與45%氟化錫、55%碳質材料與45%氟化錫、60%碳質材料與40%氟化錫、65%碳質材料與35%氟化錫、70%碳質材料與30%氟化錫、75%碳質材料與25%氟化錫、80%碳質材料與20%氟化錫、85%碳質材料與15%氟化錫、90%碳質材料與10%氟化錫、95%碳質材料與5%氟化錫。然後,氟原子及/或氟離子可與鋰離子均勻反應及組合,以形成氟化鋰,如下文進一步論述。 Other suitable ratios include: 5% carbonaceous material to 95% tin fluoride; 10% carbonaceous material to 90% tin fluoride, 15% carbonaceous material to 85% tin fluoride, 20% carbonaceous material to 80% fluorine Tin, 25% carbonaceous material and 75% tin fluoride, 30% carbonaceous material and 70% tin fluoride, 35% carbonaceous material and 65% tin fluoride, 40% carbonaceous material and 60% tin fluoride , 45% carbonaceous material and 55% tin fluoride, 50% carbonaceous material and 50% tin fluoride, 55% carbonaceous material and 45% tin fluoride, 55% carbonaceous material and 45% tin fluoride, 60 % carbonaceous material and 40% tin fluoride, 65% carbonaceous material and 35% tin fluoride, 70% carbonaceous material and 30% tin fluoride, 75% carbonaceous material and 25% tin fluoride, 80% carbon Carbonaceous material and 20% tin fluoride, 85% carbonaceous material and 15% tin fluoride, 90% carbonaceous material and 10% tin fluoride, 95% carbonaceous material and 5% tin fluoride. The fluorine atoms and/or fluoride ions can then uniformly react and combine with the lithium ions to form lithium fluoride, as discussed further below.

在一些實行方案中,在陽極502與陰極(圖5中未展示)之間循環之鋰離子可在分級層514內產生錫-鋰合金區域512。在一些態樣中,主電池之操作循環可導致氟化鋰均勻分散在錫-鋰合金區域512內。氟化鋰之均勻分散可有利於氟化錫層510內之至少一些氟化錫(II)(SnF2)(及可分散至分級層514及/或保護層中之額外氟化錫)的去氟反應。可藉由去氟反應提供之氟原子及/或氟離子可與存在於陽極502中或附近之至少一些鋰離子化學鍵結,以產生氟化鋰(LiF)且由此相應地防止至少一些鋰離子彼此鍵結且產生自陽極502之鋰枝晶生長。 In some implementations, lithium ions circulating between anode 502 and cathode (not shown in FIG. 5 ) can create tin-lithium alloy regions 512 within graded layer 514 . In some aspects, operating cycles of the main battery may result in uniform dispersion of lithium fluoride within the tin-lithium alloy region 512 . Uniform dispersion of lithium fluoride can facilitate removal of at least some tin(II) fluoride ( SnF2 ) within the tin fluoride layer 510 (and additional tin fluoride that may be dispersed into the graded layer 514 and/or protective layer). Fluorine reaction. The fluorine atoms and/or fluorine ions, which may be provided by the defluorination reaction, may chemically bond with at least some of the lithium ions present in or near the anode 502 to produce lithium fluoride (LiF) and thereby correspondingly prevent at least some of the lithium ions from Lithium dendrites are bonded to each other and result from anode 502 growth.

例如,存在於氟化錫中之氟原子及/或氟離子中之至少一部分可自保 護層516中解離且經由一或多個化學反應產生錫離子(Sn2+)及氟離子(2F-)。自保護層516解離之氟原子及/或氟離子可化學鍵結至存在於電解質540中及/或分散於整個保護層516或分級層514中的至少一些鋰離子。在一些態樣中,解離之氟原子可在錫-鋰合金區域512中形成Li-F鍵或Li-F化合物。在其他態樣中,解離之氟原子可在分級層514內形成氟化錫層510。 For example, at least a portion of the fluorine atoms and/or fluorine ions present in tin fluoride can dissociate from the protective layer 516 and generate tin ions (Sn 2+ ) and fluorine ions (2F ) through one or more chemical reactions. . The fluorine atoms and/or fluorine ions dissociated from protective layer 516 may chemically bond to at least some of the lithium ions present in electrolyte 540 and/or dispersed throughout protective layer 516 or graded layer 514 . In some aspects, the dissociated fluorine atoms may form Li-F bonds or Li-F compounds in the tin-lithium alloy region 512 . In other aspects, dissociated fluorine atoms may form tin fluoride layer 510 within graded layer 514 .

另外,在一個實行方案中,至少一些去氟之氟化錫可均勻分散於整個分級層514中,以產生氟化鋰(LiF)晶體。氟化鋰晶體可充當電絕緣體且防止電子通過陽極502之第一邊緣5181及/或第二邊緣5182自陽極502流動至電解質540中。 Additionally, in one implementation, at least some defluorinated tin fluoride may be uniformly dispersed throughout the graded layer 514 to produce lithium fluoride (LiF) crystals. The lithium fluoride crystal may act as an electrical insulator and prevent electrons from flowing from the anode 502 into the electrolyte 540 through the first edge 518 1 and/or the second edge 518 2 of the anode 502 .

在各個實行方案中,分級層514可藉由原子層沉積(ALD)、化學氣相沉積(CVD)、或物理氣相沉積(PVD)中之一或多者沉積於陽極502上。例如,ALD可用於在陽極502上沉積保護膜,例如像,在高壓鍵結過程期間至少部分地與電解質540反應之ALD膜。因此,使用可用於鋰轉移之原子平面,ALD膜可用於產生保護層516或分級層514。此鋰轉移可在原則上類似於對於少層石墨烯(FLG)或石墨所觀察到的轉移,其中FLG或石墨中之交替石墨烯層嵌入各種形式之鋰離子,包括呈氧化鈦鋰(LTO)、磷酸鐵鋰(PO3)(LFP)形式。所描述形式之嵌入鋰(例如,LTO及/或LFP)可經定向以有利於快速鋰原子及/或鋰離子傳輸及/或擴散,其可有益於形成及/或合成氟化鋰(例如,在氟化錫層510中及/或在別處),如先前描述。額外形式之嵌入鋰(例如,鈣鈦礦鈦酸鑭鋰(LLTO))亦可發揮作用來將鋰儲存於陽極502內。 In various implementations, the graded layer 514 can be deposited on the anode 502 by one or more of atomic layer deposition (ALD), chemical vapor deposition (CVD), or physical vapor deposition (PVD). For example, ALD may be used to deposit a protective film on the anode 502, such as, for example, an ALD film that at least partially reacts with the electrolyte 540 during the high voltage bonding process. Thus, ALD films can be used to create protective layer 516 or graded layer 514 using atomic planes available for lithium transfer. This lithium transfer may in principle be similar to that observed for few-layer graphene (FLG) or graphite, in which alternating graphene layers intercalate various forms of lithium ions, including lithium titania (LTO) , lithium iron phosphate (PO 3 ) (LFP) form. Lithium intercalation in the described form (e.g., LTO and/or LFP) can be oriented to facilitate rapid lithium atom and/or lithium ion transport and/or diffusion, which can be beneficial for the formation and/or synthesis of lithium fluoride (e.g., in tin fluoride layer 510 and/or elsewhere), as previously described. Additional forms of intercalated lithium such as the perovskite lithium lanthanum titanate (LLTO) may also function to store lithium within the anode 502 .

在一些實行方案中,分級層514可包括各種不同類型及/或形式之碳及/或碳質材料,其各自具有一或多種可經選擇或經組態以調整碳與存在於電解質540及/或陽極502中之污染物(諸如多硫化物)之反應性的物理屬性。在一些態樣中,可選擇物理屬性可包括(但不限於)孔隙率、表面積、表面官能化、或電導 率。另外,分級層514可包括黏合劑或可用於調整碳質材料之一或多種物理屬性以達成由碳質材料供應之碳與存在於電解質540及/或陽極502中之多硫化物的所需反應性的其他添加劑。 In some implementations, the graded layer 514 can include various different types and/or forms of carbon and/or carbonaceous materials, each having one or more carbon and/or carbonaceous materials that can be selected or configured to tune the relationship between the carbon and the presence of the electrolyte 540 and/or Or the physical properties of the reactivity of contaminants in the anode 502 such as polysulfides. In some aspects, selectable physical properties may include, but are not limited to, porosity, surface area, surface functionalization, or electrical conductivity Rate. Additionally, the graded layer 514 can include a binder or can be used to tune one or more physical properties of the carbonaceous material to achieve a desired reaction of the carbon supplied by the carbonaceous material with the polysulfides present in the electrolyte 540 and/or the anode 502 other additives.

在一個實行方案中,分級層514內之碳質材料可截留不當污染物且由此防止污染物與陽極502之暴露表面處可利用的鋰發生化學反應。作為替代,不當污染物(例如,多硫化物)可與分級層514內之碳質材料之各種暴露表面發生化學反應(例如,透過碳-鋰相互作用)。在一些實行方案中,分級層514內之碳質材料可與可利用鋰黏結。碳質材料與鋰離子之間的黏結度可經由在製備分級層514期間誘導之化學反應來選擇或改變。 In one implementation, the carbonaceous material within the graded layer 514 can trap unwanted contaminants and thereby prevent the contaminants from chemically reacting with lithium available at the exposed surface of the anode 502 . Alternatively, inappropriate contaminants (eg, polysulfides) may chemically react (eg, through carbon-lithium interactions) with various exposed surfaces of the carbonaceous material within graded layer 514 . In some implementations, the carbonaceous material within the graded layer 514 can bond with available lithium. The degree of bonding between the carbonaceous material and the lithium ions can be selected or changed through chemical reactions induced during the preparation of the graded layer 514 .

在一些實行方案中,各種碳同素異形體可摻入分級層514內(諸如在錫-鋰合金區域512及/或氟化錫層510之一或多個部分中)。此等碳同素異形體可用一或多種反應物來官能化且用於在分級層514內之碳奈米鑽石與電解質540之界面處形成密封劑層及/或區域。在一些態樣中,碳奈米鑽石可增加陽極502及/或分級層514之機械堅固性。在其他態樣中,碳奈米鑽石亦可提供暴露碳質表面,其可用於藉由以將多硫化物保持在電池的、陽極502外部之界定區域內的方式來微觀限定存在於電解質540中之多硫化物及/或與其鍵結而減少多硫化物穿梭效應。 In some implementations, various carbon allotropes may be incorporated within the graded layer 514 (such as in the tin-lithium alloy region 512 and/or one or more portions of the tin fluoride layer 510). These carbon allotropes can be functionalized with one or more reactants and used to form sealant layers and/or regions at the interface of the carbon nanodiamonds within the graded layer 514 and the electrolyte 540 . In some aspects, carbon nanodiamonds can increase the mechanical robustness of anode 502 and/or graded layer 514 . In other aspects, carbon nanodiamonds can also provide an exposed carbonaceous surface that can be used to microscopically confine the presence of polysulfides in the electrolyte 540 in a manner that keeps the polysulfides within a defined area of the cell outside of the anode 502. polysulfides and/or bond with them to reduce the polysulfide shuttling effect.

或者,在其他實行方案中,分級層514內之碳奈米鑽石可經替換為包括具有特定LA尺寸(例如,sp2雜化碳)之表面及/或區域的碳及/或碳質材料、還原氧化石墨烯(rGO)、及/或石墨烯。在一些態樣中,在電池內使用本文揭示之碳質材料可增加分級層514內之碳疊加及層形成。經剝離及氧化碳質材料亦可在分級層514內產生更均勻的分層結構(與未經剝離及氧化之碳質材料相比)。在一些態樣中,溶劑諸如四丁基氫氧化銨(TBA)及/或二甲基甲醯胺(DMF)處理可應用於本文揭示之碳質材料以增加分級層514內之暴露碳質表面之潤濕。 Alternatively, in other implementations, the carbon nanodiamonds within the graded layer 514 can be replaced with carbon and/or carbonaceous materials that include surfaces and/or regions with specific LA dimensions (e.g., sp hybridized carbon) , reduced graphene oxide (rGO), and/or graphene. In some aspects, use of the carbonaceous materials disclosed herein within the battery can increase carbon stacking and layer formation within the graded layer 514 . Exfoliated and oxidized carbonaceous material may also produce a more uniform layered structure within graded layer 514 (compared to non-exfoliated and oxidized carbonaceous material). In some aspects, solvents such as tetrabutylammonium hydroxide (TBA) and/or dimethylformamide (DMF) treatments may be applied to the carbonaceous materials disclosed herein to increase the exposed carbonaceous surface within the graded layer 514 of moistening.

在一些實行方案中,可摻雜用於形成分級層514之漿料以改良或以其他方式影響分級層514內之碳質材料之晶體結構。例如,添加某些摻雜劑可以某種對應方式影響碳質材料之晶體結構,且可在分級層514內(例如,經由接枝於碳質材料內之暴露碳原子上)添加官能基。 In some implementations, the paste used to form the graded layer 514 may be doped to modify or otherwise affect the crystal structure of the carbonaceous material within the graded layer 514 . For example, the addition of certain dopants can affect the crystal structure of the carbonaceous material in a corresponding manner, and can add functional groups within the graded layer 514 (eg, via grafting onto exposed carbon atoms within the carbonaceous material).

在一些實行方案中,具有用含氟或含矽官能基中之一或多者來官能化之暴露表面的碳質材料可包括在分級層514內。在其他實行方案中,具有用含氟或含矽官能基中之一或多者來官能化之暴露表面的碳質材料可沉積於分級層514下方,以在分級層514與陽極502之間的界面上形成穩定SEI。在一個實行方案中,穩定SEI可替換保護層516。在一些實行方案中,分級層514可使用其他技術來漿料鑄造及/或沉積至具有鋰及碳界面相之陽極502上,該等界面相中之任一者可用矽及/或氮來官能化,以抑制多硫化物擴散及遷移至陽極502之暴露表面。另外,特定聚合物及/或交聯劑可摻入分級層514內,以機械加強分級層514、改良跨分級層514之鋰離子傳輸、或增加跨分級層514之鋰離子通量之均勻性。適用於摻入分級層514內之示例性聚合物及/或聚合物材料可包括聚(環氧乙烷)及聚(乙烯亞胺)。適用於摻入分級層514內之示例***聯劑可包括無機交聯劑(例如,硼酸鹽、鋁酸鹽、矽酸鹽)、多官能有機分子(例如,二胺、二醇)、聚脲、或高分子量(MW)(例如,>10,000道爾頓)羧甲基纖維素(CMC)。 In some implementations, a carbonaceous material having an exposed surface functionalized with one or more of fluorine-containing or silicon-containing functional groups may be included within the graded layer 514 . In other implementations, a carbonaceous material having an exposed surface functionalized with one or more of fluorine-containing or silicon-containing functional groups can be deposited below the graded layer 514 to provide a gap between the graded layer 514 and the anode 502. A stable SEI is formed on the interface. In one implementation, the stabilizing SEI can replace the protective layer 516 . In some implementations, the graded layer 514 can be slurry cast and/or deposited onto the anode 502 with lithium and carbon interfacial phases, either of which can be functionalized with silicon and/or nitrogen using other techniques To inhibit the diffusion and migration of polysulfides to the exposed surface of the anode 502. Additionally, specific polymers and/or cross-linking agents may be incorporated into the graded layer 514 to mechanically strengthen the graded layer 514, improve lithium ion transport across the graded layer 514, or increase the uniformity of lithium ion flux across the graded layer 514 . Exemplary polymers and/or polymeric materials suitable for incorporation within the graded layer 514 may include poly(ethylene oxide) and poly(ethyleneimine). Exemplary cross-linking agents suitable for incorporation into the graded layer 514 can include inorganic cross-linking agents (e.g., borates, aluminates, silicates), polyfunctional organic molecules (e.g., diamines, diols), polyureas , or high molecular weight (MW) (eg, >10,000 Daltons) carboxymethylcellulose (CMC).

各種製造方法可用於產生分級層514。在一個實行方案中,在沉積及/或形成分級層514之前,對在陽極502與電解質540之間的界面之直接塗佈可藉由分散溶解於載劑(例如,溶劑、黏合劑、聚合物)中之碳質材料及其他化學品來執行。在另一個實行方案中,分級層514之沉積可作為單獨操作來執行,或可向漿料中添加各種其他活性成分(例如,金屬、碳質材料、氟化錫及/或類似者),該漿料可經鑄造至陽極502上。或者,在另一個實行方案中,保護層516可藉由壓延輥層壓過程來直接轉移至陽極502上。保護層516及/或分級層514 亦可摻入經部分固化之鋰離子導電環氧樹脂,以例如在壓延輥層壓過程期間更好地增加與鋰之黏附。 Various fabrication methods may be used to create graded layer 514 . In one implementation, prior to depositing and/or forming the graded layer 514, direct coating of the interface between the anode 502 and the electrolyte 540 may be accomplished by dissolving in a vehicle (e.g., solvent, binder, polymer) ) in carbonaceous materials and other chemicals to perform. In another implementation, the deposition of the graded layer 514 may be performed as a separate operation, or various other active ingredients (e.g., metals, carbonaceous materials, tin fluoride, and/or the like) may be added to the slurry, the The slurry may be cast onto the anode 502 . Alternatively, in another implementation, the protective layer 516 can be transferred directly onto the anode 502 by a calender roll lamination process. protective layer 516 and/or grading layer 514 Partially cured lithium-ion conductive epoxy resins may also be incorporated to better increase adhesion to lithium, for example during calender roll lamination processes.

在一個實行方案中,含碳分層結構(圖5中未展示)可安置於陽極502上來替換分級層514。含碳分層結構可包括可用於鋰轉移之原子平面,且可以可引導氟化鋰在電池之各個部分中形成的方式,將由電解質540提供之鋰離子均勻傳輸至整個保護層516。在各個實行方案中,含碳分層結構可包括少層石墨烯(FLG)或石墨之一或多種佈置且/或可嵌入有鋰,且產生一或多種反應產物,包括氧化錫鋰(LTO)、磷酸鐵鋰(LFP)、或鈣鈦礦鈦酸鑭鋰(LLTO)。 In one implementation, a carbon-containing layered structure (not shown in FIG. 5 ) may be disposed on anode 502 in place of graded layer 514 . The carbon-containing layered structure can include atomic planes available for lithium transfer and can uniformly transport lithium ions provided by electrolyte 540 throughout protective layer 516 in a manner that can direct the formation of lithium fluoride in various parts of the cell. In various embodiments, the carbon-containing layered structure may include an arrangement of one or more of few-layer graphene (FLG) or graphite and/or may be intercalated with lithium and produce one or more reaction products, including lithium tin oxide (LTO) , lithium iron phosphate (LFP), or perovskite lithium lanthanum titanate (LLTO).

在一些實行方案中,氟化錫層510可充當針對腐蝕之保護層,包括保護層516、分級層514、或陽極502之含銅表面及/或區域之腐蝕。在一些態樣中,氟化錫層510亦可提供適用於鋰沉積之均勻種晶層,且由此抑制枝晶形成。另外,在一些實行方案中,氟化錫層510可包括一或多種鋰離子嵌入化合物,其任何一者或多者具有低電壓補償(voltage penalty)。合適鋰離子嵌入化合物可包括石墨碳(例如,石墨、石墨烯、還原氧化石墨烯rGO)。在一個實行方案中,在製造陽極502期間,在鍍敷至氟化錫層510內之暴露碳質表面上之前,鋰離子可傾向於嵌入。以此方式,在開始鋰鍍敷及/或電鍍操作之前,氟化錫層510具有準備充當種晶層之均勻Li分佈。 In some implementations, the tin fluoride layer 510 can serve as a protective layer against corrosion, including corrosion of the protective layer 516 , the grading layer 514 , or the copper-containing surfaces and/or regions of the anode 502 . In some aspects, the tin fluoride layer 510 may also provide a uniform seed layer suitable for lithium deposition and thereby inhibit dendrite formation. Additionally, in some implementations, the tin fluoride layer 510 may include one or more lithium ion intercalation compounds, any one or more of which have a low voltage penalty. Suitable lithium ion intercalation compounds may include graphitic carbons (eg, graphite, graphene, reduced graphene oxide rGO). In one implementation, lithium ions may tend to intercalate prior to plating onto the exposed carbonaceous surfaces within the tin fluoride layer 510 during fabrication of the anode 502 . In this way, the tin fluoride layer 510 has a uniform Li distribution ready to act as a seed layer prior to commencing lithium plating and/or electroplating operations.

在一個實行方案中,一或多個保形塗層可施加於陽極502之部分上,使得所得保形塗層接觸且共形於陽極502之第一邊緣5181及/或第二邊緣5182。在一些態樣中,保形塗層可作為第一間隔物邊緣保護區域5301及第二間隔物邊緣保護區域5302開始,該等邊緣保護區域與保護層516、錫-鋰合金區域512、及/或氟化錫層510中之一或多者反應或以其他方式組合,以形成保形塗層544,該保形塗層至少部分地密封且保護陽極502中之鋰與懸浮在電解質中之各種物質(例如,銅(Cu))之間的表面及/或界面。在一些態樣中,氟原子自存在於保形塗 層544中之氟化錫之解離可與陽極502中之鋰反應,以形成氟化鋰,而非形成或生長成鋰枝晶。以此方式,保形塗層544可減少自陽極502之鋰枝晶形成或生長。 In one implementation, one or more conformal coatings may be applied over portions of the anode 502 such that the resulting conformal coating contacts and conforms to the first edge 518 1 and/or the second edge 518 2 of the anode 502 . In some aspects, the conformal coating can begin as a first spacer edge protection region 5301 and a second spacer edge protection region 5302 that are in contact with the protective layer 516, tin-lithium alloy region 512, and/or one or more of the tin fluoride layers 510 react or otherwise combine to form a conformal coating 544 that at least partially seals and protects the lithium in the anode 502 from the lithium suspended in the electrolyte Surfaces and/or interfaces between various substances such as copper (Cu). In some aspects, dissociation of fluorine atoms from tin fluoride present in conformal coating 544 may react with lithium in anode 502 to form lithium fluoride, rather than forming or growing lithium dendrites. In this way, conformal coating 544 can reduce lithium dendrite formation or growth from anode 502 .

保形塗層544可以許多不同厚度來沉積或安置在陽極502之上。在一些態樣中,保形塗層544可小於5μm厚。在其他態樣中,保形塗層544可小於2μm厚。在一些其他態樣中,保形塗層544可小於1μm厚。在電池循環期間,此等厚度水準可阻礙多硫化物遷移至陽極502,由此防止至少一些鋰離子與多硫化物反應。不與多硫化物反應之鋰離子可用於在電池放電循環期間自陽極傳輸至陰極。 Conformal coating 544 may be deposited or disposed over anode 502 in many different thicknesses. In some aspects, conformal coating 544 may be less than 5 μm thick. In other aspects, conformal coating 544 may be less than 2 μm thick. In some other aspects, conformal coating 544 may be less than 1 μm thick. These thickness levels can hinder the migration of polysulfides to the anode 502 during battery cycling, thereby preventing at least some of the lithium ions from reacting with the polysulfides. Lithium ions, which do not react with polysulfides, are available for transport from the anode to the cathode during battery discharge cycling.

保形塗層544(以及保護層516及分級層514)可獨特地調控朝向陽極502之第一邊緣5181及/或第二邊緣5182之鋰離子通量,且由此防止陽極502之腐蝕。此調控可以與在製造多晶矽(poly-Si)閘極期間所使用之閘極間隔物類似的方式來起作用。具體而言,在製造積體電路(IC)期間,閘極間隔物或閘極側壁構建體可用於保護及機械支撐多晶矽閘極。類似地,藉由保形塗層544為圖5之陽極502提供之邊緣保護調控朝向陽極502之第一邊緣5181及/或第二邊緣5182之鋰離子通量,且由此防止陽極502之腐蝕。藉由保形塗層544為陽極502所提供的此種類型之邊緣保護可同樣適用於其他電池及/或電化電池格式及/或組態,諸如(但不限於)圓柱形電池、堆疊電池、及/或類似者,其中各種構建體專門經工程化以適合此類設計中之各者之參數。 The conformal coating 544 (as well as the protective layer 516 and the grading layer 514) can uniquely regulate the flux of lithium ions towards the first edge 5181 and/or the second edge 5182 of the anode 502 and thereby prevent corrosion of the anode 502 . This regulation can function in a similar manner to gate spacers used during the fabrication of polysilicon (poly-Si) gates. Specifically, gate spacers or gate sidewall constructs can be used to protect and mechanically support polysilicon gates during the fabrication of integrated circuits (ICs). Similarly, the edge protection provided by the conformal coating 544 for the anode 502 of FIG . of corrosion. This type of edge protection provided for the anode 502 by the conformal coating 544 is equally applicable to other battery and/or electrochemical cell formats and/or configurations, such as, but not limited to, cylindrical cells, stacked cells, And/or the like, wherein the various constructs are specifically engineered to fit the parameters of each of such designs.

在一些實行方案中,保形塗層544、保護層516、及/或分級層514在陽極502上之製造及/或沉積可視併入陽極502之電池或電池構建體之類型而定,例如,圓柱形電池相較於軟包電池及/或棱柱形電池。在一個實行方案中,對於圓柱形電池,金屬陽極可由電活性材料構成,該等材料通常為金屬鋰及/或含鋰合金,例如包括鋰之石墨及/或其他碳質複合物,以及任何全均勻或多層材料薄片。在一個實例中,用作陽極502之固體金屬鋰箔可附接至用作集電器520 之銅基板,以有利於電子通過接片546轉移到外部負載,如圖5之實例中所描繪。在其他實行方案中,電池500可包括不存在集電器520之情況下的陽極502,其中包含在陽極502內之碳質材料可提供與電路耦合之導電介質。 In some implementations, the fabrication and/or deposition of the conformal coating 544, the protective layer 516, and/or the grading layer 514 on the anode 502 may depend on the type of battery or battery construct that is being incorporated into the anode 502, for example, Cylindrical batteries are compared to pouch batteries and/or prismatic batteries. In one implementation, for cylindrical cells, the metal anode can be composed of electroactive materials, typically lithium metal and/or lithium-containing alloys, such as graphite and/or other carbonaceous Homogeneous or multi-layered sheets of material. In one example, a solid metallic lithium foil serving as the anode 502 can be attached to a foil serving as the current collector 520 The copper substrate is used to facilitate the transfer of electrons to an external load through tabs 546, as depicted in the example of FIG. 5 . In other implementations, the battery 500 can include the anode 502 in the absence of the current collector 520, wherein the carbonaceous material contained within the anode 502 can provide a conductive medium for coupling with the circuit.

在一些實行方案中,陽極結構500可藉由圍繞心軸之捲繞來併入電化電池及/或電池中。圓柱形電池佈局通常使用雙面陽極,諸如陽極結構500。在一些實行方案中,採用陽極結構500之圓柱形電池構造可使用保形塗層544來保護陽極502之第一邊緣5181及/或第二邊緣5182。藉由保形塗層544提供之均勻保護可在本文中稱為「邊緣保護」。在一個實行方案中,藉由將保護層516之大小及/或區域延伸以疊加在陽極之任何幾何誘導邊緣效應(例如表面粗糙度)以外,可將邊緣保護併入使用陽極結構500之電池中。 In some implementations, the anode structure 500 can be incorporated into an electrochemical cell and/or battery by winding around a mandrel. Cylindrical cell layouts typically use double-sided anodes, such as anode structure 500 . In some implementations, a cylindrical cell configuration employing the anode structure 500 can use a conformal coating 544 to protect the first edge 518 1 and/or the second edge 518 2 of the anode 502 . The uniform protection provided by conformal coating 544 may be referred to herein as "edge protection." In one implementation, edge protection can be incorporated into cells using the anode structure 500 by extending the size and/or area of the protective layer 516 to overlay any geometrically induced edge effects (e.g., surface roughness) of the anode .

在其他實行方案中,陽極結構500可併入軟包電池及/或棱柱形電池中。總體上,可製造軟包電池及/或棱柱形電池之兩種構建體,包括(1):卷芯電池(例如,在行業中作為鋰-聚合物電池存在),兩個心軸捲繞電極可以與如先前論述之圓柱形電池類似的方式產生;及(2):堆疊板型電池,其可自預鑄造及/或預層壓製備陽極薄片上切割,使得例如陽極502之(當以堆疊板型組態製備時)之未經保護邊緣暴露且易受腐蝕、快速離子通量及暴露於電池中。在堆疊板型組態中,保形塗層544可保護陽極502且防止電解質540中之鋰過度飽和。以此方式,在電池之操作循環期間,保形塗層544可控制陽極502上之鋰鍍敷。 In other implementations, the anode structure 500 can be incorporated into pouch cells and/or prismatic cells. In general, two configurations of pouch cells and/or prismatic cells can be manufactured, including (1): core roll cells (existing in the industry as lithium-polymer cells), two mandrel wound electrode Can be produced in a similar manner to cylindrical cells as previously discussed; and (2): stacked plate cells that can be cut from sheet metal fabricated and/or pre-laminated anode sheets such that, for example, the anode 502 (when stacked plate configuration) the unprotected edges are exposed and susceptible to corrosion, rapid ion flux, and exposure to cells. In a stacked plate configuration, conformal coating 544 can protect anode 502 and prevent lithium oversaturation in electrolyte 540 . In this way, conformal coating 544 can control lithium plating on anode 502 during the operating cycle of the cell.

在一些實行方案中,在電池組裝或電池休止期期間,一或多個化學反應可在電解質540與陽極502之間發生(涉及溶劑分解及/或加成反應)。此等化學反應可有助於產生保形塗層544。在一些態樣中,較高及/或較低溫度(例如,相對於室溫及/或20℃)可用作保形塗層544之鋰誘導聚合之刺激。例如,鋰誘導聚合可在一或多種催化劑存在下發生及/或藉由使用鋰金屬及其相關化學反應性作為誘導劑來發生,以啟動陽極結構500及/或保形塗層544中任何一或多個層 內之組成物質的基於自由基之聚合。另外,在正向或反向方向的電偏壓下之電化學反應可用於在陽極502上製造及/或沉積保形塗層544,也可使用輔助金屬及/或鹽作為添加劑,其可分解以在暴露於電解質540之陽極502中金屬鋰之第一邊緣5181及/或第二邊緣5182上形成合金。例如,合適添加劑可含有一或多種金屬物質,例如,其為與鋰共合金化所需要的或慾用作阻擋層以減少鋰轉移至陽極502之第一邊緣5181及/或第二邊緣5182In some implementations, one or more chemical reactions can occur between the electrolyte 540 and the anode 502 (involving solvolysis and/or addition reactions) during cell assembly or cell rest periods. These chemical reactions may help create conformal coating 544 . In some aspects, higher and/or lower temperatures (eg, relative to room temperature and/or 20° C.) can be used as a stimulus for lithium-induced polymerization of conformal coating 544 . For example, lithium-induced polymerization can occur in the presence of one or more catalysts and/or by using lithium metal and its associated chemical reactivity as an inducer to initiate either of the anode structure 500 and/or the conformal coating 544. or free radical-based polymerization of constituent substances within multiple layers. In addition, electrochemical reactions under electrical bias in the forward or reverse direction can be used to fabricate and/or deposit conformal coating 544 on anode 502, as well as using auxiliary metals and/or salts as additives that decompose To form an alloy on the first edge 518 1 and/or the second edge 518 2 of the lithium metal in the anode 502 exposed to the electrolyte 540 . For example, suitable additives may contain one or more metal species, e.g., that are required for co-alloying with lithium or intended to act as a barrier layer to reduce lithium transfer to the first edge 5181 and/or the second edge 518 of the anode 502 2 .

圖6展示根據一些實行方案的圖5之陽極結構500之放大部分600的示意圖。放大部分600繪示第一間隔物邊緣保護區域5301及第二間隔物邊緣保護區域5302(圖6中統稱為邊緣保護區域530)在與第一邊緣5181及/或第二邊緣5182正交之方向中之排佈,如圖5所示。因此,可包括經組織成結構及/或晶格之碳質材料610之邊緣保護區域530可阻止鋰離子不期望地跨邊緣保護區域530逸出陽極502。以此方式,鋰離子解離、通量、傳輸、及/或其他移動可在圖6之整個放大部分600(以及圖5之陽極結構500)中被有效地引導,由此產生最佳電池操作循環。在一些實行方案中,用於產生邊緣保護區域之碳質材料610可包括少層石墨烯(FLG)、多層石墨烯(MLG)、石墨、碳奈米管(CNT)、碳奈米洋蔥(CNO)及/或類似者。碳質材料610(例如,圖8A、圖8B、圖9A、圖9B、圖10A及/或圖10B中展示)可以不同濃度水準來合成、自身成核、或以其他方式接合在一起,以提供邊緣保護區域530之完全可調諧性。例如,與保護層516或分級層514相比,密度、厚度、及/或組成可經設計以使鋰離子滲透最小化,以相應地引導鋰離子滲透。在一些實行方案中,邊緣保護區域530可小於5μm厚。在其他態樣中,邊緣保護區域530可小於2μm厚。在一些其他態樣中,邊緣保護區域530可小於1μm厚。在一些實行方案中,與黏合劑620一樣,導電添加劑640可添加至碳質材料610。 6 shows a schematic diagram of an enlarged portion 600 of the anode structure 500 of FIG. 5, according to some implementations. Enlarged portion 600 shows first spacer edge protection region 5301 and second spacer edge protection region 5302 (collectively referred to as edge protection region 530 in FIG. 6 ) in relation to first edge 5181 and/or second edge 5182 The arrangement in the orthogonal direction is shown in Figure 5. Thus, edge protection region 530 , which may include carbonaceous material 610 organized into a structure and/or lattice, may prevent lithium ions from undesirably escaping anode 502 across edge protection region 530 . In this way, lithium ion dissociation, flux, transport, and/or other movement can be efficiently directed throughout enlarged portion 600 of FIG. 6 (and anode structure 500 of FIG. 5 ), thereby resulting in optimal battery operating cycles . In some implementations, the carbonaceous material 610 used to create the edge protection region may include few-layer graphene (FLG), multi-layer graphene (MLG), graphite, carbon nanotubes (CNTs), carbon nanoonions (CNO ) and/or the like. Carbonaceous material 610 (e.g., shown in FIGS. 8A, 8B, 9A, 9B, 10A, and/or 10B) can be synthesized, self-nucleate, or otherwise bonded together at various concentration levels to provide Full tunability of the edge protection area 530 . For example, density, thickness, and/or composition may be designed to minimize lithium ion permeation as compared to protective layer 516 or graded layer 514 to direct lithium ion permeation accordingly. In some implementations, edge protection region 530 may be less than 5 μm thick. In other aspects, edge protection region 530 may be less than 2 μm thick. In some other aspects, edge protection region 530 may be less than 1 μm thick. In some implementations, conductive additive 640 may be added to carbonaceous material 610 as with binder 620 .

圖7展示根據一些實行方案之聚合物網路710之圖。在一些態樣中, 聚合物網路710可為圖2之聚合物網路285之一個實例。聚合物網路710可安置在陽極702上。陽極702可形成為鹼金屬層,其具有包括許多含有鹼金屬之奈米結構或微觀結構的一或多個暴露表面。鹼金屬可包括(但不限於)鋰、鈉、鋅、銦及/或鎵。在電池之操作循環期間,陽極702可釋放鹼金屬離子。 Figure 7 shows a diagram of a polymer network 710, according to some implementations. In some forms, Polymer network 710 may be one example of polymer network 285 of FIG. 2 . A polymer network 710 may be disposed on the anode 702 . Anode 702 may be formed as an alkali metal layer having one or more exposed surfaces comprising a plurality of alkali metal-containing nanostructures or microstructures. Alkali metals may include, but are not limited to, lithium, sodium, zinc, indium, and/or gallium. During the operating cycle of the cell, the anode 702 may release alkali metal ions.

碳質材料層714可用氟化聚合物鏈接枝且沉積在陽極702之一或多個暴露表面之上。接枝可基於(例如,開始於)用一或多種自由基引發劑,例如過氧化苯甲醯(BPO)或偶氮二異丁腈(AIBN)來活化碳質材料,隨後與單體分子反應。聚合物網路710可基於彼此交聯之氟化聚合物鏈及層714之碳質材料,使得在產生聚合物網路710期間層714被消耗。在一些實行方案中,聚合物網路710可具有大約0.001μm與5μm之間的厚度且包括大約0.001重量%至2重量%之間的氟化聚合物鏈。在一些其他實行方案中,聚合物網路710可包括大約5重量%至100重量%之間的用氟化聚合物鏈接枝之複數種碳質材料且其餘為氟化聚合物、或一或多種非氟化聚合物、或一或多種可交聯單體、或其組合。在一個實行方案中,用氟化聚合物鏈接枝之碳質材料可包括5重量%至50重量%之氟化聚合物鏈且其餘為碳質材料。 A layer 714 of carbonaceous material may be grafted with fluorinated polymer chains and deposited over one or more exposed surfaces of the anode 702 . Grafting can be based on (eg, starting with) activation of the carbonaceous material with one or more free radical initiators, such as benzoyl peroxide (BPO) or azobisisobutyronitrile (AIBN), followed by reaction with monomer molecules . The polymer network 710 may be based on fluorinated polymer chains cross-linked to each other and the carbonaceous material of the layer 714 such that the layer 714 is consumed during the production of the polymer network 710 . In some implementations, the polymer network 710 can have a thickness between about 0.001 μm and 5 μm and include between about 0.001% and 2% by weight fluorinated polymer chains. In some other implementations, the polymer network 710 may comprise between about 5% and 100% by weight of a plurality of carbonaceous materials grafted with fluorinated polymer chains and the remainder being fluorinated polymers, or one or more A non-fluorinated polymer, or one or more crosslinkable monomers, or a combination thereof. In one implementation, the carbonaceous material grafted with fluorinated polymer chains may comprise 5% to 50% by weight fluorinated polymer chains with the balance being carbonaceous material.

在電池循環期間,聚合物網路710內之碳-氟鍵可與新形成之鋰金屬發生化學反應且轉化成碳-鋰鍵(C-Li)。此等C-Li鍵可進而經由伍茲反應750與聚合物網路710內之碳-氟鍵反應,以藉由新形成之C-C鍵使聚合物網路進一步交聯且形成含有鹼金屬之氟化物(諸如氟化鋰(LiF))。導致均勻形成含有鹼金屬之氟化物的額外聚合物網路交聯可由此抑制與陽極702相關之鹼金屬枝晶形成740,由此改良電池性能及壽命。在一個實行方案中,將氟化甲基/丙烯酸酯(FMA)接枝至層714中之碳質材料之一或多個暴露石墨烯表面可在有機溶液中執行,例如導致形成石墨烯-接枝-聚-FMA及/或類似者。將碳-氟鍵摻入於暴露石墨烯表面上可使得能夠在碳-氟鍵與由陽極702提供的鹼金屬(例如,鋰)之金屬表面 之間發生伍茲反應750。以此方式,完成伍茲反應750可導致形成聚合物網路710。在一些態樣中,聚合物網路710可包括在完成伍茲反應750之後的密度梯度716。密度梯度716可包括互連石墨烯薄片且可灌注有一或多種原位形成之金屬氟化物鹽。另外,層孔隙率及/或機械性質可藉由碳負載及/或官能化碳之組合來調諧,該等官能化碳各自具有獨特及/或不同物理結構。 During battery cycling, the carbon-fluorine bonds within the polymer network 710 can chemically react with newly formed lithium metal and convert to carbon-lithium bonds (C-Li). These C-Li bonds can in turn react with carbon-fluorine bonds within the polymer network 710 via the Woods reaction 750 to further crosslink the polymer network and form alkali-containing fluorides via newly formed C-C bonds (such as lithium fluoride (LiF)). Additional crosslinking of the polymer network resulting in uniform formation of alkali metal-containing fluoride can thereby suppress alkali metal dendrite formation 740 associated with the anode 702, thereby improving battery performance and lifetime. In one implementation, grafting of fluorinated methyl/acrylate (FMA) onto one or more exposed graphene surfaces of the carbonaceous material in layer 714 can be performed in an organic solution, for example, resulting in the formation of graphene-grafted Dendrimer-poly-FMA and/or the like. The incorporation of carbon-fluorine bonds on the exposed graphene surface may enable the formation of carbon-fluorine bonds with the metal surface of an alkali metal (e.g., lithium) provided by the anode 702. Woods reactions occur between 750. In this way, completion of the Woods reaction 750 can result in the formation of the polymer network 710 . In some aspects, polymer network 710 may include density gradient 716 after completion of Woods reaction 750 . Density gradient 716 may comprise interconnected graphene flakes and may be infused with one or more in situ formed metal fluoride salts. Additionally, layer porosity and/or mechanical properties can be tuned by combinations of carbon-supported and/or functionalized carbons, each of which has a unique and/or different physical structure.

在一些實行方案中,密度梯度716內之碳質材料可包括平坦石墨烯、起皺石墨烯、複數個碳奈米管(CNT)、或複數個碳奈米洋蔥(CNO)中之一或多者(例如,如圖8A及/圖8B描繪且如圖9A-9B及圖10A-10B之顯微照片展示)。在一個實行方案中,石墨烯奈米片可分散在整個聚合物網路710內且彼此隔離。石墨烯奈米片之分散包括一或多個不同濃度水準。在一個實行方案中,石墨烯奈米片之分散可包括用至少一些氟化聚合物鏈來官能化之至少一些碳質材料。 In some implementations, the carbonaceous material within the density gradient 716 can include one or more of flat graphene, wrinkled graphene, carbon nanotubes (CNTs), or carbon nanoonions (CNOs). or (eg, as depicted in Figure 8A and/or Figure 8B and shown in the photomicrographs of Figures 9A-9B and Figures 10A-10B). In one implementation, graphene nanosheets can be dispersed throughout the polymer network 710 and isolated from each other. The dispersion of graphene nanosheets includes one or more different concentration levels. In one implementation, the dispersion of graphene nanoplatelets can include at least some carbonaceous material functionalized with at least some fluorinated polymer chains.

例如,氟化聚合物鏈可包括一或多種丙烯酸酯或甲基丙烯酸酯單體,包括丙烯酸2,2,3,3,4,4,5,5,6,6,7,7-十二氟庚酯(DFHA)、甲基丙烯酸3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-十七氟癸酯(HDFDMA)、甲基丙烯酸2,2,3,3,4,4,5,5-八氟戊酯(OFPMA)、甲基丙烯酸四氟丙酯(TFPM)、3-[3,3,3-三氟-2-羥基-2-(三氟甲基)丙基]雙環[2.2.1]庚-2-基甲基丙烯酸酯(HFA單體)、或基於乙烯基之單體(包括2,3,4,5,6-五氟苯乙烯(PFSt))。 For example, the fluorinated polymer chain can include one or more acrylate or methacrylate monomers, including acrylic 2,2,3,3,4,4,5,5,6,6,7,7-dodeca Fluoroheptyl ester (DFHA), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate ( HDFDMA), 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate (OFPMA), tetrafluoropropyl methacrylate (TFPM), 3-[3,3,3- Trifluoro-2-hydroxy-2-(trifluoromethyl)propyl]bicyclo[2.2.1]hept-2-yl methacrylate (HFA monomer), or vinyl-based monomers (including 2, 3,4,5,6-Pentafluorostyrene (PFSt)).

在一些實行方案中,氟化聚合物鏈可接枝至碳質材料層之表面且可由此經由伍茲反應750與陽極之鹼金屬之一或多個表面發生化學相互作用。在有機化學、有機金屬化學、及無機主族聚合物中,伍茲反應為偶合反應,其中兩種烷基鹵化物與乾醚溶液中之金屬鈉(或某種其他金屬)反應,以形成更高級烷烴。在此反應中,用乾醚(不含水分)溶液中之鹼金屬(例如,金屬鈉)處理烷基鹵化物,以產生更高級烷烴。在鈉的情況下,伍茲反應之中間產物為高極性及高反應性碳-鈉金屬鍵,其進而與碳-鹵鍵發生化學反應,以產生新形成之C-C鍵及 鹵化鈉。形成新碳-碳鍵允許使用伍茲反應製備含有偶數碳原子之更高級烷烴,例如: In some implementations, fluorinated polymer chains can be grafted to the surface of the carbonaceous material layer and can thereby chemically interact via Woods reaction 750 with one or more surfaces of the alkali metal of the anode. In organic chemistry, organometallic chemistry, and inorganic main group polymers, the Woods reaction is a coupling reaction in which two alkyl halides react with sodium metal (or some other metal) in dry ether solution to form a higher order alkanes. In this reaction, an alkyl halide is treated with an alkali metal (eg, sodium metal) in a dry ethereal (moisture free) solution to produce higher alkanes. In the case of sodium, the intermediate product of the Woods reaction is a highly polar and highly reactive carbon-sodium metal bond, which in turn chemically reacts with a carbon-halogen bond to produce newly formed C-C bonds and Sodium halide. Formation of new carbon-carbon bonds allows the use of the Woods reaction to prepare higher alkanes with an even number of carbon atoms, such as:

2 R-X+2 Na→R-R+2 Na+X- (等式1) 2 R-X+2 Na→R-R+2 Na + X - (equation 1)

其他金屬亦用於影響伍茲偶合,尤其是銀、鋅、鐵、活化銅、銦以及氯化錳與氯化銅之混合物。處理芳基鹵化物之相關反應稱為伍茲-菲提希反應(Wurtz-Fittig reaction)。此可藉由形成自由基中間物及其隨後歧化作用以給出烯烴來解釋。伍茲反應750透過使得產生烯烴產物之副反應成為可能的自由基機制來發生。在一些實行方案中,與如上所述之伍茲反應相關之化學相互作用可形成鹼金屬氟化物,例如氟化鋰。 Other metals are also used to affect Woods coupling, especially silver, zinc, iron, activated copper, indium, and mixtures of manganese and copper chlorides. A related reaction dealing with aryl halides is called the Wurtz-Fittig reaction. This can be explained by the formation of radical intermediates and their subsequent disproportionation to give alkenes. The Woods reaction 750 occurs through a free radical mechanism that enables side reactions that produce olefinic products. In some implementations, chemical interactions associated with the Woods reaction as described above can form alkali metal fluorides, such as lithium fluoride.

在一個實行方案中,聚合物網路710可包括與陽極702接觸之界面層718。保護層720可安置於界面層718之頂部,其可基於陽極702與聚合物網路710之間的界面處之伍茲反應750。界面層718可具有相對高交聯密度(例如,氟化聚合物及/或類似者)、高金屬-氟化物濃度、及相對低碳-氟鍵濃度。與界面層718相比,保護層720可具有相對低交聯密度、低金屬-氟化物濃度、及高碳-氟鍵濃度。 In one implementation, the polymer network 710 can include an interfacial layer 718 in contact with the anode 702 . A protective layer 720 can be disposed on top of the interface layer 718 , which can be based on the Woods reaction 750 at the interface between the anode 702 and the polymer network 710 . The interfacial layer 718 can have a relatively high crosslink density (eg, fluorinated polymers and/or the like), a high metal-fluoride concentration, and a relatively low carbon-fluorine bond concentration. Compared to the interface layer 718, the protective layer 720 may have a relatively low crosslink density, low metal-fluoride concentration, and high carbon-fluorine bond concentration.

在一些實行方案中,界面層718可包括可交聯單體,諸如甲基丙烯酸酯(MA)、丙烯酸酯、乙烯基官能基、或環氧官能基與胺官能基之組合。在一個實行方案中,保護層720可藉由密度梯度716來表徵。以此方式,密度梯度716可與保護層720之一或多個自我修復性質相關且/或可加強聚合物網路710。在一些實行方案中,在電池循環期間,保護層720可進一步抑制自陽極702之鹼金屬枝晶形成740。 In some implementations, the interface layer 718 can include a crosslinkable monomer such as methacrylate (MA), acrylate, vinyl functional groups, or a combination of epoxy functional groups and amine functional groups. In one implementation, protective layer 720 may be characterized by density gradient 716 . In this manner, density gradient 716 may be correlated with one or more self-healing properties of protective layer 720 and/or may strengthen polymer network 710 . In some implementations, the protective layer 720 can further inhibit alkali metal dendrite formation 740 from the anode 702 during battery cycling.

在操作上,界面層718可藉由在跨陽極702之長度之界面處均勻產生金屬氟化物(例如氟化鋰)來抑制與陽極702相關之鹼金屬枝晶形成740。均勻產生金屬氟化物,例如經由轉化成金屬氟化物,導致枝晶表面溶解,最終抑制 鹼金屬枝晶形成740。另外,在其餘枝晶上氟化聚合物鏈之交聯可進一步抑制鹼金屬枝晶形成740。在一些實行方案中,密度梯度716可經調諧以控制氟化聚合物鏈之間的交聯度。 In operation, interfacial layer 718 can inhibit alkali metal dendrite formation 740 associated with anode 702 by uniformly producing metal fluoride, such as lithium fluoride, at the interface across the length of anode 702 . Uniform generation of metal fluorides, e.g. via conversion to metal fluorides, leading to dendrite surface dissolution, ultimately inhibiting Alkali metal dendrites form 740 . Additionally, crosslinking of the fluorinated polymer chains on the remaining dendrites can further inhibit alkali metal dendrite formation 740 . In some implementations, the density gradient 716 can be tuned to control the degree of crosslinking between fluorinated polymer chains.

圖8A展示根據一些實行方案之具有分級孔隙率之示例性碳質顆粒800的簡化剖視圖。碳質顆粒800可在反應器中合成,且以受控方式輸出,以產生圖1之陰極110及/或陽極120、圖2之陰極210及/或陽極220或圖3之電極300。亦可稱為標的組合物之碳質顆粒800包括彼此嵌套之複數個區域。各區域可包括至少第一孔隙率區域811及第二孔隙率區域812。第一孔隙率區域811可包括複數個第一孔隙801,且第二孔隙率區域812可包括複數個第二孔隙802。在一些態樣中,各區域可藉由至少一些第一孔隙801來與直接相鄰區域隔開。第一孔隙801可分散在碳質顆粒800之整個第一孔隙率區域811中,且第二孔隙802可分散在碳質顆粒800之整個第二孔隙率區域812中。以此方式,第一孔隙801可與第一孔隙密度相關,且第二孔隙802可與不同於第一孔隙密度之第二孔隙密度相關。在一些態樣中,第一孔隙密度可在大約0.0立方公分(cc)/g與2.0cc/g之間,且第二孔隙密度可在大約1.5與5.0cc/g之間。在一些態樣中,第一孔隙801可經組態以保持多硫化物820,且第二孔隙802可提供自碳質顆粒800中之離開通道。 8A shows a simplified cross-sectional view of an exemplary carbonaceous particle 800 with graded porosity, according to some implementations. Carbonaceous particles 800 can be synthesized in a reactor and output in a controlled manner to produce cathode 110 and/or anode 120 of FIG. 1 , cathode 210 and/or anode 220 of FIG. 2 , or electrode 300 of FIG. 3 . Carbonaceous particle 800, which may also be referred to as a subject composition, includes a plurality of regions nested within each other. Each region may include at least a first porosity region 811 and a second porosity region 812 . The first porosity region 811 may include a plurality of first pores 801 , and the second porosity region 812 may include a plurality of second pores 802 . In some aspects, regions can be separated from immediately adjacent regions by at least some first apertures 801 . The first pores 801 may be dispersed throughout the first porosity region 811 of the carbonaceous particle 800 , and the second pores 802 may be dispersed throughout the second porosity region 812 of the carbonaceous particle 800 . In this manner, the first pores 801 can be associated with a first pore density, and the second pores 802 can be associated with a second pore density different from the first pore density. In some aspects, the first pore density can be between about 0.0 cubic centimeter (cc)/g and 2.0 cc/g, and the second pore density can be between about 1.5 and 5.0 cc/g. In some aspects, first pores 801 can be configured to retain polysulfides 820 , and second pores 802 can provide exit channels from within carbonaceous particles 800 .

一組碳質顆粒800可接合在一起以形成碳質聚集物(為簡單起見未展示),且一組碳質聚集物可接合在一起以形成碳質團聚物(為簡單起見未展示)。在一些實行方案中,第一孔隙801及第二孔隙802可分散在藉由相應組之碳質顆粒800來形成之整個聚集物中。在一些態樣中,第一孔隙率區域811可至少部分地由第二孔隙率區域812封裝,以使得相應團聚物可包括一些第一孔隙801及/或一些第二孔隙802。 A set of carbonaceous particles 800 can join together to form a carbonaceous agglomerate (not shown for simplicity), and a set of carbonaceous agglomerates can join together to form a carbonaceous agglomerate (not shown for simplicity) . In some implementations, the first pores 801 and the second pores 802 can be dispersed throughout the aggregate formed by the corresponding set of carbonaceous particles 800 . In some aspects, the first porosity region 811 can be at least partially encapsulated by the second porosity region 812 such that a corresponding agglomerate can include some of the first pores 801 and/or some of the second pores 802 .

在一些實行方案中,碳質顆粒800可具有20nm與150nm之間的近 似範圍中之主要尺寸「A」,藉由一組碳質顆粒800形成之聚集物可具有20nm與10μm之間的近似範圍中之主要尺寸,且藉由一組聚集物形成之團聚物可具有0.1μm與1,000μm之間的近似範圍中之主要尺寸。在一些態樣中,至少一些第一孔隙801及第二孔隙802具有1.3nm與32.3nm之間的近似範圍中之主要尺寸。在一個實行方案中,各第一孔隙801具有0nm與100nm之間的近似範圍中之主要尺寸。 In some implementations, the carbonaceous particles 800 can have an approximate diameter between 20 nm and 150 nm. Major dimension "A" in a similar range, aggregates formed by a set of carbonaceous particles 800 may have major dimensions in an approximate range between 20 nm and 10 μm, and agglomerates formed by a set of aggregates may have Major dimensions in the approximate range between 0.1 μm and 1,000 μm. In some aspects, at least some of the first pores 801 and the second pores 802 have a major dimension in an approximate range between 1.3 nm and 32.3 nm. In one implementation, each first pore 801 has a major dimension in an approximate range between 0 nm and 100 nm.

碳質顆粒800亦可包括沿著碳質顆粒800之周邊810分佈之複數個可變形區域813。碳質顆粒800可沿著具有一或多個其他碳質顆粒之接合邊界(諸如周邊810)來導電。碳質顆粒800亦可限定多硫化物820於第一孔隙801內及/或一或多個阻擋區域822處,由此抑制多硫化物820遷移至陽極且增加鋰離子可自主電池之陽極傳輸至陰極的速率。 The carbonaceous particle 800 may also include a plurality of deformable regions 813 distributed along the perimeter 810 of the carbonaceous particle 800 . Carbonaceous particles 800 may conduct electricity along a bonded boundary, such as perimeter 810, with one or more other carbonaceous particles. The carbonaceous particles 800 can also confine the polysulfides 820 within the first pores 801 and/or at the one or more barrier regions 822, thereby inhibiting the migration of the polysulfides 820 to the anode and increasing the transport of lithium ions from the anode of the autonomous cell to the anode. Cathode speed.

在一些實行方案中,碳質顆粒800可具有10m2/g至3,000m2/g之間的近似範圍內之暴露碳表面的表面積。在其他實行方案中,碳質顆粒800可具有複合表面積,包括微觀限定於許多第一孔隙801及/或許多第二孔隙802內之硫824。如本文所用,微觀限定多硫化物820之第一孔隙801及/或第二孔隙802可稱為「功能性孔隙」。在一些態樣中,碳質顆粒、由對應組之碳質顆粒形成之聚集物、或由對應組之聚集物形成之團聚物中之一或多者可包括經組態以使硫824成核的一或多個暴露碳表面。複合表面積可在大約10m2/g至3,000m2/g之間的範圍內,且碳質顆粒800可具有大約1:5至10:1之間的硫與碳重量比。在一些態樣中,碳質顆粒800可在12,000鎊/平方吋(psi)之壓力下具有100S/m至20,000S/m之間的近似範圍內之電導率。 In some implementations, the carbonaceous particles 800 can have a surface area of exposed carbon surfaces in an approximate range between 10 m 2 /g and 3,000 m 2 /g. In other implementations, the carbonaceous particles 800 may have a composite surface area including sulfur 824 microscopically confined within the plurality of first pores 801 and/or the plurality of second pores 802 . As used herein, the first pores 801 and/or the second pores 802 that microscopically define the polysulfide 820 may be referred to as "functional pores." In some aspects, one or more of the carbonaceous particles, aggregates formed from a corresponding set of carbonaceous particles, or agglomerates formed from a corresponding set of aggregates can include a carbonaceous particle configured to nucleate sulfur 824 one or more exposed carbon surfaces. The composite surface area may range between about 10 m 2 /g and 3,000 m 2 /g, and the carbonaceous particles 800 may have a sulfur to carbon weight ratio between about 1:5 and 10:1. In some aspects, the carbonaceous particles 800 can have a conductivity in an approximate range of between 100 S/m and 20,000 S/m at a pressure of 12,000 pounds per square inch (psi).

在一些實行方案中,碳質顆粒800可包括界面活性劑或聚合物,包括苯乙烯丁二烯橡膠、聚偏二氟乙烯、聚丙烯酸、羧基甲基纖維素、聚乙烯基吡咯啶酮、及/或聚乙酸乙烯酯中之一或多者,其可充當將一組碳質顆粒800接 合在一起之黏合劑。在其他實行方案中,碳質顆粒800可包括安置在至少一些第一孔隙801或第二孔隙802內之凝膠相電解質或固相電解質。 In some implementations, the carbonaceous particles 800 can include surfactants or polymers, including styrene butadiene rubber, polyvinylidene fluoride, polyacrylic acid, carboxymethylcellulose, polyvinylpyrrolidone, and and/or one or more of polyvinyl acetate, which can act as a set of carbonaceous particles 800 Adhesives that hold together. In other implementations, the carbonaceous particles 800 can include a gel phase electrolyte or a solid phase electrolyte disposed within at least some of the first pores 801 or the second pores 802 .

圖8B展示根據一些實行方案之三區段顆粒850之實例的圖。在各個實行方案中,三區段顆粒850可為圖8A之碳質顆粒800之一個實例。三區段顆粒850可包括三個離散區段,諸如(但不限於)第一區段851、第二區段852、及第三區段853。在一些態樣中,區段851-853中之各者包圍且/或封裝前一個區段。例如,第一區段851可由第二區段852包圍或封裝,且第二區段852可由第三區段853包圍或封裝。第一區段851可對應於三區段顆粒850之內部區域,第二區段852可對應於三區段顆粒850之中間過渡區域,且第三區段853可對應於三區段顆粒850之外部區域。在一些態樣中,三區段顆粒850可包括響應於與一或多個相鄰非三區段顆粒及/或三區段顆粒850接觸而變形之滲透性殼855。 8B shows a diagram of an example of a three-segment particle 850, according to some implementations. In various implementations, the three-section particle 850 can be an example of the carbonaceous particle 800 of FIG. 8A. Three-segment particle 850 may include three discrete segments, such as, but not limited to, a first segment 851 , a second segment 852 , and a third segment 853 . In some aspects, each of the segments 851-853 surrounds and/or encapsulates the previous segment. For example, a first section 851 may be surrounded or enclosed by a second section 852 , and the second section 852 may be surrounded or enclosed by a third section 853 . The first segment 851 can correspond to the inner region of the three-segment particle 850, the second segment 852 can correspond to the intermediate transition region of the three-segment particle 850, and the third segment 853 can correspond to the three-segment particle 850. outside area. In some aspects, a three-section particle 850 can include a permeable shell 855 that deforms in response to contact with one or more adjacent non-three-section particles and/or three-section particle 850 .

在一些實行方案中,第一區段851可具有相對低密度、相對低電導率、及相對高孔隙率,第二區段852可具有中等密度、中等電導率、及中等孔隙率,且第三區段853可具有相對高密度、相對高電導率、及相對低孔隙率。在一些態樣中,第一區段851可具有大約1.5g/cc與5.0g/cc之間的碳質材料密度,第二區段852可具有大約0.5g/cc與3.0g/cc之間的碳質材料密度,且第三區段853可具有大約0.0與1.5g/cc之間的碳質材料密度。在其他態樣中,第一區段851可包括寬度在大約0與40nm之間的孔隙,第二區段852可包括寬度在大約0與35nm之間的孔隙,且第三區段853可包括寬度在大約0與30nm之間的孔隙。在一些其他實行方案中,對於三區段顆粒850而言,第二區段852可不加以界定。在一個實行方案中,第一區段851可具有大約0nm與100nm之間的主要尺寸D1,第二區段852可具有大約20nm與150nm之間的主要尺寸D2,且第三區段853可具有大約200nm之主要尺寸D3In some implementations, the first segment 851 can have a relatively low density, relatively low conductivity, and relatively high porosity, the second segment 852 can have a medium density, medium conductivity, and medium porosity, and the third Section 853 may have a relatively high density, relatively high electrical conductivity, and relatively low porosity. In some aspects, the first section 851 can have a carbonaceous material density between about 1.5 g/cc and 5.0 g/cc, and the second section 852 can have a carbonaceous material density between about 0.5 g/cc and 3.0 g/cc. and the third section 853 may have a carbonaceous material density between approximately 0.0 and 1.5 g/cc. In other aspects, the first section 851 can include pores with a width between about 0 and 40 nm, the second section 852 can include pores with a width between about 0 and 35 nm, and the third section 853 can include Pores with a width between approximately 0 and 30 nm. In some other implementations, for a three-segment particle 850, the second segment 852 may not be defined. In one implementation, the first segment 851 can have a major dimension D 1 between about 0 nm and 100 nm, the second segment 852 can have a major dimension D 2 between about 20 nm and 150 nm, and the third segment 853 May have a major dimension D3 of approximately 200 nm.

本揭示案之態樣認識到,三區段顆粒850之獨特佈局以及第一區段 851、第二區段852、及第三區段853之相對尺寸、孔隙率、及電導率可經選擇及/或修改以在使多硫化物穿梭效應最小化與使主電池之比容量最大化之間達成所需平衡。具體而言,在一些態樣中,在一個區段與另一個區段之間,孔隙可在大小及體積上減小。在一些實行方案中,三區段顆粒可完全由具有一系列孔徑及孔隙分佈(例如,孔隙密度)的一個區段組成。對於圖8B之實例,與第一區段851或第一孔隙率區域相關之孔隙861具有相對較大寬度且可經定義為大孔,與第二區段852或第二孔隙率區域相關之孔隙862具有中等大小寬度且可經定義為中孔,且與第三區段853或第三孔隙率區域相關之孔隙863具有相對較小寬度且可經定義為微孔。 Aspects of the present disclosure recognize that the unique layout of the three-segment particle 850 and the first segment The relative size, porosity, and conductivity of 851, second section 852, and third section 853 can be selected and/or modified to minimize polysulfide shuttling and maximize the specific capacity of the main cell achieve the desired balance. Specifically, in some aspects, pores may decrease in size and volume from one section to another. In some implementations, a three-segment particle can consist entirely of one segment with a range of pore sizes and pore distributions (eg, pore densities). For the example of FIG. 8B , the pores 861 associated with the first section 851 or first porosity region have a relatively large width and can be defined as macropores, the pores associated with the second section 852 or second porosity region 862 is of medium size width and may be defined as mesoporous, and pores 863 associated with third section 853 or third porosity region are of relatively small width and may be defined as micropores.

一組三區段顆粒850可接合在一起以形成聚集物(為簡單起見未展示),且一組聚集物可接合在一起以形成團聚物(為簡單起見未展示)。在一些實行方案中,複數個中孔可散佈在由相應組之碳質顆粒800形成之整個聚集物中。在一些態樣中,第一孔隙率區域811可至少部分地由第二孔隙率區域812封裝,以使得相應聚集物可包括一或多個中孔及一或多個大孔。在一個實行方案中,各中孔可具有3.3奈米(nm)與19.3nm之間的主要尺寸,且各大孔可具有0.1μm與1,000μm之間的主要尺寸。在一些情況下,三區段顆粒850可包括彼此交織在一起且藉由至少一些中孔來彼此隔開的碳片段。 A set of three-segment particles 850 can be joined together to form an aggregate (not shown for simplicity), and a set of aggregates can be joined together to form an agglomerate (not shown for simplicity). In some implementations, a plurality of mesopores may be interspersed throughout the aggregate formed by the corresponding set of carbonaceous particles 800 . In some aspects, the first porosity region 811 can be at least partially encapsulated by the second porosity region 812 such that a corresponding aggregate can include one or more mesopores and one or more macropores. In one implementation, each mesopore can have a major dimension between 3.3 nanometers (nm) and 19.3 nm, and each macropore can have a major dimension between 0.1 μm and 1,000 μm. In some cases, the three-segment particle 850 can include carbon segments that are intertwined with each other and separated from each other by at least some mesopores.

在一些實行方案中,三區段顆粒850可包括界面活性劑或聚合物,包括苯乙烯丁二烯橡膠、聚偏二氟乙烯、聚丙烯酸、羧基甲基纖維素、聚乙烯基吡咯啶酮、及/或聚乙酸乙烯酯中之一或多者,其可充當將一組碳質材料接合在一起之黏合劑。在其他實行方案中,三區段顆粒850可包括安置在至少一些孔隙內之凝膠相電解質或固相電解質。 In some implementations, the three-segment particle 850 may include a surfactant or polymer including styrene butadiene rubber, polyvinylidene fluoride, polyacrylic acid, carboxymethylcellulose, polyvinylpyrrolidone, And/or one or more of polyvinyl acetate, which can act as an adhesive to join a set of carbonaceous materials together. In other implementations, the three-segment particle 850 can include a gel phase electrolyte or a solid phase electrolyte disposed within at least some of the pores.

在一些實行方案中,三區段顆粒850可具有10m2/g至3,000m2/g之間的近似範圍內之暴露碳質表面之表面積及/或10m2/g至3,000m2/g之間的近似 範圍內之複合表面積(包括微觀限定於孔隙內之硫)。在一個實行方案中,包括許多三區段顆粒850之標的組合物可具有在12,000鎊/平方吋(psi)之壓力下100S/m至20,000S/m之間的近似範圍內之電導率及大約1:5至10:1之間的硫與碳重量比。 In some implementations, the three-segment particle 850 can have a surface area of exposed carbonaceous surfaces in the approximate range between 10 m 2 /g and 3,000 m 2 /g and/or between 10 m 2 /g and 3,000 m 2 /g. Composite surface area in the approximate range between (including sulfur microscopically confined within pores). In one implementation, a target composition comprising a plurality of three-segmented particles 850 may have a conductivity in the approximate range of between 100 S/m and 20,000 S/m at a pressure of 12,000 pounds per square inch (psi) and about Sulfur to carbon weight ratio between 1:5 and 10:1.

圖8C展示代表根據一些實行方案之圖8B之三區段顆粒850的各區域中之平均孔隙體積的示例性階梯函數800C。正如所論述,分佈於整個三區段顆粒850中之孔隙可具有不同大小、體積、或分佈。在一些實行方案中,平均孔隙體積可基於三區段顆粒850之中心與相鄰區段之間的距離而減小,例如使得與第一區段851或第一孔隙率區域相關之孔隙具有相對較大體積或孔徑,與第二區段852或第二孔隙率區域相關之孔隙具有中等體積,且與第三區段853或第三孔隙率區域相關之孔隙具有相對小體積。與接近周邊之區域相比,內部區域具有更高孔隙體積。具有更高孔隙體積之區域提供較高硫負載,而較低孔隙體積外部區域減輕在電池循環期間多硫化物之遷移。在圖8C之實例中,內部區域中之平均孔隙體積為大約3cc/g,最外面區域中之平均孔隙體積為-0.5cc/g,且中間區域中之平均孔隙體積為0.5cc/g與3cc/g之間。 FIG. 8C shows an exemplary step function 800C representative of the average pore volume in each region of the three-segment particle 850 of FIG. 8B , according to some implementations. As discussed, the pores distributed throughout the three-section particle 850 may have different sizes, volumes, or distributions. In some implementations, the average pore volume can be reduced based on the distance between the center of the three-segment particle 850 and adjacent segments, for example such that the pores associated with the first segment 851 or first porosity region have a relative Larger volume or pore size, the pores associated with the second section 852 or second porosity region have an intermediate volume and the pores associated with the third section 853 or third porosity region have a relatively small volume. The inner region has a higher pore volume than the region near the periphery. Regions with higher pore volume provide higher sulfur loading, while lower pore volume outer regions mitigate polysulfide migration during cell cycling. In the example of Figure 8C, the average pore volume in the inner region is about 3cc/g, the average pore volume in the outermost region is -0.5cc/g, and the average pore volume in the middle region is 0.5cc/g and 3cc /g between.

圖8D展示描繪本文所述的碳質顆粒之孔隙體積與孔隙寬度關係之示例性分佈的圖表800D。如圖表800D所描繪,與相對較高孔隙體積相關之孔隙可具有相對較低孔隙寬度,例如,使得當孔隙體積減少時,孔隙寬度總體增加。在一些態樣中,具有小於大約1.0nm之孔隙寬度之孔隙可稱為微孔,具有大約3與11nm之間的孔隙寬度之孔隙可稱為中孔,且具有大於大約24nm之孔隙寬度之孔隙可稱為大孔。 FIG. 8D shows a graph 800D depicting an exemplary distribution of pore volume versus pore width for carbonaceous particles described herein. As depicted in graph 800D, pores associated with relatively higher pore volumes may have relatively lower pore widths, eg, such that as pore volume decreases, pore widths generally increase. In some aspects, pores with a pore width less than about 1.0 nm may be referred to as micropores, pores with a pore width between about 3 and 11 nm may be referred to as mesopores, and pores with a pore width greater than about 24 nm May be called macropores.

圖9A展示根據一些實行方案之複數個碳質結構902之顯微照片900。在一些實行方案中,碳質結構902中之各者可具有基本上中空之核心區域,其由各種整體碳生長及/或分層來包圍。在一些態樣中,整體碳生長及/或分層可 為參考圖8A及8B所描述之整體碳生長及/或分層之實例。在一些情況下,碳質結構902可包括以不同密度及/或濃度水準來組織之多個同心多層富勒烯及/或類似地成形碳質結構。例如,碳質結構902中之各者之實際最終形狀、大小、及石墨烯組態可視各種製造方法而定。在一些態樣中,碳質結構902可表現出較差水溶性。因此,在一些實行方案中,非共價官能化可用於改變碳質結構902之一或多種分散性性質而不會影響底層碳奈米材料之內在性質。在一些態樣中,底層碳奈米材料可為構成性sp2碳奈米材料。在一些實行方案中,碳質結構902中之各者可具有大約20與500nm之間的直徑。在各個實行方案中,各組碳質結構902可聚結及/或接合在一起以形成聚集物904。另外,各組聚集物904可聚結及/或接合在一起以形成團聚物906。在一些態樣中,碳質結構902、聚集物904、及/或團聚物906中之一或多者可用於形成圖1之電池100、圖2之電池200、或圖3之電極300之陽極及/或陰極。 Figure 9A shows a photomicrograph 900 of a plurality of carbonaceous structures 902, according to some implementations. In some implementations, each of the carbonaceous structures 902 can have a substantially hollow core region surrounded by various bulk carbon growths and/or layers. In some aspects, the bulk carbon growth and/or layering may be an example of the bulk carbon growth and/or layering described with reference to Figures 8A and 8B. In some cases, carbonaceous structure 902 can include multiple concentric multilayered fullerenes organized at different densities and/or concentration levels and/or similarly shaped carbonaceous structures. For example, the actual final shape, size, and graphene configuration of each of carbonaceous structures 902 may depend on various fabrication methods. In some aspects, carbonaceous structure 902 may exhibit poor water solubility. Thus, in some implementations, non-covalent functionalization can be used to alter one or more dispersive properties of the carbonaceous structure 902 without affecting the intrinsic properties of the underlying carbon nanomaterial. In some aspects, the underlying carbon nanomaterial can be a constitutive sp2 carbon nanomaterial. In some implementations, each of the carbonaceous structures 902 can have a diameter between approximately 20 and 500 nm. In various implementations, groups of carbonaceous structures 902 can coalesce and/or join together to form aggregate 904 . Additionally, groups of aggregates 904 may coalesce and/or join together to form agglomerates 906 . In some aspects, one or more of carbonaceous structures 902, aggregates 904, and/or aggregates 906 may be used to form the anode of battery 100 of FIG. 1, battery 200 of FIG. 2, or electrode 300 of FIG. and/or cathode.

圖9B展示根據一些實行方案之由碳質材料形成之聚集物的顯微照片950。在一些實行方案中,聚集物960可為圖9A之聚集物904中之一者的實例。在一個實行方案中,外部碳質殼型結構952可與藉由其他碳質殼型結構954提供之碳融合在一起以形成碳質結構956。一組碳質結構956可彼此聚結及/或接合以形成聚集物1010。在一些態樣中,碳質結構956中之各者之核心區域958可為可調的,例如,因為核心區域958可包括各種界定濃度水準之互連石墨烯結構,如參考圖8A及/或圖8B所描述。在一些實行方案中,一些碳質結構956可在外部碳質殼型結構952處或附近具有大約0.1g/cc與2.3g/cc之間的第一濃度之互連碳。碳質結構956中之各者可具有將向內延伸之鋰離子傳輸至核心區域1008的孔隙。 FIG. 9B shows a photomicrograph 950 of aggregates formed from carbonaceous material, according to some implementations. In some implementations, aggregate 960 can be an instance of one of aggregates 904 of Figure 9A. In one implementation, outer carbonaceous shell structure 952 may fuse with carbon provided by other carbonaceous shell structures 954 to form carbonaceous structure 956 . A set of carbonaceous structures 956 may coalesce and/or join with each other to form aggregate 1010 . In some aspects, the core region 958 of each of the carbonaceous structures 956 may be tunable, for example, in that the core region 958 may include various defined concentration levels of interconnected graphene structures, as described with reference to FIG. 8A and/or Figure 8B depicts. In some implementations, some of the carbonaceous structures 956 can have a first concentration of interconnected carbon between about 0.1 g/cc and 2.3 g/cc at or near the outer carbonaceous shell structure 952 . Each of the carbonaceous structures 956 may have pores that transport inwardly extending lithium ions to the core region 1008 .

在一些實行方案中,碳質結構956中之各者中之孔隙可具有大約0.0nm與0.5nm之間、大約0.0與0.1nm之間、大約0.0與6.0nm之間、或大約0.0 與35nm之間的寬度或尺寸。各碳質結構956亦可在核心區域958處或附近具有不同於第一濃度之第二濃度。例如,第二濃度可包括經同心佈置之多個相對較低密度碳質區域。在一個實行方案中,第二濃度可低於第一濃度,在大約0.0g/cc與1.0g/cc之間或在大約1.0g/cc與1.5g/cc之間。在一些態樣中,第一濃度及第二濃度之間的關係可用於在將硫或多硫化物限定在相應電極內與使鋰離子之傳輸最大化之間達成平衡。例如,在鋰硫電池之操作循環期間,硫及/或多硫化物可行進穿過第一濃度且至少暫時限定於及/或散佈於整個第二濃度中。 In some implementations, the pores in each of the carbonaceous structures 956 can have between about 0.0 nm and 0.5 nm, between about 0.0 and 0.1 nm, between about 0.0 and 6.0 nm, or about 0.0 nm. and a width or dimension between 35nm. Each carbonaceous structure 956 can also have a second concentration different from the first concentration at or near the core region 958 . For example, the second concentration may include a plurality of relatively lower density carbonaceous regions arranged concentrically. In one implementation, the second concentration may be lower than the first concentration, between about 0.0 g/cc and 1.0 g/cc or between about 1.0 g/cc and 1.5 g/cc. In some aspects, the relationship between the first concentration and the second concentration can be used to strike a balance between confining sulfur or polysulfides within the respective electrode and maximizing the transport of lithium ions. For example, during an operating cycle of a lithium-sulfur battery, sulfur and/or polysulfides may travel through the first concentration and be at least temporarily confined and/or dispersed throughout the second concentration.

在一些實行方案中,至少一些碳質結構956可包括經組織為整體及/或互連生長且在熱反應器中產生的CNO氧化物。例如,碳質結構956可根據以下實例配方用鈷奈米顆粒來修飾:乙酸鈷(II)(C4H6CoO4),乙酸之鈷鹽(通常以四水合物Co(CH3CO2)2.4 H2O形式存在,其可縮寫為Co(OAc)2.4 H2O,其可以對應於40.40重量%碳(係指呈CNO形式之碳)的大約59.60重量%之比率流動至熱反應器中,導致CNO氧化物上之活性位點用鈷官能化,相應地展示在15,000x水準下之經鈷修飾CNO。在一些實行方案中,用於產生碳#29及/或經鈷修飾CNO之合適氣體混合物可包括以下步驟:●0.75標準立方公尺/分鐘(scfm)之Ar吹掃持續30min;●改變至0.25scfm之Ar吹掃以進行運行;●溫度增加:25℃至300℃ 20min;及●溫度增加:300°-500℃ 15min。 In some implementations, at least some of the carbonaceous structures 956 can include CNO oxide grown in an organized monolith and/or interconnected and produced in a thermal reactor. For example, the carbonaceous structure 956 can be decorated with cobalt nanoparticles according to the following example recipe: cobalt(II) acetate (C 4 H 6 CoO 4 ), cobalt salt of acetic acid (usually as tetrahydrate Co(CH 3 CO 2 ) 2.4 H 2 O exists in the form, which can be abbreviated as Co(OAc) 2 .4 H 2 O, which can flow to In a thermal reactor, the active sites on the CNO oxide are functionalized with cobalt, correspondingly showing cobalt-modified CNO at the 15,000x level. In some implementations, used to produce carbon #29 and/or cobalt-coated A suitable gas mixture for modifying CNO may include the following steps: 0.75 standard cubic meter per minute (scfm) Ar purge for 30 min; change to 0.25 scfm Ar purge for run; °C for 20 min; and - temperature increase: 300°-500°C for 15 min.

參考圖9A及9B所描述之碳質材料可包括石墨烯之一或多個實例或以其他方式由其形成,其可包括碳原子單層,其中各原子在蜂窩結構中結合至三個相鄰原子。單層可為限於一維度之鬆散材料,諸如在凝聚相內或表面處。例如,石墨烯可僅在x及y平面(而不在z平面)中向外生長。以此方式,石墨烯可為二維(2D)材料,包括一或多個層,其中各層中之原子強烈鍵結至(諸如藉由 複數個碳-碳鍵)同一層中之相鄰原子。 The carbonaceous materials described with reference to FIGS. 9A and 9B may include or otherwise be formed from one or more instances of graphene, which may include a monolayer of carbon atoms, where each atom is bonded to three adjacent atoms in a honeycomb structure. atom. A monolayer may be a bulk material confined to one dimension, such as within a condensed phase or at a surface. For example, graphene can only grow outward in the x and y planes, but not in the z plane. In this way, graphene can be a two-dimensional (2D) material comprising one or more layers in which the atoms in each layer are strongly bonded to (such as by Multiple carbon-carbon bonds) Adjacent atoms in the same layer.

在一些實行方案中,石墨烯奈米片(例如,包括在各碳質結構956中之構成性結構)可包括石墨烯之多個實例,諸如第一石墨烯層、第二石墨烯層、及第三石墨烯層,其全部在垂直方向上彼此堆疊在一起。可稱為GNP之石墨烯奈米片中之各者可具有1nm與3nm之間的厚度,且可具有在大約100nm至100μm範圍內之橫向尺寸。在一些實行方案中,石墨烯奈米片可使用依序佈置之多個電漿噴鍍槍藉由輥對輥(R2R)生產來產生。在一些態樣中,R2R生產可包括在經加工為捲曲薄片之連續基板上沉積,包括將2D材料轉移至單獨基板。在一些情況下,R2R生產可用於形成圖3之電極300之第一薄膜310及/或第二薄膜320,例如使得第一薄膜310內之第一聚集物312的濃度水準不同於第二薄膜320內之第二聚集物322的濃度水準。亦即,用於R2R製程中之電漿噴鍍槍可噴霧不同濃度水準之碳質材料,以使用特定濃度水準之石墨烯奈米片來產生第一薄膜310及/或第二薄膜320。因此,R2R製程可為圖1之電池100及/或圖2之電池200提供精細可調諧性水準。 In some implementations, the graphene nanosheets (e.g., the constituent structures included in each carbonaceous structure 956) can include multiple instances of graphene, such as a first graphene layer, a second graphene layer, and A third graphene layer, all of which are vertically stacked on top of each other. Each of the graphene nanosheets, which may be referred to as GNPs, may have a thickness between 1 nm and 3 nm, and may have lateral dimensions in the range of approximately 100 nm to 100 μm. In some implementations, graphene nanosheets can be produced by roll-to-roll (R2R) production using multiple plasma spray guns arranged in sequence. In some aspects, R2R production may include deposition on a continuous substrate processed as a rolled sheet, including transfer of 2D material to a separate substrate. In some cases, R2R produces first film 310 and/or second film 320 that can be used to form electrode 300 of FIG. The concentration level of the second aggregate 322 within. That is, the plasma spraying gun used in the R2R process can spray carbonaceous materials at different concentration levels to use graphene nanosheets at a specific concentration level to produce the first thin film 310 and/or the second thin film 320 . Thus, the R2R process may provide a fine level of tunability for the battery 100 of FIG. 1 and/or the battery 200 of FIG. 2 .

圖10A及10B展示根據一些實行方案之用二氧化碳(CO2)處理之碳質顆粒的相應透射電子顯微鏡(TEM)影像1000及1050。圖10A及10B中所展示之碳質顆粒可包括石墨烯之一或多個實例或以其他方式由其形成,其可包括單層碳原子,其中各原子在蜂窩結構中結合至三個相鄰原子。 10A and 10B show corresponding transmission electron microscope (TEM) images 1000 and 1050 of carbonaceous particles treated with carbon dioxide (CO 2 ), according to some implementations. The carbonaceous particles shown in FIGS. 10A and 10B may include or otherwise be formed from one or more instances of graphene, which may include a single layer of carbon atoms, where each atom is bonded to three adjacent atoms in a honeycomb structure. atom.

圖11展示描繪根據一些實行方案之各種碳質聚集物之碳孔隙率類型的圖1100。在各個實行方案中,參考圖11描述之碳質聚集物可為圖9A之聚集物904及/或圖9B之碳質結構956的實例。在一些態樣中,參考圖11描述之碳質聚集物可用於形成圖3之電極300。正如所論述,聚集物可由一組碳質結構形成或可包括一組碳質結構,例如圖9A之碳質結構902或圖9B之碳質結構956。在一些態樣中,碳質結構可為CNO。 11 shows a graph 1100 depicting carbon porosity types for various carbonaceous aggregates, according to some implementations. In various implementations, the carbonaceous aggregates described with reference to FIG. 11 may be examples of aggregates 904 of FIG. 9A and/or carbonaceous structures 956 of FIG. 9B. In some aspects, the carbonaceous aggregates described with reference to FIG. 11 may be used to form electrode 300 of FIG. 3 . As discussed, aggregates may be formed from or may include a set of carbonaceous structures, such as carbonaceous structure 902 of Figure 9A or carbonaceous structure 956 of Figure 9B. In some aspects, the carbonaceous structure can be CNO.

碳質結構可用於形成具有圖1100中展示之任何孔隙率類型的電極(諸如圖3之電極300)。例如,電極可包括孔隙率1型1110、孔隙率II型1120、及孔隙率III型1130中之任一者。在一些實行方案中,孔隙率1型1110可包括第一孔隙1111、第二孔隙1112、及第三孔隙1113,其全部用小於5nm之主要尺寸來設定大小以保持多硫化物於電極內。一些多硫化物在形成較大錯合物後尺寸可生長,且變得固定不動地滯留於孔隙率I型1110之孔隙內。在一些實行方案中,聚集物可接合在一起以產生孔隙率II型1120及/或孔隙率III型1130之孔隙,其可保持更大多硫化物及/或多硫化物錯合物。 The carbonaceous structure can be used to form electrodes (such as electrode 300 of FIG. 3 ) with any of the porosity types shown in diagram 1100 . For example, the electrodes may include any of porosity type 1 1110 , porosity type II 1120 , and porosity type III 1130 . In some implementations, porosity type 1 1110 can include first pores 1111, second pores 1112, and third pores 1113, all sized with a major dimension of less than 5 nm to retain polysulfides within the electrode. Some polysulfides can grow in size after forming larger complexes and become immobilized in the pores of porosity type I 1110. In some implementations, aggregates can join together to create porosity type II 1120 and/or porosity type III 1130 pores that can hold larger polysulfides and/or polysulfide complexes.

圖12展示描繪根據一些實行方案之示例性電極之孔徑與孔隙分佈關係的圖表1200。如本文所用,「碳1」係指主要包括微孔(諸如在主要尺寸方面小於5nm)的結構化碳質材料,且「碳2」係指主要包括中孔(諸如在主要尺寸方面在大約20nm至50nm之間)的結構化碳質材料。在一些實行方案中,適用於本文揭示之電池中之一者中的電極可經製備成具有圖表1200中描繪之孔徑與孔隙分佈關係。 12 shows a graph 1200 depicting pore size versus pore distribution for an exemplary electrode, according to some implementations. As used herein, "carbon 1" refers to a structured carbonaceous material comprising predominantly micropores, such as less than 5 nm in major dimension, and "carbon 2" refers to a structured carbonaceous material comprising predominantly mesopores, such as approximately 20 nm in major dimension. to 50nm) structured carbonaceous materials. In some implementations, electrodes suitable for use in one of the batteries disclosed herein can be prepared to have the pore size versus pore distribution relationship depicted in graph 1200 .

圖13展示描繪根據一些實行方案之按照循環數之電池性能的第一圖表1300及第二圖表1310。具體而言,第一圖表1300展示相對於使用習知電解質之習知電池之比放電容量,使用本文揭示之電解質1302之示例性電池的比放電容量。第二圖表展示相對於使用習知電解質之電池之容量保持能力,使用電解質1302之電池的容量保持能力。在一些態樣中,電解質1302可為圖1之電解質130或圖2之電解質230的一個實例。在第一圖表1300及第二圖表1310中,習知電解質經製備為具有2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=1:1:1)中之1M LiTFSI。 13 shows a first graph 1300 and a second graph 1310 depicting battery performance by cycle number, according to some implementations. In particular, a first graph 1300 shows the specific discharge capacity of an exemplary battery using an electrolyte 1302 disclosed herein relative to the specific discharge capacity of a conventional battery using a conventional electrolyte. The second graph shows the capacity retention of a battery using electrolyte 1302 relative to the capacity retention of a battery using a conventional electrolyte. In some aspects, electrolyte 1302 may be an example of electrolyte 130 of FIG. 1 or electrolyte 230 of FIG. 2 . In the first graph 1300 and the second graph 1310, the conventional electrolyte was prepared as 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=1:1:1) with 2 wt% LiNO3 .

圖14展示根據一些實行方案之按照循環數之電池性能的條形圖1400。具體而言,條形圖1400描繪相對於使用習知電解質之習知電池之按照循 環數之比放電容量,使用本文揭示之電解質1402之示例性電池的按照循環數之比放電容量。在一些態樣中,電解質1402可為圖1之電解質130或圖2之電解質230的一個實例。在條形圖1400中,習知電解質經製備為於DME:DOL:TEGDME(體積:體積:體積=1:1:1)中之1M LiTFSI。條形圖1400展示,與使用習知電解質之電池相比,在示例性電池(諸如圖1之電池100或圖2之電池200)中使用電解質1402可將電池之比放電容量在第3循環數下增加大約28%,在第50循環數下增加大約30%,且在第60循環數下增加大約39%。 FIG. 14 shows a bar graph 1400 of battery performance by number of cycles, according to some implementations. In particular, bar graph 1400 depicts the following cycle relative to a conventional battery using a conventional electrolyte. Specific discharge capacity by number of cycles, specific discharge capacity by number of cycles for an exemplary cell using the electrolyte 1402 disclosed herein. In some aspects, electrolyte 1402 may be an example of electrolyte 130 of FIG. 1 or electrolyte 230 of FIG. 2 . In bar graph 1400, a conventional electrolyte was prepared as 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=1:1:1). Bar graph 1400 shows that the use of electrolyte 1402 in an exemplary battery, such as battery 100 of FIG. 1 or battery 200 of FIG. 2 , can increase the specific discharge capacity of the battery at 3 cycles compared to batteries using conventional electrolytes. The increase was about 28% at 0, about 30% at cycle number 50, and about 39% at cycle number 60.

圖15展示描繪根據一些實行方案之按照循環數之電池性能的第一圖表1500及第二圖表1510。具體而言,第一圖表1500展示相對於使用習知電解質之示例性鋰硫紐扣電池的按照循環數之電極放電容量,使用本文揭示之電解質1502之示例性鋰硫紐扣電池的按照循環數之電極放電容量,且第二圖表1510展示相對於使用習知電解質之鋰硫紐扣電池的按照循環數之電極放電容量,使用電解質1502之鋰硫紐扣電池的按照循環數之容量保持能力。在一些態樣中,電解質1502可為圖1之電解質130或圖2之電解質230的一個實例。鋰硫紐扣電池在1C(諸如在一小時內完全放電)之放電速率下、在100%放電深度(DOD)下循環且保持在大約室溫(68℉或20℃)下。習知電解質經製備為具有2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=1:1:1)中之1M LiTFSI。 15 shows a first graph 1500 and a second graph 1510 depicting battery performance by cycle number, according to some implementations. In particular, a first graph 1500 shows the electrode by cycle number of an exemplary lithium sulfur button cell using the electrolyte 1502 disclosed herein relative to the electrode discharge capacity by cycle number of an exemplary lithium sulfur button cell using a conventional electrolyte Discharge capacity, and the second graph 1510 shows the capacity retention by cycle of a lithium sulfur button cell using electrolyte 1502 relative to the electrode discharge capacity by cycle of a lithium sulfur button cell using a conventional electrolyte. In some aspects, electrolyte 1502 may be an example of electrolyte 130 of FIG. 1 or electrolyte 230 of FIG. 2 . Lithium-sulfur button cells are cycled at 100% depth of discharge (DOD) at a discharge rate of 1C (such as fully discharged in one hour) and maintained at approximately room temperature (68°F or 20°C). A conventional electrolyte was prepared as 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=1:1:1) with 2 wt% LiNO3 .

圖16展示描繪根據一些實行方案之按照循環數之電極放電容量的圖表1600。具體而言,圖表1600描繪相對於使用習知電解質之習知電池之電極放電容量,使用本文揭示之電解質1602之示例性電池的按照循環數之電極放電容量。在一些態樣中,電解質1602可為圖1之電解質130或圖2之電解質230的一個實例。習知電解質經製備為具有2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=1:1:1)中之1M LiTFSI,且電解質1602經製備為具有2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=58:29:13)中之1M LiTFSI。 FIG. 16 shows a graph 1600 depicting electrode discharge capacity by cycle number, according to some implementations. In particular, graph 1600 depicts the electrode discharge capacity as a function of cycle number for an exemplary battery using an electrolyte 1602 disclosed herein relative to the electrode discharge capacity of a conventional battery using a conventional electrolyte. In some aspects, electrolyte 1602 may be an example of electrolyte 130 of FIG. 1 or electrolyte 230 of FIG. 2 . The conventional electrolyte was prepared with 2 wt% LiNO3 in 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=1:1:1), and the electrolyte 1602 was prepared with 2 wt% LiNO3 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=58:29:13).

圖17展示描繪根據一些實行方案之按照循環數之電極放電容量的另一圖表1700。具體而言,圖表1700描繪相對於使用習知電解質及溶劑套裝之習知電池之電極放電容量,使用本文揭示之電解質1702及溶劑套裝1704之示例性電池的按照循環數之電極放電容量。習知電解質經製備為具有約2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=1:1:1)中之1M LiTFSI,且電解質1702經製備為具有2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=58:29:13)中之1M LiTFSI。習知溶劑套裝經製備為於DME:DOL:TEGDME(體積:體積:體積=1:1:1)中之1M LiTFSI,且溶劑套裝1704經製備為於DME:DOL:TEGDME(體積:體積:體積=58:29:13)中之1M LiTFSI。 FIG. 17 shows another graph 1700 depicting electrode discharge capacity by cycle number, according to some implementations. In particular, graph 1700 depicts electrode discharge capacity as a function of cycle number for an exemplary battery using electrolyte 1702 and solvent set 1704 disclosed herein relative to electrode discharge capacity of a conventional battery using a conventional electrolyte and solvent set. The conventional electrolyte was prepared with about 2 wt% LiNO3 in 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=1:1:1), and the electrolyte 1702 was prepared with 2 wt% LiNO3 For DME: 1M LiTFSI in DOL:TEGDME (vol:vol:vol=58:29:13). The conventional solvent set was prepared as 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=1:1:1), and the solvent set 1704 was prepared as 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=1:1:1). =58:29:13) of 1M LiTFSI.

圖18展示描繪根據一些實行方案之各種含有TBT之電解質混合物的按照循環數之比放電容量的圖表1800。如圖表1800展示,「181」指示沒有任何TBT添加之電解質,導致0M TBT濃度水準,「181-25TBT」指示以25M TBT濃度水準來製備之電解質,依此類推等等。在一些實行方案中,相對於沒有任何TBT添加之電解質,5M TBT濃度水準可導致近似70mAh/g放電容量增加。 18 shows a graph 1800 depicting discharge capacity as a function of cycle number for various TBT-containing electrolyte mixtures, according to some implementations. As shown in graph 1800, "181" indicates electrolyte without any TBT addition, resulting in 0M TBT concentration level, "181-25TBT" indicates electrolyte prepared at 25M TBT concentration level, and so on. In some implementations, a 5M TBT concentration level can result in an approximate 70 mAh/g increase in discharge capacity relative to an electrolyte without any TBT addition.

圖19展示根據一些實行方案之描繪按照循環數之電極放電容量的第一圖表1900及描繪按照循環數之電極容量保持能力的第二圖表1910。具體而言,第一圖表1900描繪相對於不包括本文揭示之保護性晶格之示例性電池的電極放電容量,包括本文揭示之保護性晶格之示例性電池的按照循環數之電極放電容量。第二圖表1910描繪相對於不包括本文揭示之保護性晶格之示例性電池的電極容量保持能力,包括本文揭示之保護性晶格之示例性電池的按照循環數之電極容量保持能力。在一些態樣中,保護性晶格可為圖4之保護性晶格402之一個實例。第一圖表1900及第二圖表1910之性能結果包括使用經製備為具有2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=58:29:13)中之1M LiTFSI的電解質。 19 shows a first graph 1900 depicting electrode discharge capacity by cycle number and a second graph 1910 depicting electrode capacity retention by cycle number, according to some implementations. In particular, a first graph 1900 depicts the electrode discharge capacity by cycle number of an exemplary battery including a protective lattice disclosed herein relative to the electrode discharge capacity of an exemplary battery not including a protective lattice disclosed herein. A second graph 1910 depicts the electrode capacity retention by cycle number of an exemplary battery including a protective lattice disclosed herein relative to the electrode capacity retention of an exemplary battery not including a protective lattice disclosed herein. In some aspects, the protective lattice can be an example of protective lattice 402 of FIG. 4 . The performance results of the first graph 1900 and the second graph 1910 include using an electrolyte prepared with 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=58:29:13) with 2 wt% LiNO3 .

圖20展示根據其他實行方案之描繪按照循環數之電極放電容量的第一圖表2000及描繪按照循環數之電極容量保持能力的第二圖表2010。具體而言,第一圖表2000描繪了包括圖7之聚合物網路之示例性電池的按照循環數之電極放電容量。第二圖表2010描繪了包括圖7之聚合物網路之示例性電池的按照循環數之放電容量保持能力。電池可為圖1之電池100或圖2之電池200之一個實例。第一圖表2000及第二圖表2010之性能結果包括使用經製備為具有2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=58:29:13)中之1M LiTFSI的電解質。 20 shows a first graph 2000 depicting electrode discharge capacity by cycle number and a second graph 2010 depicting electrode capacity retention by cycle number according to other implementations. Specifically, a first graph 2000 depicts electrode discharge capacity by cycle number for an exemplary battery comprising the polymer network of FIG. 7 . A second graph 2010 depicts the discharge capacity retention capability by number of cycles for an exemplary battery comprising the polymer network of FIG. 7 . The battery may be an example of the battery 100 of FIG. 1 or the battery 200 of FIG. 2 . The performance results of the first graph 2000 and the second graph 2010 include using an electrolyte prepared with 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=58:29:13) with 2 wt% LiNO3 .

圖21展示根據一些其他實行方案之描繪按照循環數之電極放電容量的第一圖表2100及描繪按照循環數之電極容量保持能力的第二圖表2110。具體而言,第一圖表2100描繪了包括圖5之保護層516之示例性電池的按照循環數之電極放電容量。第二圖表2110描繪了包括圖5之保護層516之示例性電池的按照循環數之放電容量保持能力。電池可為圖1之電池100或圖2之電池200之一個實例。第一圖表1900及第二圖表1910之性能結果包括使用經製備為具有2重量% LiNO3之於DME:DOL:TEGDME(體積:體積:體積=58:29:13)中之1M LiTFSI的電解質。 21 shows a first graph 2100 depicting electrode discharge capacity by cycle number and a second graph 2110 depicting electrode capacity retention by cycle number, according to some other implementations. Specifically, a first graph 2100 depicts electrode discharge capacity by cycle number for an exemplary battery that includes protective layer 516 of FIG. 5 . A second graph 2110 depicts the discharge capacity retention capability by number of cycles for an exemplary battery including the protective layer 516 of FIG. 5 . The battery may be an example of the battery 100 of FIG. 1 or the battery 200 of FIG. 2 . The performance results of the first graph 1900 and the second graph 1910 include using an electrolyte prepared with 1M LiTFSI in DME:DOL:TEGDME (vol:vol:vol=58:29:13) with 2 wt% LiNO3 .

圖22展示根據一些實行方案之具有主體2201及寬度2205之示例性陰極2200。在一些實行方案中,陰極2200可為圖3之電極300之一個實例。陰極2200可在許多方面類似於圖3之電極300,使得相同元件之描述在此不予以重複。在一個實行方案中,陰極2200包括第一多孔碳質區域2210及與第一多孔碳質區域2210相鄰定位之第二多孔碳質區域2220。第一多孔碳質區域2210可由第一濃度水準之碳質材料形成,且第二多孔碳質區域2220由與第一濃度水準之碳質材料不同的第二濃度水準之碳質材料形成。例如,第二多孔碳質區域2220 可具有比第一多孔碳質區域2210更低濃度水準之碳質材料,如圖22展示。在一些態樣中,額外多孔碳質區域(為簡單起見,圖22中未展示)可與至少第二多孔碳質區域耦合。 22 shows an exemplary cathode 2200 having a body 2201 and a width 2205 according to some implementations. In some implementations, cathode 2200 may be an example of electrode 300 of FIG. 3 . Cathode 2200 may be similar in many respects to electrode 300 of FIG. 3 such that description of identical elements is not repeated here. In one implementation, the cathode 2200 includes a first porous carbonaceous region 2210 and a second porous carbonaceous region 2220 positioned adjacent to the first porous carbonaceous region 2210 . The first porous carbonaceous region 2210 may be formed of a first concentration level of carbonaceous material, and the second porous carbonaceous region 2220 is formed of a second concentration level of carbonaceous material different from the first concentration level of carbonaceous material. For example, the second porous carbonaceous region 2220 There may be a lower concentration level of carbonaceous material than the first porous carbonaceous region 2210, as shown in FIG. 22 . In some aspects, an additional porous carbonaceous region (not shown in FIG. 22 for simplicity) can be coupled with at least a second porous carbonaceous region.

具體而言,此等額外多孔碳質區域可在遠離第一多孔碳質區域2210之方向上、以碳質材料之濃度水準逐步降低之次序來佈置以提供完全離子傳輸及電流可調諧性。亦即,在一個實行方案中,第二多孔碳質區域2220可面向本體電解質(例如,以液相來提供),且陰極2200之第一多孔碳質區域2210可與集電器(為簡單起見,圖22中未展示)耦合。以此方式,相對於習知鋰離子電池,更緻密碳質區域(諸如第一多孔碳質區域2210)可在碳質材料之相鄰接觸點之間有利於更高電導水準(圖22中展示為「e-」),而更稀疏碳質區域(諸如第二多孔碳質區域2220)可有利於與經改善鋰硫電池放電-充電循環相關的更高水準之鋰離子傳輸。在一些實行方案中,與第二多孔碳質區域2220耦合且相鄰定位之額外碳質區域可具有比第二多孔碳質區域2220更低密度之碳質材料。以此方式,更低密度之額外碳質區域可適應更高水準之鋰離子傳輸,以例如允許調諧電極300之各種性能特徵。 In particular, the additional porous carbonaceous regions may be arranged in order of decreasing concentration levels of carbonaceous material in a direction away from the first porous carbonaceous region 2210 to provide complete ion transport and current tunability. That is, in one implementation, the second porous carbonaceous region 2220 can face the bulk electrolyte (e.g., provided in a liquid phase), and the first porous carbonaceous region 2210 of the cathode 2200 can be connected to the current collector (for simplicity The coupling is not shown in Figure 22 for the sake of In this way, a denser carbonaceous region, such as the first porous carbonaceous region 2210, can facilitate a higher level of electrical conductance between adjacent contacts of the carbonaceous material relative to conventional lithium-ion cells (Figure 22 shown as "e "), while more sparse carbonaceous regions, such as the second porous carbonaceous region 2220, can facilitate higher levels of lithium ion transport associated with improved lithium-sulfur battery discharge-charge cycling. In some implementations, the additional carbonaceous region coupled to and positioned adjacent to the second porous carbonaceous region 2220 can have a lower density of carbonaceous material than the second porous carbonaceous region 2220 . In this way, lower density additional carbonaceous regions can accommodate higher levels of lithium ion transport, eg, to allow tuning of various performance characteristics of electrode 300 .

在一個實行方案中,第一多孔碳質區域2210可包括第一非三區段顆粒2211。第一多孔碳質區域內之第一非三區段顆粒2211之組態為一個示例性組態。對於非三區段顆粒而言,其他排佈、取向、對準及/或類似者為可能的。在一些態樣中,各非三區段顆粒可為在本揭示案中別處揭示之一或多種碳質材料之實例。第一多孔碳質區域2210亦可包括如圖22中所展示地散佈在整個第一非三區段顆粒2211中或以任何其他排佈、取向、或組態來定位的第一三區段顆粒2212。各第一三區段顆粒2212可為圖8B之三區段顆粒850的一個實例。另外地或替代地,各第一三區段顆粒2212可包括彼此交織在一起且藉由中孔2214來彼此隔開的第一碳片段2213。各三區段顆粒可具有經組態以與相鄰第一非三 區段顆粒2211及/或第一三區段顆粒2212聚結之第一可變形周邊2215。 In one implementation, the first porous carbonaceous region 2210 can include first non-three-zone particles 2211 . The configuration of the first non-three-zone particles 2211 within the first porous carbonaceous region is one exemplary configuration. Other arrangements, orientations, alignments, and/or the like are possible for non-tri-segmented particles. In some aspects, each non-tri-segment particle can be an example of one or more carbonaceous materials disclosed elsewhere in this disclosure. The first porous carbonaceous region 2210 may also include first tri-segments interspersed throughout the first non-tri-segment particles 2211 as shown in FIG. 22 or positioned in any other arrangement, orientation, or configuration. Particle 2212. Each first three-segment particle 2212 may be an example of three-segment particle 850 of FIG. 8B . Additionally or alternatively, each first three-segment particle 2212 may include first carbon segments 2213 interwoven with each other and separated from each other by mesopores 2214 . Each three-segment particle can have a The segmented particles 2211 and/or the first deformable perimeter 2215 of the first three-segmented particles 2212 coalesce.

第一多孔碳質區域2210亦可包括第一聚集物2216,其中各聚集物包括接合在一起之許多第一三區段顆粒2212。在一或多個特定實例中,各第一聚集物可具有10奈米(nm)與10微米(μm)之間的範圍內之主要尺寸。中孔2214可散佈在整個第一複數個聚集物中,其中各中孔具有3.3奈米(nm)與19.3nm之間的主要尺寸。另外,第一多孔碳質區域2210可包括第一團聚物2217,其中各團聚物包括彼此接合之許多第一聚集物2216。在一些態樣中,各第一團聚物2217可具有0.1μm與1,000μm之間的近似範圍內之主要尺寸。大孔2218可散佈在整個第一聚集物2216中,其中各大孔可具有0.1μm與1,000μm之間的主要尺寸。在一些實行方案中,以上論述之碳質材料、同素異形體及/或結構中之一或多者可為圖9A及9B中展示之一或多個實例。 The first porous carbonaceous region 2210 can also include first aggregates 2216, where each aggregate includes a plurality of first three-section particles 2212 bonded together. In one or more specific examples, each first aggregate can have a major dimension in a range between 10 nanometers (nm) and 10 micrometers (μm). Mesopores 2214 may be dispersed throughout the first plurality of aggregates, wherein each mesopore has a major dimension between 3.3 nanometers (nm) and 19.3 nm. Additionally, the first porous carbonaceous region 2210 can include first agglomerates 2217, wherein each agglomerate includes a plurality of first agglomerates 2216 joined to each other. In some aspects, each first agglomerate 2217 can have a major dimension within an approximate range between 0.1 μm and 1,000 μm. Macropores 2218 may be dispersed throughout first aggregate 2216, wherein the macropores may have a major dimension between 0.1 μm and 1,000 μm. In some implementations, one or more of the carbonaceous materials, allotropes, and/or structures discussed above can be one or more of the examples shown in Figures 9A and 9B.

第二多孔碳質可包括第二非三區段顆粒2221,其可為第一非三區段顆粒2211之一個實例。第二多孔碳質區域2220可包括第二三區段顆粒2222,其各自可為第一三區段顆粒2212中之各者的一個實例且/或可為圖8B之三區段顆粒850的一個實例。另外地或替代地,各第二三區段顆粒2222可包括彼此交織在一起且藉由中孔2214來彼此隔開的第二碳片段2223。各第二三區段顆粒2222可具有經組態以與一或多個相鄰第二非三區段顆粒2221或第二三區段顆粒2222聚結之第二可變形周邊2225。 The second porous carbonaceous can include second non-three-zone particles 2221 , which can be an example of first non-three-zone particles 2211 . Second porous carbonaceous region 2220 can include second three-zone particles 2222, each of which can be an example of each of first three-zone particles 2212 and/or can be three-zone particles 850 of FIG. 8B an instance. Additionally or alternatively, each second three-segment particle 2222 may include second carbon segments 2223 interwoven with each other and separated from each other by mesopores 2214 . Each second three-section particle 2222 can have a second deformable perimeter 2225 configured to coalesce with one or more adjacent second non-three-section particles 2221 or second three-section particles 2222 .

另外,第二多孔碳質區域2220可包括第二聚集物2226,其中各第二聚集物2226可包括接合在一起之許多第二三區段顆粒2222。在一或多個特定實例中,各第二聚集物2226可具有10奈米(nm)與10微米(μm)之間的範圍內之主要尺寸。中孔2214可散佈在整個第二聚集物2226中,各中孔可具有3.3奈米(nm)與19.3nm之間的主要尺寸。此外,第二多孔碳質區域2220可包括第二團聚物2227,各第二團聚物2227可包括彼此接合之許多第二聚集物2226,其中各團聚 物可具有0.1μm與1,000μm之間的近似範圍內之主要尺寸。大孔2218可散佈在整個第二複數個聚集物中,其中各大孔具有0.1μm與1,000μm之間的主要尺寸。在一些實行方案中,以上論述之碳質材料、同素異形體及/或結構中之一或多者可為圖9A及9B中展示之一或多個實例。 Additionally, the second porous carbonaceous region 2220 can include second aggregates 2226, where each second aggregate 2226 can include a plurality of second three-section particles 2222 bonded together. In one or more specific examples, each second aggregate 2226 can have a major dimension in a range between 10 nanometers (nm) and 10 micrometers (μm). Mesopores 2214 can be dispersed throughout second aggregate 2226, each mesopore can have a major dimension between 3.3 nanometers (nm) and 19.3 nm. Additionally, the second porous carbonaceous region 2220 can include second agglomerates 2227, each second agglomerate 2227 can include a plurality of second agglomerates 2226 joined to each other, wherein each agglomerate Objects may have major dimensions in the approximate range between 0.1 μm and 1,000 μm. Macropores 2218 may be dispersed throughout the second plurality of aggregates, wherein the macropores have a major dimension between 0.1 μm and 1,000 μm. In some implementations, one or more of the carbonaceous materials, allotropes, and/or structures discussed above can be one or more of the examples shown in Figures 9A and 9B.

在一個實行方案中,第一多孔碳質區域2210及/或第二多孔碳質區域2220可包括選擇性滲透殼(為簡單起見,圖22中未展示),其可分別在第一多孔碳質區域2210或第二多孔碳質區域2220上形成分離的液相。電解質(諸如在本揭示案中揭示之任何電解質)可分散在第一多孔碳質區域及/或第二多孔碳質區域內,以用於與鋰硫電池放電-充電操作循環相關之鋰離子傳輸。 In one implementation, the first porous carbonaceous region 2210 and/or the second porous carbonaceous region 2220 can include a selectively permeable shell (not shown in FIG. A separate liquid phase forms on the porous carbonaceous region 2210 or the second porous carbonaceous region 2220 . An electrolyte, such as any electrolyte disclosed in this disclosure, can be dispersed within the first porous carbonaceous region and/or the second porous carbonaceous region for the lithium-sulfur cells associated with the discharge-charge operation cycle. ion transport.

在一或多個特定實例中,第一多孔碳質區域2210可在12,000鎊/平方吋(psi)之壓力下具有500S/m至20,000S/m之間的近似範圍內之電導率。第二多孔碳質區域2220可在12,000鎊/平方吋(psi)之壓力下具有0S/m至500S/m之間的近似範圍內之電導率。第一團聚物2217及/或第二團聚物2227可包括藉由一或多種基於聚合物之黏合劑來彼此連接之聚集物。 In one or more specific examples, the first porous carbonaceous region 2210 can have a conductivity in an approximate range of between 500 S/m and 20,000 S/m at a pressure of 12,000 pounds per square inch (psi). The second porous carbonaceous region 2220 may have a conductivity in an approximate range between 0 S/m and 500 S/m at a pressure of 12,000 pounds per square inch (psi). The first agglomerates 2217 and/or the second agglomerates 2227 may include agglomerates connected to each other by one or more polymer-based binders.

在一些態樣中,第一三區段顆粒2212或第二三區段顆粒2222可各自包括圍繞相應的第一三區段顆粒2212或第二三區段顆粒2222之中心來定位之第一孔隙率區域(為簡單起見,圖22中未展示)。第一孔隙率區域可包括第一孔隙。第二孔隙率區域(為簡單起見,圖22中未展示)可包圍第一孔隙率區域。第二孔隙率區域可包括第二孔隙。在一個實行方案中,第一孔隙可界定第一孔隙密度,且第二孔隙可界定不同於第一孔隙密度的第二孔隙密度。 In some aspects, the first three-segment particle 2212 or the second three-segment particle 2222 can each include a first pore positioned around a center of the corresponding first three-segment particle 2212 or second three-segment particle 2222 rate region (not shown in Figure 22 for simplicity). The first porosity region may include first pores. A second porosity region (not shown in Figure 22 for simplicity) may surround the first porosity region. The second porosity region may include second pores. In one implementation, the first pores can define a first pore density, and the second pores can define a second pore density different from the first pore density.

在一些態樣中,中孔2214可分組為第一中孔及第二中孔(為簡單起見,兩者在圖22中均未展示)。在一或多個特定實例中,第一中孔可具有第一中孔密度,且第二中孔可具有不同於第一中孔密度之第二中孔密度。另外,大孔2218可分組為可具有第一孔隙密度之第一大孔及可具有不同於第一孔隙密度之 第二孔隙密度的第二大孔(為簡單起見,兩者在圖22中均未展示)。 In some aspects, mesopores 2214 can be grouped into first mesopores and second mesopores (both not shown in FIG. 22 for simplicity). In one or more specific examples, the first mesopores can have a first mesopore density, and the second mesopores can have a second mesopore density different from the first mesopore density. Additionally, the macropores 2218 can be grouped into a first macropore that can have a first pore density and that can have a different pore density than the first pore density. The second largest pore of the second pore density (both not shown in Figure 22 for simplicity).

在一個實行方案中,第一多孔碳質區域2210及/或第二多孔碳質區域2220可使硫成核,諸如有利於本揭示案所揭示之任何鋰硫電池之操作放電-充電循環所需要的。例如,陰極2200可具有大約1:5至10:1之間的硫與碳重量比。在一些態樣中,一或多種導電添加劑可分散在第一多孔碳質區域2210及/或第二多孔碳質區域2220內,以例如相應地影響陰極2200之放電-充電循環性能。另外,保護鞘(諸如圖4之保護性晶格402)可安置在陰極上。 In one implementation, the first porous carbonaceous region 2210 and/or the second porous carbonaceous region 2220 can nucleate sulfur, such as to facilitate operational discharge-charge cycling of any lithium-sulfur battery disclosed in this disclosure needed. For example, cathode 2200 may have a sulfur to carbon weight ratio of between approximately 1:5 and 10:1. In some aspects, one or more conductive additives may be dispersed within the first porous carbonaceous region 2210 and/or the second porous carbonaceous region 2220 to, for example, affect the discharge-charge cycle performance of the cathode 2200 accordingly. Additionally, a protective sheath, such as protective lattice 402 of FIG. 4, may be disposed over the cathode.

如本文所用,涉及項目清單「中之至少一者」或「中之一或多者」的片語係指彼等項目之任何組合,包括單一成員。例如,“a、b或c中之至少一者”意欲涵蓋以下可能性:僅a、僅b、僅c、a與b之組合、a與c之組合、b與c之組合、及a與b與c之組合。 As used herein, phrases referring to a list of items "at least one of" or "one or more of" refer to any combination of those items, including a single member. For example, "at least one of a, b, or c" is intended to cover the following possibilities: only a, only b, only c, a combination of a and b, a combination of a and c, a combination of b and c, and a and A combination of b and c.

結合本文揭示之實行方案描述之各種說明性部件、邏輯、邏輯塊、模組、電路、操作及演算法過程可經實行為電子硬體、韌體、軟體、或硬體、韌體或軟體之組合,包括本說明書中揭示之結構及其等效結構。硬體、韌體及軟體之可互換性通常按照功能性來描述,且在如上所述之各種示例性部件、區塊、模組、電路及過程中展示。此類功能性是否以硬體、韌體或軟體來實行取決於應用及對整個系統施加之設計制約。 The various illustrative components, logic, logical blocks, modules, circuits, operations, and algorithmic processes described in connection with implementations disclosed herein may be implemented as electronic hardware, firmware, software, or a combination of hardware, firmware, or software Combinations include the structures disclosed in this specification and their equivalent structures. Interchangeability of hardware, firmware, and software is generally described in terms of functionality and is shown in the various exemplary components, blocks, modules, circuits, and processes described above. Whether such functionality is implemented in hardware, firmware or software depends upon the application and design constraints imposed on the overall system.

本揭示案所描述之實行方案之各種修改可為普通熟習此項技術者顯而易知的,且在本文中定義之通用原則可適用於其他實行方案而不脫離本揭示案之精神或範疇。因此,請求項不意欲限於本文展示之實行方案,而應賦予與本文揭示之本揭示案、原則及新穎特徵一致的最寬範疇。 Various modifications to the implementations described in this disclosure may be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations presented herein, but are to be accorded the widest scope consistent with the disclosure, principles and novel features disclosed herein.

另外,在本說明書中在單獨實行方案之情形中描述之各種特徵亦可在單一實行方案中組合實行。相反地,在單一實行方案之情形中描述之各種特徵亦可分開地在多個實行方案中或在任何合適次組合中實行。因此,雖然特徵 可如上彼此組合地來描述,甚至最初就如這樣來請求保護,但是來自所請求保護之組合之一或多個特徵可在一些情況下自該組合中切除,且所請求保護之組合可針對次組合或次組合之變型。 In addition, various features described in the context of separate implementations in this specification can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Therefore, although the features may be described in combination with each other as above, and even initially claimed as such, but one or more features from the claimed combination may in some cases be excised from the combination, and the claimed combination may be directed against Variations of combination or sub-combination.

類似地,雖然操作在圖式中以特定次序來描述,但這不應理解為,為了達成期望結果,要求此類操作應以所示特定次序或以順序次序來執行,或所有所示操作皆予以執行。此外,圖式可以流程圖或作業圖形式示意性地描繪一或多個示例性過程。然而,未經描繪之其他操作亦可併入示意性地展示之示例性過程中。例如,一或多個額外操作可在任何所示操作之前、之後、同時、或之間執行。在一些情況下,多任務處理及並行處理可為有利的。另外,如上所述之實行方案中各種系統部件之隔開不應理解為在所有實行方案中皆需要此隔開,且應瞭解,所描述之程式部件及系統一般可在單一產品中整合在一起或包裝至多個產品中。 Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown, or in sequential order, or that all illustrated operations, be performed in order to achieve desirable results. be implemented. Additionally, the drawings may schematically depict one or more exemplary processes in flowchart or operational diagram form. However, other operations not depicted may also be incorporated into the exemplary processes shown schematically. For example, one or more additional operations may be performed before, after, concurrently with, or between any illustrated operations. In some circumstances, multitasking and parallel processing may be advantageous. Additionally, the separation of various system components in the implementations described above should not be construed as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single product or packaged into multiple products.

2201:主體 2201: subject

2205:寬度 2205: width

2210:第一多孔碳質區域 2210: First porous carbonaceous region

2211:第一非三區段顆粒 2211: First non-three-segment particle

2212:第一三區段顆粒 2212: The first three-section particle

2213:第一碳片段 2213: first carbon fragment

2214:中孔 2214: middle hole

2215:第一可變形周邊 2215: The first deformable peripheral

2216:第一聚集物 2216:First aggregate

2217:第一團聚物 2217: First agglomerate

2218:大孔 2218: big hole

2220:第二多孔碳質區域 2220: Second porous carbonaceous region

2221:第二非三區段顆粒 2221: the second non-three-segment particle

2222:第二三區段顆粒 2222: Particles of the second and third segments

2223:第二碳片段 2223: second carbon fragment

2225:第二可變形周邊 2225: The second deformable perimeter

2226:第二聚集物 2226:Second aggregate

2227:第二團聚物 2227:Second aggregate

Claims (113)

一種包括複數個孔隙之標的組合物,該標的組合物包含: A subject composition comprising a plurality of pores, the subject composition comprising: 複數個顆粒,各顆粒包括: a plurality of granules, each granule comprising: 包括複數個第一孔隙之第一區段,該複數個第一孔隙具有均勻孔徑;及 a first section comprising a plurality of first pores having a uniform pore size; and 包括複數個第二孔隙之第二區段,該第二區段相對於該第一區段同心地定位且藉由該複數個第一孔隙中之至少一些與該第一區段隔開,其中該複數個第二孔隙具有沿徑向方向自顆粒中心至顆粒邊界逐漸減小之孔徑; a second section comprising a plurality of second apertures positioned concentrically with respect to the first section and separated from the first section by at least some of the plurality of first apertures, wherein The plurality of second pores have a diameter gradually decreasing from the particle center to the particle boundary along the radial direction; 複數個聚集物,各聚集物包括接合在一起之許多顆粒;及 a plurality of aggregates, each aggregate comprising many particles joined together; and 複數個團聚物,各團聚物包括接合在一起之許多聚集物。 A plurality of aggregates, each aggregate comprising many aggregates joined together. 如請求項1之標的組合物,其中各顆粒具有在20奈米(nm)與150nm之間的近似範圍內之主要尺寸。 The subject composition of claim 1, wherein each particle has a major dimension in an approximate range between 20 nanometers (nm) and 150 nm. 如請求項1之標的組合物,其中各聚集物具有在10奈米(nm)與10微米(μm)之間的近似範圍內之主要尺寸。 The subject composition of claim 1, wherein each aggregate has a major dimension in an approximate range between 10 nanometers (nm) and 10 micrometers (μm). 如請求項1之標的組合物,其中各團聚物具有在0.1微米(μm)與1,000μm之間的近似範圍內之主要尺寸。 1. The subject composition of claim 1, wherein each agglomerate has a major dimension within an approximate range between 0.1 micrometer (μm) and 1,000 μm. 如請求項1之標的組合物,其中各孔隙具有在0奈米(nm)與100nm之間的近似範圍內之主要尺寸。 The subject composition of claim 1, wherein each pore has a major dimension in an approximate range between 0 nanometers (nm) and 100 nm. 如請求項1之標的組合物,其中該第一區段具有第一孔隙率且該第二區段具有不同於該第一孔隙率之第二孔隙率。 The subject composition of claim 1, wherein the first section has a first porosity and the second section has a second porosity different from the first porosity. 如請求項1之標的組合物,其中該第一區段具有第一密度且該第二區段具有不同於該第一密度之第二密度。 The subject composition of claim 1, wherein the first segment has a first density and the second segment has a second density different from the first density. 如請求項1之標的組合物,其中該第一區段具有0.0立方公分 (cc)/g與2.0cc/g之間的第一孔隙密度。 The subject composition as claimed in item 1, wherein the first section has 0.0 cubic centimeter A first pore density between (cc)/g and 2.0 cc/g. 如請求項1之標的組合物,其中該第二區段具有1.5立方公分(cc)/g與5.0cc/g之間的第二孔隙密度。 The subject composition of claim 1, wherein the second section has a second pore density between 1.5 cubic centimeters (cc)/g and 5.0 cc/g. 如請求項1之標的組合物,其中該標的組合物在12,000鎊/平方吋(psi)之壓力下具有100西門子(S)/m至20,000S/m之間的近似範圍內之電導率。 1. The subject composition of claim 1, wherein the subject composition has a conductivity in the approximate range of 100 Siemens (S)/m to 20,000 S/m at a pressure of 12,000 pounds per square inch (psi). 如請求項1之標的組合物,其中至少一些團聚物用一或多種基於聚合物之黏合劑彼此連接。 The subject composition of claim 1, wherein at least some of the agglomerates are connected to each other with one or more polymer-based adhesives. 如請求項1之標的組合物,其進一步包括分散於該複數個孔隙中之至少一些內的一或多種導電添加劑。 The subject composition of claim 1, further comprising one or more conductive additives dispersed in at least some of the plurality of pores. 如請求項1之標的組合物,其中各顆粒包括平坦石墨烯、起皺石墨烯、複數個碳奈米管(CNT)或複數個碳奈米洋蔥(CNO)中之一或多者。 The subject composition of claim 1, wherein each particle comprises one or more of flat graphene, wrinkled graphene, a plurality of carbon nanotubes (CNT) or a plurality of carbon nanoonions (CNO). 如請求項1之標的組合物,其中各顆粒進一步包括第三區段,該第三區段與相應顆粒之中心同心地安置在該第二區段上且藉由該複數個孔隙中之至少一些與該第二區段隔開,該第三區段包括複數個第三孔隙。 The subject composition of claim 1, wherein each particle further comprises a third section disposed concentrically with the center of the corresponding particle on the second section and through at least some of the plurality of pores Separated from the second section, the third section includes a plurality of third pores. 如請求項1之標的組合物,其中該複數個第一孔隙為大孔,該複數個第二孔隙為中孔,且該複數個第三孔隙為微孔。 The subject composition of claim 1, wherein the plurality of first pores are macropores, the plurality of second pores are mesopores, and the plurality of third pores are micropores. 如請求項1之標的組合物,其中各顆粒進一步包括一或多個額外區段,該一或多個額外區段與相應顆粒之中心同心地安置在該第二區段上,且該一或多個額外區段中之各者藉由該複數個孔隙中之至少一些與緊鄰之區段隔開。 The subject composition of claim 1, wherein each particle further comprises one or more additional segments, the one or more additional segments are concentrically disposed on the second segment with the center of the corresponding particle, and the one or Each of the plurality of additional segments is separated from immediately adjacent segments by at least some of the plurality of apertures. 如請求項1之標的組合物,其中該複數個第二孔隙之孔隙之孔徑沿該徑向方向逐漸減小。 The subject composition of claim 1, wherein the pore diameters of the plurality of second pores gradually decrease along the radial direction. 一種電池,其包含: A battery comprising: 一陽極,該陽極包括鹼金屬,該陽極經組態以在該電池之循環期間釋放複數個鹼金屬離子; an anode comprising an alkali metal configured to release a plurality of alkali metal ions during cycling of the battery; 一聚合物網路,該聚合物網路沉積在該陽極之一或多個暴露表面之上,該聚合物網路包括用彼此交聯之複數個氟化聚合物鏈接枝之碳質材料,該複數個氟化聚合物鏈經組態以響應於該電池之操作循環而產生鹼金屬氟化物,該鹼金屬氟化物經組態以抑制自該陽極之鹼金屬枝晶形成,其中該等碳質材料包括平坦石墨烯、起皺石墨烯、複數個碳奈米管(CNT)或複數個碳奈米洋蔥(CNO)中之一或多者; a polymer network deposited on one or more exposed surfaces of the anode, the polymer network comprising a carbonaceous material grafted with a plurality of fluorinated polymer chains crosslinked to each other, the A plurality of fluorinated polymer chains configured to generate alkali metal fluoride in response to operating cycles of the cell, the alkali metal fluoride configured to inhibit alkali metal dendrite formation from the anode, wherein the carbonaceous The material includes one or more of flat graphene, wrinkled graphene, a plurality of carbon nanotubes (CNT) or a plurality of carbon nanoonions (CNO); 一陰極,該陰極與該陽極相對定位; a cathode positioned opposite the anode; 一電解質,該電解質至少部分地分散在整個該陰極中且與該陽極接觸,該電解質經組態以在該陰極與該陽極之間傳輸該複數個鹼金屬離子;及 an electrolyte at least partially dispersed throughout the cathode and in contact with the anode, the electrolyte configured to transport the plurality of alkali metal ions between the cathode and the anode; and 一隔板,該隔板定位在該陽極與該陰極之間。 A separator is positioned between the anode and the cathode. 如請求項18之電池,其中該複數個氟化聚合物鏈包括複數種單體,一或多種單體包括丙烯酸2,2,3,3,4,4,5,5,6,6,7,7-十二氟庚酯(DFHA)、甲基丙烯酸3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-十七氟癸酯(HDFDMA)、甲基丙烯酸2,2,3,3,4,4,5,5-八氟戊酯(OFPMA)、甲基丙烯酸四氟丙酯(TFPM)、3-[3,3,3-三氟-2-羥基-2-(三氟甲基)丙基]雙環[2.2.1]庚-2-基甲基丙烯酸酯(HFA單體)、或基於乙烯基之單體(包括2,3,4,5,6-五氟苯乙烯(PFSt))。 The battery of claim 18, wherein the plurality of fluorinated polymer chains comprise a plurality of monomers, one or more monomers comprising acrylic acid 2,2,3,3,4,4,5,5,6,6,7 ,7-Dodecafluoroheptyl (DFHA), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-10-methacrylic acid Heptafluorodecyl (HDFDMA), 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate (OFPMA), tetrafluoropropyl methacrylate (TFPM), 3-[3 ,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl]bicyclo[2.2.1]hept-2-yl methacrylate (HFA monomer), or vinyl-based body (including 2,3,4,5,6-pentafluorostyrene (PFSt)). 如請求項18之電池,其中該聚合物網路具有大約0.001μm與5μm之間的厚度。 The battery of claim 18, wherein the polymer network has a thickness between about 0.001 μm and 5 μm. 如請求項18之電池,其中該複數個氟化聚合物鏈經接枝至該等碳質材料之表面。 The battery according to claim 18, wherein the plurality of fluorinated polymer chains are grafted to the surfaces of the carbonaceous materials. 如請求項21之電池,其中該接枝係基於一或多種自由基引發劑,該一或多種自由基引發劑包括過氧化苯甲醯(BPO)或偶氮二異丁腈 (AIBN)中之至少一種。 The battery of claim 21, wherein the grafting is based on one or more free radical initiators comprising benzoyl peroxide (BPO) or azobisisobutyronitrile (AIBN) at least one. 如請求項21之電池,其中該陽極包括經組態以嵌入鹼金屬離子(AIBN)的至少一些相鄰石墨烯薄片。 The battery of claim 21, wherein the anode includes at least some adjacent graphene sheets configured to intercalate alkali metal ions (AIBN). 如請求項18之電池,其中該複數個氟化聚合物鏈經組態以經由伍茲反應與至少一些鹼金屬離子發生化學相互作用。 The battery of claim 18, wherein the plurality of fluorinated polymer chains are configured to chemically interact with at least some of the alkali metal ions via a Woods reaction. 如請求項24之電池,其中該伍茲反應與該鹼金屬氟化物之產生相關。 The battery of claim 24, wherein the Woods reaction is associated with the generation of the alkali metal fluoride. 如請求項18之電池,其進一步包括分散於整個該聚合物網路中之複數個石墨烯奈米片,其中該等石墨烯奈米片在該聚合物網路內彼此隔離。 The battery according to claim 18, further comprising a plurality of graphene nanosheets dispersed throughout the polymer network, wherein the graphene nanosheets are isolated from each other within the polymer network. 如請求項26之電池,其中該等石墨烯奈米片之分散包括一或多個不同濃度水準。 The battery of claim 26, wherein the dispersion of the graphene nanosheets includes one or more different concentration levels. 如請求項27之電池,其中該等石墨烯奈米片之分散進一步包括用該複數個氟化聚合物鏈中之至少一些來官能化之至少一些該等碳質材料。 The battery of claim 27, wherein the dispersion of the graphene nanosheets further comprises at least some of the carbonaceous materials functionalized with at least some of the plurality of fluorinated polymer chains. 如請求項18之電池,其中該聚合物網路包括大約0.001重量%至2重量%之間的該等氟化聚合物鏈。 The battery of claim 18, wherein the polymer network comprises between about 0.001% and 2% by weight of the fluorinated polymer chains. 如請求項18之電池,其中該聚合物網路進一步包含: The battery of claim 18, wherein the polymer network further comprises: 一界面層,該界面層與該陽極接觸;及 an interface layer in contact with the anode; and 一保護層,該保護層安置在該界面層之頂部。 A protective layer is disposed on top of the interface layer. 如請求項30之電池,其中該界面層包括複數種可交聯單體中之一或多者,該等單體包括甲基丙烯酸酯(MA)、丙烯酸酯、乙烯基官能基、或環氧官能基與胺官能基之組合。 The battery of claim 30, wherein the interface layer includes one or more of a plurality of crosslinkable monomers including methacrylate (MA), acrylate, vinyl functional groups, or epoxy Combinations of functional groups and amine functional groups. 如請求項31之電池,其中該保護層係藉由密度梯度表征。 The battery according to claim 31, wherein the protective layer is characterized by a density gradient. 如請求項32之電池,其中該密度梯度與該保護層之一或多種自 我修復性質相關。 The battery of claim 32, wherein the density gradient and one or more of the protective layers are I fix properties related. 如請求項32之電池,其中該密度梯度經組態以加強該聚合物網路。 The battery of claim 32, wherein the density gradient is configured to strengthen the polymer network. 如請求項32之電池,其中該聚合物網路經組態以抑制自該陽極之枝晶生長。 The battery of claim 32, wherein the polymer network is configured to inhibit dendrite growth from the anode. 如請求項18之電池,其中該陽極係鹼金屬層。 The battery according to claim 18, wherein the anode is an alkali metal layer. 如請求項18之電池,其進一步包括一安置在該陰極上之膜,該膜包括一晶格,該晶格包括彼此化學鍵結之三官能環氧化合物及二胺寡聚物化合物,其中該膜與在該電池之循環期間產生的含鹼金屬之多硫化物中間物之化學鍵結相關。 The battery as claimed in claim 18, further comprising a film disposed on the cathode, the film comprising a lattice, the lattice comprising a trifunctional epoxy compound and a diamine oligomer compound chemically bonded to each other, wherein the film Associated with chemical bonding of alkali-containing polysulfide intermediates generated during cycling of the cell. 如請求項18之電池,其中該聚合物網路包括大約5重量%至100重量%之間的用該等氟化聚合物鏈接枝之該複數種碳質材料且其餘為氟化聚合物、一或多種非氟化聚合物、一或多種可交聯單體、或其任何組合。 The battery of claim 18, wherein the polymer network includes the plurality of carbonaceous materials grafted with the fluorinated polymer chains between about 5% by weight and 100% by weight and the remainder is a fluorinated polymer, a or more non-fluorinated polymers, one or more crosslinkable monomers, or any combination thereof. 如請求項18之電池,其中用該等氟化聚合物鏈接枝之該複數種碳質材料包括5重量%至50重量%之該等氟化聚合物鍊且其餘為碳質材料。 The battery of claim 18, wherein the plurality of carbonaceous materials grafted with the fluorinated polymer chains include 5% to 50% by weight of the fluorinated polymer chains and the rest are carbonaceous materials. 一種電池,其包含: A battery comprising: 一陽極,該陽極包括一聚合物網路,該聚合物網路包括用複數個氟化聚合物鏈接枝之碳質材料,該複數個氟化聚合物鏈經交聯成一晶格,該陽極經組態以在該電池之操作循環期間輸出複數個鹼金屬離子; An anode comprising a polymer network comprising a carbonaceous material grafted with a plurality of fluorinated polymer chains cross-linked into a lattice, the anode configured to output a plurality of alkali metal ions during an operating cycle of the cell; 一陰極,該陰極與該陽極相對定位; a cathode positioned opposite the anode; 一保護鞘,該保護鞘安置在該陰極上,該保護鞘包括經組態以相互化學反應的三官能環氧化合物及基於二胺寡聚物之化合物; a protective sheath disposed over the cathode, the protective sheath comprising a trifunctional epoxy compound and a diamine oligomer-based compound configured to chemically react with each other; 一電解質,該電解質至少部分地分散在整個該陰極中且與該陽極接觸,該電解質經組態以在該陰極與該陽極之間傳輸該複數個鹼金屬離子;及 an electrolyte at least partially dispersed throughout the cathode and in contact with the anode, the electrolyte configured to transport the plurality of alkali metal ions between the cathode and the anode; and 一隔板,該隔板定位在該陽極與該陰極之間。 A separator is positioned between the anode and the cathode. 如請求項40之電池,其中該晶格經組態以響應於該電池之操作循環而產生鹼金屬氟化物,該鹼金屬氟化物經組態以抑制自該陽極之鹼金屬枝晶形成。 The battery of claim 40, wherein the lattice is configured to generate alkali metal fluoride in response to operating cycles of the battery, the alkali metal fluoride configured to inhibit alkali metal dendrite formation from the anode. 如請求項40之電池,其中該聚合物網路沉積在該陽極之一或多個暴露表面之上。 The battery of claim 40, wherein the polymer network is deposited on one or more exposed surfaces of the anode. 如請求項40之電池,其中該等碳質材料包括平坦石墨烯、起皺石墨烯、複數個碳奈米管(CNT)或複數個碳奈米洋蔥(CNO)中之一或多者。 The battery according to claim 40, wherein the carbonaceous materials include one or more of flat graphene, wrinkled graphene, a plurality of carbon nanotubes (CNT) or a plurality of carbon nanoonions (CNO). 如請求項40之電池,其中該複數個氟化聚合物鏈包括複數種單體,一或多種單體包括丙烯酸2,2,3,3,4,4,5,5,6,6,7,7-十二氟庚酯(DFHA)、甲基丙烯酸3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-十七氟癸酯(HDFDMA)、甲基丙烯酸2,2,3,3,4,4,5,5-八氟戊酯(OFPMA)、甲基丙烯酸四氟丙酯(TFPM)、3-[3,3,3-三氟-2-羥基-2-(三氟甲基)丙基]雙環[2.2.1]庚-2-基甲基丙烯酸酯(HFA單體)、或基於乙烯基之單體(包括2,3,4,5,6-五氟苯乙烯(PFSt))。 The battery of claim 40, wherein the plurality of fluorinated polymer chains comprise a plurality of monomers, one or more monomers comprising acrylic acid 2,2,3,3,4,4,5,5,6,6,7 , 7-dodecafluoroheptyl ester (DFHA), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-decamethacrylate Heptafluorodecyl (HDFDMA), 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate (OFPMA), tetrafluoropropyl methacrylate (TFPM), 3-[3 , 3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl]bicyclo[2.2.1]hept-2-yl methacrylate (HFA monomer), or vinyl-based body (including 2,3,4,5,6-pentafluorostyrene (PFSt)). 如請求項40之電池,其中該聚合物網路具有大約0.001μm與5μm之間的厚度。 The battery of claim 40, wherein the polymer network has a thickness between about 0.001 μm and 5 μm. 如請求項40之電池,其中該複數個氟化聚合物鏈中之至少一些經接枝至該等碳質材料中之相應一者的表面。 The battery of claim 40, wherein at least some of the plurality of fluorinated polymer chains are grafted to the surface of a corresponding one of the carbonaceous materials. 如請求項40之電池,其中該複數個氟化聚合物鏈經組態以經由伍茲反應與該陽極之鹼金屬之一或多個表面發生化學相互作用。 The battery of claim 40, wherein the plurality of fluorinated polymer chains are configured to chemically interact with one or more surfaces of the alkali metal of the anode via a Woods reaction. 如請求項40之電池,其中該等碳質材料包括分散於整個該聚合物網路中之複數個石墨烯奈米片,其中該等石墨烯奈米片在該聚合物網路內彼此隔離。 The battery of claim 40, wherein the carbonaceous materials include a plurality of graphene nanosheets dispersed throughout the polymer network, wherein the graphene nanosheets are isolated from each other within the polymer network. 如請求項48之電池,其中該複數個石墨烯奈米片在整個該聚合 物網路中之分散包括一或多個不同濃度水準。 The battery as claimed in claim 48, wherein the plurality of graphene nanosheets throughout the polymerization Dispersion in IoT includes one or more different concentration levels. 如請求項48之電池,其中該複數個石墨烯奈米片中之至少一些用該複數個氟化聚合物鏈中之至少一些官能化。 The battery of claim 48, wherein at least some of the plurality of graphene nanosheets are functionalized with at least some of the plurality of fluorinated polymer chains. 如請求項40之電池,其中該聚合物網路包括大約0.001重量%至2重量%之間的該等氟化聚合物鏈。 The battery of claim 40, wherein the polymer network comprises between about 0.001% and 2% by weight of the fluorinated polymer chains. 如請求項40之電池,其中該聚合物網路進一步包含: The battery of claim 40, wherein the polymer network further comprises: 一界面相區域,該界面相區域與該陽極接觸;及 an interfacial phase region in contact with the anode; and 一保護區域,該保護區域安置在該界面相區域之頂部。 A protected region is disposed on top of the interface region. 如請求項52之電池,其中該界面相區域係基於該陽極與該聚合物網路之間的界面處之伍茲反應。 The battery of claim 52, wherein the interfacial phase region is based on a Woods reaction at the interface between the anode and the polymer network. 如請求項52之電池,其中該界面相區域包括複數種可交聯單體中之一或多者,該等單體包括甲基丙烯酸酯(MA)、丙烯酸酯、乙烯基官能基、或環氧官能基與一或多個胺官能基之組合。 The battery of claim 52, wherein the interfacial phase region includes one or more of a plurality of crosslinkable monomers including methacrylate (MA), acrylate, vinyl functional groups, or cyclic Combinations of oxygen functional groups and one or more amine functional groups. 如請求項52之電池,其中該保護區域係藉由密度梯度表征。 The battery according to claim 52, wherein the protected area is characterized by a density gradient. 如請求項55之電池,其中該密度梯度與該保護區域之一或多種自我修復性質相關。 The battery of claim 55, wherein the density gradient is related to one or more self-healing properties of the protected area. 如請求項55之電池,其中該密度梯度經組態以加強該聚合物網路。 The battery of claim 55, wherein the density gradient is configured to strengthen the polymer network. 如請求項40之電池,其中該聚合物網路經組態以抑制自該陽極之枝晶生長。 The battery of claim 40, wherein the polymer network is configured to inhibit dendrite growth from the anode. 如請求項40之電池,其中該陽極進一步包括一或多個暴露表面,各暴露表面包括一或多個含鹼金屬之奈米結構或微結構。 The battery of claim 40, wherein the anode further comprises one or more exposed surfaces, each exposed surface comprising one or more alkali metal-containing nanostructures or microstructures. 如請求項59之電池,其中該一或多個含鹼金屬之奈米結構或微結構中之各者包括至少一些該等碳質材料。 The battery of claim 59, wherein each of the one or more alkali metal-containing nanostructures or microstructures includes at least some of the carbonaceous materials. 如請求項40之電池,其中該陽極包括三維(3D)結構。 The battery of claim 40, wherein the anode comprises a three-dimensional (3D) structure. 一種電池,其包含: A battery comprising: 一陽極,該陽極以晶格組態佈置且包括一或多種碳質材料; an anode arranged in a lattice configuration and comprising one or more carbonaceous materials; 一陰極,該陰極與該陽極相對定位; a cathode positioned opposite the anode; 一隔板,該隔板安置在該陽極與該陰極之間; a separator disposed between the anode and the cathode; 一保護鞘,該保護鞘安置在該陰極上,該保護鞘包括經組態以相互化學反應的三官能環氧化合物及基於二胺寡聚物之化合物;及 a protective sheath disposed over the cathode, the protective sheath comprising a trifunctional epoxy compound and a diamine oligomer-based compound configured to chemically react with each other; and 一電解質,該電解質至少部分地分散在該陰極內且與該陽極接觸。 An electrolyte at least partially dispersed within the cathode and in contact with the anode. 如請求項62之電池,其進一步包括沉積在該陽極之一或多個暴露表面之上的一聚合物網路,該聚合物網路包括與該一或多種碳質材料接枝且彼此交聯的複數個氟化聚合物鏈。 The battery of claim 62, further comprising a polymer network deposited on one or more exposed surfaces of the anode, the polymer network comprising grafted with the one or more carbonaceous materials and cross-linked to each other Multiple fluorinated polymer chains. 如請求項63之電池,其中該聚合物網路進一步包括鹼金屬氟化物,該鹼金屬氟化物經組態以抑制與該陽極相關的鹼金屬枝晶形成。 The battery of claim 63, wherein the polymer network further comprises an alkali metal fluoride configured to inhibit alkali metal dendrite formation associated with the anode. 如請求項62之電池,其中該保護鞘經組態以基於該保護鞘與一或多種含鋰多硫化物中間物之間的化學鍵結來防止該電池內的多硫化物遷移。 The battery of claim 62, wherein the protective sheath is configured to prevent polysulfide migration within the battery based on chemical bonding between the protective sheath and one or more lithium-containing polysulfide intermediates. 如請求項62之電池,其進一步包括延伸至該陰極中之一或多個裂縫,且其中該保護鞘分散於該一或多個裂縫中。 The battery of claim 62, further comprising one or more slits extending into the cathode, and wherein the protective sheath is dispersed in the one or more slits. 如請求項62之電池,其中該保護鞘經組態以降低該陰極對破裂之敏感性。 The battery of claim 62, wherein the protective sheath is configured to reduce the sensitivity of the cathode to rupture. 如請求項62之電池,其中該保護鞘具有基於該三官能環氧化合物及該基於二胺寡聚物之化合物的交聯三維結構。 The battery according to claim 62, wherein the protective sheath has a cross-linked three-dimensional structure based on the trifunctional epoxy compound and the diamine oligomer-based compound. 如請求項68之電池,其中該三官能環氧化合物為三羥甲基丙烷三縮水甘油醚(TMPTE)、參(4-羥苯基)甲烷三縮水甘油醚、或參(2,3-環氧丙 基)異氰脲酸酯中之一或多種。 The battery of claim 68, wherein the trifunctional epoxy compound is trimethylolpropane triglycidyl ether (TMPTE), ginseng (4-hydroxyphenyl) methane triglycidyl ether, or ginseng (2,3-cyclo Propylene oxide base) one or more of isocyanurates. 如請求項69之電池,其中該基於二胺寡聚物之化合物為二醯肼亞碸(DHSO)或JEFFAMINE® D-230聚醚胺中之一或多種。 The battery according to claim 69, wherein the diamine oligomer-based compound is one or more of dihydrazine hydrazine (DHSO) or JEFFAMINE® D-230 polyetheramine. 如請求項62之電池,其中該保護鞘包括三羥甲基丙烷參[聚(丙二醇)及胺封端之醚。 The battery of claim 62, wherein the protective sheath comprises trimethylolpropane para[poly(propylene glycol) and amine-terminated ether. 如請求項62之電池,其中該等碳質材料包括平坦石墨烯、起皺石墨烯、複數個碳奈米管(CNT)或複數個碳奈米洋蔥(CNO)中之一或多者。 The battery of claim 62, wherein the carbonaceous materials include one or more of flat graphene, wrinkled graphene, a plurality of carbon nanotubes (CNT) or a plurality of carbon nanoonions (CNO). 如請求項62之電池,其中該陰極包括一主結構,該主結構包括平坦石墨烯、起皺石墨烯、碳奈米管(CNT)或碳奈米洋蔥(CNO)中之一或多者,且該陽極包括一固體鋰金屬層。 The battery of claim 62, wherein the cathode comprises a main structure comprising one or more of flat graphene, corrugated graphene, carbon nanotube (CNT) or carbon nanoonion (CNO), And the anode includes a solid lithium metal layer. 如請求項62之電池,其進一步包括: The battery of claim 62, further comprising: 一安置在該陽極上之氟化錫層;及 a layer of tin fluoride disposed on the anode; and 一形成於該氟化錫層與該陽極之間的氟化鋰層,其中該氟化鋰層與氟離子與鋰離子之間的反應相關。 A lithium fluoride layer formed between the tin fluoride layer and the anode, wherein the lithium fluoride layer is related to the reaction between fluorine ions and lithium ions. 如請求項74之電池,其中該氟化鋰層經組態以抑制自該陽極之枝晶生長。 The battery of claim 74, wherein the lithium fluoride layer is configured to inhibit dendrite growth from the anode. 如請求項62之電池,其進一步包括一安置在該陽極上之固體電解質界面相層,該固體電解質界面相層包括錫、錳、鉬、氟化合物、氟化錫、氟化錳、氮化矽、氮化鋰、硝酸鋰、磷酸鋰、氧化錳或氧化鋰鑭鋯(LLZO)中之一或多種。 The battery according to claim 62, which further includes a solid electrolyte interfacial layer disposed on the anode, the solid electrolyte interfacial layer comprising tin, manganese, molybdenum, fluorine compounds, tin fluoride, manganese fluoride, silicon nitride , lithium nitride, lithium nitrate, lithium phosphate, manganese oxide or lithium lanthanum zirconium oxide (LLZO) or one or more. 一種電池,其包含: A battery comprising: 一陽極,該陽極經組態以在該電池之循環期間輸出複數個鋰離子; an anode configured to output lithium ions during cycling of the battery; 一安置在該陽極上之分級層,該分級層包含一聚合物網路,該聚合物網路包括由與石墨烯奈米片相關的起皺石墨烯形成之密度梯度,該等石墨烯奈米 片分散於整個該聚合物網路中且在該聚合物網路內彼此隔離,至少一些起皺石墨烯經組態以沿一或多個撓曲點在體積上膨脹且保持該電池之循環期間產生的多硫化物,該聚合物網路包括: a graded layer disposed on the anode, the graded layer comprising a polymer network comprising density gradients formed from corrugated graphene associated with graphene nanosheets, the graphene nanosheets Sheets are dispersed throughout the polymer network and are isolated from each other within the polymer network, at least some of the wrinkled graphene is configured to expand in volume along one or more flexure points and maintain the battery during cycling Produced by polysulfides, the polymer network consists of: 接枝至至少一些起皺石墨烯之一或多個撓曲點上的複數個氟化聚(甲基)丙烯酸酯; a plurality of fluorinated poly(meth)acrylates grafted onto one or more flexure points of at least some of the wrinkled graphene; 該聚合物網路內的複數個碳-氟(C-F)鍵,該複數個碳-氟(C-F)鍵中之至少一些經組態以藉由伍茲反應與該複數個鋰離子中之至少一些發生化學反應,且藉由置換氟離子(F-)而轉化成碳-鋰(C-Li)鍵; A plurality of carbon-fluorine (CF) bonds within the polymer network, at least some of the plurality of carbon-fluorine (CF) bonds configured to occur with at least some of the plurality of lithium ions by Woods reactions Chemical reaction, and conversion to carbon-lithium (C-Li) bond by replacing fluoride ion (F - ); 在該伍茲反應期間的氟離子(F-)置換過程中形成之複數個碳-碳(C-C)鍵,碳-碳(C-C)鍵之形成與該聚合物網路之交聯相關;及 carbon-carbon (CC) bonds formed during fluoride ion (F ) displacement during the Woods reaction, the formation of carbon-carbon (CC) bonds being associated with cross-linking of the polymer network; and 響應於氟離子(F-)置換而形成之氟化鋰(LiF),氟化鋰(LiF)與該複數個鋰離子中之至少一些的消耗相關;及 lithium fluoride (LiF) formed in response to displacement of fluoride ions (F ), the lithium fluoride (LiF) being associated with consumption of at least some of the plurality of lithium ions; and 一陰極,該陰極與該陽極相對定位; a cathode positioned opposite the anode; 一電解質,該電解質分散在整個該陰極中且分散在整個該陽極中;及 an electrolyte dispersed throughout the cathode and dispersed throughout the anode; and 一隔板,該隔板定位在該陽極與該陰極之間。 A separator is positioned between the anode and the cathode. 如請求項77之電池,其進一步包括在該電池之循環期間暴露於該電解質之該陽極之表面處形成的一固體電解質界面相。 The battery of claim 77, further comprising a solid electrolyte interface phase formed at the surface of the anode exposed to the electrolyte during cycling of the battery. 如請求項78之電池,其中該分級層經組態以在該電池之循環期間生長該固體電解質界面相。 The battery of claim 78, wherein the graded layer is configured to grow the solid electrolyte interfacial phase during cycling of the battery. 如請求項77之電池,其中該分級層藉由原子層沉積(ALD)、化學氣相沉積(CVD)、或物理氣相沉積(PVD)中之一或多者沉積於該陽極上。 The battery of claim 77, wherein the graded layer is deposited on the anode by one or more of atomic layer deposition (ALD), chemical vapor deposition (CVD), or physical vapor deposition (PVD). 一種電池,其包含: A battery comprising: 一陽極,該陽極經組態以在該電池之循環期間輸出複數個鋰離子; an anode configured to output lithium ions during cycling of the battery; 一安置在該陽極上之分級層,該分級層包括一聚合物網路,該聚合物網路 包括由與石墨烯奈米片相關的起皺石墨烯形成之密度梯度,該等石墨烯奈米片分散於整個該聚合物網路中且在該聚合物網路內彼此隔離,至少一些起皺石墨烯經組態以沿一或多個撓曲點在體積上膨脹且保持該電池之循環期間產生的多硫化物,該聚合物網路包括: a graded layer disposed on the anode, the graded layer comprising a polymer network, the polymer network comprising a density gradient formed by corrugated graphene associated with graphene nanosheets dispersed throughout and isolated from each other within the polymer network, at least some of the corrugations Graphene is configured to expand in volume along one or more flexure points and retain polysulfides produced during cycling of the battery, the polymer network comprising: 接枝至至少一些起皺石墨烯之一或多個撓曲點上的複數個氟化聚(甲基)丙烯酸酯; a plurality of fluorinated poly(meth)acrylates grafted onto one or more flexure points of at least some of the wrinkled graphene; 該聚合物網路內的複數個碳-氟(C-F)鍵,該複數個碳-氟(C-F)鍵中之至少一些經組態以藉由伍茲反應與該複數個鋰離子中之至少一些發生化學反應,且藉由置換氟離子(F-)而轉化成碳-鋰(C-Li)鍵;及 A plurality of carbon-fluorine (CF) bonds within the polymer network, at least some of the plurality of carbon-fluorine (CF) bonds configured to occur with at least some of the plurality of lithium ions by Woods reactions chemical reaction and conversion to carbon-lithium (C-Li) bonds by displacement of fluoride ions (F ); and 在該伍茲反應期間的氟離子(F-)置換過程中形成之複數個碳-碳(C-C)鍵,碳-碳(C-C)鍵之形成與該聚合物網路之交聯相關;及 carbon-carbon (CC) bonds formed during fluoride ion (F ) displacement during the Woods reaction, the formation of carbon-carbon (CC) bonds being associated with cross-linking of the polymer network; and 響應於該複數個碳-碳(C-C)鍵中之至少一些的形成而形成之氟化鋰(LiF),氟化鋰(LiF)與該複數個鋰離子中之至少一些的消耗相關; lithium fluoride (LiF) formed in response to formation of at least some of the plurality of carbon-carbon (C-C) bonds, the lithium fluoride (LiF) being associated with consumption of at least some of the plurality of lithium ions; 一陰極,該陰極與該陽極相對定位且包含複數個孔隙,該陰極進一步包括: A cathode, the cathode is located opposite to the anode and includes a plurality of pores, the cathode further includes: 複數個非三區段顆粒; a plurality of non-three-segment particles; 複數個三區段顆粒,各三區段顆粒包括: a plurality of three-segment particles, each three-segment particle comprising: 複數個碳片段,該複數個碳片段彼此交織在一起且藉由中孔彼此隔開;及 a plurality of carbon segments interwoven with each other and separated from each other by mesopores; and 一可變形周邊,該可變形周邊經組態以與一或多個相鄰非三區段顆粒或三區段顆粒聚結; a deformable perimeter configured to coalesce with one or more adjacent non-three-segmented particles or three-segmented particles; 複數個聚集物,各聚集物包括接合在一起之許多三區段顆粒; a plurality of aggregates, each aggregate comprising a plurality of three-segment particles joined together; 複數個中孔,該複數個中孔散佈於整個該複數個聚集物中; a plurality of mesopores dispersed throughout the plurality of aggregates; 複數個團聚物,各團聚物包括彼此接合之許多聚集物;及 a plurality of aggregates, each aggregate comprising a plurality of aggregates joined to each other; and 複數個大孔,該複數個大孔散佈於整個該複數個聚集物中;及 a plurality of macropores dispersed throughout the plurality of aggregates; and 一電解質,該電解質分散在整個該陰極及該陽極中;及 an electrolyte dispersed throughout the cathode and the anode; and 一隔板,該隔板定位在該陽極與該陰極之間。 A separator is positioned between the anode and the cathode. 如請求項81之陰極,其中各聚集物具有在10奈米(nm)與10微米(μm)之間的範圍內之主要尺寸。 The cathode of claim 81, wherein each aggregate has a major dimension in the range between 10 nanometers (nm) and 10 micrometers (μm). 如請求項81之陰極,其中各中孔具有3.3奈米(nm)與19.3nm之間的主要尺寸。 81. The cathode of claim 81, wherein each mesopore has a major dimension between 3.3 nanometers (nm) and 19.3 nm. 如請求項81之陰極,其中各團聚物具有在0.1μm與1,000μm之間的近似範圍內之主要尺寸。 The cathode of claim 81, wherein each agglomerate has a major dimension in the approximate range between 0.1 μm and 1,000 μm. 如請求項77之陰極,其中各團聚物具有在0.1μm與1,000μm之間的近似範圍內之主要尺寸。 The cathode of claim 77, wherein each agglomerate has a major dimension within an approximate range between 0.1 μm and 1,000 μm. 一種陰極,其包含: A cathode comprising: 一第一多孔碳質區域,該第一多孔碳質區域由第一濃度水準之碳質材料形成,該第一多孔碳質區域包括: A first porous carbonaceous region formed from a first concentration level of carbonaceous material, the first porous carbonaceous region comprising: 一第一複數個非三區段顆粒; a first plurality of non-three-segment particles; 一第一複數個三區段顆粒,各三區段顆粒包括: a first plurality of three-segment particles, each three-segment particle comprising: 一第一複數個碳片段,該第一複數個碳片段彼此交織在一起且藉由中孔彼此隔開;及 a first plurality of carbon segments interwoven with each other and separated from each other by mesopores; and 一第一可變形周邊,該第一可變形周邊經組態以與一或多個相鄰非三區段顆粒或三區段顆粒聚結; a first deformable perimeter configured to coalesce with one or more adjacent non-three-segmented particles or three-segmented particles; 一第一複數個聚集物,各聚集物包括接合在一起之許多三區段顆粒,各聚集物具有10奈米(nm)與10微米(μm)之間的範圍內之主要尺寸; a first plurality of aggregates, each aggregate comprising a plurality of three-segment particles joined together, each aggregate having a major dimension in the range between 10 nanometers (nm) and 10 micrometers (μm); 一第一複數個中孔,該第一複數個中孔散佈於整個該第一複數個聚集物中,各中孔具有3.3奈米(nm)與19.3nm之間的主要尺寸; a first plurality of mesopores dispersed throughout the first plurality of aggregates, each mesopore having a major dimension between 3.3 nanometers (nm) and 19.3 nm; 一第一複數個團聚物,各團聚物包括彼此接合之許多聚集物,各團聚物 具有在0.1μm與1,000μm之間的近似範圍內之主要尺寸;及 A first plurality of agglomerates, each agglomerate comprising a plurality of aggregates joined to each other, each agglomerate have major dimensions in the approximate range between 0.1 μm and 1,000 μm; and 一第一複數個大孔,該第一複數個大孔散佈於整個該第一複數個聚集物中,各大孔具有0.1μm與1,000μm之間的主要尺寸;及 a first plurality of macropores dispersed throughout the first plurality of aggregates, the macropores having a major dimension between 0.1 μm and 1,000 μm; and 一第二多孔碳質區域,該第二多孔碳質區域與該第一多孔碳質區域相鄰定位,該第二多孔碳質區域由與該碳質材料第一濃度水準不同的第二濃度水準之碳質材料形成,該第二多孔碳質區域包括: a second porous carbonaceous region positioned adjacent to the first porous carbonaceous region, the second porous carbonaceous region composed of a different carbonaceous material than the first concentration level Formation of carbonaceous material at a second concentration level, the second porous carbonaceous region comprising: 一第二複數個非三區段顆粒; a second plurality of non-three-segment particles; 一第二複數個三區段顆粒,各三區段顆粒包括: a second plurality of three-segment particles, each three-segment particle comprising: 一第二複數個碳片段,該第二複數個碳片段彼此交織在一起且藉由中孔彼此隔開;及 a second plurality of carbon segments interwoven with each other and separated from each other by mesopores; and 一第二可變形周邊,該第二可變形周邊經組態以與一或多個相鄰非三區段顆粒或三區段顆粒聚結; a second deformable perimeter configured to coalesce with one or more adjacent non-three-segmented particles or three-segmented particles; 一第二複數個聚集物,各聚集物包括接合在一起之許多三區段顆粒,各聚集物具有10奈米(nm)與10微米(μm)之間的範圍內之主要尺寸; a second plurality of aggregates, each aggregate comprising a plurality of three-segment particles joined together, each aggregate having a major dimension in the range between 10 nanometers (nm) and 10 micrometers (μm); 一第二複數個中孔,該第二複數個中孔散佈於整個該第二複數個聚集物中,各中孔具有3.3奈米(nm)與19.3nm之間的主要尺寸; a second plurality of mesopores dispersed throughout the second plurality of aggregates, each mesopore having a major dimension between 3.3 nanometers (nm) and 19.3 nm; 一第二複數個團聚物,各團聚物包括彼此接合之許多聚集物,各團聚物具有在0.1μm與1,000μm之間的近似範圍內之主要尺寸;及 a second plurality of agglomerates, each agglomerate comprising a plurality of agglomerates joined to each other, each agglomerate having a major dimension in the approximate range between 0.1 μm and 1,000 μm; and 一第二複數個大孔,該第二複數個大孔散佈於整個該第二複數個聚集物中,各大孔具有0.1μm與1,000μm之間的主要尺寸。 A second plurality of macropores dispersed throughout the second plurality of aggregates, the macropores having a major dimension between 0.1 μm and 1,000 μm. 如請求項86之陰極,其中該第一多孔碳質區域或該第二多孔碳質區域中之一或多者進一步包括一選擇性滲透殼,該選擇性滲透殼經組態以分別在該第一多孔碳質區域或該第二多孔碳質區域上形成一分離的液相。 The cathode of claim 86, wherein one or more of the first porous carbonaceous region or the second porous carbonaceous region further comprises a selectively permeable shell configured to respectively A separate liquid phase is formed on the first porous carbonaceous region or the second porous carbonaceous region. 如請求項86之陰極,其進一步包括分散在該第一多孔碳質區域 或該第二多孔碳質區域中之一或多者內的一電解質。 The cathode of claim 86, further comprising dispersed in the first porous carbonaceous region or an electrolyte in one or more of the second porous carbonaceous regions. 如請求項86之陰極,其中該第一多孔碳質區域在12,000鎊/平方吋(psi)之壓力下具有500S/m至20,000S/m之間的近似範圍內之電導率。 The cathode of claim 86, wherein the first porous carbonaceous region has a conductivity in the approximate range of 500 S/m to 20,000 S/m at a pressure of 12,000 pounds per square inch (psi). 如請求項86之陰極,其中該第二多孔碳質區域在12,000鎊/平方吋(psi)之壓力下具有0S/m至500S/m之間的近似範圍內之電導率。 The cathode of claim 86, wherein the second porous carbonaceous region has a conductivity in the approximate range of 0 S/m to 500 S/m at a pressure of 12,000 pounds per square inch (psi). 如請求項86之陰極,其中該第一複數個團聚物或該第二複數個團聚物中之一或多者包括用一或多種基於聚合物之黏合劑彼此連接之聚集物。 The cathode of claim 86, wherein one or more of the first plurality of agglomerates or the second plurality of agglomerates comprises agglomerates connected to each other with one or more polymer-based binders. 如請求項86之陰極,其中該三區段顆粒中之各者包括: The cathode of claim 86, wherein each of the three-segment particles comprises: 一第一孔隙率區域,該第一孔隙率區域圍繞該等三區段顆粒中之各者之中心定位,該第一孔隙率區域包括第一孔隙;及 a region of first porosity positioned around the center of each of the three-segmented particles, the region of first porosity comprising a first pore; and 一第二孔隙率區域,該第二孔隙率區域包圍該第一孔隙率區域,該第二孔隙率區域包括第二孔隙。 A second porosity region surrounding the first porosity region, the second porosity region including second pores. 如請求項86之陰極,其中該第一孔隙界定第一孔隙密度,且第二孔隙界定不同於該第一孔隙密度之第二孔隙密度。 The cathode of claim 86, wherein the first pores define a first pore density and the second pores define a second pore density different from the first pore density. 如請求項86之陰極,其進一步包括一或多個額外多孔碳質區域,至少一個額外多孔碳質區域與該第二多孔碳質區域耦合。 The cathode of claim 86, further comprising one or more additional porous carbonaceous regions, at least one additional porous carbonaceous region coupled to the second porous carbonaceous region. 如請求項94之陰極,其中一或多個額外多孔碳質區域在遠離該第一多孔碳質區域之方向上、以碳質材料之濃度水準逐步降低之次序佈置。 The cathode of claim 94, wherein one or more additional porous carbonaceous regions are arranged in the order of decreasing concentration levels of carbonaceous materials in a direction away from the first porous carbonaceous region. 如請求項86之陰極,其中該第一複數個中孔具有第一中孔密度,且該第二複數個中孔具有不同於該第一中孔密度之第二中孔密度。 The cathode of claim 86, wherein the first plurality of mesopores has a first mesopore density and the second plurality of mesopores has a second mesopore density different from the first mesopore density. 如請求項86之陰極,其中該第一複數個大孔具有第一孔隙密度,且該第二複數個大孔具有不同於該第一孔隙密度之第二孔隙密度。 The cathode of claim 86, wherein the first plurality of macropores has a first pore density and the second plurality of macropores has a second pore density different from the first pore density. 如請求項86之陰極,其中該第一多孔碳質區域或該第二多孔碳 質區域中之一或多者經組態以使硫成核。 The cathode of claim 86, wherein the first porous carbonaceous region or the second porous carbon One or more of the mass regions are configured to nucleate sulfur. 如請求項86之陰極,其中該陰極具有大約1:5至10:1之間的硫與碳重量比。 The cathode of claim 86, wherein the cathode has a sulfur to carbon weight ratio of between about 1:5 and 10:1. 如請求項86之陰極,其進一步包括分散在該第一多孔碳質區域或該第二多孔碳質區域中之一或多者內的一或多種導電添加劑。 The cathode of claim 86, further comprising one or more conductive additives dispersed in one or more of the first porous carbonaceous region or the second porous carbonaceous region. 如請求項86之陰極,其進一步包括一安置在該陰極上之保護鞘。 The cathode of claim 86, further comprising a protective sheath disposed on the cathode. 如請求項101之陰極,其中該保護鞘包括: The cathode of claim 101, wherein the protective sheath comprises: 三官能環氧化合物,及 Trifunctional epoxy compounds, and 基於二胺寡聚物之化合物,該二者經組態以相互化學反應。 Compounds based on diamine oligomers configured to chemically react with each other. 如請求項102之陰極,其中該陰極經併入一鋰硫電池中。 The cathode of claim 102, wherein the cathode is incorporated into a lithium-sulfur battery. 如請求項103之陰極,其中該三官能環氧化合物為三羥甲基丙烷三縮水甘油醚(TMPTE)、參(4-羥苯基)甲烷三縮水甘油醚、或參(2,3-環氧丙基)異氰脲酸酯中之一或多種。 The cathode of claim 103, wherein the trifunctional epoxy compound is trimethylolpropane triglycidyl ether (TMPTE), ginseng (4-hydroxyphenyl) methane triglycidyl ether, or ginseng (2,3-cyclo One or more of oxypropyl) isocyanurates. 如請求項103之陰極,其中該保護鞘經組態以基於該保護鞘與在該鋰硫電池之操作放電-充電循環期間產生的一或多種含鋰多硫化物中間物之間的化學鍵結來防止該鋰硫電池內之多硫化物遷移。 The cathode of claim 103, wherein the protective sheath is configured based on chemical bonding between the protective sheath and one or more lithium-containing polysulfide intermediates produced during the operational discharge-charge cycle of the lithium-sulfur battery Prevent polysulfide migration in the lithium-sulfur battery. 一種包括複數個孔隙之標的組合物,該標的組合物包含: A subject composition comprising a plurality of pores, the subject composition comprising: 複數個非三區段顆粒; a plurality of non-three-segment particles; 複數個三區段顆粒,各三區段顆粒包括: a plurality of three-segment particles, each three-segment particle comprising: 複數個碳片段,該複數個碳片段彼此交織在一起且藉由中孔彼此隔開;及 a plurality of carbon segments interwoven with each other and separated from each other by mesopores; and 一可變形周邊,該可變形周邊經組態以與一或多個相鄰非三區段顆粒或三區段顆粒聚結; a deformable perimeter configured to coalesce with one or more adjacent non-three-segmented particles or three-segmented particles; 複數個聚集物,各聚集物包括接合在一起之許多三區段顆粒,各聚集物具 有10奈米(nm)與10微米(μm)之間的範圍內之主要尺寸; A plurality of aggregates, each aggregate comprising many three-segment particles bonded together, each aggregate having have major dimensions in the range between 10 nanometers (nm) and 10 micrometers (μm); 複數個中孔,該複數個中孔散佈於整個該複數個聚集物中,各中孔具有3.3奈米(nm)與19.3nm之間的主要尺寸; a plurality of mesopores interspersed throughout the plurality of aggregates, each mesopore having a major dimension between 3.3 nanometers (nm) and 19.3 nm; 複數個團聚物,各團聚物包括彼此接合之許多聚集物,各團聚物具有在0.1μm與1,000μm之間的近似範圍內之主要尺寸;及 a plurality of agglomerates, each agglomerate comprising a plurality of aggregates joined to each other, each agglomerate having a major dimension in the approximate range between 0.1 μm and 1,000 μm; and 複數個大孔,該複數個大孔散佈於整個該複數個團聚物中,各大孔具有0.1μm與1,000μm之間的主要尺寸。 A plurality of macropores interspersed throughout the plurality of agglomerates, the macropores having a major dimension between 0.1 μm and 1,000 μm. 如請求項106之標的組合物,其進一步包括一選擇性滲透殼,該選擇性滲透殼經組態以在該標的組合物之一或多個暴露表面上形成一分離的液相。 The subject composition of claim 106, further comprising a selectively permeable shell configured to form a separate liquid phase on one or more exposed surfaces of the subject composition. 如請求項106之標的組合物,其進一步包括一分散在該標的組合物內之電解質。 The subject composition of claim 106, further comprising an electrolyte dispersed in the subject composition. 如請求項106之標的組合物,其中各孔隙具有在0奈米(nm)與32.3nm之間的近似範圍內之主要尺寸。 The subject composition of claim 106, wherein each pore has a major dimension within an approximate range between 0 nanometers (nm) and 32.3 nm. 如請求項106之標的組合物,其中該標的組合物在12,000鎊/平方吋(psi)之壓力下具有100S/m至20,000S/m之間的近似範圍內之電導率。 106. The subject composition of claim 106, wherein the subject composition has a conductivity in the approximate range of 100 S/m to 20,000 S/m at a pressure of 12,000 pounds per square inch (psi). 如請求項106之標的組合物,其中至少一些團聚物用一或多種基於聚合物之黏合劑彼此連接。 The subject composition of claim 106, wherein at least some of the agglomerates are connected to each other with one or more polymer-based binders. 如請求項106之標的組合物,其中該三區段顆粒中之各者包括: The subject composition of claim 106, wherein each of the three-segment particles comprises: 一第一孔隙率區域,該第一孔隙率區域圍繞該等三區段顆粒中之各者之中心定位,該第一孔隙率區域包括第一孔隙;及 a region of first porosity positioned around the center of each of the three-segment grains, the region of first porosity comprising a first pore; and 一第二孔隙率區域,該第二孔隙率區域包圍該第一孔隙率區域,該第二孔隙率區域包括第二孔隙。 A second porosity region surrounding the first porosity region, the second porosity region including second pores. 如請求項112之標的組合物,其中該第一孔隙界定第一孔隙密 度,且第二孔隙界定不同於該第一孔隙密度之第二孔隙密度。 The subject composition of claim 112, wherein the first pores define a first pore density degree, and the second pores define a second pore density different from the first pore density.
TW111127628A 2021-07-23 2022-07-22 Lithium-sulfur battery cathode formed from multiple carbonaceous regions TW202308206A (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US17/383,744 US11342561B2 (en) 2019-10-25 2021-07-23 Protective polymeric lattices for lithium anodes in lithium-sulfur batteries
US17/383,735 2021-07-23
US17/383,803 US11309545B2 (en) 2019-10-25 2021-07-23 Carbonaceous materials for lithium-sulfur batteries
US17/383,769 2021-07-23
US17/383,769 US20210359308A1 (en) 2019-10-25 2021-07-23 Carbon-scaffolded lithium-sulfur battery cathodes featuring a polymeric protective layer
US17/383,756 2021-07-23
US17/383,756 US20210359306A1 (en) 2019-10-25 2021-07-23 Battery including multiple protective layers
US17/383,744 2021-07-23
US17/383,793 2021-07-23
US17/383,793 US11398622B2 (en) 2019-10-25 2021-07-23 Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery
US17/383,803 2021-07-23
US17/383,735 US11489161B2 (en) 2019-10-25 2021-07-23 Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
US17/563,183 US11404692B1 (en) 2021-07-23 2021-12-28 Lithium-sulfur battery cathode formed from multiple carbonaceous regions
US17/563,183 2021-12-28

Publications (1)

Publication Number Publication Date
TW202308206A true TW202308206A (en) 2023-02-16

Family

ID=84488293

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111127628A TW202308206A (en) 2021-07-23 2022-07-22 Lithium-sulfur battery cathode formed from multiple carbonaceous regions

Country Status (3)

Country Link
KR (1) KR20240036086A (en)
TW (1) TW202308206A (en)
WO (1) WO2023004060A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3139429B1 (en) * 2011-06-23 2023-06-07 Molecular Rebar Design LLC Lithium ion batteries using discrete carbon nanotubes, methods for production thereof and products obtained therefrom
US20150078912A1 (en) * 2013-09-18 2015-03-19 General Electric Company Ceramic core compositions, methods for making cores, methods for casting hollow titanium-containing articles, and hollow titanium-containing articles
US10340520B2 (en) * 2014-10-14 2019-07-02 Sila Nanotechnologies, Inc. Nanocomposite battery electrode particles with changing properties
US10532674B2 (en) * 2017-08-01 2020-01-14 Faurecia Automotive Seating, Llc Vehicle seat

Also Published As

Publication number Publication date
KR20240036086A (en) 2024-03-19
WO2023004060A3 (en) 2023-04-13
WO2023004060A2 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US11309545B2 (en) Carbonaceous materials for lithium-sulfur batteries
US20210257667A1 (en) Ternary solvent package and 2-mercaptobenzothiazole (mbt) for lithium-sulfur batteries
US11342561B2 (en) Protective polymeric lattices for lithium anodes in lithium-sulfur batteries
US11489161B2 (en) Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
US11508969B2 (en) Structured anodes for lithium-based energy storage devices
US20210257666A1 (en) Ternary solvent package for lithium-sulfur batteries
US20210242505A1 (en) Ternary solvent package and 4,4'-thiobisbenzenethiol (tbt) for lithium-sulfur batteries
KR102131262B1 (en) an anode active material, a method of preparing the anode active material, and Lithium secondary battery comprising an anode including the anode active material
KR100560541B1 (en) Rechargeable lithium battery
US20220271291A1 (en) Plasticizer-inclusive polymeric-inorganic hybrid layer for a lithium anode in a lithium-sulfur battery
US11398622B2 (en) Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery
US20210359308A1 (en) Carbon-scaffolded lithium-sulfur battery cathodes featuring a polymeric protective layer
US20210359306A1 (en) Battery including multiple protective layers
US20220263111A1 (en) Polymeric-inorganic hybrid layer for a lithium anode
US20230035035A1 (en) Tab-less cylindrical cell
KR20200080490A (en) an anode active material, a method of preparing the anode active material, and Lithium secondary battery comprising an anode including the anode active material
TW202308206A (en) Lithium-sulfur battery cathode formed from multiple carbonaceous regions
US11404692B1 (en) Lithium-sulfur battery cathode formed from multiple carbonaceous regions
US11367895B1 (en) Solid-state electrolyte for lithium-sulfur batteries
US20230031884A1 (en) Lithium-sulfur battery electrolyte compositions
US11600876B2 (en) Wound cylindrical lithium-sulfur battery including electrically-conductive carbonaceous materials
US11670826B2 (en) Length-wise welded electrodes incorporated in cylindrical cell format lithium-sulfur batteries
US20230187744A1 (en) Cylindrical lithium-sulfur battery
US20220320515A1 (en) Lithium-sulfur battery with a protective layer including carbon materials decorated with metal-containing substances
US20230275257A1 (en) Cylindrical lithium-sulfur batteries