TW202308174A - 微機電紅外光感測裝置及其製造方法 - Google Patents

微機電紅外光感測裝置及其製造方法 Download PDF

Info

Publication number
TW202308174A
TW202308174A TW111102107A TW111102107A TW202308174A TW 202308174 A TW202308174 A TW 202308174A TW 111102107 A TW111102107 A TW 111102107A TW 111102107 A TW111102107 A TW 111102107A TW 202308174 A TW202308174 A TW 202308174A
Authority
TW
Taiwan
Prior art keywords
infrared light
layer
sensing
light sensing
light absorbing
Prior art date
Application number
TW111102107A
Other languages
English (en)
Other versions
TWI836324B (zh
Inventor
郭沁柔
李柏勳
陳明發
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN202210373390.1A priority Critical patent/CN115704715A/zh
Priority to US17/729,873 priority patent/US20230045432A1/en
Publication of TW202308174A publication Critical patent/TW202308174A/zh
Application granted granted Critical
Publication of TWI836324B publication Critical patent/TWI836324B/zh

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Micromachines (AREA)

Abstract

一種微機電紅外光感測裝置,包含基板以及紅外光感測元件。紅外光感測元件設置於基板上方,且紅外光感測元件包含感應板以及至少一支撐元件。感應板包含至少一紅外光吸收層、紅外光感測層、感測電極以及多個金屬元件。感應板具有多個開孔,金屬元件圍繞開孔,感測電極與該紅外光感測層連接,且這些金屬元件彼此間隔設置。支撐元件連接感應板與基板。

Description

微機電紅外光感測裝置及其製造方法
本發明係關於一種微機電紅外光感測裝置以及此微機電紅外光感測裝置的製造方法。
近年來,微機電紅外光感測裝置已被應用於各種不同的領域。而在未來,微機電紅外光感測裝置在工業生產、環境監控、居家照護及溫度量測等領域的需求將大幅增加。一般而言,微機電紅外光感測裝置主要包含紅外光吸收層以及紅外光感測層。紅外光吸收層吸收紅外光輻射能量並將輻射能量轉化為熱能。吸收紅外光所轉化出的熱能造成紅外光感測層或是與紅外光感測層接觸的電極升溫,此溫度變化使得紅外光感測層或電極的電阻值改變,而由於電阻值改變可以觀察到電壓值或電流大小的改變,進而推算出待測物的溫度。
可做為紅外光感測層的材料需要具備高電阻溫度係數(Temperature coefficient of resistance,TCR),因此選擇材料方面受到限制。目前,業界普遍使用作為紅外光感測層的材料主要是吸收波長為10~14微米(μm)的紅外光波段,無法有效利用波長小於10微米之紅外光波段的能量,例如業界廣泛使用作為紅外光感測層的氮化矽對於波長為10~14微米的紅外光波段可以有高達85%的吸收率,但對於波長小於10微米的紅外光波段僅有55%的吸收率。
鑑於上述問題,本發明提供一種對於寬廣紅外光波段具有高吸收率的微機電紅外光感測裝置,同時提供此微機電紅外光感測裝置的製造方法。
本發明一實施例所揭露之微機電紅外光感測裝置包含一基板以及設置於基板上方的一紅外光感測元件。紅外光感測元件包含一感應板以及至少一支撐元件。感應板包含至少一紅外光吸收層、一紅外光感測層、一感測電極以及多個金屬元件。感應板具有多個開孔,這些金屬元件各自圍繞這些開孔,感測電極與紅外光感測層連接,且這些金屬元件彼此間隔設置。支撐元件連接感應板與基板。
本發明一實施例所揭露之微機電紅外光感測裝置的製造方法包含:於一基板上形成一犧牲層;於犧牲層中形成至少一支撐元件;於犧牲層上形成一感應板;於感應板形成多個開孔分別貫穿該些金屬元件;以及移除該犧牲層。其中感應板包含至少一紅外光吸收層、一紅外光感測層、一感測電極以及多個金屬元件,感測電極與紅外光感測層和支撐元件連接,且這些金屬元件彼此間隔設置。
根據本發明揭露之微機電紅外光感測裝置及其製造方法,紅外光感測元件的感應板除了設置有紅外光吸收層之外還額外包含相間隔的多個金屬元件以及被這些金屬元件圍繞的多個開孔。金屬元件有助於提升感應板對於波長在8~10微米的紅外光波段的吸收率,尤其顯著提升對於波長在8~9微米的紅外光波段的吸收率。配合紅外光吸收層本身對於波長10~12微米的紅外光波段具有高吸收率,能滿足紅外光感測元件對於寬廣紅外光波段具備高吸收率的需求。
以上關於本發明內容之說明及以下實施方式之說明係用以示範與解釋本發明之原理,並提供本發明之專利申請範圍更進一步之解釋。
於以下實施方式中詳細敘述本發明之詳細特徵及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露的內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易理解本發明相關之目的及優點。以下實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。
請參閱圖1和圖2,其中圖1為根據本發明一實施例之微機電紅外光感測裝置的立體示意圖,圖2為圖1之微機電紅外光感測裝置的上視示意圖。在本實施例中,微機電紅外光感測裝置1包含基板10、紅外光反射層20以及紅外光感測元件30。
基板10例如但不限於是具有讀取電路的矽基板。紅外光反射層20例如但不限於是金屬膜,其設置於基板10上。
紅外光感測元件30設置於基板10上方,且紅外光反射層20介於基板10和紅外光感測元件30之間。紅外光感測元件30包含至少一支撐元件310以及感應板320。支撐元件310例如但不限於是金屬柱,其設置於基板10上,並且支撐元件310與基板10的讀取電路電性連接。感應板320藉由支撐元件310懸浮於基板10和紅外光反射層20上方。圖1繪示有多個支撐元件310設置於基板10上,但支撐元件310的數量並非用以限制本發明。
感應板320具有互不重疊的感測區域A1以及光吸收區域A2,且光吸收區域A2圍繞感測區域A1。感應板320包含多個紅外光吸收層、紅外光感測層323、感測電極324以及多個金屬元件325。請一併參照圖3和圖4,其中圖3為圖1之微機電紅外光感測裝置中紅外光感測元件的分解示意圖,圖4為圖1之微機電紅外光感測裝置的剖面示意圖。在本實施例中,感應板320包含靠近紅外光反射層20的下紅外光吸收層321以及遠離紅外光反射層20的上紅外光吸收層322。
下紅外光吸收層321遍布於感測區域A1及光吸收區域A2,並且下紅外光吸收層321包含多個紅外光吸收子層。更具體來說,下紅外光吸收層321包含第一下紅外光吸收子層321a以及介於紅外光感測層323和第一下紅外光吸收子層321a之間的第二下紅外光吸收子層321b,並且第一下紅外光吸收子層321a和第二下紅外光吸收子層321b可具有不同材質以分別對應不同的吸收紅外光波段。例如,第一下紅外光吸收子層321a材質為氧化矽,第二下紅外光吸收子層321b材質為氮化矽,且這兩個紅外光吸收子層的吸收波長範圍具有不同峰值。
上紅外光吸收層322遍布於感測區域A1及光吸收區域A2,並且上紅外光吸收層322包含多個紅外光吸收層。更具體來說,上紅外光吸收層322包含一第一上紅外光吸收子層322a以及介於紅外光感測層323和第一上紅外光吸收子層322a之間的一第二上紅外光吸收子層322b,並且第一上紅外光吸收子層322a和第二上紅外光吸收子層322b可具有不同材質以分別對應不同的吸收紅外光波段。例如,第一上紅外光吸收子層322a材質為氧化矽,第二上紅外光吸收子層322b材質為氮化矽,且這兩個紅外光吸收子層的吸收波長範圍具有不同峰值。
也就是說,下紅外光吸收層321與上紅外光吸收層322可具有相對於紅外光感測層323呈對稱配置之疊層結構,且各個紅外光吸收疊層結構中的多個紅外光吸收層對應不同的吸收紅外光波段。在本實施例中,下紅外光吸收層321的第一下紅外光吸收子層321a和上紅外光吸收層322的第一上紅外光吸收子層322a具有相同材質(氧化矽),並且第二下紅外光吸收子層321b和第二上紅外光吸收子層322b具有相同材質(氮化矽)。本實施例以紅外光吸收層的材質為氧化矽或氮化矽作為舉例說明,其並非用以限制本發明。在其他實施例中,紅外光吸收層可以是其他材質(如含氮氧化矽)或是複合材質,且各個紅外光吸收疊層結構可包含多於兩層的紅外光吸收層。
在本實施例中,下紅外光吸收層321以及上紅外光吸收層322還具有相同厚度,更進一步來說是第一下紅外光吸收子層321a和第一上紅外光吸收子層322a具有相同厚度,且第二下紅外光吸收子層321b和第二上紅外光吸收子層322b具有相同厚度。
本實施例的下紅外光吸收層321與上紅外光吸收層322各自具有由多個子層所組成之疊層結構,但本發明並不以此為限。在其他實施例中,兩個紅外光吸收層可皆為單一材料層,或是僅有其一個紅外光吸收層具有疊層結構。此外,本實施例的感應板320包含複數個紅外光吸收層,但本發明並不以此為限。在其他實施例中,可以只在紅外光感測層上方或是感測電極下方形成紅外光吸收層。
紅外光感測層323例如但不限於是非晶矽(a-Si)或具有高電阻溫度係數的複合材料,其介於下紅外光吸收層321及上紅外光吸收層322之間。進一步來說,紅外光感測層323位於感測區域A1且未延伸至光吸收區域A2。
感測電極324與紅外光感測層323熱接觸。詳細來說,感測電極324介於下紅外光吸收層321與上紅外光吸收層322之間,並且感測電極324包含位於感測區域A1的指叉電極結構324a以及位於光吸收區域A2的連接臂結構324b。指叉電極結構324a與紅外光感測層323熱接觸,並且指叉電極結構324a經由連接臂結構324b與支撐元件310電性接觸。
多個金屬元件325設置於下紅外光吸收層321與上紅外光吸收層322之間,並且這些金屬元件325彼此間隔設置。請一併參照圖5,為圖4之微機電紅外光感測裝置的局部放大示意圖。這些金屬元件325皆位於光吸收區域A2,並且至少部分金屬元件325呈週期性排列。感測電極324與這些金屬元件325位於同一層,並且金屬元件325與感測電極324電性絕緣。感應板320在對應這些金屬元件325之中心孔3251的位置還形成有多個開孔326,使得金屬元件325圍繞對應之開孔326。開孔326延伸通過下紅外光吸收層321、中心孔3251和上紅外光吸收層322而貫通感應板320。金屬元件325例如但不限於是金屬環,並且開孔326的內壁面有一部份是顯露出來之金屬環的內環面3252,也就是說金屬環的內環面3252形成開孔326的部分孔壁面。本實施例的各個金屬元件325為正方形的單一金屬環,而在其他實施例的金屬元件可以是金屬圓環或其他多邊形環狀。
此處提及的「金屬元件圍繞開孔」,包含金屬元件的中心孔形成為開孔的一部分,以及金屬元件之中心孔的邊緣與開孔相間隔。前者的例子如圖4、5的中心孔3251作為開孔326的一部分孔壁面,後者的例子如其他實施例的紅外光吸收層填充於中心孔邊緣與開孔間的間隙。
以下說明微機電紅外光感測裝置1的製造方法。請一併參照圖6至圖13,為圖1之微機電紅外光感測裝置的製造流程圖。以下描述製造微機電紅外光感測裝置1的詳細步驟,但所述各步驟的具體實施方式並非用以限制本發明。
如圖6所示,提供具有讀取電路的基板10,並且於基板10上依序形成紅外光反射層20和犧牲層50。具體來說,於基板10上沉積金屬層(例如厚度約300奈米的鋁層),並且蝕刻進行圖案化以形成紅外光反射層20。於形成紅外光反射層20後,於基板10和紅外光反射層20上沉積介電層(例如厚度1000~1500奈米非晶矽來作為犧牲層50。可選擇性地在形成介電層之前於紅外光反射層20上形成保護層(如SiO x材質)。
如圖7和圖8所示,於犧牲層50中形成支撐元件310。具體來說,藉由蝕刻移除部分犧牲層50以形成貫通孔510,接著於貫通孔510中形成支撐元件310。可以於犧牲層50的上表面和貫通孔510中填充導電材料(如鎢),並且移除位於犧牲層50上表面的部分導電材料而形成支撐元件310。更具體來說,可以採用化學機械平坦化製程(Chemical-Mechanical planarization,CMP)移除部分導電材料和部分犧牲層50而形成支撐元件310,藉以確保犧牲層50上表面足夠平坦。
接著於犧牲層50上形成感應板320。如圖9所示,於犧牲層50上形成感應板320的下紅外光吸收層321。具體來說,先沉積厚度約40~100奈米的氧化矽層覆蓋支撐元件310和犧牲層50,其中氧化矽層和氮化矽層分別作為下紅外光吸收層321的第一下紅外光吸收子層321a和第二下紅外光吸收子層321b。
如圖10所示,於下紅外光吸收層321上形成感應板320的感測電極324和金屬元件325。具體來說,在前述沉積氧化矽層和氮化矽層形成下紅外光吸收層321的步驟後,藉由蝕刻移除部分氧化矽層和氮化矽層而顯露出支撐元件310;或者,在前述沉積氧化矽層和氮化矽層的步驟前,以掩模(Mask)遮蓋支撐元件310後再進行沉積製程,而讓支撐元件310在沉積完成後能顯露出來。接著,在下紅外光吸收層321的上表面及支撐元件310上沉積導電層(如厚度約50~100奈米的氮化鈦),再接著蝕刻對導電層進行圖案化以形成感測電極324和金屬元件325。所述圖案化可以是執行微影製程和/或蝕刻製程。
參照圖5和圖10,金屬元件325規格與配置舉例如下:各個金屬環的最外圍直徑d(即從金屬環中心到金屬環邊緣的徑向長度之兩倍)為1.3~1.5微米,金屬環的寬度W為0.1~0.15微米,金屬環的厚度t為50~70奈米,且相鄰兩金屬環彼此的中心間距Dint為金屬環最外圍直徑d的三倍。
如圖11所示,於感測電極324上形成感應板320的紅外光感測層323。具體來說,於感測電極324上沉積具有高電阻溫度係數的材料層(如厚度約50~100奈米的非晶矽),接著蝕刻對材料層進行圖案化,以於感測電極324之指叉電極結構324a的上方形成紅外光感測層323。藉由蝕刻被移除的材料層之區域即可定義為感應板320的光吸收區域A2,紅外光感測層323和指叉電極結構324a所在位置則可定義為感測區域A1。圖10和圖11繪示依序先形成感測電極324再形成紅外光感測層323,但本發明並不以此為限,在其他實施例中,可以先形成紅外光感測層再形成感測電極。此外,所述圖案化可以是執行微影製程和/或蝕刻製程。
如圖12所示,於紅外光感測層323上形成感應板320的上紅外光吸收層322。具體來說,先沉積厚度約100~170奈米的氮化矽層覆蓋紅外光感測層323和感測電極324,接著於此氮化矽層上沉積厚度約40~100奈米的氧化矽層,再接著藉由蝕刻對氧化矽層和氮化矽層進行圖案化,以形成上紅外光吸收層322的第一上紅外光吸收子層322a和第二上紅外光吸收子層322b。所述圖案化可以是執行微影製程和/或蝕刻製程。
如圖13所示,移除部分下紅外光吸收層321、部分上紅外光吸收層322和每一金屬元件325的部分,以形成感應板320的開孔326和彈性支臂327。接著,藉由蝕刻移除犧牲層50,而於下紅外光吸收層321與紅外光反射層20之間形成間隙。
當紅外光自外部入射至微機電紅外光感測裝置1時,經過感應板320的紅外光的輻射能量能被下紅外光吸收層321和上紅外光吸收層322吸收,而使紅外光感測層323的溫度上升,進而與紅外光感測層323熱接觸的感測電極324溫度也跟著上升。感測電極324溫度上升導致其電阻值改變,因而基板10的讀取電路可以獲得電訊號(如電壓值變化或電流值變化)。
在本實施例中,位於光吸收區域A2的金屬元件325以及與金屬元件325對應之開孔326有助於提升感應板320對於波長在8~10微米的紅外光波段的吸收率,尤其顯著提升對於波長在8~9微米的紅外光波段的吸收率。圖14為圖1之微機電紅外光感測裝置對於不同紅外光波段的吸收率圖。其中,感應板中沒有設置金屬元件和開孔的微機電紅外光感測裝置作為比較例,其對於波長8微米的紅外光波段的吸收率僅有55%。相較於感應板中沒有設置金屬元件和開孔的比較例,設置包含多個氮化鈦金屬環以及開孔的感應板能有效提升對於波長在8~10微米的紅外光波段的吸收率,尤其對於波長8微米的紅外光波段吸收率至少提升25%(圖14中,波長8微米的紅外光波段吸收率從55%上升至82.5%,足足提升27.5%)。在本發明其他實施例中,使用不同金屬材質形成的同規格感應板也證實能提升吸收率,例如包含多個由金製成之金屬環以及開孔的感應板對於波長8微米的紅外光波段吸收率從55%上升至89%,包含多個由銅製成之金屬環以及開孔的感應板對於波長8微米的紅外光波段吸收率從55%上升至91%。
在本實施例中,各個紅外光吸收疊層結構(下紅外光吸收層321、上紅外光吸收層322)包含多個紅外光吸收層用於吸收不同波段的紅外光能量。紅外光吸收疊層結構有助於提升吸收率以使微機電紅外光感測裝置1的填充因子(Fill factor)數值上升。此外,對稱配置的下紅外光吸收層321和上紅外光吸收層322可具有相同或近似的材料性質(如熱膨脹係數或楊氏係數)、結構及尺寸,因此在製造紅外光感測裝置1的過程中能避免感應板320翹曲(Warpage)或產生過多熱應力,有助於提升微機電紅外光感測裝置1的製造良率。
此外,在本實施例中,感測電極324包含指叉電極結構324a,並且指叉電極結構324a相較於傳統電極結構具有電極間距短和電阻值低的優點,因此指叉電極結構324a提供比傳統電極結構還要小的工作面積就能夠具有足夠小的雜訊等效溫度差(NETD)來滿足微機電紅外光感測裝置1的熱靈敏度需求,符合小型化發展趨勢。同時,由於指叉電極結構324a的小尺寸工作面積,需要跟指叉電極結構324a重疊之紅外光感測層323的尺寸也能跟著縮減,這意味著用於吸收紅外光能量之紅外光吸收層的工作面積隨著增加,而更進一步增大微機電紅外光感測裝置1的填充因子。
再者,在本實施例揭露的製造方法中,由於感應板320的下紅外光吸收層321形成於犧牲層50上,並且犧牲層50的上表面以化學機械平坦化製程處理,因此在移除犧牲層50後,下紅外光吸收層321於朝向紅外光反射層20的一側具有平坦表面。具有平坦下表面的下紅外光吸收層321能確保感應板320和紅外光反射層20之間的間隙大小保持一致,使微機電紅外光感測裝置1能達到最佳的感測效能,並且搭配對稱配置的紅外光吸收疊層結構設計能進一步提升微機電紅外光感測裝置1的製造良率。
在圖1至圖5的實施例中繪示感應板320中紅外光感測層323的面積小於上、下紅外光吸收層322、321的面積,並且感應板320的開孔326延伸經過上、下紅外光吸收層322、321且未延伸經過紅外光感測層323,但本發明並不以此為限。
圖15為根據本發明另一實施例之微機電紅外光感測裝置的立體示意圖。在本實施例中,微機電紅外光感測裝置2包含基板10、紅外光反射層20以及紅外光感測元件30”。紅外光感測元件30”包含支撐元件310以及感應板320”,且感應板320”包含至少一紅外光吸收層321”、紅外光感測層323”、感測電極324”以及金屬元件325”。紅外光感測層323”設置於紅外光吸收層321”上並且遍布紅外光吸收層321”的所有區域。感測電極324”包含多個支狀電極。感應板320”的開孔326”延伸經過紅外光感測層323”與紅外光吸收層321”。各個金屬元件325”為單一金屬環圍繞對應之開孔326”,並且金屬環的內環面形成開孔326”的部分孔壁面。
在本實施例中,這些金屬元件325”與這些開孔326”均是間隔設置於感應板320”上的所有區域。進一步來說,對於由感測電極324”的部分支狀電極所定義出的一個工作區域A3,感應板320”的紅外光吸收層321”與紅外光感測層323”遍布整個工作區域A3。在形成紅外光吸收層321”、紅外光感測層323”和金屬元件325”之後,可以移除部分紅外光感測層323”、部分紅外光吸收層321”與金屬元件325”的部份而形成開孔326”。於任一個工作區域A3中,金屬元件325”與開孔326”均是呈週期性排列。另外如圖15所示,在不同工作區域A3的兩個金屬元件325”彼此的間隔距離可取決於感測電極324”之支狀電極的寬度。
綜上所述,根據本發明揭露之微機電紅外光感測裝置及其製造方法,紅外光感測元件的感應板除了設置有紅外光吸收層之外還額外包含相間隔的多個金屬元件以及被這些金屬元件圍繞的多個開孔。金屬元件有助於提升感應板對於波長在8~10微米的紅外光波段的吸收率,尤其顯著提升對於波長在8~9微米的紅外光波段的吸收率。配合紅外光吸收層本身對於波長10~12微米的紅外光波段具有高吸收率,能滿足紅外光感測元件對於寬廣紅外光波段具備高吸收率的需求。
本發明之實施例揭露雖如上所述,然並非用以限定本發明,任何熟習相關技藝者,在不脫離本發明之精神和範圍內,舉凡依本發明申請範圍所述之形狀、構造、特徵及精神當可做些許之變更,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。
1、2:微機電紅外光感測裝置 10:基板 20:紅外光反射層 30、30”:紅外光感測元件 310:支撐元件 320、320”:感應板 321:下紅外光吸收層 321a:第一下紅外光吸收子層 321b:第二下紅外光吸收子層 321”:紅外光吸收層 322:上紅外光吸收層 322a:第一上紅外光吸收子層 322b:第二上紅外光吸收子層 323、323”:紅外光感測層 324、324”:感測電極 324a:指叉電極結構 324b:連接臂結構 325、325”:金屬元件 326、326”:開孔 327:彈性支臂 3251:中心孔 3252:內環面 50:犧牲層 510:貫通孔 A1:感測區域 A2:光吸收區域 A3:工作區域 d:金屬環的最外圍直徑 W:金屬環的寬度 t:金屬環的厚度 Dint:相鄰兩金屬環彼此的中心間距
圖1為根據本發明一實施例之微機電紅外光感測裝置的立體示意圖。 圖2為圖1之微機電紅外光感測裝置的上視示意圖。 圖3為圖1之微機電紅外光感測裝置中紅外光感測元件的分解示意圖。 圖4為圖1之微機電紅外光感測裝置的剖面示意圖。 圖5為圖4之微機電紅外光感測裝置的局部放大示意圖。 圖6至圖13為圖1之微機電紅外光感測裝置的製造流程圖。 圖14為圖1之微機電紅外光感測裝置對於不同紅外光波段的吸收率圖。 圖15為根據本發明另一實施例之微機電紅外光感測裝置的立體示意圖。
1:微機電紅外光感測裝置
10:基板
20:紅外光反射層
30:紅外光感測元件
310:支撐元件
320:感應板
325:金屬元件
326:開孔

Claims (20)

  1. 一種微機電紅外光感測裝置,包含一基板以及設置於該基板上方的一紅外光感測元件,且該紅外光感測元件包含: 一感應板,包含至少一紅外光吸收層、一紅外光感測層、一感測電極以及多個金屬元件,該感應板具有多個開孔,該些金屬元件各自圍繞該些開孔,該感測電極與該紅外光感測層連接,且該些金屬元件彼此間隔設置;以及至少一支撐元件,連接該感應板與該基板。
  2. 如請求項1所述之微機電紅外光感測裝置,其中該至少一紅外光吸收層的數量為二個,該紅外光感測層與該些金屬元件位在該二紅外光吸收層之間。
  3. 如請求項2所述之微機電紅外光感測裝置,其中該些開孔延伸經過該紅外光感測層與該二紅外光吸收層並且彼此等間隔設置而呈週期性排列,該些金屬元件彼此等間隔設置而呈週期性排列。
  4. 如請求項1所述之微機電紅外光感測裝置,其中該些金屬元件各自為一金屬環,且該金屬環的內環面形成該開孔的部分孔壁面。
  5. 如請求項1所述之微機電紅外光感測裝置,其中該紅外光感測元件的該感應板具有互不重疊的一感測區域以及一光吸收區域,該至少一紅外光吸收層遍布該感測區域與該光吸收區域,該紅外光感測層位於該感測區域且未延伸至該光吸收區域,且該些金屬元件及該些開孔皆位於該光吸收區域。
  6. 如請求項5所述之微機電紅外光感測裝置,其中該些開孔彼此等間隔設置而呈週期性排列在該光吸收區域,該些金屬元件於該光吸收區域彼此等間隔設置而呈週期性排列在該光吸收區域。
  7. 如請求項5所述之微機電紅外光感測裝置,其中該至少一紅外光吸收層的數量為二個,該紅外光感測層與該些金屬元件位在該二紅外光吸收層之間,該些開孔延伸經過該二紅外光吸收層且未延伸經過該紅外光感測層。
  8. 如請求項1所述之微機電紅外光感測裝置,其中該感測電極定義出該感應板的一工作區域,該至少一紅外光吸收層與該紅外光感測層遍布整個該工作區域,且該些金屬元件及該些開孔皆間隔設置於該工作區域中。
  9. 如請求項8所述之微機電紅外光感測裝置,其中該些金屬元件及該些開孔皆呈週期性排列於該工作區域中。
  10. 如請求項1所述之微機電紅外光感測裝置,其中該感測電極與該些金屬元件位於同一層,該感測電極與該紅外光感測層熱接觸,且該感測電極與該些金屬元件電性絕緣。
  11. 如請求項2所述之微機電紅外光感測裝置,其中該二紅外光吸收層具有相同厚度。
  12. 如請求項2所述之微機電紅外光感測裝置,其中該二紅外光吸收層至少其中一者包含多個紅外光吸收子層,且該些紅外光吸收子層對應的材質彼此不同。
  13. 如請求項2所述之微機電紅外光感測裝置,其中該感測電極介於該二紅外光吸收層之間,且該感測電極包含一指叉電極結構。
  14. 一種微機電紅外光感測裝置的製造方法,包含: 於一基板上形成一犧牲層;於該犧牲層中形成至少一支撐元件;於該犧牲層上形成一感應板,其中該感應板包含至少一紅外光吸收層、一紅外光感測層、一感測電極以及多個金屬元件,該感測電極與該紅外光感測層和該至少一支撐元件連接,且該些金屬元件彼此間隔設置;於該感應板形成多個開孔,其中該些開孔分別貫穿該些金屬元件;以及移除該犧牲層。
  15. 如請求項14所述之微機電紅外光感測裝置的製造方法,其中於該感應板形成該些開孔包含: 移除部分該紅外光感測層、部分該至少一紅外光吸收層與每一該些金屬元件的部份以形成該些開孔。
  16. 如請求項14所述之微機電紅外光感測裝置的製造方法,其中於該感應板形成該些開孔包含: 移除部分該至少一紅外光吸收層與每一該些金屬元件的部份以形成該些開孔,且該些開孔皆未延伸經過該紅外光感測層。
  17. 如請求項14所述之微機電紅外光感測裝置的製造方法,其中於該犧牲層中形成該至少一支撐元件包含: 於該犧牲層中形成多個貫通孔;於該些貫通孔中填充導電材料;以及移除部分該導電材料以形成該至少一支撐元件。
  18. 如請求項17所述之微機電紅外光感測裝置的製造方法,其中藉由化學機械平坦化製程移除部分該導電材料。
  19. 如請求項14所述之微機電紅外光感測裝置的製造方法,其中於該犧牲層上形成該感應板包含: 於該犧牲層上形成該至少一紅外光吸收層的一下紅外光吸收層;移除部分該下紅外光吸收層以顯露出該至少一支撐元件;於該下紅外光吸收層的上表面及該至少一支撐元件上沉積一導電層;以及圖案化該導電層以形成該感測電極和該些金屬元件;以及於該感測電極上形成該紅外光感測層。
  20. 如請求項19所述之微機電紅外光感測裝置的製造方法,於該犧牲層上形成該感應板還包含: 於該紅外光感測層與該下紅外光吸收層上形成一上紅外光吸收層。
TW111102107A 2021-08-06 2022-01-19 微機電紅外光感測裝置及其製造方法 TWI836324B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210373390.1A CN115704715A (zh) 2021-08-06 2022-04-11 微机电红外光感测装置及其制造方法
US17/729,873 US20230045432A1 (en) 2021-08-06 2022-04-26 Microelectromechanical infrared sensing device and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163230471P 2021-08-06 2021-08-06
US63/230,471 2021-08-06

Publications (2)

Publication Number Publication Date
TW202308174A true TW202308174A (zh) 2023-02-16
TWI836324B TWI836324B (zh) 2024-03-21

Family

ID=86661240

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111102112A TWI809668B (zh) 2021-08-06 2022-01-19 微機電紅外光感測裝置及其製造方法
TW111102107A TWI836324B (zh) 2021-08-06 2022-01-19 微機電紅外光感測裝置及其製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111102112A TWI809668B (zh) 2021-08-06 2022-01-19 微機電紅外光感測裝置及其製造方法

Country Status (1)

Country Link
TW (2) TWI809668B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962854A (en) * 1996-06-12 1999-10-05 Ishizuka Electronics Corporation Infrared sensor and infrared detector
US7459686B2 (en) * 2006-01-26 2008-12-02 L-3 Communications Corporation Systems and methods for integrating focal plane arrays
DE112007001046T5 (de) * 2006-05-10 2009-02-19 Murata Manufacturing Co. Ltd., Nagaokakyo-shi Infrarotsensor und Verfahren zum Herstellen desselben
KR20110028662A (ko) * 2008-07-25 2011-03-21 파나소닉 전공 주식회사 적외선 이미지 센서의 제조 방법 및 적외선 이미지 센서
KR101199904B1 (ko) * 2008-09-25 2012-11-09 파나소닉 주식회사 적외선 센서
CN102175329B (zh) * 2010-12-01 2012-11-21 烟台睿创微纳技术有限公司 红外探测器及其制作方法及多波段非制冷红外焦平面
CN106352989B (zh) * 2016-08-18 2019-10-18 烟台睿创微纳技术股份有限公司 一种非制冷红外焦平面探测器微桥的制作方法和结构
TWM601338U (zh) * 2020-06-22 2020-09-11 友冠微系統科技有限公司 紅外線溫度感測器
CN111795750A (zh) * 2020-07-21 2020-10-20 美新半导体(无锡)有限公司 一种红外热电堆传感装置

Also Published As

Publication number Publication date
TWI809668B (zh) 2023-07-21
TW202308176A (zh) 2023-02-16
TWI836324B (zh) 2024-03-21

Similar Documents

Publication Publication Date Title
JP5597862B2 (ja) ボロメータ型THz波検出器
KR100925214B1 (ko) 볼로미터 및 그 제조 방법
KR101182406B1 (ko) 적외선 감지 센서 및 그 제조 방법
JP2012194080A (ja) ボロメータ型THz波検出器
CN106629578B (zh) 具有微桥结构的红外探测器及其制造方法
CA2800847A1 (en) Uncooled infrared detector and methods for manufacturing the same
JP4590764B2 (ja) ガスセンサ及びその製造方法
JP2006258815A (ja) ボロメータ検出器、そのような検出器を使用して赤外線を検出するための装置、およびこの検出器の製造方法
JP4915555B2 (ja) 赤外線センサ
JP2012002603A (ja) ボロメータ型テラヘルツ波検出器
US20100155601A1 (en) Infrared sensor and method of fabricating the same
US11359973B2 (en) MEMS device having curved reflective layer and method for manufacturing MEMS device
KR100538996B1 (ko) 적외선 흡수층으로 실리콘 산화막을 사용한 적외선 센서및 그 제조 방법
CN115704715A (zh) 微机电红外光感测装置及其制造方法
TWI836324B (zh) 微機電紅外光感測裝置及其製造方法
KR20080052169A (ko) 볼로미터 및 그 제조 방법
JP4496751B2 (ja) 熱型赤外線固体撮像素子及びその製造方法
JPH01136035A (ja) 焦電型検出素子の製造方法
CN216870437U (zh) Mems气体传感器
KR20220019739A (ko) 볼로미터 멤스 소자 및 볼로미터 멤스 소자의 제조 방법
US11656128B2 (en) Microelectromechanical infrared sensing device and fabrication method thereof
JP2000346704A (ja) ボロメーター型赤外線検出素子
KR100502577B1 (ko) 2층 구조의 볼로미터형 적외선 센서
JP5458619B2 (ja) デバイスの製造方法
KR100472539B1 (ko) 적외선 흡수 볼로메터 제조 방법