TW202246193A - Optical glass, preform, and optical element - Google Patents

Optical glass, preform, and optical element Download PDF

Info

Publication number
TW202246193A
TW202246193A TW111129469A TW111129469A TW202246193A TW 202246193 A TW202246193 A TW 202246193A TW 111129469 A TW111129469 A TW 111129469A TW 111129469 A TW111129469 A TW 111129469A TW 202246193 A TW202246193 A TW 202246193A
Authority
TW
Taiwan
Prior art keywords
glass
less
component
refractive index
optical
Prior art date
Application number
TW111129469A
Other languages
Chinese (zh)
Inventor
岩崎菜那
Original Assignee
日商小原股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018034031A external-priority patent/JP7233844B2/en
Application filed by 日商小原股份有限公司 filed Critical 日商小原股份有限公司
Publication of TW202246193A publication Critical patent/TW202246193A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

Provided are: an optical glass which has a low temperature coefficient of the relative refractive index and can contribute to correcting the effects on imaging characteristics due to temperature change; and a preform and an optical element using the same. The optical glass comprises, in mass%, 20.0 to 45.0% of a P2O5 component, 25.0 to 50.0% of a Nb2O5 component, and 3.0 to 30.0% of a mass sum (Na2O+K2O), and has a temperature coefficient (40 to 60 DEG C) of the relative refractive index (589.29 nm) in a range of +3.0*10<SP>-6</SP> to -10.0*10<SP>-6</SP> (DEG C<SP>-1</SP>).

Description

光學玻璃、預成形體、光學元件以及光學機器Optical glass, preform, optical element and optical machine

本發明係關於光學玻璃、預成形體(preform)以及光學元件。The present invention relates to optical glass, preform and optical element.

近年,組裝於行車記錄器等車用光學機器之光學元件、或是組裝於投影機、電腦、雷射印表機及播放用機器等這種會大量發熱的光學機器之光學元件,被使用在更高溫環境之情況持續地增加。在如此高溫環境下,構成光學系統之光學元件,其使用時的溫度容易大幅度變動,而該溫度達到100℃以上的情況亦常發生。此時,因溫度變動對光學系統之成像特性等造成的負面影響,已大到無法忽視的程度,因此,期望構成一種光學系統,其即使出現溫度變動仍難以因此而對成像特性等造成影響。In recent years, optical components incorporated in automotive optical equipment such as driving recorders, or optical components assembled in optical equipment that generates a lot of heat, such as projectors, computers, laser printers, and playback equipment, have been used in The cases of higher temperature environments continue to increase. In such a high-temperature environment, the temperature of the optical components constituting the optical system tends to fluctuate greatly during use, and the temperature often exceeds 100°C. At this time, the negative impact of temperature fluctuations on the imaging characteristics of the optical system is too large to be ignored. Therefore, it is desirable to form an optical system that is difficult to affect imaging characteristics even if temperature fluctuations occur.

於構成不易因溫度變動而影響成像特性之光學系統時,併用下述兩種光學元件:於溫度上升時折射率變低,且相對折射率的溫度係數變為負值之玻璃所構成的光學元件;與溫度升高時折射率變高,且相對折射率的溫度係數變為正值之玻璃所構成的光學元件;藉此能夠補正溫度變化對成像特性等造成的影響,故較佳。When forming an optical system that is not easily affected by temperature changes, the following two types of optical elements are used together: when the temperature rises, the refractive index becomes lower and the temperature coefficient of the relative refractive index becomes negative. The optical element is composed of glass ; When the temperature rises, the refractive index becomes higher and the temperature coefficient of the relative refractive index becomes a positive value. The optical element is made of glass; thereby the influence of temperature changes on imaging characteristics can be corrected, so it is better.

此處,著眼於相對折射率的溫度係數而開發的玻璃,已知有例如專利文獻1所代表之玻璃組成物。 [先前技術文獻] [專利文獻] Here, as a glass developed focusing on the temperature coefficient of the relative refractive index, for example, a glass composition represented by Patent Document 1 is known. [Prior Art Literature] [Patent Document]

[專利文獻1]日本特開2007-10611號公報。[Patent Document 1] Japanese Patent Laid-Open No. 2007-10611.

[發明所欲解決之課題][Problem to be Solved by the Invention]

專利文獻1所記載之玻璃含有多種為得到高折射率之成分,其目的係為了提高相對折射率的溫度係數。另一方面,於含有多種為得到高折射率之成分之玻璃中,未獲得相對折射率的溫度係數較小之玻璃。但是,由有助於補正因溫度變化而對成像特性所造成的影響之觀點而言,亦期望有相對折射率的溫度係數為負值之玻璃、或相對折射率的溫度係數之絕對值較小之玻璃。The glass described in Patent Document 1 contains various components to obtain a high refractive index, and the purpose is to increase the temperature coefficient of the relative refractive index. On the other hand, among glasses containing a plurality of components to obtain a high refractive index, glass having a relatively small temperature coefficient of refractive index has not been obtained. However, from the viewpoint of helping to correct the influence of temperature changes on imaging characteristics, it is also desirable to have a glass with a negative temperature coefficient of relative refractive index, or a glass with a relatively small temperature coefficient of relative refractive index. of glass.

在此之上、於光學設計之際,低折射率低色散之玻璃材料與高折射率高色散之玻璃材料有時會相接合,接合時組合的玻璃材料平均線性熱膨脹係數之差越小則接合越為良好。特別是,已知含有氟元素之低折射率低色散玻璃材料的平均線性熱膨脹係數較大,但高折射率高色散玻璃材料中,平均線性熱膨脹係數較大之玻璃材料幾乎不存在,因此需求一種平均線性熱膨脹係數較大之玻璃材料。專利文献1所記載的玻璃,其平均線性熱膨脹係數較小,因而不可謂其是充分滿足了此種要求之玻璃。On top of this, in optical design, glass materials with low refractive index and low dispersion and glass materials with high refractive index and high dispersion are sometimes bonded together. The smaller the difference between the average linear thermal expansion coefficients of the combined glass materials, the better the bonding. the better. In particular, it is known that the average linear thermal expansion coefficient of the low refractive index and low dispersion glass material containing fluorine element is large, but among the high refractive index and high dispersion glass materials, there is almost no glass material with a large average linear thermal expansion coefficient. Therefore, there is a need for a A glass material with a large average linear thermal expansion coefficient. The glass described in Patent Document 1 has a small average linear thermal expansion coefficient, so it cannot be said to be a glass that fully satisfies such requirements.

進而,本發明中之光學玻璃,無需經過再加熱之熱處理來去除玻璃的著色工程,即可得到可見光透過率(transmittance)較佳之玻璃,因而能夠廉價製造。Furthermore, the optical glass in the present invention can obtain glass with better visible light transmittance without reheating heat treatment to remove the coloring process of the glass, so it can be manufactured at low cost.

本發明係有鑑於上述問題點而成,其目的在於,得到一種光學玻璃以及使用該光學玻璃之預成形體與光學元件,其中,該光學玻璃之相對折射率的溫度係數取小值,有助於補正因溫度變化而對成像特性所造成的影響,且該光學玻璃具有適合與低折射率低色散玻璃材料相接合之平均線性熱膨脹係數。 [用以解決課題之手段] The present invention is formed in view of the above-mentioned problems, and its purpose is to obtain an optical glass and a preform and an optical element using the optical glass, wherein the temperature coefficient of the relative refractive index of the optical glass is small, which contributes to In order to correct the impact of temperature changes on imaging characteristics, and the optical glass has an average linear thermal expansion coefficient suitable for bonding with low refractive index and low dispersion glass materials. [Means to solve the problem]

本發明人等為了解決上述課題,專注累積試驗研究結果,發現藉由含有P 2O 5成分以及Nb 2O 5成分,預定量的Na 2O成分以及K 2O成分,能夠得到相對折射率的溫度係數取低值之廉價玻璃,從而完成了本發明。具體而言,本發明提供如下述之物。 In order to solve the above - mentioned problems, the present inventors focused on accumulating experimental research results, and found that by including P2O5 components and Nb2O5 components, predetermined amounts of Na2O components and K2O components, the relative refractive index can be obtained. The present invention has been accomplished by obtaining an inexpensive glass having a low temperature coefficient. Specifically, the present invention provides the following.

(1)一種光學玻璃,以質量%計,含有P 2O 5成分20.0%至40.0%,Nb 2O 5成分25.0%至50.0%,(Na 2O+K 2O)質量和為3.0%至30.0%,且相對折射率(589.29nm)的溫度係數(40℃至60℃)處於+3.0×10 -6(℃ -1)至 -10.0×10 -6(℃ -1)之範圍內。 (1) An optical glass, in mass %, containing 20.0% to 40.0% of P 2 O 5 components, 25.0% to 50.0% of Nb 2 O 5 components, and the mass sum of (Na 2 O+K 2 O) is 3.0% to 3.0% 30.0%, and the temperature coefficient (40°C to 60°C) of the relative refractive index (589.29nm) is in the range of +3.0×10 -6 (°C -1 ) to -10.0×10 -6 (°C -1 ).

如(1)之光學玻璃,質量和(Na 2O+K 2O+BaO)為10.0%至35.0%。 Such as (1) optical glass, the mass sum (Na 2 O+K 2 O+BaO) is 10.0% to 35.0%.

如(1)或(2)之光學玻璃,其中100℃至300℃之平均線性熱膨脹係數α為80(10 -7-1)以上。 The optical glass of (1) or (2), wherein the average linear thermal expansion coefficient α from 100°C to 300°C is 80 (10 -7 °C -1 ) or more.

如(1)至(3)之光學玻璃,其中折射率(n d)為1.65以上2.00以下,阿貝數(ν d)為10以上35以下。 The optical glass as in (1) to (3), wherein the refractive index ( nd ) is not less than 1.65 and not more than 2.00, and the Abbe number (ν d ) is not less than 10 and not more than 35.

一種預成形體,係由(1)至(4)中任一項之光學玻璃而成。A preform made of the optical glass according to any one of (1) to (4).

一種光學元件,係由(1)至(4)中任一項之光學玻璃而成。An optical element made of the optical glass according to any one of (1) to (4).

一種光學機器,係具備(6)之光學元件。 [發明功效] An optical machine is equipped with the optical element of (6). [Efficacy of the invention]

根據本發明,能夠更廉價地得到一種光學玻璃以及使用該光學玻璃之預成形體與光學元件,其中,該光學玻璃之相對折射率的溫度係數取小值,有助於補正因溫度變化而對成像特性所造成的影響,且可見光透過率良好。According to the present invention, it is possible to obtain an optical glass and a preform and an optical element using the optical glass at a lower cost, wherein the temperature coefficient of the relative refractive index of the optical glass is small, which helps to correct for changes in temperature due to temperature changes. The impact caused by the imaging characteristics, and the visible light transmittance is good.

本發明之光學玻璃,以質量%計,含有P 2O 5成分20.0%以上40.0%以下、Nb 2O 5成分合計25.0%以上50.0%以下、Na 2O成分以及K 2O成分之質量和3.0%以上30.0%以下,相對折射率(589.29nm)的溫度係數(40℃至60℃)處於+3.0×10 -6(℃ -1)至-10.0×10 -6(℃ -1)之範圍内。 藉由含有多量的Na 2O成分以及K 2O成分,能夠得到相對折射率的溫度係數取小值、平均線性熱膨脹係數較大的玻璃材料之玻璃。 因此,能夠更廉價得到一種光學玻璃以及使用該光學玻璃之預成形體與光學元件,其中,可見光透過率良好,同時該光學玻璃之相對折射率的溫度係數取小值,有助於補正因溫度變化而對成像特性所造成的影響,與低折射率低色散玻璃材料的接合性較佳,可見光透過率良好。 The optical glass of the present invention contains, by mass%, 20.0% to 40.0 % of P2O5 components, a total of 25.0% to 50.0 % of Nb2O5 components, and the sum of the mass of Na2O components and K2O components is 3.0 More than % and less than 30.0%, the temperature coefficient (40°C to 60°C) of the relative refractive index (589.29nm) is in the range of +3.0×10 -6 (°C -1 ) to -10.0×10 -6 (°C -1 ) . By containing a large amount of Na 2 O components and K 2 O components, it is possible to obtain glass of a glass material having a small temperature coefficient of relative refractive index and a large average linear thermal expansion coefficient. Therefore, an optical glass and a preform and an optical element using the optical glass can be obtained at a lower cost, wherein the visible light transmittance is good, and at the same time, the temperature coefficient of the relative refractive index of the optical glass is small, which is helpful for correcting the The impact of the change on the imaging characteristics, the adhesion to the low-refractive-index low-dispersion glass material is better, and the visible light transmittance is good.

以下,針對本發明的光學玻璃之實施型態進行詳細的說明,但本發明並不限於下述的實施型態,在本發明目的之範圍內可進行適當的變更來加以實行。此外,關於重複說明的部分,雖然有適當地省略說明的情況,但並不會因此而限制發明之主旨。Hereinafter, embodiments of the optical glass of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be implemented with appropriate changes within the scope of the purpose of the present invention. In addition, although description may be omitted appropriately about the part which repeats description, this does not limit the gist of invention.

[玻璃成分] 構成本發明光學玻璃之各成分的組成範圍如下所述。本說明書中,各成分的含量在未特別否定時,皆係以相對於氧化物換算組成的全質量之質量%來表示。此處,「氧化物換算組成」指,假設作為本發明之玻璃構成成分原料所使用的氧化物、複合鹽、金屬氟化物等在熔融時,全部分解變成氧化物之情況下,藉由將該生成氧化物的總質量設為100質量%,來表示玻璃中所含有的各種成分之組成。 [glass ingredient] The composition ranges of the components constituting the optical glass of the present invention are as follows. In this specification, the content of each component is represented by the mass % with respect to the total mass of an oxide conversion composition, unless otherwise specified. Here, the "composition in terms of oxides" refers to the assumption that the oxides, complex salts, metal fluorides, etc. used as the raw materials for the glass constituents of the present invention are all decomposed into oxides when they are melted. The total mass of generated oxides is set to 100% by mass to represent the composition of various components contained in the glass.

[關於必要成分、任意成分] P 2O 5成分係作為玻璃形成氧化物之必要成分。特別是藉由含有20.0%以上之P 2O 5成分,可使熔融玻璃的黏性良好、提高玻璃的穩定性。再者,再熱壓製時之失透性良好。因此,P 2O 5成分之含有量係20.0%以上為佳,超過21.0%較佳,超過22.0%更佳。 另一方面,藉由將P 2O 5成分之含有量設為40.0%以下,能夠維持所望之折射率以及色散。因此,P 2O 5成分之含有量係40.0%以下為佳,35.0%以下較佳,30.0%未滿更佳。 P 2O 5成分係可使用Al(PO 3) 3、Ca(PO 3) 2、Ba(PO 3) 2、BPO 4、H 3PO 4、NaH 2PO 4、KH 2PO 4等作為原料。 [Regarding Essential Components and Optional Components] The P 2 O 5 component is an essential component as a glass-forming oxide. In particular, by containing more than 20.0% of the P 2 O 5 component, the viscosity of the molten glass can be improved and the stability of the glass can be improved. Furthermore, the devitrification property at the time of reheat pressing is good. Therefore, the content of the P 2 O 5 component is preferably at least 20.0%, more preferably more than 21.0%, more preferably more than 22.0%. On the other hand, desired refractive index and dispersion can be maintained by making content of a P2O5 component 40.0% or less. Therefore, the content of the P 2 O 5 component is preferably 40.0% or less, more preferably 35.0% or less, and more preferably less than 30.0%. For the P 2 O 5 component system, Al(PO 3 ) 3 , Ca(PO 3 ) 2 , Ba(PO 3 ) 2 , BPO 4 , H 3 PO 4 , NaH 2 PO 4 , KH 2 PO 4 and the like can be used as raw materials.

Nb 2O 5成分係作為高折射率高色散成分,為必要成分。特別是,藉由含有25.0%以上之Nb 2O 5成分,能夠在維持高折射率、高色散之同時提高玻璃的穩定性。因此,Nb 2O 5成分之含有量係25.0%以上為佳,超過28.0%較佳,超過30.0%更佳。 另一方面,藉由將Nb 2O 5成分之含有量設為50.0%以下,平均線性熱膨脹係數較大,能夠維持所望之折射率以及色散。因此,Nb 2O 5成分之含有量係50.0%以下為佳,47.0%以下較佳。 Nb 2O 5成分係可使用Nb 2O 5等作為原料。 The Nb 2 O 5 component is an essential component as a high-refractive-index high-dispersion component. In particular, by containing 25.0% or more of the Nb 2 O 5 component, the stability of the glass can be improved while maintaining a high refractive index and high dispersion. Therefore, the content of the Nb 2 O 5 component is preferably at least 25.0%, more preferably more than 28.0%, more preferably more than 30.0%. On the other hand, by making the content of the Nb 2 O 5 component 50.0% or less, the average linear thermal expansion coefficient is large, and the desired refractive index and dispersion can be maintained. Therefore, the content of the Nb 2 O 5 component is preferably 50.0% or less, more preferably 47.0% or less. For the Nb 2 O 5 component system, Nb 2 O 5 or the like can be used as a raw material.

Na 2O成分為任意成分,其含有量超過0%時,能夠提高玻璃原料之熔融性,使透過率良好,且能夠使相對折射率的溫度係數變小。因此,Na 2O成分之含有量係超過0%為佳,超過0.1%較佳,超過0.5%更佳,進而較佳為超過1.0%,進而更佳為超過1.5%,進一步較佳為超過2.0%。 特別是,其含有量超過10.0%時,減小相對折射率的溫度係數之效果升高,玻璃熔融性也變得良好,因此可以超過10.0%。 另一方面,藉由將Na 2O成分之含有量設為35.0%以下,能夠減少因過剩含有所導致的玻璃折射率低下、化學耐久性(耐水性)低下,降低失透,抑制再熱壓製時的失透。因此,Na 2O成分之含有量係35.0%以下為佳,30.0%未滿較佳,25.0%未滿更佳,進而較佳為20.0%未滿。 Na 2O成分係可使用Na 2CO 3、NaNO 3、NaF、Na 2SiF 6等作為原料。 The Na 2 O component is an optional component, and when the content exceeds 0%, the meltability of the glass raw material can be improved, the transmittance can be improved, and the temperature coefficient of the relative refractive index can be reduced. Therefore, the content of the Na2O component is preferably more than 0 %, more preferably more than 0.1%, more preferably more than 0.5%, more preferably more than 1.0%, more preferably more than 1.5%, still more preferably more than 2.0% %. In particular, when the content exceeds 10.0%, the effect of reducing the temperature coefficient of the relative refractive index increases, and glass meltability becomes favorable, so it may exceed 10.0%. On the other hand, by reducing the content of the Na2O component to 35.0% or less, it is possible to reduce the decrease in the refractive index of the glass and the decrease in chemical durability (water resistance) due to excessive content, reduce devitrification, and suppress reheat pressing. time devitrification. Therefore, the content of the Na 2 O component is preferably 35.0% or less, more preferably less than 30.0%, more preferably less than 25.0%, and more preferably less than 20.0%. For the Na 2 O component system, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 , etc. can be used as raw materials.

K 2O成分為任意成分,其含有量超過0%時,平均線性熱膨脹係數變大,透過率良好,能夠減小相對折射率的溫度係數。因此,K 2O成分之含有量係超過0%為佳,0.5%以上較佳,超過1.0%更佳,進而較佳可超過2.0%。 特別是,其含有量超過5.0%時,減小相對折射率的溫度係數之效果升高,玻璃的穩定性也變得良好,因此可超過5.0%。 另一方面,藉由將K 2O成分之含有量設為30.0%以下,能夠維持玻璃的穩定性,且能夠抑制折射率的低下。因此,K 2O成分之含有量係30.0%以下為佳,25.0%未滿較佳,20.0%未滿更佳,進而較佳為15.0%未滿。 K 2O成分係可使用K 2CO 3、KNO 3、KF、KHF 2、K 2SiF 6等作為原料。 The K 2 O component is an optional component, and when the content thereof exceeds 0%, the average linear thermal expansion coefficient becomes large, the transmittance becomes good, and the temperature coefficient of the relative refractive index can be reduced. Therefore, the content of the K 2 O component is preferably more than 0%, more preferably 0.5% or more, more preferably more than 1.0%, and more preferably more than 2.0%. In particular, when the content exceeds 5.0%, the effect of reducing the temperature coefficient of the relative refractive index increases and the stability of the glass becomes good, so it may exceed 5.0%. On the other hand, by making content of a K2O component 30.0% or less, stability of glass can be maintained, and the fall of a refractive index can be suppressed. Therefore, the content of the K 2 O component is preferably 30.0% or less, more preferably 25.0% or less, more preferably 20.0% or less, and more preferably 15.0% or less. For the K 2 O component system, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 , etc. can be used as raw materials.

BaO成分為任意成分,其含有量超過0%時,能夠提高玻璃原料之熔融性,降低玻璃失透,提高折射率,減小相對折射率的溫度係數。再者,其於得到高折射率之成分中屬於材料費用較低、易熔解之成分。因此,BaO成分之含有量係超過0%為佳,超過0.1%較佳,超過1.0%更佳,進而較佳為超過2.0%。 另一方面,藉由將BaO成分之含有量設為20.0%以下,平均線性熱膨脹係數變大,能夠降低因過剩含有而導致玻璃的折射率低下或失透。因此,BaO成分之含有量係20.0%以下為佳,19.0%未滿較佳,18.0%未滿更佳。 BaO成分係可使用BaCO 3、Ba(NO 3) 2、Ba(PO 3) 2、BaF 2等作為原料。 The BaO component is an optional component, and when its content exceeds 0%, it can improve the meltability of glass raw materials, reduce glass devitrification, increase the refractive index, and reduce the temperature coefficient of relative refractive index. Furthermore, it is a relatively low material cost and easily meltable component among the components for obtaining a high refractive index. Therefore, the content of the BaO component is preferably more than 0%, more preferably more than 0.1%, more preferably more than 1.0%, and more preferably more than 2.0%. On the other hand, by setting the content of the BaO component to 20.0% or less, the average linear thermal expansion coefficient becomes large, and it is possible to reduce the decrease in the refractive index of the glass or devitrification due to excessive content. Therefore, the content of the BaO component is preferably 20.0% or less, more preferably 19.0% or less, and more preferably 18.0% or less. As the BaO component system, BaCO 3 , Ba(NO 3 ) 2 , Ba(PO 3 ) 2 , BaF 2 , etc. can be used as raw materials.

TiO 2成分為其含有量超過0%時,能夠提高玻璃的折射率,降低阿貝數,易於得到穩定玻璃之成分。因此,TiO 2成分之含有量係超過0%為佳,超過1.0%較佳,超過3.0%更佳,進而較佳為5.0%以上。 另一方面,藉由將TiO 2成分之含有量設為30.0%以下,能夠使平均線性熱膨脹係數變大,相對折射率的溫度係數變小,能夠降低因TiO 2成分過剩含有而導致的失透,抑制玻璃相對於可見光(特別是波長500nm以下)之透過率低下。因此,TiO 2成分之含有量係30.0%以下為佳,26.0%未滿較佳,23.0%未滿更佳,進而較佳可為20.0%未滿。 TiO 2成分,可使用TiO 2等作為原料。 When the TiO2 component exceeds 0%, the refractive index of the glass can be increased, the Abbe number can be lowered, and a stable glass can be easily obtained. Therefore, the content of the TiO 2 component is preferably more than 0%, more preferably more than 1.0%, more preferably more than 3.0%, and more preferably 5.0% or more. On the other hand, by setting the content of the TiO2 component to 30.0% or less, the average linear thermal expansion coefficient can be increased, the temperature coefficient of the relative refractive index can be reduced, and devitrification caused by excessive content of the TiO2 component can be reduced. , Inhibit the transmittance of glass relative to visible light (especially below the wavelength of 500nm) from decreasing. Therefore, the content of the TiO 2 component is preferably 30.0% or less, more preferably less than 26.0%, more preferably less than 23.0%, and more preferably less than 20.0%. TiO 2 component, TiO 2 etc. can be used as a raw material.

SiO 2成分為,其含有量超過0%時,能夠使熔融玻璃之黏度變為良好之玻璃形成氧化物成分。因此,SiO 2成分之含有量係超過0%為佳,超過0.1%較佳,超過0.3%更佳。 另一方面,藉由將SiO 2成分之含有量設為5.0%以下,能夠抑制玻璃轉移點上升,且能夠抑制折射率低下。因此,SiO 2成分之含有量係5.0%以下為佳,3.0%以下較佳,1.0%未滿更佳。 SiO 2成分係可使用SiO 2、K 2SiF 6、Na 2SiF 6等作為原料。 The SiO 2 component is a glass-forming oxide component that can make the viscosity of molten glass favorable when the content exceeds 0%. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably more than 0.1%, more preferably more than 0.3%. On the other hand, by setting the content of the SiO 2 component to 5.0% or less, it is possible to suppress the rise in the glass transition point and suppress the decrease in the refractive index. Therefore, the content of the SiO 2 component is preferably 5.0% or less, more preferably 3.0% or less, and more preferably less than 1.0%. For the SiO 2 component system, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 and the like can be used as raw materials.

B 2O 3成分為任意成分,其含有量超過0%時,可作為提高玻璃熔融性之玻璃形成氧化物。 另一方面,藉由將B 2O 3成分之含有量設為5.0%以下,能夠使相對折射率的溫度係數變小,且能夠抑制化學耐久性惡化,降低再熱壓製時失透性的惡化。因此,B 2O 3成分之含有量係5.0%以下為佳,3.0%以下較佳,1.5%未滿更佳,進而較佳為1.3%未滿。 The B 2 O 3 component is an optional component, and when its content exceeds 0%, it can be used as a glass-forming oxide that improves glass meltability. On the other hand, by reducing the content of the B2O3 component to 5.0% or less, the temperature coefficient of the relative refractive index can be reduced, the deterioration of chemical durability can be suppressed, and the deterioration of devitrification during reheat pressing can be reduced. . Therefore, the content of the B 2 O 3 component is preferably 5.0% or less, more preferably 3.0% or less, more preferably less than 1.5%, and more preferably less than 1.3%.

WO 3成分為任意成分,其含有量超過0%時,在降低帶來高折射率之其他成分所引起的玻璃著色的同時,能夠提高折射率、降低阿貝數,使玻璃轉移點變低,並減少失透。 另一方面,藉由將WO 3成分之含有量設為10.0%以下,能夠使相對折射率的溫度係數變小,抑制再熱壓製時的失透。再者,能夠降低因WO 3成分所引起的玻璃著色,提高可見光透過率。因此,WO 3成分之含有量係10.0%以下為佳,9.0%未滿較佳,8.0%未滿更佳,進而較佳為6.5%未滿,進而更佳為5.0%未滿。 WO 3成分係可使用WO 3等作為原料。 The WO 3 component is an optional component. When its content exceeds 0%, it can reduce the coloring of the glass caused by other components that bring a high refractive index, and at the same time increase the refractive index, reduce the Abbe number, and lower the glass transition point. and reduce devitrification. On the other hand, by making the content of the WO 3 component 10.0% or less, the temperature coefficient of the relative refractive index can be reduced, and devitrification at the time of reheat pressing can be suppressed. Furthermore, it is possible to reduce glass coloring due to the WO 3 component and improve visible light transmittance. Therefore, the content of the WO 3 component is preferably less than 10.0%, more preferably less than 9.0%, more preferably less than 8.0%, further preferably less than 6.5%, and still more preferably less than 5.0%. The WO 3 component system can use WO 3 etc. as a raw material.

ZnO成分為任意成分,其含有量超過0%時,能夠提高原料的熔解性,促進從熔解玻璃中脱泡,再者,能夠提高玻璃的穩定性。再者,能夠使玻璃轉移點變低,且能夠改善化學耐久性。 另一方面,藉由將ZnO成分之含有量設為5.0%未滿,能夠使相對折射率的溫度係數變小,降低因熱所引起的膨脹,抑制折射率低下,且能夠降低因黏性過於低下而導致的失透。因此,ZnO成分之含有量係5.0%未滿為佳,4.0%未滿較佳,2.0%未滿更佳,進而較佳為1.0%未滿,進而更佳為0.5%未滿。再者,ZnO成分可以不含有。 ZnO成分係可使用ZnO、ZnF 2等作為原料。 The ZnO component is an optional component, and when the content exceeds 0%, the solubility of the raw material can be improved, the degassing from the molten glass can be accelerated, and the stability of the glass can be improved. Furthermore, the glass transition point can be lowered, and chemical durability can be improved. On the other hand, by setting the content of the ZnO component to less than 5.0%, the temperature coefficient of the relative refractive index can be reduced, the thermal expansion can be reduced, the decrease in the refractive index can be suppressed, and excessive viscosity can be reduced. Devitrification caused by low. Therefore, the content of the ZnO component is preferably less than 5.0%, more preferably less than 4.0%, more preferably less than 2.0%, further preferably less than 1.0%, and still more preferably less than 0.5%. In addition, the ZnO component does not need to be contained. The ZnO component system can use ZnO, ZnF2 , etc. as a raw material.

ZrO 2成分為任意成分,其含有量超過0%時,能夠提高玻璃折射率,且降低失透。因此,ZrO 2成分之含有量係超過0%為佳,超過0.5%較佳,超過1.0%更佳。 另一方面,藉由將ZrO 2成分之含有量設為5.0%以下,能夠使相對折射率的溫度係數變小,降低因ZrO 2成分過剩含有而導致的失透。因此,ZrO 2成分之含有量係5.0%以下為佳,3.0%以下較佳,1.0%未滿更佳,進而較佳為0.5%未滿。再者,ZrO 2成分可以不含有。 ZrO 2成分係可使用ZrO 2、ZrF 4等作為原料。 The ZrO 2 component is an optional component, and when the content thereof exceeds 0%, the refractive index of the glass can be increased and devitrification can be reduced. Therefore, the content of the ZrO 2 component is preferably more than 0%, more preferably more than 0.5%, more preferably more than 1.0%. On the other hand, by setting the content of the ZrO 2 component to 5.0% or less, it is possible to reduce the temperature coefficient of the relative refractive index and reduce devitrification due to excessive content of the ZrO 2 component. Therefore, the content of the ZrO 2 component is preferably 5.0% or less, more preferably 3.0% or less, more preferably less than 1.0%, and more preferably less than 0.5%. In addition, the ZrO 2 component may not be contained. For the ZrO 2 component system, ZrO 2 , ZrF 4 , etc. can be used as raw materials.

MgO成分、CaO成分以及SrO成分為任意成分,其含有量超過0%時,能夠調整玻璃的折射率或熔融性、耐失透性。 另一方面,藉由將MgO成分、CaO成分以及SrO成分之含有量設為5.0%以下,能夠抑制折射率低下,且降低因該等成分過剩含有而導致的失透。因此,MgO成分、CaO成分以及SrO成分之各自含有量係5.0%以下為佳,3.5%以下較佳,2.0%未滿更佳。 MgO components, CaO components, and SrO components are optional components, and when the content exceeds 0%, the refractive index, meltability, and devitrification resistance of glass can be adjusted. On the other hand, by making the content of the MgO component, the CaO component, and the SrO component 5.0% or less, it is possible to suppress a decrease in the refractive index and reduce devitrification due to excessive content of these components. Therefore, the respective contents of the MgO component, the CaO component, and the SrO component are preferably 5.0% or less, more preferably 3.5% or less, and more preferably less than 2.0%.

Li 2O成分為任意成分,能夠改善玻璃熔融性,降低玻璃轉移點。 另一方面,藉由將Li 2O成分之含有量降低,使玻璃折射率難於低下,且能夠降低玻璃失透以及再熱壓製時的失透。因此,Li 2O成分之含有量係5.0%以下為佳,3.0%未滿較佳,1.0%以下更佳,進而較佳為0.5%未滿。 Li 2O成分係可使用Li 2CO 3、LiNO 3、LiF等作為原料。 The Li 2 O component is an optional component, and can improve glass meltability and lower the glass transition point. On the other hand, by reducing the content of the Li 2 O component, it is difficult to lower the refractive index of the glass, and the devitrification of the glass and the devitrification during reheat pressing can be reduced. Therefore, the content of the Li 2 O component is preferably 5.0% or less, more preferably 3.0% or less, more preferably 1.0% or less, and more preferably 0.5% or less. Li 2 O component system can use Li 2 CO 3 , LiNO 3 , LiF, etc. as a raw material.

Al 2O 3成分以及Ga 2O 3成分為任意成分,其含有量超過0%時,能夠提升熔融玻璃的耐失透性。 另一方面,藉由將Al 2O 3成分或者Ga 2O 3成分之含有量分別設為10.0%以下,能夠降低玻璃液相溫度並提高耐失透性。因此,Al 2O 3成分以及Ga 2O 3成分之各自含有量係10.0%以下為佳,5.0%未滿較佳,3.0%未滿更佳,進而較佳為1.0%未滿。 Al 2O 3成分係可使用Al 2O 3、Al(OH) 3、AlF 3等作為原料,Ga 2O 3成分係可使用Ga 2O 3等作為原料。 An Al 2 O 3 component and a Ga 2 O 3 component are optional components, and when the content exceeds 0%, the devitrification resistance of the molten glass can be improved. On the other hand, by making the content of the Al 2 O 3 component or the Ga 2 O 3 component 10.0% or less, the glass liquidus temperature can be lowered and the devitrification resistance can be improved. Therefore, the respective contents of the Al 2 O 3 component and the Ga 2 O 3 component are preferably 10.0% or less, more preferably less than 5.0%, more preferably less than 3.0%, and still more preferably less than 1.0%. The Al 2 O 3 component system can use Al 2 O 3 , Al(OH) 3 , AlF 3 , etc. as a raw material, and the Ga 2 O 3 component system can use Ga 2 O 3 or the like as a raw material.

Sb 2O 3成分為任意成分,其含有量超過0%時,可使熔融玻璃脱泡。 另一方面,藉由將Sb 2O 3成分之含有量設為1.0%以下,能夠抑制可見光領域之短波長領域中透過率的低下、玻璃過度曝光、内部品質低下。因此,Sb 2O 3成分之含有量係1.0%以下為佳,0.5%未滿較佳,0.2%未滿更佳,進而較佳為0.1%未滿。 Sb 2O 3成分係可使用Sb 2O 3、Sb 2O 5、Na 2H 2Sb 2O 7・5H 2O等作為原料。 The Sb 2 O 3 component is an optional component, and when the content exceeds 0%, the molten glass can be defoamed. On the other hand, by setting the content of the Sb 2 O 3 component to 1.0% or less, it is possible to suppress a decrease in transmittance in the short-wavelength range of the visible light range, overexposure of the glass, and a decrease in internal quality. Therefore, the content of the Sb 2 O 3 component is preferably 1.0% or less, more preferably 0.5% or less, more preferably 0.2% or less, and more preferably 0.1% or less. For the Sb 2 O 3 component system, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ·5H 2 O, etc. can be used as raw materials.

Na 2O成分以及K 2O成分之總含有量係3.0%以上為佳。藉此,能夠容易得到相對折射率的溫度係數較小,平均線性熱膨脹係數較大且透過率良好之玻璃。因此,質量和(Na 2O+K 2O)係3.0%以上為佳,超過4.0%較佳,超過5.0%更佳,進而較佳為超過6.0%。 另一方面,藉由將該總含有量設為30.0%以下,能夠抑制化學耐久性惡化以及因過剩含有而導致的玻璃折射率低下。因此,質量和(Na 2O+K 2O)係30.0%以下為佳,25.0%未滿較佳,23.0%未滿更佳。 The total content of the Na 2 O component and the K 2 O component is preferably 3.0% or more. Thereby, glass having a small temperature coefficient of relative refractive index, a large average linear thermal expansion coefficient, and good transmittance can be easily obtained. Therefore, the mass sum (Na 2 O+K 2 O) is preferably 3.0% or more, preferably more than 4.0%, more preferably more than 5.0%, and more preferably more than 6.0%. On the other hand, by making the total content 30.0% or less, deterioration of chemical durability and reduction in glass refractive index due to excessive content can be suppressed. Therefore, the mass sum (Na 2 O+K 2 O) is preferably 30.0% or less, more preferably less than 25.0%, and more preferably less than 23.0%.

Na 2O成分、K 2O成分以及BaO成分之總含有量係10.0%以上為佳。藉此,能夠容易得到相對折射率的溫度係數較小之玻璃。因此,質量和(Na 2O+K 2O+BaO)係10.0%以上為佳,超過12.0%較佳,超過14.0%更佳,進而較佳為16.0%以上,進而更佳為超過17.5%。 另一方面,藉由將該總含有量設為35.0%未滿,能夠抑制化學耐久性惡化以及因過剩含有而導致的玻璃折射率低下、再熱壓製時的失透性低下。因此,質量和(Na 2O+K 2O+BaO)係35.0%為佳,33.0%以下較佳,30.0%未滿更佳。 The total content of Na 2 O components, K 2 O components, and BaO components is preferably 10.0% or more. Thereby, glass with a small temperature coefficient of relative refractive index can be obtained easily. Therefore, the mass sum (Na 2 O+K 2 O+BaO) is preferably 10.0% or more, more preferably more than 12.0%, more preferably more than 14.0%, more preferably 16.0% or more, and still more preferably more than 17.5%. On the other hand, by making the total content less than 35.0%, it is possible to suppress deterioration of chemical durability, decrease in glass refractive index due to excessive content, and decrease in devitrification at the time of reheat pressing. Therefore, the mass sum (Na 2 O+K 2 O+BaO) is preferably 35.0%, preferably less than 33.0%, and more preferably less than 30.0%.

Nb 2O 5成分與TiO 2成分之總含有量係30.0%以上為佳。藉此,能夠於維持高折射率之同時,使相對折射率的溫度係數變小。 因此,質量和(Nb 2O 5+TiO 2)係30.0%以上為佳,35.0%以上較佳,40.0%以上更佳。 另一方面,藉由將質量和(Nb 2O 5+TiO 2)設為65.0%以下,能夠降低液相溫度,得到穩定之玻璃。因此,質量和(Nb 2O 5+TiO 2)係65.0%以下為佳,63.0%以下較佳,60.0%以下更佳。 The total content of the Nb 2 O 5 component and the TiO 2 component is preferably 30.0% or more. Thereby, while maintaining a high refractive index, it is possible to reduce the temperature coefficient of the relative refractive index. Therefore, the mass sum (Nb 2 O 5 +TiO 2 ) is preferably 30.0% or more, more preferably 35.0% or more, and more preferably 40.0% or more. On the other hand, by setting the mass sum (Nb 2 O 5 +TiO 2 ) to 65.0% or less, the liquidus temperature can be lowered and a stable glass can be obtained. Therefore, the mass sum (Nb 2 O 5 +TiO 2 ) is preferably 65.0% or less, more preferably 63.0% or less, and more preferably 60.0% or less.

Na 2O成分以及K 2O成分以及BaO成分總含有量相對於B 2O 3成分以及TiO 2成分總含有量之比率係超過0.5為佳。藉此,能夠使相對折射率的溫度係數變小,且使平均線性熱膨脹係數變大。因此,質量比(Na 2O+K 2O+BaO)/(B 2O 3+TiO 2)係超過0.5為佳,超過0.7較佳,超過1.0更佳。 另一方面,藉由將質量比(Na 2O+K 2O+BaO)/(B 2O 3+TiO 2)設為5.5未滿,能夠於維持所望之折射率與透過率之同時,得到再熱壓製良好之玻璃。因此,質量比(Na 2O+K 2O+BaO)/(B 2O 3+TiO 2)係5.5未滿為佳,5.0未滿較佳,4.8未滿更佳。 Preferably, the ratio of the total content of Na 2 O component, K 2 O component, and BaO component to the total content of B 2 O 3 component and TiO 2 component exceeds 0.5. Thereby, the temperature coefficient of the relative refractive index can be reduced, and the average linear thermal expansion coefficient can be increased. Therefore, the mass ratio (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) is preferably more than 0.5, more preferably more than 0.7, more preferably more than 1.0. On the other hand, by setting the mass ratio (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) to less than 5.5, it is possible to obtain the desired refractive index and transmittance. Reheat pressed glass. Therefore, the mass ratio (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) is preferably less than 5.5, more preferably less than 5.0, more preferably less than 4.8.

藉由使RO成分(R為選自Mg、Ca、Sr、Ba所成群組中的1種以上)含有量之和(質量和)超過0%,能夠提高玻璃折射率、熔融性以及耐失透性。因此,RO成分含有量之和(質量和)係下限以超過0%為佳,超過0.5%較佳,超過1.0%更佳。另一方面,藉由將RO成分設為30.0%以下,能夠使平均線性熱膨脹係數變大,降低因過剩含有而導致玻璃折射率之低下或失透。藉此,RO成分含有量之和(質量和)係上限以30.0%以下為佳,25.0%以下較佳,20.0%以下更佳。By making the sum (mass sum) of the contents of RO components (R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) exceed 0%, the refractive index, meltability, and loss resistance of the glass can be improved. permeability. Therefore, the lower limit of the sum (mass sum) of the contents of RO components is preferably more than 0%, more preferably more than 0.5%, more preferably more than 1.0%. On the other hand, by making the RO component 30.0% or less, the average linear thermal expansion coefficient can be increased, and the reduction of glass refractive index or devitrification by excess content can be reduced. Accordingly, the upper limit of the sum (mass sum) of the RO component content is preferably 30.0% or less, more preferably 25.0% or less, more preferably 20.0% or less.

La 2O 3成分、Gd 2O 3成分、Y 2O 3成分、Yb 2O 3成分以及Ta 2O 5成分為任意成分,其等含有量超過0%時,能夠提高玻璃折射率,且提高耐失透性。 另一方面,藉由將La 2O 3成分、Gd 2O 3成分、Y 2O 3成分、Yb 2O 3成分以及Ta 2O 5成分之含有量設為5.0%以下,能夠降低光學玻璃之原料費用。再者,原料之熔解溫度降低,因此熔解原料所需之能源降低,進而光學玻璃之製造費用亦降低。因此,該等各成分之含有量係5.0%以下為佳,3.0%未滿較佳,2.0%未滿更佳,進而較佳為1.0%未滿。 La 2 O 3 components, Gd 2 O 3 components, Y 2 O 3 components, Yb 2 O 3 components, and Ta 2 O 5 components are optional components. When their content exceeds 0%, the refractive index of the glass can be increased, and the Resistance to devitrification. On the other hand, by setting the content of La 2 O 3 components, Gd 2 O 3 components, Y 2 O 3 components, Yb 2 O 3 components, and Ta 2 O 5 components at 5.0% or less, the optical glass can be reduced. Raw material cost. Furthermore, the melting temperature of the raw materials is lowered, so the energy required for melting the raw materials is reduced, and the manufacturing cost of the optical glass is also reduced. Therefore, the content of each of these components is preferably 5.0% or less, more preferably 3.0% or less, more preferably 2.0% or less, and more preferably 1.0% or less.

GeO 2成分為任意成分,其含有量超過0%時,能夠提高玻璃折射率,且提高耐失透性。 然而,GeO 2原料價格昂貴,其含有量過多會導致生產費用增加。因此,GeO 2成分之含有量係10.0%以下為佳,5.0%未滿較佳,3.0%未滿更佳,進而較佳為1.0%未滿。 GeO 2成分係可使用GeO 2等作為原料。 The GeO 2 component is an optional component, and when the content thereof exceeds 0%, the refractive index of the glass can be increased and the devitrification resistance can be improved. However, the GeO 2 raw material is expensive, and its excessive content will lead to an increase in production costs. Therefore, the content of the GeO 2 component is preferably 10.0% or less, more preferably 5.0% or less, more preferably 3.0% or less, and more preferably 1.0% or less. The GeO 2 component system can use GeO 2 etc. as a raw material.

Bi 2O 3成分為任意成分,其含有量超過0%時,能夠提高折射率,降低阿貝數,且降低玻璃轉移點。 另一方面,藉由將Bi 2O 3成分之含有量設為5.0%以下,能夠降低玻璃液相溫度提高耐失透性。因此,Bi 2O 3成分之含有量係5.0%以下為佳,3.0%未滿較佳,1.0%未滿更佳。特別是,就獲得良好透過率之玻璃之觀點而言,較佳為不含有。 Bi 2O 3成分係可使用Bi 2O 3等作為原料。 The Bi 2 O 3 component is an optional component, and when the content exceeds 0%, the refractive index can be increased, the Abbe number can be lowered, and the glass transition point can be lowered. On the other hand, by making content of a Bi2O3 component 5.0% or less, glass liquidus temperature can be lowered and devitrification resistance can be improved. Therefore, the content of the Bi 2 O 3 component is preferably 5.0% or less, more preferably less than 3.0%, more preferably less than 1.0%. In particular, from the viewpoint of obtaining glass with good transmittance, it is preferable not to contain it. For the Bi 2 O 3 component system, Bi 2 O 3 or the like can be used as a raw material.

TeO 2成分為任意成分,其含有量超過0%時,能夠提高折射率,且降低玻璃轉移點。 另一方面,藉由鉑製坩堝,或是藉由與熔融玻璃接觸部分係以鉑所形成之熔融槽來熔融玻璃原料時,存在TeO 2可能會與鉑發生合金化之問題。因此,TeO 2成分之含有量係10.0%以下為佳,5.0%未滿較佳,3.0%未滿更佳,進而較佳為1.0%未滿。 TeO 2成分係可使用TeO 2等作為原料。 The TeO 2 component is an optional component, and when the content thereof exceeds 0%, the refractive index can be increased and the glass transition point can be lowered. On the other hand, when glass raw materials are melted with a platinum crucible or a melting tank formed of platinum at the part in contact with the molten glass, there is a problem that TeO 2 may alloy with platinum. Therefore, the content of the TeO 2 component is preferably 10.0% or less, more preferably 5.0% or less, more preferably 3.0% or less, and more preferably 1.0% or less. The TeO 2 component system can use TeO 2 etc. as a raw material.

SnO 2成分為任意成分,其含有量超過0%時,能夠減少熔融玻璃之氧化使之清澈,且能夠提高玻璃之可見光透過率。 另一方面,藉由將SnO 2成分之含有量設為3.0%以下,能夠降低熔融玻璃之還原而引起的玻璃著色或玻璃失透。再者,SnO 2成分與熔解設備(特別是Pt等貴金属)之合金化減少,而可期望熔融設備之使用年限延長。因此,SnO 2成分之含有量係3.0%以下為佳,1.0%未滿較佳,0.5%未滿更佳,進而較佳為0.1%未滿。 SnO 2成分係可使用SnO、SnO 2、SnF 2、SnF 4等作為原料。 再者,使玻璃清澈且消泡之成分,並不限於上述Sb 2O 3成分或SnO 2成分,可使用玻璃製造領域中公知的澄清劑、消泡劑或該等的組合。 The SnO 2 component is an optional component, and when its content exceeds 0%, oxidation of the molten glass can be reduced to make it clear, and the visible light transmittance of the glass can be increased. On the other hand, by making the content of the SnO 2 component 3.0% or less, glass coloring or glass devitrification caused by reduction of molten glass can be reduced. Furthermore, the alloying of the SnO2 component and the melting equipment (especially precious metals such as Pt) is reduced, and the service life of the melting equipment can be expected to be extended. Therefore, the content of the SnO 2 component is preferably 3.0% or less, more preferably 1.0% or less, more preferably 0.5% or less, and more preferably 0.1% or less. For the SnO 2 component system, SnO, SnO 2 , SnF 2 , SnF 4 , etc. can be used as raw materials. Furthermore, the components that make the glass clear and defoaming are not limited to the above-mentioned Sb 2 O 3 or SnO 2 components, and well-known clarifiers, defoamers, or combinations thereof in the field of glass manufacturing can be used.

F成分為任意成分,其含有量超過0%時,能夠提高玻璃的阿貝數,降低玻璃轉移點,並提高耐失透性。 然而,F成分之含有量係亦即取代上述各金属元素之1種或2種以上氧化物之一部分或全部氟化物之F的合計量,若超過10.0%,則F成分的揮發量變多,因此會變得難以獲得穩定之光學常數,而難以獲得均質之玻璃。此外,阿貝數會上升至所需以上。 因此,F成分之含有量係10.0%以下為佳,5.0%未滿較佳,3.0%未滿更佳,進而較佳為1.0%未滿。 F成分係可使用例如ZrF 4、AlF 3、NaF、CaF 2等作為原料,將其包含於玻璃內。 Component F is an optional component, and when the content exceeds 0%, the Abbe's number of glass can be increased, the glass transition point can be lowered, and devitrification resistance can be improved. However, the content of the F component is the total amount of F that replaces a part or all of the fluorides of one or two or more oxides of the above-mentioned metal elements. If it exceeds 10.0%, the volatilization of the F component will increase, so It becomes difficult to obtain stable optical constants, and it is difficult to obtain homogeneous glass. In addition, the Abbe number will rise above that required. Therefore, the content of component F is preferably 10.0% or less, more preferably less than 5.0%, more preferably less than 3.0%, and more preferably less than 1.0%. The F component can be contained in glass using, for example, ZrF 4 , AlF 3 , NaF, CaF 2 , etc. as a raw material.

SiO 2成分以及Al 2O 3成分以及ZnO成分總含有量相對於B 2O 3成分以及Rn 2O成分(Rn為選自Li、Na、K所成群組中的1種以上)之總含有量之比率,15.0以下為佳。藉由使該比率變小,能夠抑制熔融性惡化。 因此,質量比(SiO 2+Al 2O 3+ZnO)/(B 2O 3+Rn 2O)係15.0以下為佳,12.0以下較佳,10.0以下更佳,進而較佳為8.0以下,進而更佳為6.0以下,進一步較佳為5.0未滿。 另一方面,質量比(SiO 2+Al 2O 3+ZnO)/(B 2O 3+Rn 2O)可以超過0。藉此,能夠使相對折射率的溫度係數變小,並使平均線性熱膨脹係數變大。因此,質量比(SiO 2+Al 2O 3+ZnO)/(B 2O 3+Rn 2O)係超過0為佳,超過1.0較佳,超過2.0更佳。 The total content of SiO 2 components, Al 2 O 3 components, and ZnO components relative to the total content of B 2 O 3 components and Rn 2 O components (Rn is one or more selected from the group consisting of Li, Na, and K) The volume ratio is preferably below 15.0. By making this ratio small, deterioration of meltability can be suppressed. Therefore, the mass ratio (SiO 2 +Al 2 O 3 +ZnO)/(B 2 O 3 +Rn 2 O) is preferably 15.0 or less, more preferably 12.0 or less, more preferably 10.0 or less, more preferably 8.0 or less, and further More preferably, it is 6.0 or less, and it is still more preferable that it is less than 5.0. On the other hand, the mass ratio (SiO 2 +Al 2 O 3 +ZnO)/(B 2 O 3 +Rn 2 O) may exceed zero. Thereby, the temperature coefficient of the relative refractive index can be reduced, and the average linear thermal expansion coefficient can be increased. Therefore, the mass ratio (SiO 2 +Al 2 O 3 +ZnO)/(B 2 O 3 +Rn 2 O) is preferably more than 0, more preferably more than 1.0, more preferably more than 2.0.

將Rn 2O成分(Rn為選自Li、Na、K所成群組中的1種以上)含有量之和(質量和)設為超過1.0%,能夠使相對折射率的溫度係數變小,並使平均線性熱膨脹係數變大。因此,Rn 2O成分含有量之和(質量和)係超過1.0%為佳,超過1.5%較佳,超過2.0%更佳。 另一方面,藉由將該和設為30.0%以下,能夠於維持所望的折射率、色散之同時,降低因玻璃黏性低下而導致的失透。因此,Rn 2O成分含有量之和(質量和)係30.0%以下為佳,25.0%未滿較佳,23.0%未滿更佳。 The sum (mass sum) of the contents of Rn2O components (Rn is one or more selected from the group consisting of Li, Na, and K) exceeds 1.0%, so that the temperature coefficient of the relative refractive index can be reduced, And make the average linear thermal expansion coefficient larger. Therefore, the sum (mass sum) of the contents of Rn 2 O components is preferably more than 1.0%, more preferably more than 1.5%, more preferably more than 2.0%. On the other hand, by setting this sum to 30.0% or less, it is possible to reduce devitrification due to a decrease in glass viscosity while maintaining a desired refractive index and dispersion. Therefore, the sum (mass sum) of the contents of Rn 2 O components is preferably 30.0% or less, more preferably less than 25.0%, more preferably less than 23.0%.

本發明之光學玻璃,較佳為含有上述Rn 2O成分中2種以上成分者。藉此,能夠使相對折射率的溫度係數變小,透過率良好,可以不需要再加熱之熱處理工程。特別是,藉由使Rn 2O成分含有Na 2O成分與K 2O成分2種以上成分,能夠使平均線性熱膨脹係數變大,透過率良好,相對折射率的溫度係數變小之要點,因而較佳。 The optical glass of the present invention preferably contains two or more of the aforementioned Rn 2 O components. Thereby, the temperature coefficient of the relative refractive index can be reduced, the transmittance can be improved, and the heat treatment process of reheating can be unnecessary. In particular, by making the Rn 2 O component contain two or more kinds of Na 2 O component and K 2 O component, the average linear thermal expansion coefficient can be increased, the transmittance can be improved, and the temperature coefficient of the relative refractive index can be reduced. better.

Ln 2O 3成分(Ln為選自La、Gd、Y、Yb、Lu所成群組中的1種以上)含有量之和(質量和)係5.0%以下較佳。藉此,能夠得到耐失透性優異,且透過率良好之玻璃。因此,Ln 2O 3成分含有量之和(質量和)係5.0%以下為佳,3.5%以下較佳,2.0%未滿更佳。 The sum (mass sum) of Ln 2 O 3 components (Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) is preferably 5.0% or less. Thereby, glass having excellent devitrification resistance and good transmittance can be obtained. Therefore, the sum (mass sum) of the contents of Ln 2 O 3 components is preferably 5.0% or less, more preferably 3.5% or less, and more preferably less than 2.0%.

[關於不應該含有之成分] 接下來,對於本發明光學玻璃中不應該含有之成分,以及不適合含有之成分進行說明。 [About ingredients that should not be contained] Next, components that should not be contained in the optical glass of the present invention and components that should not be contained will be described.

在不損害本發明之玻璃特性之範圍內,依所需可添加其他成分。然而,除了Ti、Zr、Nb、W、La、Gd、Y、Yb、Lu之外,V、Cr、Mn、Fe、Co、Ni、Cu、Ag、Mo等各種過渡金屬成分,分別以單獨或是複合型態含有時,即便是少量含有仍會使玻璃著色,而會發生對可見範圍中特定波長的光進行吸收之性質,因此,特別是在使用可見光範圍的波長之光學玻璃中,較佳為實質上不含有。Other components may be added as needed within the range not impairing the properties of the glass of the present invention. However, in addition to Ti, Zr, Nb, W, La, Gd, Y, Yb, Lu, various transition metal components such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, Mo, etc. When it is contained in a compound form, even a small amount will still color the glass, and it will absorb light of a specific wavelength in the visible range. Therefore, it is especially preferred in optical glasses that use wavelengths in the visible range. Because it does not contain substantially.

此外,PbO等鉛化合物以及As 2O 3等砷化合物由於係對環境負荷高之成分,理想是實質上不含有,亦即除了無法避免之混入之外,為完全不含有。 In addition, since lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with a high environmental load, it is desirable that they are not substantially contained, that is, they are not contained at all except for unavoidable contamination.

進而,Th、Cd、Tl、Os、Be、Se各成分近年來係被視為有害化學物質,而有避免使用之傾向,不僅是在玻璃製造步驟,甚至在加工步驟以及到製品化後之廢棄處理為止,都必須有環境對策上的措施。因此,就重視環境上的影響之觀點而言,較佳為實質上不含有該等成分。Furthermore, each component of Th, Cd, Tl, Os, Be, and Se has been regarded as a harmful chemical substance in recent years, and there is a tendency to avoid its use, not only in the glass manufacturing step, but also in the processing step and after the product is discarded. Environmental measures must be taken up to disposal. Therefore, from the viewpoint of emphasizing the influence on the environment, it is preferable not to contain these components substantially.

[製造方法] 本發明之光學玻璃,例如能夠以下述方式加以製作。亦即,上述各成分之原料,皆為選擇與其相符合之氧化物、氫氧化物、碳酸鹽、硝酸鹽、氟化物、偏燐酸化合物等一般光學玻璃所使用之高純度原料,再將該等原料均勻地混合成規定含量範圍內,將製作而成的混合物放入鉑坩堝中,依照玻璃原料之熔解難易度,以電爐在1000℃至1500℃之溫度範圍下,熔解1小時至10小時,並攪拌使其均質化後,降至適當之溫度,再澆鑄於鑄模中,加以緩冷卻,藉此製作出本發明之光學玻璃。 [Production method] The optical glass of the present invention can be produced, for example, as follows. That is to say, the raw materials of the above-mentioned components are all high-purity raw materials used in general optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, meta-acid compounds, etc. The raw materials are uniformly mixed into the specified content range, and the prepared mixture is put into a platinum crucible, and according to the difficulty of melting the glass raw material, it is melted in an electric furnace at a temperature range of 1000°C to 1500°C for 1 hour to 10 hours. After stirring to make it homogenized, it is lowered to an appropriate temperature, then cast in a mold, and cooled slowly, thereby producing the optical glass of the present invention.

[物性] 本發明之光學玻璃較佳為具有高折射率以及低阿貝數(高色散)。 特別是,本發明之光學玻璃之折射率(n d)係1.65以上為佳,1.67以上較佳,1.69以上更佳。該折射率(n d)係2.00以下為佳,1.98以下較佳,1.96以下更佳,進而較佳為1.95以下。 再者,本發明之光學玻璃之阿貝數(ν d)係10.0以上為佳,13.0以上較佳,15.0以上更佳,進而較佳為17.0以上。該阿貝數(ν d)係35.0以下為佳,34.0以下較佳,32.0以下更佳,進而較佳為30.0以下。 藉由具有如此高折射率,即使在期望光學元件的薄型化之情形下,仍可得到大的光的折射量。此外,藉由具有如此高色散,在作為單透鏡使用時,能夠藉由光的波長來適當地移動焦點。因此,例如與具有低色散(高阿貝數)之光學元件組合來構成光學系統時,整個光學系統能夠減少像差,並可期望高成像特性等。 這樣一來,本發明之光學玻璃,可於光學設計上發揮功效,特別是在於構成光學系統時,除了能夠期望高成像特性等之外,亦能夠期望光學系統的小型化,而可使得光學設計上之自由度增加。 [Physical Properties] The optical glass of the present invention preferably has a high refractive index and a low Abbe number (high dispersion). In particular, the refractive index (n d ) of the optical glass of the present invention is preferably 1.65 or higher, more preferably 1.67 or higher, and more preferably 1.69 or higher. The refractive index ( nd ) is preferably 2.00 or less, more preferably 1.98 or less, more preferably 1.96 or less, further preferably 1.95 or less. Furthermore, the Abbe number (ν d ) of the optical glass of the present invention is preferably 10.0 or higher, more preferably 13.0 or higher, more preferably 15.0 or higher, and more preferably 17.0 or higher. The Abbe's number (ν d ) is preferably at most 35.0, more preferably at most 34.0, more preferably at most 32.0, further preferably at most 30.0. By having such a high refractive index, a large amount of refraction of light can be obtained even when thinning of the optical element is desired. In addition, by having such a high dispersion, when used as a single lens, it is possible to appropriately shift the focal point according to the wavelength of light. Therefore, for example, when an optical system is formed in combination with an optical element having low dispersion (high Abbe number), aberrations can be reduced in the entire optical system, and high imaging characteristics and the like can be expected. In this way, the optical glass of the present invention can play a role in optical design, especially when forming an optical system, in addition to expecting high imaging characteristics, etc., it is also possible to expect miniaturization of the optical system, thereby enabling optical design The above degrees of freedom increase.

本發明之光學玻璃係相對折射率的溫度係數(dn/dT)取低值。 更具體而言,本發明之光學玻璃之相對折射率的溫度係數係上限值+3.0×10 -6-1為佳,+1.5×10 -6-1較佳,+1.0×10 -6-1更佳,且可能會獲得該上限值或較該上限值更低(負值方面)數值。 另一方面,本發明之光學玻璃之相對折射率的溫度係數係下限值-10.0×10 -6-1為佳,-8.0×10 -6-1較佳,-7.0×10 -6-1更佳,且可能會獲得該下限值或較該下限值更高(正值方面)數值。 其中,作為具有1.65以上的折射率(n d),且具有10以上35以下的阿貝數(ν d)之玻璃,相對折射率的溫度係數較低之玻璃並不多見,使得對因溫度變化所造成的成像失焦等狀況進行補正之選擇變多,而能夠更容易地完成該補正。因此,藉由將相對折射率的溫度係數設定於如此之範圍,能夠有助於補正因溫度變化所造成的成像失焦等。 本發明光學玻璃之相對折射率的溫度係數係指與光學玻璃在同樣溫度的空氣中之折射率(589.29nm)的溫度係數,係藉由將溫度從40℃變化至60℃時,1℃所對應之變化量(℃ -1)來表示。 The optical glass of the present invention has a low temperature coefficient (dn/dT) of relative refractive index. More specifically, the upper limit of the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably +3.0×10 -6-1 , preferably +1.5×10 -6-1 , +1.0×10 -1 6 °C -1 is more preferable, and values at or below this upper limit (on the negative side) may be obtained. On the other hand, the lower limit of the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably -10.0×10 -6-1 , preferably -8.0×10 -6-1 , -7.0×10 -6 °C -1 is more preferred, and values at or above this lower limit (in terms of positive values) may be obtained. Among them, as a glass having a refractive index (n d ) of 1.65 or more and an Abbe number (ν d ) of 10 to 35, glass with a relatively low temperature coefficient of refractive index is rare, so that the temperature There are more options for correcting conditions such as image out-of-focus caused by changes, and the correction can be completed more easily. Therefore, by setting the temperature coefficient of the relative refractive index in such a range, it can be helpful to correct the imaging defocus caused by the temperature change and the like. The temperature coefficient of the relative refractive index of the optical glass of the present invention refers to the temperature coefficient of the refractive index (589.29nm) in air at the same temperature as the optical glass, which is obtained by changing the temperature from 40°C to 60°C by 1°C The corresponding change (°C -1 ) is expressed.

本發明之光學玻璃於100℃至300℃中平均線性熱膨脹係數α為80(10 -7-1)以上較佳。亦即,本發明之光學玻璃於100℃至300℃中平均線性熱膨脹係數α係80(10 -7-1)以上為佳,85(10 -7-1)以上較佳,90(10 -7-1)以上更佳。 一般而言,若平均線性熱膨脹係數α較大則玻璃會於加工時容易發生破裂,因此期望平均線性熱膨脹係數α之數值為小值。另一方面,於與相對折射率的溫度係數較低,且平均線性熱膨脹係數α之數值較大之玻璃材料相配合並接合之觀點,期望該玻璃材料和平均線性熱膨脹係數α之數值相同或近似。 其中,在具有1.65以上的折射率(n d),且具有10以上35以下的阿貝數(ν d)之玻璃中,平均線性熱膨脹係數α較大之玻璃材料較少,與低折射率低色散之玻璃材料相配合使用之情形,具有如本發明之平均線性熱膨脹係數α較大數值者可發揮功效。 The optical glass of the present invention preferably has an average linear thermal expansion coefficient α of 80 (10 -7 °C -1 ) or higher at 100°C to 300°C. That is to say, the average linear thermal expansion coefficient α of the optical glass of the present invention at 100°C to 300°C is preferably above 80 (10 -7 °C -1 ), preferably above 85 (10 -7 °C -1 ), and above 90 (10 -7-1 ) or higher is better. Generally speaking, if the average linear thermal expansion coefficient α is large, the glass will be easily broken during processing, so it is desirable that the value of the average linear thermal expansion coefficient α be small. On the other hand, from the viewpoint of matching and bonding with a glass material with a relatively low temperature coefficient of the relative refractive index and a large average linear thermal expansion coefficient α, it is desirable that the glass material and the average linear thermal expansion coefficient α have the same or similar value . Among them, among glasses with a refractive index (n d ) of 1.65 or more and an Abbe number (ν d ) of 10 to 35, there are few glass materials with a large average linear thermal expansion coefficient α, and the glass material with a low refractive index is low. When the dispersion glass materials are used together, the one with the larger value of the average linear thermal expansion coefficient α as in the present invention can play a role.

本發明之光學玻璃之可見光透過率,特別是可見光之中短波長側之光透過率較高,如此著色少者為佳。 特別是,本發明之光學玻璃若以玻璃透過率表示,則厚度10mm之樣品中表示分光透過率80%之最短波長(λ 80),460nm以下為佳,450nm以下較佳,440nm以下更佳。再者,本發明之光學玻璃中,厚度10mm之樣品中表示分光透過率70%之最短波長(λ 70),430nm以下為佳,420nm以下較佳,410nm以下更佳。 再者,本發明之光學玻璃中,厚度10mm之樣品中表示分光透過率5%之最短波長(λ 5),400nm以下為佳,390nm以下較佳,380nm以下更佳。 根據上述,玻璃之吸收端位於紫外線領域附近,因相對於可見光之玻璃之透明性被提高,該光學玻璃可較佳使用作為透鏡等使光透過之光學元件。 The visible light transmittance of the optical glass of the present invention, especially the light transmittance on the short-wavelength side of visible light, is relatively high, and less coloration is preferred. In particular, if the optical glass of the present invention is expressed by the glass transmittance, the shortest wavelength (λ 80 ) representing a spectral transmittance of 80% in a sample with a thickness of 10mm is preferably below 460nm, preferably below 450nm, and more preferably below 440nm. Furthermore, in the optical glass of the present invention, the shortest wavelength (λ 70 ) representing a spectral transmittance of 70% in a sample with a thickness of 10 mm is preferably 430 nm or less, more preferably 420 nm or less, and more preferably 410 nm or less. Furthermore, in the optical glass of the present invention, the shortest wavelength (λ 5 ) representing a spectral transmittance of 5% in a sample with a thickness of 10mm is preferably below 400nm, preferably below 390nm, and more preferably below 380nm. According to the above, the absorption end of the glass is located near the ultraviolet region, and since the transparency of the glass relative to visible light is improved, this optical glass can be preferably used as an optical element such as a lens that transmits light.

[預成形體及光學元件] 可使用例如研磨加工之方法,或是再熱壓製成形、精密壓製成形等模壓成形之方法,由製成的光學玻璃來製作出玻璃壓成體。亦即,能以下述列舉之方式製作玻璃壓成體:對光學玻璃進行研削及研磨等的機械加工來製作玻璃壓成體;由光學玻璃製作出模壓成形用的預成形體,並對該預成形體進行再熱壓製成形後,再進行研磨加工來製作玻璃壓成體;對進行研磨加工而製成的預成形體,或是對藉由周知的漂浮成形等成形的預成形體,進行精密壓製成形,來製作玻璃壓成體等。此外,製作玻璃壓成體的方法,並不限於上述該等方法。 [Preforms and Optical Elements] Glass compacts can be produced from the finished optical glass by methods such as grinding, or compression molding such as reheat press molding and precision press molding. That is, the glass compact can be produced in the following manner: the optical glass is subjected to mechanical processing such as grinding and grinding to produce the glass compact; a preform for press molding is produced from the optical glass, and the preform is The molded body is reheated and pressed, and then ground to produce a glass compact; the preform formed by grinding, or the preform formed by the well-known float forming, etc., is precision-processed. Press molding to make glass press products, etc. In addition, the method of manufacturing a glass compact is not limited to the above-mentioned methods.

如此,本發明之光學玻璃可在各式各樣之光學元件及光學設計上發揮功效。其中,尤其理想的是,由本發明之光學玻璃來形成預成形體,並使用該預成形體進行再熱壓製成形或精密壓製成形等,製作出透鏡或稜鏡等光學元件。藉此,可形成口徑較大之預成形體,因此,除了能期望光學元件的大型化之外,使用在光學機器上時,亦能實現高清晰且高精密度之成像特性及投影特性。In this way, the optical glass of the present invention can function in various optical elements and optical designs. Among them, it is particularly desirable to form a preform from the optical glass of the present invention, and use the preform to perform reheat press molding or precision press molding to produce optical elements such as lenses and enamel. Thereby, a preform with a large aperture can be formed. Therefore, in addition to expecting an increase in the size of the optical element, when used in an optical device, high-definition and high-precision imaging characteristics and projection characteristics can also be realized.

由本發明光學玻璃而成之玻璃壓成體係能夠應用於如透鏡、稜鏡、鏡子等光學元件之用途上,最典型則是可應用於車用光學機器、投影機或影印機等,容易產生高溫之機器上。The glass pressing system made of the optical glass of the present invention can be applied to optical components such as lenses, lenses, mirrors, etc., and is most typically applied to automotive optical devices, projectors or photocopiers, etc., which are prone to high temperature on the machine.

[實施例] 本發明之實施例(No.1至No.51)及比較例(No.A、No.B)之組成,以及該等玻璃之折射率(n d)、阿貝數(ν d)、相對折射率的溫度係數(dn/dT)、平均線性熱膨脹係數(100℃至300℃)、透過率(λ 80、λ 70、λ 5)之結果皆示於表1至表8。此外,以下實施例僅作為例示之目的,本發明並不限於該等實施例。 [Example] The compositions of the examples (No.1 to No.51) and comparative examples (No.A, No.B) of the present invention, and the refractive index ( nd ) and Abbe number (ν) of these glasses d ), temperature coefficient of relative refractive index (dn/dT), average linear thermal expansion coefficient (100°C to 300°C), and transmittance (λ 80 , λ 70 , λ 5 ) are shown in Tables 1 to 8. In addition, the following examples are for illustrative purposes only, and the present invention is not limited to these examples.

本發明之實施例以及比較例之玻璃,各成分之原料,皆係選擇與其相符合之氧化物、氫氧化物、碳酸鹽、硝酸鹽、氟化物、偏燐酸化合物等一般光學玻璃所使用之高純度原料,再將該等原料以成為表中所示各實施例組成比例來進行秤重並均勻地混合後,投入鉑坩堝,並依照玻璃原料之熔解難易度以電爐在800℃至1300℃之溫度範圍下溶解1小時至10小時後,攪拌使其均質化,再澆鑄於鑄模中,加以緩冷卻而製作。In the examples of the present invention and the comparative examples, the raw materials of each component are all selected from the high-quality materials used in general optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, and meta-acid compounds. Purity raw materials, and then these raw materials are weighed and mixed uniformly according to the composition ratio of each embodiment shown in the table, and then put into a platinum crucible, and according to the melting difficulty of the glass raw material, the electric furnace is heated at a temperature between 800 ° C and 1300 ° C. After dissolving in the temperature range for 1 hour to 10 hours, stir to make it homogeneous, cast it in a mold, and slowly cool it to make it.

實施例以及比較例的玻璃折射率(n d)及阿貝數(ν d)係以相對於氦燈的d譜線(587.56nm)之測定值來表示。此外,阿貝數(ν d)係使用上述d譜線之折射率、相對於氫燈之F譜線(486.13nm)之折射率(n F)、相對於C譜線(656.27nm)之折射率(n C)之數值,由阿貝數(ν d)=[(n d-1)/(n F-n C)]之數式來計算出該阿貝數。 The glass refractive index ( nd ) and Abbe's number (ν d ) of Examples and Comparative Examples are represented by measured values relative to the d line (587.56 nm) of the helium lamp. In addition, the Abbe number (ν d ) is the refractive index of the above-mentioned d line, the refractive index (n F ) of the F line (486.13nm) of the hydrogen lamp, and the refraction of the C line (656.27nm) The numerical value of rate (n C ) is calculated by the formula of Abbe number (ν d )=[(n d -1)/(n F -n C )].

實施例以及比較例之玻璃之相對折射率的溫度係數(dn/dT),根據日本光學玻璃工業會標準JOGIS18-2008「光學玻璃之折射率的溫度係數之測定方法」中所記載方法中的干渉法,對於波長589.29nm的光,測定出40℃至60℃下相對折射率的溫度係數之數值。The temperature coefficient of the relative refractive index (dn/dT) of the glasses of Examples and Comparative Examples is based on the interference in the method described in the Japanese Optical Glass Industry Association standard JOGIS18-2008 "Measurement of the Temperature Coefficient of Refractive Index of Optical Glass" For light with a wavelength of 589.29nm, the value of the temperature coefficient of the relative refractive index at 40°C to 60°C is measured.

再者,實施例以及比較例之玻璃平均線性熱膨脹係數(100℃至300℃)係根據日本光學玻璃工業會標準JOGIS08-2003「光學玻璃之熱膨脹測定方法」,將溫度與樣品延展程度之間的關係加以測定,藉此獲得熱膨脹曲線,進而求得。Furthermore, the average linear thermal expansion coefficient (100°C to 300°C) of the glass in the examples and comparative examples is based on the Japanese Optical Glass Industry Association standard JOGIS08-2003 "Measurement Method for Thermal Expansion of Optical Glass", which is the relationship between the temperature and the degree of elongation of the sample. The relationship is measured, thereby obtaining the thermal expansion curve, and then obtained.

實施例之玻璃透過率係根據日本光學玻璃工業會標準JOGIS02-2003而加以測定。此外,於本發明中,藉由測定玻璃透過率,求得玻璃之著色有無與程度。具體而言,將厚度10±0.1mm之對面平行研磨品根據JISZ8722,測定200至800nm之分光透過率,求得λ 80(透過率80%時之波長)、λ 70(透過率70%時之波長)以及λ 5(透過率5%時之波長)。 The glass transmittance of the examples is measured according to the standard JOGIS02-2003 of the Japan Optical Glass Industry Association. In addition, in the present invention, by measuring the transmittance of the glass, the existence and degree of coloring of the glass can be obtained. Specifically, according to JISZ8722, measure the spectral transmittance of 200 to 800nm on a parallel abrasive product with a thickness of 10±0.1mm, and obtain λ 80 (the wavelength when the transmittance is 80%) and λ 70 (the wavelength when the transmittance is 70%). wavelength) and λ 5 (the wavelength when the transmittance is 5%).

[表1] (單位:質量%) 實施例 1 2 3 4 5 6 7 8 P 2O 5 28.61 25.89 24.77 26.12 25.39 24.69 25.63 25.63 Nb 2O 5 44.55 40.31 38.57 45.01 43.74 42.54 44.15 44.15 Na 2O 16.29 15.19 14.54 17.52 17.02 16.56 17.19 17.19 K 2O 4.12 3.73 3.57 4.43 4.31 4.19 4.35 4.35 BaO 2.82 2.74 TiO 2 6.41 14.85 18.54 6.89 6.70 6.51 8.66 8.66 SiO 2 B 2O 3 WO 3 ZnO 2.74 ZrO 2 MgO CaO SrO L i2O                 Al 2O 3                 Sb 2O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2O + K 2O 20.41 18.92 18.11 21.95 21.33 20.75 21.54 21.54 Na 2O+K 2O+BaO 20.41 18.92 18.11 21.95 24.15 23.49 21.54 21.54 Nb 2O 5+ TiO 2 50.96 55.16 57.11 51.9 50.44 49.05 52.81 52.81 (Na 2O+K 2O+BaO)/(B 2O 3+TiO 2) 3.18 1.27 0.98 3.19 3.60 3.61 2.49 2.49 RO 0.00 0.00 0.00 0.00 2.82 5.49 0.00 0.00 折射率(n d) 1.70 1.83 1.86 1.78 1.78 1.78 1.79 1.77 阿貝數(ν d) 29.09 21.28 20.30 24.05 24.45 24.63 23.43 24.68 λ 80[nm] 425 430 432 425 425 425 421 423 λ 70[nm] 397 399 400 397 397 396 396 396 λ 5[nm] 369 368 368 369 369 369 369 369 α(100-300℃) [×10 -7-1] 141 123 118 137 147 137 134 143 相對折射率的溫度係數 [×10 -6-1] -5.64 -3.21 -2.58 -5.11 -6.44 -5.11 -4.71 -5.91 [Table 1] (Unit: mass%) Example 1 2 3 4 5 6 7 8 P 2 O 5 28.61 25.89 24.77 26.12 25.39 24.69 25.63 25.63 Nb 2 O 5 44.55 40.31 38.57 45.01 43.74 42.54 44.15 44.15 Na 2 O 16.29 15.19 14.54 17.52 17.02 16.56 17.19 17.19 K 2 O 4.12 3.73 3.57 4.43 4.31 4.19 4.35 4.35 BaO 2.82 2.74 TiO 2 6.41 14.85 18.54 6.89 6.70 6.51 8.66 8.66 SiO 2 B 2 O 3 WO 3 ZnO 2.74 ZrO2 MgO CaO SrO L i2 O Al 2 O 3 Sb 2 O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 count 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2 O + K 2 O 20.41 18.92 18.11 21.95 21.33 20.75 21.54 21.54 Na2O + K2O + BaO 20.41 18.92 18.11 21.95 24.15 23.49 21.54 21.54 Nb 2 O 5 + TiO 2 50.96 55.16 57.11 51.9 50.44 49.05 52.81 52.81 (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) 3.18 1.27 0.98 3.19 3.60 3.61 2.49 2.49 RO 0.00 0.00 0.00 0.00 2.82 5.49 0.00 0.00 Refractive index (n d ) 1.70 1.83 1.86 1.78 1.78 1.78 1.79 1.77 Abbe number (ν d ) 29.09 21.28 20.30 24.05 24.45 24.63 23.43 24.68 λ 80 [nm] 425 430 432 425 425 425 421 423 λ 70 [nm] 397 399 400 397 397 396 396 396 λ 5 [nm] 369 368 368 369 369 369 369 369 α(100-300℃) [×10 -7-1 ] 141 123 118 137 147 137 134 143 Temperature coefficient of relative refractive index [×10 -6-1 ] -5.64 -3.21 -2.58 -5.11 -6.44 -5.11 -4.71 -5.91

[表2] (單位:質量%) 實施例 9 10 11 12 13 14 15 16 P 2O 5 25.63 25.63 25.63 27.91 25.12 23.16 22.15 23.16 Nb 2O 5 44.15 44.15 44.15 38.83 37.01 38.60 36.93 38.60 Na 2O 17.19 17.19 17.19 3.83 17.52 13.00 16.78 3.91 K 2O 4.35 4.35 4.35 10.94 4.43 3.42 3.27 3.42 BaO 12.53 1.46 1.40 10.55 TiO 2 6.76 6.76 6.76 5.95 14.89 15.44 14.77 15.44 SiO 2 B 2O 3 1.00 WO 3 4.89 4.68 4.89 ZnO ZrO 2 MgO 1.90 CaO 1.90 SrO 1.90 L i2O                 Al 2O 3                 Sb 2O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2O + K 2O 21.54 21.54 21.54 14.76 21.95 16.42 20.05 7.33 Na 2O+K 2O+BaO 21.54 21.54 21.54 27.29 21.95 17.88 21.45 17.88 Nb 2O 5+ TiO 2 50.91 50.91 50.91 44.77 51.90 54.05 51.70 54.05 (Na 2O+K 2O+BaO)/(B 2O 3+TiO 2) 3.19 3.19 3.19 4.59 1.38 1.16 1.45 1.16 RO 1.90 1.90 1.90 12.53 0.00 1.46 1.40 10.55 折射率(n d) 1.78 1.78 1.78 1.78 1.80 1.87 1.82 1.94 阿貝數(ν d) 24.62 24.48 24.38 25.17 22.56 20.18 21.98 18.80 λ 80[nm] 424 425 426 430 432 432 433 434 λ 70[nm] 396 397 397 399 400 400 400 400 λ 5[nm] 369 369 369 373 370 368 368 368 α(100-300℃) [×10 -7-1] 139 132 140 112 135 113 138 85 相對折射率的溫度係數 [×10 -6-1] -5.38 -4.44 -5.51 -1.78 -4.84 -1.91 -5.24 1.82 [Table 2] (Unit: mass%) Example 9 10 11 12 13 14 15 16 P 2 O 5 25.63 25.63 25.63 27.91 25.12 23.16 22.15 23.16 Nb 2 O 5 44.15 44.15 44.15 38.83 37.01 38.60 36.93 38.60 Na 2 O 17.19 17.19 17.19 3.83 17.52 13.00 16.78 3.91 K 2 O 4.35 4.35 4.35 10.94 4.43 3.42 3.27 3.42 BaO 12.53 1.46 1.40 10.55 TiO 2 6.76 6.76 6.76 5.95 14.89 15.44 14.77 15.44 SiO 2 B 2 O 3 1.00 WO 3 4.89 4.68 4.89 ZnO ZrO2 MgO 1.90 CaO 1.90 SrO 1.90 L i2 O Al 2 O 3 Sb 2 O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 count 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2 O + K 2 O 21.54 21.54 21.54 14.76 21.95 16.42 20.05 7.33 Na2O + K2O + BaO 21.54 21.54 21.54 27.29 21.95 17.88 21.45 17.88 Nb 2 O 5 + TiO 2 50.91 50.91 50.91 44.77 51.90 54.05 51.70 54.05 (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) 3.19 3.19 3.19 4.59 1.38 1.16 1.45 1.16 RO 1.90 1.90 1.90 12.53 0.00 1.46 1.40 10.55 Refractive index (n d ) 1.78 1.78 1.78 1.78 1.80 1.87 1.82 1.94 Abbe number (ν d ) 24.62 24.48 24.38 25.17 22.56 20.18 21.98 18.80 λ 80 [nm] 424 425 426 430 432 432 433 434 λ 70 [nm] 396 397 397 399 400 400 400 400 λ 5 [nm] 369 369 369 373 370 368 368 368 α(100-300℃) [×10 -7-1 ] 139 132 140 112 135 113 138 85 Temperature coefficient of relative refractive index [×10 -6-1 ] -5.38 -4.44 -5.51 -1.78 -4.84 -1.91 -5.24 1.82

[表3] (單位:質量%) 實施例 17 18 19 20 21 22 23 24 P 2O 5 26.50 25.53 25.53 24.31 24.31 24.31 24.80 24.31 Nb 2O 5 36.93 33.02 36.02 34.30 34.30 39.30 45.20 39.30 Na 2O 12.43 9.23 9.23 13.55 8.79 12.43 12.69 8.29 K 2O 3.27 2.92 2.92 2.78 7.55 8.29 BaO 1.40 8.96 8.96 8.53 8.53 12.43 10.64 8.29 TiO 2 14.77 16.15 16.15 15.38 15.38 10.38 5.49 10.38 SiO 2 B 2O 3 WO 3 4.68 4.18 1.18 1.13 1.13 1.13 1.15 1.13 ZnO ZrO 2 MgO CaO SrO L i2O                 Al 2O 3                 Sb 2O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2O + K 2O 15.70 12.15 12.15 16.33 16.33 12.43 12.69 16.58 Na 2O+K 2O+BaO 17.10 21.11 21.11 24.86 24.86 24.86 23.33 24.87 Nb 2O 5+ TiO 2 51.70 49.16 52.16 49.68 49.68 49.68 50.69 49.67 (Na 2O+K 2O+BaO)/(B 2O 3+TiO 2) 1.16 1.31 1.31 1.62 1.62 2.40 4.25 2.40 RO 1.40 8.96 8.96 8.53 8.53 12.43 10.64 8.29 折射率(n d) 1.85 1.87 1.88 1.83 1.84 1.85 1.83 1.84 阿貝數(ν d) 20.56 20.52 20.35 22.02 21.59 22.26 23.52 21.60 λ 80[nm] 427 432 431 430 431 433 432 430 λ 70[nm] 395 400 399 399 399 400 400 400 λ 5[nm] 368 373 373 373 373 373 373 373 α(100-300℃) [×10 -7-1] 110 104 105 122 118 112 114 121 相對折射率的溫度係數 [×10 -6-1] -1.51 -0.71 -0.85 -3.11 -2.58 -1.78 -2.05 -2.98 [table 3] (Unit: mass%) Example 17 18 19 20 twenty one twenty two twenty three twenty four P 2 O 5 26.50 25.53 25.53 24.31 24.31 24.31 24.80 24.31 Nb 2 O 5 36.93 33.02 36.02 34.30 34.30 39.30 45.20 39.30 Na 2 O 12.43 9.23 9.23 13.55 8.79 12.43 12.69 8.29 K 2 O 3.27 2.92 2.92 2.78 7.55 8.29 BaO 1.40 8.96 8.96 8.53 8.53 12.43 10.64 8.29 TiO 2 14.77 16.15 16.15 15.38 15.38 10.38 5.49 10.38 SiO 2 B 2 O 3 WO 3 4.68 4.18 1.18 1.13 1.13 1.13 1.15 1.13 ZnO ZrO2 MgO CaO SrO L i2 O Al 2 O 3 Sb 2 O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 count 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2 O + K 2 O 15.70 12.15 12.15 16.33 16.33 12.43 12.69 16.58 Na2O + K2O + BaO 17.10 21.11 21.11 24.86 24.86 24.86 23.33 24.87 Nb 2 O 5 + TiO 2 51.70 49.16 52.16 49.68 49.68 49.68 50.69 49.67 (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) 1.16 1.31 1.31 1.62 1.62 2.40 4.25 2.40 RO 1.40 8.96 8.96 8.53 8.53 12.43 10.64 8.29 Refractive index (n d ) 1.85 1.87 1.88 1.83 1.84 1.85 1.83 1.84 Abbe number (ν d ) 20.56 20.52 20.35 22.02 21.59 22.26 23.52 21.60 λ 80 [nm] 427 432 431 430 431 433 432 430 λ 70 [nm] 395 400 399 399 399 400 400 400 λ 5 [nm] 368 373 373 373 373 373 373 373 α(100-300℃) [×10 -7-1 ] 110 104 105 122 118 112 114 121 Temperature coefficient of relative refractive index [×10 -6-1 ] -1.51 -0.71 -0.85 -3.11 -2.58 -1.78 -2.05 -2.98

[表4] (單位:質量%) 實施例 25 26 27 28 29 30 31 32 P 2O 5 24.31 24.31 24.31 24.31 24.31 24.31 24.31 23.6 Nb 2O 5 39.30 39.30 39.30 39.30 39.30 37.80 38.80 38.15 Na 2O 17.43 7.43 13.07 13.07 12.57 12.07 7.07 7.22 K 2O 4.36 4.36 3.86 3.36 4.36 2.91 BaO 7.43 17.43 7.43 7.43 6.93 6.43 10.43 16.92 TiO 2 10.38 10.38 10.38 11.51 13.01 16.01 15.01 10.08 SiO 2 B 2O 3 WO 3 1.13 1.13 1.13 1.09 ZnO ZrO 2 MgO CaO SrO L i2O                 Al 2O 3                 Sb 2O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2O + K 2O 17.43 7.43 17.43 17.43 16.43 15.43 11.43 10.13 Na 2O+K 2O+BaO 24.86 24.86 24.86 24.86 23.36 21.86 21.86 27.05 Nb 2O 5+ TiO 2 49.68 49.68 49.68 50.80 52.30 53.80 53.80 48.23 (Na 2O+K 2O+BaO)/(B 2O 3+TiO 2) 2.40 2.40 2.40 2.16 1.80 1.37 1.46 2.68 RO 7.43 17.43 7.43 7.43 6.93 6.43 10.43 16.92 折射率(n d) 1.81 1.88 1.82 1.82 1.84 1.86 1.89 1.86 阿貝數(ν d) 23.17 21.38 22.87 22.54 21.73 20.77 20.29 22.22 λ 80[nm] 431 435 436 433 435 436 432 435 λ 70[nm] 400 400 400 400 400 400 400 400 λ 5[nm] 373 373 373 373 373 373 373 373 α(100-300℃) [×10 -7-1] 131 98 129 129 122 117 102 104 相對折射率的溫度係數 [×10 -6-1] -4.31 -2.00 -4.04 -4.00 -3.11 -2.45 -0.45 -0.71 [Table 4] (Unit: mass%) Example 25 26 27 28 29 30 31 32 P 2 O 5 24.31 24.31 24.31 24.31 24.31 24.31 24.31 23.6 Nb 2 O 5 39.30 39.30 39.30 39.30 39.30 37.80 38.80 38.15 Na 2 O 17.43 7.43 13.07 13.07 12.57 12.07 7.07 7.22 K 2 O 4.36 4.36 3.86 3.36 4.36 2.91 BaO 7.43 17.43 7.43 7.43 6.93 6.43 10.43 16.92 TiO 2 10.38 10.38 10.38 11.51 13.01 16.01 15.01 10.08 SiO 2 B 2 O 3 WO 3 1.13 1.13 1.13 1.09 ZnO ZrO2 MgO CaO SrO L i2 O Al 2 O 3 Sb 2 O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 count 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2 O + K 2 O 17.43 7.43 17.43 17.43 16.43 15.43 11.43 10.13 Na2O + K2O + BaO 24.86 24.86 24.86 24.86 23.36 21.86 21.86 27.05 Nb 2 O 5 + TiO 2 49.68 49.68 49.68 50.80 52.30 53.80 53.80 48.23 (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) 2.40 2.40 2.40 2.16 1.80 1.37 1.46 2.68 RO 7.43 17.43 7.43 7.43 6.93 6.43 10.43 16.92 Refractive index (n d ) 1.81 1.88 1.82 1.82 1.84 1.86 1.89 1.86 Abbe number (ν d ) 23.17 21.38 22.87 22.54 21.73 20.77 20.29 22.22 λ 80 [nm] 431 435 436 433 435 436 432 435 λ 70 [nm] 400 400 400 400 400 400 400 400 λ 5 [nm] 373 373 373 373 373 373 373 373 α(100-300℃) [×10 -7-1 ] 131 98 129 129 122 117 102 104 Temperature coefficient of relative refractive index [×10 -6-1 ] -4.31 -2.00 -4.04 -4.00 -3.11 -2.45 -0.45 -0.71

[表5] (單位:質量%) 實施例 33 34 35 36 37 38 39 40 P 2O 5 25.99 25.99 26.70 27.40 28.08 26.70 26.70 26.70 Nb 2O 5 44.78 44.78 44.36 43.94 43.53 44.36 44.36 44.36 Na 2O 14.45 11.46 12.50 12.38 12.27 13.93 15.36 16.79 K 2O 7.40 10.38 9.14 9.05 8.97 7.71 6.28 4.85 BaO TiO 2 6.86 6.86 6.79 6.73 6.67 6.79 6.79 6.79 SiO 2 0.50 0.50 0.48 0.47 0.47 0.48 0.48 0.48 B 2O 3 WO 3 ZnO ZrO 2 MgO CaO SrO L i2O                 Al 2O 3                 Sb 2O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2O + K 2O 21.84 21.84 21.64 21.43 21.23 21.64 21.64 21.64 Na 2O+K 2O+BaO 21.84 21.84 21.64 21.43 21.23 21.64 21.64 21.64 Nb 2O 5+ TiO 2 51.64 51.64 51.16 50.67 50.2 51.16 51.16 51.16 (Na 2O+K 2O+BaO)/(B 2O 3+TiO 2) 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 折射率(n d) 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 阿貝數(ν d) 23.89 23.74 23.61 23.74 23.81 23.76 23.8 23.94 λ 80[nm] 429 426 418 417 416 416 418 416 λ 70[nm] 399 397 394 394 394 394 395 394 λ 5[nm] 368 369 369 369 369 369 369 368 α(100-300℃) [×10 -7-1] 136 133 132 131 130 135 137 139 相對折射率的溫度係數 [×10 -6-1] -4.98 -4.58 -4.44 -4.31 -4.18 -4.84 -5.11 -5.38 [table 5] (Unit: mass%) Example 33 34 35 36 37 38 39 40 P 2 O 5 25.99 25.99 26.70 27.40 28.08 26.70 26.70 26.70 Nb 2 O 5 44.78 44.78 44.36 43.94 43.53 44.36 44.36 44.36 Na 2 O 14.45 11.46 12.50 12.38 12.27 13.93 15.36 16.79 K 2 O 7.40 10.38 9.14 9.05 8.97 7.71 6.28 4.85 BaO TiO 2 6.86 6.86 6.79 6.73 6.67 6.79 6.79 6.79 SiO 2 0.50 0.50 0.48 0.47 0.47 0.48 0.48 0.48 B 2 O 3 WO 3 ZnO ZrO2 MgO CaO SrO L i2 O Al 2 O 3 Sb 2 O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 count 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2 O + K 2 O 21.84 21.84 21.64 21.43 21.23 21.64 21.64 21.64 Na2O + K2O + BaO 21.84 21.84 21.64 21.43 21.23 21.64 21.64 21.64 Nb 2 O 5 + TiO 2 51.64 51.64 51.16 50.67 50.2 51.16 51.16 51.16 (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Refractive index (n d ) 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 Abbe number (ν d ) 23.89 23.74 23.61 23.74 23.81 23.76 23.8 23.94 λ 80 [nm] 429 426 418 417 416 416 418 416 λ 70 [nm] 399 397 394 394 394 394 395 394 λ 5 [nm] 368 369 369 369 369 369 369 368 α(100-300℃) [×10 -7-1 ] 136 133 132 131 130 135 137 139 Temperature coefficient of relative refractive index [×10 -6-1 ] -4.98 -4.58 -4.44 -4.31 -4.18 -4.84 -5.11 -5.38

[表6] (單位:質量%) 實施例 比較例 比較例 41 A B P 2O 5 27.05 30.56 42.00 Nb 2O 5 44.15 60.00 27.86 Na 2O 17.19 2.18 9.61 K 2O 4.35 13.27 BaO TiO 2 6.76 6.76 6.76 SiO 2 0.48 0.48 0.48 B 2O 3 WO 3 ZnO ZrO 2 MgO CaO SrO L i2O       Al 2O 3       Sb 2O 3 0.02 0.02 0.02 100.00 100.00 100.00 Na 2O + K 2O 21.54 2.18 22.88 Na 2O+K 2O+BaO 21.54 2.18 22.88 Nb 2O 5+ TiO 2 50.91 66.76 34.62 (Na 2O+K 2O+BaO)/(B 2O 3+TiO 2) 3.19 0.32 3.38 RO 0.00 0.00 0.00 折射率(n d) 1.78 ガラス化×             1.66 阿貝數(ν d) 24.01 30.43 λ 80[nm] 420 596 λ 70[nm] 395 408 λ 5[nm] 398 370 α(100-300℃) [×10 -7-1] 137   相對折射率的溫度係數 [×10 -6-1] -5.11   [Table 6] (Unit: mass%) Example comparative example comparative example 41 A B P 2 O 5 27.05 30.56 42.00 Nb 2 O 5 44.15 60.00 27.86 Na 2 O 17.19 2.18 9.61 K 2 O 4.35 13.27 BaO TiO 2 6.76 6.76 6.76 SiO 2 0.48 0.48 0.48 B 2 O 3 WO 3 ZnO ZrO2 MgO CaO SrO L i2 O Al 2 O 3 Sb 2 O 3 0.02 0.02 0.02 count 100.00 100.00 100.00 Na 2 O + K 2 O 21.54 2.18 22.88 Na2O + K2O + BaO 21.54 2.18 22.88 Nb 2 O 5 + TiO 2 50.91 66.76 34.62 (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) 3.19 0.32 3.38 RO 0.00 0.00 0.00 Refractive index (n d ) 1.78 Galasization× 1.66 Abbe number (ν d ) 24.01 30.43 λ 80 [nm] 420 596 λ 70 [nm] 395 408 λ 5 [nm] 398 370 α(100-300℃) [×10 -7-1 ] 137 Temperature coefficient of relative refractive index [×10 -6-1 ] -5.11

[表7] (單位:質量%) 實施例 42 43 44 45 46 47 48 49 P 2O 5 21.88 23.60 21.46 27.25 27.23 27.80 31.24 34.37 Nb 2O 5 35.37 38.16 34.69 42.43 42.40 44.15 42.05 40.14 Na 2O 6.69 7.22 6.56 15.51 15.51 16.44 15.65 14.94 K 2O 4.35 1.41 11.74 3.93 3.92 4.35 4.14 3.95 BaO 15.69 16.93 15.39 TiO 2 14.99 10.08 9.16 6.10 6.10 6.76 6.44 6.15 SiO 2 0.47 0.45 0.43 B 2O 3 WO 3 1.01 1.09 1.00 4.76 1.96 ZnO ZrO 2 MgO CaO SrO                 L i2O 1.50 Al 2O 3 2.86 Sb 2O 3 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2O + K 2O 11.04 8.63 18.30 19.44 19.43 20.79 19.80 18.90 Na 2O+K 2O+BaO 26.73 25.56 33.69 19.44 19.43 20.79 19.80 18.90 Nb 2O 5+ TiO 2 50.36 48.24 43.85 48.53 48.50 50.91 48.49 46.29 (Na 2O+K 2O+BaO)/(B 2O 3+TiO 2) 1.78 2.54 3.68 3.19 3.19 3.07 3.07 3.07 RO 15.69 16.93 15.39 0.00 0.00 0.00 0.00 0.00 折射率(n d) 1.89 1.87 1.77 1.78 1.76 1.78 1.76 1.74 阿貝數(ν d) 20.86 22.21 25.49 23.95 25.64 23.87 25.06 26.00 λ 80[nm] 435 436 435 440 432 420 431 428 λ 70[nm] 401 401 400 402 397 395 401 397 λ 5[nm] 386 381 373 372 364 370 371 370 α(100-300℃) [×10 -7-1] 109 111 142 131 143 130 127 130 相對折射率的溫度係數 [×10 -6-1] -1.38 -1.65 -5.78 -4.31 -5.91 -4.30 -3.78 -4.18 [Table 7] (Unit: mass%) Example 42 43 44 45 46 47 48 49 P 2 O 5 21.88 23.60 21.46 27.25 27.23 27.80 31.24 34.37 Nb 2 O 5 35.37 38.16 34.69 42.43 42.40 44.15 42.05 40.14 Na 2 O 6.69 7.22 6.56 15.51 15.51 16.44 15.65 14.94 K 2 O 4.35 1.41 11.74 3.93 3.92 4.35 4.14 3.95 BaO 15.69 16.93 15.39 TiO 2 14.99 10.08 9.16 6.10 6.10 6.76 6.44 6.15 SiO 2 0.47 0.45 0.43 B 2 O 3 WO 3 1.01 1.09 1.00 4.76 1.96 ZnO ZrO2 MgO CaO SrO L i2 O 1.50 Al 2 O 3 2.86 Sb 2 O 3 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 count 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Na 2 O + K 2 O 11.04 8.63 18.30 19.44 19.43 20.79 19.80 18.90 Na2O + K2O + BaO 26.73 25.56 33.69 19.44 19.43 20.79 19.80 18.90 Nb 2 O 5 + TiO 2 50.36 48.24 43.85 48.53 48.50 50.91 48.49 46.29 (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) 1.78 2.54 3.68 3.19 3.19 3.07 3.07 3.07 RO 15.69 16.93 15.39 0.00 0.00 0.00 0.00 0.00 Refractive index (n d ) 1.89 1.87 1.77 1.78 1.76 1.78 1.76 1.74 Abbe number (ν d ) 20.86 22.21 25.49 23.95 25.64 23.87 25.06 26.00 λ 80 [nm] 435 436 435 440 432 420 431 428 λ 70 [nm] 401 401 400 402 397 395 401 397 λ 5 [nm] 386 381 373 372 364 370 371 370 α(100-300℃) [×10 -7-1 ] 109 111 142 131 143 130 127 130 Temperature coefficient of relative refractive index [×10 -6-1 ] -1.38 -1.65 -5.78 -4.31 -5.91 -4.30 -3.78 -4.18

[表8] (單位:質量%) 實施例 50 51 P 2O 5 31.24 36.34 Nb 2O 5 45.58 27.00 Na 2O 13.58 16.48 K 2O 3.60 5.68 BaO TiO 2 5.59 8.84 SiO 2 0.39 0.62 B 2O 3 WO 3 ZnO ZrO 2 MgO CaO SrO   5.00 L i2O Al 2O 3 Sb 2O 3 0.02 0.03 100.00 100.00 Na 2O + K 2O 17.18 22.17 Na 2O+K 2O+BaO 17.18 22.17 Nb 2O 5+ TiO 2 51.17 35.84 (Na 2O+K 2O+BaO)/(B 2O 3+TiO 2) 3.07 2.51 RO 0.00 5.00 折射率(n d) 1.78 1.70 阿貝數(ν d) 24.28 28.12 λ 80[nm] 425 422 λ 70[nm] 399 399 λ 5[nm] 372 369 α(100-300℃) [×10 -7-1] 116 151 相對折射率的溫度係數 [×10 -6-1] -2.31 -6.97 [Table 8] (Unit: mass%) Example 50 51 P 2 O 5 31.24 36.34 Nb 2 O 5 45.58 27.00 Na 2 O 13.58 16.48 K 2 O 3.60 5.68 BaO TiO 2 5.59 8.84 SiO 2 0.39 0.62 B 2 O 3 WO 3 ZnO ZrO2 MgO CaO SrO 5.00 L i2 O Al 2 O 3 Sb 2 O 3 0.02 0.03 count 100.00 100.00 Na 2 O + K 2 O 17.18 22.17 Na2O + K2O + BaO 17.18 22.17 Nb 2 O 5 + TiO 2 51.17 35.84 (Na 2 O+K 2 O+BaO)/(B 2 O 3 +TiO 2 ) 3.07 2.51 RO 0.00 5.00 Refractive index (n d ) 1.78 1.70 Abbe number (ν d ) 24.28 28.12 λ 80 [nm] 425 422 λ 70 [nm] 399 399 λ 5 [nm] 372 369 α(100-300℃) [×10 -7-1 ] 116 151 Temperature coefficient of relative refractive index [×10 -6-1 ] -2.31 -6.97

本發明實施例之光學玻璃係藉由含有P 2O 5成分以及Nb 2O 5成分,且含有預定量之Na 2O成分以及K 2O成分,能夠得到相對折射率的溫度係數取小值之廉價玻璃。 The optical glass of the embodiment of the present invention contains P2O5 and Nb2O5 components, and contains a predetermined amount of Na2O and K2O components , so that the temperature coefficient of the relative refractive index can be small. Cheap glass.

如表所示,實施例之光學玻璃不論何者,其相對折射率的溫度係數於+1.0×10 -6(℃ -1)至-10.0×10 -6(℃ -1)之範圍内,更詳細於+3.0×10 -6(℃ -1)至-10.0×10 -6(℃ -1)之範圍内,皆在所期望之範圍内。 As shown in the table, regardless of the optical glass of the embodiment, the temperature coefficient of the relative refractive index is in the range of +1.0×10 -6 (°C -1 ) to -10.0×10 -6 (°C -1 ). In the range of +3.0×10 -6 (°C -1 ) to -10.0×10 -6 (°C -1 ), all are within the expected range.

再者,實施例之光學玻璃不論何者,其折射率(n d)為1.65以上,皆在所期望之範圍内。再者,本發明實施例之光學玻璃不論何者,其阿貝數(ν d)於10以上35以下之範圍内,皆在所期望之範圍内。 In addition, regardless of the optical glass of the embodiment, the refractive index ( nd ) is 1.65 or more, which is within the desired range. Furthermore, the Abbe's number (ν d ) of the optical glass in the embodiment of the present invention is in the range of 10 to 35, which is within the desired range.

再者,實施例之光學玻璃不論何者,其平均線性熱膨脹係數(100℃至300℃)為80(10 -7-1)以上。 In addition, regardless of the optical glass of the embodiment, the average linear thermal expansion coefficient (100°C to 300°C) is 80 (10 -7 °C -1 ) or more.

再者,實施例之光學玻璃係透過率(λ 80)為460nm以下,透過率(λ 70)為430nm以下,透過率(λ 5)為400nm以下。 Furthermore, the transmittance (λ 80 ) of the optical glass of the embodiment is 460 nm or less, the transmittance (λ 70 ) is 430 nm or less, and the transmittance (λ 5 ) is 400 nm or less.

再者,實施例之光學玻璃係形成穩定玻璃,於製作玻璃時不易發生失透。另一方面,比較例A之玻璃發生了失透,故未進行玻璃化。Furthermore, the optical glass of the embodiment is a stable glass, and devitrification is not easy to occur when making the glass. On the other hand, the glass of Comparative Example A was devitrified, so vitrification did not proceed.

因此,可清楚得知,實施例之光學玻璃係折射率(n d)以及阿貝數(ν d)皆在所期望之範圍内,相對折射率的溫度係數取小值,能夠以更廉價之材料費用得到。由此能夠察知,本發明實施例之光學玻璃係有助於在高溫環境下使用之車載用光學機器或投影機等光學系之小型化,有助於補正因溫度變化而造成的成像特性之偏離等。 Therefore, it can be clearly seen that the refractive index ( nd ) and Abbe number (ν d ) of the optical glass system of the embodiment are both within the desired range, and the temperature coefficient of the relative refractive index is small, which can be obtained at a lower cost. Material costs get. From this, it can be seen that the optical glass system of the embodiment of the present invention contributes to the miniaturization of optical systems such as automotive optical devices and projectors used in high-temperature environments, and helps to correct the deviation of imaging characteristics caused by temperature changes. Wait.

進而,使用本發明實施例之光學玻璃,形成玻璃團塊,對該玻璃團塊進行研削以及研磨,加工成透鏡以及棱鏡形狀。其結果是,能夠穩定地加工成各式各樣的透鏡以及棱鏡形狀。Furthermore, using the optical glass of the embodiment of the present invention, a glass block is formed, and the glass block is ground and polished to be processed into a lens and a prism shape. As a result, various lens and prism shapes can be stably processed.

以上,雖然以例示之目的來詳細地說明了本發明,但本實施例之目的僅在於作為例示,應能充分理解在不偏離本發明的思想及範圍之情況下,所屬技術領域中具有通常知識者可對本發明進行許多變更。Above, although the present invention has been described in detail for the purpose of illustration, the purpose of this embodiment is only as an example, and it should be fully understood that those who have common knowledge in the technical field do not deviate from the spirit and scope of the present invention. There are many variations to the invention that can be made by the reader.

Claims (7)

一種光學玻璃,以質量%計,係含有: P 2O 5成分20.0%至40.0%; Nb 2O 5成分25.0至50.0%; SiO 2成分超過0%至3.0%以下; B 2O 3成分5.0%以下; Li 2O成分0.5%未滿;以及 質量和(Na 2O+K 2O)為3.0%至30.0%; 折射率(n d)為1.88以下; 前述光學玻璃之相對折射率589.29nm的溫度係數40℃至60℃處於+3.0×10 -6-1-10.0×10 -6-1之範圍內。 An optical glass, in mass %, containing: P 2 O 5 composition 20.0% to 40.0%; Nb 2 O 5 composition 25.0 to 50.0%; SiO 2 composition exceeding 0% to less than 3.0%; B 2 O 3 composition 5.0% % or less; the Li 2 O component is less than 0.5%; and the mass sum (Na 2 O+K 2 O) is 3.0% to 30.0%; the refractive index ( nd ) is 1.88 or less; the relative refractive index of the aforementioned optical glass is 589.29nm The temperature coefficient of 40°C to 60°C is in the range of +3.0×10 -6 °C -1 to -10.0×10 -6 °C -1 . 如請求項1所記載之光學玻璃,其中質量和(Na 2O+K 2O+BaO)為10.0%至35.0%。 The optical glass as described in Claim 1, wherein the mass sum (Na 2 O+K 2 O+BaO) is 10.0% to 35.0%. 如請求項1或2所記載之光學玻璃,其中100℃至300℃之平均線性熱膨脹係數α為80(10 -7-1)以上。 The optical glass as described in claim 1 or 2, wherein the average linear thermal expansion coefficient α from 100°C to 300°C is 80 (10 -7 °C -1 ) or higher. 如請求項3所記載之光學玻璃,其中折射率(n d)為1.65以上至1.88以下,阿貝數(ν d)為10以上至35以下。 The optical glass as described in claim 3, wherein the refractive index (n d ) is not less than 1.65 and not more than 1.88, and the Abbe number (ν d ) is not less than 10 and not more than 35. 一種預成形體,係由請求項1至4中任一項所記載之光學玻璃而成。A preform made of the optical glass described in any one of Claims 1 to 4. 一種光學元件,係由請求項1至4中任一項所記載之光學玻璃而成。An optical element is made of the optical glass described in any one of Claims 1 to 4. 一種光學機器,係具備如請求項6所記載之光學元件。An optical device is provided with the optical element as described in claim 6.
TW111129469A 2017-06-16 2018-05-02 Optical glass, preform, and optical element TW202246193A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017118859 2017-06-16
JP2017-118859 2017-06-16
JP2018-034031 2018-02-28
JP2018034031A JP7233844B2 (en) 2017-06-16 2018-02-28 Optical glass, preforms and optical elements

Publications (1)

Publication Number Publication Date
TW202246193A true TW202246193A (en) 2022-12-01

Family

ID=64659837

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111129469A TW202246193A (en) 2017-06-16 2018-05-02 Optical glass, preform, and optical element

Country Status (3)

Country Link
JP (1) JP7503163B2 (en)
TW (1) TW202246193A (en)
WO (1) WO2018230124A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614043A (en) * 2019-03-18 2021-11-05 日本光硝子株式会社 Optical glass, optical element, optical system, interchangeable lens, and optical device
WO2022159275A1 (en) * 2021-01-22 2022-07-28 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
JPWO2023286630A1 (en) * 2021-07-16 2023-01-19

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561888B2 (en) 2005-10-11 2014-07-30 株式会社オハラ Optical glass
JP2011144063A (en) * 2010-01-13 2011-07-28 Ohara Inc Optical glass, preform, and optical element
JP2012221591A (en) 2011-04-04 2012-11-12 Ohara Inc Light emitting element and substrate material for light emitting element
JP6587276B2 (en) * 2013-02-19 2019-10-09 Hoya株式会社 Optical glass, optical glass blank, glass material for press molding, optical element, and production method thereof

Also Published As

Publication number Publication date
JP7503163B2 (en) 2024-06-19
WO2018230124A1 (en) 2018-12-20
JP2023054181A (en) 2023-04-13

Similar Documents

Publication Publication Date Title
TWI791074B (en) Optical Glass, Preforms, and Optical Components
TWI834609B (en) Optical glasses, preforms and optical components
TWI789340B (en) Optical glass, preforms and optical components
JP6903373B2 (en) Optical glass, preform materials and optical elements
TWI780088B (en) Optical glasses, preform structures, and optical elements
JP7503163B2 (en) Optical glass, preforms and optical elements
JP6664826B2 (en) Optical glass and optical element
JP6363141B2 (en) Optical glass, preform material and optical element
TW202402695A (en) Optical glass, preform, and optical element
JP5875572B2 (en) Optical glass, preform material and optical element
TWI766992B (en) Optical Glass, Preforms, and Optical Components
JP7446052B2 (en) Optical glass, preforms and optical elements
JP7064282B2 (en) Optical glass, preforms and optical elements
JP7064283B2 (en) Optical glass, preforms and optical elements
TWI743061B (en) Optical glass, preforms and optical components
JP2015164885A (en) optical glass, lens preform and optical element
TWI621599B (en) Optical glass, preforms and optical components
JP6866012B2 (en) Optical glass, preform materials and optical elements
JP6635667B2 (en) Optical glass, lens preform and optical element
JP2014111521A (en) Optical glass, preform, and optical element
JP7440204B2 (en) Optical glass, preforms and optical elements
TW201542483A (en) Optical glass, lens preform and optical element
JP6626298B2 (en) Optical glass, preform and optical element
TWI673245B (en) Optical glass, preforms and optical components
JP2013139346A (en) Optical glass, preform, and optical element