TW202239139A - Class-d amplifying system and power converter circuit thereof - Google Patents

Class-d amplifying system and power converter circuit thereof Download PDF

Info

Publication number
TW202239139A
TW202239139A TW110123214A TW110123214A TW202239139A TW 202239139 A TW202239139 A TW 202239139A TW 110123214 A TW110123214 A TW 110123214A TW 110123214 A TW110123214 A TW 110123214A TW 202239139 A TW202239139 A TW 202239139A
Authority
TW
Taiwan
Prior art keywords
output signal
power
class
power supply
circuit
Prior art date
Application number
TW110123214A
Other languages
Chinese (zh)
Other versions
TWI777631B (en
Inventor
蕭鳴均
孫紹茗
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US17/697,901 priority Critical patent/US20220302887A1/en
Application granted granted Critical
Publication of TWI777631B publication Critical patent/TWI777631B/en
Publication of TW202239139A publication Critical patent/TW202239139A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

A class-D amplifying system includes: a class-D amplifier circuit configured to generate switch control signals according to an input signal by pulse width modulation so as to control a plurality of switches which switch a first inductor and a second inductor to respectively generate a positive output signal and a negative output signal, complementary to each other, according to an input power, so as to drive a load; and a power converter circuit configured to generate a DC (direct current) power according to at least one of the positive output signal and the negative output signal for powering at least a portion of the class-D amplifier circuit.

Description

D類放大系統與其中之電源轉換電路Class D amplifier system and its power conversion circuit

本發明係有關於D類放大系統,特定而言係有關於根據至少共模電壓而提供電源之D類放大系統。本發明亦有關於根據至少共模電壓而提供電源予D類放大電路之電源轉換電路。The present invention relates to class D amplification systems, in particular to class D amplification systems providing power from at least a common mode voltage. The present invention also relates to a power conversion circuit for providing power to a Class D amplifier circuit based on at least a common-mode voltage.

圖1顯示一先前技術的D類放大系統。此先前技術之D類放大系統100包括D類放大電路10與低壓差電源轉換電路30,D類放大電路10包括訊號處理電路11、驅動電路12以及D類功率級電路13,訊號處理電路11根據一類比形式或數位形式的輸入訊號IN,以脈寬調變方式轉換為開關控制訊號SW,驅動電路12根據開關控制訊號SW而產生驅動訊號DRV,用以控制D類功率級電路13中的開關之切換,以產生正輸出訊號VOP以及負輸出訊號VON,用以驅動負載20,其中輸入訊號IN例如為音頻訊號,負載20例如為喇叭。Figure 1 shows a prior art class D amplification system. The class D amplifier system 100 of this prior art includes a class D amplifier circuit 10 and a low dropout power conversion circuit 30. The class D amplifier circuit 10 includes a signal processing circuit 11, a driving circuit 12 and a class D power stage circuit 13. The signal processing circuit 11 is based on An analog or digital input signal IN is converted into a switch control signal SW by means of pulse width modulation, and the drive circuit 12 generates a drive signal DRV according to the switch control signal SW to control the switch in the class D power stage circuit 13 switch to generate a positive output signal VOP and a negative output signal VON for driving a load 20, wherein the input signal IN is, for example, an audio signal, and the load 20 is, for example, a speaker.

低壓差電源轉換電路30則用以將電源PVDD轉換為電源AVDD,以做為例如訊號處理電路11及/或驅動電路12等電路的電源。The low-dropout power conversion circuit 30 is used to convert the power source PVDD into the power source AVDD, which is used as a power source for circuits such as the signal processing circuit 11 and/or the driving circuit 12 .

然而,當電源PVDD轉換為電源AVDD之電壓差較大時,低壓差電源轉換電路30會造成極大的電源損耗。However, when the voltage difference between the power source PVDD and the power source AVDD is large, the low dropout power conversion circuit 30 will cause a huge power loss.

圖2顯示另一先前技術的D類放大系統。此先前技術之D類放大系統200還包括了切換式電源轉換電路40,用以先將電源PVDD以切換式降壓方式轉換為電源AVPP,再由低壓差電源轉換電路30將電源AVPP轉換為電源AVDD,以做為例如訊號處理電路11及/或驅動電路12等電路的電源,藉此達成較高的電源轉換效率。Fig. 2 shows another prior art class D amplification system. The class D amplification system 200 of the prior art also includes a switchable power conversion circuit 40, which is used to convert the power source PVDD into a power source AVPP in a switchable step-down manner, and then the low dropout power conversion circuit 30 converts the power source AVPP into a power source AVDD is used as a power source for circuits such as the signal processing circuit 11 and/or the driving circuit 12 , so as to achieve higher power conversion efficiency.

然而,切換式電源轉換電路40需要額外的電源轉換元件,例如電感L3,以及用以切換電感L3的開關,這會提高成本以及電路的尺寸。However, the switching power conversion circuit 40 requires additional power conversion components, such as the inductor L3, and a switch for switching the inductor L3, which will increase the cost and the size of the circuit.

有鑑於此,本發明即針對上述先前技術之不足,提出一種嶄新的D類放大系統,可在較低的成本與電路尺寸下,同時提高電源轉換效率。In view of this, the present invention aims at the shortcomings of the above-mentioned prior art, and proposes a brand-new class D amplifier system, which can improve power conversion efficiency at the same time at lower cost and circuit size.

於一觀點中,本發明提供一種D類放大系統,包括:一D類放大電路,用以通過脈寬調變方式,將一輸入訊號,轉換為一開關控制訊號,用以控制複數開關,以切換第一電感器以及第二電感器,以轉換一輸入電源而分別產生彼此互補的一正輸出訊號以及一負輸出訊號,用以驅動一負載;以及一電源轉換電路,用以轉換該正輸出訊號與該負輸出訊號之至少之一而產生一直流供應電源,做為該D類放大電路之至少部分電源。In one point of view, the present invention provides a class D amplifier system, including: a class D amplifier circuit, which is used to convert an input signal into a switch control signal by means of pulse width modulation, and is used to control a plurality of switches to switching the first inductor and the second inductor to convert an input power source to generate a positive output signal and a negative output signal complementary to each other respectively for driving a load; and a power conversion circuit for converting the positive output The signal and at least one of the negative output signal generate a DC power supply as at least part of the power supply of the class D amplifier circuit.

於一實施例中, 該電源轉換電路包括一輸入選擇電路,用以根據該正輸出訊號與該負輸出訊號之大小而選擇其中之一做為一中繼電源,其中該電源轉換電路根據該中繼電源而產生該直流供應電源。In one embodiment, the power conversion circuit includes an input selection circuit for selecting one of the positive output signal and the negative output signal as a relay power supply according to the magnitude of the positive output signal, wherein the power conversion circuit is based on the The DC supply power is generated from the power supply.

於一實施例中,該輸入選擇電路選擇該正輸出訊號與該負輸出訊號之中具有較高電壓者做為該中繼電源。In one embodiment, the input selection circuit selects the one with higher voltage between the positive output signal and the negative output signal as the relay power supply.

於一實施例中,該輸入選擇電路包括第一二極體以及第二二極體,彼此反向串聯耦接於該正輸出訊號與該負輸出訊號之間,且該第一二極體之電流流出端與該第二二極體之電流流出端彼此耦接於該中繼電源,藉此,該第一二極體與該第二二極體用以將該正輸出訊號與該負輸出訊號之中具有較高電壓者電連接至該中繼電源。In one embodiment, the input selection circuit includes a first diode and a second diode, which are coupled in reverse series between the positive output signal and the negative output signal, and the first diode The current outflow terminal and the current outflow terminal of the second diode are coupled to the relay power supply, whereby the first diode and the second diode are used for the positive output signal and the negative output The signal with the higher voltage is electrically connected to the relay power supply.

於一實施例中,該輸入選擇電路包括:第一開關以及第二開關,彼此串聯耦接於該正輸出訊號與該負輸出訊號之間;一比較控制電路,用以比較該正輸出訊號與該負輸出訊號而產生一選擇訊號,用以控制該第一開關以及該第二開關,而將該正輸出訊號與該負輸出訊號之中具有較高電壓者電連接至該中繼電源。In one embodiment, the input selection circuit includes: a first switch and a second switch, coupled in series between the positive output signal and the negative output signal; a comparison control circuit for comparing the positive output signal with the The negative output signal generates a selection signal for controlling the first switch and the second switch, and the higher voltage of the positive output signal and the negative output signal is electrically connected to the relay power supply.

於一實施例中,該電源轉換電路更包括一第一低壓差線性轉換電路(low drop-out linear regulator),用以根據該中繼電源而產生該直流供應電源。In one embodiment, the power conversion circuit further includes a first low drop-out linear regulator for generating the DC power supply according to the relay power.

於一實施例中,該電源轉換電路更包括一第二低壓差線性轉換電路,用以於該中繼電源之電壓低於一閾值時,根據該輸入電源而產生該直流供應電源。In one embodiment, the power conversion circuit further includes a second low-dropout linear conversion circuit for generating the DC power supply according to the input power when the voltage of the relay power is lower than a threshold.

於一實施例中,該第一電感器與部分之複數開關形成一正子功率級,該第二電感器與另一部分之複數開關形成一負子功率級,其中該正子功率級與負子功率級皆同時對應為降壓型功率級電路、升壓型功率級電路,或者升降壓型功率級電路。In one embodiment, the first inductor and part of the complex switches form a positive sub-power stage, and the second inductor and another part of the complex number of switches form a negative sub-power stage, wherein the positive sub-power stage and the negative sub-power stage They all correspond to buck-type power stage circuits, boost-type power stage circuits, or buck-boost-type power stage circuits.

於一實施例中,當該輸入訊號示意為一零位準時,該中繼電源之電壓為該正輸出訊號與該負輸出訊號之共模位準。In one embodiment, when the input signal represents a zero level, the voltage of the relay power supply is the common mode level of the positive output signal and the negative output signal.

於一實施例中,該中繼電源之電壓為一差模電壓之二分之一振幅與一共模電壓的和,其中該差模電壓對應於該正輸出訊號與該負輸出訊號之差值,其中該共模電壓對應於該正輸出訊號與該負輸出訊號之共模位準。In one embodiment, the voltage of the relay power supply is the sum of a differential-mode voltage which is half the amplitude of a common-mode voltage and a common-mode voltage, wherein the differential-mode voltage corresponds to the difference between the positive output signal and the negative output signal, The common-mode voltage corresponds to the common-mode level of the positive output signal and the negative output signal.

於一實施例中,該共模電壓為該輸入電源之電壓的1/2。In one embodiment, the common-mode voltage is 1/2 of the voltage of the input power.

於另一觀點中,本發明提供一種電源轉換電路,用於供電予一D類放大電路,該D類放大電路用以通過脈寬調變方式,將一輸入訊號,轉換為一開關控制訊號,用以控制複數開關,以切換第一電感器以及第二電感器,以轉換一輸入電源而分別產生一正輸出訊號以及一負輸出訊號,用以驅動一負載;該電源轉換電路包括:一輸入選擇電路,用以根據該正輸出訊號與該負輸出訊號之大小而選擇其中之一做為一中繼電源;一第一低壓差線性轉換電路(low drop-out linear regulator),用以根據該中繼電源而產生一直流供應電源,做為該D類放大電路之至少部分電源。In another viewpoint, the present invention provides a power conversion circuit for supplying power to a class D amplifier circuit, the class D amplifier circuit is used to convert an input signal into a switch control signal by means of pulse width modulation, Used to control a plurality of switches to switch the first inductor and the second inductor to convert an input power supply to generate a positive output signal and a negative output signal respectively to drive a load; the power conversion circuit includes: an input The selection circuit is used to select one of the positive output signal and the negative output signal as a relay power supply according to the magnitude of the positive output signal; a first low drop-out linear regulator (low drop-out linear regulator) is used to A DC power supply is generated by relaying the power supply as at least part of the power supply of the class D amplifier circuit.

於一實施例中,該電源轉換電路更包括一第二低壓差線性轉換電路,用以於該中繼電源之電壓低於一閾值時,根據該輸入電源而產生該直流供應電源。In one embodiment, the power conversion circuit further includes a second low-dropout linear conversion circuit for generating the DC power supply according to the input power when the voltage of the relay power is lower than a threshold.

本發明之優點為本發明可改善輕載效率並減少功率消耗且不需要額外的外部元件。The advantage of the present invention is that the present invention can improve light load efficiency and reduce power consumption without additional external components.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。In the following detailed description by means of specific embodiments, it will be easier to understand the purpose, technical content, characteristics and effects of the present invention.

發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。The drawings in the invention are all schematic, mainly intended to show the coupling relationship between the various circuits and the relationship between the signal waveforms. As for the circuits, signal waveforms and frequencies, they are not drawn to scale.

圖3係根據本發明之一實施例顯示D類放大系統之電路示意圖。如圖3所示,本發明之D類放大系統3000包括D類放大電路10及電源轉換電路50。D類放大電路10用以透過例如脈寬調變方式,將輸入訊號IN,轉換為開關控制訊號SW,用以控制複數開關Q1~Q4,以切換第一電感器L1以及第二電感器L2,以轉換輸入電源PVDD而分別產生彼此互補的正輸出訊號VOP以及負輸出訊號VON,用以驅動負載20。FIG. 3 is a schematic circuit diagram showing a class D amplifying system according to an embodiment of the present invention. As shown in FIG. 3 , the class D amplifier system 3000 of the present invention includes a class D amplifier circuit 10 and a power conversion circuit 50 . The class D amplifying circuit 10 is used to convert the input signal IN into a switch control signal SW through, for example, a pulse width modulation method, and is used to control the plurality of switches Q1-Q4 to switch the first inductor L1 and the second inductor L2, The positive output signal VOP and the negative output signal VON complementary to each other are respectively generated by converting the input power source PVDD to drive the load 20 .

參照圖3,具體而言,在一實施例中,D類放大電路10包括訊號處理電路11、驅動電路12以及D類功率級電路13。訊號處理電路11根據類比形式或數位形式的輸入訊號IN,以脈寬調變方式轉換為開關控制訊號SW,而驅動電路12根據開關控制訊號SW而產生驅動訊號DRV,用以控制D類功率級電路13中的複數開關Q1~Q4之切換,以切換第一電感器L1以及第二電感器L2,以轉換輸入電源PVDD而分別產生彼此互補的正輸出訊號VOP以及負輸出訊號VON,用以驅動負載20。Referring to FIG. 3 , specifically, in one embodiment, the class D amplifier circuit 10 includes a signal processing circuit 11 , a driving circuit 12 and a class D power stage circuit 13 . The signal processing circuit 11 converts the input signal IN in analog form or digital form into a switch control signal SW by means of pulse width modulation, and the drive circuit 12 generates a drive signal DRV according to the switch control signal SW to control the class D power stage. Switching of the complex switches Q1~Q4 in the circuit 13 is used to switch the first inductor L1 and the second inductor L2 to convert the input power source PVDD to generate complementary positive output signal VOP and negative output signal VON respectively for driving Load 20.

如圖3所示,開關Q1耦接於輸入電源PVDD與第一電感器L1之第一端LX1之間,而開關Q2耦接於接地電位與第一電感器L1之第一端LX1之間。驅動訊號DRV用以控制開關Q1以及開關Q2,以切換第一電感器L1之第一端LX1於輸入電源PVDD與接地電位之間。開關Q3耦接於輸入電源PVDD與第二電感器L2之第一端LX3之間,而開關Q4耦接於接地電位與第二電感器L2之第一端LX3之間。驅動訊號DRV用以控制開關Q3以及開關Q4,以切換第二電感器L2之第一端LX3於輸入電源PVDD與接地電位之間。第一電感器L1之第二端LX2上的正輸出訊號VOP相關於第一電感器L1之第一端LX1之電壓,而第二電感器L2之第二端LX4上的負輸出訊號VON相關於第二電感器L2之第一端LX3之電壓。在一實施例中,正輸出訊號VOP以及負輸出訊號VON彼此波形互補,用以驅動負載20。As shown in FIG. 3 , the switch Q1 is coupled between the input power source PVDD and the first terminal LX1 of the first inductor L1 , and the switch Q2 is coupled between the ground potential and the first terminal LX1 of the first inductor L1 . The driving signal DRV is used to control the switch Q1 and the switch Q2 to switch the first end LX1 of the first inductor L1 between the input power source PVDD and the ground potential. The switch Q3 is coupled between the input power source PVDD and the first terminal LX3 of the second inductor L2, and the switch Q4 is coupled between the ground potential and the first terminal LX3 of the second inductor L2. The driving signal DRV is used to control the switch Q3 and the switch Q4 to switch the first end LX3 of the second inductor L2 between the input power source PVDD and the ground potential. The positive output signal VOP on the second terminal LX2 of the first inductor L1 is related to the voltage of the first terminal LX1 of the first inductor L1, and the negative output signal VON on the second terminal LX4 of the second inductor L2 is related to The voltage of the first terminal LX3 of the second inductor L2. In one embodiment, the waveforms of the positive output signal VOP and the negative output signal VON are complementary to each other for driving the load 20 .

再請參照圖3,第一電感器L1與開關Q1及Q2形成正子功率級131,第二電感器L2與開關Q3及Q4形成負子功率級132。圖8A~圖8H係根據本發明之一實施例顯示示例之降壓轉換器、升壓轉換器及升降壓轉換器。請同時參照圖3與圖8A~圖8B,於一實施例中,正子功率級131與負子功率級132例如皆同時對應為降壓型功率級電路。請參照圖8C~圖8D,於另一實施例中,正子功率級131與負子功率級132例如可皆同時替換而對應為升壓型功率級電路。請參照圖8E~圖8H,於再一實施例中,正子功率級131與負子功率級132例如皆同時替換而對應為升降壓型功率級電路。輸入訊號IN例如為音頻訊號,負載20例如為喇叭。於一實施例中,彼此互補的正輸出訊號VOP以及負輸出訊號VON之差值的基頻成分對應於輸入訊號IN。於一實施例中,開關控制訊號SW的占空比相關於輸入訊號IN的位準。Referring to FIG. 3 again, the first inductor L1 and the switches Q1 and Q2 form a positive sub-power stage 131 , and the second inductor L2 and the switches Q3 and Q4 form a negative sub-power stage 132 . 8A to 8H show examples of buck converters, boost converters and buck-boost converters according to an embodiment of the present invention. Please refer to FIG. 3 and FIGS. 8A to 8B at the same time. In one embodiment, the positive sub-power stage 131 and the negative sub-power stage 132 are both corresponding to step-down power stage circuits, for example. Please refer to FIG. 8C to FIG. 8D , in another embodiment, the positive sub-power stage 131 and the negative sub-power stage 132 can be replaced at the same time, corresponding to a step-up power stage circuit. Please refer to FIG. 8E to FIG. 8H , in yet another embodiment, both the positive sub-power stage 131 and the negative sub-power stage 132 are replaced at the same time, corresponding to a buck-boost power stage circuit. The input signal IN is, for example, an audio signal, and the load 20 is, for example, a speaker. In one embodiment, the fundamental frequency component of the difference between the complementary positive output signal VOP and the negative output signal VON corresponds to the input signal IN. In one embodiment, the duty ratio of the switch control signal SW is related to the level of the input signal IN.

如圖3所示,電源轉換電路50耦接於第一電感器L1之第二端LX2及第二電感器L2之第二端LX4,且用以接收並轉換正輸出訊號VOP與負輸出訊號VON之至少之一而產生直流供應電源AVDD,以做為D類放大電路10之至少部分電源。於一實施例中,電源轉換電路50例如轉換正輸出訊號VOP,或轉換負輸出訊號VON,或轉換正輸出訊號VOP與負輸出訊號VON,而產生直流供應電源AVDD。如圖3所示,直流供應電源AVDD例如做為訊號處理電路11及/或驅動電路12的電源。在一實施例中,直流供應電源AVDD做為驅動電路12的電源。As shown in FIG. 3, the power conversion circuit 50 is coupled to the second end LX2 of the first inductor L1 and the second end LX4 of the second inductor L2, and is used to receive and convert the positive output signal VOP and the negative output signal VON. At least one of them generates a DC power supply AVDD as at least part of the power supply of the class D amplifier circuit 10 . In one embodiment, the power conversion circuit 50 for example converts the positive output signal VOP, or converts the negative output signal VON, or converts the positive output signal VOP and the negative output signal VON to generate the DC power supply AVDD. As shown in FIG. 3 , the DC power supply AVDD is, for example, used as a power source for the signal processing circuit 11 and/or the driving circuit 12 . In one embodiment, the DC power supply AVDD is used as the power source of the driving circuit 12 .

圖4係根據本發明之一實施例顯示D類放大系統之電源轉換電路50之電路示意圖。如圖4所示,電源轉換電路50包括輸入選擇電路51及第一低壓差線性轉換電路(low drop-out linear regulator)52。輸入選擇電路51用以根據正輸出訊號VOP與負輸出訊號VON之大小而選擇其中之一做為中繼電源VM。於一實施例中,輸入選擇電路51選擇正輸出訊號VOP與負輸出訊號VON之中具有較高電壓者做為中繼電源VM。於一實施例中,輸入選擇電路51所選擇之具有較高電壓者之數值較佳為大於或等於二分之一輸入電源PVDD。第一低壓差線性轉換電路52用以根據中繼電源VM而產生直流供應電源AVDD。於一實施例中,第一低壓差線性轉換電路52係以線性轉換之方式將中繼電源VM轉換為直流供應電源AVDD。FIG. 4 is a schematic circuit diagram showing a power conversion circuit 50 of a class D amplifying system according to an embodiment of the present invention. As shown in FIG. 4 , the power conversion circuit 50 includes an input selection circuit 51 and a first low drop-out linear regulator 52 . The input selection circuit 51 is used for selecting one of the positive output signal VOP and the negative output signal VON as the relay power supply VM according to the magnitudes of the positive output signal VOP and the negative output signal VON. In one embodiment, the input selection circuit 51 selects the higher voltage of the positive output signal VOP and the negative output signal VON as the relay power supply VM. In one embodiment, the value of the higher voltage selected by the input selection circuit 51 is preferably greater than or equal to half of the input power source PVDD. The first low-dropout linear conversion circuit 52 is used for generating a DC power supply AVDD according to the relay power VM. In one embodiment, the first low-dropout linear conversion circuit 52 converts the relay power VM into the DC power supply AVDD in a linear conversion manner.

於一實施例中,當輸入訊號IN示意為零位準時,中繼電源VM之電壓為正輸出訊號VOP與負輸出訊號VON之共模位準。於一實施例中,中繼電源VM之電壓為差模電壓之二分之一振幅與共模電壓的和,其中差模電壓對應於正輸出訊號VOP與負輸出訊號VON之差值,共模電壓對應於正輸出訊號VOP與負輸出訊號VON之共模位準。差模電壓之振幅為差模電壓之峰對峰值之二分之一,換言之,差模電壓之二分之一振幅對應為差模電壓之峰對峰值之四分之一。所謂共模位準係指正輸出訊號VOP及負輸出訊號VON之平均位準。於一實施例中,共模電壓為輸入電源PVDD之電壓的二分之一。In one embodiment, when the input signal IN is at zero level, the voltage of the relay power supply VM is the common mode level of the positive output signal VOP and the negative output signal VON. In one embodiment, the voltage of the relay power supply VM is the sum of half the amplitude of the differential mode voltage and the common mode voltage, wherein the differential mode voltage corresponds to the difference between the positive output signal VOP and the negative output signal VON, and the common mode The voltage corresponds to the common-mode level of the positive output signal VOP and the negative output signal VON. The amplitude of the differential mode voltage is one half of the peak-to-peak value of the differential mode voltage, in other words, one half of the amplitude of the differential mode voltage corresponds to one quarter of the peak-to-peak value of the differential mode voltage. The so-called common mode level refers to the average level of the positive output signal VOP and the negative output signal VON. In one embodiment, the common-mode voltage is half of the voltage of the input power source PVDD.

圖5係根據本發明之一具體實施例顯示D類放大系統之電源轉換電路50之電路示意圖。如圖5所示,本實施例中,輸入選擇電路51包括第一二極體D1以及第二二極體D2,彼此反向串聯耦接於正輸出訊號VOP與負輸出訊號VON之間,且第一二極體D1與第二二極體D2之電流流出端彼此耦接於中繼電源VM,藉此,第一二極體D1與第二二極體D2用以將正輸出訊號VOP與負輸出訊號VON之中具有較高電壓者電連接至中繼電源VM。FIG. 5 is a schematic circuit diagram showing a power conversion circuit 50 of a class D amplifying system according to an embodiment of the present invention. As shown in FIG. 5, in this embodiment, the input selection circuit 51 includes a first diode D1 and a second diode D2, which are coupled in reverse series between the positive output signal VOP and the negative output signal VON, and The current outflow ends of the first diode D1 and the second diode D2 are coupled to the relay power supply VM, whereby the first diode D1 and the second diode D2 are used to connect the positive output signal VOP and The higher voltage of the negative output signals VON is electrically connected to the relay power supply VM.

圖6係根據本發明之再一具體實施例顯示D類放大系統之電源轉換電路60之電路示意圖。如圖6所示,本實施例與圖5之不同之處在於,本實施例之輸入選擇電路61包括第一開關Q11、第二開關Q12以及比較控制電路611。第一開關Q11及第二開關Q12彼此串聯耦接於正輸出訊號VOP與負輸出訊號VON之間。比較控制電路611用以比較正輸出訊號VOP與負輸出訊號VON而產生選擇訊號CP,用以控制第一開關Q11以及第二開關Q12,而將正輸出訊號VOP與負輸出訊號VON之中具有較高電壓者電連接至中繼電源VM。應注意者為,本發明之輸入選擇電路除了圖5所示之二極體實施例及圖6所示之開關實施例以外,亦可用其他可行之實施例加以實施。FIG. 6 is a schematic circuit diagram showing a power conversion circuit 60 of a class D amplifying system according to yet another embodiment of the present invention. As shown in FIG. 6 , the difference between this embodiment and FIG. 5 is that the input selection circuit 61 of this embodiment includes a first switch Q11 , a second switch Q12 and a comparison control circuit 611 . The first switch Q11 and the second switch Q12 are coupled in series between the positive output signal VOP and the negative output signal VON. The comparison control circuit 611 is used to compare the positive output signal VOP and the negative output signal VON to generate a selection signal CP, which is used to control the first switch Q11 and the second switch Q12, so that the positive output signal VOP and the negative output signal VON have a higher value. The high voltage one is electrically connected to the relay power supply VM. It should be noted that, besides the diode embodiment shown in FIG. 5 and the switch embodiment shown in FIG. 6, the input selection circuit of the present invention can also be implemented in other feasible embodiments.

圖7係根據本發明之又一實施例顯示D類放大系統之電源轉換電路70之電路示意圖。如圖7所示,本實施例與圖4之實施例之不同之處在於本實施例之電源轉換電路70更包括第二低壓差線性轉換電路53,用以於中繼電源VM之電壓低於一閾值時,根據輸入電源AVCC而產生直流供應電源AVDD,具體而言,第二低壓差線性轉換電路53可於D類放大電路10啟動(start up)期間提供直流供應電源AVDD。於一實施例中,輸入電源AVCC相關於輸入電源PVDD,例如二者等同,或者以具有低電阻值的濾波電阻電連接於輸入電源AVCC及輸入電源PVDD之間。FIG. 7 is a schematic circuit diagram showing a power conversion circuit 70 of a class D amplifying system according to yet another embodiment of the present invention. As shown in FIG. 7, the difference between this embodiment and the embodiment of FIG. 4 is that the power conversion circuit 70 of this embodiment further includes a second low-dropout linear conversion circuit 53, which is used when the voltage of the relay power supply VM is lower than When a threshold is reached, the DC power supply AVDD is generated according to the input power AVCC. Specifically, the second low-dropout linear conversion circuit 53 can provide the DC power supply AVDD during the start-up period of the class D amplifier circuit 10 . In one embodiment, the input power AVCC is related to the input power PVDD, for example, the two are equal, or a filter resistor with a low resistance value is electrically connected between the input power AVCC and the input power PVDD.

在一實施例中,上述如圖3所示的電源轉換電路50與D類放大電路10之部分電路(例如排除第一電感器L1與第二電感器L2之外的電路,或是進一步排除開關Q1~Q4之外的電路)整合為一積體電路。In one embodiment, the above-mentioned partial circuits of the power conversion circuit 50 and the class D amplifying circuit 10 as shown in FIG. Circuits other than Q1~Q4) are integrated into an integrated circuit.

本發明如上所述提供了一種D類放大系統,其藉由電源轉換電路,將D類放大電路之輸出訊號轉換為直流供應電源AVDD,由於D類放大電路本身的功率級皆為切換式電源轉換器,因此本發明可改善輕載效率並減少功率消耗且不需要額外的外部元件。The present invention provides a class D amplifier system as described above, which converts the output signal of the class D amplifier circuit into a DC power supply AVDD through the power conversion circuit, because the power level of the class D amplifier circuit itself is a switching power supply conversion converter, so the invention can improve light load efficiency and reduce power consumption without requiring additional external components.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之最廣的權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。The present invention has been described above with regard to preferred embodiments, but the above description is only for making the content of the present invention easy for those skilled in the art, and is not intended to limit the broadest scope of rights of the present invention. The various embodiments described are not limited to single application, and can also be used in combination. For example, two or more embodiments can be used in combination, and some components in one embodiment can also be used to replace another embodiment. corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. For example, the term "processing or computing according to a certain signal or generating a certain output result" in the present invention is not limited to According to the signal itself, it also includes performing voltage-current conversion, current-voltage conversion, and/or ratio conversion on the signal when necessary, and then processing or computing the converted signal to generate a certain output result. It can be seen that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations, and there are many combinations, which will not be listed here. Accordingly, the scope of the invention should encompass the above and all other equivalent variations.

10:D類放大電路 11:訊號處理電路 12:驅動電路 13:D類功率級電路 20:負載 30:低壓差電源轉換電路 40:切換式電源轉換電路 50, 60, 70:電源轉換電路 51, 61:輸入選擇電路 52:第一低壓差線性轉換電路 53:第二低壓差線性轉換電路 100, 200, 3000:D類放大系統 131:正子功率級 132:負子功率級 611:比較控制電路 AVCC:(輸入)電源 AVDD:(直流供應)電源 CP:選擇訊號 D1:第一二極體 D2:第二二極體 DRV:驅動訊號 IN:輸入訊號 L1:第一電感器 L2:第二電感器 L3:電感 LX1, LX3:第一端 LX2, LX4:第二端 PVDD:(輸入)電源 Q1, Q2, Q3, Q4:開關 Q11:第一開關 Q12:第二開關 SW:開關控制訊號 VM:中繼電源 VON:負輸出訊號 VOP:正輸出訊號 10: Class D amplifier circuit 11: Signal processing circuit 12: Drive circuit 13: Class D power stage circuit 20: load 30:Low dropout power conversion circuit 40: Switching power conversion circuit 50, 60, 70: Power conversion circuit 51, 61: Input selection circuit 52: The first low-dropout linear conversion circuit 53: The second low-dropout linear conversion circuit 100, 200, 3000: Class D amplification system 131:Postron power stage 132: Negative power stage 611: comparison control circuit AVCC: (input) power supply AVDD: (DC supply) power supply CP: select signal D1: the first diode D2: second diode DRV: drive signal IN: input signal L1: first inductor L2: second inductor L3: Inductance LX1, LX3: first end LX2, LX4: second terminal PVDD: (input) power supply Q1, Q2, Q3, Q4: switch Q11: First switch Q12: Second switch SW: switch control signal VM: relay power VON: negative output signal VOP: positive output signal

圖1係顯示一先前技術的D類放大系統。Figure 1 shows a prior art class D amplification system.

圖2係顯示另一先前技術的D類放大系統。Fig. 2 shows another prior art class D amplification system.

圖3係根據本發明之一實施例顯示D類放大系統之電路示意圖。FIG. 3 is a schematic circuit diagram showing a class D amplifying system according to an embodiment of the present invention.

圖4係根據本發明之一實施例顯示D類放大系統之電源轉換電路之電路示意圖。FIG. 4 is a circuit schematic diagram showing a power conversion circuit of a class D amplifying system according to an embodiment of the present invention.

圖5係根據本發明之另一實施例顯示D類放大系統之電源轉換電路之電路示意圖。FIG. 5 is a schematic circuit diagram showing a power conversion circuit of a class D amplifying system according to another embodiment of the present invention.

圖6係根據本發明之再一實施例顯示D類放大系統之電源轉換電路之電路示意圖。FIG. 6 is a schematic circuit diagram showing a power conversion circuit of a class D amplifying system according to yet another embodiment of the present invention.

圖7係根據本發明之又一實施例顯示D類放大系統之電源轉換電路之電路示意圖。FIG. 7 is a schematic circuit diagram showing a power conversion circuit of a class D amplifying system according to yet another embodiment of the present invention.

圖8A~圖8H係根據本發明之一實施例顯示示例之降壓轉換器、升壓轉換器及升降壓轉換器。8A to 8H show examples of buck converters, boost converters and buck-boost converters according to an embodiment of the present invention.

10:D類放大電路 10: Class D amplifier circuit

11:訊號處理電路 11: Signal processing circuit

12:驅動電路 12: Drive circuit

13:D類功率級電路 13: Class D power stage circuit

20:負載 20: load

50:電源轉換電路 50: Power conversion circuit

131:正子功率級 131:Postron power stage

132:負子功率級 132: Negative power stage

3000:D類放大系統 3000: Class D amplification system

AVDD:直流供應電源 AVDD: DC power supply

DRV:驅動訊號 DRV: drive signal

IN:輸入訊號 IN: input signal

L1:第一電感器 L1: first inductor

L2:第二電感器 L2: second inductor

LX1,LX3:第一端 LX1, LX3: first end

LX2,LX4:第二端 LX2, LX4: the second terminal

PVDD:輸入電源 PVDD: input power

Q1,Q2,Q3,Q4:開關 Q1,Q2,Q3,Q4: switch

SW:開關控制訊號 SW: switch control signal

VON:負輸出訊號 VON: negative output signal

VOP:正輸出訊號 VOP: positive output signal

Claims (20)

一種D類放大系統,包含: 一D類放大電路,用以通過脈寬調變方式,將一輸入訊號,轉換為一開關控制訊號,用以控制複數開關,以切換第一電感器以及第二電感器,以轉換一輸入電源而分別產生彼此互補的一正輸出訊號以及一負輸出訊號,用以驅動一負載;以及 一電源轉換電路,用以轉換該正輸出訊號與該負輸出訊號之至少之一而產生一直流供應電源,做為該D類放大電路之至少部分電源。 A Class D amplification system comprising: A class D amplifier circuit is used to convert an input signal into a switch control signal through pulse width modulation, and is used to control a plurality of switches to switch the first inductor and the second inductor to convert an input power and respectively generating a positive output signal and a negative output signal complementary to each other for driving a load; and A power conversion circuit is used to convert at least one of the positive output signal and the negative output signal to generate a DC power supply for at least part of the power supply of the class D amplifier circuit. 如請求項1所述之D類放大系統,其中該電源轉換電路包括一輸入選擇電路,用以根據該正輸出訊號與該負輸出訊號之大小而選擇其中之一做為一中繼電源,其中該電源轉換電路根據該中繼電源而產生該直流供應電源。The class D amplification system as described in Claim 1, wherein the power conversion circuit includes an input selection circuit for selecting one of them as a relay power supply according to the magnitude of the positive output signal and the negative output signal, wherein The power conversion circuit generates the DC supply power according to the relay power. 如請求項2所述之D類放大系統,其中該輸入選擇電路選擇該正輸出訊號與該負輸出訊號之中具有較高電壓者做為該中繼電源。The class D amplification system as described in Claim 2, wherein the input selection circuit selects the one with the higher voltage between the positive output signal and the negative output signal as the relay power supply. 如請求項3所述之D類放大系統,其中該輸入選擇電路包括第一二極體以及第二二極體,彼此反向串聯耦接於該正輸出訊號與該負輸出訊號之間,且該第一二極體之電流流出端與該第二二極體之電流流出端彼此耦接於該中繼電源,藉此,該第一二極體與該第二二極體用以將該正輸出訊號與該負輸出訊號之中具有較高電壓者電連接至該中繼電源。The class D amplification system as described in claim 3, wherein the input selection circuit includes a first diode and a second diode, which are coupled in reverse series between the positive output signal and the negative output signal, and The current outflow end of the first diode and the current outflow end of the second diode are coupled to the relay power supply, whereby the first diode and the second diode are used to connect the The higher voltage of the positive output signal and the negative output signal is electrically connected to the relay power supply. 如請求項3所述之D類放大系統,其中該輸入選擇電路包括: 第一開關以及第二開關,彼此串聯耦接於該正輸出訊號與該負輸出訊號之間; 一比較控制電路,用以比較該正輸出訊號與該負輸出訊號而產生一選擇訊號,用以控制該第一開關以及該第二開關,而將該正輸出訊號與該負輸出訊號之中具有較高電壓者電連接至該中繼電源。 The class D amplification system as claimed in item 3, wherein the input selection circuit includes: The first switch and the second switch are coupled in series between the positive output signal and the negative output signal; A comparison control circuit, used to compare the positive output signal and the negative output signal to generate a selection signal, used to control the first switch and the second switch, so that the positive output signal and the negative output signal have The higher voltage one is electrically connected to the relay power supply. 如請求項2、4或5中任一項所述之D類放大系統,其中該電源轉換電路更包括一第一低壓差線性轉換電路(low drop-out linear regulator),用以根據該中繼電源而產生該直流供應電源。The class-D amplifying system as described in any one of claim 2, 4 or 5, wherein the power conversion circuit further includes a first low drop-out linear regulator, used according to the relay The DC power supply is generated by the power supply. 如請求項6所述之D類放大系統,其中該電源轉換電路更包括一第二低壓差線性轉換電路,用以於該中繼電源之電壓低於一閾值時,根據該輸入電源而產生該直流供應電源。The class D amplifying system as described in Claim 6, wherein the power conversion circuit further includes a second low-dropout linear conversion circuit for generating the input power according to the input power when the voltage of the relay power is lower than a threshold DC power supply. 如請求項1所述之D類放大系統,其中該第一電感器與部分之複數開關形成一正子功率級,該第二電感器與另一部分之複數開關形成一負子功率級,其中該正子功率級與負子功率級皆同時對應為降壓型功率級電路、升壓型功率級電路,或者升降壓型功率級電路。The class D amplifying system as described in Claim 1, wherein the first inductor and part of the complex switches form a positive sub-power stage, and the second inductor and another part of the complex number switches form a negative sub-power stage, wherein the positive sub-power stage Both the power stage and the negative sub-power stage correspond to a buck power stage circuit, a boost power stage circuit, or a buck-boost power stage circuit. 如請求項3所述之D類放大系統,其中當該輸入訊號示意為一零位準時,該中繼電源之電壓為該正輸出訊號與該負輸出訊號之共模位準。The class D amplification system as described in claim 3, wherein when the input signal represents a zero level, the voltage of the relay power supply is the common mode level of the positive output signal and the negative output signal. 如請求項3所述之D類放大系統,其中該中繼電源之電壓為一差模電壓之二分之一振幅與一共模電壓的和,其中該差模電壓對應於該正輸出訊號與該負輸出訊號之差值,其中該共模電壓對應於該正輸出訊號與該負輸出訊號之共模位準。The class D amplifying system as described in claim 3, wherein the voltage of the relay power supply is the sum of one-half the amplitude of a differential mode voltage and a common mode voltage, wherein the differential mode voltage corresponds to the positive output signal and the The difference between the negative output signal, wherein the common-mode voltage corresponds to the common-mode level of the positive output signal and the negative output signal. 如請求項9或10中任一項所述之D類放大系統,其中該共模電壓為該輸入電源之電壓的1/2。The class D amplifying system according to any one of claim 9 or 10, wherein the common mode voltage is 1/2 of the voltage of the input power supply. 一種電源轉換電路,用於供電予一D類放大電路,該D類放大電路用以通過脈寬調變方式,將一輸入訊號,轉換為一開關控制訊號,用以控制複數開關,以切換第一電感器以及第二電感器,以轉換一輸入電源而分別產生一正輸出訊號以及一負輸出訊號,用以驅動一負載;該電源轉換電路包含: 一輸入選擇電路,用以根據該正輸出訊號與該負輸出訊號之大小而選擇其中之一做為一中繼電源; 一第一低壓差線性轉換電路(low drop-out linear regulator),用以根據該中繼電源而產生一直流供應電源,做為該D類放大電路之至少部分電源。 A power conversion circuit, used to supply power to a class D amplifier circuit, the class D amplifier circuit is used to convert an input signal into a switch control signal through pulse width modulation, and is used to control multiple switches to switch the first An inductor and a second inductor are used to convert an input power source to generate a positive output signal and a negative output signal respectively for driving a load; the power conversion circuit includes: An input selection circuit, used to select one of the positive output signal and the negative output signal as a relay power supply according to the magnitude of the positive output signal; A first low drop-out linear regulator is used to generate a DC power supply according to the relay power as at least part of the power of the class D amplifier circuit. 如請求項12所述之電源轉換電路,其中該輸入選擇電路選擇該正輸出訊號與該負輸出訊號之中具有較高電壓者做為該中繼電源。The power conversion circuit according to claim 12, wherein the input selection circuit selects the one with the higher voltage between the positive output signal and the negative output signal as the relay power supply. 如請求項13所述之電源轉換電路,其中該輸入選擇電路包括第一二極體以及第二二極體,彼此反向串聯耦接於該正輸出訊號與該負輸出訊號之間,且該第一二極體之電流流出端與該第二二極體之電流流出端彼此耦接於該中繼電源,藉此,該第一二極體與該第二二極體用以將該正輸出訊號與該負輸出訊號之中具有較高電壓者電連接至該中繼電源。The power conversion circuit as described in claim item 13, wherein the input selection circuit includes a first diode and a second diode, which are coupled in reverse series between the positive output signal and the negative output signal, and the The current outflow end of the first diode and the current outflow end of the second diode are coupled to the relay power supply, whereby the first diode and the second diode are used for the positive The higher voltage of the output signal and the negative output signal is electrically connected to the relay power supply. 如請求項13所述之電源轉換電路,其中該輸入選擇電路包括: 第一開關以及第二開關,彼此串聯耦接於該正輸出訊號與該負輸出訊號之間; 一比較控制電路,用以比較該正輸出訊號與該負輸出訊號而產生一選擇訊號,用以控制該第一開關以及該第二開關,而將該正輸出訊號與該負輸出訊號之中具有較高電壓者電連接至該中繼電源。 The power conversion circuit according to claim 13, wherein the input selection circuit includes: The first switch and the second switch are coupled in series between the positive output signal and the negative output signal; A comparison control circuit, used to compare the positive output signal and the negative output signal to generate a selection signal, used to control the first switch and the second switch, so that the positive output signal and the negative output signal have The higher voltage one is electrically connected to the relay power supply. 如請求項12所述之電源轉換電路,其中該電源轉換電路更包括一第二低壓差線性轉換電路,用以於該中繼電源之電壓低於一閾值時,根據該輸入電源而產生該直流供應電源。The power conversion circuit as described in claim 12, wherein the power conversion circuit further includes a second low-dropout linear conversion circuit for generating the DC according to the input power when the voltage of the relay power is lower than a threshold supply power. 如請求項12所述之電源轉換電路,其中該第一電感器與部分之複數開關形成一正子功率級,該第二電感器與另一部分之複數開關形成一負子功率級,其中該正子功率級與負子功率級皆同時對應為降壓型功率級電路、升壓型功率級電路,或者升降壓型功率級電路。The power conversion circuit as described in claim 12, wherein the first inductor and part of the complex switches form a positive sub-power stage, and the second inductor and another part of the complex number switches form a negative sub-power stage, wherein the positive sub-power stage Both the first stage and the negative sub-power stage correspond to a step-down power stage circuit, a boost-type power stage circuit, or a buck-boost power stage circuit. 如請求項13所述之電源轉換電路,其中當該輸入訊號示意為一零位準時,該中繼電源之電壓為該正輸出訊號與該負輸出訊號之共模位準。The power conversion circuit according to claim 13, wherein when the input signal indicates a zero level, the voltage of the relay power supply is the common mode level of the positive output signal and the negative output signal. 如請求項13所述之電源轉換電路,其中該中繼電源之電壓為一差模電壓之二分之一振幅與一共模電壓的和,其中該差模電壓對應於該正輸出訊號與該負輸出訊號之差值,其中該共模電壓對應於該正輸出訊號與該負輸出訊號之共模位準。The power conversion circuit as described in claim 13, wherein the voltage of the relay power supply is the sum of one-half the amplitude of a differential-mode voltage and a common-mode voltage, wherein the differential-mode voltage corresponds to the positive output signal and the negative The difference between the output signals, wherein the common-mode voltage corresponds to the common-mode level of the positive output signal and the negative output signal. 如請求項18或19中任一項所述之電源轉換電路,其中該共模電壓為該輸入電源之電壓的1/2。The power conversion circuit according to any one of claim 18 or 19, wherein the common mode voltage is 1/2 of the voltage of the input power supply.
TW110123214A 2021-03-19 2021-06-24 Class-d amplifying system and power converter circuit thereof TWI777631B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/697,901 US20220302887A1 (en) 2021-03-19 2022-03-17 Class-d amplifying system and power converter circuit thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163163106P 2021-03-19 2021-03-19
US63/163106 2021-03-19

Publications (2)

Publication Number Publication Date
TWI777631B TWI777631B (en) 2022-09-11
TW202239139A true TW202239139A (en) 2022-10-01

Family

ID=83325090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110123214A TWI777631B (en) 2021-03-19 2021-06-24 Class-d amplifying system and power converter circuit thereof

Country Status (2)

Country Link
CN (1) CN115118156A (en)
TW (1) TWI777631B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847602A (en) * 1997-03-03 1998-12-08 Hewlett-Packard Company Method and apparatus for linearizing an efficient class D/E power amplifier using delta modulation
WO2006028054A1 (en) * 2004-09-08 2006-03-16 Pioneer Corporation Class d amplifier
TWI362826B (en) * 2008-11-10 2012-04-21 Richtek Technology Corp Thermal regulation apparatus and method for a class-d audio amplifier and class-d audio amplifier with thermal regulation
CN102843109B (en) * 2012-09-25 2016-01-20 上海贝岭股份有限公司 A kind of category D amplifier chip
CN107360505B (en) * 2017-07-10 2021-06-08 林其亮 High-efficiency automatic modulation booster circuit and control method
US10658988B1 (en) * 2018-04-02 2020-05-19 Cirrus Logic, Inc. Open-loop class-D amplifier system with analog supply ramping

Also Published As

Publication number Publication date
CN115118156A (en) 2022-09-27
TWI777631B (en) 2022-09-11

Similar Documents

Publication Publication Date Title
US7276886B2 (en) Dual buck-boost converter with single inductor
US20160254746A1 (en) Multi-level switching regulator circuits and methods with finite state machine control
USRE47383E1 (en) Resource pooling amplifier
CN110708028B (en) Digital audio power amplifier
US9853602B2 (en) Adaptive tracking rail audio amplifier
US20120292996A1 (en) Multi-output dc-to-dc conversion apparatus with voltage-stabilizing function
CN110768635A (en) Audio power amplifier and electronic equipment
CN103631299B (en) A kind of constant pressure difference, variable output voltage low pressure difference linear voltage regulator
CN105490537A (en) Power management circuit
KR20050037507A (en) Polyphase impedance transformation amplifier
CN101369777A (en) Power control circuit and electronic ballast with the same
TWI777631B (en) Class-d amplifying system and power converter circuit thereof
TWI796077B (en) Method and circuit of automatic mode-switching for dc-dc converter
US10256779B2 (en) Multi-level class D amplifier
US11622430B2 (en) Control circuit, control method and power converter
CN111404497B (en) Digital audio power amplifier
US20020190792A1 (en) Digital power amplifier
CN110311550B (en) Voltage-sharing control method for two-module ISOP (inverse-synchronous Power-on-demand) DC-DC converter
TW202228385A (en) Single-stage boost class-d amplifier
US20220302887A1 (en) Class-d amplifying system and power converter circuit thereof
CN110855256A (en) Digital audio power amplifier and electronic equipment
JP5104336B2 (en) Variable capacitance circuit, error amplification circuit, and switching power supply
CN111464141A (en) Digital audio power amplifier and electronic equipment
JPH0440947B2 (en)
JP2009284413A (en) Digital power amplifier

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent