TW202235939A - 用於波導顯示器的梯狀內耦合 - Google Patents

用於波導顯示器的梯狀內耦合 Download PDF

Info

Publication number
TW202235939A
TW202235939A TW110145269A TW110145269A TW202235939A TW 202235939 A TW202235939 A TW 202235939A TW 110145269 A TW110145269 A TW 110145269A TW 110145269 A TW110145269 A TW 110145269A TW 202235939 A TW202235939 A TW 202235939A
Authority
TW
Taiwan
Prior art keywords
grating
waveguide
display
light
input
Prior art date
Application number
TW110145269A
Other languages
English (en)
Inventor
萬里 遲
多明尼克 梅瑟
偉詩 林
洋 楊
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202235939A publication Critical patent/TW202235939A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4261Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major polarization dependent properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0105Holograms with particular structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本發明提供一種波導顯示器,其包括一波導及耦合至該波導之一階梯結構。該波導包括一第一基板、一第二基板及在該第一基板與該第二基板之間的一全像材料層。該全像材料層包括一第一光柵及一第二光柵。該階梯結構定位於該第一光柵之至少一部分之頂部上但不定位於該第二光柵之頂部上。該階梯結構包括一輸入光柵,其在該第一光柵之頂部上且經組態以將顯示光耦合至該波導中。該第一光柵經組態以將由該輸入光柵耦合至該波導中之該顯示光重新引導朝向該第二光柵。

Description

用於波導顯示器的梯狀內耦合
本發明係有關於用於波導顯示器的梯狀內耦合。 相關申請案之交叉參考
以下兩個美國專利申請案(包括本申請案)正在同時申請,且另一申請案之全部揭示內容出於所有目的以引用之方式併入本申請案中: ●   2021年2月24日申請之標題為「用於波導顯示器之梯狀內耦合(STAIRCASE IN-COUPLING FOR WAVEGUIDE DISPLAY)」之;及 ●   2021年2月24日申請之標題為「具有多個單色投影儀之波導顯示器(WAVEGUIDE WITH DISPLAY MULTIPLE MONOCHROMATIC PROJECTORS)」。
諸如頭戴式顯示器(HMD)或抬頭顯示器(HUD)系統之人工實境系統通常包括經組態以經由電子或光學顯示器在使用者的眼睛前方之例如約10至20 mm內向使用者呈現內容之近眼顯示器(例如,呈耳機或一副眼鏡的形式)。近眼顯示器可顯示虛擬物件或合併真實物件與虛擬物件之影像,如在虛擬實境(VR)、擴增實境(AR)或混合實境(MR)應用中。舉例而言,在AR系統中,使用者可藉由例如透視透明顯示玻璃或透鏡(通常稱作光學透視)來觀看虛擬物件(例如,電腦產生之影像(CGI))及周圍環境兩者之影像。
光學透視AR系統之一個實例可使用基於波導之光學顯示器,其中所投影影像之光可耦合至波導(例如,透明基板)中,在波導內傳播,且在不同位置處耦合至波導之外。在一些實施方案中,所投影影像之光可使用繞射光學元件來耦合至波導中或至波導之外,諸如體積全像光柵及/或表面起伏光柵。來自周圍環境之光可亦穿過波導之透視區且達到使用者的眼睛。
本發明通常係關於用於近眼顯示器之基於光柵之波導顯示器。更具體言之,本文中所揭示的係用於改良基於光柵之近眼顯示器系統之耦合效率的技術。本文中描述各種發明性具體實例,包括裝置、系統、方法及類似者。
根據一些具體實例,波導顯示器可包括波導,該波導包括第一基板、第二基板及在第一基板與第二基板之間的全像材料層。全像材料層可包括第一光柵及第二光柵。波導顯示器亦可包括階梯結構,該階梯結構耦合至波導且定位於第一光柵之至少一部分的頂部上但不定位於第二光柵之頂部上。階梯結構可包括輸入光柵,該輸入光柵在第一光柵之頂部上且經組態以將顯示光耦合至波導中。第一光柵經組態以將由輸入光柵耦合至波導中之顯示光重新引導朝向第二光柵。
在波導顯示器之一些具體實例中,階梯結構係藉由小於約100 μm之總厚度表徵。在一些具體實例中,階梯結構可包括兩個或更多個全像材料層。在一些具體實例中,階梯結構可包括階梯基板,且輸入光柵在階梯基板之頂部或底部表面上。在一些具體實例中,階梯結構之形狀及厚度可經選擇以避免波導顯示器之視場經階梯結構裁剪。
在一些具體實例中,波導顯示器亦可包括輸出光柵。第二光柵可經組態以在第二光柵之兩個或更多個區處將來自第一光柵之顯示光繞射朝向輸出光柵。輸出光柵可經組態以在輸出光柵之兩個或更多個區處將來自第二中間光柵之兩個或更多個區中之每一者的顯示光耦合至波導之外。在一些具體實例中,波導顯示器亦可包括第一基板或第二基板上之相位結構。相位結構可經組態以在顯示光由第一光柵重新引導之前或之後,改變入射於相位結構上之顯示光的偏振狀態。相位結構可包括波板、一層雙折射材料或次波長結構及外塗層。相位結構位於波導之選定區中或可係藉由跨越相位結構之不同區的空間上不同相位延遲表徵。
在一些具體實例中,輸入光柵、第一光柵及第二光柵可包括透射式體積布拉格(Bragg)光柵或反射式體積布拉格光柵。在一些具體實例中,波導顯示器可包括在第一基板與第二基板之間的兩個或更多個全像材料層。第一光柵及第二光柵可形成於兩個或更多個全像材料層中。
根據一些具體實例,波導顯示器可包括經組態以透射顯示光之投影儀、波導、分別在波導之第一區及第二區中的第一光柵及第二光柵及在波導之第一區上的階梯結構。階梯結構可包括輸入光柵,該輸入光柵在第一光柵之頂部上且經組態以將來自投影儀之顯示光耦合至波導中。第一光柵經組態以將由輸入光柵耦合至波導中之顯示光重新引導朝向第二光柵。
在波導顯示器之一些具體實例中,波導可包括第一基板、第二基板及在第一基板與第二基板之間的一或多個全像材料層。第一光柵及第二光柵可形成於一或多個全像材料層中。在一些具體實例中,階梯結構可係藉由小於約100 μm之總厚度表徵。在一些具體實例中,階梯結構可包括兩個或更多個全像材料層,且輸入光柵可形成於兩個或更多個全像材料層中。在一些具體實例中,階梯結構可包括階梯基板,且輸入光柵在階梯基板之頂部或底部表面上。
在一些具體實例中,波導顯示器可包括波導中之輸出光柵。第二光柵可經組態以在第二光柵之兩個或更多個區處將來自第一光柵之顯示光繞射朝向輸出光柵。輸出光柵可經組態以在輸出光柵之兩個或更多個區處將來自第二中間光柵之兩個或更多個區中之每一者的顯示光耦合至波導之外。在一些具體實例中,波導顯示器可包括波導上之相位結構,其中相位結構可經組態以在顯示光由第一光柵重新引導之前或之後,改變入射於相位結構上之顯示光的偏振狀態。相位結構可包括例如波板、一層雙折射材料或次波長結構及外塗層。在一些具體實例中,輸入光柵、第一光柵及第二光柵可包括透射式體積布拉格光柵或反射式體積布拉格光柵。階梯結構之形狀及厚度可經選擇以避免波導顯示器之視場經階梯結構裁剪。
根據一些具體實例,波導顯示器可包括:波導;三個輸入光柵,其經組態以將呈不同相應顏色之顯示光耦合至波導中;一或多個第一中間光柵,其經組態以接收及重新引導來自三個輸入光柵之顯示光;第二中間光柵,其經組態以在第二中間光柵之兩個或更多個區處繞射來自一或多個第一中間光柵之顯示光;及輸出光柵,其經組態以在輸出光柵之兩個或更多個區處將來自第二中間光柵之兩個或更多個區中之每一者的顯示光耦合至波導之外。
在波導顯示器之一些具體實例中,一或多個第一中間光柵可包括三個第一中間光柵,三個第一中間光柵中之每一第一中間光柵對應於三個輸入光柵中之相應輸入光柵且經組態以接收及重新引導來自對應相應輸入光柵之具有相應顏色之顯示光。在一些具體實例中,波導可包括第一基板、第二基板及在第一基板與第二基板之間的一或多個全像材料層。一或多個第一中間光柵及第二中間光柵可形成於一或多個全像材料層中。
在一些具體實例中,波導顯示器可包括三個投影儀。三個投影儀中之每一投影儀可經組態以產生單色影像,且三個輸入光柵中之每一輸入光柵可經組態以將來自三個投影儀中之對應投影儀的單色影像耦合至波導中。在一些具體實例中,三個投影儀中之每一投影儀可包括二維微LED陣列。在一些具體實例中,波導顯示器可包括波導上之相位結構。相位結構可經組態以在顯示光由一或多個第一中間光柵重新引導之前或之後,改變入射於相位結構上之顯示光的偏振狀態。在一些具體實例中,相位結構可包括波板、一層雙折射材料或次波長結構及外塗層。在一些具體實例中,相位結構可位於波導之選定區中或可係藉由跨越相位結構之不同區的空間上不同相位延遲表徵。
在波導顯示器之一些具體實例中,三個輸入光柵、一或多個第一中間光柵及第二中間光柵可包括經多工透射式體積布拉格(Bragg)光柵或經多工反射式體積布拉格光柵。在一些具體實例中,三個輸入光柵中之每一輸入光柵可在接合至波導之相應階梯結構上,且每一相應階梯結構可在一或多個第一中間光柵之頂部上。在一些具體實例中,每一相應階梯結構可包括階梯基板,且三個輸入光柵中之每一輸入光柵可在相應階梯結構之階梯基板的頂部或底部上。在一些具體實例中,相應階梯結構可係藉由小於約100 μm之總厚度表徵。在一些具體實例中,相應階梯結構可包括兩個或更多個全像材料層,其中輸入光柵可形成於兩個或更多個全像材料層中。在一些具體實例中,相應階梯結構之形狀及厚度可經選擇以避免波導顯示器之視場經相應階梯結構裁剪。
根據一些具體實例,波導顯示器可包括:波導;三個投影儀,其經組態以產生具有不同相應顏色之顯示光,三個輸入光柵經組態以將呈不同相應顏色之顯示光耦合至波導中;三個第一中間光柵,其經組態以接收及重新引導來自三個輸入光柵中之相應輸入光柵的顯示光;第二中間光柵,其經組態以接收及重新引導來自三個第一中間光柵之顯示光;及輸出光柵,其經組態以將來自第二中間光柵之顯示光耦合至波導之外。
在一些具體實例中,波導可包括第一基板、第二基板及在第一基板與第二基板之間的一或多個全像材料層。三個第一中間光柵及第二中間光柵可形成於一或多個全像材料層中。在一些具體實例中,波導顯示器可包括波導上之相位結構,其中相位結構可經組態以在顯示光由三個第一中間光柵繞射之後或之前,改變入射於相位結構上之顯示光的偏振狀態。在一些具體實例中,相位結構可包括波板、一層雙折射材料或次波長結構及外塗層。在一些具體實例中,三個輸入光柵中之每一輸入光柵可在接合至波導之相應階梯結構上,且每一相應階梯結構可在三個第一中間光柵中之第一中間光柵之頂部上。在一些具體實例中,每一相應階梯結構可包括階梯基板,三個輸入光柵中之每一輸入光柵可在相應階梯結構之階梯基板之頂部或底部上,且每一相應階梯結構可係藉由小於約100 μm之總厚度表徵。
此發明內容既不意欲識別所主張主題之關鍵或基本特徵,亦不意欲單獨使用以判定所主張主題之範圍。應參考本發明之整篇說明書之適當部分、任何或所有圖式及每一申請專利範圍來理解該主題。下文將在以下說明書、申請專利範圍及隨附圖式中更詳細地描述前述內容連同其他特徵及實例。
本發明通常係關於用於近眼顯示器之基於光柵之波導顯示器。更具體言之,本文中所揭示的係用於改良基於光柵之近眼顯示器系統之耦合效率的技術。本文中描述各種發明性具體實例,包括裝置、系統、方法及類似者。
在近眼顯示器系統中,通常合乎需要的係擴展眼眶,改良影像品質(例如,解析度及對比度),減小實體大小,提高功率效率,且增大視場(FOV)。在基於波導之近眼顯示器系統中,所投影影像之光可耦合至波導(例如,基板)中,在波導內傳播,且在不同方位處經耦合至波導之外以重複出射光瞳且擴展眼眶。兩個或更多個光柵可用於以二維形式擴展眼眶。在用於擴增實境應用之基於波導之近眼顯示器系統中,來自周圍環境之光可穿過波導顯示器(例如,基板)之至少透視區且達到使用者的眼睛。在一些實施方案中,所投影影像之光可使用繞射光學元件耦合至波導中或至波導之外,這些繞射光學元件諸如光柵,其亦可允許來自周圍環境之光穿過。
由於例如對所要繞射階之小於100%繞射效率、洩漏、串擾、偏振相依性、角相依性、波長相依性及類似者,故使用繞射光學元件實施之耦合器可具有受限耦合效率。光柵耦合器可最佳化以最大化所要路徑中之顯示光之功率。舉例而言,光柵形狀、傾斜角度、光柵週期、占空比、光柵高度或深度、折射率、折射率調變、外塗材料及跨越光柵的此等光柵參數之空間變化可經調整以改良將顯示光朝向眼眶引導至所要方向之效率。由於SRG及VBG之內源性特性,諸如全像記錄材料中之受限最大可實現折射率調變,不同此等參數可提供對波導顯示器之效率的一些但受限改良。此外,在使用表面起伏光柵(SRG)耦合器或體積布拉格光柵(VBG)耦合器之波導顯示器中,由於輸入光瞳之大小且因此輸入光柵耦合器之大小,故藉由輸入光柵耦合器耦合至波導中之顯示光可反射回至輸入光柵耦合器且可由輸入光柵耦合器再次繞射至非所要方向且因此可不達到波導顯示器之眼眶。
根據某些具體實例,第二光柵(例如,用於光瞳擴展之光柵)可置放在輸入光柵耦合器下方,使得在內耦合光將由於波導之表面處的全內反射而再次達到輸入光柵耦合器之前,輸入光柵耦合器引起之內耦合光可由第二光柵繞射。由第二光柵繞射之內耦合光可改變波導內之傳播方向且因此當其再次達到輸入光柵耦合器時可不滿足輸入光柵耦合器之布拉格條件。因此,即使由第二光柵繞射之內耦合光再次達到輸入光柵耦合器,由第二光柵繞射之內耦合光亦可不由輸入光柵耦合器繞射。
在一些具體實例中,第二光柵可製造於波導內之全像材料層中,輸入光柵耦合器可製造於階梯結構上之不同全像材料層中,該階梯結構具有小區域以避免波導之其他區中的厚度改變。分別將輸入光柵耦合器及第二光柵記錄在不同全像材料層中可使製造製程更容易,且由於更多全像材料層中之較高總體可實現折射率調變而亦可幫助改良輸入光柵耦合器及第二光柵之繞射效率。包括輸入光柵耦合器之階梯結構可隨後附接至波導且與第二光柵對準。為避免FOV裁剪,包括輸入光柵耦合器記錄於其中之全像材料層及全像材料層附接於其上之階梯基板(若需要)的階梯結構之總厚度及總體形狀可最佳化。在一些具體實例中,全像材料層之厚度可為適當的,且因此可不使用階梯基板。在一些具體實例中,具有某一形狀及厚度之階梯基板(例如,薄玻璃板)可經使用以使得全像材料層及階梯基板之總厚度可等於所要厚度。
根據某些具體實例,三個顏色投影儀可用於產生可組合以形成彩色影像之三個單色影像,且三個輸入光柵耦合器可用於分別將三個單色影像耦合至波導中。每一顏色投影儀可包括例如發射呈一種顏色之顯示光的微LED陣列。三個顏色投影儀可包括例如紅色微LED陣列、綠色微LED陣列及藍色微LED陣列。因為用於不同顏色之單獨輸入光柵,每一輸入光柵可使用全像材料層之總體可實現折射率調變來實現具有相應顏色之顯示光的較高繞射效率。舉例而言,總體內耦合效率可為不具有用於三種不同顏色之單獨投影儀及輸入光柵的波導顯示器之總體內耦合效率之約五至十倍。
根據某些具體實例,波導顯示器之效率可進一步藉由控制顯示光沿著其傳播路徑之偏振狀態來改良。舉例而言,相位結構可耦合至波導之表面且用於改變波導之表面處反射的光之偏振狀態,使得反射光在達到其傳播路徑中之光柵耦合器時可更佳地繞射或反射至所要方向以改良波導顯示器之總效率。相位結構可包括可引起兩個正交線性偏振分量(例如,s偏振光及p偏振光)之間的所要相位延遲之任何雙折射材料(例如,雙折射晶體、液晶或聚合物)或結構(例如,光柵或其他次波長結構),使得入射光束可變為例如s偏振、p偏振、圓形偏振或橢圓偏振射束。相位結構可置放於波導顯示器中之各種方位處,諸如輸入耦合器區處、輸入耦合器與輸出耦合器之間、輸出耦合器區處或任何組合。將相位結構添加至波導顯示器可添加更大設計自由度以用於最佳化波導顯示器之效率。舉例而言,相位結構之方位、相位延遲、定向及其他參數可經選擇以改變顯示光之偏振狀態,使得顯示光可更佳地由偏振相依光柵繞射至所要繞射階及方向以最終達到使用者的眼睛。
在一些具體實例中,波導顯示器可包括階梯結構中之輸入光柵、用於改變顯示光之偏振狀態的相位結構及用於顯示光之每一顏色的投影儀及輸入耦合器之相應集合的任何組合。舉例而言,波導顯示器可包括階梯結構中之輸入光柵、用於改變顯示光之偏振狀態的相位結構及用於所有顏色之投影儀及輸入耦合器的集合。在另一實例中,波導顯示器可包括階梯結構中之輸入光柵,及用於顯示光之每一顏色之投影儀及輸入耦合器的相應集合。在另一實例中,波導顯示器可包括波導上之輸入光柵、用於改變顯示光之偏振狀態的相位結構及用於顯示光之每一顏色之投影儀及輸入耦合器的相應集合。在另一實例中,波導顯示器可包括階梯結構中之輸入光柵、用於改變顯示光之偏振狀態的相位結構及用於顯示光之每一顏色之投影儀及輸入耦合器的相應集合。
在以下描述中,描述各種發明性具體實例,包括裝置、系統、方法及類似者。出於解釋之目的,闡述特定細節以便提供對本發明之實例之透徹理解。然而,將顯而易見,可在無此等特定細節之情況下實踐各種實例。舉例而言,裝置、系統、結構、總成、方法及其他組件可以方塊圖形式展示為組件,以免以不必要的細節混淆實例。在其他情況下,可在無必要細節之情況下展示熟知的裝置、程序、系統、結構及技術,以免混淆實例。圖式及描述並不意欲為限制性的。已在本發明中使用之術語及表述用作描述之術語且不為限制性的,且在使用此類術語及表述中,不欲排除所展示及描述之特徵的任何等效者或其部分。詞語「實例」在本文中用於意謂「充當實例、例子或說明」。不必將本文中描述為「實例」之任何具體實例或設計理解為比其他具體實例或設計較佳或優於其他具體實例或設計。 I.    波導顯示器
圖1為根據某些具體實例之包括近眼顯示器120之人工實境系統環境100之實例的簡化方塊圖。圖1中所展示之人工實境系統環境100可包括近眼顯示器120、視情況選用之外部成像裝置150及視情況選用之輸入/輸出介面140,其中之每一者可耦合至視情況選用之控制台110。雖然圖1展示包括一個近眼顯示器120、一個外部成像裝置150及一個輸入/輸出介面140之人工實境系統環境100的實例,但可在人工實境系統環境100中包括任何數目個此等組件,或可省略這些組件中之任一者。舉例而言,可存在由與控制台110通信之一或多個外部成像裝置150監測的多個近眼顯示器120。在一些組態中,人工實境系統環境100可不包括外部成像裝置150、視情況選用之輸入/輸出介面140及視情況選用之控制台110。在替代組態中,不同組件或額外組件可包括於人工實境系統環境100中。
近眼顯示器120可為向使用者呈現內容之頭戴式顯示器。由近眼顯示器120呈現之內容的實例包括影像、視訊、音訊或其任何組合中之一或多者。在一些具體實例中,音訊可經由外部裝置(例如,揚聲器及/或頭戴式耳機)呈現,該外部裝置自近眼顯示器120、控制台110或此兩者接收音訊資訊,且基於音訊資訊而呈現音訊資料。近眼顯示器120可包括一或多個剛體,其可剛性地或非剛性地彼此耦合。剛體之間的剛性耦合可使得經耦合之剛體充當單一剛性實體。剛體之間的非剛性耦合可允許剛體相對於彼此移動。在各種具體實例中,近眼顯示器120可以任何合適的外觀尺寸來實施,包括一副眼鏡。下文關於圖2及圖3進一步描述近眼顯示器120之一些具體實例。另外,在各種具體實例中,本文中所描述之功能性可用於將在近眼顯示器120外部之環境之影像與人工實境內容(例如,電腦產生之影像)組合的耳機中。因此,近眼顯示器120可利用所產生之內容(例如,影像、視訊、聲音等)擴增在近眼顯示器120外部之實體真實世界環境之影像,以將擴增實境呈現給使用者。
在各種具體實例中,近眼顯示器120可包括顯示電子件122、顯示光學件124及眼睛追蹤單元130中之一或多者。在一些具體實例中,近眼顯示器120亦可包括一或多個***126、一或多個位置感測器128及慣性量測單元(IMU)132。在各種具體實例中,近眼顯示器120可省略眼睛追蹤單元130、***126、位置感測器128及IMU 132中之任一者,或包括額外元件。另外,在一些具體實例中,近眼顯示器120可包括組合關於圖1所描述之各種元件之功能的元件。
顯示電子件122可根據自例如控制台110接收到之資料而向使用者顯示影像或促進向使用者顯示影像。在各種具體實例中,顯示電子件122可包括一或多個顯示面板,諸如液晶顯示器(LCD)、有機發光二極體(OLED)顯示器、無機發光二極體(ILED)顯示器、微發光二極體(μLED)顯示器、主動矩陣OLED顯示器(AMOLED)、透明OLED顯示器(TOLED)或某一其他顯示器。舉例而言,在近眼顯示器120之一個實施方案中,顯示電子件122可包括前TOLED面板、後顯示面板及在前顯示面板與後顯示面板之間的光學組件(例如,衰減器、偏振器,或繞射或光譜膜)。顯示電子件122可包括像素以發射諸如紅色、綠色、藍色、白色或黃色之主要顏色的光。在一些實施方案中,顯示電子件122可經由由二維面板產生之立體效應來顯示三維(3D)影像以產生影像深度之主觀感知。舉例而言,顯示電子件122可包括分別定位於使用者之左眼及右眼前方的左顯示器及右顯示器。左顯示器及右顯示器可呈現相對於彼此水平地移位之影像的複本,以產生立體效應(例如,觀看影像之使用者對影像深度的感知)。
在某些具體實例中,顯示光學件124可以光學方式顯示影像內容(例如,使用光波導及耦合器),或放大自顯示電子件122接收到之影像光,校正與該影像光相關聯之光學誤差,且向近眼顯示器120之使用者呈現經校正之影像光。在各種具體實例中,顯示光學件124可包括一或多個光學元件,諸如基板、光波導、孔徑、菲涅爾透鏡、凸透鏡、凹透鏡、濾光片、輸入/輸出耦合器或可能影響自顯示電子件122發射之影像光的任何其他合適的光學元件。顯示光學件124可包括不同光學元件之組合,以及用以維持組合中之光學元件之相對間隔及定向的機械耦合件。顯示光學件124中之一或多個光學元件可具有光學塗層,諸如抗反射塗層、反射塗層、濾光塗層,或不同光學塗層之組合。
影像光由顯示光學件124之放大可允許相比於較大顯示器,顯示電子件122在實體上較小、重量較輕且消耗較少功率。另外,放大可增大所顯示之內容的視場。顯示光學件124對影像光之放大之量可藉由調整、添加光學元件或自顯示光學件124移除光學元件來改變。在一些具體實例中,顯示光學件124可將經顯示影像投影至可比近眼顯示器120更遠離使用者的眼睛之一或多個影像平面。
顯示光學件124亦可經設計以校正一或多種類型之光學誤差,諸如二維光學誤差、三維光學誤差或其任何組合。二維誤差可包括以二維形式出現之光學像差。二維誤差之實例類型可包括桶形失真、枕形失真、縱向色像差及橫向色像差。三維誤差可包括以三維形式出現之光學誤差。三維誤差之實例類型可包括球面像差、慧形像差、場曲率及像散。
***126可為相對於彼此且相對於近眼顯示器120上之參考點而位於近眼顯示器120上之特定位置中的物件。在一些實施方案中,控制台110可在由外部成像裝置150捕捉之影像中識別***126,以判定人工實境耳機之位置、定向或此兩者。***126可為LED、隅角立方反射器、反射標記、與近眼顯示器120進行操作所處之環境形成對比的一種類型之光源,或其任何組合。在***126為主動組件(例如,LED或其他類型之發光裝置)之具體實例中,***126可發射在可見光頻帶(例如,約380 nm至750 nm)中、紅外線(IR)頻帶(例如,約750 nm至1 mm)中、紫外線頻帶(例如,約10 nm至約380 nm)中、電磁波譜之另一部分中或電磁波譜之部分之任何組合中的光。
外部成像裝置150可包括一或多個攝影機、一或多個視訊攝影機、能夠捕獲包括***126中之一或多者之影像的任何其他裝置,或其任何組合。另外,外部成像裝置150可包括一或多個濾光片(例如,以增大信雜比)。外部成像裝置150可經組態以偵測外部成像裝置150之視場中自***126發射或反射之光。在***126包括被動元件(例如,回反射器)之具體實例中,外部成像裝置150可包括照明***126中之一些或全部的光源,這些***可將光逆向反射至外部成像裝置150中之光源。慢速校準資料可自外部成像裝置150傳達至控制台110,且外部成像裝置150可自控制台110接收一或多個校準參數以調整一或多個成像參數(例如,焦距、焦點、幀速率、感測器溫度、快門速度、孔徑等)。
位置感測器128可回應於近眼顯示器120之運動而產生一或多個量測信號。位置感測器128之實例可包括加速度計、陀螺儀、磁力計、其他運動偵測或誤差校正感測器,或其任何組合。舉例而言,在一些具體實例中,位置感測器128可包括用以量測平移運動(例如,向前/向後、向上/向下或向左/向右)之多個加速度計及用以量測旋轉運動(例如,俯仰、搖擺或橫搖)之多個陀螺儀。在一些具體實例中,各種位置感測器可彼此正交地定向。
IMU 132可為基於自位置感測器128中之一或多者接收到之量測信號而產生快速校準資料的電子裝置。位置感測器128可位於IMU 132外部、IMU 132內部或其任何組合。基於來自一或多個位置感測器128之一或多個量測信號,IMU 132可產生快速校準資料,該快速校準資料指示相對於近眼顯示器120之初始位置的近眼顯示器120之估計位置。舉例而言,IMU 132可在時間上對自加速度計接收到之量測信號進行積分以估計速度向量,且在時間上對速度向量進行積分以判定近眼顯示器120上之參考點的估計位置。替代地,IMU 132可將經取樣之量測信號提供至控制台110,該控制台可判定快速校準資料。雖然參考點通常可定義為空間中之點,但在各種具體實例中,參考點亦可定義為近眼顯示器120內之點(例如,IMU 132之中心)。
眼睛追蹤單元130可包括一或多個眼睛追蹤系統。眼睛追蹤可指判定眼睛相對於近眼顯示器120之位置,包括眼睛之定向及方位。眼睛追蹤系統可包括成像系統以對一或多個眼睛進行成像,且可視情況包括光發射器,該光發射器可產生經引導至眼睛之光,使得由眼睛反射之光可由成像系統捕捉。舉例而言,眼睛追蹤單元130可包括發射在可見光譜或紅外線光譜中之光的非相干或相干光源(例如,雷射二極體),及捕捉由使用者的眼睛反射之光的攝影機。作為另一實例,眼睛追蹤單元130可捕捉由微型雷達單元發射之經反射無線電波。眼睛追蹤單元130可使用低功率光發射器,這些低功率光發射器在不會損傷眼睛或引起身體不適之頻率及強度下發射光。眼睛追蹤單元130可經配置以增加由眼睛追蹤單元130捕捉之眼睛影像中的對比度,同時減少由眼睛追蹤單元130消耗之總功率(例如,減少由包括於眼睛追蹤單元130中之光發射器及成像系統消耗的功率)。舉例而言,在一些實施方案中,眼睛追蹤單元130可消耗小於100毫瓦之功率。
近眼顯示器120可使用眼睛之定向以例如判定使用者之瞳孔間距離(IPD),判定凝視方向,引入深度提示(例如,在使用者之主視線外的模糊影像),收集關於VR媒體中之使用者互動的啟發資訊(例如,花費在任何特定個體、物件或幀上之時間,其依據所曝露刺激而變化),進行部分地基於使用者的眼睛中之至少一者之定向的一些其他功能,或其任何組合。因為可判定使用者之兩隻眼睛的定向,所以眼睛追蹤單元130可能夠判定使用者看向何處。舉例而言,判定使用者之凝視方向可包括基於使用者左眼及右眼之經判定定向來判定會聚點。會聚點可為使用者的眼睛之兩個中央窩軸線相交的點。使用者之凝視方向可為穿過會聚點及在使用者的眼睛之瞳孔之間的中點的線之方向。
輸入/輸出介面140可為允許使用者將動作請求發送至控制台110之裝置。動作請求可為執行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或執行該應用程式內之特定動作。輸入/輸出介面140可包括一或多個輸入裝置。實例輸入裝置可包括鍵盤、滑鼠、遊戲控制器、手套、按鈕、觸控螢幕,或用於接收動作請求且將所接收動作請求傳達至控制台110的任何其他合適裝置。可將由輸入/輸出介面140接收之動作請求傳達至控制台110,該控制台可執行對應於所請求動作之動作。在一些具體實例中,輸入/輸出介面140可根據自控制台110接收到之指令將觸覺回饋提供至使用者。舉例而言,輸入/輸出介面140可在接收到動作請求時或在控制台110已執行所請求動作且將指令傳達至輸入/輸出介面140時提供觸覺回饋。在一些具體實例中,外部成像裝置150可用以追蹤輸入/輸出介面140,諸如追蹤控制器(其可包括例如IR光源)或使用者之手部之方位或位置以判定使用者之運動。在一些具體實例中,近眼顯示器120可包括一或多個成像裝置以追蹤輸入/輸出介面140,諸如追蹤控制器或使用者之手部的方位或位置以判定使用者之運動。
控制台110可根據自外部成像裝置150、近眼顯示器120及輸入/輸出介面140中之一或多者接收到的資訊而將內容提供至近眼顯示器120以供呈現給使用者。在圖1中所展示之實例中,控制台110可包括應用程式商店112、耳機追蹤模組114、人工實境引擎116及眼睛追蹤模組118。控制台110之一些具體實例可包括與結合圖1所描述之模組不同的模組或額外模組。下文進一步所描述之功能可以與此處所描述之方式不同的方式分佈在控制台110之組件當中。
在一些具體實例中,控制台110可包括處理器及儲存可由該處理器執行之指令的非暫時性電腦可讀取儲存媒體。該處理器可包括並行地執行指令之多個處理單元。非暫時性電腦可讀取儲存媒體可為任何記憶體,諸如硬碟驅動機、可移除式記憶體或固態驅動器(例如,快閃記憶體或動態隨機存取記憶體(DRAM))。在各種具體實例中,結合圖1所描述之控制台110的模組可編碼為非暫時性電腦可讀取儲存媒體中之指令,這些指令在由處理器執行時使該處理器執行下文進一步所描述之功能。
應用程式商店112可儲存一或多個應用程式以供控制台110執行。應用程式可包括在由處理器執行時產生內容以供呈現給使用者之指令群組。由應用程式產生之內容可為回應於經由使用者的眼睛之移動而自使用者接收到之輸入,或自輸入/輸出介面140接收到之輸入。應用程式之實例可包括遊戲應用程式、會議應用程式、視訊播放應用程式或其他合適的應用程式。
耳機追蹤模組114可使用來自外部成像裝置150之慢速校準資訊來追蹤近眼顯示器120之移動。舉例而言,耳機追蹤模組114可使用來自慢速校準資訊之觀測到之***及近眼顯示器120之模型來判定近眼顯示器120之參考點的位置。耳機追蹤模組114亦可使用來自快速校準資訊之位置資訊來判定近眼顯示器120之參考點的位置。另外,在一些具體實例中,耳機追蹤模組114可使用快速校準資訊、慢速校準資訊或其任何組合之部分來預測近眼顯示器120之將來方位。耳機追蹤模組114可將近眼顯示器120之估計位置或所預測將來位置提供至人工實境引擎116。
人工實境引擎116可執行人工實境系統環境100內之應用程式,且自耳機追蹤模組114接收近眼顯示器120之位置資訊、近眼顯示器120之加速度資訊、近眼顯示器120之速度資訊、近眼顯示器120之所預測的將來位置,或其任何組合。人工實境引擎116亦可自眼睛追蹤模組118接收所估計之眼睛位置及定向資訊。基於所接收資訊,人工實境引擎116可判定用以提供至近眼顯示器120以供呈現給使用者的內容。舉例而言,若所接收之資訊指示使用者已看向左側,則人工實境引擎116可產生用於近眼顯示器120之內容,該內容反映虛擬環境中之使用者之眼睛移動。另外,人工實境引擎116可回應於自輸入/輸出介面140接收到之動作請求而執行在控制台110上執行之應用程式內的動作,且將指示該動作已執行之回饋提供至使用者。該回饋可為經由近眼顯示器120之視覺或聽覺回饋,或經由輸入/輸出介面140之觸覺回饋。
眼睛追蹤模組118可自眼睛追蹤單元130接收眼睛追蹤資料,且基於該眼睛追蹤資料來判定使用者的眼睛之位置。眼睛之位置可包括眼睛相對於近眼顯示器120或其任何元件之定向、方位或其兩者。因為眼睛之旋轉軸線依據眼睛在其眼窩中之方位而變化,所以判定眼睛在其眼窩中之方位可允許眼睛追蹤模組118更準確地判定眼睛之定向。
圖2為呈用於實施本文中所揭示之一些實例的HMD裝置200之形式的近眼顯示器之實例的透視圖。HMD裝置200可為例如VR系統、AR系統、MR系統或其任何組合之一部分。HMD裝置200可包括主體220及頭部綁帶230。圖2在透視圖中展示主體220之底側223、前側225及左側227。頭部綁帶230可具有可調整或可延伸的長度。在HMD裝置200之主體220與頭部綁帶230之間可存在足夠的空間,以允許使用者將HMD裝置200安裝至使用者之頭部上。在各種具體實例中,HMD裝置200可包括額外組件、較少組件或不同組件。舉例而言,在一些具體實例中,HMD裝置200可包括如例如以下圖3中所展示之眼鏡鏡腿及鏡腿尖端,而非頭部綁帶230。
HMD裝置200可將包括具有電腦產生元素之實體真實世界環境之虛擬及/或擴增視圖的媒體呈現給使用者。由HMD裝置200呈現之媒體的實例可包括影像(例如,二維(2D)或三維(3D)影像)、視訊(例如,2D或3D視訊)、音訊,或其任何組合。這些影像及視訊可由圍封於HMD裝置200之主體220中的一或多個顯示器總成(圖2中未示)呈現給使用者之每隻眼睛。在各種具體實例中,該一或多個顯示器總成可包括單一電子顯示面板或多個電子顯示面板(例如,使用者之每隻眼睛一個顯示面板)。電子顯示面板之實例可包括例如LCD、OLED顯示器、ILED顯示器、μLED顯示器、AMOLED、TOLED、某一其他顯示器,或其任何組合。HMD裝置200可包括兩個眼框區。
在一些實施方案中,HMD裝置200可包括各種感測器(圖中未示),諸如深度感測器、運動感測器、位置感測器及眼睛追蹤感測器。此等感測器中之一些可使用結構化之光圖案以用於感測。在一些實施方案中,HMD裝置200可包括用於與控制台通信之輸入/輸出介面。在一些實施方案中,HMD裝置200可包括虛擬實境引擎(圖中未示),該虛擬實境引擎可執行HMD裝置200內之應用程式,且自各種感測器接收HMD裝置200之深度資訊、位置資訊、加速度資訊、速度資訊、所預測之將來位置或其任何組合。在一些實施方案中,由虛擬實境引擎接收之資訊可用於為一或多個顯示器總成產生信號(例如,顯示指令)。在一些實施方案中,HMD裝置200可包括相對於彼此且相對於參考點位於主體220上之固定位置中的***(圖中未示,諸如***126)。這些***中之每一者可發射光,該光可由外部成像裝置偵測。
圖3為用於實施本文中所揭示之實例中之一些的呈一副眼鏡之形式的近眼顯示器300之實例的透視圖。近眼顯示器300可為圖1之近眼顯示器120的特定實施方案,且可經組態以作為虛擬實境顯示器、擴增實境顯示器及/或混合實境顯示器來操作。近眼顯示器300可包括框架305及顯示器310。顯示器310可經組態以將內容呈現給使用者。在一些具體實例中,顯示器310可包括顯示電子件及/或顯示光學件。舉例而言,如上文關於圖1之近眼顯示器120所描述,顯示器310可包括LCD顯示面板、LED顯示面板或光學顯示面板(例如,波導顯示器總成)。
近眼顯示器300可進一步包括在框架305上或內之各種感測器350a、350b、350c、350d及350e。在一些具體實例中,感測器350a至350e可包括一或多個深度感測器、運動感測器、位置感測器、慣性感測器或環境光感測器。在一些具體實例中,感測器350a至350e可包括一或多個影像感測器,該一或多個影像感測器經組態以產生表示不同方向上之視野之不同區的影像資料。在一些具體實例中,感測器350a至350e可用作輸入裝置以控制或影響近眼顯示器300之所顯示內容,及/或向近眼顯示器300之使用者提供互動式VR/AR/MR體驗。在一些具體實例中,感測器350a至350e亦可用於立體成像。
在一些具體實例中,近眼顯示器300可進一步包括一或多個照明器330以將光投影至實體環境中。經投影光可與不同頻帶(例如,可見光、紅外光、紫外光等)相關聯,且可用於各種目的。舉例而言,照明器330可將光投影於黑暗環境中(或具有低強度之紅外光、紫外光等的環境中),以輔助感測器350a至350e捕捉黑暗環境內之不同物件的影像。在一些具體實例中,照明器330可用於將某些光圖案投影至環境內之物體上。在一些具體實例中,照明器330可用作***,諸如上文關於圖1所描述之***126。
在一些具體實例中,近眼顯示器300亦可包括高解析度攝影機340。攝影機340可捕捉視場中之實體環境的影像。所捕捉影像可例如由虛擬實境引擎(例如,圖1之人工實境引擎116)處理,以將虛擬物件添加至所捕捉影像或修改所捕捉影像中之實體物件,且經處理影像可由顯示器310顯示給使用者以用於AR或MR應用。
圖4為說明近眼顯示器系統中之光學系統400之實例的簡圖。光學系統400可包括影像源410及投影儀光學件420。在圖4中所展示之實例中,影像源410在投影儀光學件420前方。在各種具體實例中,影像源410可定位於使用者的眼睛490之視場外部。舉例而言,一或多個反射器或方向耦合器可用於使來自使用者的眼睛490之視場外部之影像源的光偏轉以使影像源看起來像在圖4中所展示之影像源410之方位處。來自影像源410上之區域(例如,像素或發光裝置)的光可由投影儀光學件420準直及引導至出射光瞳430。因此,影像源410上之不同空間方位處的物件可在不同視角(FOV)中看起來像遠離使用者的眼睛490的物件。來自不同視角之準直光可隨後由使用者的眼睛490之晶狀體聚焦至使用者的眼睛490之視網膜492上的不同方位上。舉例而言,光之至少一些部分可聚焦於視網膜492上之中央窩494上。來自影像源410上之區域且自同一方向入射於使用者的眼睛490上的準直光線可聚焦至視網膜492上之同一方位上。因此,影像源410之單個影像可形成於視網膜492上。 II.   光瞳擴展
使用人工實境系統之使用者經歷可取決於光學系統之若干特性,包括視場(FOV)、影像品質(例如,角解析度)、眼眶之大小(為適應眼睛及頭部移動)及眼眶內的光之亮度(或對比度)。視場描述如使用者所見之影像之角度範圍,通常以如由一隻眼睛(用於單眼HMD)或兩隻眼睛(用於雙目或雙眼HMD)所觀測之度為單位量測。人類視覺系統可具有約200°(水平)乘130°(垂直)之總雙眼FOV。為創建完全沉浸式視覺環境,大FOV為合乎需要的,此係因為大FOV(例如,大於約60°)可提供「在」影像「中」之感覺,而非僅觀看影像。較小視場亦可妨礙一些重要視覺資訊。舉例而言,具有小FOV之HMD系統可使用姿勢介面,但使用者在小FOV中可能看不見其手以確保其正使用正確運動。另一方面,較寬視場可需要較大顯示器或光學系統,其可影響使用HMD之大小、重量、成本及舒適性。
解析度可指所呈現給使用者之所顯示像素或影像元素之角度大小,或使用者觀看及正確地將物件解譯為由像素及/或其他像素成像之能力。HMD之解析度可經指定為用於給定FOV值之影像源上之像素之數目,根據該數目,角解析度可藉由使一個方向上之FOV除以影像源上之在同一方向上的像素之數目來判定。舉例而言,對於40°之水平FOV及影像源上之在水平方向上的1080像素,相較於與斯內倫(Snellen)20/20人類視力相關聯之一弧分解析度,對應角解析度可為約2.2弧分。
在一些情況下,眼眶可為使用者的眼睛前方之二維框,自該眼眶可查看來自影像源之所顯示影像。若使用者之瞳孔移動至眼眶外,則所顯示影像可不由使用者看見。舉例而言,在非瞳孔形成組態中,存在觀看眼眶,其內將存在HMD影像源之非虛化觀看,且所顯示影像可虛化或可經裁剪但當使用者的眼睛之瞳孔在觀看眼眶外時仍能夠查看。在瞳孔形成組態中,影像在出射光瞳外可能不可查看。
其中最高解析度可在視網膜上實現的人類眼睛之中央窩可對應於約2°至約3°之FOV。此可需要眼睛旋轉以便以最高解析度觀看離軸物件。眼睛旋轉以觀看離軸物件可引入瞳孔之平移,此係因為眼睛圍繞瞳孔後方約10 mm之點旋轉。此外,使用者可能未必總是能夠準確地將使用者的眼睛之瞳孔(例如,具有約2.5 mm之半徑)定位在眼眶中之理想方位處。此外,其中使用HMD之環境可需要眼眶更大以允許使用者的眼睛及/或頭部相對HMD之移動,例如,當HMD用於移動載具或經設計以在使用者徒步移動時使用時。此等情形中的移動量可取決於HMD耦合至使用者的頭部的程度。
因此,HMD之光學系統可需要提供足夠大出射光瞳或觀看眼眶以用於以全解析度觀看全FOV,以便適應使用者的瞳孔相對於HMD之移動。舉例而言,在瞳孔形成組態中,12 mm至15 mm之最小大小可為出射光瞳所需。若眼眶過小,則眼睛與HMD之間的輕微未對準可導致影像之至少部分丟失,且使用者體驗可實質上受損。大體而言,眼眶之橫向範圍比眼眶之垂直範圍更重要。此可部分地由於使用者之間的眼睛分隔距離之較大變化,及眼用佩戴品之未對準傾向於更常出現於橫向尺寸中且使用者傾向於比向上及向下調整視線更常向左及向右且以更大幅度調整其視線的事實。因此,可增大眼眶之橫向尺寸的技術可實質上改良使用者的HMD體驗。另一方面,眼眶愈大,可能光學件愈大且近眼顯示器裝置愈重且愈龐大。
為了在明亮的背景下觀看所顯示影像,AR HMD之影像源可需要足夠明亮,且光學系統可需要有效地向使用者的眼睛提供明亮影像,使得所顯示影像可在包括諸如陽光之強環境光之背景中可見。HMD之光學系統可經設計以將光集中於眼眶中。當眼眶為大的時,具有高功率之影像源可用於提供在大眼眶內可見之明亮影像。因此,在光學系統之眼眶之大小、成本、亮度、光學複雜度、影像品質以及大小及重量方面可存在取捨。
圖5說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器的光學透視擴增實境系統500之實例。擴增實境系統500可包括投影儀510及組合器515。投影儀510可包括光源或影像源512及投影儀光學件514。在一些具體實例中,光源或影像源512可包括一或多個微LED裝置。在一些具體實例中,影像源512可包括顯示虛擬物件之複數個像素,諸如LCD顯示面板或LED顯示面板。在一些具體實例中,影像源512可包括產生相干或部分相干光之光源。舉例而言,影像源512可包括雷射二極體、垂直腔面發射雷射、LED、超發光二極體(sLED)及/或上文所描述之微LED。在一些具體實例中,影像源512可包括各自發射對應於原色(例如,紅色、綠色或藍色)之單色影像光的複數個光源(例如,上文所描述之微LED陣列)。在一些具體實例中,影像源512可包括三個二維微LED陣列,其中每一二維微LED陣列可包括經組態以發射具有原色(例如,紅色、綠色或藍色)之光的微LED。在一些具體實例中,影像源512可包括光學圖案產生器,諸如空間光調變器。投影儀光學件514可包括一或多個光學組件,該一或多個光學組件可調節來自影像源512之光,諸如擴展、準直、掃描或將光自影像源512投影至組合器515。一或多個光學組件可包括例如一或多個透鏡、液體透鏡、鏡面、自由形式光學件、孔徑及/或光柵。舉例而言,在一些具體實例中,影像源512可包括微LED之一或多個一維陣列或細長二維陣列,且投影儀光學件514可包括經組態以掃描微LED之一維陣列或細長二維陣列以產生影像幀的一或多個一維掃描器(例如,微鏡或稜鏡)。在一些具體實例中,投影儀光學件514可包括具有複數個電極之液體透鏡(例如,液晶透鏡),該液體透鏡允許掃描來自影像源512之光。
組合器515可包括用於將來自投影儀510之光耦合至組合器515之基板520中的輸入耦合器530。輸入耦合器530可包括體積全像光柵或另一繞射光學元件(DOE)(例如,表面起伏光柵(SRG))、基板520之傾斜反射表面或折射耦合器(例如,楔形件或稜鏡)。舉例而言,輸入耦合器530可包括反射式體積布拉格光柵或透射式體積布拉格光柵。對於可見光,輸入耦合器530可具有大於30%、50%、75%、90%或更大的耦合效率。耦合至基板520中之光可經由例如全內反射(TIR)在基板520內傳播。基板520可呈一副眼鏡之透鏡的形式。基板520可具有平坦或彎曲表面,且可包括一或多種類型之介電材料,諸如玻璃、石英、塑膠、聚合物、聚(甲基丙烯酸甲酯)(PMMA)、晶體、陶瓷或類似者。基板之厚度可在例如小於約1 mm至約10 mm或更大之範圍內。基板520對於可見光可為透明的。
基板520可包括或可耦合至複數個輸出耦合器540,該複數個輸出耦合器各自經組態以提取由基板520引導且在基板520內傳播的光之至少一部分,且將所提取的光引導至擴增實境系統500之使用者的眼睛590在擴增實境系統500在使用中時可位於其中的眼眶595。複數個輸出耦合器540可複製出射光瞳以增大眼眶595之大小,使得所顯示影像在較大區域中可見。如輸入耦合器530,輸出耦合器540可包括光柵耦合器(例如,體積全像光柵或表面起伏光柵)、其他繞射光學元件(DOE)、稜鏡等。舉例而言,輸出耦合器540可包括反射式體積布拉格光柵或透射式體積布拉格光柵。輸出耦合器540可在不同方位處具有不同耦合(例如,繞射)效率。基板520亦可允許來自組合器515前方之環境的光550在損失極少或無損失之情況下穿過。輸出耦合器540亦可允許光550在損耗極少之情況下穿過。舉例而言,在一些實施方案中,輸出耦合器540可對於光550具有極低繞射效率,使得光550可在損耗極少之情況下折射或以其他方式穿過輸出耦合器540,且因此可具有高於所提取光560之強度。在一些實施方案中,輸出耦合器540可對於光550具有高繞射效率,且可在損耗極少之情況下在某些所要方向(亦即,繞射角)上繞射光550。因此,使用者可能夠觀看組合器515前方之環境與由投影儀510投影之虛擬物件之影像的經組合影像。在一些實施方案中,輸出耦合器540可對於光550具有高繞射效率,且可在損耗極少之情況下將光550繞射至某些所要方向(例如,繞射角)。
在一些具體實例中,投影儀510、輸入耦合器530及輸出耦合器540可在基板520之任一側上。輸入耦合器530及輸出耦合器540可為將顯示光耦合至基板520中或至基板520之外的反射式光柵(亦稱為反射式光柵)或透射式光柵(亦稱為透射式光柵)。
圖6說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器的光學透視擴增實境系統600之實例。擴增實境系統600可類似於擴增實境系統500,且可包括波導顯示器及投影儀,該投影儀可包括光源或影像源612及投影儀光學件614。波導顯示器可包括如上文關於擴增實境系統500所描述之基板630、輸入耦合器640及複數個輸出耦合器650。雖然圖5僅展示來自單個視場之光的傳播,但圖6展示來自多個視場之光的傳播。
圖6展示出射光瞳由輸出耦合器650複製以形成聚集式出射光瞳或眼眶,其中視場中之不同區(例如,影像源612上之不同像素)可與朝向眼眶之不同相應傳播方向相關聯,且來自同一視場之光(例如,影像源612上之同一像素)可具有用於不同個別出射光瞳之同一傳播方向。因此,影像源612之單個影像可由定位於眼眶中之任何位置之使用者的眼睛形成,其中來自不同個別出射光瞳且在同一方向上傳播之光可來自影像源612上之同一像素且可聚焦至使用者的眼睛之視網膜上之同一方位上。圖6展示即使使用者的眼睛移動至眼眶中之不同方位,影像源之影像亦由使用者的眼睛可見。
在許多基於波導之近眼顯示器系統中,為了以二維形式擴展基於波導之近眼顯示器的眼眶,兩個或更多個輸出光柵可用於以二維形式或沿著兩個軸線擴展顯示光(其可稱作雙軸光瞳擴展)。該兩個光柵可具有不同光柵參數,使得一個光柵可用於複製一個方向上之出射光瞳且另一個光柵可用於複製另一方向上之出射光瞳。
如上文所描述,上文所描述之輸入及輸出光柵耦合器可為體積全像光柵或表面起伏光柵,其可具有極不同克萊恩-庫克(Klein-Cook)參數 Q
Figure 02_image001
其中 d為光柵之厚度, λ為自由空間中之入射光的波長, Λ為光柵週期,且 n為記錄媒體之折射率。克萊恩-庫克參數 Q可藉由光柵將光繞射劃分成三個方案。當光柵係藉由Q << 1表徵時,光柵引起之光繞射可稱作拉曼-奈斯(Raman-Nath)繞射,其中對於垂直及/或傾斜入射光,多個繞射階可出現。當光柵係藉由Q >> 1(例如,Q≥10)表徵時,光柵引起之光繞射可稱作布拉格繞射,其中對於以滿足布拉格條件之角度入射於光柵上之光,通常僅零及±1繞射階可出現。當光柵係藉由Q ≈ 1表徵時,光柵引起之繞射可在拉曼-奈斯繞射與布拉格繞射之間。為滿足布拉格條件,光柵之厚度d可高於某些值以佔據媒體之體積(而非在表面處),且因此可稱作體積布拉格光柵。VBG可通常具有相對小折射率調變(例如,Δn ≤ 0.05)以及高光譜及角度選擇性,而表面起伏光柵可通常具有大折射率調變(例如,Δn ≥0.5)以及寬光譜及角頻寬。
圖7A說明體積布拉格光柵(例如,反射式VBG)之實例的光譜頻寬及表面起伏光柵(例如,透射式SRG)之實例的光譜頻寬。水平軸線表示入射可見光之波長,且垂直軸線對應於繞射效率。如由曲線710所展示,反射式VBG之繞射效率在諸如綠光之窄波長範圍中為高。相比之下,透射式SRG之繞射效率可在諸如自藍光至紅光之極寬波長範圍中為高,如由曲線720所展示。
圖7B說明體積布拉格光柵(例如,反射式VBG)之實例的角頻寬及表面起伏光柵(例如,透射式SRG)之實例的角頻寬。水平軸線表示入射於光柵上的可見光之入射角,且垂直軸線對應於繞射效率。如由曲線715所展示,對於自窄角程(諸如與完美布拉格條件之約±2.5°)入射於光柵上之光,反射式VBG之繞射效率為高。相比之下,透射式SRG之繞射效率在諸如大於約±10°或更寬之極寬角度範圍中為高,如由曲線725所展示。
圖8A說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器800及表面起伏光柵的光學透視擴增實境系統之實例。波導顯示器800可包括基板810(例如,波導),其可類似於基板520。基板810可對可見光透明,且可包括例如玻璃、石英、塑膠、聚合物、PMMA、陶瓷、Si 3N 4或晶體基板。基板810可為平坦基板或彎曲基板。基板810可包括第一表面812及第二表面814。顯示光可由輸入耦合器820耦合至基板810中,且可經由全內反射由第一表面812及第二表面814反射,使得顯示光可在基板810內傳播。輸入耦合器820可包括光柵、折射耦合器(例如,楔形件或稜鏡)或反射式耦合器(例如,相對於基板810具有傾斜角度之反射表面)。舉例而言,在一個具體實例中,輸入耦合器820可包括可以相同折射角將具有不同顏色之顯示光耦合至基板810中的稜鏡。在另一實例中,輸入耦合器820可包括可在不同方向上將具有不同顏色之光繞射至基板810中的光柵耦合器。對於可見光,輸入耦合器820可具有大於10%、20%、30%、50%、75%、90%或更大的耦合效率。
波導顯示器800亦可包括定位於基板810之一個或兩個表面(例如,第一表面812及第二表面814)上的第一輸出光柵830及第二輸出光柵840以用於以二維形式擴展入射顯示光束以便用顯示光填充眼眶。第一輸出光柵830可經組態以沿著一個方向,諸如大致在x方向上擴展顯示光束之至少一部分。耦合至基板810中之顯示光可在由線832所展示之方向上傳播。雖然顯示光在基板810內沿著由線832所展示之方向傳播,但每當在基板810內傳播之顯示光達到第一輸出光柵830時,顯示光之一部分可由第一輸出光柵830之區朝向第二輸出光柵840繞射,如由線834所展示。每當在基板810內傳播之顯示光達到第二輸出光柵840時,第二輸出光柵840可隨後藉由將來自出射區850之顯示光之一部分繞射至眼眶來在不同方向上(例如,大致在y方向上)擴展來自第一輸出光柵830之顯示光。
圖8B說明包括二維複製出射光瞳之眼框之實例。圖8B展示單個輸入光瞳805可由第一輸出光柵830及第二輸出光柵840複製以形成包括個別出射光瞳862之二維陣列的聚集式出射光瞳860。舉例而言,出射光瞳可在大致x方向上由第一輸出光柵830複製且在大致y方向上由第二輸出光柵840複製。如上文所描述,來自個別出射光瞳862且在同一方向上傳播之輸出光可聚焦至使用者的眼睛之視網膜中之同一方位上。因此,單個影像可在個別出射光瞳862之二維陣列中由使用者的眼睛自輸出光形成。
圖9說明根據某些具體實例之具有出射光瞳擴展及色散減少之基於體積布拉格光柵之波導顯示器900的實例。波導顯示器900可為波導顯示器800之實例,且可包括波導905以及形成於波導905上或波導905中之輸入光柵910、第一中間光柵920、第二中間光柵930及輸出光柵940。輸入光柵910、第一中間光柵920、第二中間光柵930及輸出光柵940中之每一者可為透射式光柵或反射式光柵。來自光源(例如,一或多個微LED陣列)之顯示光可由輸入光柵910耦合至波導905中。內耦合顯示光可經由全內反射由波導905之表面反射,使得顯示光可在波導905內傳播。輸入光柵910可包括經多工VBG且可以對應繞射角將具有不同顏色且來自不同視場之顯示光耦合至波導905中。
第一中間光柵920及第二中間光柵930可在相同全像材料層之不同區中或可在不同全像材料層上。在一些具體實例中,第一中間光柵920可空間上與第二中間光柵930分離。第一中間光柵920及第二中間光柵930可各自包括經多工VBG。在一些具體實例中,第一中間光柵920及第二中間光柵930可在相同次數曝光中及在類似記錄條件下經記錄,使得第一中間光柵920中之每一VBG可匹配第二中間光柵930中之相應VBG(例如,在x-y平面中具有相同光柵向量且在z方向上具有相同及/或相反光柵向量)。舉例而言,在一些具體實例中,第一中間光柵920中之VBG及第二中間光柵930中之對應VBG可具有相同光柵週期及相同光柵傾斜角度(且因此相同光柵向量),以及相同厚度。在一個實例中,第一中間光柵920及第二中間光柵930可具有約20 μm之厚度且可各自包括經由約20次或更多次曝光記錄之約20個或更多個VBG。
輸出光柵940可形成於波導顯示器900之透視區中且可包括出射區950,當在z方向上查看(例如,在+z或-z方向上在距輸出光柵940約18 mm之距離處)時,該出射區與波導顯示器900之眼眶重疊。輸出光柵940可包括包括許多VBG之經多工VBG光柵。在一些具體實例中,輸出光柵940及第二中間光柵930可至少部分地在x-y平面中重疊,藉此減小波導顯示器900之外觀尺寸。輸出光柵940與第一中間光柵920及第二中間光柵930組合可執行上文所描述之雙軸光瞳擴展,從而以二維形式擴展入射顯示光束以用顯示光填充眼眶。
輸入光柵910可將來自光源之顯示光耦合至波導905中。顯示光可直接達到第一中間光柵920或可由波導905之表面反射至第一中間光柵920,其中顯示光束之大小可略微大於輸入光柵910處的顯示光束之大小。第一中間光柵920中之每一VBG可在FOV範圍及大致滿足VBG之布拉格條件的波長範圍內將顯示光之一部分繞射至第二中間光柵930。雖然由第一中間光柵920中之VBG繞射之顯示光經由全內反射在波導905內(例如,沿著由線922展示之方向)傳播,但每當在波導905內傳播之顯示光達到第二中間光柵930時,顯示光之一部分可由第二中間光柵930中之對應VBG朝向輸出光柵940繞射。每當在波導905內傳播之顯示光達到輸出光柵940之出射區950時,輸出光柵940可隨後藉由將顯示光之一部分繞射至眼眶來在不同方向上擴展來自第二中間光柵930之顯示光。
如上文所描述,第一中間光柵920中之每一VBG可匹配第二中間光柵930中之相應VBG(例如,在x-y平面中具有相同光柵向量且在z方向上具有相同及/或相反光柵向量)。由於兩個匹配VBG處之顯示光之相反傳播方向,故兩個匹配VBG可在相反布拉格條件下工作(例如,+1階繞射與-1階繞射)。舉例而言,如圖9中所展示,第一中間光柵920中之VBG可將顯示光之傳播方向自向下方向變為向右方向,惡而第二中間光柵930中之匹配VBG可將顯示光之傳播方向自向右方向變為向下方向。因此,由第二中間光柵930引起之色散可與由第一中間光柵920引起之色散相反,藉此減少或最小化總體色散。
類似地,輸入光柵910中之每一VBG可匹配輸出光柵940中之相應VBG(例如,在x-y平面中具有相同光柵向量且在z方向上具有相同及/或相反光柵向量)。由於兩個匹配VBG處之顯示光(例如,至波導905中及至波導905之外)之相反傳播方向,故兩個匹配VBG亦可在相反布拉格條件下工作(例如,+1階繞射與-1階繞射)。因此,由輸入光柵910引起之色散可與由輸出光柵940引起之色散相反,藉此減少或最小化總體色散。 III.  階梯結構
在上文所描述之波導顯示器之實例中,由於例如對所要繞射階之小於100%繞射效率、洩漏、偏振相依性、角相依性、波長相依性及類似者,故使用繞射光學元件實施之耦合器可具有受限耦合效率。此外,由於輸入光瞳之大小且因此輸入耦合器之大小,故由輸入耦合器耦合至波導中之顯示光可反射回至輸入耦合器且可至少部分地由輸入耦合器再次繞射至非所要方向且變為洩漏光。
圖10A說明用於將顯示光耦合至波導顯示器1000之波導1010中之光柵耦合器1020的實例。光柵耦合器1020可具有用以自投影儀接收具有有限射束寬度之入射光束1005之有限區域。圖10A展示入射光束1030之所要光學路徑。波導1010之頂部表面1012上的光柵耦合器1020可將入射光束1030繞射至具有某一繞射角之第一繞射階1032中。第一繞射階1032可在波導1010中傳播且達到波導1010之底部表面1014。波導1010之底部表面1014可由於全內反射而將所有第一繞射階1032反射回至光柵耦合器1020,如由光束1034所展示。可合乎需要的係光束1034在波導1010之頂部表面1012處完全反射,如由光束1036所展示,使得由光柵耦合器1020耦合至波導1010中之所有第一繞射階1032可在波導1010內傳播以達到輸出耦合器。
圖10B說明可降低波導顯示器1000之效率的由光柵耦合器1020引起之非所要光繞射之實例。如所說明,當入射光束1030達到光柵耦合器1020時,其可由光柵耦合器1020繞射至包括第一繞射階1032及其他繞射階1040(例如,零階、-1階及更高階)之多個繞射階中。當來自底部表面1014之反射光束1034達到波導1010之頂部表面1012時,其可至少部分地由光柵耦合器1020繞射至較高繞射階(例如,±1、±2及類似者)中,如由光束1042及1044所展示。因此,反射部分(由光束1036展示)之功率可比入射光束1030或第一繞射階1032之功率低得多。舉例而言,約20%或更多之內耦合光可由光柵耦合器1020繞射至波導1010之外,藉此降低光柵耦合器1020之總體內耦合效率。
圖11說明用於將顯示光耦合至波導顯示器1100之基板1110中的光柵耦合器1120之實例。在所說明實例中,光柵耦合器1120可形成於基板1110之頂部表面1112上。光線1130可以某一繞射角由光柵耦合器1120之第一區1122耦合至基板1110中。光線1130之內耦合顯示光可由基板1110之底部表面1114反射且再次達到基板1110之頂部表面1112處的光柵耦合器1120。光線1130之內耦合顯示光之一部分可在頂部表面1112處經反射以繼續在基板1110內傳播。然而,光線1130之內耦合顯示光之一部分1132可由光柵耦合器1120之第二區1124繞射至基板1110之外以引起輸入耦合洩漏。反射部分可在基板1110內傳播且達到光柵耦合器1120之第三區1126,且可至少部分地由光柵耦合器1120之第三區1126繞射至基板1110之外,如由光線1134所展示,以引起進一步輸入耦合洩漏。
類似地,光線1140(例如,用於不同視場角度或顏色)可以某一繞射角由光柵耦合器1120耦合至基板1110中,且當光線1140之內耦合光之部分1142再次達到光柵耦合器1120時,由於基板1110之底部表面1114處之全內反射,故光線1140之內耦合光之至少一部分1142可由光柵耦合器1120繞射至基板1110之外。輸入光線1150(例如,用於另一視場角度或顏色)可以某一繞射角由光柵耦合器1120耦合至基板1110中,且當光線1150之內耦合光之部分1152再次達到光柵耦合器1120時,由於基板1110之底部表面1114處之全內反射,故光線1150之內耦合光之至少一部分1152可由光柵耦合器1120繞射至基板1110之外。
因此,光柵耦合器1120之總體輸入耦合效率可由於輸入耦合洩漏而降低。在一些具體實例中,輸入耦合洩漏可藉由例如增加基板1110之厚度而減少,使得內耦合光在反射回至頂部表面1112時可在光柵耦合器1120之區外部。在另一實例中,光瞳大小可減小,使得光柵耦合器1120可具有更小區域,且因此內耦合光在反射回至頂部表面1112時可在光柵耦合器1120之區外部。然而,基板之厚度增加及/或光瞳大小減小可減小光瞳密度及/或減小顯示解析度。
根據某些具體實例,第一中間光柵(例如,第一中間光柵920)可置放在輸入光柵(例如,輸入光柵910或光柵耦合器1120)下方,使得在內耦合顯示光將由於波導之表面處的全內反射而再次達到輸入光柵之前,內耦合顯示光可由第一中間光柵繞射。由第一中間光柵繞射之內耦合顯示光可改變波導內之傳播方向且因此當其再次達到輸入光柵時可不滿足輸入光柵之布拉格條件。因此,即使由第一中間光柵繞射之內耦合顯示光再次達到輸入光柵,由第一中間光柵繞射之內耦合顯示光亦可不由輸入光柵繞射。在某些具體實例中,相位結構(例如,相延遲器)可替代或另外地用於改變內耦合顯示光之偏振狀態,使得輸入光柵引起之內耦合顯示光之外耦合可由於輸入光柵之偏振相依性而減少。
圖12A說明根據某些具體實例之改良波導顯示器之內耦合效率的方法之實例。圖12A展示波導1210及波導1210中之輸入光柵1220及第一中間光柵1230。波導1210可包括一或多個基板。輸入光柵1220及第一中間光柵1230可形成於一或多個基板上。圖12A中所展示之實例中之輸入光柵1220可為反射式VBG。在一些具體實例中,輸入光柵1220可為透射式光柵。如圖12A中所說明,當在z方向上查看時,輸入光柵1220可與第一中間光柵1230重疊。來自輸入光柵1220之內耦合顯示光可由第一中間光柵1230繞射,且因此可改變波導內之傳播方向。因此,當由第一中間光柵1230繞射之內耦合顯示光再次達到輸入光柵1220時,由第一中間光柵1230繞射之內耦合顯示光可不滿足輸入光柵1220之布拉格條件。因此,由第一中間光柵1230繞射之內耦合顯示光可不由輸入光柵1220繞射至波導1210之外以引起輸入耦合洩漏。輸入光柵1220及第一中間光柵1230之重疊亦可幫助減小波導顯示器之大小。在一個實例中,輸入光柵1220及第一中間光柵1230可記錄在相同全像材料層中。
圖12B為根據某些具體實例之包括經配置以改良內耦合效率之光柵耦合器的波導顯示器1200之實例的俯視圖。波導顯示器1200可包括如上文關於圖12A所描述之波導1210(例如,基板)、輸入光柵1220及第一中間光柵1230。如所說明,在俯視圖中,輸入光柵1220可與第一中間光柵1230之一部分重疊。如上文關於例如圖9所描述,波導顯示器1200亦可包括可在兩個方向上擴展輸入光瞳之第二中間光柵1240及輸出光柵1250。
輸入光柵1220可將來自光源(例如,投影儀)之顯示光耦合至波導1210中。顯示光可直接達到第一中間光柵1230或可由波導1210之表面反射至第一中間光柵1230。第一中間光柵1230可藉由將內耦合顯示光繞射朝向第二中間光柵1240來改變內耦合顯示光之傳播方向。由第一中間光柵1230繞射之顯示光即使再次達到輸入光柵1220亦將不由輸入光柵1220繞射至波導1210之外以引起洩漏。
如上文關於圖8A及9所描述,雖然由第一中間光柵1230繞射之顯示光在波導1210內經由全內反射傳播,但每當在波導1210內傳播之顯示光達到第二中間光柵1240時,顯示光之一部分可由第二中間光柵1240繞射至輸出光柵1250。每當在波導1210內傳播之顯示光達到輸出光柵1250之出射區1260時,輸出光柵1250可隨後藉由將顯示光之一部分繞射至波導顯示器1200之眼眶來在不同方向上擴展來自第二中間光柵1240之顯示光,當在z方向上查看時,該輸出光柵可與眼眶重疊。
圖12C為根據某些具體實例之展示於圖12B中之波導顯示器1200的一部分之放大俯視圖。圖12D為根據某些具體實例之展示於圖12B中之波導顯示器1200的該部分之放大側視圖。圖12C及12D展示波導1210中之輸入光柵1220及第一中間光柵1230。圖12C展示當在z方向上檢查時輸入光柵1220與第一中間光柵1230之一部分重疊。第一中間光柵1230可包括可用於繞射來自不同視場及/或呈不同顏色之光的多個VBG 1232。圖12D展示輸入光柵1220及第一中間光柵1230可記錄在同一全像材料層中且可在全像材料層之同一區中經多工。
如上文所描述,重疊輸入光柵1220及第一中間光柵1230可幫助減小波導顯示器1200之外形尺寸。然而,由於全像材料層中之受限最大可實現折射率調變,對於輸入光柵1220及第一中間光柵1230,多工如圖12D中所展示之同一全像材料層中之輸入光柵1220及第一中間光柵1230可不實現高繞射效率。此外,在同一全像材料層中製造輸入光柵1220及第一中間光柵1230可具有挑戰性。
根據某些具體實例,第一中間光柵(例如,第一中間光柵1230)可製造於波導內之全像材料層中,如圖12A中所展示,輸入光柵(例如,輸入光柵1220)可製造於階梯結構中之不同全像材料層中,該階梯結構具有小的大小以避免改變波導之其他區之厚度。分別將輸入光柵及第一中間光柵記錄在不同全像材料層中可使製造製程更容易,且由於多個全像材料層中之較高總體可實現折射率調變而可幫助改良輸入光柵及第一中間光柵之繞射效率。包括輸入光柵之階梯結構可隨後附接至波導且與第一中間光柵對準。為避免FOV裁剪,包括輸入光柵記錄於其中之全像材料層及全像材料層附接於其上之階梯基板(若需要)的階梯結構之總厚度及總體形狀可最佳化。在一些具體實例中,全像材料層之厚度可足夠大,且因此可不使用階梯基板。在一些具體實例中,具有某一形狀及厚度之階梯基板(例如,薄玻璃板)可經使用以使得全像材料層及階梯基板之總厚度可等於階梯結構之所要厚度。
圖13A為根據某些具體實例之包括用於改良內耦合效率之在階梯結構1330中之輸入光柵1322的波導顯示器1300之實例之輸入區段的俯視圖。圖13B為根據某些具體實例之展示於圖13A中之波導顯示器1300的實例之側視圖。在所說明實例中,波導顯示器1300之輸入區段可包括波導1310,其可包括兩個或更多個基板。第一中間光柵1340可形成於兩個或更多個基板中之一者之表面上且可由兩個基板包夾。如上文所描述,第一中間光柵1340可包括用於不同視場之多個VBG。
階梯結構1330可附接至波導1310之頂部表面。如由圖13B所說明,輸入光柵1322可形成於階梯結構1330之階梯基板1332之頂部或底部表面上的全像材料層1320中。輸入光柵1322可通常具有與光源(例如,微LED陣列)或投影儀之輸出影像之形狀匹配的圓形形狀或矩形形狀。在一些具體實例中,輸入光柵1322可記錄於形成(例如,塗佈或層壓)於另一基板上之全像材料層1320中,且隨後傳遞至階梯基板1332以形成階梯結構1330,該階梯結構可隨後與波導1310對準及接合。在一些具體實例中,全像材料層1320可塗佈或層壓在階梯基板1332上,且可隨後在階梯結構1330接合至波導1310之前或之後經記錄。
如圖13A及13B中所展示,階梯結構1330可為平坦的且可在x-y平面中具有某一形狀。階梯結構1330(包括輸入光柵1322及階梯基板1332,若使用)可具有某一總厚度。因為階梯結構1330之非零厚度,故階梯結構1330之形狀可需要最佳化以避免光瞳裁剪及所得效率降低。
圖13C說明具有作為輸入耦合器之稜鏡1304的波導顯示器中之光瞳裁剪之實例。如圖13C中所展示,稜鏡1304可將來自投影儀1302(或另一光源,諸如微LED陣列)之顯示光耦合至波導1306中。由於稜鏡1304之實體大小,來自某一視場之光可經裁剪,如由虛線所展示,且因此可不耦合至波導1306中。在圖13A及13B中所展示之波導顯示器1300中,若階梯結構1330之厚度及形狀不適當地經選擇,則由輸入光柵1322繞射之來自某一視場之光亦可經裁剪。
圖13D包括根據某些具體實例之階梯結構1330之實例的透視圖。全像材料層1320可包括其中記錄之輸入光柵1322。全像材料層1320可根據階梯結構1330之所需形狀來切割。階梯基板1332亦可根據階梯結構1330之所需形狀而自基板(例如,具有約100 μm或更厚之厚度的玻璃基板)切割。在所說明實例中,全像材料層1320可附接至階梯基板1332之頂部表面。在另一實例中,全像材料層1320可附接至階梯基板1332之底部表面。階梯結構1330可隨後附接(例如,接合)至波導1310。若在全像材料層1320附接至階梯基板1332以形成階梯結構1330之前,輸入光柵1322尚未記錄在全像材料層1320中,則記錄程序可在階梯結構1330附接至波導1310以在全像材料層1320中形成輸入光柵1322之前或之後執行。
為最佳化輸入耦合效率且最小化波導顯示器1300之所有FOV之光瞳裁剪,階梯結構1330之厚度及/或形狀可經調諧,其可取決於輸入光柵1322是否在階梯結構1330之頂部或階梯結構1330之底部上。如上文所描述,階梯基板1332之厚度可取決於輸入光柵1322記錄於其中的全息材料層1320之厚度。在一些具體實例中,一或多個全像材料層1320可用於實現階梯結構1330之所要厚度,且因此可不使用階梯基板1332。舉例而言,在一些實施方案中,若階梯結構1330之所要厚度為80 μm,則可使用各自具有約20 μm之厚度的四個全像材料層1320(若總體濁度足夠低)且可不需要額外階梯基板1332。亦可最佳化第一中間光柵1340中之VBG的空間多工,諸如VBG之數目、由每一VBG覆蓋的FOV及每一VBG之折射率調變及外形尺寸。
圖14說明用於相比於具有本文中所揭示之階梯結構之波導顯示器的用作基線之基於VBG之波導顯示器1400的實例。如上文所描述,基於VBG之波導顯示器1400可包括一或多個基板1410。基於VBG之波導顯示器1400可為包括單個影像投影儀及用於兩個或更多個FOV之光柵之兩個或更多個集合的波導顯示器之實例。圖14中僅展示光柵(例如,用於左半部FOV)之第一集合。光柵之第一集合可包括一或多個全像材料層中之輸入光柵1420、第一中間光柵1430、第二中間光柵1440及輸出光柵1450。輸入光柵1420可在第一中間光柵1430之頂部上且與第一中間光柵1430重疊,如例如圖12A至12D中所展示。基於VBG之波導顯示器1400可不包括階梯結構。光柵之第一集合可包括透射式VBG或反射式VBG。在一些具體實例中,輸入光柵1420及輸出光柵1450可具有匹配光柵向量(例如,在x-y平面中具有相同光柵向量)且因此可抵償彼此引起的顯示光之色散。
如上文所描述,來自投影儀之顯示光可由輸入光柵1420耦合至基板1410中,且可在基板1410內傳播且達到第一中間光柵1430。第一中間光柵1430可將顯示光繞射朝向第二中間光柵1440。第二中間光柵1440可在多個方位處沿著實質上x方向將顯示光繞射朝向輸出光柵1450以在實質上x方向上複製出射光瞳。輸出光柵1450可在多個方位處沿著實質上y方向將來自第二中間光柵1440之多個方位中之每一者的顯示光繞射至基板1410之外,使得出射光瞳可在實質上y方向上經複製。在輸出光柵1450上,出射區1460對應於區,在該區中,眼眶中之一個光瞳方位處(例如,在眼眶中心處)之左半部FOV之顯示光可經耦合至輸出光柵1450之外。第二中間光柵1440中之區1442表示映射至出射區1460的第二中間光柵1440之區。
將諸如整個視場之最小內耦合效率及整個視場之平均內耦合效率的基於VBG之波導顯示器1400之效能與具有本文中所揭示之階梯結構之波導顯示器相比較以展示本文中所揭示之階梯結構上之輸入光柵的功效。具有階梯結構之波導顯示器可包括階梯結構之頂部或底部上的輸入光柵,如例如圖13B中所展示。
圖15包括說明根據某些具體實例之包括階梯結構中之輸入光柵的波導顯示器之實例之最佳化結果的圖表1500。圖表1500之水平軸線對應於整個FOV之平均內耦合效率,而垂直軸線對應於整個FOV之最小內耦合效率。圖表1500中之每一個別資料點對應於具有結構(例如,不具有或具有階梯結構或在不同相應方位處具有階梯結構)、階梯厚度及階梯形狀之唯一組合的波導顯示器。圖15中之資料點1530展示基於VBG之波導顯示器1400之模擬結果,其中假定輸入光柵及第一中間光柵可各自使用全像材料層之總體可實現折射率調變(Δn)(實際上其可不實現)。圖15中之資料點1510展示包括階梯基板之頂部表面上之輸入光柵且具有不同階梯形狀及/或階梯厚度的基於VBG之波導顯示器之模擬結果。圖15中之資料點1520展示包括階梯基板之底部表面上之輸入光柵且具有不同階梯形狀及/或階梯厚度的基於VBG之波導顯示器之模擬結果。
圖15中之資料點1530展示基於VBG之波導顯示器1400之平均內耦合效率可略微更高,但整個FOV中之最小內耦合效率低得多。資料點1510展示,在輸入光柵在階梯結構之頂部上的情況下,如圖13A至13B及13D中所展示,平均內耦合效率可極其高,諸如接近基於VBG之波導顯示器1400的平均內耦合效率,且最小內耦合效率可比基於VBG之波導顯示器1400的最小內耦合效率高得多。資料點1520展示,在輸入光柵在階梯結構之底部表面上的情況下,如圖13A至13B中所展示,平均內耦合效率可極其過高,且最小內耦合效率可高於基於VBG之波導顯示器1400的最小內耦合效率。
圖16A說明根據某些具體實例之包括階梯結構之頂部上之光柵耦合器的波導顯示器之實例的階梯厚度最佳化結果。在最佳化中,階梯結構(包括全像材料層及階梯基板)之厚度在50 μm與500 μm之間變化。曲線1610包括資料點,這些資料點各自展示具有不同相應厚度之階梯結構的整個視場之平均內耦合效率及視場之最小內耦合效率。如由最佳化結果所展示,對於在頂部處具有輸入光柵之階梯結構,當階梯結構更薄,諸如約50 μm時,可實現更佳內耦合效率,其中平均內耦合效率及最小內耦合效率兩者可更高。
圖16B說明根據某些具體實例之包括階梯結構之底部上之光柵耦合器的波導顯示器之實例的階梯厚度最佳化結果。在最佳化中,階梯結構(包括全像材料層及階梯基板)之厚度在50 μm與500 μm之間變化。曲線1620包括資料點,這些資料點各自展示具有不同相應厚度之階梯結構的整個視場之平均內耦合效率及視場之最小內耦合效率。如由最佳化結果所展示,對於在底部處具有輸入光柵之階梯結構,當階梯結構更薄,諸如接近50 μm時,可實現更佳平均內耦合效率,而當階梯結構相對更厚,諸如約80 μm時,可實現更佳最小內耦合效率。
圖17A至17C說明根據某些具體實例之包括階梯結構之頂部上之光柵耦合器的波導顯示器之實例的階梯形狀最佳化結果。圖17A至17C中所展示之波導顯示器之每一實例對應於圖15中之資料點1510,且具有階梯形狀及階梯厚度之唯一組合及平均內耦合效率及最小內耦合效率之唯一組合。圖17A展示波導顯示器之一部分,該波導顯示器包括基板1710、包括階梯基板上之輸入光柵1720的階梯結構1730及如上文所描述之第一中間光柵1740。包括輸入光柵1720及階梯基板的階梯結構1730之厚度為約50 μm。圖17A展示階梯結構1730之最佳化形狀,其具有可略微大於(圓形)輸入光柵1720之小的大小。
圖17B展示波導顯示器之一部分,該波導顯示器包括基板1712、包括階梯基板上之輸入光柵1722的階梯結構1732及如上文所描述之第一中間光柵1742。包括輸入光柵1722及階梯基板的階梯結構1732之厚度為約50 μm。圖17B展示階梯結構1732之最佳化形狀,其具有可略微大於(圓形)輸入光柵1722之小的大小。階梯結構1732及階梯結構1730可具有不同形狀及/或厚度。
圖17C展示波導顯示器之一部分,該波導顯示器包括基板1714、包括階梯基板上之輸入光柵1724的階梯結構1734及如上文所描述之第一中間光柵1744。包括輸入光柵1724及階梯基板的階梯結構1734之厚度為約50 μm。圖17C展示階梯結構1734之最佳化形狀,其具有可略微大於(圓形)輸入光柵1724之小的大小。階梯結構1734可具有不同於階梯結構1730及階梯結構1732之形狀(及/或厚度)的形狀(及/或厚度)。
圖17D至17F說明根據某些具體實例之包括階梯結構之底部上之光柵耦合器的波導顯示器之實例的階梯厚度最佳化結果。圖17D至17F中所展示之波導顯示器之每一實例對應於圖15中之資料點1520,且具有階梯形狀及階梯厚度之唯一組合及平均內耦合效率及最小內耦合效率之唯一組合。圖17D展示波導顯示器之一部分,該波導顯示器包括基板1715、包括階梯基板下之輸入光柵1725的階梯結構1735及如上文所描述之第一中間光柵1745。包括輸入光柵1725及階梯基板的階梯結構1735之厚度為約63 μm。圖17D展示階梯結構1735之最佳化形狀。
圖17E展示波導顯示器之一部分,該波導顯示器包括基板1716、包括階梯基板下之輸入光柵1726的階梯結構1736及如上文所描述之第一中間光柵1746。包括輸入光柵1726及階梯基板的階梯結構1736之厚度為約56 μm。圖17E展示階梯結構1736之最佳化形狀,其大於(圓形)輸入光柵1726且具有朝向右延伸之邊緣。階梯結構1736及階梯結構1735可具有不同形狀及/或厚度。
圖17F展示波導顯示器之一部分,該波導顯示器包括基板1718、包括階梯基板下之輸入光柵1728的階梯結構1738及如上文所描述之第一中間光柵1748。包括輸入光柵1728及階梯基板的階梯結構1738之厚度為約81 μm。圖17F展示階梯結構1738之最佳化形狀,其大於(圓形)輸入光柵1728且具有朝向右延伸之邊緣。 IV.  多個顏色投影儀/輸入耦合器
圖18說明包括體積布拉格光柵耦合器之波導顯示器1800之實例。在所說明實例中,波導顯示器1800可包括藉由間隔件1830分隔之第一總成1810及第二總成1820。第一總成1810可包括第一基板1812、第二基板1816及在第一基板1812與第二基板1816之間的一或多個全像光柵層1814。第一基板1812及第二基板1816可各自為薄透明基板,諸如具有約100 μm或幾百微米之厚度的玻璃基板。全像光柵層1814可包括經多工反射式VBG、透射式VBG或兩者。全像光柵層1814可具有小於約100 μm之總厚度,諸如在約20 μm與約80 μm之間。類似地,第二總成1820可包括第一基板1822、第二基板1826及在第一基板1822與第二基板1826之間的一或多個全像光柵層1824。全像光柵層1824可包括經多工反射式VBG、透射式VBG或兩者。第一總成1810可用於將來自某些視場之呈紅色、綠色及藍色之顯示光耦合至使用者的眼睛,且第二總成1820可用於將來自其他視場之呈紅色、綠色及藍色之顯示光耦合至使用者的眼睛。
圖19A為根據某些具體實例之基於體積布拉格光柵之波導顯示器1900的實例之正視圖。圖19B為展示於圖19A中之基於體積布拉格光柵之波導顯示器1900的實例之側視圖。波導顯示器1900可為第一總成1810或第二總成1820之實例,或第一總成1810或第二總成1820之一部分。在所說明實例中,波導顯示器1900可包括波導1910、輸入耦合器及波導1910中之中間光柵1930及輸出光柵1940。輸入耦合器可包括投影儀光學件1920(例如,透鏡)及輸入光柵1922。顯示光可由投影儀光學件1920準直且投影至輸入光柵1922上,其可藉由繞射將顯示光耦合至波導1910中,如上文所描述。顯示光可達到中間光柵1930之第一部分1932且可由中間光柵1930之第一部分1932繞射以改變傳播方向且達到中間光柵1930之第二部分1934,該第二部分可隨後將顯示光繞射朝向輸出光柵1940。輸出光柵1940可在不同方位處將顯示光繞射至波導1910之外以形成多個出射光瞳,如上文所描述。
中間光柵1930之第一部分1932及第二部分1934可在相同全像材料層上且可具有匹配光柵向量(例如,在x-y平面中具有相同光柵向量且在z方向上具有相同光柵向量及/或相反光柵向量)。因此,其可由於中間光柵1930之第一部分1932及第二部分1934處的繞射之相反布拉格條件(例如,+1階及-1階繞射)而補償彼此引起之顯示光之色散以減少總體色散。此外,輸入光柵1922及輸出光柵1940可具有匹配光柵向量(例如,在x-y平面中具有相同光柵向量且在z方向上具有相同或相反光柵向量),其中輸入光柵1922可將顯示光耦合至波導1910中,而輸出光柵1940可將顯示光耦合至波導之外。因此,由於輸入光柵1922及輸出光柵1940處之繞射的相反繞射方向及相反布拉格條件(例如,+1階及-1階繞射),故輸入光柵1922及輸出光柵1940可補償彼此引起之顯示光的色散以減少總體色散。以此方式,中間光柵1930之第一部分1932及第二部分1934引起的色散可抵消,且輸入光柵1922及輸出光柵1940引起之色散亦可抵消。因此,波導顯示器1900引起之顯示光之總體色散可最小化。因此,可實現所顯示影像之更高解析度。
中間光柵1930之輸入光柵1922、第一部分1932及第二部分1934中之每一者及輸出光柵1940可包括經組態以繞射具有不同顏色及/或來自不同視場之顯示光的經多工體積布拉格光柵。由於如上文關於圖7A及7B所描述之每一VBG光柵之受限波長範圍及/或角度範圍,不同VBG可需要用於繞射顯示光之不同顏色分量及/或來自不同視場之顯示光。因此,為覆蓋用於所有顏色之大視場,可需要許多VBG。然而,可限制全像材料層之可實現總折射率調變。因此,受限數目個VBG可記錄在全像材料層中,且基於VBG之波導顯示器1900之總體繞射效率可為低的,且/或基於VBG之波導顯示器1900之視場可為小的。因此,多個全像材料層可需要覆蓋用於所有顏色之整個視場。
圖20A為根據某些具體實例之基於體積布拉格光柵之波導顯示器2000的實例之正視圖。圖20B為展示於圖20A中之基於體積布拉格光柵之波導顯示器2000的實例之側視圖。波導顯示器2000可為第一總成1810、第二總成1820或波導顯示器1800之實例。波導顯示器2000可包括波導2010、輸入耦合器及形成於波導2010上或波導2010中之中間光柵2030及輸出光柵2040。輸入耦合器可包括投影儀光學件2020(例如,透鏡)及輸入光柵2022。顯示光可由投影儀光學件2020準直且投影至輸入光柵2022上,其可藉由繞射將顯示光耦合至波導2010中,如上文所描述。顯示光可達到中間光柵2030之第一部分2032且可由中間光柵2030之第一部分2032繞射以改變傳播方向且達到中間光柵2030之第二部分2034,該第二部分可隨後將顯示光繞射朝向輸出光柵2040。輸出光柵2040可在不同方位處將顯示光繞射至波導2010之外以形成多個出射光瞳,如上文所描述。
如上文所描述,中間光柵2030之第一部分2032及第二部分2034可具有匹配光柵向量(例如,在x-y平面中具有相同光柵向量且在z方向上具有相同光柵向量及/或相反光柵向量)。輸入光柵2022及輸出光柵2040可具有匹配光柵向量(例如,在x-y平面中具有相同光柵向量且在z方向上具有相同及/或相反光柵向量)。因此,由於相反繞射方向及相反布拉格條件(例如,+1階及-1階繞射),中間光柵2030之第一部分2032及第二部分2034引起之總體色散可減少或抵消,且輸入光柵2022及輸出光柵2040引起之總體色散亦可減少或抵消。因此,波導顯示器2000引起之顯示光之總體色散可最小化。因此,可實現所顯示影像之更高解析度。
如圖20B中所說明,波導顯示器2000可包括一或多個波導板上之多個聚合物層,其中輸入光柵2022、中間光柵2030及輸出光柵2040可各自拆分成記錄於多個聚合物層中之多個光柵。每一聚合物層上之光柵可覆蓋不同相應FOV及光譜,且多個聚合物層之組合可提供全FOV及光譜覆蓋度。以此方式,每一聚合物層可為薄的(例如,約20 μm至約100 μm),且可曝露更少次(例如,小於約100)以記錄更少光柵,從而減小濁度且增加用於每一VBG光柵之折射率調變。因此,由於所使用之多個聚合物層,故對於所覆蓋FOV及光譜,每一VBG光柵之繞射效率可為高的,且對於整個FOV及光譜,波導顯示器2000之總體繞射效率可為高的。在圖20A及20B中所展示之實例中,波導顯示器2000可包括在一或多個基板上包括多個聚合物層之第一總成2012,及在一或多個基板上包括多個聚合物層之第二總成2014。第一總成2012及第二總成2014中之每一聚合物層可包括用於某些視場之輸入光柵2022、中間光柵2030及/或輸出光柵2040之部分。
圖21A說明根據某些具體實例之包括用於不同視場之多個光柵層的基於體積布拉格光柵之波導顯示器2100之實例。基於VBG之波導顯示器2100可為上文所描述之波導顯示器1800或基於VBG之波導顯示器2000的實例。在波導顯示器2100中,光柵可沿著Z方向在空間上經多工。舉例而言,波導顯示器2100可包括多個基板,諸如基板2110、2112、2114及類似者。基板可包括相同材料或具有類似折射率之材料。一或多個VBG(例如,VBG 2120、2122、2124等)可在每一基板上製得,諸如記錄於形成於基板上之全像材料層中。VBG可為反射式光柵或透射式光柵。具有VBG之基板可沿著z方向配置於基板堆疊中以用於空間多工。每一VBG可為包括多個光柵之經多工VBG,該多個光柵經設計以用於不同布拉格條件以將不同波長範圍及/或不同FOV內之顯示光耦合至波導中或至波導之外。
在圖21A中之所展示之實例中,VBG 2120可將來自正視場之光2134耦合至波導中,如由波導內之光線2144所展示。VBG 2122可將來自約0°視場之光2130耦合至波導中,如由波導內之光線2140所展示。VBG 2124可將來自負視場之光2132耦合至波導中,如由波導內之光線2142所展示。如上文所描述,VBG 2120、2122及2124中之每一者可為具有許多曝光之經多工VBG,且因此可將來自不同FOV範圍之光耦合至波導中或至波導之外。
圖21B說明根據某些具體實例之基於體積布拉格光柵之波導顯示器(例如,波導顯示器2100)之實例中的多個光柵之視場。在一些具體實例中,光柵中之每一者可在相應光柵層中及/或在相應波導板上。光柵中之每一者可為包括許多曝光之經多工光柵,且可用於以高效率將來自多個FOV範圍之顯示光耦合至波導中或至波導之外。舉例而言,曲線2150展示用於來自不同視場之光的第一VBG(例如,圖21A之VBG 2122)之繞射效率。曲線2160展示用於來自不同視場之光的第二VBG(例如,圖21A之VBG 2120)之繞射效率。曲線2170展示用於來自不同視場之光的第三VBG(例如,圖21A之VBG 2124)之繞射效率。以堆疊配置之第一、第二及第三VBG可以高效率更均一地繞射全視場(例如,自約-20°至約20°)中之光。第一VBG、第二VBG及第三VBG可用於耦合具有相同顏色或不同顏色之顯示光。VBG之不同集合可用於覆蓋不同顏色之顯示光之全視場。
圖22A說明根據某些具體實例之包括波導顯示器2230的近眼顯示器(NED)裝置2200之實例。NED裝置2200可為本文中所揭示之近眼顯示器120、擴增實境系統500或另一類型之波導顯示器的實例。NED裝置2200可包括光源2210、投影光學件2220及波導顯示器2230。光源2210可包括用於不同顏色之光發射器之多個面板,諸如紅光發射器2212之面板、綠光發射器2214之面板及藍光發射器2216之面板。紅光發射器2212組織成陣列;綠光發射器2214組織成陣列;且藍光發射器2216組織成陣列。光源2210中之光發射器之尺寸及間距可為小的。舉例而言,每一光發射器可具有小於2 μm(例如,約1.2 μm)之直徑,且間距可小於3 μm(例如,約2 μm)。因此,紅光發射器2212、綠光發射器2214及藍光發射器2216中之每一者中的光發射器之數目可等於或大於顯示影像中之像素之數目,諸如960×720、1280×720、1440×1080、1920×1080、2160×1080或2560×1080像素。因此,顯示影像可由光源2210同時產生。在NED裝置2200中可能不需要掃描元件。
在達到波導顯示器2230之前,由光源2210發射之光可由投影光學件2220調節,該投影光學件可包括透鏡陣列。投影光學件2220可使由光源2210發射之光準直或將該光聚集至波導顯示器2230。波導顯示器2230可包括分別用於將由紅光發射器2212、綠光發射器2214及藍光發射器2216發射之光耦合至波導顯示器2230中的三個輸入耦合器2232、2234及2236。耦合至波導顯示器2230中之光可例如經由如上文所描述之全內反射在波導顯示器2230內傳播。光柵2238可在兩個方向上擴展顯示光且將在波導顯示器2230內傳播之光的部分耦合至波導顯示器2230之外且朝向使用者的眼睛2290,如上文所描述。
圖22B說明根據某些具體實例之包括波導顯示器2280的近眼顯示器(NED)裝置2250之另一實例。在一些具體實例中,NED裝置2250可使用掃描鏡面2270將來自光源2240之光投影至使用者的眼睛2290可定位於其中之影像場。NED裝置2250可為近眼顯示器120、擴增實境系統500或另一類型之顯示裝置的實例。光源2240可包括一或多列或一或多行具有不同顏色之光發射器,諸如多列紅光發射器2242、多列綠光發射器2244及多列藍光發射器2246。舉例而言,紅光發射器2242、綠光發射器2244及藍光發射器2246可各自包括N個列,每一列包括例如2560個光發射器(像素)。紅光發射器2242組織成陣列;綠光發射器2244組織成陣列;且藍光發射器2246組織成陣列。在一些具體實例中,光源2240可包括用於每一顏色的單線光發射器。在一些具體實例中,光源2240可包括用於紅色、綠色及藍色中之每一者的多行光發射器,其中每一行可包括例如1080個光發射器。在一些具體實例中,光源2240中之光發射器之尺寸及/或間距可相對大(例如,約3至5 μm),且因此光源2240可能不包括用於同時產生全顯示影像之足夠光發射器。舉例而言,單一顏色之光發射器之數目可少於顯示影像中之像素(例如,2560×1080像素)之數目。由光源2240發射之光可為經準直或發散光束之集合。
在達到掃描鏡面2270之前,由光源2240發射之光可由諸如準直透鏡或自由形式光學元件2260之各種光學裝置來調節。自由形式光學元件2260可包括例如多面稜鏡或另一光摺疊元件,其可將由光源2240發射之光引導朝向掃描鏡面2270,諸如將由光源2240發射之光的傳播方向改變例如小於90°、約90°或大於90°。在一些具體實例中,自由形式光學元件2260可為可旋轉的以掃描光。掃描鏡面2270及/或自由形式光學元件2260可將由光源2240發射之光反射及投影至波導顯示器2280,該波導顯示器可包括用於將由光源2240發射之光耦合至波導顯示器2280中的光柵2282。舉例而言,光柵2282可包括用於每一顏色之相應輸入耦合器。耦合至波導顯示器2280中之光可例如經由如上文所描述之全內反射在波導顯示器2280內傳播。光柵2282亦可在兩個方向上擴展顯示光且將在波導顯示器2280內傳播之光的部分耦合至波導顯示器2280之外且朝向使用者的眼睛2290。
掃描鏡面2270可包括微機電系統(MEMS)鏡面或任何其他合適鏡面。掃描鏡面2270可旋轉以在一個或兩個維度中掃描。在掃描鏡面2270旋轉時,由光源2240發射之光可以不同角度經引導至波導顯示器2280之不同區域,使得全顯示影像可在每一掃描循環中經投影至波導顯示器2280上且由波導顯示器2280引導至使用者的眼睛2290。舉例而言,在其中光源2240包括用於一或多個列或行中之所有像素之光發射器的具體實例中,掃描鏡面2270可在行或列方向(例如,x或y方向)上旋轉以掃描影像。在其中光源2240包括用於一或多個列或行中之一些但非所有像素之光發射器的具體實例中,掃描鏡面2270可在列方向及行方向兩者(例如,x方向及y方向兩者)上旋轉以投影顯示影像(例如,使用光柵型掃描圖案)。
NED裝置2250可在預定義顯示週期中操作。顯示週期(例如,顯示循環)可指掃描或投影全影像之持續時間。舉例而言,顯示週期可為所要幀率之倒數。在包括掃描鏡面2270之NED裝置2250中,顯示週期亦可稱為掃描週期或掃描循環。光源2240引起之光產生可與掃描鏡面2270之旋轉同步。舉例而言,每一掃描循環可包括多個掃描步驟,其中光源2240可在每一相應掃描步驟中產生不同光圖案。在每一掃描循環中,在掃描鏡面2270旋轉時,顯示影像可經投影至波導顯示器2280及使用者的眼睛2290上。顯示影像之給定像素方位之實際顏色值及光強度(例如,亮度)可為在掃描週期期間照明該像素方位之三個顏色(例如,紅色、綠色及藍色)之光束的平均值。在完成掃描週期之後,掃描鏡面2270可回復至初始位置以投影下一顯示影像之前幾列的光,或可在反方向上或以掃描圖案旋轉以投影下一顯示影像之光,其中新的驅動信號集合可經饋送至光源2240。當掃描鏡面2270在每一掃描循環中旋轉時,可重複相同程序。因此,可在不同掃描循環中將不同影像投影至使用者的眼睛2290。
圖23A說明根據某些具體實例之包括用於三種不同顏色之三個投影儀的波導顯示器2300之實例中的光柵之第一集合之佈局。圖23B說明根據某些具體實例之包括用於三種不同顏色之三個投影儀的波導顯示器2300之實例中的光柵之第二集合之佈局。波導顯示器2300可為波導顯示器1800、2000或2200之實例,且可包括如上文所描述之兩個總成,其中圖23A可展示第一總成且圖23B可展示第二總成。第一總成可用於將來自三個顏色投影儀之用於一些視場之顯示光耦合至使用者的眼睛,而第二總成可用於將來自三個顏色投影儀之用於一些其他視場之顯示光耦合至使用者的眼睛。每一顏色投影儀可包括例如微LED陣列,其發射呈一種顏色之顯示光,如上文關於圖22A及22B所描述。三個顏色投影儀可包括例如紅色微LED陣列、綠色微LED陣列及藍色微LED陣列。每一微LED陣列可產生具有對應顏色之單色影像,且因此三個微LED陣列可產生彩色影像。
展示於圖23A中之波導顯示器2300的第一總成可包括波導2310(例如,基板)、三個輸入光柵2320、三個第一中間光柵2330、第二中間光柵2340及輸出光柵2350。三個輸入光柵2320中之每一者可用於將來自光源(例如,微LED陣列)之具有一種顏色之顯示光耦合至波導2310中。三個第一中間光柵2330中之每一者可用於將來自對應輸入光柵2320之顯示光引導朝向第二中間光柵2340,如上文所描述。第二中間光柵2340及輸出光柵2350可在兩個方向上擴展輸入光瞳且將顯示光輸送至使用者的眼睛。
展示於圖23B中之波導顯示器2300的第二總成可包括波導2312(例如,基板)、三個輸入光柵2322、三個第一中間光柵2332、第二中間光柵2342及輸出光柵2352。三個輸入光柵2322中之每一者可用於將來自光源(例如,微LED陣列)之具有一種顏色之顯示光耦合至波導2312中。三個第一中間光柵2332中之每一者可用於將來自對應輸入光柵2323之顯示光引導朝向第二中間光柵2342,如上文所描述。第二中間光柵2342及輸出光柵2352可在兩個方向上擴展輸入光瞳且將顯示光輸送至使用者的眼睛。
因為用於具有不同顏色之顯示光的單獨輸入光柵及/或第一中間光柵,每一輸入光柵及/或第一中間光柵可使用全像材料層之總體可實現折射率調變以實現具有相應顏色之顯示光的較高繞射效率。在各種具體實例中,波導顯示器2300可具有為不具有用於三種不同顏色之單獨投影儀及輸入光柵之波導顯示器的總體內耦合效率之約五至十倍的經改良總體內耦合效率。 V.   相位結構
上文所描述之光柵可最佳化以最大化所要路徑中之顯示光之功率。舉例而言,光柵形狀、傾斜角度、光柵週期、占空比、光柵高度或深度、折射率、折射率調變、外塗材料及跨越光柵的此等光柵參數之空間變化可經調整以改良將顯示光引導至所要方向之效率。此外,如相對於圖10A至11所描述,由輸入光柵耦合器耦合至波導中之顯示光可再次達到輸入光柵耦合器且可由輸入光柵耦合器部分地耦合至波導之外。因此,輸入光柵耦合器之總體輸入耦合效率可為低的。如上文所描述,在一些具體實例中,階梯結構及/或用於不同顏色之單獨光柵耦合器可幫助改良總體內耦合效率。此外,光柵耦合器可具有用於s偏振光及p偏振光之不同繞射效率。舉例而言,光柵耦合器可具有用於s偏振輸入光比用於p偏振輸入光更高之內耦合效率,且亦可具有用於s偏振光比用於p偏振光更高之外耦合效率。
根據某些具體實例,波導顯示器之效率可藉由控制顯示光束沿著其傳播路徑之偏振狀態來進一步改良。舉例而言,相位結構可耦合至波導且用於改變波導之表面處所反射的光之偏振狀態,使得反射光在達到偏振相依光柵耦合器時可較佳地朝向眼眶繞射或反射至所要方向以改良波導顯示器之總效率。
圖24A說明包括體積布拉格光柵耦合器之波導顯示器2400之實例。波導顯示器2400可包括基板2410內或兩個基板之間的VBG層2420。VBG層2420可包括輸入VBG 2422及輸出VBG 2424。在所說明實例中,輸入VBG 2422可反射地繞射入射光,且因此可充當反射式VBG。輸出VBG 2424可部分地將來自輸入VBG 2422之光反射地繞射至基板2410之外朝向波導顯示器2400之眼眶。
圖24B說明包括基板2432中之體積布拉格光柵2436的輸入耦合器2430之實例。VBG 2436可為輸入VBG 2422或輸出VBG 2424之實例。如所說明,VBG 2436可充當多個反射器,其強有力地反射具有特定波長且來自滿足布拉格條件之特定角度的光。透射式VBG及反射式VBG兩者可充當多層反射器。取決於VBG 2436中之多個反射器之傾斜角度,反射光可或可不穿過VBG 2436,使得VBG 2436可透射地或反射地繞射入射光2438,如圖24B中所展示。在所說明實例中,反射繞射光可在基板2432之頂部表面2434處經反射且可再次達到VBG 2436。VBG 2436可至少部分地將反射光繞射至基板2432之外且因此可降低輸入耦合器2430之輸入耦合效率。多個反射器中之每一者之反射率可取決於入射光之偏振狀態及入射角,以及VBG之基礎折射率及折射率調變(Δn)。
圖24C說明在低折射率材料與高折射率材料之間的界面處具有不同入射角之s偏振及p偏振光的反射係數之實例。在所說明實例中,第一媒體之折射率為1.0,第二媒體之折射率為1.5,且s偏振或p偏振光自第一媒體達到兩個媒體之間的界面。圖24C中之曲線2440展示具有不同入射角之s偏振光的反射係數。曲線2442展示具有不同入射角之p偏振光之反射係數。曲線2442展示當入射角等於或接近布魯斯特(Brewster)角度時,p偏振光之反射係數為約零或接近零。因此,對於來自某些入射角之p偏振光,兩個媒體之間的界面處之反射率可極低。
圖24D說明在高折射率材料與低折射率材料之間的界面處具有不同入射角之s偏振及p偏振光的反射係數之實例。在所說明實例中,第一媒體之折射率為1.5,第二媒體之折射率為1.0,且s偏振或p偏振光或p偏振光自第一媒體達到兩個媒體之間的界面。圖24D中之曲線2444展示具有不同入射角之s偏振光的反射係數。曲線2446展示具有不同入射角之p偏振光之反射係數。如由曲線2444及2446所展示,當入射角大於臨界角時,入射光可完全經反射。當入射角小於臨界角時,具有等於或接近布魯斯特角之入射角的p偏振光之反射係數可接近零。因此,對於來自某些入射角之p偏振光,兩個媒體之間的界面處之反射率可極低。因此,在基於VBG之波導顯示器中,可能需要更改入射光之偏振狀態以較佳地繞射或透射入射光以便實現基於VBG之波導顯示器的高效率。
圖24E說明根據某些具體實例之包括VBG耦合器及相位結構2456的波導顯示器2402之實例之橫截面視圖。波導顯示器2402可類似於波導顯示器2400且可另外包括相位結構2456。如所說明,波導顯示器2402可包括在基板2450中或在兩個基板之間的VBG 2460及2462。VBG 2460可將入射顯示光(例如,s偏振光)反射地繞射朝向基板2450之頂部表面2452。頂部表面2452可將顯示光反射朝向基板2450之底部表面2454。基板2450之底部表面2454處的相位結構2456可接收經反射顯示光且將顯示光之偏振狀態改變為例如p偏振光。顯示光可在基板2450之底部表面2454或相位結構2456之底部表面處經反射。經反射顯示光可由於VBG 2462與VBG 2460相比較之不同定向及不同光柵向量而作為s偏振光入射於VBG 2462上,且可在較高繞射效率下由VBG 2462繞射至基板2450之外朝向眼眶。模擬結果展示,藉由使用相位結構2456,最大耦合效率可自(在不使用相位結構2456的情況下之)基線效率改良約42%。
圖24F說明根據某些具體實例之包括體積布拉格光柵2480及2482以及相位結構2490及2492的波導顯示器2404之實例之橫截面視圖。如所說明,波導顯示器2404可包括在基板2470中或在兩個基板之間的VBG 2480及2482。VBG 2480可將入射顯示光(例如,s偏振光)反射地繞射朝向基板2470之頂部表面。相位結構2492可耦合至基板2470之頂部表面,且可改變入射顯示光之偏振狀態。基板2470或相位結構2492之頂部表面可將顯示光反射朝向基板2470之底部表面。基板2470之底部表面處之相位結構2490可改變入射顯示光之偏振狀態。顯示光可在基板2470或相位結構2490之底部表面處經反射。經反射顯示光可入射於VBG 2482上,且可以高繞射效率由VBG 2482繞射至基板2470之外朝向眼眶。
在一些具體實例中,相位結構2490及2492可僅在基板2470之頂部表面及底部表面上之所選方位處。在一些具體實例中,相位結構2490或相位結構2492可用於波導顯示器。在一些具體實例中,相位結構2490及相位結構2492兩者可用於波導顯示器,其中所要相變或延遲可藉由兩個相位結構之組合來達成。舉例而言,為將s偏振光轉換為p偏振光,第一相位結構可將s偏振光轉換為圓形偏振光,且第二相位結構可將圓形偏振光轉換為p偏振光。在一些具體實例中,相位結構2490或相位結構2492之偏振更改特性可在不同方位處改變。
上文所描述之相位結構2456、2490及2492可包括可引起光束之兩個正交線性偏振分量(例如,s偏振分量及p偏振分量)之間的所要相位延遲之任何雙折射材料(例如,雙折射晶體、液晶或聚合物)或結構(例如,光柵、超構光柵(meta-grating)、微結構、奈米結構或其他次波長結構),使得入射光束可變為s偏振、p偏振、圓形偏振或橢圓偏振射束。在一個實例中,相位結構2456、2490或2492可包括具有所要相位延遲之波板,諸如四分之一波板(QWP)或具有另一相位延遲之波板。相位結構可置放於波導顯示器中之各種方位處,諸如輸入耦合器區處、輸入耦合器與輸出耦合器之間、輸出耦合器區處或任何組合。
圖25A說明根據某些具體實例之包括VBG耦合器及相位結構的波導顯示器2500之實例之輸入區的橫截面視圖。如所說明,波導顯示器2500可包括在波導2510中或在兩個基板之間的輸入光柵2520及第一中間光柵2530。輸入光柵2520可為上文所描述之輸入光柵的實例,且第一中間光柵2530可為上文所描述之第一中間光柵的實例。輸入光柵2520可將入射顯示光反射地繞射朝向波導2510之頂部表面。波導2510之頂部表面可將顯示光反射朝向波導2510之底部表面。波導2510之底部表面2514處之相位結構2540可接收經反射顯示光且將顯示光之偏振狀態例如自s偏振光改變為p偏振光或自p偏振光改變為s偏振光。顯示光可在波導2510之底部表面或相位結構2540之底部表面處經反射。經反射p偏振顯示光可再次入射於輸入光柵2520上,但可最低限度地由輸入光柵2520繞射。p偏振顯示光可在波導2510之頂部表面處經反射且由於第一中間光柵2530與輸入光柵2520相比較之不同定向及不同光柵向量而作為s偏振光達到第一中間光柵2530,且可以較高繞射效率由第一中間光柵2530繞射至第二中間光柵。
圖25B說明根據某些具體實例之包括VBG耦合器及相位結構2540的波導顯示器2500之實例之俯視圖。如所說明,除了輸入光柵2520、相位結構2540及第一中間光柵2530之外,波導顯示器2500亦可包括第二中間光柵2550及輸出光柵2560。光柵2550及2560中之每一者可為反射式VBG或透射式VBG。如上文關於圖9所描述,第二中間光柵2550可接收由第一中間光柵2530繞射之顯示光且在一個方向(例如,大致x方向)上複製輸入光瞳且將顯示光引導朝向輸出光柵2560。輸出光柵2560可在第二方向(例如,大致y方向)上複製輸入光瞳且將顯示光引導朝向眼眶2570。
在所說明實例中,相位結構2540展示為在輸入光柵2520及/或第一中間光柵2530定位於其中之區處,以將耦合至波導2510中的顯示光之偏振狀態例如自p偏振改變為s偏振或自s偏振改變為p偏振。在一些其他具體實例中,相位結構2540亦可在第二中間光柵2550及/或輸出光柵2560定位於其中之區處,以在其在波導2510內傳播期間改變顯示光之偏振狀態。
圖26A說明根據某些具體實例之基於體積布拉格光柵之波導顯示器2600的實例之模擬結果。波導顯示器2600可為波導顯示器900之實例。圖26A展示由輸入光柵(例如,輸入光柵910)耦合至波導中且隨後由第一中間光柵(例如,第一中間光柵920)引導至第二中間光柵(例如,第二中間光柵930)之顯示光束。波導顯示器2600之內耦合效率可在顯示光由第一中間光柵繞射之後及在顯示光達到第二中間光柵之前經量測。
圖26B說明根據某些具體實例之包括體積布拉格光柵及相位結構的波導顯示器2605之實例之模擬結果。波導顯示器2605可為波導顯示器2500之實例,其中相位結構(例如,相位結構2540)可定位於輸入光柵(例如,輸入光柵2520)及第一中間光柵(例如,第一中間光柵2530)定位於其中之區處。圖26B展示由輸入光柵耦合至波導中且隨後由第一中間光柵引導至第二中間光柵(例如,第二中間光柵2550)之顯示光束。波導顯示器2605之內耦合效率可在顯示光由第一中間光柵繞射之後及在顯示光達到第二中間光柵之前經量測。圖26B展示顯示光束之強度在第一中間光柵之後可比展示於圖26A中之強度高得多。
圖27說明根據某些具體實例之包括階梯結構2720及相位結構2750的波導顯示器2700之實例之一部分。如波導顯示器1300,波導顯示器2700可包括波導2710及形成於波導2710中之第一中間光柵2740。階梯結構2720可接合至波導2710。階梯結構2720可包括如上文關於例如圖13A、13B、13D及17A至17F所描述的階梯基板之頂部或底部上之輸入光柵2730,以減少顯示光藉由輸入光柵2730至波導2710之外的非所要耦合且減少FOV裁剪。此外,如上文關於圖24C至25B所描述之相位結構2750可形成於波導2710之底部或頂部表面處,以進一步改良波導顯示器2700之內耦合效率。在圖27中所展示之實例中,輸入光柵2730可形成於階梯結構2720之頂部上,且階梯基板可具有接近輸入光柵2730之大小的大小(例如,具有圓形形狀)。
圖28A說明根據某些具體實例之包括用於不同顏色之單獨投影儀及輸入光柵耦合器的波導顯示器2800之實例。波導顯示器2800可類似於波導顯示器2300且可包括一或多個總成。圖28A展示一或多個總成中之一者。投影儀可包括三個投影儀。每一投影儀可包括例如微LED陣列,其發射呈一種顏色之顯示光,如上文關於圖22A及22B所描述。三個投影儀可包括例如紅色微LED陣列、綠色微LED陣列及藍色微LED陣列。每一微LED陣列可產生具有對應顏色之單色影像,其中三個單色影像之組合可形成彩色影像。波導顯示器2800可包括波導2810(例如,基板)、多個(例如,三個)輸入光柵2820、多個第一中間光柵2830(其可彼此分離或可在連續區中)、第二中間光柵2840及輸出光柵2850。多個輸入光柵2820中之每一者可用於將來自光源(例如,微LED陣列)之具有一種顏色之顯示光耦合至波導2810中。多個第一中間光柵2830中之每一者可用於將來自輸入光柵2820之顯示光引導朝向第二中間光柵2840,如上文所描述。第二中間光柵2840及輸出光柵2850可在兩個方向上擴展輸入光瞳且將顯示光耦合至使用者的眼睛。
圖28B說明根據某些具體實例之包括用於不同顏色之單獨投影儀及輸入光柵以及相位結構2860的波導顯示器2802之實例。波導顯示器2802可類似於波導顯示器2800,且可包括一或多個總成。一或多個總成中之一者可包括波導2812(例如,基板)、多個(例如,三個)輸入光柵2822、多個第一中間光柵2832(其彼此分離或可在連續區中)、第二中間光柵2842及輸出光柵2852。投影儀可包括三個投影儀。每一投影儀可包括例如發射呈一種顏色之顯示光的微LED陣列。三個投影儀可包括例如紅色微LED陣列、綠色微LED陣列及藍色微LED陣列。每一微LED陣列可產生具有對應顏色之單色影像,其中三個單色影像之組合可形成彩色影像。多個輸入光柵2822中之每一者可用於將來自光源(例如,微LED陣列)之具有一種顏色之顯示光耦合至波導2812中。多個第一中間光柵2832中之每一者可用於將來自輸入光柵2822之顯示光引導朝向第二中間光柵2842,如上文所描述。第二中間光柵2842及輸出光柵2852可在兩個方向上擴展輸入光瞳且將顯示光耦合至使用者的眼睛。
波導顯示器2802亦可包括如上文所描述之額外相位結構2860。相位結構2540可在輸入光柵2822及/或第一中間光柵2832定位於其中之區處,以將耦合至波導2812中之顯示光的偏振狀態例如自p偏振改變為s偏振或自s偏振改變為p偏振。在一些其他具體實例中,相位結構2860亦可在第二中間光柵2842及/或輸出光柵2552定位於其中之區處,以在其在波導2812內傳播期間改變顯示光之偏振狀態。
圖29A說明根據某些具體實例之包括多個投影儀及多個階梯結構上之多個輸入光柵2930的波導顯示器2900之實例之輸入區。每一投影儀可包括例如微LED陣列,其發射呈一種顏色之顯示光,如上文關於圖22A及22B所描述。三個顏色投影儀可包括例如紅色微LED陣列、綠色微LED陣列及藍色微LED陣列。每一微LED陣列可產生具有對應顏色之單色影像,且因此三個微LED陣列可組合地產生彩色影像。波導顯示器2900可包括波導2910(例如,基板)、各自包括輸入光柵2930之三個階梯結構2920及可彼此分離或可在連續區中之三個第一中間光柵2940。階梯結構2920之形狀及厚度可經選擇以最佳化輸入效率且減少FOV裁剪,如上文所描述。如上文亦描述,階梯結構2920可或可不包括階梯基板,該階梯基板之厚度可為階梯結構2920之總所要厚度與用於輸入光柵2930之全像材料層之厚度之間的差值。每一輸入光柵2930可用於將來自光源(例如,微LED陣列)之具有一種顏色之顯示光耦合至波導2910中。每一第一中間光柵2940可用於將來自輸入光柵2930之顯示光引導朝向第二中間光柵(例如,第二中間光柵2340、2840或2842,圖29A中未展示),如上文所描述。第二中間光柵及輸出光柵(例如,輸出光柵2350、2850或2852,圖29A中未展示)可在兩個方向上擴展輸入光瞳且將顯示光耦合至使用者的眼睛。
圖29B說明根據某些具體實例之包括多個投影儀、多個階梯結構2922上之多個輸入光柵2932及相位結構2950的波導顯示器2902之實例之輸入區。波導顯示器2902可類似於波導顯示器2900,且可包括波導2912(例如,基板)、各自包括輸入光柵2932之三個階梯結構2922及可彼此分離或可在連續區中之三個第一中間光柵2942。階梯結構2922之形狀及厚度可經選擇以最佳化輸入效率且減少FOV裁剪,如上文所描述。如上文亦描述,階梯結構2922可或可不包括階梯基板,該階梯基板之厚度可為階梯結構2922之總所要厚度與用於輸入光柵2932之全像材料層之厚度之間的差值。每一輸入光柵2932可用於將來自光源(例如,微LED陣列)之具有一種顏色之顯示光耦合至波導2912中。每一第一中間光柵2942可用於自輸入光柵2932接收顯示光且將該顯示光重新引導朝向第二中間光柵(例如,第二中間光柵2340、2840或2842,圖29B中未展示),如上文所描述。第二中間光柵及輸出光柵(例如,輸出光柵2350、2850或2852,圖29B中未展示)可在兩個方向上擴展輸入光瞳且將顯示光耦合至使用者的眼睛。
波導顯示器2902亦可包括如上文所描述之額外相位結構2950。相位結構2950可在輸入光柵2932及/或第一中間光柵2942定位於其中之區處,以將耦合至波導2912中之顯示光的偏振狀態例如自p偏振改變為s偏振或自s偏振改變為p偏振。在一些其他具體實例中,相位結構2950亦可在第二中間光柵及/或輸出光柵定位於其中之區處,以在其在波導2912內傳播期間改變顯示光之偏振狀態。
上文所描述之相位結構(例如,相位結構2456、2490、2492、2540、2750、2860或2950)可包括可引起兩個正交線性偏振分量(例如,s偏振光及p偏振光)之間的所要相位延遲之任何雙折射材料(例如,雙折射晶體、液晶或聚合物)或結構(例如,光柵、超構光柵、奈米結構或其他次波長結構),使得入射光束可變為s偏振、p偏振、圓形偏振或橢圓偏振射束。
在一些具體實例中,為了減少波導顯示器之相位結構與諸如基板之鄰近組件之間的界面處之損耗(例如,由於非所要菲涅耳(Fresnel)反射),可能需要使用具有接近鄰近組件之折射率之有效折射率的相位結構。在其中基板具有高折射率(例如,> 2.0,諸如2.5)之一些具體實例中,可能難以找到具有匹配折射率之雙折射材料。在此類情況下,光柵或其他次波長結構可用於實現相位延遲、偏振轉換及折射率匹配,使得基板之折射率與相位結構之有效折射率之間的差異可小於約0.35、小於約0.2、小於約0.1或小於約0.05。
本發明之具體實例可用於實施人工實境系統之組件,或可結合人工實境系統實施。人工實境係在呈現給使用者之前已以某一方式調整之實境形式,其可包括例如虛擬實境(VR)、擴增實境(AR)、混合實境(MR)、混雜實境或其某一組合及/或衍生物。人工實境內容可包括完全產生內容或與所捕捉(例如,真實世界)內容組合之所產生內容。人工實境內容可包括視訊、音訊、觸覺回饋或其某一組合,且其中之任一者可在單一通道中或在多個通道中呈現(諸如,對觀看者產生三維效應之立體視訊)。另外,在一些具體實例中,人工實境亦可與用於例如在人工實境中產生內容及/或以其他方式用於人工實境中(例如,在人工實境中執行活動)之應用程式、產品、配件、服務或其某一組合相關聯。提供人工實境內容之人工實境系統可實施於各種平台上,包括連接至主機電腦系統之頭戴式顯示器(HMD)、獨立式HMD、行動裝置或計算系統,或能夠將人工實境內容提供至一或多個觀看者之任何其他硬體平台。
圖30為用於實施本文中所揭示之實例中之一些的實例近眼顯示器(例如,HMD裝置)之電子系統3000之實例的簡化方塊圖。電子系統3000可用作HMD裝置或上文所描述之其他近眼顯示器的電子系統。在此實例中,電子系統3000可包括一或多個處理器3010及記憶體3020。處理器3010可經組態以執行用於在數個組件處執行操作之指令,且可為例如適合於在攜帶型電子裝置內實施之通用處理器或微處理器。處理器3010可與電子系統3000內之複數個組件通信耦合。為了實現此通信耦合,處理器3010可跨越匯流排3040與其他所說明之組件通信。匯流排3040可為適於在電子系統3000內傳遞資料之任一子系統。匯流排3040可包括複數個電腦匯流排及用以傳遞資料之額外電路。
記憶體3020可耦合至處理器3010。在一些具體實例中,記憶體3020可提供短期儲存及長期儲存兩者,且可劃分成若干單元。記憶體3020可為揮發性的,諸如靜態隨機存取記憶體(SRAM)及/或動態隨機存取記憶體(DRAM),及/或為非揮發性的,諸如唯讀記憶體(ROM)、快閃記憶體及類似者。此外,記憶體3020可包括可移除式儲存裝置,諸如安全數位(SD)卡。記憶體3020可提供電腦可讀取指令、資料結構、程式模組及用於電子系統3000之其他資料的儲存。在一些具體實例中,記憶體3020可分佈至不同硬體模組中。指令集及/或程式碼可儲存於記憶體3020上。這些指令可呈可由電子系統3000執行之可執行程式碼之形式,及/或可呈源程式碼及/或可安裝程式碼之形式,該源程式碼及/或可安裝程式碼在電子系統3000上編譯及/或安裝於電子系統3000上(例如,使用多種常用的編譯器、安裝程式、壓縮/解壓公用程式等中之任一者)後可呈可執行程式碼之形式。
在一些具體實例中,記憶體3020可儲存複數個應用程式模組3022至3024,該複數個應用程式模組可包括任何數目個應用程式。應用程式之實例可包括遊戲應用程式、會議應用程式、視訊播放應用程式或其他合適之應用程式。應用程式可包括深度感測功能或眼睛追蹤功能。應用程式模組3022至3024可包括待由處理器3010執行之特定指令。在一些具體實例中,某些應用程式或應用程式模組3022至3024之部分可由其他硬體模組3080執行。在某些具體實例中,記憶體3020可另外包括安全記憶體,其可包括額外安全控制以防止對安全資訊之複製或其他未授權存取。
在一些具體實例中,記憶體3020可包括其中裝載之作業系統3025。作業系統3025可操作以啟動由應用程式模組3022至3024提供之指令的執行及/或管理其他硬體模組3080,以及與可包括一或多個無線收發器之無線通信子系統3030介接。作業系統3025可適用於跨越電子系統3000之組件執行其他操作,包括執行緒處理(threading)、資源管理、資料儲存控制及其他類似功能性。
無線通信子系統3030可包括例如紅外線通信裝置、無線通信裝置及/或晶片組(諸如,Bluetooth®裝置、IEEE 802.11裝置、Wi-Fi裝置、WiMax裝置、蜂巢式通信設施等)及/或類似通信介面。電子系統3000可包括用於無線通信之一或多個天線3034,作為無線通信子系統3030之部分或作為耦合至該系統之任何部分的單獨組件。取決於所要功能性,無線通信子系統3030可包括單獨收發器以與基地收發器台及其他無線裝置及存取點通信,其可包括與諸如無線廣域網路(WWAN)、無線區域網路(WLAN)或無線個域網路(WPAN)之不同資料網路及/或網路類型通信。WWAN可為例如WiMax(IEEE 802.16)網路。WLAN可為例如IEEE 802.11x網路。WPAN可為例如藍芽網路、IEEE 802.15x或一些其他類型之網路。本文中所描述之技術亦可用於WWAN、WLAN及/或WPAN之任何組合。無線通信子系統3030可准許與網路、其他電腦系統及/或本文所描述之任何其他裝置交換資料。無線通信子系統3030可包括用於使用天線3034及無線鏈路3032傳輸或接收資料的構件,該資料諸如HMD裝置之標識符、位置資料、地理映射、熱圖、相片或視訊。無線通信子系統3030、處理器3010及記憶體3020可一起包含用於執行本文中所揭示之一些功能的構件中之一或多者的至少一部分。
電子系統3000之具體實例亦可包括一或多個感測器3090。感測器3090可包括例如影像感測器、加速度計、壓力感測器、溫度感測器、近接感測器、磁力計、陀螺儀、慣性感測器(例如,組合加速度計與陀螺儀之模組)、周圍光感測器或可操作以提供感測輸出及/或接收感測輸入之任何其他類似模組,諸如深度感測器或位置感測器。舉例而言,在一些實施方案中,感測器3090可包括一或多個慣性量測單元(IMU)及/或一或多個位置感測器。IMU可基於自位置感測器中之一或多者接收到的量測信號而產生校準資料,該校準資料指示相對於HMD裝置之初始位置的HMD裝置之估計位置。位置感測器可回應於HMD裝置之運動而產生一或多個量測信號。位置感測器之實例可包括但不限於一或多個加速度計、一或多個陀螺儀、一或多個磁力計、偵測運動之另一合適類型的感測器、用於IMU之誤差校正的一種類型之感測器,或其某一組合。這些位置感測器可位於IMU外部、IMU內部,或在外部與在內部之某一組合。至少一些感測器可使用結構化之光圖案以用於感測。
電子系統3000可包括顯示模組3060。顯示模組3060可為近眼顯示器,且可以圖形方式將來自電子系統3000之資訊(諸如影像、視訊及各種指令)呈現給使用者。此資訊可源自一或多個應用程式模組3022至3024、虛擬實境引擎3026、一或多個其他硬體模組3080、其組合,或用於為使用者解析圖形內容(例如,藉由作業系統3025)之任何其他合適的構件。顯示模組3060可使用液晶顯示器(LCD)技術、發光二極體(LED)技術(包括例如OLED、ILED、μLED、AMOLED、TOLED等)、發光聚合物顯示器(LPD)技術,或某一其他顯示器技術。
電子系統3000可包括使用者輸入/輸出模組3070。使用者輸入/輸出模組3070可允許使用者將動作請求發送至電子系統3000。動作請求可為執行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或執行應用程式內之特定動作。使用者輸入/輸出模組3070可包括一或多個輸入裝置。實例輸入裝置可包括觸控式螢幕、觸控板、麥克風、按鈕、撥號盤、開關、鍵盤、滑鼠、遊戲控制器或用於接收動作請求及將所接收動作請求傳達至電子系統3000之任何其他合適的裝置。在一些具體實例中,使用者輸入/輸出模組3070可根據自電子系統3000接收到之指令將觸覺回饋提供至使用者。舉例而言,可在接收到動作請求或已執行動作請求時提供觸覺回饋。
電子系統3000可包括攝影機3050,該攝影機可用於拍攝使用者之相片或視訊,例如用於追蹤使用者的眼睛位置。攝影機3050亦可用於拍攝環境之相片或視訊,例如用於VR、AR或MR應用。攝影機3050可包括例如具有數百萬或數千萬個像素之互補金屬氧化物半導體(CMOS)影像感測器。在一些實施方案中,攝影機3050可包括可用於捕捉3-D影像之兩個或更多個攝影機。
在一些具體實例中,電子系統3000可包括複數個其他硬體模組3080。其他硬體模組3080中之每一者可為電子系統3000內之實體模組。雖然其他硬體模組3080中之每一者可永久地經組態為結構,但其他硬體模組3080中之一些可臨時經組態以執行特定功能或臨時經啟動。其他硬體模組3080之實例可包括例如音訊輸出及/或輸入模組(例如,麥克風或揚聲器)、近場通信(NFC)模組、可充電電池、電池管理系統、有線/無線電池充電系統等。在一些具體實例中,可用軟體實施其他硬體模組3080之一或多個功能。
在一些具體實例中,電子系統3000之記憶體3020亦可儲存虛擬實境引擎3026。虛擬實境引擎3026可執行電子系統3000內之應用程式,且自各種感測器接收HMD裝置之位置資訊、加速度資訊、速度資訊、所預測的將來位置或其某一組合。在一些具體實例中,由虛擬實境引擎3026接收之資訊可用於為顯示模組3060產生信號(例如,顯示指令)。舉例而言,若所接收的資訊指示使用者已看向左邊,則虛擬實境引擎3026可產生用於HMD裝置之內容,該內容反映使用者在虛擬環境中之移動。另外,虛擬實境引擎3026可回應於自使用者輸入/輸出模組3070接收到之動作請求而執行應用程式內之動作,並將回饋提供至使用者。所提供回饋可為視覺回饋、聽覺回饋或觸覺回饋。在一些實施方案中,處理器3010可包括可執行虛擬實境引擎3026之一或多個GPU。
在各種實施方案中,上文所描述之硬體及模組可實施於可使用有線或無線連接彼此通信之單一裝置或多個裝置上。舉例而言,在一些實施方案中,諸如GPU、虛擬實境引擎3026及應用程式(例如,追蹤應用程式)之一些組件或模組可實施於控制台上,該控制台與頭戴式顯示裝置分離。在一些實施方案中,一個控制台可連接至或支援超過一個HMD。
在替代組態中,不同及/或額外組件可包括於電子系統3000中。類似地,組件中之一或多者的功能性可按不同於上文所描述之方式的方式分佈在組件當中。舉例而言,在一些具體實例中,電子系統3000可經修改以包括其他系統環境,諸如AR系統環境及/或MR環境。
上文所論述之方法、系統及裝置為實例。在適當時各種實施例可省略、取代或添加各種程序或組件。舉例而言,在替代性組態中,可按不同於所描述次序之次序來執行所描述之方法,及/或可添加、省略及/或組合各種階段。此外,在各種其他具體實例中可組合關於某些具體實例所描述之特徵。可以類似方式組合具體實例之不同態樣及元件。此外,技術發展,且因此許多元件為實例,這些實例並不將本發明之範圍限制於彼等特定實例。
在描述中給出特定細節從而提供對具體實例之透徹理解。然而,可在無此等特定細節之情況下實踐具體實例。舉例而言,已在無不必要細節的情況下展示熟知之電路、程序、系統、結構及技術,以便避免混淆具體實例。本說明書僅提供例示性具體實例,且並不意欲限制本發明之範圍、可應用性或組態。實際上,具體實例之隨後描述將為熟習此項技術者提供能夠實施各種具體實例之描述。可在不脫離本發明之精神及範圍的情況下對元件之功能及配置作出各種改變。
此外,將一些具體實例描述為描繪為流程圖或方塊圖之程序。儘管每一者可將操作描述為依序程序,但操作中之許多者可並行地或同時執行。此外,可重新配置操作之次序。程序可具有未包括於圖式中之額外步驟。此外,可藉由硬體、軟體、韌體、中間軟體、微碼、硬體描述語言或其任何組合實施方法之具體實例。當實施於軟體、韌體、中間軟體或微碼中時,用以執行相關聯任務之程式碼或碼段可儲存於諸如儲存媒體之電腦可讀取媒體中。處理器可執行相關聯任務。
熟習此項技術者將顯而易見,可根據特定要求作出實質變化。舉例而言,亦可使用定製硬體或專用硬體,及/或可用硬體、軟體(包括攜帶型軟體,諸如小程式等)或其兩者來實施特定元件。此外,可採用與其他計算裝置(諸如,網路輸入/輸出裝置)之連接。
參考附圖,可包括記憶體之組件可包括非暫時性機器可讀取媒體。術語「機器可讀取媒體」及「電腦可讀取媒體」可指代參與提供使得機器以特定方式操作之資料的任何儲存媒體。在上文所提供之具體實例中,各種機器可讀取媒體可涉及將指令/程式碼提供至處理單元及/或其他裝置以供執行。另外或替代地,機器可讀取媒體可用於儲存及/或攜載此類指令/程式碼。在許多實施方案中,電腦可讀取媒體係實體及/或有形儲存媒體。此類媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。電腦可讀取媒體之常見形式包括例如磁性及/或光學媒體,諸如緊密光碟(CD)或數位化通用光碟(DVD);打孔卡;紙帶;具有孔圖案之任何其他實體媒體;RAM;可程式化唯讀記憶體(PROM);可抹除可程式化唯讀記憶體(EPROM);FLASH-EPROM;任何其他記憶體晶片或卡匣;如下文中所描述之載波;電腦可自其讀取指令及/或程式碼之任何其他媒體。電腦程式產品可包括可表示程序、函式、子程式、程式、常式、應用程式(App)、次常式、模組、軟體套件、類別,或指令、資料結構或程式陳述式之任何組合的程式碼及/或機器可執行指令。
熟習此項技術者將瞭解,可使用多種不同技藝及技術中之任一者來表示用於傳達本文所描述之訊息的資訊及信號。舉例而言,可利用電壓、電流、電磁波、磁場或磁性粒子、光場或光學粒子或其任何組合來表示在貫穿以上描述中可能引用之資料、指令、命令、資訊、信號、位元、符號及晶片。
如本文所使用,術語「及」及「或」可包括多種含義,這些含義亦預期至少部分地取決於使用此等術語之上下文。典型地,「或」若用以關聯清單,諸如A、B或C,則意欲意謂A、B及C,此處以包括性意義使用,以及A、B或C,此處以排他性意義使用。此外,如本文中所使用,術語「一或多個」可用於以單數形式描述任何特徵、結構或特性,或可用以描述特徵、結構或特性之一些組合。然而,應注意,此僅為說明性實例且所主張之主題不限於此實例。此外,術語「中之至少一者」若用以關聯一清單,諸如A、B或C,則可解譯為意謂A、B及/或C之任何組合,諸如A、AB、AC、BC、AA、ABC、AAB、AABBCCC等。
此外,雖然已使用硬體與軟體之特定組合描述了某些具體實例,但應認識到,硬體與軟體之其他組合亦為可能的。可僅以硬體或僅以軟體或使用其組合來實施某些具體實例。在一個實例中,可藉由電腦程式產品來實施軟體,該電腦程式產品含有電腦程式碼或指令,這些電腦程式碼或指令可由一或多個處理器執行以用於執行本發明中所描述之步驟、操作或程序中之任一者或全部,其中電腦程式可儲存於非暫時性電腦可讀取媒體上。本文中所描述之各種程序可以任何組合實施於相同處理器或不同處理器上。
在裝置、系統、組件或模組經描述為經組態以執行某些操作或功能之情況下,可例如藉由設計電子電路以執行操作、藉由程式化可程式化電子電路(諸如,微處理器)以執行操作(諸如,藉由執行電腦指令或程式碼,或經程式化以執行儲存於非暫時性記憶體媒體上之程式碼或指令的處理器或核心)或其任何組合而實現此組態。程序可使用多種技術來通信,包括但不限於用於程序間通信之習知技術,且不同對程序可使用不同技術,或同一對程序可在不同時間使用不同技術。
因此,應在說明性意義上而非限制性意義上看待說明書及圖式。然而,將顯而易見,可在不脫離如申請專利範圍中所闡述的更廣泛精神及範圍之情況下對本發明做出添加、減去、刪除及其他修改及改變。因此,儘管已描述特定具體實例,但此等具體實例並不意欲為限制性的。各種修改及等效物在以下申請專利範圍之範圍內。
100:人工實境系統環境 110:控制台 112:應用程式商店 114:耳機追蹤模組 116:人工實境引擎 118:眼睛追蹤模組 120:近眼顯示器 122:顯示電子件 124:顯示光學件 126:*** 128:位置感測器 130:眼動追蹤單元 132:慣性量測單元 140:輸入/輸出介面 150:外部成像裝置 200:HMD裝置 220:主體 223:底側 225:前側 227:左側 230:頭部綁帶 300:近眼顯示器 305:框架 310:顯示器 330:照明器 340:高解析度攝影機 350a:感測器 350b:感測器 350c:感測器 350d:感測器 350e:感測器 400:光學系統 410:影像源 420:投影儀光學件 430:出射光瞳 490:眼睛 492:視網膜 494:中央窩 500:光學透視擴增實境系統 510:投影儀 512:影像源 514:投影儀光學件 515:組合器 520:基板 530:輸入耦合器 540:輸出耦合器 550:光 560:所提取光 590:眼睛 595:眼眶 600:光學透視擴增實境系統 612:影像源 614:投影儀光學件 630:基板 640:輸入耦合器 650:輸出耦合器 710:曲線 715:曲線 720:曲線 725:曲線 800:波導顯示器 805:輸入光瞳 810:基板 812:第一表面 814:第二表面 820:輸入耦合器 830:第一輸出光柵 832:線 834:線 840:第二輸出光柵 850:出射區 860:聚集式出射光瞳 862:出射光瞳 900:基於體積布拉格光柵之波導顯示器 905:波導 910:輸入光柵 920:第一中間光柵 922:線 930:第二中間光柵 940:輸出光柵 950:出射區 1000:波導顯示器 1005:入射光束 1010:波導 1012:頂部表面 1014:底部表面 1020:光柵耦合器 1030:入射光束 1032:第一繞射階 1034:光束 1036:光束 1040:繞射階 1042:光束 1044:光束 1100:波導顯示器 1110:基板 1112:頂部表面 1114:底部表面 1120:光柵耦合器 1122:第一區 1124:第二區 1126:第三區 1130:光線 1132:部分 1134:光線 1140:光線 1142:部分 1150:輸入光線 1152:部分 1200:波導顯示器 1210:波導 1220:輸入光柵 1230:第一中間光柵 1232:VBG 1240:第二中間光柵 1250:輸出光柵 1260:出射區 1300:波導顯示器 1302:投影儀 1304:稜鏡 1306:波導 1310:波導 1320:全像材料層 1322:輸入光柵 1330:階梯結構 1332:階梯基板 1340:第一中間光柵 1400:基於VBG之波導顯示器 1410:基板 1420:輸入光柵 1430:第一中間光柵 1440:第二中間光柵 1442:區 1450:輸出光柵 1460:出射區 1500:圖表 1510:資料點 1520:資料點 1530:資料點 1610:曲線 1620:曲線 1710:基板 1712:基板 1714:基板 1715:基板 1716:基板 1718:基板 1720:輸入光柵 1722:輸入光柵 1724:輸入光柵 1725:輸入光柵 1726:輸入光柵 1728:輸入光柵 1730:階梯結構 1732:階梯結構 1734:階梯結構 1735:階梯結構 1736:階梯結構 1738:階梯結構 1740:第一中間光柵 1742:第一中間光柵 1744:第一中間光柵 1745:第一中間光柵 1746:第一中間光柵 1748:第一中間光柵 1800:波導顯示器 1810:第一總成 1812:第一基板 1814:全像光柵層 1816:第二基板 1820:第二總成 1822:第一基板 1824:全像光柵層 1826:第二基板 1830:間隔件 1900:基於體積布拉格光柵之波導顯示器 1910:波導 1920:投影儀光學件 1922:輸入光柵 1930:中間光柵 1932:第一部分 1934:第二部分 1940:輸出光柵 2000:基於體積布拉格光柵之波導顯示器 2010:波導 2012:第一總成 2014:第二總成 2020:投影儀光學件 2022:輸入光柵 2030:中間光柵 2032:第一部分 2034:第二部分 2040:輸出光柵 2100:基於體積布拉格光柵之波導顯示器 2110:基板 2112:基板 2114:基板 2120:VBG 2122:VBG 2124:VBG 2130:光 2132:光 2134:光 2140:光線 2142:光線 2144:光線 2150:曲線 2160:曲線 2170:曲線 2200:近眼顯示器裝置 2210:光源 2212:紅光發射器 2214:綠光發射器 2216:藍光發射器 2220:投影光學件 2230:波導顯示器 2232:輸入耦合器 2234:輸入耦合器 2236:輸入耦合器 2238:光柵 2240:光源 2242:紅光發射器 2244:綠光發射器 2246:藍光發射器 2250:近眼顯示器裝置 2260:自由形式光學元件 2270:掃描鏡面 2280:波導顯示器 2282:光柵 2290:眼睛 2300:波導顯示器 2310:波導 2312:波導 2320:輸入光柵 2322:輸入光柵 2330:第一中間光柵 2332:第一中間光柵 2340:第二中間光柵 2342:第二中間光柵 2350:輸出光柵 2352:輸出光柵 2400:波導顯示器 2402:波導顯示器 2404:波導顯示器 2410:基板 2420:VBG層 2422:輸入VBG 2424:輸出VBG 2430:輸入耦合器 2432:基板 2434:頂部表面 2436:體積布拉格光柵 2438:入射光 2440:曲線 2442:曲線 2444:曲線 2446:曲線 2450:基板 2452:頂部表面 2454:底部表面 2456:相位結構 2460:VBG 2462:VBG 2470:基板 2480:體積布拉格光柵 2482:體積布拉格光柵 2490:相位結構 2492:相位結構 2500:波導顯示器 2510:波導 2514:底部表面 2520:輸入光柵 2530:第一中間光柵 2540:相位結構 2550:第二中間光柵 2560:輸出光柵 2570:眼眶 2600:波導顯示器 2605:波導顯示器 2700:波導顯示器 2710:波導 2720:階梯結構 2730:輸入光柵 2740:第一中間光柵 2750:相位結構 2800:波導顯示器 2802:波導顯示器 2810:波導 2812:波導 2820:輸入光柵 2822:輸入光柵 2830:第一中間光柵 2832:第一中間光柵 2840:第二中間光柵 2842:第二中間光柵 2850:輸出光柵 2852:輸出光柵 2860:相位結構 2900:波導顯示器 2902:波導顯示器 2910:波導 2912:波導 2920:階梯結構 2922:階梯結構 2930:輸入光柵 2932:輸入光柵 2940:第一中間光柵 2942:第一中間光柵 2950:相位結構 3000:電子系統 3010:處理器 3020:記憶體 3022:應用程式模組 3024:應用程式模組 3025:作業系統 3026:虛擬實境引擎 3030:無線通信子系統 3032:無線鏈路 3034:天線 3040:匯流排 3050:攝影機 3060:顯示模組 3070:使用者輸入/輸出模組 3080:其他硬體模組 3090:感測器
在下文參考以下諸圖詳細地描述說明性具體實例。 [圖1]為根據某些具體實例的包括近眼顯示器系統之人工實境系統環境之實例的簡化方塊圖。 [圖2]為用於實施本文中所揭示之實例中之一些的呈頭戴式顯示器(HMD)裝置之形式的近眼顯示器系統之實例的透視圖。 [圖3]為用於實施本文中所揭示之實例中之一些的呈一副眼鏡之形式的近眼顯示器系統之實例的透視圖。 [圖4]為說明近眼顯示器系統中之光學系統之實例的簡圖。 [圖5]說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器的光學透視擴增實境系統之實例。 [圖6]說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器的光學透視擴增實境系統之實例。 [圖7A]說明反射式體積布拉格光柵(VBG)之實例的光譜頻寬及透射式表面起伏光柵(SRG)之實例的光譜頻寬。 [圖7B]說明反射式VBG之實例的角頻寬及透射式SRG之實例的角頻寬。 [圖8A]說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器及光柵的光學透視擴增實境系統之實例。 [圖8B]說明根據某些具體實例之包括二維複製出射光瞳之眼眶的實例。 [圖9]說明根據某些具體實例之用於出射光瞳擴展之具有光柵耦合器之波導顯示器的實例。 [圖10A]說明用於將顯示光耦合至波導顯示器中之光柵耦合器的實例。 [圖10B]說明藉由波導顯示器中之光柵耦合器之實例進行的非所要光繞射之實例。 [圖11]說明用於將顯示光耦合至波導顯示器之基板中之光柵耦合器的實例。 [圖12A]說明根據某些具體實例之改良波導顯示器之內耦合效率的方法之實例。 [圖12B]為根據某些具體實例之包括經配置以改良內耦合效率之光柵耦合器的波導顯示器之實例的俯視圖。 [圖12C]為根據某些具體實例之展示於圖12B中之波導顯示器的一部分之放大俯視圖。 [圖12D]為根據某些具體實例之展示於圖12B中之波導顯示器的一部分之放大側視圖。 [圖13A]為根據某些具體實例之包括用於改良內耦合效率之在階梯結構中之輸入光柵的波導顯示器之實例的俯視圖。 [圖13B]為根據某些具體實例之展示於圖13A中之波導顯示器的實例之側視圖。 [圖13C]說明根據某些具體實例之具有稜鏡耦合器之波導顯示器中的光瞳裁剪之實例。 [圖13D]包括根據某些具體實例之階梯結構之實例的透視圖。 [圖14]說明根據某些具體實例之包括用於第一FOV之光柵之第一集合的基於體積布拉格光柵之波導顯示器之實例。 [圖15]說明根據某些具體實例之包括階梯結構中之輸入光柵的波導顯示器之實例的最佳化結果。 [圖16A]說明根據某些具體實例之包括階梯結構之頂部上之光柵耦合器的波導顯示器之實例的階梯厚度最佳化結果。 [圖16B]說明根據某些具體實例之包括階梯結構之底部上之光柵耦合器的波導顯示器之實例的階梯厚度最佳化結果。 [圖17A至17C]說明根據某些具體實例之包括階梯結構之頂部上之光柵耦合器的波導顯示器之實例的階梯形狀最佳化結果。 [圖17D至17F]說明根據某些具體實例之包括階梯結構之底部上之光柵耦合器的波導顯示器之實例的階梯厚度最佳化結果。 [圖18]說明根據某些具體實例之包括體積布拉格光柵耦合器之波導顯示器的實例。 [圖19A]為根據某些具體實例之基於體積布拉格光柵之波導顯示器的實例之正視圖。 [圖19B]為根據某些具體實例之展示於圖19A中之基於體積布拉格光柵之波導顯示器的實例之側視圖。 [圖20A]為根據某些具體實例之包括多個聚合物層之基於體積布拉格光柵之波導顯示器的實例之正視圖。 [圖20B]為根據某些具體實例之展示於圖20A中之基於體積布拉格光柵之波導顯示器的實例之側視圖。 [圖21A]說明根據某些具體實例之包括用於不同視場之多個光柵層的基於體積布拉格光柵之波導顯示器之實例。 [圖21B]說明根據某些具體實例之基於體積布拉格光柵之波導顯示器之實例中的多個光柵之視場。 [圖22A]說明根據某些具體實例之包括波導顯示器的近眼顯示器裝置之實例。 [圖22B]說明根據某些具體實例之包括波導顯示器的近眼顯示器裝置之另一實例。 [圖23A]說明根據某些具體實例之包括用於三種不同顏色之三個投影儀的波導顯示器之實例中的光柵之第一集合之佈局。 [圖23B]說明根據某些具體實例之包括用於三種不同顏色之三個投影儀的波導顯示器之實例中的光柵之第二集合之佈局。 [圖24A]說明根據某些具體實例之包括體積布拉格光柵耦合器的波導顯示器之實例。 [圖24B]說明根據某些具體實例之包括基板中之體積布拉格光柵的輸入耦合器之實例。 [圖24C]說明在低折射率材料與高折射率材料之間的界面處具有不同入射角之s偏振及p偏振光的反射係數之實例。 [圖24D]說明在高折射率材料與低折射率材料之間的界面處具有不同入射角之s偏振及p偏振光的反射係數之實例。 [圖24E]說明根據某些具體實例之包括VBG耦合器及相位結構的波導顯示器之實例之橫截面視圖。 [圖24F]說明根據某些具體實例之包括體積布拉格光柵及相位結構的波導顯示器之另一實例之橫截面視圖。 [圖25A]說明根據某些具體實例之包括VBG耦合器及相位結構的波導顯示器之實例之輸入區的橫截面視圖。 [圖25B]說明根據某些具體實例之包括VBG耦合器及相位結構的波導顯示器之實例之俯視圖。 [圖26A]說明根據某些具體實例之包括VBG的波導顯示器之實例之模擬結果。 [圖26B]說明根據某些具體實例之包括VBG及相位結構的波導顯示器之實例之模擬結果。 [圖27]說明根據某些具體實例之包括階梯結構及相位結構的波導顯示器之實例之一部分。 [圖28A]說明根據某些具體實例之包括用於不同顏色之單獨投影儀及輸入光柵耦合器的波導顯示器之實例。 [圖28B]說明根據某些具體實例之包括用於不同顏色之單獨投影儀及輸入光柵以及相位結構的波導顯示器之實例。 [圖29A]說明根據某些具體實例之包括多個投影儀及多個階梯結構上之多個輸入光柵的波導顯示器之實例之輸入區。 [圖29B]說明根據某些具體實例之包括多個投影儀、多個階梯結構上之多個輸入光柵3132及相位結構的波導顯示器之實例之輸入區。 [圖30]為根據某些具體實例之近眼顯示器之實例的電子系統之實例之簡化方塊圖。 圖式僅出於說明之目的描繪本發明之具體實例。熟習此項技術者依據以下描述將容易認識到,可在不脫離本發明之原理或所主張之權益的情況下使用所說明之結構及方法的替代具體實例。 在隨附圖式中,類似組件及/或特徵可具有相同參考標記。此外,可藉由在參考標記之後加上破折號及在類似組件之間進行區分之第二標記來區分同一類型之各種組件。若在本說明書中僅使用第一參考標記,則描述適用於具有相同第一參考標記而與第二參考標記無關的類似組件中之任一者。
500:光學透視擴增實境系統
510:投影儀
512:影像源
514:投影儀光學件
515:組合器
520:基板
530:輸入耦合器
540:輸出耦合器
550:光
560:所提取光
590:眼睛
595:眼眶

Claims (20)

  1. 一種波導顯示器,其包含: 波導,其包含: 第一基板; 第二基板;及 全像材料層,其位於該第一基板與該第二基板之間且包括第一光柵及第二光柵;及 階梯結構,其耦合至該波導且定位於該第一光柵之至少一部分之頂部上但不定位於該第二光柵之頂部上,該階梯結構包括輸入光柵,該輸入光柵位於該第一光柵之頂部上且經組態以將顯示光耦合至該波導中, 其中該第一光柵經組態以將由該輸入光柵耦合至該波導中之該顯示光重新引導朝向該第二光柵。
  2. 如請求項1之波導顯示器,其中該階梯結構具有小於100 μm之總厚度。
  3. 如請求項1之波導顯示器,其中該階梯結構包括兩個或更多個全像材料層。
  4. 如請求項1之波導顯示器,其中: 該階梯結構包括階梯基板;且 該輸入光柵位於該階梯基板之頂部或底部表面上。
  5. 如請求項1之波導顯示器,其中該階梯結構之形狀及厚度經選擇以避免該波導顯示器之視場經該階梯結構裁剪。
  6. 如請求項1之波導顯示器,其進一步包含輸出光柵,其中:  該第二光柵經組態以在該第二光柵之兩個或更多個區處將來自該第一光柵之該顯示光繞射朝向該輸出光柵;且 該輸出光柵經組態以在該輸出光柵之兩個或更多個區處將來自該第二光柵之該兩個或更多個區中之每一者的該顯示光耦合至該波導之外。
  7. 如請求項1之波導顯示器,其進一步包含位於該第一基板或該第二基板上之相位結構,該相位結構經組態以在該顯示光由該第一光柵重新引導之前或之後改變入射於該相位結構上的該顯示光之偏振狀態。
  8. 如請求項7之波導顯示器,其中該相位結構包含波板、一層雙折射材料或次波長結構及外塗層。
  9. 如請求項7之波導顯示器,其中該相位結構在該波導之選定區中或具有跨越該相位結構之不同區的空間上不同相位延遲。
  10. 如請求項1之波導顯示器,其中該輸入光柵、該第一光柵及該第二光柵包括透射式體積布拉格光柵或反射式體積布拉格光柵。
  11. 如請求項1之波導顯示器,其包含位於該第一基板與該第二基板之間的兩個或更多個全像材料層,該第一光柵及該第二光柵形成於該兩個或更多個全像材料層中。
  12. 一種波導顯示器,其包含: 投影儀,其經組態以透射顯示光; 波導; 第一光柵及第二光柵,其分別位於該波導之第一區及第二區中;及 階梯結構,其位於該波導之該第一區上,該階梯結構包括位於該第一光柵之頂部上且經組態以將來自該投影儀之該顯示光耦合至該波導中之輸入光柵, 其中該第一光柵經組態以將由該輸入光柵耦合至該波導中之該顯示光重新引導朝向該第二光柵。
  13. 如請求項12之波導顯示器,其中該波導包含: 第一基板; 第二基板;及 一或多個全像材料層,其位於該第一基板與該第二基板之間,該第一光柵及該第二光柵形成於該一或多個全像材料層中。
  14. 如請求項12之波導顯示器,其中該階梯結構具有小於100 μm之總厚度。
  15. 如請求項12之波導顯示器,其中該階梯結構包括兩個或更多個全像材料層,該輸入光柵形成於該兩個或更多個全像材料層中。
  16. 如請求項12之波導顯示器,其中: 該階梯結構包括階梯基板;且 該輸入光柵在該階梯基板之頂部或底部表面上。
  17. 如請求項12之波導顯示器,其進一步包含位於該波導中之輸出光柵,其中: 該第二光柵經組態以在該第二光柵之兩個或更多個區處將來自該第一光柵之該顯示光繞射朝向該輸出光柵;且 該輸出光柵經組態以在該輸出光柵之兩個或更多個區處將來自該第二光柵之該兩個或更多個區中之每一者的該顯示光耦合至該波導之外。
  18. 如請求項12之波導顯示器,其進一步包含位於該波導上之相位結構,該相位結構經組態以在該顯示光由該第一光柵重新引導之前或之後改變入射於該相位結構上的該顯示光之偏振狀態。
  19. 如請求項18之波導顯示器,其中該相位結構包含波板、一層雙折射材料或次波長結構及外塗層。
  20. 如請求項12之波導顯示器,其中: 該輸入光柵、該第一光柵及該第二光柵包括透射式體積布拉格光柵或反射式體積布拉格光柵;且 該階梯結構之形狀及厚度經選擇以避免該波導顯示器之視場經該階梯結構裁剪。
TW110145269A 2021-02-24 2021-12-03 用於波導顯示器的梯狀內耦合 TW202235939A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/184,312 2021-02-24
US17/184,312 US11709358B2 (en) 2021-02-24 2021-02-24 Staircase in-coupling for waveguide display

Publications (1)

Publication Number Publication Date
TW202235939A true TW202235939A (zh) 2022-09-16

Family

ID=80684942

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110145269A TW202235939A (zh) 2021-02-24 2021-12-03 用於波導顯示器的梯狀內耦合

Country Status (3)

Country Link
US (1) US11709358B2 (zh)
TW (1) TW202235939A (zh)
WO (1) WO2022182784A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220137410A1 (en) * 2020-11-05 2022-05-05 Facebook Technologies, Llc Phase structure on surface-relief grating-based waveguide display
CN116068768A (zh) * 2022-03-15 2023-05-05 嘉兴驭光光电科技有限公司 衍射光波导以及具有其的显示设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148927A1 (en) 2007-06-04 2008-12-11 Nokia Corporation A diffractive beam expander and a virtual display based on a diffractive beam expander
US8233204B1 (en) * 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
EP2929378A1 (en) * 2012-12-10 2015-10-14 BAE Systems PLC Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US11513350B2 (en) * 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
KR20190105576A (ko) 2017-01-26 2019-09-17 디지렌즈 인코포레이티드 균일한 출력 조명을 갖는 도파관 장치
FI128831B (en) 2017-05-03 2021-01-15 Dispelix Oy Display element, personal display unit, procedure for producing an image on a personal display and use
US10295723B1 (en) * 2018-05-01 2019-05-21 Facebook Technologies, Llc 2D pupil expander using holographic Bragg grating
CN112630967B (zh) * 2020-12-23 2022-12-13 业成科技(成都)有限公司 光波导模组及电子设备

Also Published As

Publication number Publication date
US20220269075A1 (en) 2022-08-25
WO2022182784A1 (en) 2022-09-01
US11709358B2 (en) 2023-07-25

Similar Documents

Publication Publication Date Title
US20210199873A1 (en) Dual-side antireflection coatings for broad angular and wavelength bands
JP2022544732A (ja) マルチプルプロジェクタ視野スティッチング式導波路ディスプレイ
JP2023509270A (ja) 表示漏れ低減のための勾配屈折率格子
CN113302431A (zh) 用于近眼波导显示器的体布拉格光栅
US11774758B2 (en) Waveguide display with multiple monochromatic projectors
JP2023507052A (ja) 複屈折性ポリマーベースの表面レリーフ格子
TW202235939A (zh) 用於波導顯示器的梯狀內耦合
US11885967B2 (en) Phase structure on volume Bragg grating-based waveguide display
TW202235929A (zh) 用於極化轉換的薄液晶堆疊
US20220291437A1 (en) Light redirection feature in waveguide display
US11733521B2 (en) Heterogeneous layered volume Bragg grating waveguide architecture
US20240168299A1 (en) Kaleidoscopic waveguide as small-form-factor pupil expander
US20240231103A1 (en) K-space analysis for geometrical waveguide
TW202235961A (zh) 波導顯示器中的光重定向特徵
US20240192427A1 (en) Reflector orientation of geometrical and mixed waveguide for reducing grating conspicuity
US20240179284A1 (en) Dual-path disparity sensor
CN116964507A (zh) 波导显示器中的光重定向特征